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Progress Report No. I. on
NSF Grant CEE-81 1745 entitled
"NONLINEAR ANALYSIS OF ELASTIC UNBRACED FRAMES"
By George J. Simitses, Principal Investigator

The research deals with the nonlinear behavior, including buckling
and postbuckling response, of linearly elastic, rigid-jointed and flexibly-
jointed, unbraced, plane frameworks, subjected to distributed and eccentric
concentrated loads.

In this investigation, there are two major areas to be dealt with.
First, the assessment of the effect of flexible connections on the response
characteristics of frames that are either subject to bifurcational buckling
(sway-buckling, portal frames) or, subject to limit-point instability (snap-
through buckling two bar-frames). Second, the development of a solution
scheme (including a computer code) for the analysis of multibay multistory,
unbraced plane frames.

The first task has been accomplished and the findings of the investi-
gation have been reported on two papers (copies attached to this report as
Attachments I and 1I), which have been submitted for publication.

The first paper deals with simple one-bay unbraced portal frames. This
configuration is subject to bifurcational buckling (sway-buckling) with stable
postbuckling behavior. It is found that flexible conmections of the type
reported by DeFalco and Marino [1] have negligibly small effect on che sway-
buckling load, when one exists. On the other hand, in the case for which the
frame is loaded asymmetrically, the effect of flexible connections is negli-

gibly small for loads, which are small by comparisonm to the sway-buckling



load of the corresponding symmetrically-loaded configuration (see Fig.
6 of Attachment 1), but 1its effect becomes increasingly non-neglible as
the load approaches the sway-buckling load.

Of course, these observations are for the assumed cubic nonlinearity
in the joint bending moment - relative rotation curve and for the tried
values of the coefficient of the cubic term (A). It is the opinion of the
investigator that for a realistic good connection, it is reasonable to
expect that the magnitude of the bending moment tends to increase with
increasing relative rotation prior to sway-buckling., This being the case,
the observations hold for good real-world frame connections. (Good here
itmplies that the connection is strong and it can transfer bending moment
with increasing loading) .

Since the two-bar frame is subject to limit-point instability rather
than bifurcational buckling (sway-buckling), and since the effect of flexible
connections on the response of an asymmetrically-loaded portal frame (for
loads near the corresponding sway-buckling load) is not negligible, one should
investigate the flexibly-connected and eccentrically loaded two-bar frame.
This is done and reported on Attachment II. The procedure employed is similar
to that of Attachment I,and the observations for this configuration are similar
to those for the portal frame., The effect of realistic (good) flexible connec-
tion on the limit point load (whenever one exists) of the two-bar frame is
negligibly small.

Moreover, for both configurations, several parametric studies are
performed in order to assess the effects of various structural and geometric

parameters on the critical loads, in the presence of flexible connections.



The conclusions are similar to the omes drawn for the corresponding
rigid- jointed frames and are listed below:
(1) For all geometries and load cases considered, the effect

of bar slenderness ratio on the nondimensionalized response

characteristics, including critical loads, is negligibly small.
(2) The effect of load eccentricity on the nondimensionalized
critical loads (limit point loads for the two-bar frames,
bifurcation loads [sway-buckling] for the symmetrically loaded
portal frames) is the same as in the case of rigid-jointed
frames. For instance, the sway-buckling load decreases (slightly)
with increasing load eccentricity. The limit point load (twe-bar
frame) decreases with increasing eccentricity (in a direction
away from the support of the horizontal bar- outside the frame).
Note that for eccentricities inside the frame there is no buckling.
The frame simply bends in stable equilibrium,
On the basis of the above investigations and related observations, it
is decided to abandon (for the present) any further investigations concerning
the effect of flexible connections and concentrate on the second major task
{(in progress) which is: To develop a solution methodology for the response of
a multi-bay multi-story, elastic, plane, unbraced, rigid-jointed framework,
subjected to, in general, eccentric concentrated loads (mear the joints) and
uniformly distributed transverse loads.
The proposed solution, methodology (which is being developed presently)
contains the following features (refer to Fig. 1 for the geometry and sign

convention).
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{a) The general solution to the equilibrium equations for the ith

bar is given by
k,
U.(X) = A i———x-—fwz dx (1)
i i i,X

and

sin ki X ,COS kiX\
W) = Ail (sinh kix ) + AiZ (coshkj_x + AiBX
aixz
+ A, + (2)
i4 2k§

where the "upper' sign and terms are used, when the ith bar is in com-
pression and the lower, when in tension. Also note that for the vertical bars,
usually, the transverse loading g is zero. Furthermore, the displacement
component Ui and wi are in nondimensionalized form. A list of the nondimen-

sional parameters is given below:

u; = ui/.e:.L ; W, = willli : X = xi/zi ;

2
by = 478 r, = (ED),/(ED), ; pm = 1,/A ;
No= /e, 3 Qo= (QAD/ED, 5, = q g/ (E ~
* 3, ) 2 _ 2
q = qile /(I:I)l ; ki + Pizi /(EI)i

where Pi is the axial force in the ith bar (:Q:Pi is a positive number; Pi is

positive when tensile and negative when compressive).



(b) Given an n-member frame, there are 6 n - unknowns that one must
solve for [see Egqs. (1) and (2)] (5n Aij's and n ki‘s).

Tn order to solve for these unknowns, 6 n boundary and joint conditions
are needed. At each boundary,there are three boundary conditions. At each
joint, there are three force and moment conditions. Moreover, at each two-
member joint there exist three kinematic continuity conditions, at each three-
member six conditions, and finally at each four-member joint nine conditions.

From Fig. 1, it is clearly seen that the two-bay, two-story plane frame
has ten members; therefore, the number of unknowns is 60 (50 Aij‘s and 10
k.'s).

1

There are three boundary conditions at each of points 1, 2, and 3.

Pt. 1 U(0) = Wy (0) =W, ((0) =0
Pt. 2 Up(0) = W,(0) = W, 4y (0)=0 (3)
Pt. 3 U300) = W30) =, (0) =0

Moreover, there are three force and moment equilibrium conditions at each
of joints 4,5,6,7,8, and 9, or 18 such conditions.

As far as the kinematic c;;¥inuity conditions are concerned, there
are three at joint 7, three at joint 9 |see Eqs. (4) below], six at joint
4, six at joint 6, six at joint 6, and nine at joint 5, for a total of 33
such conditions.

Thus, the total number of conditions are 60 (33 kinematic continuity

at joints, 18 force and moment equilibrium at joints and 9 boundary conditions).



at_joint 7

U, (1) = - W (1)

W, (1) = U, (1) (4)

Wy @) = Wy (1)

(c) Satisfaction of all of the conditions in (b) lends to a system of
6 n equations in 6n unknowns. Of these, 5n equations are linear in the 5n

Aij's. These can be written in matrix form, or
(c] {a} = {p} (5)

where [C] is a 5n by 5n matrix in terms of geometric parameters and in general
trigonometric functions of the ki's, {A} is a column matrix of the 5n Aij's and

{D} is a column matrix containing, primarily load and load eccentricity para-

meters.

The remaining n equations are nonlinear in the Aij‘s and ki's.

fi(ki’Aij) =0 i=1, ...n (6)

(d) For small values of the load (linear theory should hold), an estimate
of the ki's is obtained (differcnt schemes are under comsideration).

This estimate is used in Eq. (5) to solve for the Aij' Then, these Aij
values are used in Eqs (6) to solve for the ki's (a nonlinear solution code
has been tried successfully for this purpose). Ifthe ki's are different from

initial estimates, the new values are used in Eqs (5) to obtain new values for

Aij’ which in turn are used in Eqs (6). The interation continues until a



desired accuracy is obtained.

Then the load level is increased by a small amount, and the final
ki-values at the previcus load level are used as initial estimates. The
iteration procedure is again employed, and then the 1pad parameters are
incremented again. This procedure leads to the primary path response.

