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Progress Report No. I. on 

NSF Grant CEE-81 1745 entitled 

"NONLINEAR ANALYSIS OF ELASTIC UNBRACED FRAMES" 

By George J. Simitses, Principal Investigator 

The research deals with the nonlinear behavior, including buckling 

and postbuckling response, of linearly elastic, rigid-jointed and flexibly-

jointed, unbraced, plane frameworks, subjected to distributed and eccentric 

concentrated loads. 

In this investigation, there are two major areas to be dealt with. 

First, the assessment of the effect of flexible connections on the response 

characteristics of frames that are either subject to bifurcational buckling 

(sway-buckling, portal frames) or, subject to limit-point instability (snap-

through buckling two bar-frames). Second, the development of a solution 

scheme (including a computer code) for the analysis of multibay multistory, 

unbraced plane frames. 

The first task has been accomplished and the findings of the investi-

gation have been reported on two papers (copies attached to this report as 

Attachments I and II), which have been submitted for publication. 

The first paper deals with simple one-bay unbraced portal frames. This 

configuration is subject to bifurcational buckling (sway-buckling) with stable 

postbuckling behavior. It is found that flexible connections of the type 

reported by DeFalco and Marino [1] have negligibly small effect on the sway-

buckling load, when one exists. On the other hand, in the case for which the 

frame is loaded asymmetrically, the effect of flexible connections is negli-

gibly small for loads, which are small by comparison to the sway-buckling 
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load of the corresponding symmetrically-loaded configuration (see Fig. 

6 of Attachment 1), but its effect becomes increasingly non-neglible as 

the load approaches the sway-buckling load. 

Of course, these observations are for the assumed cubic nonlinearity 

in the joint bending moment - relative rotation curve and for the tried 

values of the coefficient of the cubic term (A). It is the opinion of the 

investigator that for a realistic good connection, it is reasonable to 

expect that the magnitude of the bending moment tends to increase with 

increasing relative rotation prior to sway-buckling. This being the case, 

the observations hold for good  real-world frame connections. (Good here 

implies that the connection is strong and it can transfer bending moment 

with increasing loading), 

Since the two-bar frame is subject to limit-point instability rather 

than bifurcational buckling (sway-buckling), and since the effect of flexible 

connections on the response of an asymmetrically-loaded portal frame (for 

loads near the corresponding sway-buckling load) is not negligible, one should 

investigate the flexibly-connected and eccentrically loaded two-bar frame. 

This is done and reported on Attachment II. The procedure employed is similar 

to that of Attachment I,and the observations for this configuration are similar 

to those for the portal frame. The effect of realistic (good) flexible connec-

tion on the limit point load (whenever one exists) of the two-bar frame is 

negligibly small. 

Moreover, for both configurations, several parametric studies are 

performed in order to assess the effects of various structural and geometric 

parameters on the critical loads, in the presence of flexible connections. 
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The conclusions are similar to the ones drawn for the corresponding 

rigid-jointed frames and are listed below: 

(1) For all geometries and load cases considered, the effect 

of bar slenderness ratio on the nondimensionalized response 

characteristics, including critical loads, is negligibly small. 

(2) The effect of load eccentricity on the nondimensionalized 

critical loads (limit point loads for the two-bar frames, 

bifurcation loads [sway-buckline for the symmetrically loaded 

portal frames) is the same as in the case of rigid-jointed 

frames. For instance, the sway-buckling load decreases (slightly) 

with increasing load eccentricity. The limit point load (two-bar 

frame) decreases with increasing eccentricity (in a direction 

away from the support of the horizontal bar-outside the frame). 

Note that for eccentricities inside the frame there is no buckling. 

The frame simply bends in stable equilibrium. 

On the basis of the above investigations and related observations, it 

is decided to abandon (for the present) any further investigations concerning 

the effect of flexible connections and concentrate on the second major task 

(in progress) which is: To develop a solution methodology for the response of 

a multi-bay multi-story, elastic, plane, unbraced, rigid-jointed framework, 

subjected to, in general, eccentric concentrated loads (near the joints) and 

uniformly distributed transverse loads. 

The proposed solution, methodology (which is being developed presently) 

contains the following features (refer to Fig. 1 for the geometry and sign 

convention). 
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(a) The general solution to the equilibrium equations for the ith 

bar is given by 

k.
2 

	

1  X 	2  
Ui (X) = Ai5 	X - -2- 	Wi x  d X 

% 	 0 	' 

and 

sin k. X 	 cos k.X 
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where the "upper" sign and terms are used, when the ith bar is in com-

pression and the lower, when in tension. Also note that for the vertical bars, 

usually, the transverse loading Z1 is zero. Furthermore, the displacement 

component U. and W
i are in nondimensionalized form. A list of the nondimen-

sional parameters is given below: 

U.1  = ui i 	1 /2 	W. = w./A. 	 X = xi/A i  
1 1  

p. = iz.fe
1 	 1 

; 	r. 	(EI) 1 	 P. 2  = I./A. 
1 	1  

X. = 
1 	2 i /P i Q i  = (QiI i 2)/(EI) 1  = q ii3 / ( EI)± 

2 
= ± P.A.

2
/(EI) i  q

* 
= qiil

3
/(EI), 1 1 

wherep.
1 
 isthe axialforceiotheithbar(IP.is a positive number; P i  is 

positive when tensile and negative when compressive). 

(I) 

(2) 
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(b) Given an n-member frame, there are 6 n - unknowns that one must 

solve for [see Eqs. (1) and (2)] (5n A ij 's and n k i 's). 

In order to solve for these unknowns, 6 n boundary and joint conditions 

are needed. At each boundary, there are three boundary conditions. At each 

joint, there are three force and moment conditions. Moreover, at each two-

member joint there exist three kinematic continuity conditions, at each three-

member six conditions, and finally at each four-member joint nine conditions. 

From Fig. 1, it is clearly seen that the two-bay, two-story plane frame 

hastenulembers;thereforelthenumberofunknownsis60(50A..'s and 10 1 3 

Pt. 

Pt. 

Pt. 

1 

2 

3 

There are three boundary conditions at each of points 1, 2, and 3. 

( 3 ) 

U
1
(0) = W

1
(0) = W

1 X
(0) = 0 

U2(0) = W2 (0)  = W2XX(°)= 0 

U3 (0) = W3 (0) = W3  i0) = 0 

Moreover, there are three force and moment equilibrium conditions at each 

of joints 4,5,6,7,8, and 9, or 18 such conditions. 

As far as the kinematic continuity conditions are concerned, there 

are three  at joint 7, three at joint 9 Lsee Eqs. (4) below], six at joint 

4, six at joint 6, six at joint 6, and nine  at joint 5, for a total of 33 

such conditions. 

Thus, the total number of conditions are 60 (33 kinematic continuity 

at joints, 18 force and moment equilibrium at joints and 9 boundary conditions). 
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at. joint 7 

U
4
(1) = - W

7 (1) 

W
4
(1) = U

7
(1) 
	

(4) 

W4,X (1) = W7,X
(1) 

(c) Satisfaction of all of the conditions in (b) lends to a system of 

6 n equations in 6n unknowns. Of these, 5n equations are linear in the 5n 

Aij 's. These can be written in matrix form, or 

[c] 	[A) 	= (D) 	 ( 5) 

where [C] is a 5n by 5n matrix in terms of geometric parameters and in general 

trigonometricfunctionsofthek.'s, (A) is a column matrix of the 5n A
ij

's and 

03 is a column matrix containing, primarily load and load eccentricity para-

meters. 

Theremainingnequetionsarenonlinearintheik..'sandk.'s. 
13 

f.(k.,A..) = 0 	i = 1, ...n 	 (6) 

(d) For small values of the load (linear theory should hold), an estimate 

of the k.'s is obtained (different schemes are under consideration). 

This estimate is used in Eq. (5) to solve for the A... Then, these A
ij 

values are used in Eqs (6) to solve for the k i 's (a nonlinear solution code 

has been tried successfully for this purpose). If the k i 's are different from 

initial estimates, the new values are used in Eqs (5) to obtain new values for 

Aij , which in turn are used in Eqs (6). The interation continues until a 
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desired accuracy is obtained. 

