## ARCHITECTURE

## ROOM USE ONLY

THE FOXFIRE FACILITY<br>A Center for the Preservation<br>of Mountain Crafts and Lore

## GEDRGIA INSTITUTE DF TECHNDLDGY ARCHITECTURE LIBRARY

## ROOM USE ONLY

## Todd Dennis Corbet

 Fall 1972
## Section A: INTRODUCTION

The Foxfire Facility: A community education center dedicated topreserving and passing on the skills and crafts of southern Appalachia.
I. Project and Location

This facility will act as the cultural and educational E.IV.a. (and sometimes social)center of the mountain community. It will act as the rallying point of an already strong local chauvinism. Its' functions will be to:

1. Preserve, order, and display the tools and art of this culture.
2. Educate the youth of this area in their cultural heritage.
3. Serve as a place where the community can come together on common ground.

The facility will include an exhibit hall, archives, and library; a publication center, restoration and storage facilities; a workshop and demonstration area, and outlets for local and visiting craftsmen; administrative offices, limited meeting and conference facilities, and possibly, in the future, an alternate highschool oriented toward the local art and history for about fifty to seventy five students. The school would include classrooms, administration, and dining and dormitory facilities. Also located on this site will be an outdoor museum consisting of relocated and rehabilitated structures of the area.

This project is located in northeast Georgia, approximately five miles from the NorthCarolina border and seven miles from the South Carolina border.
II. Social and Economic

This project is a proposal that will be built when the money is raised and this terminal problem may become part of the funding proposal.

The purpose of this project is to preserve the unique crafts of this area that are in danger of being lost due to the "progress" of our present day society. The skills of the local craftsmen have been handed down from generation to generation for hundreds of years and it is the idea of the Foxfire proposal that these skills should not be lost to future generations.

To do this involves two fundamental processes. First,
the information must be gathered and organized. Then it needs to be distributed to people previously unfamiliar with it.

The gathering of information includes taped interviews with craftsmen and local residents, videotaped demonstrations of particular skills, gathering and analyzing existing artifacts, and gleaning folklore and customs from old letters and manuscripts.

The distribution of this material is handed through publication and, with the advent of the proposed facility, by demonstration and exhibit.

All of these functions are presently being handled by the staff of the Foxfire Magazine located at the Rabun Gap-Nacoochee School and under the direction of Elliot Wigginton. Aside from Mr. Wigginton and two or three paid staff members, the magazine is produced entirely by the high school students.

At this time they have only a few reoms in the school administration building. They are gradually being driven out of these by the sheer bulk of the material neede to carry on the publishing and mailing of the magazine. Not only this, but they have collected, bought, or been given many examples of the local skills, like spinning wheels, looms, ox bows, wagons, and baskets, and most of these are stored in their office space.

It seems that if relief is not soon forthcoming, this excellent magazine will suffocate for lack of space. From the skills of the local craftsmen and to survive and grow, Foxfire needs new space.
III. Scope of the Design

The scope of the terminal project design will encompass overall site planning for the facility, including the possible future addition of the alternate school and the outdoor display. The main bulk of the design will be the study of the exhibition, publication, demonstration and meeting facilities. The presentation will include all plans, elevations, and sections necessary to completely explain the project.

To: Mr. Garland Reynolds<br>Gainesville, Georgia<br>December 5, 1971

FOXPIRE Magazine was started in March, 1967, as a means of supplementing the English curriculum of the ninth and tenth graders at the Rabun Gap-Nacoochee School. It was hoped that, through it, they would master many of the skills in grammar, writing, proofreading and so on that they wore supposed to be learning in the class - but thoy would learn them in a far more meaningful, forceful way.

Inielal funds were raised by the students themselves in the community, and the magazine has remained completely independent of the school financially, maintaining itself through subscriptions, gifts, and grants from such organizations as the National Endowment for the Humanities.

Now about to enter its sixth year of publication, FOXPIRF: has attracter attention from puhlications, universities and organizations around the country. The fascination seems to be for the fact that a group of high school students from a tiny (240-pupil) Appalachian school can run, themselves (doing overything from circulation and correspondence to all the photography including printing all their own photographs - layouts, writing, editing, promotion, and some of the most responsthle research being done anywhere in folk and material culture), a magazine that now has subscribers in every state in the country and a dozen foreign countries. This attention is ahout to be climaxed, at the end of the fifth year, hy an article in LIFE Magazine and the publication of a hook of back articles - with over 300 photographs - to be brought out in February hy Douhleday. The paperback version, with a first printing of something around 40,000 copies, will be brought out simultaneously by Anchor.

During its five-year history, the staff has accumulated enough material to fill a small museum. All of the negatives (over 7000 of them), tapes and videotapes have been saved and filed. In addition, there are numbrous items that the students have collected during the course of their research (see enclosed list for a sampling). These materials rightfully belong to the commity from which they came. In fact, they are often drawn on even now. Recently the daughter of Bill Lamb, one of our finest contacts, came to us and said that we had taken the last photo-
graphs of Bill made before his death. She wanted to buy from us 30 copies of several of the prints to send out to various members of the fanlly. Two students went into the darkroom, made the photographs, and gave the to her free as our way of thanking her for her fanily's cooperation with us. And such incidents happen frequently.

Thus it is our plan now to create a facility that will house and make avallahle to the comunity at large not only these materials, but also new ones that we will he continually adding.

Funds for such a facility (descrihed in more detail shortly) will, it is hoped, come not only fron royalties from ThF FOXPIRF BOOK (and its sequel, now in preparation), hut also from foundations that have already indicated their interest. The cover letter to Mr. Garland Reynolds details some of these.

In order to approach such foundations, however, it will he necessary for us to be ahle to tell then exactly what we want and how much it will cost. We cannot do that alone. We simply do not have the expertise. And so we come to you,

## THE FACILITY ITSELF

The facility (for which land has already boen donated) would, as we see it now, be cominosed of a series of independent but interconnected "cells," each with its own function. These cells would be of varying sizes and would serve different functions. Each would be staffed hy a POXFIRF veteran and subsequent college graduate that wo would attract hack into the commulty and hire full-time. These cells would house the following operations:

1. The Musern -

In order to find out how something was made, we often contract a local craftsman to make a duplicate for us. Thus we now have in our collection a number of items ranging from wagon whoels and mill wheels to chairs, haskets, quilts and pottery made for us by people we have hired. The whole process has been documented in still photographs, videntape and audio tape. A number of the exhilits, therefore, would he made up of some combination of all theso elements: perhaps the obfoct itsolf backed up by onlargements of the person making it and a tape loop with the person who made it talking ahout the ohfect teself and

THE FOXPIRE PROPOSAL page 3
the directions for making it.
In addition to this collection, which will be constantly oxpanding as our staff fans out through the countrysido and as we acquire funds for making oven bigger objects such as full two-mule wagons; we have also been promised the ilno collection put together by fieorgia Mountain Arts as soon as we have a place to house it. The collection has been carefully docuented by John Durrison of Georgia State's Folklore Department.

Porhaps oven more important in our thinking, however, is our beliof that this should truly be a commenty musen to which poople can foel free to bring their grandparents' artifacts and know that they will be safo and well cered for. In order to accomplish this, it is necessary that comunity residents be involved es much as possible in the plaming and construction of the exhibits themselves. And this noeds to be done quickly while there are still residents living tho can guide the construction of these exhibits. As I see it, John Connelly would be hired to guide the construction of an authentic blacksinth shop Just like the one his father had. Sam Burton would be hired to bulld a mill. Will zoellner would be hired to guide the wegon-making section. Lon Reld would be meployeddto set up a hand-turned lathe and a furniture shop. And always thoy would be working with the high school students from the comeunity who would be doing the actual work under thoir guidance. Not only would this put mech-neoded income into their pockets, but te would also make them truly a part of the mascin, and it mould bo an ectivity of tremendous sigmificance to thoso high school studonts involved.

Such a musou aree would also need to have an adjecent "cell" for storage of duplicatos, for reconstruction of deaged matorials, and for preservation of other naterisls in such chealcals as polyethelfyne glycol.
2. The Craft Area -

A coll edjoining the musen would he dovoted to a work aree that would be open to any member of the comumity who manted to produce a craft of whatever description. If a group in the comunity such as a home demonstration club manted to heve a quiliting, for example (as they still do four times a yoar here), wo would hope that they would feel free to come to this facility. In addition, such a facility could be used for giving demonstrations in making certain crafts during which the students, if necessary, could documont the procedure easily.

THR POXFIRF PROPOSAL page 4

We are also hopeful that the area could be open to tourists. If a tourist saw something such as a quilt in the museum that he particularly liked, wo foel he should be able to check into a local motel and spend several days in our craft area with a local person making a copy of that item. When finished, he would pay the instmuctor, pay for the materials used, and take the quilt along. This area could even be expanded to house classes in certain crafts on a regular basis if the demand was found to exist.

A separate room adjacont to this area could serve as a craft outlot through which any local persons who wished could market their skills. Individuals like Boh Gray of the Southern Highlands Handicraft Guild have already promised that they would be available to holp set up and organize such an operation whenever we needed their holp. Such an outlet would be combined with the already-oxisting Rabun Gap Crafts and the Georgia Mountain Arts sales network to create a truily stoong organization. Not only could these materials be sold through the shop itself, but they could also be advertised in FOXPIRE and marketed by mall.
3. The Archive/Library -

A separate room would house an extensive collection of books on the Appalachians, and, more importantly, our own collection of tapes, videotapes, and photographs. Copies of these would be available for use by not only local people who would bring in their children to listen to their grandparonts talk again, but also by scholers and students doing research in the field. Other copies of the sane tapes and photographs could be made availehle free to comunity residents and families, and at a charge to others.