For finding critical loads (sway-buckling) and post-buckling path
(whenever they exist) a number of approaches are under consideration.
Finally, efforts are exerted into mechanizing the information pértaining

to the recording of the geometry and assembly of the necessary equations.
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FINAL REPORT
NONLINEAR STABILITY ANALYSIS OF ELASTIC UNBRACED FRAMES

by G. J. Simitses
Georgia Institute of Technology, Atlanta, Georgila
ABSTRACT
The ncnlinear analysis of plane elastiz and orthogonal frameworks is
presented. The static locading consists of both eccentric concentrated
loads and uniformly distributed lcads on all or few members. The joints
can be either rigid or flexible. The flexible joint connection is
characterized by connecting one member on an adjeining one through a
-rotational spring (with linear or nonlinear stiffness). The supports are
immovable but are also characterized with rotational restraint by employing
linear rotaticnal springs. The mathematical formulation is presented in
detail and the solution methodology is ocutlined and demonstrated through
several examples. These examples include two-bar frames, portal frames as
well as multibay multistorey frames. The emphasis is placed on obtaining
sway buckling loads, prebuckling and postbuckling behaviors, whenever
applicable.
The most important conclusions of the investigation are:

(i) The effect of flexible joint connections (bolted, riveted and
welded) on the frame response (especially sway-buckling loads) is small.
(ii) Multistory, multibay orthogonal frames are subject to bifurcotional
{sway) buckling with stable postbuckling behavior. Sway buckling takes
place, when the frame and loads are symmetric.

(11i) The effect of slenderness ratio on the nondimensionalized response
characteristics in negligibly small (except for the two—bar frame).

(iv) Starting with a portal frame, addition of bays increases appreciably
the total sway-buckling load, while addition of storeys has a very small

effect.
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1. INTRODUCTION

Plane frameworks, composed of straight slender bars, have been widely
used as primary structures in several configurations. These include one-
or multi-storey buildings, storage racks, factory cranes, off-shore
plat forms and others. Depending on characteristics of geometry (symmetric
or asymmetric, and various support conditions) and loading (symmetric or
asymmetric transverse and horizontal), plane frames may- fail by general
instability (in a sidesway mode or a symmetric mode) or they may fail by a
mechanism or a criterion other than stability (excessive deformations
and/or stresses etc). For example, a symmetric portal frame subjected to a
uniformly distributed transverse load is subject to sway buckling. On the
other hand if, in addition to the transverse load, a coacentrate horizoantal
load is applied, excessive deformations and stresses will occur without the
system being subject to instability (buckling).

The various frame respoonses, assoclated with the various geometries
and loadings, have been the subject of many studies, both in analysis and
in synthesis (design). A brief description and critigue of these studies
i1s presented in the easuing articles.

1.1 Rigid-Jointed Frames - Linear Analyses

The first stability analyses of rigid-jointed plane frameworks may be
traced to Zimmerman (1909, [910 and 1925), HMuller-Breslau (1910) and Bleich
(1919). They only treated the problem for which a momentless primary state
(membrane) exists and bifurcational buckling takes place through the
existence of an adjacent bent equilibrium state {(linear eigenvalue problem).
Prager (1936) developed a method which utilizes the stability condition of

d column with elastic end restraints. The first investigation of a problem



for which the primary state includes bending moments (primary moments) is
due to Chwalla (1938). He studied the sway buckling of a rigid-jointed,
one-gtorey, symmetric, portal frame, under symmetric conceatrated
transverse loads, not applied at the joints of the horizontal bar. In
obtaining both the primary path and the bifurcation load, Chwalla employed
linear equilibrium equations and he assumed linearly elastic behavior. In
more recent years, similar problems have been studied by Baker et al.
(1949), Merchant (1954, 1955), Chilver (1956), Livesley (1956), Goldberg
(1960), Masur et al. (1961l), and Horne (1962). The last two consider the
effect of primary moments which cause small deflectiéns prior to
tnstability in their buckling analysis of portal frames. Many of the
aforementioned analyses have been 1ncorporated into textbooks, such as
those of Bleich (1952), McMinn (1962), Horne and Merchant (1965), and
Simitses (1976). Other investigations of this category include the studiles
of Holldorsoon and Wang (1968) and Zweig and Kahn (1968). It is also worth
meat ioning the work of Switzky and Wang ([964), who outlined a simple
procedure for designing rectangular, rigid {rames against stability. Their
procedure employs linear theory and is applicable to load cases for which
the primary state is a membrane state (free of primary moments).

1.2 Rigid-Jointed Frames-Nonlinear Analyses.

The effects of finite displacements on the critical load and on the
postbuckling behaviour of framewcrks have only been investigated ia the
last 20 years or so. Saafan (!1963) considered the effecis of large
de format ions on the symmetric buckling of a gable frame. Similar effects
were also considered by Britvec and Chilver (1963) in their studies of the
buckling and postbuckling behaviour of triangulated frames and

rigid-jointed trusses. The nonlinear behaviour of the two-bar frame was



studied by Williams (1964), Roorda (1965), Kciter (1966), Huddleston (1967)
and more recently by Kounadis et al. (1977) and by Simitses et al. (1977).
Roorda's work contéins experimeantal results, while Koiter's contribution
employs his (1945) rigorous nonlinear theory for initial postbuckling
behavior, applicable to structures that exhibit bifurcational buckling.
The studies of Kounadis and Simitses employ nonlinear kinematic relations
(corresponding to moderate rotations) and assume linearly elastic material
behaviour. Huddleston's nonlinear analysis is based on equations of the
Elastica, A similar approach (Elastica-type of equations) was outlined by
Lee et al. (1968) for studying the large deflection buckling and
postbuckling behaviour of rigid plane frameworks loaded by concentrated
loads. They demonstrated their procedure by analyzing a two-bar frame and
a portal frame, and they used a modified Newton~Raphson procedure to solve
the nonlinear equations. More recently, Elastica-type of equations were
employed by Qashu and DaDeppo (1983) for the analysis of elastic plane
frames. They used numerical integration of the differential equations and
their examples include one- and two-storey elastic, rigid frames. Besides
the inherent assumptions of Elastica-type of equations that make then
applicable to very slender members, the difficulty of solving the highly
nonl inear equat ions In a straight forward method further limits the
applicability of this approach to frames with a relatively small number of
members. On the other hand, the nonlinear methodology, described herein,
as developed by Simitses and his collaborators (1977, 1978, 1981, 1982)
employs first order nonlinear kinematic relations (moderate rotations) but
can be used, with relative ease, in analyzing the large deformation

behaviour {including buckling and postbuckling) of multi-storey, multi-bay,



of elastic, rigid—jointed, orthogonal, plane frameworks, with a large
number of members.

The interested reader is referred to the book of Britvec (1973),
which presents some ¢of the nonlinear analyses of frames. Moreover, those
who are interested in the design of elastic frames are referred to the
Desian Guide of the Structural Stability Research Council; see Johnston
(1976).

1.3 Semi-Rigidly Connected Frames

All of the previously discussed analyses, are based on the assumption
that the bars are rigidly connected at khe frame joints. This means that
the angle between connected members at the joints remains unchanged, during
de formations.

Since the 1930's, there has been considerable interest and research
into the behaviour of beam structural conrnections. A number of
exper imental and analytical studies have been carried out to measure the
moment-relat ive rotation characteristics of various types of metal
(primarily steel) framing connections. Various methods of (moment
distribut ion, slope-deflection, elastic line) of analysis have been
employed in order to account for the flexibility of the connections by
Batho and Rowan (1934), Rathbun (1936) and Sourochnikoff (1946). Moreover,
some efforts have been made, recently, to account for the effect of
flexible connections in frame design. DeFaico and Marino (1966) modified
the effective column length, used in frame design, by obtaining and
employing a modified beam stiffness, which is a function of the semi-rigid
connect ion facter (slope of the relative rotation to moment curve at the
origin), Z, proposed by Lothers (1960). Fryv and Morris {(1975) presented an

lterat ive procedare which incorporates the cffects of nonlinear connect ion

Vi



characteristics. They assumed linearly elastic material behaviour, and
they developed equations that deplct moment-relative rotation relations for
a wide range of frame connections. More recently Moncarz and Gerstle
(1981) presented a matrix displacement method for analyzing frame with
flexible (nonlinear) connections. The effect of flexible joints on the
response characteristic of simple two-bar frames, which are subject to
limit point instability (violent buckling) has been raported by Simitses
and Vlahinos (1982). This subject is further explored, herein, in a later
article. Finally, a brief summary of recent research of the effect of end
restrains on column stability is presented by Lui and Chen (1983).

