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Abstract

Most active vibration isolation systems that try to a provide quiescent acceleration environment for
space-science experiments have utilized linear design methods. In this paper, we address adaptive control
augmentation of an existing classical controller that combines a high-gain acceleration inner-loop feedback
together with a low-gain position outer-loop feedback to regulate the platform about its center position.
The control design considers both parametric and dynamic uncertainties because the isolation system must
accommodate a variety of payloads having different inertial and dynamic characteristics. An important aspect
of the design is the accelerometer bias. Two neural networks are incorporated to adaptively compensate for
the uncertainties within the acceleration and the position loop. A novel feature in the design is that high-
band pass and low pass filters are applied to the error signal used to adapt the weights in the neural network
and the adaptive signals, so that the adaptive processes operate over targeted ranges of frequency. This
prevents the inner and outer loop adaptive processes from interfering with each other. Simulations show
that adaptive augmentation improves the performance of the existing acceleration controller and at the same
time reduces the maximal position deviation and thus also improves the position controller.

Introduction

The low-acceleration environment on the International Space Station (ISS) will enable microgravity
science experiments that are practically impossible on the surface of the Earth. However, a variety of
vibro-acoustic disturbances on the ISS are present and can degrade the performance of many microgravity
experiments. In fact, the acceleration environment on the ISS is expected to exceed the requirements of
many acceleration sensitive experiments1 as shown in Figure 1(a). By comparing the requirement with the
expected ISS acceleration in Figure 1(a), an isolation performance specification can be derived as in Figure
1(b). The isolation system must attenuate the ambient ISS acceleration by one order of magnitude at 0.1 Hz,
which for a second order system implies maximum break-frequency of 0.01 Hz. That is, while the isolated
system can transmit the quasi-steady accelerations of the vehicle below 0.01 Hz to the isolated assembly, it
must attenuate all disturbances above 0.01 Hz. This performance specification requires the implementation
of an active vibration isolation system because passive isolation systems, in general, are not able to provide
sufficient attenuation of low vibration frequency disturbances.
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Figure 1. Frequency environment and requirement

An example of rack-level vibration isolation is the Active Rack Isolation System (ARIS),2 the control
architectures and flight-test results of which can be found in [3,4]. In contrast to rack-level isolation systems,
g-LIMIT (gLovebox Integrated Microgravity Isolation Technology) shown in Figure 2 is a microgravity

Figure 2. g-LIMIT System assembly

vibration isolation system that is designed to isolate experiments at the payload level. The g-LIMIT hardware
consists of the inertially isolated assembly to which an experiment is mounted and the base assembly that
is rigidly attached to the Microgravity Science Glovebox (MSG) work volume floor. In order to provide a
quiescent acceleration environment for an experiment, g-LIMIT utilizes six independent control actuation
channels that apply six independent magnetic forces to a platform upon which the experiment resides. g-
LIMIT is designed around three integrated isolator modules (IM’s), each of which is comprised of a dual-axis
magnetic actuator, two axes of acceleration sensing, and two axes of sensing the relative position of the
isolated platform with respect to the base assembly.5 Integrated into the base assembly and the isolated
assembly is a snubber system which provides mechanical rattle-space constraints with a maximum relative
displacement of 1.0 cm between the isolated assembly and the base assembly. The only mechanical connection
between the isolated platform and the base assembly is the set of umbilicals that pass resources between the
MSG and the experiment.

The design of an isolation system for g-LIMIT is a challenging problem due to the stringent performance
requirement and static and dynamic uncertainties that arise due both to kinematic coupling between the
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platform and the mounted experiment as well as to the damping and stiffness properties of umbilicals. The
mass and inertia properties of the system change considerably as various experiments utilize the isolation
system during its operation. Unlike the rack-level isolation system where the rack structure is much more
massive than the individual experiment, the mass and inertial variations in g-LIMIT are generally comparable
to those of the isolation system and thus more problematic. The umbilicals are the primary load path for the
ISS disturbances to the isolated system and the primary source of uncertainties for control system design since
their stiffness and damping properties cannot be accurately measured on the ground due to gravitational
deflections and coupling. Moreover, the flight-test results in [3] reveal the possibility of hysteresis in their
stiffness properties. This may become a significant factor in a low-amplitude acceleration environment and
may degrade the performance of the isolation system.3

Most vibration isolation systems have used linear control methods6–9(an exception is found in [10]). For
the design of a control system for g-LIMIT, a two-loop (inner/outer) architecture is employed. That is, a
high-gain acceleration feedback is used to cancel the accelerations in the inner-loop, and a low-gain position
feedback is added to the outer-loop to center the platform in the sway space and drive the platform to follow
the quasi-steady motion of the vehicle. In [8], classical Proportional-Integral-Derivative (PID) controllers
are designed for both the acceleration and position feedback. Fixed-order mixed H2/µ control is considered
for acceleration feedback in[9], the nominal performance and robustness of which are compared to those of
a standard H2 method.