Then the load level is increased by a small amount, and the final 

k1-values at the previous load level are used as initial estimates. The 

iteration procedure is again employed, and then the load parameters are 

incremented again. This procedure leads to the primary path response. 

For finding critical loads (sway-buckling) and post-buckling path 

(whenever they exist) a number of approaches are under consideration. 

Finally, efforts are exerted into mechanizing the information pertaining 

to the recording of the geometry and assembly of the necessary equations. 

References  

1. DeFalco, F., and Marino, F. J., "Column Stability in Type 2 Construction", 
AISC Engineering Journal, Vol. 3, No. 2, April 1966. 
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FINAL REPORT 

NONLINEAR STABILITY ANALYSIS OF ELASTIC UNBRACED FRAMES 

by G. J. Simitses 
Georgia Institute of Technology, Atlanta, Georgia 

ABSTRACT 

The nonlinear analysis of plane elastic and orthogonal frameworks is 

presented. The static loading consists of both eccentric concentrated 

loads and uniformly distributed loads on all or few members. The joints 

can be either rigid or flexible. The flexible joint connection is 

characterized by connecting one member on an adjoining one through a 

rotational spring (with linear or nonlinear stiffness). The supports are 

immovable but are also characterized with rotational restraint by employing 

linear rotational springs. The mathematical formulation is presented in 

detail and the solution methodology is outlined and demonstrated through 

several examples. These examples include two-bar frames, portal frames as 

well as multibay multistorey frames. The emphasis is placed on obtaining 

sway buckling loads, prebuckling and postbuckling behaviors, whenever 

applicable. 

The most important conclusions of the investigation are: 

(i) The effect of flexible joint connections (bolted, riveted and 

welded) on the frame response (especially sway-buckling loads) is small. 

(ii) Multistory, multibay orthogonal frames are subject to bifurcotional 

(sway) buckling with stable postbuckling behavior. Sway buckling takes 

place, when the frame and loads are symmetric. 

(iii) The effect of slenderness ratio on the nondimensionalized response 

characteristics in negligibly small (except for the two-bar frame). 

(iv) Starting with a portal frame, addition of bays increases appreciably 

the total sway-buckling load, while addition of storeys has a very small 

effect. 



1. INTRODUCTION 

Plane frameworks, composed of straight slender bars, have been widely 

used as primary structures in several configurations. These include one-

or multi-storey buildings, storage racks, factory cranes, off-shore 

platforms and others. Depending on characteristics of geometry (symmetric 

or asymmetric, and various support conditions) and loading (symmetric or 

asymmetric transverse and horizontal), plane frames may- fail by general 

instability (in a sidesway mode or a symmetric mode) or they may fail by a 

mechanism or a criterion other than stability (excessive deformations 

and/or stresses etc). For example, a symmetric portal frame subjected to a 

uniformly distributed transverse load is subject to sway buckling. On the 

other hand if, in addition to the transverse load, a concentrate horizontal 

load is applied, excessive deformations and stresses will occur without the 

system being subject to instability (buckling). 

The various frame responses, associated with the various geometries 

and loadings, have been the subject of many studies, both in analysis and 

in synthesis (design). A brief description and critique of these studies 

is presented in the ensuin articles. 

1.1 Rigid-Jointed Frames - Linear Analyses  

The first stability analyses of rigid-jointed plane frameworks may be 

traced to Zimmerman (1909, 1910 and 1925), Muller-Breslau (1910) and Bleich 

(1919). They only treated the problem for which a momentless primary state 

(membrane) exists and bifurcational buckling takes place through the 

existence of an adjacent bent equilibrium state (linear eigenvalue problem). 

Prager (1936) developed a method which utilizes the stability condition of 

a column with elastic end restraints. The First investigation of a problem 
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for which the primary state includes bending moments (primary moments) is 

due to Chwalla (1938). He studied the sway buckling of a rigid-jointed, 

one-storey, symmetric, portal frame, under symmetric concentrated 

transverse loads, not applied at the joints of the horizontal bar. 	In 

obtaining both the primary path and the bifurcation load, Chwalla employed 

linear equilibrium equations and he assumed linearly elastic behavior. In 

more recent years, similar problems have been studied by Baker et al. 

(1949), Merchant (1954, 1955), Chilver (1956), Livesley (1956), Goldberg 

(1960), Masur et al. (1961), and Horne (1962). The last two consider the 

effect of primary moments which cause small deflections prior to 

instability in their buckling analysis of portal frames. Many of the 

aforementioned analyses have been incorporated into textbooks, such as 

those of Bleich (1952), McMinn (1962), Horne and Merchant (1965), and 

Simitses (1976). Other investigations of this category include the studies 

of Holldorsoon and Wang (1968) and Zweig and Kahn (1968). 	It is also worth 

mentioning the work of Switzky and Wang (1964), who outlined a simple 

procedure for designing rectangular, rigid frames against stability. Their 

procedure employs linear theory and is applicable to load cases for which 

the primary state is a membrane state (free of primary moments). 

1.2 Rigid-Jointed Frames-Nonlinear Analyses.  

The effects of finite displacements on the critical load and on the 

postbuckling behaviour of frameworks have only been investigated is the 

last 20 years or so. Saafan (1963) considered the effects of large 

deformations on the symmetric buckling of a gable frame. Similar effects 

were also considered by Britvec and Chilver (1963) in their studies of the 

buckling and postbuckling behaviour of triangulated frames and 

rigid-jointed trusses. The nonlinear behaviour of the two-bar frame was 
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studied by Williams (1964), Roorda (1965), Koiter (1966), Huddleston (1967) 

and more recently by Kounadis et al. (1977) and by Simitses et al. (1977). 

Roorda's work contains experimental results, while Koiter's contribution 

employs his (1945) rigorous nonlinear theory for initial postbuckling 

behavior, applicable to structures that exhibit bifurcational buckling. 

The studies of Kounadis and Simitses employ nonlinear kinematic relations 

(corresponding to moderate rotations) and assume linearly elastic material 

behaviour. Huddleston's nonlinear analysis is based on equations of the 

Elastica. A similar approach (Elastica-type of equations) was outlined by 

Lee et al. (1968) for studying the large deflection buckling and 

postbuckling behaviour of rigid plane frameworks loaded by concentrated 

loads. They demonstrated their procedure by analyzing a two-bar frame and 

a portal frame, and they used a modified Newton-Raphson procedure to solve 

the nonlinear equations. More recently, Elastica-type of equations were 

employed by Qashu and DaDeppo (1983) for the analysis of elastic plane 

frames. They used numerical integration of the differential equations and 

their examples include one- and two-storey elastic, rigid frames. Besides 

the inherent assumptions of Elastica-type of equations that make then 

applicable to very slender members, the difficulty of solving the highly 

nonlinear equations in a straight forward method further limits the 

applicability of this approach to frames with a relatively small number of 

members. On the other hand, the nonlinear methodology, described herein, 

as developed by Simitses and his collaborators (1977, 1978, 1981, 1982) 

employs first order nonlinear kinematic relations (moderate rotations) but 

can be used, with relative ease, in analyzing the large deformation 

behaviour (including buckling and postbuckling) of multi-storey, multi-bay, 



of elastic, rigid-jointed, orthogonal, plane frameworks, with a large 

number of members. 

The interested reader is referred to the book of Britvec (1973), 

which presents some of the nonlinear analyses of frames. Moreover, those 

who are interested in the design of elastic frames are referred to the 

Design Guide of the Structural Stability Research Council; see Johnston 

(1976). 

1.3 Semi-Rigidly Connected Frames  

All of the previously discussed analyses, are based on the assumption 

that the bars are rigidly connected at the frame joints. This means that 

the angle between connected members at the joints remains unchanged, during 

deformations. 