## 4. The Publishing Center -

A separate section of the building would he devoted to the publishing activities of the organization. This area would include darkrooms; rooms to store supplies such as film, tape, cameras, otc.; a videotape workshop and oditing area; a mailing room with an addressograph; a large layout and design area; and editorial offices that would house our files and provide space for writing and typing the articles thenselves.

Such an area would he used not only for the publication of POXPIRE, but also for such things as a paiphlet serles that would deal with issues like "The Great Rabun County Land Grab". clear cutting, the Blue Ridge Parkway extension; and a seties of

THE FOXPIRF PROPOSAL
page 5
small books from The Foxfire Press exploring such topics as how to create a POXFIRE-type publication; and perhaps even a series of calendars, cards, posters, etc. designed by the students and marketed in the craft center.

There is also the possibility that we will be able, in the near future, to acquire the local newspaper. If this is accomplished, offices for this paper would probably be located on the premises as well.

## 5. The Administrative Area -

This final section would house the administeative functions of the parent organization. Here would be the office of the diroctor and his secrotary, and well as the offices of individuals who would be running such aspects of our program as:

A: The "Kids In Action" program. This program has been operating informally for some time now, but in the new facility, it would be given a full-time director. Its purpose is to be available at any time to lond a hand wherever needed. Up until this time, the kids have concentrated on helping older residents slaughter and salt down their hogs, haul in enough wood to last for a month or more, helping to plant and harvest crops where neoded (see the most recent issue of FOXPIRE Volune 5, Number 4 - for an example), helping to repair the house of an Aunt Arie, and so on. In its expanded version, the students could also he used for trash cleanups, for taking older peoplo to doceor's appointments, etc.

B: A public school course we are now formulating which would he an elective, and to which would come in one-week blocs local residents such as Aunt Arie who would simply sit and talk to the students about living, 11 fe and their own personal philosophies. If they wished, thoy could also demonstrate varlous skills that they possess. All such sessions would be taped and held on file - and possibly used in articles in the magazine. Participants would be paid thus adding one more potential source of income.
pald paid

C: \& training area for both students and teachers from around the country who want to hoth start magazines like POXFIRE, and also organize activities in their commitios of benefit not only to local families, but also to the public schools

THE FOXFIRE: PMOPOSAL
page 6
of the area at large. In association with IDEAS, Inc. of Washington, D.C., wo have already participated in one such program which culminated in the creation of the POXFIRE-type agasine, HOYEKIYA, on the Oglala Sioux reservation in Pine Ridge, South Dakota. That magazine, run completely by the Indian high school students, is now on the verge of sending its second issue to the printer; and all indications are that it is doing well.

A second such publication, THE FOURTH STRPET i, was started with Puorto Rican high school students working with POXFIRE staff members. The magazine, located in the Lower Fast Side of Manhattan, is now ahout to come out with its third 1ssue; and 1t, too, id doing quite well.


#### Abstract

A number of new such publications are already in the planning stages, and letters come in frequently asking for help and advice in not only the area of magazine work, but also in public school oducation and in comunity poograms. The number of conferences we are invited to yearly is a good indication of the growing interest in this area.


And that is the facility as we see it now- Our hope, of course, is that it will be a truly integral part of a commity that has a great deal to offer not only our high school students, but also the country as a whole. POXFIRE was the first magazine of its type in the initdd states. Now it is engaged in experimenting In a whole new series of equally exciting spin-offs. We are rapidly becoming a laboratory for a vblof prograns that will be widely duplicated, expanded and refined; and we hope you will be able to help us shape one of the boldest ventures over undertaken by a high school group anywere. It sounds, at times, almost absuris to hope that such a giant undertaling will cone to pass but then, five years ago, POXFIRE was just an absurd drean too.

Section B: HISTORY

Aside from the notable early examples of the British Museum, the Vatican Museum, and the Louvre, the museum as a public institution is barely over one hundred twenty years old. At first they were little more than private collections on public display. More and more the museums have taken the visitors needs into consideration and tried to educate them with the vastness of the collections.

The first folk museum was started by a private collector, E.II.p.3. Hazelius, who donated his life's work to the people of Stockholm in 1872--the Nordiska Museum. Other examples of major folk museums opened in Odense, Denmark and Bergen, Norway in 1945 and St. Fagan's Castle, Wales in 1946.

The United States' contribution in this field has been in the area of outdoor museums like Williamsburg, the Winterthur Museum and the Farmers' Museum at Cooperstown,N.Y. One of the few folk museums in the U.S. with both outdoor reconstructions and indoor explanatory exhibitions is located at Berea, Kentucky. This small museum, associated with the Berea College Appalachian Center, is based on research programs similar to the Foxfire program using college students instead of high school students. The Appalachian Museum is running critically short of space and is about to overflow the two small warehouse type buildings.

One of Rabun County's first college graduates, Dr. Andrew Jackson Ritchie, received his B.A. and M.A. from Harvard University before returning to his native county to devote his life to the education of the mountain people.

In 1903, he founded the Rabun Gap Industrial School and in 1917, originated the "Farm Family Plan" by which entire families work their way through school. The school operated independently until 1926, when it merged with the Nacoochee Institute, a school owned and supported by the Presbyterian Synod of Georgia. Under Dr. Ritchie's presidency, the new school, renamed Rabun Gap-Nacoochee, acquired more land larger dormitories and classrooms, and began new educational programs. Dr. Ritchice established a policy of adopting fresh educational techniques that survives today. Out of this traditionally open format emerged the Foxfire Magazine journalismprogram.

As mentioned previously, the Foxfire group is very overcrowded, and in need of many new facilities. The magazine was started five years ago as a journalism exercise and because of its' popularity and its' excellent execution, it grew into a publication with national circulation. All aspects of the publication have been handled by the students; photography, art, storywriting, interviewing, and editing.

From past issues, the Foxfire Book was put together and is selling well all over the country. The royalties resulting from the book gave been used to buy property for the museum. If the gtoup can take the next step and build their facility, they will have one of the most significant folk museum facilities in the nation, if not the world.

## Section $C_{1}$ BUILDING ANALYSIS

I. Activities Being Accomadated
a. General

1. Education
2. Publication
3. Exhibition
4. Demonstration
5. Restoration and Storage
6. Research
7. Community Action and Events
8. Administration
9. Craft Sales
10. Support Services
b. Specific
11. Education
a) The education of the high school stadents taking part in the Foxfire research and publication program is the driving force of the present organization, and will be expanded to include students of the other area highschools. This will be done by taking advantage of the prevailing early day class schedules and offering afternoon credit in art, english, history, journalism, photography, and cinematography.
b) The education of the general public will be carried on by the publications and withtthe proposed exhibit and meeting facilities. Lectures and demonstrations will become part of the educational process.
c) In the future, an alternative highschool may be run as part of the center's functions. It would have classrooms, dormitory and dining facilities, and, if necessary, its'own administration.
12. Publication

All processes involved in the publication for the Foxfire Magazine, except the actual printing, will be handled at thisfacility. This involves space for editors and writers, files, mailing machines, back issue stock, layout areas, darkrooms and equipment storage. Future museum publications and additional editions of the Foxfire Book would be written and edited here also,
3. Exhibition

The museum exhibition area would be divided into a main area holding general explanatory exhibits and side galleries holding exhibits of specific interest, such as quilting and basket weaving, and the work of particular craftsmen. The exhibition
halls will be supplemented with video and audio tape receivers. An exterior exhibition area will be set aside for restored and reconstructed buildings.
4. Demonstration

Workshop space will be provided for craft demonstrations by local artists to interested groups or individuals. Classes in these skills would also take place here.

There is to be an exterior area partially covered, equipped with a forge and kiln and with adjoining amphitheatre seating.