In this paper, we consider an adaptive control approach that augments the PID control design in [8] to
improve both nominal and robust performance. The adaptive elements are designed following the method
described in [11,12]. A neural network (NN) is employed to approximately cancel the uncertainty. It is well
established that a NN can approximate any continuous function to any desired accuracy on a bounded set,13

and this has been one of the main reasons given for using a NN in control approaches.14–16 In an output
feedback setting, a method that uses a memory unit of input/output delays to approximate an uncertainty
has been proposed17,18 and shown to be effective in output feedback applications.12,19–21 The method in
[11] is selected for the design of adaptive control for g-LIMIT because with acceleration as the regulated
output, the system is nonminimum phase, and therefore inversion-based feedback approaches22,23 cannot be
applied.

The paper is organized as follows. In Section I we present the problem of a controller design for g-LIMIT
in a single-input single-output (SISO) setting. The dynamics are represented by a single mass-spring-damper
system on which an experiment, modelled as two mass-spring-damper system, is mounted. In Section II, the
essential features of the existing control system in [8] are presented in a SISO setting. In Section III, the
details of the proposed augmenting adaptive controller design are given, with emphasis on how the approach
in [11] is adapted to address the specific challenges that arise in this application. In Section IV, simulation
results are described that support the validity of the overall approach. Conclusions and directions future
research are given in Section V.

I. Problem Formulation

For simplicity motion along a single axis of a g-LIMIT platform on which a flexible experiment is mounted
is depicted in Figure 3. The mass M1 represents the isolated platform with a nominal experiment mass, M2

is the uncertainty in the mass of the experiment that is mounted on the platform, and M3 and M4 represent
flexible experiment. The term, xo, represents the displacement of the base, x1 is the relative displacement
from the base, x2 is the relative displacement between M2 and M3, and x4 is the relative displacement
between M3 and M4, respectively. The equation of motion for the system in Figure 3 is given by

Mc(ẍo + ẍ1) + C1ẋ1 + K1x1 − C2ẋ2 − K2x2 = u + d1,

M3(ẍo + ẍ1 + ẍ2) + C2ẋ2 + K2x2 − C3ẋ3 − K3x3 = d2,

M4(ẍo + ẍ1 + ẍ2 + ẍ3) + C3ẋ3 + K3x3 = d3

(1)

where Mc = M1 + M2, and d1, d2, d3 represent external disturbances applied to M1,M3,M4, respectively.
Two measured outputs are the absolute acceleration of M1 and the relative displacement x1

y1 = ẍo + ẍ1, y2 = x1. (2)

The parameters are: M1 = 17.8488, C1 = 0.5242, K1 = 6.1574, M2 = 5, M3 = 5, M4 = 5, C2 = 1 × 10−17,
C3 = 1 × 10−17, K2 = 15, and K3 = 25. Defining x = [x1 ẋ1, x2, ẋ2, x3, ẋ3]T , we can write the dynamics
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Figure 3. Mass spring damper with unmodeled dynamics

in a state space form:

ẋ = Ax + bu + bf ẍo + Bdd, x ∈ R
6×1

y1 = cT
1 x + Du,

y2 = cT
2 x,

(3)

where d = [d1, d2, d3]T . The plant model, which is used in the design of the feedback control system,
consists of a single mass-spring-damper

M̂(ẍo + ẍ) + Ĉẋ + K̂x = u, (4)

where M̂ = 17.8488, Ĉ = 0.5242, and K̂ = 6.1574. With the outputs corresponding to those in (2) and by
letting xm = [x, ẋ]T , the plant model can also be expressed in a state-space form:

ẋm = Amxm + bm(u + d1) + bmf
ẍo, xm ∈ R

2×1

ym1 = cT
m1

xm + Dmu,

ym2 = cT
m2

xm.

(5)

Figure 4 compares the frequency response of the plant model with that of the system in (3). The
disturbance attenuation requirement in Figure 1(b) is associated with the transmissibility, ẍ

ẍo
= Gb2a(s),

from the base to the isolated assembly (M1) and shown in Figure 4(c). The control system design generally
involves Gu2a = y1(s)

u(s) and Gu2x = y2(s)
u(s) which are shown in Figures 4(a) and 4(b). Note that the transfer

functions from the input, u, to the acceleration and the position are the same as those from the disturbance,
d1, to the acceleration and the position since u and d1 represent forces that are applied as the same location.