In closing, it iIs worth mentioning that the analysis of plane
frameworks,.including stability studies, postbuckling behaviour and the
study of the effect of flexible connections, has been the subject of
several Ph.D. theses, especially in the United States. Of particular
interest, and related to the objective of the present chapter are those of
Ackroyd (1981), and Vlahinos (1983). Moreover, there exist a few reported
investigat ions, in which the frame has been used as an object of
demonstration. In these studies, the real interest lies in some nonlinear
numerical scheme, especially the use of finite elements. Some cof these
works, but not limited to, are those of Argyris & Dunne (1975), Olesen &

Byskov (1982), and brecht elL al. (1982),



2. MATHEMATICAL FORMULATION

2.1 Geometry and Basic Assumptions

Constider a plane, orthogonal, rigid-jointed frame composed of N
straight slender bars of constant cross—-sectional area. A typical ten bar

frame is shown on Fig. l. Each bar, identified by the subscript "i", is of

;
length Lj, cross-sectional area Aj, cross-sectional second moment of area
I;, and it subscribes to a local coordinate system, x & z, with
displacement components uj and w; as shown. The frame is subjected to
eccentric concentrated loads Q(f and Qil and/or uniformly distributed
loadings q;. For the concentrated loads, the superscript '"0" implies that
the load is near the origin of the ith bar (x = 0), while the superscript
"I'" implies that the load is near the other end of the ith bar (x = Lj).
The concentrated load eccentricities are also denoted in the same manner as

0 and e;l). Moreover, these eccentricities are

the concentrated loads (ej
positive if the loads are inside the x~interval of the corresponding bar
and negative if outside the interval. For example, on Fig. 1 e70 s a
posit ive number. But this sawe eccentricty (and therefore the
corresponding load too) can be identified as elg in which case its value 1is
negative, This is used primarily for corner overhangs (joint 7 or 9 with
concentrated loads off the frame), The supports are such that translation
is completely constrained, but rotation could be free. For this purpose
rotat ional linear springs are used at the supports (see Fig. |, support
"3"), When the spring stiffness, B, is zero, we have an immovable simple
support (pin). On the other hand, when B is a very large number (& ® ) we
have an immovable fizxed support (clamped, built-in).

For clarity, all the limitation of the wmathematical formulation are

compiled below in form of assumptions. These are:
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(2)

(3)

(4)
(5)

(6)

(7)

The frame wmembers are initially straight, piecewise prismatic and
joined together orthogonally and rigidly {this assumpticn can be

and is relaxed later on).

The material is homogeneous and isotropic and the material

behaviour is linearly elastic with constant elastic constant,
regardless of tension or compression.

Normals remain normal to the elastic member axis and inexten-
sional (the usual Euler-Bernoulli assumptions)

De format ions and loads are confined to the plane of the frame.
The concentrated loads are applted near the joints‘(small
eccentricities). This assumpt ion can easily be relaxed, but it
will lead to an increase in the number of bars. A councentrated
load at the midpoint of a bar is treated by considering two bars
and an additional join at or near the location of the concen-
trated load.

The effect of residual stresses on the system response (critical)
load is neglected.

The nonlinear kinematic relations correspond to small strains but
mnderate rotations for points on the elastic axes (first order

noal inea: ity)

On the basis of the above, the kinematic relations are:

Furthermore, the axial force, P; and bending moment, M

fa}
€ = e 4 zk
XK XX, \
i i i (1)
- o 1 2
where ¢ = u, + - W, ond k = -,
XX i, 2 i, XX & i,
X X 1 XK

;, 1n terms of the

displacement gradlents are:

(2)



where E 18 the material Young's modulus of elasticity. Similarly, the

expression for the traunsverse shear force is

vi(xy = - ETw, + Piwi, (3)
HXXK X

2.2 Equilibrium Equat ions; Boundary and Joint Conditions

Before writing the equilibrium equations and the associated boundary

and joint couditions, the following nondimensioralized parameters are

introduced:
X¥=x/L,; U, =u,/L; W, =w/L;
i i i i i i i i
- - 3 Lk 3
e, = ei/Li, q; = qiLi/EIi, q; = qiLl/Ell
- 2/ a i
= EI M = s 3 = -
Q; = L /B, 5 B =8L/EI; 5 A, =L Y Ii/Ai ; @)
k* = ¥ pu%Er.; S, = ELLL/EL,L, ; R, = L,/L
i i7i i’ i il 171 ° 71 i" 71
The expression for the internal forces, in terms of the
nondimensionalized parameters are:
-2 2
P, = + k. (EI./LY; M. = W, (ET./L.)
i i i1 i i, i
XX
(5)
v, = (Friu, -w (ET1, /L5
1 i 1 1, 1 1
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where the top sign holds for the case of compression in the bar, and the
lower for the case of tension (the axial force P; is positive for tension

2

and negative for compression; thus k~ is always positive).
i
The equilibrium equations for the frame are (in terms of the

nondimensionalized parameters):

U + %(wi } = + k?/l?
Lix 'X
(6)
W, + ki%i = 3, i=1, 2...8
> XKXX ' XX

where N is the number of bars and the top sign holds for the compression

case. The general solution to the equilibrium equaticns is given by:

i, 2 X -2
+ () 1 (°T
= — - = | d‘
U (0 = A A ox ZJOLwiS;{)—! X
(N
sin k X cos kX q,
_ i) i L 42
W X)) = A (\sirhkiX T2 hcosh i x T ARt Ayt X

2
2k
i

where Aj; and kj; (i =1, 2... N, 3}

il

1, 2,...5) are constants (for a given
level of the applied loads), to be determined from the boundary and joint
conditions. For an N-member frame, the number of unknowas is 6N.

There fore, 6N equations are needed for their evaluation.

These equations are provided by the bo;ndary condit ions and the joint
conditions. At each boundary, three conditions must be satisfied
(kinematic, natural or mixed; typical conditions are listed below). At each
joint, three force and moment equations must be satisfied (equilibrium of a

joint taken as a particle), and a number of kinematic continuity equat ions

14



must also be satisfied. This number depends on the number of members coming
into a joint and they represent continuity in displacement and continuity in
rotation (typical conditions are listed below). For a two-member joint, we
have three kinematic continuity condition, two in displacement and ome in
rotation. For a three-member joint the number is six, and for a four-member
(largest possible) joint the number is nine.

A quick accounting of equilibrium equations, and boundary and joint
conditions for the ten-bar frame, shown on Fig 1, yields the following:
(i) the number of equilibrium equations is 60 (6 x 10).
(ii) the number of boundary conditions is nine (three at each of boundaries
1, 2, and 3).
(iii) The number of joint conditions is 51 of these, 18 are force and moment
equilibrium conditions (three at each of the six joints 4, 5, 6, 7, 8 and
9), and 33 kinematic continuity conditions (three at each of joints 7 and 9,
six at each of joints 4, 6, and 8 and nine at joint 5).

Therefore, the total number of available equations is 60. Here, it is
implied that the loading is of known magnitude.

For clarity, typical boundary and joiat conditions are shown below,

with reference to the frame of Fig. 1 {in nondimensionalized form).