These areas may also be used as community event facilities.
5. Restoration and Storage

Workshop space is also neede tor the museum staff to prepare exhibits, construct new cases and restore deteriorating artifacts. A studio area should be included to photograph and catalogue the collection and a fumigation room will be needed to protect the collection from insects. A storage space approximately one half the size of the exhibition space will be needed to store that part of the collection not on display. This area must be directly connected to the exhibit area.
6. Research

Although most of the actual research going on in connection with this facility will take place in the surrounding areas, there will be a need for space in which to organize and store the new material. This will be a catalogued library of pertinent books and manuscripts, video and audio tapes, photographs, and microfilm. This will be open to visiting scholars and the publication staff.
7. Community Action and Events

These activities will take place in the demonstration areas and in a small meeting area that will double as a lecture hall.
8. Administration

All administration activities will work out of these offices. There will be offices for the director, two assistants to handle affiliated programs, two secretaries and a receptionist. There is to be a waiting lobby associated with this, the publication and archives department. An information booth control station will be located
at the entrance to the exhibit area. A conference room, equipped for video tape viewing will be directly accessible to the publication area.
9. Craft Sales

A craft store is associated with the museum to provide an outlet for local craftsmen and as a service to visitors who wish to buy objects they have just viewed on exhibition or seen made.
10. Support Services

The main heating and cooling units will be located near the exhibit and storage areas and equipped with emergency generating equipment. There will be at least two sets of rest rooms, one in the administration-publication area and one in the exhibition-demonstration area.
II. Space Requirements
a. Education

1. Alternative school
a) four classrooms..............9900 sq, ft. ea.
b) dining area.................... 1500 sq.ft.
c) administration................ $1200 \mathrm{sq} . f t$.
d) dormitories.................... 5000 sq.ft.
2. To be clustered together on the site and joined directly to the publication department of the museum.
b. Publication
3. Editor's Offices(2people) ........... 150 sq.ft.
4. Writers offices(4people) ............ 200 sq.ft.
5. Circulation Office..................... 180 sq.ft.
a) magazine orders and correspondence files ............................. 50 sq.ft.
b) book order and etc. files ..... 50 sq.ft.
6. Mailing Area ............................. 180 sq.ft.
a) office and addressograph ...... $80 \mathrm{sq} \cdot \mathrm{ft}$.
b) back issue stock ................ 60 sq.ft.
c) files ............................... 20 sq.ft.
7. Layout .................................... 400 sq.ft.
8. Equipment Room ............................ 80 sq.ft.
9. Darkroom ...................................... 180 sq.ft.
10. Advisor's Office ........................ 180 sq.ft.
11. Relationships ........................... 150 sq.ft.

All areas grouped around the layout area. Direct access to administration and archives mandatory
c. Exhibition

1. Free Area ................................. 5000 sq.ft.
2. Small Galleries ....................... 1500 sq.ft.
3. Exterior (reconstructed buildings).. 3 acres
4. Relationships

Exhibition areas should have access to storage and shop through large overhead doors and indirect access to the demonstration areas through a common area from the information-control booth.
d. Demonstration Areas

1. Multipurpose workshop equipped with a loom, spinning wheel, quilting frame, etc 1500 sq.ft.
2. Exterior work area with amphitheatre seating, kiln and forge
3. Storage .................................... 500 sq.ft.
4. Relationships
a) controlled access at information booth
b) direct association with craft outlet
c) access to restoration from the exterior
e. Restoration and Storage
5. Workshop ................................. 1200 sq.ft.
6. Photo Studio .............................. 200 sq.ft.
7. Fumagation ................................ 150 sq.ft.
8. Superintendemt's Office .............. 1500 sq.ft.
9. Storage ...................................... 2000 sq.ft.
10. Relationships
a) large doors to the exhibition room and exterior.
b) adequate sinks, benches, and shelving.
c) access to darkroom and administration.
f. Research
11. Reading Room, stacks, and control .. 1800 sq.ft.
12. Videotape storage ...................... 300 sq.ft.
13. Photography files ...................... 200 sq.ft.
14. Office ...................................... 150 sq.ft.
15. Work space ................................... 150 sq.ft.
16. Relationships
a) direct access to publications
b) direct access to administration
c) closed to all others
g. Community Events
17. Meeting room ............................ 1200 sq.ft.
18. Projection and storage ............... 250 sq.ft.
19. Relationships
a) access to demonstration area
b) access to outside recreation
c) access to area and parking
h. Administration
20. Offices
a) director ..... 160 sq.ft.
b) assistants (2) ..... 300 sq.ft.
c) secretaries (2) and files ..... 480 sq.ft.
21. Reception Area (receptionist and waiting
area) ..... 240 sq.ft.
22. Conference room ..... sq.ft.
23. Information-control booth ..... sq.ft.
24. Relationshipsa) positioned to maintain control overpublishing and archives
b) control over exhibition and demonstrationthrough the information booth
c) access to restoration
i. Craft Sales
25. Sales Area ................................ 1200 sq.ft.
26. Stock room ..... 500 sq.ft.
27. Restroom and office ..... 150 sq.ft.
28. Relationshipsa) delivery from exterior into the stockroomb) near museum entrance, but not necessarilytied structurally to the building
j. Support Facilities
29. Mechanical room ..... 600 sq.ft.
30. Electrical room ..... 80 sq.ft.
31. Janitor's closets (2) ..... 80 sq.ft.
32. Restrooms (4) ..... sq.ft.
5, Exterior mech. ..... sq.ft.
33. Relationshipsa) mechanical room closely connected to theexhibition and storage areas.
b) restrooms and janitor's closets dividedevenly between administration, publication,and exhibition-demonstration areas.
k. Parking1. Museum
a) staff 10 spaces
b) public ..... 30 spaces2. School administration and faculty ... 10 spaces
III. Lighting, Acoustic, and Climatic Factors
a. LightingLighting in the exhibit room must be completelycontrolled and completely flexible.The distribution of light should be such as togive the greatest amount of light on the objects.The brightness level of the background should be E.II.o.I.related to that of the object so that the eye can
adapt to the two and see detail clearly.
No bright source, natural or artificial , should
E.III.b. be in the visitor's cone of vision while he is viewing an object.

There should be no reflected images from case glass. Dark backgrounds tend to accentuate these images and should be avoided even when cases are lit internally.

The room, as a whole, should appear well lit.
Most modern museums have eliminated natural light as a light source because:

1. It causes glare and areas of brightness within the field of vision brighter than the objects.
2. Glazed areas cause excessive heat gain E.II.d. 3 and loss.
3. Double expense of daylight provisions and lighting equipment when daylight is not available. This factor is increased in this case due to the mountainous location.
These drawbacks can be overcome by eliminating E.世. glare and the large glazed areas through the use of optics and minimizing the additional expense by combining fixtures.

Rules of thumb for exhibition lighting are as follo ws:

1. Diffuse lighting of sculptural objects

ㅌ.IIF.a. may detract from their appearance. A luminance ratio of 6 tto 1 with concentrated sources is suggested.
2. Presentation of concentrated light to wall displays should be at an incident angle of 60 degrees with the horizontal centered at an adult sight-line height of $5 \mathrm{ft} .-6 \mathrm{in}$. from the floor.
3. A nominal level of 30 footcandles maintained, on both horizontal and vertical planes, is recommended to meet all norma.i visitor functions.
4. The following values of concentrated sight line illumination should not be exceeded.
a) 60 footcandles for short-term or temporary exhibits.
b) 20 footcandles for fixed or permanent exhibits.
5. Overall luminance ratios between adjacent luminaires or surfaces should be reduced to 3 to 1 .
6. Floor reflectances in galleries and exhibition spaces should be below ten percent.
7. Case interiors should not exceed 30 footcandles.
b. Acoustical Factors

Special consideration must be given to insulating the exhibition spaces from the workshop and demonstration

# MUSEUM LIGHTING STUDIED IN LABORATORY <br> By Laurence S. Harrison <br> Business Administrator, Metropalitan Museum of Art, Now York City 

0NE of the most important areas of planning for the proposed reconstruction of New York's Metropolitan Museum of Art is, of course, the application of modern lighting techniques to the exhibition of art objects. It is axiomatic that good seeing is the primary requirement in any field of visual education. To the Metropolitan Museum, the problem is not a simple one. Its ten curatorial departments represent
a vast collection of many classes of material ranging from the archeologies through Medieval, Renaissance, Far and Near Eastern to Modern European and American cultures.

The determination of proper intensity levels, as well as color tonalities and angles of presentation is complicated by factors, esthetic and other, which have not as yet any quautitative weight in applied lighting calculations. Vor do
they seem susceptible of the same kind of determination as do factors governing commereial or industrial installations. The chief reason for such complication is that. in the field of art appreciation as well as art creation, each individual is entitled to his own criteria.
since the mission of any historical art museum (and there are many of the Metropolitan's character) is chiefly to preserve the products of individual expression. this fact. as a principle. cannot be denied, nor should any attempt be made to change its aspects. This is to say that common demominators of opinion ds to what kiud of lighting makes objects look "best" are discernible neither among laymen nor even among the experts. The reasons for this. as will appear. make the task of prescribing for the artificial lighting of musenms a risky one to say the least.

## LIGHTING VS. TRADITION

It is also to say that whatever is proposed must not be forced into adoption. but rather weighted carefully against curatorial or esthetie concepts on one hand and the realities of musenm economy on the other. Certainly, for example, theatrical lighting or standards deemed suitable for mase selling appeal. though they may be necesary to retail merchandising. are to be used with extreme caution in showing works of art which. as historical documents. should suffer no distortion. and. as objects of

A view of the louvered ceiling in one of the test galleries. This installation gives about three tumes the light the Museum has at night in other galleries. Color of light is also rested. Upper view shows a rest of $6500^{\circ} \mathrm{K}$ fluorescent lighting on paintings with predominant blues and pastel shades. This lighting is good for them, not so good for reds and greens

beanty, need no distortion. Is a matter of fact, one of the mose tritical questions to be answ ered is just how far may available modern liyhtiny means be employed to dramatize art objerets without distorting their apprarance?
To thoser responsible for musem seonowy and for maintaining, if not inercasing, public interest. these ralitics are uncompromising. Most of the ramking art musenus of this country sadly lack either capital or operating finde or both. Most of them have loug needed modernization of their lighting systems.
Consequently, with the exception of a few, individual gallery installations, in which occasionally brilliant ideas have been tried out, there is no existing example of au entire inuseum installation in which completely satislactory applications of the most recent lighting techniques may be seen in this country. The museum field is, therefore, one in which an architect or an engineer, unless he adopts strictly traditional standards, simply cannot be sure, without a fullscale sample demonstration, that what he proposes to specify will be accepted. The risk of extras exceeding a contract price is, under these conditions, too high. This situation, of course, poses the ques. tion of the validity of retaining traditional concepts of museum lighting in the light of present day developments.