Since the 1930's, there has been considerable interest and research 

into the behaviour of beam structural connections. A number of 

e'perimental and analytical studies have been carried out to measure the 

moment-relative rotation characteristics of various types of metal 

(primarily steel) framing connections. Various methods of (moment 

distribution, slope-deflection, elastic line) of analysis have been 

employed in order to account for the flexibility of the connections by 

Batho and Rowan (1934), Rathbun (1936) and Sourochnikoff (1946). Moreover, 

some efforts have been made, recently, to account for the effect of 

flexible connections in frame design. DeFaico and Marino (1966) modified 

the effective column length, used in frame design, by obtaining and 

employing a modified beam stiffness, which is a function of the semi-rigid 

connection factor (slope of the relative rotation to moment curve at the 

origin), Z, proposed by Lothers (1960). 	Fry and Morris (1975) presented an 

iterative procedure which incorporates the effects of nonlinenr connection 
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characteristics. They assumed linearly elastic material behaviour, and 

they developed equations that depict moment-relative rotation relations for 

a wide range of frame connections. More recently Moncarz and Gerstle 

(1981) presented a matrix displacement method for analyzing frame with 

flexible (nonlinear) connections. The effect of flexible joints on the 

response characteristic of simple two-bar frames, which are subject to 

limit point instability (violent buckling) has been reported by Simitses 

and Vlahinos (1982). This subject is further explored, herein, in a later 

article. Finally, a brief summary of recent research of the effect of end 

restrains on column stability is presented by Lui and Chen (1983). 

In closing, it is worth mentioning that the analysis of plane 

frameworks, including stability studies, postbuckling behaviour and the 

study of the effect of flexible connections, haS been the subject of 

several Ph.D. theses, especially in the United States. Of particular 

interest, and related to the objective of the present chapter are those of 

Ackroyd (1981), and Vlahinos (1983). Moreover, there exist a few reported 

investigations, in which the Frame has been used as an object of 

demonstration. 	In these studies, the real interest lies in some nonlinear 

numerical scheme, especially the use of finite elements. Some of these 

works, but not limited to, are those of Argyris & Dunne (1975), Olesen & 

Byskov (1982), and Obrecht et al. (1982). 



2. MATHEMATICAL FORMULATION 

2.1 Geometry and Basic Assumptions  

Consider a plane, orthogonal, rigid-jointed frame composed of N 

straight slender bars of constant cross-sectional area. A typical ten bar 

frame is shown on Fig. 1. Each bar, identified by the subscript "i", is of 

length Li, cross-sectional area Ai, cross-sectional second moment of area 

Ii, and it subscribes to a local coordinate system, x & z, with 

displacement components ui and wi as shown. The frame is subjected to 

eccentric concentrated loads Q1 	Oil and/or uniformly distributed 
1 

loadings qi. For the concentrated loads, the superscript "0" implies that 

the load is near the origin of the ith bar (x = 0), while the superscript 

"1" implies that the load is near the other end of the ith bar (x = Li). 

The concentrated load eccentricities are also denoted in the same manner as 

the concentrated loads (eitl and eil). Moreover, these eccentricities are 

positive if the loads are inside the x-interval of the corresponding bar 

and negative if outside the interval. For example, on Fig. 1 e7 0  is a 

positive number. 	But this same cccentricty (and therefore the 

corresponding load too) can be identified as e 1 8 in which case its value is 

negative. This is used primarily for corner overhangs (joint 7 or 9 with 

concentrated loads off the frame). The Supports are such that translation 

is completely constrained, but rotation could be free. For this purpose 

rotational linear springs are used at the supports (see Fig. I, support 

"3"). When the spring stiffness, 	is zero, we have an immovable simple 

support (pin). On the other hand, when f3 is a very large number (--1 	) we 

have an immovable fixed support (clamped, built-in). 

For clarity, all the limitation of the mathematical formulation are 

compiled below in form of assumptions. These are: 



7;e, . 	Geomet ry 	I S 	 If .3 M,H. I_ 	 , 	! .„ story Frame 
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(1) The frame members are initially straight, piecewise prismatic and 

joined together orthogonally and rigidly (this assumption can be 

and is relaxed later on). 

(2) The material is homogeneous and isotropic and the material 

behaviour is linearly elastic with constant elastic constant, 

regardless of tension or compression. 

(3) Normals remain normal to the elastic member axis and inexten-

sional (the usual Euler-Bernoulli assumptions) 

(4) Deformations and loads are confined to the plane of the frame. 

(5) The concentrated loads are applied near the joints (small 

eccentricities). This assumption can easily be relaxed, but it 

will lead to an increase in the number of bars. A concentrated 

load at the midpoint of a bar is treated by considering two bars 

and an additional join at or near the location of the concen-

trated load. 

(6) The effect of residual stresses on the system response (critical) 

load is neglected. 

(7) The nonlinear kinematic relations correspond to small strains but 

moderate rotations for points on the elastic axes (first order 

nonlinea•ity) 

On the basi: of the above, the kinematic relations are: 
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Furthermore, the axial force, Pi and bending moment, Mi, in terms of the 

displacement gradients are: 
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where E is the material Young's modulus of elasticity. Similarly, the 

expression for the transverse shear force is 
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2.2 Equilibrium Equations; Boundary and Joint Conditions  

Before writing the equilibrium equations and the associated boundary 

and joint conditions, the following nondimensionalized parameters are 

introduced: 

X = x /I. • U. = u
i 
 /L ' W. = w

i  /L 

3 	 3, 
e. = e./L • q = q L./EI.' q 	q L /EI i 	i 	i 	1 	1 
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= L/177. ; 

k.
2 
 = 	P

i 
 L.

2  
1 /EI.; S i 

 = EI L /EI L ; R = L /L 
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The expression for the internal forces, in terms of the 

nondimensionalized parameters are: 
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where the top sign holds for the case of compression in the bar, and the 

lower for the case of tension (the axial, force Pi is positive for tension 

and negative for compression; thus k 2  is always positive). 

The equilibrium equations for the frame are (in terms of the 

nondimensionalized parameters): 

+ LJi
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= T k2/X 2  
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where N is the number of bars and the top sign holds for the compression 

case. The general solution to the equilibrium equations is given by: 
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where Aij and ki (i = 1, 2... N, j = 1, 2,...5) are constants (for a given 

level of the applied loads), to be determined from the boundary and joint 

conditions. For an N-member frame, the number of unknowns is 6N. 

Therefore, 6N equations are needed for their evaluation. 

These equations are provided by the boundary conditions and the joint 

conditions. At each boundary, three conditions must be satisfied 

(kinematic, natural or mixed; typical conditions are listed below). At each 

joint, three force and moment equations must be satisfied (equilibrium of a 

joint taken as a particle), and a number of kinematic continuity equations 

k 

(7) 



must also be satisfied. This number depends on the number of members coming 

into a joint and they represent continuity in displacement and continuity in 

rotation (typical conditions are listed below). For a two-member joint, we 

have three kinematic continuity condition, two in displacement and one in 

rotation. For a three-member joint the number is six, and for a four-member 

(largest possible) joint the number is nine. 

A quick accounting of equilibrium equations, and boundary and joint 

conditions for the ten-bar frame, shown on Fig 1, yields the following: 

(i) the number of equilibrium equations is 60 (6 x 10). 

(ii) the number of boundary conditions is nine (three at each of boundaries 

1, 2, and 3). 

(iii) The number of joint conditions is 51 of these, 18 are force and moment 

equilibrium conditions (three at each of the six joints 4, 5, 6, 7, 8 and 

9), and 33 kinematic continuity conditions (three at each of joints 7 and 9, 

six at each of joints 4, 6, and 8 and nine at joint 5). 

Therefore, the total number of available equations is 60. Here, it is 

implied that the loading is of known magnitude. 

For clarity, typical boundary and joint conditions are shown below, 

with reference to the frame of Fig. 1 (in aondimensioaalized form). 
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Note that, in these express ions as well, the top sign corresponds to the 

compress ion case and the bottom to the tens ion. 

2.3 Buckling Equations  

The buckling equations and the associated boundary and joint conditions 

are derived by employing a perturbation method [Bellman (1969) and Sewell 

(1965 )] . This der ivat ion is based on the concept of the ex is tence of an 

adjacent equilibrium pos it ion at either a b ifurcat ion point or a 1 imit point . 