Boundary 3
U,(0) = 0; Wy(0) = 0
~ ®)
XX X
Joint 5
- - S , S -
-2 9 AN L— 2
Lt kg Wo(0) =Wy (0) ¢+ ==+ "+ k, == -1+ k7 W (1)
9 79, 9’XXX - hg 2 R2 L 10 10,X
(9a)
- 8 . S
- W, 1) 10 /= 2 %5
10,\' A csnadiE N k = = 0
XXX RlO 5 5



[
[+ k§W(O) 5(O)—lju——+(+ k)R—g--éL+ kzwz(l)
X XXX~ ©s 97 Bg £ 4Hy
s S
10 _
(1)J—-(+k10 == =0 (9b)
10
WG(0) + S0 o(0) - §U,(1) - S 10(1\ -0 (9¢)
XX
R U, (D)=- Rygiyo(1) = RUS(O) = = Rgig(0)
Wy(1) = Ry U (1) = RW.(0) = R U (0) (10)
Wy(D) = W) = Wg(0) = THg(0)
X X X X
Joint 7
A Sy - 2 s,
Q7+ +k4R-|+k7W(1)-w7(1)J-R—-=O (11a)
4 X XXX C 7
| S 2 - S4 J 2\ S7
A I A I e (11b)
’ xxx ¢ Ry 7
W, (1) S, + W, (1) S, + 0r et = 0 (11c)
Z _
I S A
R,U, (D = = R, (1) R, (1) = RyU(1);
4
(12)
Wo(y = Wy (D
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Note that, in these expressions as well, the top sign corresponds to the
compression case and the bottom to the tension.

2.3 Buckling Equations

The buckling equat ions and the associated boundary and joint conditions
are derived by employing a perturbation method [Bellman (1969) and Sewell
(1965)]. This derivation is based on the concept of the existence of an
adjacent equilibrium position at either a bifurcation point or a limit point.
In the derivation, the following steps are followed: (1) start with the
equilibrium equations, Eqs. (6), and related boundary and joint conditions,
expressed in terms of the displacements, (ii) purturb them by allowing
small kinematically admissible changes in the displacement functions and a
small change‘in the bar axial force, (iii) make use of equilibrium at a
point at which an adjacent equilibrium path is possible and retain first
order terms in the admissible variations. The resulting inhomogeneous
ditferential equations are linear in the small changes. Replace Uj and Wj
in Eqs.(6), by Gi + Ur and &1 + wf , respectively. Moreover, replace I kf
by +k;2 + 9%, where‘j? is the change in the nondimensionalized axial force
(= P;Lf / EI;) and it can be either positive or negative, regardless of
tension or compression in the bar at an equlibrium position. The bar
quant ities denote parameters at a static primary equilbrium position, and
the star quantities denote the small changes.

The buckling cquations are:

% - %* *,.2
U + W W =0,/
i,x i,x i,x i1
(13)
* -2 ¥ * -
W, ky Wy, =9 W

i4



The related boundary and joint conditions are presented, herein, only

for the same boundaries and joints as those related to the equilibrium

equat ions, Egs. (9)-(12).
Boundarx 3
*0) = W (0) = 0
S.W. (0) 8. W.(0) = O
33k 3 "3
Joint 5
_ : S
| - * * —_ E 3
\+k29w)(0)-w9 +c’;w9’jR§+oz Ez'
’X ? XXX X9 2
- S S
% - ! 10 * 5
W, ) o W (D — -0, = =
10,XXX 10 10,x 1 Rio 5 R
- - S S
—_— * * k= : *
‘L+ ké WS(O) - w5 " + g Ws(‘o)j 3 + o; )
’X XXX ’X 5 9
TR oW () ot W) - ot S10
Lt Ky Wa(l) =Wy (1) +0, Wy(1); -0y 10
X XXX X
10
S w*(O) + 5 w*(O) S w*(l) S, W, (1)
B - 1
5 "s, 9 "9k 2"2,00  T10°10, 0
e k3 % %
= - 1 = R = = 0
R2U2(1) RIOwlo( ) 5US(O) ng 9( )
% _ 3 1 _ w*k O - R U-,': O)
RWo(1) = RygUpgll) = RgW5(0) = RgUg(
¥ 7 3 *
W,o(1) = W,n(1) =W (0) = W_(0)
2,X 10,y S,X 9,y

(14)
- [1 X2 oWl (1)
10 "10,
(15a)
0
(15b)
=0
= 0 (15¢)
(16)



* 54 57
04—-+k7W(1) w7(1)+c7W(1)l§-=0 (17a)
4 'X ? XXX ’X 7
F 2w 4(1) -W, () +0, 4(1) i + o) -;1 =0 (17b)
T XXX 4 7
% %
S,W,(1) + S, W, (L) =0 (17¢)
474 777,
XX
* 1 %* 1 % %
(18)
*
W4(1) = W (1)
’X *X
The solution to the buckling equations 1is given by
*
U = AL+ it X . W, W dx
i i5 Ki 0 1,q i,x
sin E.X cos E.X
W(X)—A ( l]+A*( l)+A*x+A* 19
il \sinh EiX i2 \cosh EiX’ i3 i4 (19
" x sin kX -cos E.x\ q.X
+ = A.2 ( Y+ A'l s —
k. : "sinhk. ¥ L cosh k. X k?
i i i i

Here also the top sign and expression correspond to the compression
case (the ith bar is in compression at equilibrium) and the bottom to the
tension case. Note that kj,Aj; and Ajy are the values of the constants [see

Eqs. (7)] on the primary path (equilibrium). On the other hand, the star

parameters are 6N in number (60 for the ten bar frame). Moreover, the



boundary and joint conditions associated with the buckling equations are
also 6N in number and they are linear, homogeneous, algebraic equations in
the 6N star parameters., Thus, the characteristic equation, which leads to
the estimat ion of the critical load condition, is obtained by requiring a
. % . . .
nontrivial (all Aij and o] are not equal to zero) solution of the buckling

equat ions to exist.

2.4, Semirigid Joint Connections

The mathemat ical formulation, presented so far, 1is based on the
assumpt ion of rigid-jointed connections. In the case of semirigid
connections, the only difference lies in some of the joint conditioms. Two
types of non-rigid connections are treated herein. Both come under
the general but vague term of semirigid connections. The first corresponds
to the case where a member, at a given joint, is connected to the remaining
through a linear rotational spring (Type A). The second corresponds to the
case of realistic flexible connections at frame joints (Type B). In this
latter case, especially for steel frame construction, the connections are
usually bolted with the use of various connecting elements (top and bottom
clip angles, end plates, web framing, etc.). In this case the bending
moment-relat ive rotation curve {for a member connected to a group of members
at a joint) is nonlinear. Initially, the slope is not infinite, as assumed
in the case of rigid joints, but a very large number, which primarily
‘depends on the beam depth and the type of connection [see Tables I-IV of
DeFalco and Marino (1966)), but the slope decreases as the moment increases,
In this latter case, we may still employ the idea of a rotational spring,

but with nonlinear st iffness.



The necded modificat ton in the mathemat ical forwmulat ion is treated

separately for each case (Types A and B).

Type A

The only difference, from the case of rigid connections, 1s to modify
the condit ton of kinemat ic continuity in rotat ion.  For example, if momber
"7" is connected to member "4 through a rotational spring of linear
stiffness By (see Fig. 1), then the last of Eqs. (12) need be wodified.

Instead of

i

W, (1) = W_ (1) (12¢)
4’X 7)X

one must use

W, (D43, W) -w (D=0 (20)
TIXX AP X

m o _ )
whoere Si 15 the stiftness of the rotat ional spring that conaects number "4

to joint 7 (see Fig. ) In a nondimensional tzed form, or

1 (21)

m . . . . . .
Not» that Bi 1s the rotal toaal st iffaess assoaciated with mewbor 1. If

mo= 1 the spring s at X = 1 of the wember, while, it w = 0 the spring is at
Xo= . Furthormore, note that kq. (20) velates the menber 4" end moment

to the relative rotat ton (of wmember "3 1o member 7)Y, Moreaver, for a

rigid-jointed frams 25 tends o inlinity Ctor calsabatjons a0 very larae

ig



-m
number is used)}, on the other hand, when Bi tends to zero (pin connection),

Eq. (20) implies that no moment is transferred through the pin.

Type b

For the case of realistic flexible connections the member end moment,
Mj(1 or 0), is related to the relative rotation curve in a nonlinear
fashion.