The objective of the vibration isolation system is to design a control law for u using the plant model in (5)
so as to cancel the acceleration, y1, of M1 by an acceleration feedback while centering M1 (i.e., regulating y2)
using position feedback. The position must be restricted within a physical limit of 1.0 m. The performance
of the isolation system will be measured with the control law applied to the system in (3). For the existing
controller, a high-gain, high-bandwidth acceleration feedback inner-loop controller was designed to satisfy
the vibration suppression requirement, and a low-gain, low-bandwidth position feedback outer-loop controller
was designed to regulate position about the center in the sway space. That is, a single control is used both
to suppress the acceleration and to regulate the position, and, in order to reduce the spill-over effects from
one controller to the other, these controllers are designed so that the bands of frequency over which they
have significant loop gain are separated.
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Figure 4. Frequency response of various transfer functions
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II. Existing Control System

A. Existing Control System

The existing control system described in [8] is shown in Figure 5. The commanded relative position (generally
zero) is xc, and n represents the accelerometer error (due to sensor bias). A PI controller is designed for the

�

�

�
��

�

�
�

Ga(s) plantGx(s)

d1

y1xc

ulc

y2

n

ẍo

wp

Figure 5. Existing control system architecture

inner loop

ulc = Ga(s)
[
wp − (y1 + n)

]
=

KIi
+ KIp

s

s
[wp − (y1 + n)], (6)

where KIi
= 250, and KIp

= 0.4175. In a state space form, it is given by

η̇i = wp − (y1 + n),
ulc = KIi

ηi + KIp
(wp − (y1 + n)).

(7)

Applying the controller in (6) to both the plant model in (5) and the true plant in (3) leads to the frequency
responses shown in Figure 6. The overall system frequency response reveals that the mounted experiment
does not have much influence on the isolation system. Figure 6(c) shows that the acceleration controller is
properly designed to meet the specified transmissibility. The frequency response from the sensor error to the
relative position as shown in Figure 6(f) reveals an undesirable effect due to accelerometer, which suggests
that without compensation the accelerometer bias can cause a large position deviation from the center of
the sway space.

The outer-loop controller, Gx(s) in Figure 5, is designed as a PID controller in which integral action is
required to remove the effect of the accelerometer bias. Since direct implementation of derivative control
amplifies the sensor noise and causes numerical problems, the PID controller is realized as

wp(s) = [Kp + Kd
s

1
50s + 1

+
Ki

s
](xc − y2), (8)

where Ki = 3 × 10−6, Kd = 0.02063, and Kp = 0.00054. In a state space form, it is given by

η̇o = Acηo + bc(xc − y2)

wp = cT
c ηo + Dc(xc − y2).

(9)

Figure 7 shows the frequency response of the overall closed-loop system. On the whole, the effect of un-
modelled dynamics is negligible, implying that the existing design is robust for the present case of a SISO
mass-spring-damper system. Figure 7(a) indicates that the existing control system meets the performance
requirement for vibration isolation. That is, if the base excitations are the only source of external distur-
bances, the performance of the isolation system is acceptable. Figure 7(f) indicates that the outer-loop
position controller removes the effect of accelerometer bias in steady state.
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Figure 6. Frequency responses for inner-loop transfer functions
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Figure 7. Frequency responses for overall (inner-loop+outer-loop) transfer functions
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B. Analysis of Existing Control System

An essential feature of the existing control system in g-LIMIT is the accelerometer bias n which is is at
the mili-g level, while the true acceleration is at the micro-g level. This bias is integrated by the integral
action in the inner-loop and if not compensated will result in a large deviation of the isolation system in the
position. This deviation is removed by the outer-loop integral action in steady space. However, transients
can result in a violation of the maximal travel distance of 1.0 m. This can be avoided by increasing the
gain for the outer-loop position controller, but at the expense of degrading vibration isolation performance.
Therefore the objective in adding adaptation is to improve vibration isolation and position regulation. An
immediate obstacle is that the acceleration output has a relative degree 0 while adaptive control methods
normally require that the output has a relative degree greater than zero. Another obstacle is that only a
single control is available whereas when two outputs are to be regulated. We avoid the relative degree 0
problem by a method similar to that of “ dynamic extension” in [24] by designing an adaptive controller at
the level of v = u̇ for the inner-loop. To adaptively regulate two outputs, the adaptive signals for acceleration
and position are separated in frequency.