## ARTIFICIAL vs. DAYLIGHT

No competent illuminating engineer will take the position that daylight, when available, is not the most desirable for human vision. But, at the latitudes of the cities in which most of our museums are located, under average wath-


Detail of coffered ceiling used for lighting another test gallery. This is a test installation designed merely to test deep coffers with fluorescent lamps in square pattern Isee photo opposite page)
er conditions from October to May which are the months of peak attendance - adequate daylight is not available and supplementary artificial light is required for 75 per cent of the time during public visiting honrs. More inportant is the fact that such supplementary light is required on a highly intermittent basis. The result is actually an immeasurable lack of uniformity of both light intensities and color values on gallery walls and floor areas. For example, on a bright, sunny moruing, the east wall of a top lighted gallery may remain in comparative gloom with brilliant intensity on the west wall. The

reverse would occur in the afternoon. Moreover, the frequent and intermittent obscuring of sunlight by clouds and the lack of sufficient manpower to monitor adjustable skylight louvers, where used at all, imposes a severe task on the adaptive processes of the public's eyesight, or, when too severe, kills the enjoyment of visitors while the condition obtains.
It is argued that these changes of light are indispensable to the esthetic enjoyment of great paintings, tapestries, sculptures, etc., and that to maintain a rigid uniformity of lighting values in a gallery would be oppressive and monotonous. The validity of this viewpoint must be admitted if the authority of individual criteria, as stated before, is accepted. Right here, however, is the area of controversy in which certain curatorial opinion has come to grips with the already discernible trend toward fully artificial lighting in the future. The architect or illuminating engineer would do well to recognize this situation and not to discount it, because the preservation of these changes of

Artificial skylight with light polarizing screen. Note extremely low brightness of ceiling itself relative to that of white paper sheets pinned to backs of chairs
natural light are felt to be a fundamental requirement in gallery lighting by many curators of distinction and their associates in the field of fine arts, both bere and abroad.

It is surely no offense to esthetic ideals to say that if it be too costly to serve all of the people, it becomes necessary to serve only the majority. An "experienced" curator of historical paintings, let us say, or one whose authority and connoisseurship respecting great art has become recognized, has the same attitude toward these masterpieces as had the original owners or their succeeding collectors who, through the centuries, have lavished the care upon them which has made them available to us. These people saw and admired these great works every day with the same stimulus which sought their possession in the first place.

They also had the privilege, as has the curator, of viewing them under the continuous symphony of color and shade which natural light plays daily from dawn to evening. It is understandable that to them, the changing aspects of the great paintings, sculpture, or tapestries had special meanings. These meanings were and are, without doubt, emotionally moving, but there can be no denial of the fact that such spiritual significance, if it could be so characterized, was and is, personal to the curator, the artist or to anyone who, knowing great paintings, haunts the gallery continually.

These, however, are not a majority, nor does there appear to be any course of instruction by which such reactions might be assured to the uninitiated. Even if there were, and Mr. and Mrs. Smith could be persuaded to revisit the museum often enough to catch the evanescent splendor of some luminous aureole on a Rembrandt or an El Greco, they could, as a matter of principle, say that they didn't like the way it looked and be just as right as the curator was.

All this is meant to state that uniform lighting would by no means strip great works of art entirely of their esthetic qualities any more than does the mistreatment they now get from the gloom in which the public is too often expected to view them. Perforce, a museum must use artificial light if its collections are to be seen at all, on all floors, and at all

A XVIth century Flemish tapestry lighted by coffered ceiling detailed on opposite page, with all lamps lighted. Note uniform distribution of Migkt up and down
hours of the day. Most of the longestablished art museums show evidence that lighting installations have, in the past, been planned with tolerance rather than enthusiasm. The result has been, in many instances, a characterless mixture of both natural and artificial light which cannot be argued for on any grounds - esthetic or practical. The two do not mix to the advantage of either. Any daylighted gallery, so situated as always to require some artificial light will, if the latter is designed properly, look its handsomest at night.

It must be said, however, that incandescent light has been and is, for museums, much too costly to operate in a system designed to achieve the footcandle levels and shatowless diffusion of elear, sunless daylight. The practical ability of modern fluorescent lamps economically to approach daylight values, their complete reliability, length of life and versatility being at present established, it now appears fair to test the proposition as to whether the overall benefits of fully artificial lighting may not outweigh its esthetic deficiencies.
There is a strong case for it in probable evening openings. The museum of the future must recognize more broadly its obligation to the industrial and office worker who has no opportunity to visit its galleries except at the sacrifice of weekends which quite properly belong to outdoor pastime. Aready certain ones are opening their doors from one to nine p.m. daily. This means, of course, that the margin of daylight hours, which now redeems the depressing inadequacy of museum artificial lighting, will be reduced to a point at which poor attendance after dinner hour can almost be guaranteed unless the lighting problem is solved.

Then there is the question of the in-
vestment and maintenance costs of skylights relative to simple roof slab construction. Counting the loss of investment income at 4 per cent in lieu of depreciation estimates, the present-day added annual cost of glass skylights installed and maintained is approximately $\$ 550$ per 1000 sq . ft . of roof area.

In the case of the Metropolitan Museum, there is no point in converting existing top-lighted galleries to solid roof construction, but such conclusions as are reached would certainly govern the design of additional wings.

## A LIGHTING LABORATORY

With design problems related to the foregoing in mind, the Museum's Architects, Messrs. Robert B. O'Conner and Aymar Embury II, requested the trusters of the Metropolitan Museum to authorize an experimental program. Accordingly, a testing laboratory was designed and built by the Museum using only commercial equipment and openmarket material. Valuable counsel and much of the basic calculations of lighting elements were rendered by Dr. Ward Harrison and Mr. James Ketch of the General Electric Company's Nela Park Laboratory. The effective co-operation of the Museum's curators and their profrssional staffs has provided, in the discriminating selection of objects for test, impressive demonstrations and cues to the solutions being sought.

These galleries, located in the south wing of the Museum, are not open to the public, but are now employed by the departments of the Museum for test installations, the recording of staff and membership reactions and the ultimate writing of specifications. It should be emphasized that no attempt was made to install the "ideal" gallery but rather to make available a reasonable choice of

systems-i.e., incandescemt, fluores. cent, diffuse and concentrating - with sufficient flexibility to obtain three to four levels of intensits, as well as artjustment to color values.
From the standpoint of occupancy, two distinct classes of space exist in most museums. Top-lighted, second floor galleries, directly below shy lights, require either the separate or simultaneous transmission of daylight and artificial light. Such galleries are usually used for paintings, prints, water colors, drawings, rugs, tapestries or other wall mounted material.
First floor galleries must depend almost wholly on artificial light, with or without side fenestration. Here again, good seeing is burdened with tradition. Window glare is, elsewhere, one of the most bothersome problems of the illuminating engineer. In a museum. windows take up needed wall spare which, as those who have tried to raise building funds fully realize, is hard to come by. Moreover, any attempt to make shadow areas around and below windows useful by artificial light is hoprless because of the window glare, and if it be so designed as to awoid artificial sources of glare as well, such an attempt must seriously dilute, if not cancel, the effect of any changes of natural light in the rest of the room. If case material is exhibited in window-lighted space, care must be exercised to avoid the annoying and obscuring specular reflections from case glass. The number of eases which may be shown and the most desirable layouts thereof, are bence limited and restricted. If cases are artificially lighted internally, there is no point to window lighting anyway, except for occasionally
relieving the peychologiral impediment in any closed space.
The experimental galleries, designed primarily to cover the specific conditions at the Metropolitan Museum, assume the use of daylight through ceilings only. Test gallery K-29, being toplighted. is equipped with a baffle or louvered ceiling. at a height of 16 ft ., consisting of $30-\mathrm{in}$. sfuare removable sections having oblong, aluminum cells, with a shielding angle of $53^{\circ}$, in the center of the room, suspended below a conventional T-bar grillage with clear glass lights. These latter are "blacked out" "ith wallboard panels, laid on top of the glass, when necessary, to create fully artificial conditions. Around the periphery of the room, extending a little over six ft. from the walls, a system of directional louvers was installed with fins parallel to and slanted $20^{\circ}$ toward each wall in order to permit a relatively high-level concentration of light, from special, Curtis parabolic, fluorescent strips or from various forms of concentrating incandescent units, to be projected on the walls.
The chicf virtues of this arrangement are: it. extremely low brightness, concealment of fixtures, ability to change circuits and rearrange units without disturbing the ceiling's appearance. The behavior of this construction with daylight from above is highly satisfactory, and without doubt there are certain galleries which eventually may require adaptations of this type of louver ceiling.
Provision has also been made to test combinations of primary colors by means of adequate glass filters and rheostat controls so that wide adjustment in

having 49 lamps and 1480 lamp, watts, has maintained an average of 3.5 footcandles over 576 is. ft. of floom area during the past three months or with less than 2.6 watts per sq . ft .