Again if the same example is used as for Type A, then

M4 = ET = f(‘PA) (22)

where f£(9;) is a noanlinear function of ¥4, and 9, is the relative rotation
of member "4" to member "7" at their joint (for a multimember joint, one

member is considered immovable and ?; is the relative rotation of the other

members with respect to the immovable one)

% = WD - w7,<)1(> (23)

One possible selection for the nonlinear function f(®?,) is a cubic relation,

or

-M = 8ley - 71,3 24)
My = 0B Py T A, Py ¢

=1
where B, denotes the slope of the member end moment to the relative

rotation curve at the origin (or before the external loads are applied) and

-1
A4 a constant, which can be obtained from exper imental data.

1%



In order to employ the same equations as for type A (linear spring)
connections and therefore the same solution methodology (instead of
increasing the nonlinearity of the problem), the following concept 1is
introduced. First, scolutions for the frame response are obtained by
starting with small levels for the applied loads and by using small

increments., Then, Eq. (24) at lcad step (m + 1) can be written as
. ] )
= _Pgl =1 ] ]
( M1+>m+1 = 1_054 AA(“PA)m (%),,*1 (25)

This implies that for small steps in the load, the relative rotation
experiences small changes. Thus, the required joint cendition, Eq. (24),
becomes

r =1
W) o+ W) - W) |(B - (26)
4’ L a,x 7,x —J( 4 m+-1

where (Bz Jm+] 18 evaluated at the previous load step by

- ) 2
a1 A -1
(aa)ml S0Py T l.WAS}l() - W7§)1()}m (27)

Clearly then, the solution scheme for Type B connections is the same as
the one for Type A connections and the nonlinearity of the problem is not
increased.

3. SOLUTION PROCEDURE

The complete response of an N-member frame is known, for a given
geometry and level of the applied loads, if one can estimate the values of
the 6N unknowns that characterize the two displacement functions U(X) and
W(X), Eqs (7). The needed 6N equations are provided from the satisfaction
of the boundary and joint conditions. Furthermore, the estimation of the
critical load condition requires the use of one more equation. This is

provided by the solution te the buckling equations, Eqs. (13). As already
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ment ioned, the satisfaction of the boundary and support conditions, for the
buckling solution, leads to a system of 6N linear, homogeneous, algebraic
equat ions in CTI and A*ij (i =1, 2,... N;j =1,2,...5; these constants
charac¢terize the buckling modes). For a nontrivial solution to exist the
determinant of the coefficients must vanish. This step provides the needed
additional equation, which is one more equation in ii and some of the Aij'
and it holds true only at the critical equilibrium point (either bifurcation
or limit point).

A solution methodology has been developed (including a computer
algorithm) for estimating critical conditions, prebuckling response and
postbuckling behaviour. The scheme makes use of the following steps:

(1) Through a simple and linear frame analysis program, the values of the
internal axial load parameters, kj, are estimated, for some low level of the
applied loads. This can be used as an initial estimate for the nonlinear
analysis, but most importantly it tells us which members are in tension and
which in compression. Note that the solution expressions, Eqs (7), differ
for the two cases (compression versus tension). Such a subroutine is
outlined in the text by Weaver and Gere (1980).

(2) Once the form of the solution has been established (from step 1 we know
which members are in tension and which in compression), then through the use
of the boundary and joint conditions one can establish the 6N equations that
signify equilibr ium states, for the load level of step l.

In so doing, it is observed that 5N, out of the 6N equations, are
linear in Ajj and nonlinear in kj. Two important consequences are directly
related to this observation, First, through matrix algebra the 5N equations
are used to express the Aj; in terms of the k;, and substitution into the

remaining equations yields a system of N nonlinear equations in kj.
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Secondly, if the ki's are {somehow) known, then the 5N equations (linear in
Ajj) can be used to solve for Ajj.
(3) The N nonlinear equations are solved by employing one of several
possible nonlinéar solvers. There exist several candidates for this.

For the two-bar frame and for the portal frame (small number of
nonlinear equations), the nonlinear equations, fj = 0(j<3) can be solved by

first defining a new function by

4

F=03%, f£° (28)

Tﬁen, one recognizes tﬁat the set of kj that minimizes F (note that the
minimum value of F is zero) 1s the set that satisfies the nonlinear
equat ions, fj = 0. The mathematical search technique of Nelder and Mead
(1964) can be used for finding this minimum. This nonlinear solver was
employed by Simitses et al. (1976, 1977, 1978, 1981, 1982, 1983) for the
two-bar and portal frame problems.

For multibay multistorey frames (N> 5), the nonlinear equations, fj =0
(j=25), can be solved by Brown's (1969) method [see also Reinholdt (1974)].
This method was employed by Vlahinos (1983) in generating results, for all
frames.

Regardless of the nonlinear solver, the kj-values obtained from step 1
are used as initial estimates.

Note that through steps 1-3, one obtains the complete nonlinear
response of the system at the low level of the applied loads. Furthermore,
note that low here means not necessarily small loads, but loads for which
the linrear analysis yields good estimates for kj, to be used as initial

points in the nonlinear solver.
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(4) The load level 1is step-increased and the solution procedure of steps 1-3
is repeated. Another possibility is to use small increments in the load and
employ the values of kj of the previous load level as initial points for the
nonlinear solver. In this case, s.ep ! is used only once for a truly low
level of the applied loads.

(5) At each load level, the stability determinant (see section 2.3) is
evaluated., If there is a sign change for two cousecutive load levels, then
a bifurcation point exists in this load interval. Note that the bifurcation
point can be located, with any desired accuracy, by adjusting the size of
the load increment, In the case of a limit point, the procedure is the
same, but the establishment of the limit point requires special care.

First, if the load level is higher than the limit point, the outlined
solution steps either yield no solution or the solution does not belong to
the primary path (usually this is a physically unacceptable solution for
deadweight loading). If this is so, the load level is decreased until an
acceptable solution is obtained. At the same time, as the load approaches
the limit point the value of the determinant approaches zero. These two
observations suffice to locate the limit point. Note that, when a
non-primary path solution is obtained, the value of the buckling determinant
does not tend to zero.

(6) Step 4 is employed to find post-critical point behaviour. The
establishment of equilibrium points cn the postbuckling branch is

' numer ically difficult. The difficulty exists in finding a point, which then
can serve as an initial estimate for finding other neighboring equilibrium
points.

(7) The complete behaviour of the frame at each load level, regardless of

whether the equilibrium point lies on the primary path or postbuckling
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branch, has been established if one has evaluated all Ajj and ki,
Equilibrium positions can be presented, graphically, as plots of load or
load parameter versus some characteristic displacement or rotation of the
frame (of a chosen member at a chosen location).

Be fore closing this seétion, it should be noted that the procedure for
the analysis of flexibly jointed frames 1is the same, with one small
exception, The load increments must be small and the needed spring
stiffness at the (m+l)st load step is evaluated from the solution of the mth
load step [see Eq. (27)].

4, EXAMPLES AND DISCUSSION

The results for several geometries are presented and discussed in this
section. The geometries include two-bar frames, which can be subject to
limit point instability, as well as portal and multibay, multistorey frames,
which for linearly elastic behavior are subject to bifurcational (sway-)
buckling with stable postbuckling branch. The results are presented both in
graphical and tabular form and they include certain important parametric

studies. Each geometry is treated separately.
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4.1 Two-bar Frames

Consider the two-bar frame shown on Fig. 2. For simplicity, the two
bars are of equal length and stiffness and the eccentric load is
constant-directional (always vertical). Results are presented for both
rigid and flexible connections, These results are presented and discussed
separately.

4.1.1. Rigid Joint Connection

Results are discussed for the case of an immovable pin support at the
right hand end of the horizontal bar. For this geometry there are two
important parameters that one must consider in generating results; first is
the load eccentricity e, and next the member slenderness ratio, A . Note

that for this geometry L} = L; =L and A,
-0.01 s e < 0.01

2
A = 40, 80, 120, = (29)

Note that the positive eccentricities correspond to loads applied to
the right of the elastic axis of the vertical bar, while the negative ones
to the left (load applied,if needed, through a hypothetical rigid overhung).