With the goal of adaptive control augmentation in mind, we first provide the analysis of the closed-
loop system when there exist neither modelling uncertainty nor external disturbances, i.e., ẍo = d1 = 0 in
(5). This closed-loop system will ultimately be used as a reference model when introducing the adaptive
controller. With dynamic extension, η̇ = v, η = u, the system in (5) is rewritten as

ẋam
=Aam

xam
+ bam

v(= u̇),

ym1 =cT
am1

xam
,

ym2 =cT
am2

xam
,

(10)

where

xam
=

[
η

xm

]
, Aam

=

[
0 0

bm Am

]
, bam

=

[
1
0

]
,

cT
am1

=
[

Dm cT
m1

]
, cT

am2
=

[
0 cT

m2

]
.

(11)

By defining ξm = [ξm1 ξ1
m2

ξ2
m2

]T = [ym1 , ym2 , ẏm2 ]
T , the extended system in (10) can be transformed into

the following normal form:24

ξ̇m1 = a11ξm1 + aT
12ξm2

+ Dmv,

ξ̇m2
= A22ξm2

+ b22u,
(12)

where v and u are written as if they were independent control signals, a11 and a12 are a constant scalar and
a column vector, and

ξm2
=

[
ξ1
m2

ξ2
m2

]
, A22 =

[
0 1
cT

m1

]
, b22 =

[
0

Dm

]
. (13)

When the dynamically extended system in (12) is regulated by the acceleration PI controller in (6) with
n = 0, the inner-loop PI controller can be viewed as a PD controller as shown in Figure 8. That is, vlc (=u̇lc)
can be written as

vlc = KIi
η̇i + KIp

(ẇp − ẏm1) = KIi
(wp − ξm1) + KIp

(ẇp − (a11ξm1 + aT
12ξm2 + Dmvlc)). (14)

This leads to
vlc = −dξ1ξm1 − dT

ξ2
ξm2

+ dwwp + dẇẇp, (15)

where

dξ1 =
KIi

+ KIp
a11

1 + KIp
Dm

, dT
ξ2

=
KIp

aT
12

1 + KIp
Dm

, dw =
KIi

1 + KIp
Dm

, dẇ =
KIp

1 + KIp
Dm

. (16)
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+

-

PI controller

Extended System

wp ulc ym1vlc
KIi

+ KIp
s 1

s
s2

M̂s2+Ĉs+K̂

Figure 8. Inner closed-loop system

Substituting the acceleration control signal in (15) to (12) leads to

ξ̇m1 = [a11 − Dmdξ1 ]ξm1 + [aT
12 − DmdT

ξ2
]ξm2

+ Dm[dwwp + dẇẇp], (17)

ξ̇m2
= A22ξm2

+ b22

[
KIi

ηi + KIp
(wp − ξm1)

]
(18)

η̇i = wp − ξm1 .

Remark 1. Equations (17) and (18) reveal how the signals ulc and wp affect the acceleration and position
dynamics. With wp = 0, (17) shows that by selecting a high-gain KIi

, the effect of ξm2
on the ξm1 dynamics

can be reduced while the high-frequency ξm1 has little effect on the slow dynamics since the slow dynamics
behave as a low pass filter. That is, in this case, the high-gain acceleration controller might be enough for
suppressing vibration and centering the isolation system. However, when the accelerometer has a bias n, i.e.,
the term ξm1 in (18) is replaced by ξm1 +n, the bias is integrated and has a detrimental effect on the position
dynamics in (18). This necessitates the design of wp, the outer-loop controller, so as to reduce the effect of
the accelerometer bias. However, the addition of wp has also extraneous effects on the acceleration dynamics
as shown in (17) and tends to degrade the performance of the acceleration controller. To minimize the effect
of wp on the acceleration dynamics, the outer-loop controller wp is designed as a low-gain, low-bandwidth
controller so that wp and ulc may be separated in bandwidths, leading to two-time scale designs for ulc and
wp.

To apply wp in (9) to (17) and (18), we require the following relation

ẇp = cT
c Acηo + cT

c bc(xc − ξ1
m2

) + Dc(ẋc − ξ2
m2

), (19)

which leads to

dwwp + dẇẇp = gT
ηo

ηo − gT
ξ2

ξm2
+ gT

ξ2

[
xc

ẋc

]
, (20)

where gT
ηo

= dwcT
c + dẇcT

c Ac, gT
ξ2

=
[

dwDc + dẇcT
c dẇDc

]
. Combining (20) with (17) and (18) leads to

the following overall closed-loop system

ζ̇m = Āζm + Bxc

[
xc

ẋc

]
, (21)

where

ζm =

⎡
⎢⎢⎢⎣

ξm1

ξm2

ηi

ηo

⎤
⎥⎥⎥⎦ , Ā =

⎡
⎢⎢⎢⎣

a11 − Dmdξ1 aT
12 − Dm(dξ2 + gξ2

)T 0 DmgT
ηo

−b22KIp
A22 − b22KIp

Dcc
T
m2

b22KIi
b22KIp

cT
c

−1 −Dcc
T
m2

0 cT
c

0 −bcc
T
m2

0 Ac

⎤
⎥⎥⎥⎦ , Bxc

=

⎡
⎢⎢⎢⎣

DmgT
ξ2

b22KIp
Dc 0

Dc 0
bc 0

⎤
⎥⎥⎥⎦ .