In the derivation, the following steps are followed: ( i) start with the 

equilibrium equations, Eqs . (6), and related boundary and joint conditions, 

expressed in terms of the displacements, (ii) purturb them by al lowing 

small kinematically admissible changes in the displacement functions and a 

small change in the bar axial force, ( iii) make use of equilibrium at a 

po int at which an adjacent equ i 1 ibr ium path is possible and retain first 

order terms in the admissible variations. The result ing inhomogeneous 

differential  equat ions are linear in the small changes. Replace Ui and Wi 

in Eqs . (6) , by Ui + Ui and Wi + Wi , respectively. Moreover, replace 7 k2 

by ± -R i 2  + C i* , where a t is the change in the nond imens iona 1 ized ax ial force 

( = Pt1.1 / Eli) and it can be either positive or negative, regardless of 

tens ion or compress ion in the bar at an equl ibrium position. The bar 

quant it ies denote parameters at a static  pr imary equilbr ium position, and 

the star quantities denote the ,,,.11,111 changes. 

The buckling equations are: 
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The related boundary and joint conditions are presented, herein, only 

for the same boundaries and joints as those related to the equilibrium 

equations, 	Eqs . (9)-(12 ). 

Boundary 3 

U
3
(0) = W

3
(0) = 0 

(14) 
- 	* 

S W (0) 	- 	5 3 	(0) = 0 3 3
'XX 	

3 	3
'X 

Joint 5  

S 
— 	 * 	 * 	 * 2 	—2 * 

L4. k 9 	w 9 
' XXX 	 2 9 9, x_j 	a2 	- L+ klo W10 (1)  

+ a W 
'X 

- 
7 S 

W10
'
(1) 	Q

10 	(1) --2  xxx 	10 10
'X j 

 R1
10 

-7 k5 	- W5 	+ a*  174 (0)1 
L 	5 5

'X 	
5 
' XXX 	

5 5 	J 
'X  

.— 	* 	
2 	

* — 
'+ k

2 
 W2  (1) - W

* 
(1) + a w (1) J  L 	2 	

'X 	'XXX 	
2 2 

'X 

S 5  W5 (0) + S 9 W9(0)  - S 2W2 (1) - 

	

XX 	'XX 	'XX 

R
2
U
2
(1) = -R

10
W
10

(1) = R
5

U
5

(0) = 

R
2
W
2
(1) = R10U10 (1) = R 5

W
5
(0) = 

w2 (1) = W
10

(1) = W (0) = W (0) 
X 	'X 	

5
'X 	

9
'X 

a 
5 	R

5 

+ Q9  
R5 	9 R

9  

- a 	10 
10 s  

0 

= 

= 

0 

(15a)  

(15b)  

(15c)  

(16) 

R
10 

S lown (1)  
'XX 

-R
9 
 W 9 (0) 

R
9
U
9
(0) 



Joint 7  

* S4 
a4 R

4 
2 	7 w(1) - w* (1) + Q;; Ti 7 (1) -  
7 	

I 	= 0 	 (17a) 
7
'X 	'XXX 	'X 	7 

(17b) 
* 	 * 	s4 	*7 

= 0 k
4 
W
4
(1) - W (1) + a w (1) — + a — 
'x 	'xxx 	

4 4
'X 
 - R

4 	
7 R7 

	

S
4
W
4
(1) 	+ S w (1) = 0 

	

XX 	7 7 'XX 
(17c) 

* 
R4U4

(1) = - 
R77'  W (1)' R4  W4  (1) = R7

U
7 (); 

* 
W4 ( 1 ) = W

*

7(1) 

The solution to the buckling equations is given by 
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Here also the top sign and expression correspond to the compression 

case (the ith bar is in compression at equilibrium) and the bottom to the 

tension case. Note that ki,Aii and Ai2 are the values of the constants [see 

Eqs. (7)] on the primary path (equilibrium). On the other hand, the star 

parameters are 6N in number (60 for the ten bar frame). Moreover, the 

(18)  

(19)  



boundary and joint conditions associated with the buckling equations are 

also 6N in number and they are linear, homogeneous, algebraic equations in 

the 6N star parameters. Thus, the characteristic equation, which leads to 

the estimation of the critical load condition, is obtained by requiring a 

nontrivial (all A.. and a*  are not equal to zero) solution of the buckling 13 

equations to exist. 

2.4. Semirigid Joint Connections  

The mathematical formulation, presented so far, is based on the 

assumption of rigid-jointed connections. In the case of semirigid 

connections, the only difference lies in some of the joint conditions. Two 

types of non-rigid connections are treated herein. Both come under 

the general but vague term of semirigid connections. The first corresponds 

to the case where a member, at a given joint, is connected to the remaining 

through a linear rotational spring (Type A). The second corresponds to the 

case of realistic flexible connections at frame joints (Type B). 	In this 

latter case, especially for steel frame construction, the connections are 

usually bolted with the use of various connecting elements (top and bottom 

clip angles, end plates, web framing, etc.). 	In this case the bending 

moment-relative rotation curve (for a member connected to a group of members 

at a joint) is nonlinear. 	Initially, the slope is not infinite, as assumed 

in the case of rigid joints, but a very large number, which primarily 

depends on the beam depth and the type of connection [see Tables I-IV of 

DeFalco and Marino (1966)), but the slope decreases as the moment increases. 

In this latter case, we may still employ the idea of a rotational spring, 

but with nonlinear stiffness. 



The needed modification in the mathematical formulation is treated 

separately for each case (•ypes A and a). 

Type A  

The only difference, from the case of rigid connections, is to modify 

cond it ion of k inomat it coot inn it y in rot al ion. 	For example, i I member 

"7" is connected to member "4" through a rotational spring of linear 

stiffness 87 (see Fig. 1), then the last of Eqs. (12) need be modified. 

Instead of 
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zm 
number is used), on the other hand, when Pi tends to zero (pin connection), 

Eq. (20) implies that no moment is transferred through the pin. 

Type B  

For the case of realistic flexible connections the member end moment, 

Mi(1 or 0), is related to the relative rotation curve in a nonlinear 

fashion. 

Again if the same example is used as for Type A, then 

1;1 - M
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L
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f(c

p4 )  
4 

(22) 

where f(CP4) is a nonlinear function of T4, and Y4 is the relative rotation 

of member "4" to member "7" at their joint (for a multimember joint, one 

member is considered immovable and Pi is the relative rotation of the other 

members with respect to the immovable one) 

:P4 = W4(l) 	W7 ( 1 ) 
	

(23) 

One possible selection for the nonlinear function f(CP4) is a cubic relation, 

or 
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where 004 denotes the slope of the member end moment to the relative 

(24) 

rotation curve at the origin (or before the external loads are applied) and 

A,4  a constant, which can be obtained from experimental data. 



In order to employ the same equations as for type A (linear spring) 

connections and therefore the same solution methodology (instead of 

increasing the nonlinearity of the problem), the following concept is 

introduced. First, solutions for the frame response are obtained by 

starting with small levels for the applied loads and by using small 

increments. Then, Eq. (24) at load step (m + 1) can be written as 

I —1 	—1/ \
2 

/ 
( -144)1114-1 = 0134 - A4 4/ I  m 4%1+1 

This implies that for small steps in the load, the relative rotation 

experiences small changes. Thus, the required joint condition, Eq. (24), 

becomes 
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where al )m+ 1 is evaluated at the previous load step by 
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Clearly then, the solution scheme for Type B connections is the same as 

the one for Type A connections and the nonlinearity of the problem is not 

increased. 