The other type of ceiling treatment consists of conventional ceiling sash of $1-1 \frac{1}{2}$ in. T-bars glazed with a lightpolarizing screen of Polaply plastic sheets "sandwiched" between $1 / 4$-in., obscure wire-glass and $1 / 8$ in. thick, clear picture glass. This material does not distort color. It produces maximum polarization at a $57^{\circ}$ angle of incidence. In order to increase its inherently low transmission efficiency, in the polarizing plane, a surface of high reflectivity was painted inside the housing within the hung ceiling above the sash. With successive rows of simple, fluorescent strip installed about 18 in . above the glass, this scheme takes some advantage of the interchange of reflected light between the top surface of the glass and the painted interior and, in this manner, as much light as possible is passed through the polarizing film at the required $33 / 57^{\circ}$ angle.
This assembly has two promising results. Its partially polarized light, falling on highly specular surfaces, helps to reduce glare, and suggests its use in galleries showing period furniture having unusual burls or grains, intricate inlays or marquetry designs, below highly polished and obscuring surfaces. Its second result is a sharp cut-off beyond $45^{\circ}$, so that the brightness of this type of ceiling is phenomenally low within normal line of sight.

In order to obtain fair, comparativ.
values between these two ceiling treatments, forty-five 40 -watt lamps were installerl above thie polarizing ceiling sash. The assembly, with 1800 lamp watts, has also maintained approximately 35 foot-candles over 576 sq. ft. of floor area, or with 3.1 watts per sq. ft.

The remaining features in the gallery are devoted to experimental, case and feature lighting designed primarily for the development of means to control source brightness as well as to reduce relative brightness of surrounds; in other words, to subdue art objects' "competition".

## CONCLUSIONS

During the few months in which this testing laboratory has been in operation, several general conclusions have become established. The first is that response to the color composition of light is fully as important a consideration as are the presentation and volume of light. Another is that "seeing" in a museum gallery should be pleasant and satisfying as well as educational. This is to say, for example, that extraneous glare and brightness, if intelligently controlled, may be stimulating rather than injurious to the visitor. Cbristmas tree lights can hardly be denied to young and tender optic systems on the ground that glare is poison to the eye. A bland diet may be beneficial but it is not much fun, and art curators of impeccable scholastic integrity, which is to say all of them, have long accepted the discreet use of the spotlight as a necessary adjunct to exhibition methods.

This does not mean that concentrating sources of light should be applied indiscriminately. On the contrary, every effort should be made, when desirable, to achieve bold contrast and "sparkle" on an object, but with least consciousness in the observer as to how they are being obtained.

A third and most important conclusion is that visible fixtures in gallery spaces are definitely a thing of the past. The advent of the commercial fluorescent lamp, less than 15 years ago, crystallized a concept which had been developing in applied lighting for many years. This concept holds that "good
seeing," which is the objective of all artificial lighting, is best served by a "system" which includes all elements and surfaces contributing to optic sensation in a given area. The amount of light is, therefore, not as important as are the brightnesses of light sources, and of the objects and their surrounds, which are being illuminated.

The fluorescent tube is not a decorative device in terms of traditional fixtures, and there is hence no incentive to have it exposed when its performance, in terms of good seeing, is better for being out of normal line of sight. The museum gallery of the future will have no fixtures, but rather luminous surfaces to provide seeing.

Lastly, it has also become clear that the fluorescent lamp of $4500^{\circ}$ Kelvin gives, by far, the most neutral, balanced and accurate light for color response. It is far superior to any other production phosphor yet developed for color matching, but like a "pure" musical tone, it needs overtones. As a diffuse background for incandescent concentration, it seems to have outstanding properties for gallery walls.

One specific decision has thus been reached, based on the last-described general conclusion. Through a series of demonstrations and resulting study by the Museum's Director, Francis Henry Taylor, and the Curator of Paintings, Theodore Rousseau, Jr., a basic specification for the artificial lighting of paintings' galleries has been derived. Designs are completed for a sample installation employing special shielding and light obscuring methods incorporated into traditional ceiling sash to reproduce the desired effects as established by test. The new gallery is now under construction for opening to the public sometime in the spring of 1949.

Should experience with this scheme be found satisfactory and the design prove to be within construction cost limits, one important step will have been taken toward the final objective of this program. If the ultimate results, in glass, metal, plastics or whatever materials may be indicated, can be achieved at a cost in money which museums can either afford to spend or raise, then this laboratory will have justified itself.

## MUSEUMS AND ART GALLERIES

Athough both aceurate and eomfortable viewing are of the first order in musemms, the importance of dramatic emphasis should not he orerlooked. Lightmg should be applied carefully, to atood violations of normal standards of good seeing and to atood risk of injury to oljects as well.

## Concentrating vs Diffuse Lighting

Plaxibility of positioning all concentrating light sources is a basic requirement. The use of surfacemounted runs of marroms, plug-in or twist-in, chamel duet, is now widespread for this pupose. The only axeeptions to the full flexibility afforded by meh means are (a) for individual, permanently installed features, and (b) for cestatin gatleries of large fine art museums, e.g.. those which own collections of paintings that substantially exceed in number the twailatole wall spatee there at rotation of items. as weil as the long-term exhibition of the beet known of great masterpieces, require approximately full wall coverage of vertical illmmation so that pepeated adjustment of the lighting is not meeredt. Aise Fig. 12-18. All concentrating soutees maty then be in a fixed position and may be concealed. ${ }^{\text {I }}$

Coneentrating light somecs (spots of floorls) should not be used without the softening relied of diffuse light. Conecntrating soumes alone. (and to ohsemre the wathetie quality of senlptume and to discourage examination of detail. Diffire light atome may fetract from the amporiation of scoluture Lut
 form to the special talent of many musemm cantants. who manage the "molding" of semptores with electrie light to equal the best which daylight afforals.

The prineiple of theedimensional liphtings :upplies to forms of all kinds. I suffieient dillise component may be frerpuently supplied by light reflected
from :aljacent of stmpomeling surfaces or by genemal rombin inter-reflections Ferestanding seupture, in central :meas whibout some kind of backedron to limit viowing to three -ides. will ri-k di-comfort clare.

Inother chatacteri-tie difuedee between diffuse and coneentrated lisht is quite important to the : wecurate abl pheasant vicuming of mor: Diftion light ahome. tembs to "disatmat"" colors and impats a dulluess to them. Coneentrated (diecetional) light arongly renders saturation in color- ${ }^{15}$ Patintings.
 mexular surface texturn in aldfition to the inter-
 (1) produce as speceifie post-ralimet bedation lectween the colons athe the wexture Both concemtated and dimase light together :are te-atable for full apprecia-
 phomomemon is often experienced in judgher relative brighthes contrasts. This differemee between diffu-c and concentmated ligh -how - if matkedly on paintings hatring more that one coat of ramish. ${ }^{16}$ The lattor ato nsually kept deamed and eonditioned by


## Color of Light Source

For fwo or there-rlimen-ional lighting reguirements (wall-hanging and ireestanding), afoects of hoth color and lexture must he specilimally visualized. From experiene outhoors, one knows date diftuec daylugh is highey in color temperatme than
 -ata-lerel smbight, $8300^{\circ} \mathrm{K}$ - a differene of $1200^{\circ} \mathrm{K}$, outcloors). Within the wencral dimentions of interior -praces, experiemee demamde a pencmally lower order of color temperature in hephting. The differnace is very satislatemily med hy relative values already selected in cool whte Itworeseent lamp) - 4300 Ki) atal of hoth reflector :and projector inmandecent filament lamp= (2700 2800 K)




[^0]

Fig. 12-19. Lighting of sculpture. o. Coweantroting sources alome fom front left, b. Total overhead dfuse lighting coutorms to oxprocsion of features. c. Low diffuse lighting and stiong ......entrohed accent


Chum 1 Montan


IRoje-2 $F$ and
adds to stern expression. d. Light concentration from upper tight. Stron? cverhead diffuse lighting cids in viewing the detals of th a comples sulphere.
:t combuntion fustify the meluced lumen watt output of the impuned-color lamp.
limstug of standard incandescent projector lamp omput maty niton produce outstanding results by the use of pale, blue-white. "daylight" color rommels. Pamtings which have the delieate blues or other colors of masatmated quality, such as French immpesionist, particularly respond to "daylight" tonatity in aceent lighting. Tintines, other than wifh "darlight" tones shonkt be done only under curattorial judgment in the lighting of fine suts.

## Gallery Design Principles

Presentation of coneentrated light to wall display= (tapestrics, paintings, ete.) should be at an incident angle of 60 degrees with the horizontal, comered at an adult sight-line height of 5 feet 6 ineles from the floor as shown in Fig. 12-20.* This angle provide a good balance between frame shadow: -pecular reflections from protection glass or' Vamithes on paintings, the "raking" of surface textures 1-ee Fig. 12-211, and maintaining a practical width of viewing zones. These, of course, will dhange with the height of hanging displays. See Fif. 1222

I nominal level of illumination of 30 footeandles meintained (leeing total flux from all sources), on hoth horizontal and rertical planes, is recommended th meat all normal visitor functions of gallery viewing, copying, and studying. Vertical footcanclles should he figured for these purposes on a 60 per cent full wall coverage basis, but, due to variable factors, mat not, in practice, average that figure.
Sight-Lines, Ceiling Heights, and Viewing Zones. A sight-line height of 5 feet 6 inches from the floor has been found most responsive to adult secing habits. Sight-lines in rooms set up for school clasees may be lowered. but not more than one foot, homatse of wide age differences between grades. Tliat schook insariably nee the regular galleries.