(22)
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III. Adaptive Control Augmentation

In this section we augment the inner-loop acceleration controller and the outer-loop position controller
using the method in [11]. The goal is to improve the level of vibration suppression that cannot otherwise be
achieved through linear control design, while satisfying the specification on the maximal travel distance for
the position deviation.

A. Error Dynamics

As in the case for the plant model in (10), we extend the dynamics in (3) by defining η̇ = v, u = η. This
leads to the following extended dynamics

ẋa =Aaxa + bav + baf
ẍo + Bad

d

y1 =cT
a1

xa + Dd1

y2 =cT
a2

xa

(23)

where

xa =

[
η

x

]
, Aa =

[
0 0
b A

]
, ba =

[
1
0

]
, baf

=

[
0
bf

]
, Bad

=

[
0

Bd

]

cT
a1

=
[

D cT
1

]
, cT

a2
=

[
0 cT

2

]
.

(24)

Letting ξ = [ξ1 ξ1
2 ξ2

2 ]T = [y1, y2, ẏ2]T , z = [x3, x2 +x4, x5, x6]T , leads to the transformation

[
ξ

z

]
= Taxa.

With this transformation, compared to (12), the extended system in (23) can be transformed into the
following normal form:

ξ̇1 = a11ξ1 + aT
12ξ2 + Dm(v + ∆1),

ξ̇2 = A22ξ2 + b22(u + ∆2)
ż = Fzz + Gξξ + gẍo

ẍo + Gdd,

(25)

where ξ2 = [ξ1
2 ξ2

2 ]T , z represent the state of the stable unmodelled dynamics, and the uncertainties ∆1 and
∆2 are defined by

∆1(ξ,z, v, ḋ1,d, ẍo) =
1

Dm
[cT

a1
AaT−1

a

[
ξ

z

]
+ cT

a1
bav + cT

a1
baf

ẍo + cT
a1

Bad
d + Dḋ1 − a11ξ1 − aT

12ξ2 − Dmv],

∆2(ξ,z, ẍo, d1, u) =
1

Dm
[Ca1T

−1
a

[
ξ

z

]
− ẍo + Dd1 − cT

m2
ξ2 − Dmu].

(26)

Let
u = ulc − uada

− uadp
, (27)

where ulc is given by (6), uada
is an adaptive signal to compensate for ∆1, and uadp

is an adaptive signal to
compensate for ∆2. Similarly as in (14) and (15), applying ulc in (6) leads to

vlc = −dξ1ξ1 − dT
ξ2

ξ2 + dwwp + dẇẇp +
KIp

Dm

1 + KIp
Dm

[vada
− ∆1 + u̇adp

], (28)

where vada
= u̇ada

. Applying (28) to (25) leads to

ξ̇1 = [a11 − Dmdξ1 ]ξ1 + [aT
12 − DmdT

ξ2
]ξ2 + Dm[dwwp + dẇẇp] + Dm[−vada

+ ∆1 − u̇adp
], (29)

ξ̇2 = A22ξ2 + b22

[
KIi

ηi + KIp
(wp − ξ1) − uadp

+ ∆2 − uada

]
, (30)

η̇i = wp − ξ1,

where Dm = Dm(1 − KIp

1+KIpDm
).
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Remark 2. Note that vada
and uadp

are intermingled in the acceleration dynamics and position dynamics.
This in general implies that vada

and uadp
interfere with each other. One way to overcome this problem

is to follow the same rationale as in the design of the existing control signals ulc and wp. vada
is designed

so that it is responsive to high frequency acceleration error, and thus should have a small effect on the low
frequency position dynamics. uadp

is designed so that it is responsive to low frequency position error.

Using relations similar to those in (19) and (20), applying the outer-loop controller in (7) to (29) and
(30) leads to the following overall closed-loop dynamics

ζ̇ = Āζ + Bxc

[
xc

ẋc

]
+

⎡
⎢⎢⎢⎣

Dm

0
0
0

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
B̄v

(−vada
+ ∆1 − u̇adp

) +

⎡
⎢⎢⎢⎣

0
b22

0
0

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
B̄u

(−uadp
+ ∆2 − uada

)

ż = Fzz + Gξξ + gẍo
ẍo + Gdd.