3. SOLUTION PROCEDURE 

The complete response of an N-member frame is known, for a given 

geometry and level of the applied loads, if one can estimate the values of 

the 6N unknowns that characterize the two displacement functions U(X) and 

W(X), Eqs (7). The needed 6N equations are provided from the satisfaction 

of the boundary and joint conditions. Furthermore, the estimation of the 

critical load condition requires the use of one more equation. This is 

provided by the solution to the buckling equations, Eqs. (13). As already 



mentioned, the satisfaction of the boundary and support conditions, for the 

buckling solution, leads to a system of 6N linear, homogeneous, algebraic 

equations in 01 and A* ij (i = 1, 2,... N;j = 1,2,...5; these constants 

characterize the buckling modes). For a nontrivial solution to exist the 

determinant of the coefficients must vanish. This step provides the needed 

additional equation, which is one more equation in Ii and some of the Aij, 

and it holds true only at the critical equilibrium point (either bifurcation 

or limit point). 

A solution methodology has been developed (including a computer 

algorithm) for estimating critical conditions, prebuckling response and 

postbuckling behaviour. The scheme makes use of the following steps: 

(1) Through a simple and linear frame analysis program, the values of the 

internal axial load parameters, ki, are estimated, for some low level of the 

applied loads. This can be used as an initial estimate for the nonlinear 

analysis, but most importantly it tells us which members are in tension and 

which in compression. Note that the solution expressions, Eqs (7), differ 

for the two cases (compression versus tension). Such a subroutine is 

outlined in the text by Weaver and Gere (1980). 

(2) Once the form of the solution has been established (from step 1 we know 

which members are in tension and which in compression), then through the use 

of the boundary and joint conditions one can establish the 6N equations that 

signify equilibrium states, for the load level of step 1. 

In so doing, it is observed that 5N, out of the 6N equations, are 

linear in Aij and nonlinear in ki. Two important consequences are directly 

related to this observation. First, through matrix algebra the 5N equations 

are used to express the Aii in terms of the ki, and substitution into the 

remaining equations yields a system of N nonlinear equations in ki. 



Secondly, if the ki's are (somehow) known, then the 5N equations (linear in 

Aij) can be used to solve for Aij. 

(3) The N nonlinear equations are solved by employing one of several 

possible nonlinear solvers. There exist several candidates for this. 

For the two-bar frame and for the portal frame (small number of 

nonlinear equations), the nonlinear equations, fj = 	3) can be solved by 

first defining a new function by 

N 

F = 	f. 
j=1 

Then, one recognizes that the set of ki that minimizes F (note that the 

minimum value of F is zero) is the set that satisfies the nonlinear 

equations, fj = 0. The mathematical search technique of Nelder and Mead 

(1964) can be used for finding this minimum. This nonlinear solver was 

employed by Simitses et al. (1976, 1977, 1978, 1981, 1982, 1983) for the 

two-bar and portal frame problems. 

For multibay multistorey frames (INT 5), the nonlinear equations, fj = 0 

(j 71- 5), can be solved by Brown's (1969) method [see also Reinholdt (1974)]. 

This method was employed by Vlahinos (1983) in generating results,for all 

frames. 

Regardless of the nonlinear solver, the ki-values obtained from step 1  

are used as initial estimates. 

Note that through steps 1-3, one obtains the complete nonlinear 

response of the system at the tow level of the applied loads. 	Furthermore, 

note that low here means not necessarily small loads, but Loads for which 

the linear analysis yields good estimates for ki, to be used as initial 

points in the nonlinear solver. 

(28) 



(4) The load level is step-increased and the solution procedure of steps 1-3 

is repeated. Another possibility is to use small increments in the load and 

employ the values of ki of the previous load level as initial points for the 

nonlinear solver. In this case, s,ep 1 is used only once for a truly low 

level of the applied loads. 

(5) At each load level, the stability determinant (see section 2.3) is 

evaluated. If there is a sign change for two consecutive load levels, then 

a bifurcation point exists in this load interval. Note that the bifurcation 

point can be located, with any desired accuracy, by adjusting the size of 

the load increment. In the case of a limit point, the procedure is the 

same, but the establishment of the limit point requires special care. 

First, if the load level is higher than the limit point, the outlined 

solution steps either yield no solution or the solution does not belong to 

the primary path (usually this is a physically unacceptable solution for 

deadweight loading). 	If this is so, the load level is decreased until an 

acceptable solution is obtained. At the same time, as the load approaches 

the limit point the value of the determinant approaches zero. These two 

observations suffice to locate the limit point. Note that, when a 

non-primary path solution is obtained, the value of the buckling determinant 

does not tend to zero. 

(6) Step 4 is employed to find post-critical point behaviour. The 

establishment of equilibrium points on the postbuckling branch is 

numerically difficult. The difficulty exists in finding a point, which then 

can serve as an initial estimate for finding other neighboring equilibrium 

points. 

(7) The complete behaviour of the frame at each load level, regardless of 

whether the equilibrium point lies on the primary path or postbuckling 



branch, has been established if one has evaluated all Aij and ki. 

Equilibrium positions can be presented, graphically, as plots of load or 

load parameter versus some characteristic displacement or rotation of the 

frame (of a chosen member at a chosen location). 

Before closing this section, it should be noted that the procedure for 

the analysis of flexibly jointed frames is the same, with one small 

exception. The load increments must be small and the needed spring 

stiffness at the (m+l)st load step is evaluated from the solution of the mth 

load step [see Eq. (27)]. 

4. EXAMPLES AND DISCUSSION 

The results for several geometries are presented and discussed in this 

section. The geometries include two-bar frames, which can be subject to 

limit point instability, as well as portal and multibay, multistorey frames, 

which for linearly elastic behavior are subject to bifurcational (sway-) 

buckling with stable postbuckling branch. The results are presented both in 

graphical and tabular form and they include certain important parametric 

studies. Each geometry is treated separately. 



4.1 Two-bar Frames  

Consider the two-bar frame shown on Fig. 2. For simplicity, the two 

bars are of equal length and stiffness and the eccentric load is 

constant-directional (always vertical). Results are presented for both 

rigid and flexible connections. These results are presented and discussed 

separately. 

4.1.1. Rigid Joint Connection 

Results are discussed for the case of an immovable pin support at the 

right hand end of the horizontal bar. For this geometry there are two 

important parameters that one must consider in generating results; first is 

the load eccentricity "e, and next the member slenderness ratio, X. Note 

that for this geometry LI = L2 = L and A. 

-0.01 S e S 0.01 

X = 40, 80, 120, co 
	 (29) 

Note that the positive eccentricities correspond to loads applied to 

the right of the elastic axis of the vertical bar, while the negative ones 

to the left (load applied, if needed, through a hypothetical rigid overhung). 

For this configuration, it is clear from the physical system that, as 

the load increases (statically) from zero, with or without eccentricity, the 

response includes bending of both bars and a "membrane state only" primary 

path does not exist. Therefore, there cannot exist a bifurcation point from 

a primary path that is free of bending. The classical (linear theory) 

approach, for this simple frame, assumes that the vertical bar experiences a 

contraction without bending in the primary state, while the horizontal 

bar remains unloaded (zero eccentricity is assumed). Then a bifurcation 

exists and a bent state (buckling) is possible at the bifurcation load Orl , 

which is the critical load [see Simitses (1976) for analytical details] 



• Fig . 2 	 ry o f a Two-Bar Frame . 
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n 	= 13.89 
E2 2 (30) 

Results are Presented graphically on Figs. 3 and 4. On Fig. 3, the load 

parameter X c ( = Q/Q ci) is plotted versus the joint rotation, WL (1), for 
'X 

several eccentricities and X = 80 (slenderness ratio). The response for 

different values of % is similar, and thus no other load - (characteristic) 

displacement curves are shown. It is seen from Fig. 3 that the response, 

regardless of whether it is stable (to the right) or subject to limit point 

instability (to the left), seems to be approaching asymptotically a line 

(almost straight) that makes an angle with the vertical and it intersects it 

at a c  = 1.00. Moreover, the horizontal bar could be either in tension or in 

compression, regardless of the character of the response. Not shown on Fig 

3, are equilibrium points which belong to curves above the asymptote. These 

equilibrium paths cannot be attained physically under deadweight loading. 