For this configuration, it is clear from the physical system that, as
the load increases (statically) from zero, with or without eccentricity, the
response includes bending of both bars and a "membrane state only" primary
path does not exist. Therefore, there cannot exist a bifurcation point from
a primary path that is free of bending. The classical (linear theory)
approach, for this simple frame, assumes that the vertical bar experiences a
contract ion without bending in the primary state, while the horizontal
bar remains unloaded (zero eccentricity 1is assumed). Then a bifurcation
exists and a bent state (buckling) is possible at the bifurcation load-ﬁcz,

which 1is the critical load [see Simitses (1976) for analytical details]
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Results are jresented graphically on Figs. 3 and 4. On Fig. 3, the load
parameter lc( = 3/Qcy) is plotted versus the joint rotation, WLX (1), for
several eccentricities and A = 80 (slenderness ratio). The respounse for
different values of A is similar, and thus no other load - (characteristic)
displacement curves are shown. It is seen from Fig. 3 that the response,
regardless of whether it is stable (to the right) or subject to limit poiat
instability (to the left), seems to be approaching asymptotically a line
(almost straight) that makes an angle with the vertical and it intersects it
at A, = 1.00. Moreover, the horizontal bar could be either in tension or in
compression,‘regardless of the character of the response. Not shown on Fig
3, are equilibrium points which belong to curves above the asymptote. These
equilibrium paths cannot be attained physically under deadweight loading.

On Fig 4, plots of limit point (critical) loads are plotted versus
eccentricity for various A-values. Also, the experimental results of
Roorda (1965), corresponding to )\ = 1275 and the analytical results of
Koiter (1966), based on his initial postbuckling theory, are shown for
comparison. On the basis of the generated results, a few important
observat ions and conclusions are offered. Depending on the value for the
slenderness ratio, there exists a critical eccentricity which divides the
response of the frame into two parts; on one side (see Fig 3; on the right)
the response is characterized by stable bent equilibrium positions for all
loads (within the limitations of the theory), while on the other side the
response exhibits limit point instability. The maximum limit point load,
for each slenderness ratio value corresponds to a specific eccentricity
value (see Fig. 4) and it is identical in value to that predicted by linear

theory. The results also show that this two-bar frame is sensitive to load
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eccentricities (for e = —.01’ A=0.89) and it might be sensitive to initial
geometric imper fections. Details and more results (depicting the effect of
the right hand support, movable along a vertical plane or a horizontal plane
versus immovable, on the response) are foupd in Kounadis et al., (1977) and
in Simitses et al. (1978).
4,1.2 Semirigid Joint Connection

Consider that the two members connected at the joint through a
rotat ional spring (Fig. 2). First, a linear spring is used at the joint and
the nondimensionalized spring stiffness, g, is varied from zero (pin
connection ) to 10° (rigid connection). Partial results are presented in
graphical and tabular form, but the conclusions and observations are based
on all generated data (a wide range of eccentricities and slenderness ratios
were used)., Fig. 5 depicts the response of the two-bar frame for B= 10 and
x= 80. For the sake of economy and brevity, no attempt was made to find the
critical eccentricity value for each g and A. It is seen from Fig. 5 that
the response for 8= 10 is similar to that for E = ®(Fig. 3). Fig,6 is a
plot of a;r (limit point load) versus g for ; = -0.01. For very small values
of.g, Qer = nzwhich is the critical load of a column pinned at both ends
(Euler load), while for very large values it approaches the value
corresponding to KC = 0.888 [see Fig. 3; acr = 0.888 (13.89) = 12.34].
Note that for ;E> —cg.Ol, similar curves can be obtained. For instance, for
; = 0 the curve would start from the value of nZ for extremely small values

"of 8, and approach the value of 13.54 for B = 105 C ® ), The influence of
the slenderness ratio, for various B- values, on the critical load is shown
on Table 1.

For the case of realistic flexible coanections, three depths of type II

connect ions are considered (see Table 2). The required values are taken
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Table 1:

INFLUENCE OF SLENDERNESS RATIO ON THE
CRITICAL LOADS OF THE TWO BAR FRAME

(8 = -0.01)
acr
I A=l ) ] ]
| By | 80 | 120 | 1000 |
I | | I O
| 0.1 | 9.9028 | 9.9045 | 9.9051 |
[ | I I I
| 1.0 | 10.6817 | 10.6868 | 10.6908
| [ I i I
I 10 | 11.9504 | 11.9638 | 11.9744
[ | I | }
| 100 | 12.2931 | 12.3089 | 12.3216 |
I | | | |
| ® ] 12.3376 | 12.3538 | 12.3667

Table 2: DEPTH AND STIFFNESS OF FLEXIBLE CONNECTIONS (TYPE II)
| Depthl Z x 195 1B x 1078 a; | L, ICE _ (
Geom, | in. | Rad/kip-in.| Ib-in/Rad.| in? in | | A-Range |
I I I I I I
1 | 8 | 0.0460 | 21.739 | 6.711  64.200361.17 | & < (7.5) x 1010
| I I | I | I I
2 | 18 | 0.0150 | 66.667 | 20.46] 917.701167.79 | & < (6) x 109 |
| I I | I | | |
3 | 36 | 0.0054 | 185.185 | 39.80] 7833.65 114.36 | A < (2.1) x 109
Table 3: EFFECT OF A (NON-LINEAR FLEXIBLE CONNECTION) ON THE
CRITICAL LOADS (e = -0.01, A = 100)
Geometry 1 Geometry 2 Geometry 3
LB = 361.17 of = 167.79 ~B .= 114.36
K ac r K 6C r K 66!‘
0 12.7529 0 12.7631 0 12.7216
1.0 x 106 12.7529 1.0 x 107 12.7361 1.0 x 103 12.7216
1.0 x 107 12.7527 5.0 x 10° 12.7359 1.0 x 104 12.7216
5.0 x 107 12,7515 1.0 x 106 12.7357 1.0 x 103 12.7214
1.0 x 108 12.7494 1.0 x 107 12.7298 1.0 x 106 12.7193
1.0 x 109 12.7456 1.0 x 108 12.7206 1.0 x 107 12.6991
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from DeFalco and Marino (1966) and the bars are assumed to be steel I-beams.
The value of R-(nonlinear flexible connection) is varied in accordance with
the limitations presented in the mathematical formulation, and its effect,
for all three cases, on the limit point loads for @ = -0.01 and A = 100 is
shown on Table 3. An important conclusion here is that, for type II
connections the degree of nonlinearity of the rotational spring has
negligibly small effect on limit point loads for a fixed eccentricity and
bar slenderness ratio.

For more detaills see Simitses and Vlahinos (1982).

4.2 Portal Frames

Consider the portal frame shown on Fig. 7. The loading consists of both
eccentric coﬁcentrated loads near the joints and of a uniformly distributed
load on bar "3",

When vertical concentrated loads are applied at joints "3" and "4"
without eccentricity, and the geometry is symmetric (EI} = EIp = EI, L] = Lp
= L’ﬁl = Bz=8 but B = 0 or =), a primary state exists and beam-column
theory can be employved to find critical loads for sway buckling, or for
symmetric buckling (sidesway prevented) and for antisymmetric buckling.

Such analyses can be found in texts [see Bleich (1952) and Simitses (1976)].

For example, if the horizontal bar has the same structural geometry as
the other two members (EI3 = EI and L3 = L), then the critical load for sway

buckling (referred to herein as classical) is given by

simply supported Q. = 1.82 E% (3L
® = 0) -

clamped (B—w) Qcﬂ = 7.38 E% (32)
’ L
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Results for loading that induces primary bending and parametric studies
assoclated with the effect of various structural parameters on the frame
response are presented below for rigidly connected portal frames. Moreover,
some results corresponding to semi-rigidly connected portal frames are also
presented.

4.2.1 Rigid Joint Connection

Partial results are presented both in graphical and in tabular form,
but the conclusions are based om all available results.