(31)

By defining the error vector as
E = ζm − ζ, (32)

comparing (31) to (21) leads to the following error dynamics

Ė =ĀE + B̄v(vad − ∆1 − u̇adp
) + B̄u(uadp

− ∆2 − uada
)

ż =Fzz + Gξξ + Gẍo
ẍo + Gdd

e1 =ym1 − y1 = c̄T
1 E,

e1
2 =ym2 − y2 = c̄T

2 E,

(33)

where e1 and e1
2 represent available measurements, and c̄T

1 = [1 0 0], c̄T
2 = [0 1 0]. Since Ā is Hurwitz, for

any Q > 0, there exists a P > 0 such that

ĀP + PĀ + Q = 0. (34)

The eigenvalues of the matrix Ā are located at −50.0071,−13.6627,−0.0310,−0.0072 ± 0.0068j,−0.0294,
and Q is selected as 1.5I6×6.

B. Adaptive Control Design

Two single hidden-layer NNs are used to approximate ∆1 and ∆2 in (26) which are a function of states
and control. The result in [18] establishes a universal approximation for an unknown function ∆(x, u) of
states and control in a bounded, observable process using a memory unit of sampled input/output pairs. For
arbitrary ε∗ > 0, there exist bounded constant weights, M , N , such that:

∆(x, u) = MT σ(NT µ) + ε(µ), |ε(µ)| ≤ ε∗ , (35)

where ε(µ) is the NN reconstruction error and µ is the network input vector

µ(t) = [ 1 ūT
d (t) ȳT

d (t) ]T

ūT
d (t) = [u(t) u(t − d) · · ·u(t − (n1 − r − 1)d)]T

ȳT
d (t) = [y(t) y(t − d) · · · y(t − (n1 − 1)d)]T

(36)

in which n1 is the length of the window and is generally required to be greater than or equal to the system
dimension, d > 0 is a time-delay, r is the relative degree of the output, σ is a vector of squashing functions,
σ(·), whose ith element is defined as

[
σ(NT µ)

]
i
= σ

[
(NT µ)i

]
. In simulation, 4 delayed values of y1 in (2)

and 3 delayed values of the input, u, with time delay, d = 0.025 sec., are combined to construct the NN input
signal for ∆1. For ∆2, the NN input is constructed in the same manner as for ∆2 with the only difference
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that the delayed values of the output y1 is used. The squashing functions are chosen as sigmoidal functions
for both networks

[σ(NT µ)]i =
1

1 + e−a(NT µ)i
, i = 1, . . . , 6. (37)

where a = 1 represents the activation potential. Since we deal with two neural networks, one for the inner-
loop and the other for the outer-loop, as noted in Remark 1, adaptive signals vada

and uadp
are separated in

frequency. For this reason, the design for adaptive signals involves the use of a high-pass and low-pass filter.
a high-band/low pass filter design.

1. Inner-Loop Adaptive Controller

In case of the acceleration controller, the output y1 has a relative degree 1 with respect to the signal v.
Consider the following adaptive signal used for the single NN

vada
= M̂

T

a σ(N̂T
a µa), (38)

where M̂a and N̂a are estimates of M and N in (35) for the case of ∆1, and µa is the NN input obtained by
delayed values for y1 and u. For the case of a relative degree 1, the NN weights can be updated as follows21

˙̂
Ma = − ΓMa

[(σ̂ − σ̂′N̂T
a µa)e1P11D̄m + kaM̂a]

˙̂
Na = − ΓNa

[e1P11D̄mµaM̂
T

a σ̂′ + kaN̂a] ,
(39)

where ΓMa
,ΓNa

> 0 are positive definite adaptation gain matrices, ka > 0 is a σ−modification constant,
σ̂ � σ(N̂aµa), σ̂′ is the Jacobian computed at the estimates, and P11 is obtained from the decomposition of
P in (34) as follows:

Pa =

⎡
⎢⎣ P11 PT

21 PT
31

P21 P22 PT
32

P31 P32 P33

⎤
⎥⎦ , P11 ∈ R, P22 ∈ R

2×2, P33 ∈ R
3×3. (40)

However, the adaptive law in (39) becomes problematic when y1 has a significant bias. In this case, the
adaptive controller forces the biased measurement to track the reference model output, and leads to large
deviation in position. At the same time is desirable that the NN not be overly responsive to high frequency
sensor noise. Therefore, we introduced the following band-pass filtering of the error signal used to train the
NN weights

ef = H(s)e1 =
s

(s + ωh)(s/ωM + 1)
e1, ωh = 0.05Hz, ωM = 20Hz. (41)

Thus ef is used in place of e1 in (40). The following parameters are used for the adaptive law in (39)