On Fig 4, plots of limit point (critical) loads are plotted versus 

eccentricity for various X-values. Also, the experimental results of 

Roorda (1965), corresponding to X = 1275 and the analytical results of 

Koiter (1966), based on his initial postbuckling theory, are shown for 

comparison. On the basis of the generated results, a few important 

observationsand conclusions are offered. Depending on the value for the 

slenderness ratio, there exists a critical eccentricity which divides the 

response of the frame into two parts; on one side (see Fig 3; on the right) 

the response is characterized by stable bent equilibrium positions for all 

loads (within the limitations of the theory), while on the other side the 

response exhibits limit point instability. The maximum limit point load, 

for each slenderness ratio value corresponds to a specific eccentricity 

value (see Fig. 4) and it is identical in value to that predicted by linear 

theory. The results also show that this two-bar frame is sensitive to load 
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eccentricities (for e = -.01, Xe=.0.89) and it might be sensitive to initial 

geometric imperfections. Details and more results (depicting the effect of 

the right hand support, movable along a vertical plane or a horizontal plane 

versus immovable, on the response) are found in Kounadis et al. (1977) and 

in Simitses et al. (1978). 

4.1.2 Semirigid Joint Connection 

Consider that the two members connected at the joint through a 

rotational spring (Fig. 2). First, a linear spring is used at the joint and 

the nondimensionalized spring stiffness, 0, is varied from zero (pin 

connection ) to 105  (rigid connection). Partial results are presented in 

graphical and tabular form, but the conclusions and observations are based 

on all generated data (a wide range of eccentricities and slenderness ratios 

were used). Fig. 5 depicts the response of the two-bar frame for 5= 10 and 

X= 80. For the sake of economy and brevity, no attempt was made to find the 

critical eccentricity value for each 	and X. 	It is seen from Fig. 5 that 

the response for 0= 10 is similar to that for 0 = ` 33 (Fig. 3). Fig, 6 is a 

plot of Qcr  (limit point load) versus 5 for e = -0.01. For very small values 

of 0 ,_ r
2 which is the critical load of a column pinned at both ends 

(Euler load), while for very large values it approaches the value 

corresponding to X c 	= 0.888 [see Fig. 3; Qcr  = 0.888 (13.89) = 12.34]. 
cr 

Note that for e> - 0.01, similar curves can be obtained. For instance, for 

e = 0 the curve would start from the value of n 2  for extremely small values 

of 5, and approach the value of 13.54 for 0 = 10 5  C ). The influence of 

the slenderness ratio, for various 0- values, on the critical load is shown 

on Table 1. 

For the case of realistic flexible connections, three depths of type II 

connections are considered (see Table 2). The required values are taken 

.30 
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Table 1: 	INFLUENCE OF SLENDERNESS RATIO ON THE 
CRITICAL LOADS OF THE TWO BAR FRAME 
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9.9028 
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12.3089 
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Table 2: DEPTH AND STIFFNESS OF FLEXIBLE CONNECTIONS (TYPE II) 

I Depth 
Geom. 1 in. 

1 
1 	1 	8 

2 	118 
1 

3 	1 36  

Z x 10 5 
 Rad/kip-in. 

0.0460 

0.0150 

0.0054 

r y x 10-8  
ib-in/Rad. 

21.739 

66.667 

185.185 

6.71 

20.46 

39.80 

64.20 

917.70 

7833.65 

361.17 

167.79 

114.36 

A 	(7.5) x 10 101 
1 

A 4(6) x 10 9 	I. 
1 

A 	(2.1) x 10 9  I 

A-Range 	1 

Table 3: EFFECT OF A (NON-LINEAR FLEXIBLE CONNECTION) ON THE 
CRITICAL LOADS (e = -0.01, X = 100) 

	

Geometry 1 	 Geometry 2 

	

oF = 361.17 	 09 = 167.79 

A 	Qcr 	 A 	Qcr 

Geometry 3 
L.J.= 114.36 

A 	Qcr 

0 	12.7529 	0 	12.7631 	0 	12.7216 

	

1.0 x 10 6 	12.7529 	1.0 x 10 5 	12.7361 	1.0 x 10 3 	12.7216 

	

1.0 x 10 7 	12.7527 	5.0 x 10 5  12.7359 	1.0 x 104 	12.7216 

	

5.0 x 10 7 	12.7515 	1.0 x 10 6  12.7357 	1.0 x 10 5 	12.7214 

	

1.0 x 10 8 	12.7494 	1.0 x 10 7  12.7298 

	

 1.0 x 106 	12.7193  

	

1.0 x 10 9 	12.7456 	1.0 x 10 8  12.7206 	1.0 x 10 7 	12.6991 



from DeFalco and Marino (1966) and the bars are assumed to be steel 1-beams. 

The value of A (nonlinear flexible connection) is varied in accordance with 

the limitations presented in the mathematical formulation, and its effect, 

for all three cases, on the limit point loads for -6 = -0.01 and X = 100 is 

shown on Table 3. An important conclusion here is that, for type II 

connections the degree of nonlinearity of the rotational spring has 

negligibly small effect on limit point loads for a fixed eccentricity and 

bar slenderness ratio. 

For more details see Simitses and Vlahinos (1982). 

4.2 Portal Frames 

Consider the portal frame shown on Fig. 7. The loading consists of both 

eccentric concentrated loads near the joints and of a uniformly distributed 

load on bar "3". 

When vertical concentrated loads are applied at joints "3" and "4" 

without eccentricity, and the geometry is symmetric (EI1 = E12 = EI, L1 = L2 

= L,O 1  = 52=5 but 5 = 0 or 00), a primary state exists and beam-column 

theory can be employed to find critical loads for sway buckling, or for 

symmetric buckling (sidesway prevented) and for antisymmetric buckling. 

Such analyses can be found in texts [see Bleich (1952) and Simitses (1976)1. 

For example, if the horizontal bar has the same structural geometry as 

the other two members (E13 = El and L3 = L), then the critical load for sway 

buckling (referred to herein as classical) is given by 

simply supported 
	

Q
6), 

= 1.82 2 
	

(31) 

($ = 0) 

clamped ($-K:0) 
	

Q 	= 7.38 
EI 
2 
	 (32) 



Fig. 7 	Portal Frames; Geometry and Loading. 



Results for loading that induces primary bending and parametric studies 

associated with the effect of various structural parameters on the frame 

response are presented below for rigidly connected portal frames. Moreover, 

some results corresponding to semi—rigidly connected portal frames are also 

presented. 

4.2.1 Rigid Joint Connection 

Partial results are presented both in graphical and in tabular form, 

but the conclusions are based on all available results. 

Figs. 8 and 9 deal with the effect of load eccentricity on the response 

characteristics of a square (structurally; Eli = EI, Li = L), symmetric (0 1= 13 2=0), 

rigid—jointed frame. Fig. 8 shows primary path and postbuckling equilibrium 

positions for two symmetric eccentricities ( 71  = 	= -6.). The value of 
3 	3 

the slenderness ratio (X
i
=X) is taken as 1,000, but the effect of 

slenderness ratio on the nondimensionalized response characteristics is 

negligibly small. The rotation of bar "1" at joint "3" is chosen as the 

characteristic displacement for characterizing equilibrium states on this 

figure. As seen from Fig 8, bar "3" is in compression in the postbuckled 

branches and initially in the primary paths. As the eccentricity increases 

the sway buckling load decreases, but only slightly. This observation is in 

agreement with Chwalla's (1938) [see also Bleich (1952)] result, who found 

that the critical load when the eccentricity is one third (e = 0.333) is 

equal to 1.78 EI/L2 . It is also observed that the primary path curves 

approach asymptotically the value of Q cr  corresponding to symmetric buckling 

of the portal frame [see Eq (66) of Ch,4 in Simitses (1976)]. This value, 

as computed from said reference, is equal to 12.91 EI/L 2 . Fig,9 shows 

similar results but with antisymmetric eccentricity (- -J1  = 	= 
3 	3 

Clearly for this case ( -e- 	0), there is a stable response that includes 
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bending from the onset of loading. Moreover, this response approaches 

asymptotically a horizontal line corresponding to 7 - 7c2., Eq.(30), and not 

the postbuckling branch (Z.  = 0). Furthermore, for asymmetric eccentricity 

M M 
 bar 3 is in tension. 