[^1]Fig. 12-21. Reking of wezve of Rencisscuse topestry by tigh engle directione light lleft. Seme topestry in in concentrctea I ght at 60 oegrees incident angie (right.

Fig. 12-22 Range of perimeter :see width. A-with fully controlled wall illumination. B-with full wicth luminous ceiling


R!
$\qquad$
 1 lin :alma



 imvidenll :1n:1s
 hetween homzontal :and watal dhmmatmen mon
 plain that the cona of : 1 ateal hehlame in wome in









 पistors :me :a mided.

Theme ate of comes, a laree momber of ways to
 tural :mal smetmal chameter of the building.

 incidene of :arehes and doors. dimensions of moms, the phesical featmes of the material ion exhibition. and avaliable operating fomede. Ceilmes may be fully luminous. of with luminates diarithoted in the central alreat.
 of whem the light is coming from, hum in many muaroms the eceiling and the leghting :apeat in the view


 The bet of walls for eallowice havine reiling hemelts of 1.5 leat of lease and whithin two feat of walls for thome

 illumanation is available as reptieal footeamellos at
 a meiling -hould hate it - contral divided bet wean the fremimeto and the equtal :areas; the latte maty be
 being heme-ay





 befow hhe horizonatat at the hoteon of the fiedel of
 Hould be hedel brduw 10 new ady (ace Fige. 12-181, hemen lamally malike the idmal comditions fom task






## Lighting for Displayed Materials

 luhtul- dionsmats. hathitat monts, efo.. where viewems - tam or mene in melatisely law levels of illmmina-









 These interferences mas be minimizel if the ore Hectamese of the interion hatekgroumbe deck-a and mombs within man shongly fatom the obpecto ex-
 The imane briphtnes: of viewers' faces is almost
 in the light openinge. Patimular care should he exmaced in laying ont case gallerios to aroid imame interterence fom the brightnes of the room eeiting lominaimes ame of lighted casco on oppo-ite wall-
 have their mata front- filted formated slighty at the 10p. So Hem reflection- downsard helow nommal -ibht-lines. The irequent praction of memating free-- danding mases culutive (mermall to ome woll of a romm. Theif exposad conds heing pancled, also minimizes this prohlem.
It is regnlar pran iee fo coneat the interior light

 thom ligh sourees on hecanse their marity or intmase
 the whas top chelosure to eontrol opening of the calse. Illumination in wither arent is best premented though metatively deep ( $6(0$-degree eut-ofif) lowluminance lourering. The etehed aluminum tye with small, hexagonal ectls hats very satisfactorily met these reguirements. Watte black of gray fin-i-hed -quate cells, of plain longitudinal lonvering. with the decper ext-off and the same finish, have :ato been aceeppiably weal.

1) aty light fluoreseont eolor enhances silverware
other tonalities of the fimily of white fluoreseent lamps ate sometimes used over the great ratredy of decorative arts, antique jewelry, folk :utitacts, :mm archeological material, when color rembering is not important.

Lighted case interiors should hate cheat; framsparent shelves, or the well-planned nac of fabriccovered block mounts of varying heights. The latter seheme lends itwelf well to labelines, and rory striking effects are achieved with them. (ate interior illumination levels rery mately shoukd exeed 30 footcandles, measured at the usual waist-high deeck, of thee feet from the floor in full-length cancis. In mestaring results, the factor of intermal meflections from the inside surface of glase fronts should the noted. These adde considerably of the flux available in the lowey half of a case. Footeamelle messumememt maty properly be made only with the fromt chowel.
(onsistent with safety and room-cleaming maintemance the level of genemal illummation in catalighteal galleries may pleasanty range hetwern is atal 10 footeandles. substamtial spill-out of light from casee will always add considerably to limhtug the cimentating ameas of the room. Fifoors should be lighter than elowhhere at 40 per eant (maximmon) wefleetance, and eeiling limishes shond be at the same lewel. L.ow-fuminatee downlights, reecsed or surface-mounted :and tinished to blend with ceitines Imminance, will contom well to the foregoing. Cinneral illumination at these low levels -hould hatse the warmer tones of incandescent lamps.

## Period and Historic Room

The oxem-riding limitations in these applications is the lathenl maintenamee of the orginal :epects of the room, athe this is uncompmomising in rooms of historical signifieanee. The problem of integratime the instmetion of vivions and sehool rhase we with the orginal illumination levels was neve amtimipated by the first owners of designers. Ramely, dowe the oripimal lighting masms sorve to permit critical examination of the interior:

If the period reom is mot preeitically historice, hut mathey ath example of period design, its dememt tanally are chiefly origimal, amb therefore, imeplame


 "ont" another nearlys. Auy watmoni masi, bu pe"
 modem illumination leseds in fle mom. V:ames.



 sumgration lace is [00 wibla.
 virures atand, it is usuatly feasible to momit ont of sishat two or theee swisel type reflectors in otre
 entranee doomays, bully exposed, but :bowe amd hehind the gromp Not more than two 7.5-watl re-
 in the midetle, :tre neredert if the clutco is near the comer of the rooms. Tise hilew white, log-watt, P. 1 R- 38 flood lampo ato natally ideal fom the atomage mom. This umit is commectrai to control -witch at the door jambs, whey doe guide stands to demonstratc. The room is fir-t än ith is origimal atapeet for the full reetal cexplatation. Then, the examinsfion light is fumed on to how detail, and cstin-gni-hed when the group leaves. This is is forthright allemative to cither a thathlight, or a portable indimen torehieme, pheseral in to batse outlets of the foome athil left lighem!

The treatment of falar rimatore leyhtimg is of major importanee in this elane of room. When this is resuised, is shombl to kept in mind that originally
 of wut-ide daylightines, the -onteres of which were not only - and :mbl oly, bou aloo way largely from
 that ial-w-wimbow mavity methechors isponduce land-
 imbleation of outheors. Isme exemetere direet glare from the lowe halif of a falde window is unmatural amd :t diem bomden on mecular secommodation. It (san he mimimized if a pla-tem-amooth -urtace is on
 the sill as |mo-ible- He metmon to have a datker gray patur linish 1 \umsall (i) is 2). The lowey half of ther meflector is then limished in there stages of eprad-

 lishtur in two mom samas of (i) s 2 :mml (i 9 2.










 :atil lomatal on the upり








 Ahty

## Museum Conservation



 in the restoration :ant praveration of hatomte :mat
 to material on whation, \& photochommal daman. dan to -pactral radamben of hath
the se-called mexipmont lant whte empertant to
 acter of the shmme "I:Tत vertral dismbution in daylight and wowtic limh somees, fosedher will the wide variation in resistanees of materials themselves to deteriomation. The first definitive adsamee Was made by the U.s. National Bureau of Standarels in 1950, for the preservation of the 1)ectatation of Independenee, and the Constitution of the I meed
 exposture under the relatisely high levels of eommen merehandising practiose is matally of hate sime nifiesure when goods ate contmually sold and thelivered. Titte to mmeemm ohecets ramely packe

Data now atailablezo show that the commonly employed light sourees in muscums provide an orider of photochemical damage hazard, as shown in ligg. 12 23. These values are expresed in the Probable Damage per Footeamdle ( D /fel, of six different. light sources, compared with clear zenith sky light, taken as 100 per cent, hoth under direet exposure and through a tested available commereial aerylie filter material.

Tt can be noted that the most hazaud tions are those having spectral distributions wheh are dominant in the shoter wavelengtls. The relative damage factor increases logathmically in inverse mato to wasemghth. Thas, ultmatole is far more hazardous than visible light. If, however, footcandle levels are sufficiently high, wheh shorter Warelength visible madiation may become significantly hazatulons, even if all ultamolet is filtered out. $=1$

The formoing should not be taken to infer that damage must oceur regatdess of the fitstness or light stability of any zuhstanee, but the possible hazards of expostre to imeplaceable materials must be carefully considered in musemms. Whhibition case lighting, dum to the levels at which ohjeets are mounted in proximity to light sommes, such as on high shelvere provithes the point of the most eritical exposure to farling of strmet mal damage. The filters widely wad :ure thooe which test equally with the periormaneos of types | F-1 and [た-3 acrylics.
 cut-off of (i0) per cont at 400 ; and of 89 per cent at
 wible speetrum.