ΓMa
= 300I, ΓNa

= 300I, ka = 1, (42)

where I represents the identity matrix with a compatible dimension. In implementation, the adaptive signal
is also filtered through H(s). Therefore, the signal vada

is designed as

vada
= H(s)[M̂

T

a σ(N̂T
a µa)], (43)

leading to the following uada
for the inner-loop acceleration controller

uada
=

1
s
vada

=
1

(s + ωh)(s/ωM + 1)
[M̂

T

a σ(N̂T
a µa)]. (44)

2. Outer-Loop Adaptive Controller

In case of the position controller, the output y2 has a relative degree 2 with respect to the control u, and
the approach in [11] requires an error observer for the teaching signal. In this example, the estimate for ė1

2

is obtained by
ê2
2 =

s

1/50s + 1
e1
2, (45)
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which results in the NN training signal ê2 = [e1
2 ê2

2]
T . As noted in Remark 1, the adaptive signal uadp

is
needed to compensate for ∆2 in the low-frequency range. To prevent interaction with uada

, a low-pass filter
is applied to the error signal

êl = L(s)ê2 =
1

s/wl + 1
ê2, wl = 0.001Hz (46)

and êl is used in place of ê2 as the error signal in the adaptive law for the outer loop NN

˙̂
Mp = − ΓMp

[(σ̂ − σ̂′N̂T
p µp)êlP22b22 + kpM̂ ]

˙̂
Np = − ΓNp

[êlP22b22µpM̂
T

p σ̂′ + kpN̂p]
(47)

where P22 is obtained from (40), and µp is the NN input obtained by delayed values for y2 and u. The
tuning parameters for the NN are

ΓMp
= 1 × 10−4I, ΓNp

= 1 × 10−4I, kp = 3 × 104. (48)

The signal uadp
is also filtered through the low-pass filter in (46). The adaptive signal uadp

is given by

uadp
= L(s)[M̂

T

p σ(N̂T
p µp)]. (49)

Figure 9 shows the frequency responses of the band-pass filter in (41) and the low-pass filter in (46). The
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Figure 9. Frequency Responses of Filters used in Adaptive Control Design

overall architecture for the adaptive control augmentation is depicted in Figure 10, in which abbreviations
are defined as follows:“ TP” for the true plant in (3), “PM” for the plant model in (5) with ẍo = n = 0,
“ BP ” for the band-pass filter in (41), “ LP ” for the low-pass filter in (46), “NNa ” for the NN in the
acceleration inner-loop, and “NNp” for the NN in the position outer-loop.

IV. Simulation Results

When xc is set to zero the reference model generates ym1 = ym2 = 0 and need not be implemented. The
accelerometer bias for y1 is set at 0.001 m/sec (=102 µ g). Figure 11 shows the acceleration response y1 and
the position response y2 with the base excitation, ẍo = 16µg sin(2π(0.067)t) in the absence of sensor bias.
The base excitation frequency corresponds to the first flexible mode in the open-loop system in Figure 4(c),
thus the open-loop system (“OL”) exhibits greatly amplified responses (|Gb2a(jω)|ω=0.067Hz � 25dB) to the
given base excitation. With the existing control system (“EC without sensor bias”), the transmissibility is
-20 dB as shown in Figure 7(a), and the acceleration is significantly attenuated. Figure 11(b) also shows
that the position oscillates with a small magnitude around zero, and its magnitude is much smaller than the
maximal travel distance limit 1.0 m.
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Figure 10. Adaptive Control Augmentation Architecture

The situation greatly changes when the 1.0 mili-g sensor bias is introduced. Figure 12 compares the
responses of the acceleration and the position with and without the sensor bias (“EC” and “ EC without
sensor bias”, respectively). Note that the transient position error violates the 1.0 m limit. However, notice
that in steady-state, the position error converges to zero, and the same level of the acceleration is recovered
as that with the existing control system without the sensor bias.

Figure 13 compares the responses of the acceleration and the position when the system in (3) is regulated
by the existing control system (“EC”), the existing control system augmented by the inner-loop adaptive
controller (“EC+uada

”), and the existing control system augmented by both the inner-loop and outer-loop
adaptive controllers (“EC+uada

+ uadp
”) for 3000 seconds. The inner-loop adaptive controller enhances the

isolation performance while the relative position is regulated at the same level as the existing control system.
This indicates that the inner-loop adaptive controller is active only at high-frequency bands and has little
effect on the position dynamics. However, it still violates the distance limit for the isolation system. Figure
13(b) shows that adding the outer-loop adaptive controller improves the response so that the limit on peak
response is satisfied, with a modest increase in the peak acceleration. Figure 14(a) shows the transient
response for the initial 250 seconds. In the transient responses, oscillations occur at 0.05 Hz, reflecting the
effect of the band-pass filter in (41) for the adaptive signal vada

. Figure 14(b) shows that in steady-state,
as the position deviation converges to zero, the effect of uadp

diminishes, and the augmented control system
retains the same performance as that of the inner-loop adaptive controller without the outer-loop adaptive
controller.