Table 4 presents sway buckling loads of a symmetric simply supported 

portal frame loaded by a uniformly distributed load on bar "3", for a wide 

range of horizontal bar ("3") geometries. The value of X = X 
1 	2 

is taken to be 1000 and the value of X3 varies according to the changes in 

13 and L3 by keeping the cross—sectional area, A3, constant. This results 

into 50 5 X
3 	

4242. Note that q*  is given on Table 4, instead of q. 

This is done because L3 is a variable. Moreover, if one is interested in 

comparing total load, q*  must be multiplied by L3/L1. Thus, the first row 

becomes 3.52 (L3/14 = 0.5) 2.77, 2.27, 1.92, 1.65 and finally 1.44. Note 

also that the last row becomes 4.93, 4.91, 4.90, 4.89, 4.88 and 4.87, or all 

of them approximately equal 	to 2(72 /4). This load is the buckling load of 

the two vertical bars, which are pinned at the bottom and clamped at the top 

to a very rigid bar that can move horizontally. Finally, kl and k3 are 

measures of the axial compressive force in the vertical bars (k1 = k2) and 

the horizontal bar, respectively. 

The final result shown, herein, is on Fig 10. This figure shows the 

effect of small variations in the length of bar "2" on the response 

characteristics of a uniformly loaded frame. Clearly, the change in L2 

provides a geometric imperfection and the response, accordingly, approaches 

asymptotically the "perfect geometry" response. The same can be said, if an 

imperfection in bending stiffness exists, such that the resulting geometry 

becomes asymmetric. 

Details and more results can be found in Simitses et al. (1981, 1982). 



TABLE 4. EFFECT OF HORIZONTAL BAR GEOMETRY ON CRITICAL LOADS (HINGED PORTAL FRAMES). 

L3/14 	0.5 1.0 1.5 	2.0 2.5 J.0 

E13/EI1 
:11 

1 i f.777FM.7.1 2  

qcr 7.035 	2.772 1.518 	0.9600 	.6598 	0.48093 

0.5 k1 1.326144 	1.177312 1.066970 	0.979798 	0.908143 	0.849350 

k3 0.204301 	0.586181 1.040636 	1.548835 	2.128032 	2.92 1 292 

* 

qcr 8.142 	3.522 2.075 	1.394 	1.011 	0.7769 

1.0 ki 1.426682 	1.327027 1.247465 	1.180678 	1.123931 	1.079532 

k3 0.128840 	0.410684 0.778291 	L.212997 	1.725474 	2.412621 

* 

qcr 8.879 	4.075 2.523 	1.772 	1.338 	1.064 

2.0 lc' 1.489896 	1.427337 1.375482 	1.331290 	1.293368 	1.263309 

k3 0.074499 	0.258365 0.517961 	0.840184 	1.227140 	1.709590 

* 

qcr 9.166 	4.309 2.721 	1.945 	1.491 	1.200 

3.0 ki 1.513758 	1.467748 1.428456 	1.394528 	1.365357 	1.341829 

k3 0.052459 	0.189001 0.389113 	0.643696 	0.951338 	1.324863 

* 

qcr 9.640 	4.714 3.079 	2.266 	1.782 	1.462 

10.0 1(1 1.552238 	1.535271 1.519604 	1.505210 	1.492379 	1.481047 

k3 0.017124 	0.066005 0.143481 	0.247198 	0.375752 	0.528868 

* 

qcr 9.865 	4.909 3.266 	2.444 	1.951 	1.622 

100.0 ki 1.570430 	1.566634 1.564618 	1.563342 	1.561408 	1.559621 

k3 0.002500 	0.007062 0.015835 	0.028044 	0.043648 	0.062619 

L 2  , El l  = FI, 

4 0 
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4.2.2. Semirigid Joint Connection 

As in the case of the two-bar frame (4.1.2), the horizontal bar is 

connected to the vertical bars through rotational springs. First, a linear 

spring is used, and its stiffness, 6, is varied from zero (10 -1 ) to 

infinity (105 ). Results are presented in tabular and graphical form for 

symmetric eccentric loading. Table 5, shows the effect of slenderness ratio 

for a square symmetric portal frame on the sway buckling load (e .  = 0.001) 

for various values of rotational spring stiffness (same at both joints). It 

is seen from Table 5, that this effect is neglibly small, as is in the case 

of rigid connections. Fig.11, shows the effect of spring stiffness on the 

sway buckling load for various load eccentricities. For very small p- 

values, the frame becomes unstable at very low load levels. Note that for 0 = 0 

the frame becomes a mechanism. As the rotational stiffness increases, the 

critical load approaches that of a rigid-jointed portal frame (i7cr  = 

1.82 EI/L2). 

Next, results are presented for flexibly connected portal frames using 

the same type II connections as for the two-bar frame (see Table 2). For 

the portal frame also it is concluded that the degree of nonlinearity of the 

rotational springs has negligibly small effect on sway buckling loads, for 

each specified geometry (see Table 6). From these and other studies 

[Vlahinos (1983)], it is concluded that the effect of nonlinearity in the 

rotational spring stiffness (variations in A) has negligibly small effect on 

the response characteristics of portal frames. 	In all generated results, it 

is required that the slope to the moment-relative rotation curve, for the 

flexible connection, be positive. This requirement is not only reasonable, 

it is also necessary for a good and efficient connection. 



Table 5: EFFECT OF SLENDERNESS RATIO, X , ON SWAY-BUCKLING LOAD 
(SYMMETRIC LOADS, -J = 0.001) 

Qc r 

_ 	A 40 100 1 0 00 

1 .659 .659 .660 

5 1.355 1.355 1.360 

100 1.781 1.787 1.790 

1000 1.807 1.813 1.814 

TABLE 6: EFFECT OF A (NONLINEAR FLEXIBLE CONNECTIONS) 
ON CRITICAL LOADS1 Q c r  (SYMMETRIC CASE; e = 0.01). 

-Geometry 1 
C) P 	-.. 	361.17 

	

Geometry 2 	 EGeometry 3 
05 	= 	67.79 	 = 114.36 

A Qrr X &rr 	 X Qrr 

0 1.807 0 1.798 	 0 1.790 

1 	x 	105  1.807 1 	x 	105  1.798 	 1 	x 	105  1.790 

1 x 108  1.807 1 	x 	108  1.798 1 x 108  1.790 

3 x 10 10  1.807 1 	x 	10 9  1.798 1 	x 	109  1.788 

5 x 10 10  1.806 3 	x 	109 	11.797 1.75 	x 	109  1.785 

7 x 10 10  1.803 5 	x 	109 	11.795 2 x 109  1.782 

7.5x10 1 ° 1.801 6 	x 	109 	11.793 2.1 	x 109  1.781 



Q c r 

1 10 10 10 10 10 -  10
5 

e = . 0001 , .001 

5 = 01 

0 
Fig. 11 	Effect of Joint Rotational Stiffness on Critical Loads 

(Eccentrically Loaded Symmetric Portal Frame). 
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Because of the above observations and those associated with the two-bar 

frame (4.1.2), no•further results are generated for flexibly connected 

frames. 

4.3 Multibay, Multistorey Rigid-Jointed Frames  

Several results are presented and discussed here. 