Type [IF-3, slizhtly yollowish in appeumance, has a 7emo rult-afi at 395; of 56 per cent it 400 ; and 79 pel cent at 420 namommers Since, at least, 79 per cent of bince are thas tram-mitted, color rendering is not noticoably affected, and the material further reduces the hazurd in zenifle aky light to 50 per cent below that ardieverl with [TF-1, This filter materiad comes in two jomes, onc in $1 / s^{\prime \prime}$ thick cast sheets, which woild be rut in -ize and laid on top of the

[^2]Fig. 12-23. Poblable Dmacges per Footcandle (D/fe) Ithlierent in Musoum Light Sources

| light Source | Color Temperature (degree K) | D fr (Par Cent) |  |
| :---: | :---: | :---: | :---: |
|  |  | Unflitered | Filtered* |
| Kemitli Sky Jight. | 110\% | $4.800)(100) .01$ | . 107 (8.5) |
| Overeast Sky Light. | जा(0) | 1.520) (31.7 | . 243 (5. 5 ) |
| Sumbighe | 5300 | . 700116.51 | . 1122 (4. (1) |
| Vluomesment (CWX) | 13300 | . 5511 (11 5) | . 147 (3.1) |
| Eluorestent. (WWX) | 29000 | . 414 (9) 2 | . 0817 (1.8) |
| Finoteseent. (1):as loshal. | (6.50) | . 402 's 4 | 21.515 .11 |
| Ine:atheseant | 285, 1 | .13612 | . 062 (1.3) |


 ntiat
vitrine beneath the lamp attic. The second form comes in $1 / s^{\prime \prime}$ thick, extruded tubing, made to slip over the fluorescent lamp itself. The tubing should not be used over tubular incandescent lamps bečause excessive heat will deteriorate both lamp and the aceylic. Further, if any incandescent lamps are lased without the use of an adequate filter, for ease lishting of susceptible material, the maximum flux dansity at the point of closest proximity to exposed material should not exceed 12 footeandles.

## OFFICE BUILDINGS

From a visual standpoint, decorative lighting that produces 20 footcandles in a lobby usually may be considered sufficient for suic passage of pedestrians, movided there is auxiliary lighting at directory hoards, and directional signs, and adjacent to the clevators and stair wells as a safcty measure. Howerea, since most office buildings hare their maximum traffie in the daytime, this level may be found insufficient to provide satisfactory risual adaptation as the visitor steps into the lobby from out-oi-doors from an illumination level approaching 10,000 footeandles in direct smblight). This necessity for adaptation combined with the advertising value of higher levels and brighter surroundings has led many buidling designers to provide higher levels of illumination.
In hallways and corridors of orlinary ceiling liwight Hows than 30 feet) luminaires should be - praed not more than 20 feet apart. No branch corridor should be without a luminaire. A luminaire located at a main coridor jumetion will serve two branches not more than 10 feet deep. For satety in -uch locations, at least two lamps should be used in each luminaire.

No entrance to an elevator or a stair well should be more than 10 feet from a luminaire. For recommended illumination levels for elevators and stairWays, see Tig. 9-53. The luminaire and layout -hould provide such a uniform level that the maxi-
areas.
Echoes in the exhibition space cah be controlled by the careful selection of materials for construction, room shape, and the addition of background noise from the mechanical system.
c. Climatic Factors
E.II.O.1.

The interior conditions of the exhibit, workshop, E.WI.a. and storage spaces must be maintained at 65degrees $F$ drybulb, and $50-60 \%$ relative humidity. These are the conditions recommended for the preservation of organic materials which will make up the largest part of the museum's collection.

Dust control is also a major factor in that it is anticipated that most of the collection will be open to the atmosphere. This will necessitate the use of electrostatic precipitators to curtail dust deposits

## IV. Economic Factors

This design will become part of a funding proposal for this facility and if there is any economic factors to be considered it is to make this design as complete a possible in order to maximize the possible grants. The project will be phased to provide the bare essentials first and the rest at a later date.
V. City Planning, Zoning, and Building Code

The only land use plan for this area was prepared by the Georgia Mountains Planning Commission. Their report classified the selected site as rural redidential, and the facility in question is acceptable under this classification.

A sewage and water plan was prepared for this area by the same agency and it will be feasible for this facility to tie into this system if it is carried out.

Present land use in this area is predominantly farm activity with residential in small pockets around the highways. There is also a small amount of light industrial. The building code for Rabun County is the Southern Standard Code, 1969 edition.
VI. Structural Factors and Construction Problems
a. Spanning the exhibition area is the only space where there might only be small structural problems. b. Surface inspection of the usable building locations on the site indicate that the plateaus may have been formed by a settling along the eastern slope. This could result in footing, foundation and retaining wall problems.
c. The biggest problem is the availability of construction resources in this remote area. Prefabricated components may ve the answer to part of this problem.
VII. Equipment
a. Exhibit Cases

1. Function
E.II. 0.1 .
a) protection from
1) dust
2) insects
3) theft
4) fire
5) visitors
6) light
b) visibility
7) no obstructions
8) no reflections
c) accessability
d) flexibility
9) internal-adapt to different exhibits and arrangement
10) external
(a) mobility
(b) adaptibility
e) visitor comfort
11) ease of vision
12) physical comfort
f) mobility
g) storability
h) durability
i) esthetic compatability with surroundings
j) effective display
2. Types of Showcases
a) table
b) upright
1) freestanding
2) wall
c) inset
d) panels and drawers
b. Video and Audio Tape Display Equipment
c. Darkroom Equipment
1. two enlargers
2. Print sink and wash
3. Developer equipment
d. Publishing Equipment
4. Addressograph
5. Correspondence files
6. Layout tables
7. Desks
e. Restoration
8. Storage racks
9. Fumigation vault
10. Work tables and sinks
11. Studio equipment (lights, tripod, etc.)
f. Fire and Theft Protection
12. Locks and alarms
13. Heat and smoke sensors
14. Localized sprinkler system
VIII. Psychological and Esthetic Needs
a. Psychological

The main concern in this section is a phenomenon known as "Museum Fatigue". It is characterized by tired eyes, sore necks and feet, and overall weariness.

This fatigue is generally the result of interminable circulation patterns, cluttered and confusing exhibits, excessive walking and climbing between rest places, information saturation, and exhibits higher or lower than the normal cone of vision.

This condition can easily be avoゅded through careful planning. Seats and handrails can be provided to let the viewer rest while he studies the exhibits. The circulation pattern should suggest a route to the vistor, but not trap him into it. Visuallexperiences totally divorced from the exhibits provide relief and contrast. The visitor should also be able to comprehend the logic of the exhibit readily and be able to move to the area that interests him most. Ramps can replace stairs as they facilitate the use of wheelchairs and make it easier to service the exhibits.

Cases should be arranged for easy comprehension. Labels for objects on display should be keyed by a legend at eye level. This frees the case for exhibit arrangement and reduces eye strain in the viewer.

The visitor's cone of vision is very important. Anything out of the normal cone of vision when standing or sitting will result in neck and eye muscle strain. Large and irregular should be in floor cases while similar smaller objects should be raised or in table cases closer to the observer. Objects should be kept away from the back wall of larger cases to help facilitate detailed viewing. Reflections on glass cases are annoying and can be avoided by eliminating bright light sources by using internal light sources in cases and by not using dark backgrounds. Colors should be used carefully as they can overpower the objects they are supposed to be calling attention to
b. Esthetic

The physical form of this building should reflect the vitality of the culture and the environment that this facility is dedicated to preserving. It should blend in and compliment the site, which is typical of geography that gave birth to this culture.

1. The project should reflect the local architectonic forms.
2. The project should incorporate local materials
3. The site should be disturbed as little as possible and the building designed around the various rock outcroppings and dense groves of trees.
4. The building should be oriented to take complete advantage of the views from the site.
IX. Building Type Analysis

There are very few buildings in existence that even come close to functioning as outlined in the previous eight parts of this section. The ones that do are generally published in museum journals without plans or sections and only a little written on general organization. The Appalachian Museum at Berea, Kentucky has had to adapt their operation to two old warehouse type buildings and are critically short of space. These buildings are $i l l$ suited to exhibiting and have been mauled by institutional planners and workmen. The director, Harry Jack Segedy, has done much with what he's had to work with, but it is hardly a usable example.

## Section D: SITE SELECTION

I. Relationships Needed to Other Land Use Areas of the Region
a. The site should be centrally located with respect to the local high schools.
b. It should be an area that will not be encroached on by future development.

## II. Transportation

The site should be accessable, by car, to everyone, but not blatantly positioned on a major tourist thoroughfare. This is an educational center and not particularly tourist oriented.
III. Utility Needs
a.Electricity
b. Water
c.Trash removal
d.Sewage Treatment

An emergency generator will be required to maintain the mechanical equipment due to the critical nature of the relative humidity, temperature and dust content of the museum atmosphere
IV. Geographical Needs

The site should be situated in the culture and the environment that the museum represents.
V. Economic Factors
a. This is a public institution, and as such is tax free.
b. Land cost is negligable on this project as all sites under consideration are purchased or donated.
VI. Administrative

The facility is to be oriented toward all area high schools and not just one, as it is now. It should not be formally connected with any one school. This allows the facility to survive administrative changes within the individual school.
VII. Site Selection
a. Site I

This site was made available to the Rabun Gap-Nacooc-
hee School when the center was first conceived as a tourist oriented museum. The property is about 600 yards from the school and has adequate utilities. At this time there is a local farmer's market located on this site that would have to be demolished and the property is a little over two acres. The reason for the rejection of thesite is that the widening of U.S.

441 will eliminate much of this property as useful area.
b. Site II

This site was also rejected for many reasons, the biggest being that it is a flood plane for Betty's Creek. At present it is a cow pasture with absolutely no trees on any of it. The property is owned by the Nacoochee School and is located directly across U.S. 441 from the present campus. This places it under the school's administration and as stated before, this is not a desirable situation. c. Site III

This is the site chosen for the project. It is 150 acres of land located on the eastern slope of the western ridge of the valley that holds Clayton, Mountain City and Rabun Gap. The land extends from the top of the ridge to the gentle slopes, just before the valley floor. The other side of the ridge is occupied by the Black Rock Mountain State Park. This is a desirable condition in that it will insure against incroaching development, and if the museum is unable to support itself in the future, it could be deeded over to the government and run as part of the park.