Assessment of the isolation performance throughout the specified frequency range requires the develop-
ment of a performance measure that quantifies how much the transmitted acceleration is attenuated in a
nonlinear system. In this example, steady-state responses are recorded after the transient responses decay,
and the attenuation level similar to Figure 7(a) are found by extrapolating the recorded data. The base
excitation ranges from 1.6µg to 1.6 × 103µg following the predicted ISS acceleration environment in Figure
1(a). The result is plotted in Figure 15. According to the attenuation requirement in Figure 1(b), active
isolation is only required in the range of 0.01 Hz-10 Hz because the base excitations below 0.01 Hz must
be transmitted to the isolated platform in order for the isolated system to move with the vehicle, and the
open-loop system satisfies the performance requirement above 10 Hz. Figure 15 show that the adaptive
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Figure 11. Responses with the base excitation ẍ = sin 2π(0.067)t WITHOUT sensor bias
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Figure 12. Comparison of responses with the existing control system with and without accelerometer when
ẍo = 16µg sin(2π(0.067)t)
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Figure 13. Responses with the existing controller augmented by the adaptive controllers when ẍo =
16µg sin(2π(0.067)t)
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Figure 14. Transient and steady-state acceleration response when ẍo = 16µg sin(2π(0.067)t)
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Figure 15. Comparison of performance in various frequencies

controller outperforms the existing control system throughout the frequency range of 0.01 Hz-10 Hz. That
is, the adaptive control system promises its main benefits in the critical frequency range in which parametric
uncertainties related to the inertia properties and the umibilical stiffness are expected to change the shape
of the frequency responses shown in Figure 4. For example, the flight-test results in [3] show that the linear
design fails to meet the performance requirement in the range of 0.04 Hz-0.4 Hz due to the hysteresis in the
umbilical stiffness. The present results suggest that with adaptive augmentation the linear controller may
be able to meet these requirements.

Investigating the frequency responses of y1
d1

, y1
d2

, and y1
d3

in Figures 7(b), 7(c), and 7(d) reveals that at
high frequencies (above 1 Hz), the external disturbance d1 is most influential (-30dB) among the external
disturbances d1, d2, and d3, which could arise when the experiment mounted on the isolated platform has
its own source of vibration. Disturbances d2 and d3 lead to -40dB gain over all frequencies, and thus
are negligible disturbance sources. Figure 16 shows the acceleration responses when disturbances d1 =
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16µg sin(2π0.1(Hz)t) and d1 = 160µg sin(2π5(Hz)t) are applied. At 0.1 Hz, | y1
d1

(jω)| is close to −10dB for
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Figure 16. Acceleration Responses with Direct Disturbance d1

the open-loop system and −50dB for the system regulated by the existing controller as shown in Figures 4(a)
and 7(b). Thus, the existing control system is very effective in rejecting d1 disturbances at this frequency. The
adaptive controller achieves similar performance to that with the existing control system as shown in Figure
16(a). Figure 16(b) shows that at a frequency of 5.0 Hz, the adaptive controller improves the performance
of the existing controller. Since | y1

d1
(jω)|ω=5Hz is close to −30dB for both the open-loop system and the

system with the existing controller, the acceleration responses exhibit the same magnitude of oscillation in
steady-state response. With the adaptive control, the acceleration is greatly suppressed. Similarly as in the
case of the base excitation, adaptive control generally improves performance of the existing control system
between 0.1 Hz and 10 Hz in the presence of d1 disturbances.

V. Conclusions and Future Work

We consider adaptive control augmentation of an existing linear controller for g-LIMIT. Both the accel-
eration control loop and the position control loop are augmented with adaptive elements that are designed
based on two-time scales, similar to the approach taken in designing the existing control system. Introducing
band-pass filtering of the error signals used in the adaptive laws prevents interactions between the NNs used
in each loop. The adaptive control system outperforms the existing control system in the range of 0.1 Hz
and 10 Hz in attenuating both the base excitation and the direct disturbance to the isolation system while
meeting the specification for the position deviation, under the same conditions that cause a violation when
using the existing control design.

As a next step, we plan to extend the current SISO result to a MIMO system in a more realistic simulation
environment for g-LIMIT provided by NASA Marshall Space Flight Center.
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