Figs. 8 and 9 deal with the effect of load ec;entricity on the response
characteristics of a square (structurally; EI; = EI, Lj = L), symmetric (E1= €2=0),
rigid-jointeg frame. Fig. 8 shows primary path and postbuckling equilibrium
positions for two symmetric eccentricities ( E% = Eg = e)., The value of
the slenderness ratio (11=K) is taken as 1,000, but the effect of
slenderness ratio on the nondimensionalized response characteristics is
negligibly small. The rotation of bar "1" at joint "3" 1is chosen as the
characterist ic displacement for characterizing equilibrium states on this
figure. As seen from Fig 8, bar '"3" is in compression in the postbuckled
branches and initially in the primary paths. As the ecceatricity increases
the sway buckling load decreases, but only slightly. This observation is in
agreement with Chwalla's (1938) [see also Bleich (1952)] result, who found
that the critical load when the eccentricity 1is one tﬁird (e = 0.333) is
equal to 1.78 EI/LZ. It is also observed that the primary path curves
approach asymptotically the value of aér corresponding to symmetric buckling
of the portal frame [see Eq (66) of Ch,4 in Simitses (1976)]. This value,
as computed from said reference, is equal to 12.91 EI/L2. Fig.9 shows

similar results but with antisymmetric eccentricity (-Eg =ed =e).

3

Clearly for this case (€ # 0), there is a stable response that includes
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bending from the onset of loading. Moreover, this response approaches
asymptotically a horizontal line corresponding to § = Q.g, Eq.(30), and not
the postbuckling branch (@ = 0). Furthermore, for asymmetric eccentricity
bar' 3" is in tension.

Table 4 presents sway buckling loads of a symmetric simply supported
portal frame loaded by a uniformly distributed load on bar "3", for a wide
range of horizontal bar ("3") geometries. The value of Kl = RZ
is taken to be 1000 and the value of A3 varies according to the changes in
I3 and L3 by keeping the cross-sectional area, A3, constant. This results
into 50 = K3 S- 4242, Note that q* is given on Table 4, instead of E.
This is done‘because L3 is a variable. Moreover, if one is interested in
comparing total load, q* must be multiplied by L3/Ly. Thus, the first row
becomes 3.52 (L3/L; = 0.5) 2.77, 2.27, 1.92, 1.65 and finally l.44. Note
also that the last row becomes 4.93, 4.91, 4.90, 4.89, 4.88 and 4.87, or all
of them approximately equal to 2(n2/4). This load is the buckling load of
the two vertical bars, which are pinned at the bottom and clamped at the top
to a very rigid bar that can move horizontally. Finally, k] and k3 are
measures of the axial compressive force in the vertical bars (k; = kp) and
the horizontal bar, respectively.

The final result shown, herein, is on Fig 10. This figure shows the
effect of small variations in the length of bar "2" on the response
characteristics of a uniformly loaded frame. Clearly, the change in Ly
provides a geometric imper fection and the response, accordingly, approaches
asymptotically the "perfect geometry'" respoase. The same can be said, if an
imper fect ion in bending stiffness exists, such that the resulting geometry

becomes asymmetric.

Details and more results can be found in Simitses et al. (1981, 1982).
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TABLE 4. EFFECT OF HORIZONTAL BAR GEOMETRY ON CRITICAL LOADS (HINGED PORTAL FRAMES).
L3/ 0.5 1.0 1.5 .0 2.5 3.0
q i1 TITTT OT
EI3/EIl ~E1- J?#L -lf 1 l 1 g lz
er PO T . "f"‘ s . ad b - v‘",'
. .
Qer 7.035 2.712 1.518 0.9600 .6598 0.480933
0.5 kj 1.326144 1.177312 1.066970 0.979798 .908143 0.849350
k3 0.204301 0.586181 1.040636 1.5488135 .128032 2.922292
*
9cr 8.142 3.522 2.075 1.394 011 0.7769
1.0 k1 1.426682 1.327027 1.247465 1.180678 123931 1.079532
k3 0.128840 0.410684 0.778291 L.212997 .725474 2.412621°
" .
Qer 8.879 4.075 2.523 1.772 .338 1.064
2.0 k1 1.489896 1.427337 1.375482 1.351290 .293368 1.2613309
k3 0.074499 0.258365 0.517961 0.840184 .227140 1.7095%0
|
*
9er 9.166 4,309 2.721 1.945 491 1.200
3.0 k) 1.513758 1.467748 1.428456 1.394528 .3651357 1.341829 )
k1 0.052459 0.189001 0.386317 0.643696 .951338 1.324863
* - o |
Qcr G, 6H40 4.714 3.079 2.26H .782 1.462 \
10.0 k) 1.552238 1.535271 1.519604 1.505210 .492379 1.481047 ¢
k3 0.017124 0.066005 0.143481 0.247198 .375752 0.528868 .
*
Qcr 9.865 4.909 1,266 2.444 .95 Y 1.622
100.0 k| 1.570430 1.566634 1.564618 1.563342 .561408 1.559621
k1 0.002500 0.007062 0.015835 0.028044 .043648 0.0626iJ
],.1 = L._ ETl = EI'Z
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4.2.2. Semirigid Joint Connection

As in the case of the two-bar frame (4.1.2), the horizontal bar is
connected to the vertical bars through rotational springs. First, a linear
spring is used, and its stiffness, é,.is varied from zero (10~!) to
infinity (10%). Results are presented in tabular and graphical form for
symmetric eccentric loading. Table 5, shows the effect of slenderness ratio
for a square symmetric portal frame on the sway buckling load (e = 0.001)
for various values of rotational spring stiffness (Same at both joints). It
is seen from Table 5, that this effect is neglibly small, as is in the case
of rigid connections, Fig.,ll, shows the effect of spring stiffness on the
sway buckling load for various load eccentricities. For very small é-
values, the frame becomes unstable at very low load levels. Note that for E =0
the frame becomes a mechanism. As the rotational stiffness increases, the
critical load approaches that of a rigid-jointed portal frame (Q.p =
1.82 E1/12),

Next, results are presented for flexibly connected portal frames using
the same type II connections as for the two-bar frame (see Table 2). For
the portal frame also it 1s concluded that the degree of nonlinearity of the
rotational springs has negligibly small effect on sway buckling loads, for
each specified geometry (see Table 6). From these and other studies
[Vliahinos (1983)], it is concluded that the effect of nonlinearity in the
rotational spring stiffness (variations in A) has negligibly small effect on
" the response characteristics of portal frames. 1In all generated results, it
is required that the slope to the moment-relative rotation curve, for the
flexible connection, be positive. This requirement 1s not only reasonable,

it is also necessary for a good and efficient connection.
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Table 5: EFFECT OF SLENDERNESS RATIO, A , ON SWAY-BUCKLING LOAD

(SYMMETRIC LOADS, e = 0.001)

Qer

-;rl [ |

- ! 40 | 100 | 1000
By | | |
| T |

1 .659 | .659 | .660
| | l

5 | 1.355 | 1.355 | 1.360
| | I

100 | 1.781 | 1.787 | 1.790
I | |

1000 | 1.807 | 1.813 | 1.814
| | |

TABLE 6: EFFECT OF A (NONLINEAR FLEXIBLE CONNECTIONS)
ON CRITICAL LOADS,Q.r (SYMMETRIC CASE; e = 0.01).

=Geometry 1 Geometry 2 ~Geometry 3

x 1010 ] 1.803 5 x 109 1.795 2 x 109 1.782

[
6 x 109 | 1.793

I
2.1 x 109 1.781

| |
o° : 361.17 | of = 67.79 | 0P =114.36
D | o _ | o
A | Q. | A | Qe | A | Q.
1 Hl | [ |
0 } 1.807 ‘ 0 } 1.798 | 0 | 1.790
| [
x 10° | 1.807 | 1 x 10° ] 1.798 | 1 x 103 1.790
| I [ | K
x 108 | 1.807 ! 1 x 108] 1.798 | 1 x 108 1.790
| | [ I i
x 1010 | 1,807 ! 1 x 109 1.798 | 1 x 109 1.788
I [ | \ |
x 1010 ] 1,806 ! 3 x 109 ] 1.797 | 1.75 x 109 1.785
! [ 1 l I
1 |
I |
| |

.5x1010 | 1,801

4.3
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Because of the above observations and those associated with the two-bar
frame (4.1.2), no -further results are generated for flexibly connected
frames.