There is an unimproved road into the property with electric and telephone lines running along it on poles. There is a spring on the site, but if this proves inadequate, water wīl have to be supplied in other ways. A private sewage plant may also be needed.

This site is also more characteristic of the type of country that gave birth to the art that this facility is dedicated to preserving. The land is rich with wild growing things and from this vantage point, one can easily see the hills of North and South Carolina. It is more centrally located than the other proposed sited with respect to the local high schools. The actual positioning of the building on the site will be on the lower slopes that have been previously cleared as pastures.

There is the possibility of the Nacoochee School going completely private which would exclude the local students that this program is aimed at. This property has been bought with royalties from the Foxfire Book.


Figure 2. Map of Rabun County showing locations of industrial site areas

## FACTUAL INFORMATION ON RABUN COUNTY

Rabun County, located in the nor theast corner of Georgia, is approximately 116 miles northeast of Atlanta and 77 miles west of Greenville, South Carolina. The county population in 1960 was 7,456 . The city of Clayton, county seat of Rabun County, had a 1960 population of 1,507 . Other incorporated towns in the county are Dillard (1960 population: 204), Mountain City (550), Tiger (277), and part of Tallulah Falls (Rabun County, 54; Habersham County, 171).

Major industrial activities in Clayton-Rabun County presently include the manufacture of carpets, shirts, metal products, and lumber.

## Labor

A recent survey of the Rabun County labor market by the Georgia Department of Labor indicates an adequate labor supply, both male and female. Such labor is productive and trainable. The overall labor supply in Rabun County and within a reasonable commuting distance is about 1,250 persons. ${ }^{1 /}$

## Transportation

Railroad. Clayton and Rabun County have no rail service. The nearest railroad service is at Cornelia, 36 miles south, where service is offered by the Southern Railway System.

Highways. U. S. Highway 23 (U. S. 441 and Georgia 15) passes north-south through Tallulah Falls, Clayton, Mountain City, and Dillard, intersecting with U. S. Highway 76 (Georgia 2) at Clayton. The old route of U. S. Highway 23 (U. S. 441 and Georgia 15) passes through Tallulah Falls, Tiger, and Clayton. Georgia Highways 246,28 , and 197 serve the county.

Truck Lines. Both interstate and intrastate motor freight carriers serve Clayton and the county.

Bus Lines. Bus service is provided by Smoky Mountain Trailways, which offers three schedules daily.

1/ In each county of the Georgia Mountains area that will be surveyed, the commuting labor supply and the in-county resident labor supply will be grouped. This will cause some degree of overlapping on the estimated labor supply for each individual county.

Airlines. Rabun County is not served by commercial air transportation. The nearest commercial air service is at Greenville, South Carolina ( 85 miles ), Athens ( 90 miles), and Atlanta ( 118 miles ). An airport project is now in the planning stage. An airport with a 2,700 -foot runway is available at Franklin, North Carolina (23 miles).

## $\underline{\text { Utilities }}$

Water and Sewer. Clayton is supplied water from springs and surface sources. The city has a million-gallon raw-water storage dam and elevated storage for 500,000 gallons of finished water. Maximum consumption is 380,000 gallons per day; filtering capacity is 700,000 gallons per day.

Storm sewers serve $30 \%$ of the paved streets of Clayton, and $75 \%$ of the water customers inside the city are served by sanitary sewage facilities. Treatment consists of a digestor tank and filters with a capacity of two million gallons per day.

Natural Gas. There are no natural gas transmission lines in Rabun County. However, LP gas is distributed in the county by companies which have offices and storage facilities there.

Electric Power. Electric power is supplied and distributed in Clayton and Rabun County by the Georgia Power Company.

## Industrial Financing

Rabun County has two groups which are organized to help obtain industries in the area, the Rabun County Redevelopment Corporation and the Rabun Industrial Board.





## I. Books

E.I.a. Display by George Nelson, copyright 1953 , Whitney Publications, Inc., New York, N.Y.
E.I.b Museum Buildings by Lawrence Vail Coleman, copyright 1965, American Association of Museums, Washington, D.C.
E.I.c. The New Museum by Michael Brawne, copyright 1965. Verlag Gerd Hatje, Stuttgart, Germany.
II. Periodicals
E.II.a. AIA Journal, "Natural Light and the Museum of the Future", p. 60-64, Jan. '65.
E.II.b. A.D., "Cultural Museum, Le Havre", vol. 32, p. 201-205, Apr. '62.
E.II.c. Architectural Forum
E.II.c.1 "Austrienalle", vol. 129, p. 40-43, Sept. 68.
E.II.c. 2 "The Perfect Professional Museum", vol. 113, p. 90-95, Dec. '60.
E.II.d. Architectural Record
E.II.d.1 "A Lesson in Unity", vol. 133. p. 169-172, Apr. '63.
E.II.d. 2 "Spatial Variety in Two Museums", vol. 138, p. 129-134, Dec. '65.
E.II.d. 3 "Museum Lighting Studied in Laboratory", vol. $104, \mathrm{p} .137-142, \mathrm{Dec} .148$.
E.II.e. Architectural Review
E.II.e.1 "Object on View", by Michael Brawne, vol. 126, p. 242-253, Nov. '59.
E.II.e.2 "The Picture Wall", by Michael Brawne, vol. 125 , p. 314-325, May '59.
E.II.f. Architectural and Engineering News
E.II.f.1 "Dimming", vol. 10 , p. 34-35, sept. '68.
E.II.f.2 "Exhibitry", vol. 11, p. 30-39, Mar. '69.
E.II.g. Arts and Architecture

E,II.g.1 "A Small Museum", vol. 82, p. 12-18, Nov'65
E.II.g.2 "Cultural Museum", vol 67. p. 20-27. Mar. 50
E.II.h. d'Aujourdhui, "New Elements of Museum Presentation", vol. 39, p. 82-85, Dec. '67-Jan. '68.
E.II.i. Building
E.II.i.1 "Guildhall Precincts Reconstruction", vol. 217, no. 34, p. 75-76, 22Aug. 69.
E.II.i.2 "Civic Museum for Padua", vol. 216, no.2 p. 67-72, 10 Jan. '69.
E.II.j. Domus, "A Place for Sculpture and People", no. 460, p: 2-9, Mar. 168.
E.II.k. House and Garden, "New Chapter in Americana", vol. 103 , p. 120-125, Mar. 53.
E.II.I. Industrial Design,

| E.II.l.1 | "Exhibits", vol. 15, p. 20-31, Nov '68. |
| :--- | :--- |
| E.II.I.2 | "Exhibits: Seven Solve the Problem", |
| E.II.I.3 | vol. 12, p. 34-49, Nov. 65 . |
|  | "The Designer in the Museum", vol. 6, |
|  | p. 27-41, May '59. |

E.II.m. Interiors, "Thonet", vol. 27, no. 6, p. 14 , Jan. 168.
E.II•n. The Japan Architect

| E.II.n.1 | "Exhibition Hall for Taroemon Ceramic |
| :--- | :--- |
| E.II.n.2 | Wares", vol. 43, p. 65-72, Dec. 68. |
| "The Yamaguchi Prefectual Museum", vol.43 |  |
| E.II.n.3 | p. 85-91, Jan-Feb. 68. |
| E.II.n. 4 | Dec.'6iki Museum", vol. 36, p. 48-53, <br> "Okayama Art Museum", vol. 34, P. 33-35, <br> Jul. 59. |

E.II,o. Museum: A Quarterly Journal by UNESCO
E.II.0.1 "Museum Showcases", vol. 19, no. 3-4, p. 1-57, 1967.
E.II.0.2 "Scandanavian Museums", vol. 13, no.1, p. $1-35,1960$
E.II.0.3 "Aesthetic Appeal in Archaeological and Ethnological Museums", vol. 6, no. 1, p. 17-24. 1953.
E.II.0.4 "Museums and Architecture", vol. 4, no. 3, p. 179-183, 1951.
E.II.p. Museum Journal
E.II.p.1 "Scandanavian Folk Museums", vol. 57, p. 253-257, Feb. '58.
E.II.p. 2 "The Display of Folk Material", vol. 54, p. 4-6, Apr. 154.
E.II.p. 3 "The Folk Museum", vol. 49, p. 67-70 Jun. 149

III. Technical Publications
E.III. a. The Technical Requirements of Small Museums, by Raymond O. Harrison, Canadian Museums Association, Ottawa, Ontario, Canada, 1969.
E.III.b. Gallery and Case Exhibit Design, by Arminta Neal, Technical leaflet No. 52, History News, vol. 24, No. 8, Aug. '69.
IV. Interviews
E.IV.a. B.Elliot Wigginton, Director of the Foxfire group and originator of this proposa.
E.IV.b. Harry Jack Segedy, Director of the Appalachian Museum, Berea, Kentucky.


[^0]:    Fig. 12-18. Daylighted gallery at night. Concealed services are shown at the right. Wall lighting (from concentrated sources) is beamed through lenses and is spread evenly. Fluorescent luminares provide the diffuse allumaration

[^1]:    -These prints contral the over-all geometry of viewine.

[^2]:    - Panticularly liy the Mefon Imatitute, Pillsbmelh, Pha, in comem-
     iticion, 18.1,