First, results are presented, for symmetric two-bay frames loaded 

transversly by uniformly distributed loads, on Table 7. On this table, the 

length of the horizontal bars is varied (L4 = L5 = Lh; L1 = L2 =L3 = L id as 

well as the stiffness. Here also, as in the case of portal frames, the 

slenderness ratio for the vertical bars is taken as 1000 (X
1
= X

2
=X

3
=1000) and 

the value of X,
ul(=X4 X

5 ) is varied accordingly, as Ih and Lh vary, but the 

cross-sectional area is kept constant. The critical loads , a .*cr, represent 

sway buckling loads. The total load for the two-bay frame is obtained by 

multiplying q *  by 2 Lh/Lv . The factor of two is needed because of the two 

bays. In comparing the results of this table with those for the portal 

frame (Table 4), one observes that, by adding one bay (two bars; bars "5" 

and "3"), the total sway buckling load is increased by 50% or more, 

depending on the two ratios. The increase is larger with larger values for 

Lh/L v  and smaller values for EIh/EIv . The values for ki(ki = k3) k2 and 

k4(k4 = k5) are measures of the axial loads (compressive for this case) in 

the five bars. Because of the distribution, the middle vertical bar carries 

more load than the other two (expected). In spite of this, as the bending 

stiffness of the horizontal bars approaches infinity, the total sway 

buckling load approaches 3(rT 2/4),Note that for the portal frame the total 

load is 2( 7 4 ). Thus, for this particular case (EIh 	), the increase in 

buckling load from a single bay to a two-bay frame, is 50%, regardless of 

the ratio of Lh/Lv. 



TABLE 7. EFFECT OF HORIZONTAL BAR GEOMETRY ON CRITICAL LOADS (HINGED, 
SYMMETRIC, ONE-STOREY TWO-BAY FRAMES). 

Lh/Lv 	 .5 	 1 	 2 

E1},  
E I v  

^ q 

l/ 

ii 111111111MMThill 1111111111111111111111UMI 

0.5 

* 
q cr 

kl 

k 2 

 k4 

	

5.474 	2.243 	0.822 	0.425 

	

1.079615 	1.001068 	0.872701 	0.768667 

	

1.773156 	1.575093 	1.328265 	1.169728 

	

0.152456 	0.467452 	1.302599 	2.342564 

1 

9cr 

k1 

k2 

k4 

	

6.190 	2.739 	1.124 	0.635 

	

1.121867 	1.072490 	0.999675 	0.926334 

	

1.916465 	1.774246 	1.580063 	1.447954 

	

0.090564 	0.304997 	0.944516 	1.787473 

3 

9
*
cr 

ki 

k 2 

 k4  

	

6.887 	3.258 	1.487 	0.921 

	

1.155458 	1.138553 	1.108115 	1.079077 

	

2.049744 	1.980715 	1.868985 	1.787660 

	

0.034894 	0.129310 	0.455144 	0.925647 

10 

9
*
cr 

ki 

k2 

k4 

	

7.221 	3.530 	1.703 	1.101 

	

1.167638 	1.162379 	1.151948 	1.142422 

	

2.120247 	2.087248 	2.039065 	1.998682 

	

0.011611 	0.143027 	0.164391 	0.353992 

L
11 

= L
4 

= L
.)
., L

v 	
L

1 
= L

2 
= L

3' 
	

cr = 44 cr = 0 5 cr 

EI 11 = E1
4 

= EI S
, 

El 	= EI
1 

- El
2 

= EI
3 



Limited results are also presented for a single bay multistory frame 

and a two-bay two-storey frame. These results are generated only for 

special geometries. All lengths and all stiffnesses are taken to be equal, 

and the loading is a uniformly distributed load of the same magnitude on 

every horizontal bar. The boundaries are simple supports and the 

bar slenderness ratio is taken to be 1,000. Note that for portal frames the 

effect of slenderness ratio on the nondimensionalized response is found to 

be negligibly small. This is found to be also true for two-bay, one storey, 

and multistorey one-bay frames, that were checked randomly. The value of Xi 

was changed for a few geometries and this change did not affect the response 

appreciably. The results for the additional geometries are presented 

schematically on Fig.I2, by giving the total sway buckling load next to a 

sketch of the frame. From this figure it is clearly seen that the 

sway-buckling load is increased appreciably by adding bays but the change is 

insignificant, when storeys are added. 

Another important result is related to the following study. A 

two-storey one-bay frame, with Li = L and EIi = EI (for all i), is loaded 

with uniformly distributed loads on the horizontal bars. The uniform 

loading is distributed in various amounts over the two horizontal bars. It 

is found that the total sway buckling load does not change appreciably with 

this variation. When only the top horizontal bar is loaded (top 100%, 

bottom 0%), the total sway buckling load is 3.677. When the top and bottom 

are loaded by the same amount, the total sway buckling load is 3.688 (see 

Fig. 11). Finally, when the top is loaded by an amount which is much 

smaller than the bottom (top 5%, bottom 95%) the total sway buckling load is 

3.696. 
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When designing two-bay (or multibay) frames to carry uniformly 

distributed loads, inside columns must carry more load than 'outside columns. 

Because of this, inside columns are usually made stiffer. One possible 

design is to make the inside column(s) twice as stiff (in bending) as the 

outside one(s). Sway-buckling results for such a two-bay geometry are 

presented on Table 8. The lengths of all five members are the same, but the 

bending stiffness of the horizontal bars is varied. Axial load coefficients 

for all five bars are also reported on Table 8 (k3 = k1 and k5 = k4). 

Moreover, the total (nondimensionalized) sway-buckling load is given for 

each case. It is seen from Table 8 that as the stiffness of the horizontal 

bars increases the total load increases. Moreover, a comparison with the 

results of Table 7, corresponding to Lh/L v  = 1, reveals that by doubling the 

bending stiffness of the middle column the total sway-buckling load is 

increased by approximately 33%, regardless of the relative stiffness of the 

horizontal bars. Another important observation is that, the ratio of axial 

forces (inside to outside, P2/P1; Pi = ki EIi/Li) is not affected 

appreciably by the doubling of the bending stiffness of the middle column. 

This ratio varies (increases) with increasing bending stiffness of the 

horizontal bars. 

TABLE 8. EFFECT OF HORIZONTAL BAR STIFFNESS ON CRITICAL LOADS FOR HINGED 
ONE-STOREY TWO-BAY FRAMES (WITH MIDDLE COLUMN STIFFNESS DOUBLED). 

EIh/EIv  1 2 3 10 

* 
cicr 3.599900 4.164400 4.391500 4.655000 

k1 1.235737 1.299518 1.320376 1.334522 

k2 1.439725 1.573468 1.627115 1.695136 

k4 0.346890 0.207330 0.147837 0.048834 

qt 7.199800 8.329880 8.783000 9.310000 

a 



All of the above observations point out that there exists an optimum 

distribution of bending stiffness, in multibay multistorey orthogonal frames 

which are subject to sway-buckling, for maximizing their load carrying 

capacity. 

5. CONCLUDING REMARKS 

From the several studies performed on elastic orthogonal plane 

frameworks, some of which are reported herein, one may draw the following 

general conclusions: 

1. The effect of flexible joint connections (bolted, riveted and or 

welded connections are flexible rather than rigid) on the frame response 

characteristics is negligibly small. Thus, assuming rigid connections in 

analyzing elastic plane frameworks, leads to accurate predictions. 

2. Eccentrically loadatwo-bar frames lose stability through the 

existence of a limit point and do not experience bifurcational buckling. 

For these frames, the slenderness ratio of the bars has a small but finite 

effect on the critical load. Moreover, depending on the value for the 

slenderness ratio, there exists a critical eccentricity which divides the 

response of the frame into two parts. On one side the response is 

characterized by stable equilibrium positions and on the other hand it 

exhibits limit point instability (within the limitations of the theory, 

w2 << 1). 
, x 

3. Unbraced multibay multistory frames (including portal frames) are 

subject to bifurcational (sway) buckling with stable postbuckling behaviour. 

Sway buckling takes place, when the frame is structurally symmetric and the 

load is symmetric. Because of this, the frame is insensitive to geometric 

imperfections regardless of the type (load eccentricity, variation in 

geometry - length, stiffness, etc). In many respects, the behaviour of 

■ 
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these frames is similar to the behaviour of columns, especially cantilever 

columns. 

4. The effect of slenderness ratio on the nondimensionalized response 

characteristics of plane frameworks (except the two-bar frame) is negligibly 

small. 

5. Starting with a portal frame, addition of bays increases 

appreciably the total sway-buckling load, while addition of storeys has a 

very small effect. 

6. For multistorey frames, distributing the load in various amounts 

among the different floors does not alter appreciably the total 

sway-buckling load. In all cases, the first storey vertical bars (columns) 

carry the total load. 
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