4.3 Multibay, Multistorey Rigid-Jointed Frames

Several results are presented and discussed here,

First, results are presented, for symmetric two-~bay frames loaded
transversly by uniformly distributed loads, on Table 7. On this table, the
length of the horizontal bars is varied (L = L5 = Ly; L} = Lp =L3 = L) as
well as the stiffness. Here also, as in the case of portal frames, the
slenderness ratio for the vertical bars is taken as 1000 (X1= K2=h3=1000) and
the value of Xh(=héfks) is varied accordingly, as I, and Ly vary, but the
cross—-sect ional area 1is kept constant. The critical loads, q*cr, represent
sway buckling loads. The total load for the two-bay frame is obtained by
multiplying q* by 2 Ly/Ly. The factor of two is needed because of the two
bays. In comparing the results of this table with those for the portal
frame (Table 4), one observes that, by adding one bay (two bars; bars '"5"
and "3"), the total sway buckling load is increased by 50% or more,
depending on the two ratios. The increase 1s larger with larger values for
L,/Ly and smaller values for EI,/EI,. The values for kj(k; = k3) kp and
k4(ky = kg) are measures of the axial loads (compressive for this case) in
the five bars. Because of the distribution, the middle vertical bar carries
more load than the other two (expected). In spite of this, as the bending
‘stiffness of the hogizontal bars approaches infinity, the total sway
buckling load approaches 3012/4)_Note that for the portal frame the total
load is Z(H%a ). Thus, for this particular case (EI, = =), the increase in
buckling load from a single bay to a two-bay frame, is 507%, regardless of

the ratio of Lp/Ly.
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TABLE 7. EFFECT OF HORTZONTAL BAR GEOMETRY ON CRITICAL T.0ADS (HINGED,
SYMMETRIC, ONE-STOREY TWO-BAY FRAMES).

Ly/Ly .5 1 2 3
T T SURERNRES NS ESENENIIRIIEE
i A 5 O s i O e E
q*er S.474 2.243 0.822 0.425
o K 1.079615 1.001068 0.872701 0.768667
' ky 1.773156 1.575093 1.328265 1.169728
kg, 0.152456 0.467452 1.302599 2.342564
"y 6.190 2.739 1.124 0.635
K] 1.121867 1.072490 0.999675 0.926334
1 ko 1.916465 1.774246 1.580063 1.447954
kg 0.090564 0.304997 0.944516 1.787473
i
| a*.r 6.887 3.258 1.487 0.921
) k) 1.155458 1.138553 1.108115 1.079077
kg 2.069744 1.980715 1.868985 1.787660
ke, 0.034894 0.129310 . 0.455144 0.925647
| a%.r 7.221 3.530 1.703 1.101
. k) 1.167638 1.162379 1.151948 1.142422
ko 2.120247 2.687248 2.039065 1.998682
kg, 0.011611 0.263027 0.164391 0.353992
3 " i
Lh - La = Lﬁ’ Lv - L1 = LZ = L3’ Ger = q4 cr qS cr
El, = Ei, = El., E1 = El; ~ EI, = El,
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Limited results are also presented for a single bay multistory frame
and a two-bay two-storey frame. These results are generated only for
special geometries., All lengths and all stiffnesses are taken to be equal,
and the loading is a uniformly distributed load of the same magnitude on
every horizontal bar. The boundaries are simple supports and the
bar slenderness ratio is taken to be 1,000. Note that for portal frames the
effect of slenderness ratio on the nondimensionalized response is found to
be negligibly small. This is found to be also true for two-bay, one storey,
and multistorey one-bay frames, that were checked randomly. The value of Xj
was changed for a few geometries and this change did not affect the response
appreciably. The results for the additional geometries are presented
schematically on Fig. 12, by giving the total sway buckling load next to a
sketch of the frame. From this figure it is clearly seen that the
sway-buckling load is increased appreciably by adding bays but the change is
insignificant, when storeys are added.

Another important result is related to the following study. A
two-storey one-bay frame, with L; = L and EIj = EI (for all i), is loaded
with uniformly distributed loads on the horizontal bars. The uniform
loading is distributed in various amounts over the two horizontal bars. It
is found that the total sway buckling load does not change appreciably with
this variation. When only the top horizontal bar is loaded (top 100%,
bottom 0%Z), the total sway buckling load is 3.677. When the top and bottom
are loaded by the same amount, the total sway buckling load is 3.688 (see
Fig. 11). Finally, when the top is loaded by an amount which is much
smaller than the bottom (top 5%, bottom 95%) the total sway buckling load 1is

3.696.
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When designing two-bay (or multibay) frames to carry uniformly
distributed loads, inside columns must carry wore load than outside columns.
Because of this, inside columns are usually made stiffer. One possible
design is to make the inside column(s) twice as stiff (in bending) as the
outs ide one(s)., Sway-buckling results for such a two-bay geometry are
presented on Table 8. The lengths of all five members are the same, but the
bending stiffness of the horizontal bars is varied. Axial load coefficients
for all five bars are also reported on Table 8 (k3 = ki and kg = kg4).
Moreover, the total (nondimensionalized) sway-buckling load is given for
each case. It is seen from Table 8 that as the stiffness of the horizontal
bars increases the total load increases. Moreover, a comparison with the
results of Table 7, corresponding to Ly/Ly, = 1, reveals that by doubling the
bending stiffness of the middle column the total sway-buckling load is
increased by approximately 33%, regardless of the relative stiffﬁess of the
horizontal bars. Another important observation is that, the ratio of axial
forces (inside to outside, P,/P}; Pj = k% EIi/L%) is not affected
appreciably by the doubling of the bending stiffness of the middle column.
This ratio varies (increases) with increasing bending stiffness of the
horizontal bars.

TABLE 8., EFFECT OF HORIZONTAL BAR STIFFNESS ON CRITICAL LOADS FOR HINGED
ONE-STOREY TWO~BAY FRAMES (WITH MIDDLE COLUMN STIFFNESS DOUBLED).

EIL/EL, 1 2 3 T 10
der 3.599900 4.164400 4.391500 4.655000
k| 1.235737 1.299518 1.320376 1.334522
kg 1.439725 1.573468 1.627115 1.695136
ke, 0.346890 0.207330 0.147837 0.048834
qe 7.199800 8.329880 8.783000 9.310000
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All of the above observations point out that there exists an optimum
distribution of bending stiffness, in multibay multistorey orthogonal frames
which are subject to sway-buckling, for maximizing their load carrying
capacity.

5. CONCLUDING REMARKS

From the several studies performed on elastic orthogonal plane
frameworks, some of which are reported herein, one may draw the following
general conclusions:

1. The effect of flexible joint connections (bolted, riveted and or
welded connections are flexible rather than rigid) on the frame response
charactefispics is negligibly small. Thus, assuming rigid connections in
analyzing elastic plane frameworks, leads to accurate predictions.

2. Eccentrically loaddtwo~bar frames lose stability through the
existence of a limit point and do not experience bifurcational buckling.
For these frames, the slenderness ratio of the bars has a small but finite
effect on the critical load. Moreover, depeanding on the value for the
slenderness ratio, there exists a critical eccentricity which divides the
response of the frame into two parts. On one side the response is
characterized by stable equilibrium positions and on the other hand it
exhibits limit point instability (within the limitations of the theory,

w? < D).
Lox

3, Unbraced multibay multistory frames (including portal frames) are
subject to bifurcatjonal (sway) buckling with stable postbuckling behaviogur.
Sway buckling takes place, when the frame is structurally symmetric and the
load i1s symmetric. Because of this, the frame is insensitive to geometric
imper fect ions regardless of the type (load eccentricity, variation in

geometry - length, stiffness, etec). In many respects, the behaviour of
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these frames is similar to the behaviour of columns, especially cantilever
columns.

4, The effect of slenderness ratio on the nondimensionalized response
characteristics of plane frameworks (except the two-bar frame) is negligibly
small.

5. Starting with a portal frame, addition of bays increases
appreciably the total sway-buckling load, while addition of storeys has a
very small effect.

6. For multistorey frames, distributing the load in various amounts
among the different floors does not alter appreciably the total
sway—buckliqg load. 1In all cases, the first storey vertical bars (columns)
carry the total load.
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