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This paper aims at detecting obstacles using a single camera in an unknown 

three dimensional world, for 3D motion of an unmanned air vehicle.  Obstacle 

detection is a pre-requisite for collision-free motion of a UAV through 3D space.   

Most research towards vision based obstacle detection and avoidance has been done 

for 2D planar motion of ground robots and using active sensors like laser range 

finders, sonar, radar etc.  Passive camera based research has mostly been done, 

either using stereo vision (multiple cameras) or, by developing a prior expectation 

map of the world and its comparison with the new image data.  In this paper, an 

attempt has been made to find a 3D solution of the obstacle detection problem using 

a single camera in an unknown world.  The equations developed and the simulations 

results presented here, show that a 3D model of the scene can be generated from 2D 

image information from a single camera flying through a very small arc of lateral 

flight around the object, without the need of capturing images from all sides as in a 

typical ‘structures from motion’ problem.   The forward flight simulation results 

show that the depth extracted from forward motion is in fact usable for large part of 

the image, which is a significant contribution of this work. 

I. Introduction 

here has been an extensive literature addressing obstacle detection and avoidance, particularly for 

ground robots.  The most common approach to obstacle detection and avoidance is that of use of 

multiple sensors.  Thus for example, David Coombs and Karen Roberts (Ref 1) propose two cameras 

looking obliquely to steer between objects.  The left and right proximities have been compared to steer 

through the gap.  Another similar development is a vision system capable of guiding a robot through 

corridor-like environments by Argyros and Bergholm (Ref 2).  It uses three cameras, one for central 

forward vision and the other two for peripheral vision.  The main principle is to implement a honey-bee-

like reactive centering behavior by controlling the movement in a way that the optical flow on both 

sideward-looking cameras is equal.  The normal flow for all three cameras is computed by an intensity-

based algorithm, after which, the depth to obstacles visible in the periphery cameras is extracted, by using 

the central camera to compensate for the rotational component of the ego-motion.   It may be seen that the 

hardware requirements for this approach are that of three cameras and two workstations in order to 

compute the three optical flows.  Analogous approaches have been proposed and successfully applied for 

various robotic platforms.   Representative examples are Ref 3 for Stereo Vision (most common for ground 

robots) and Ref 4 for fusing Radar and Vision for obstacle avoidance on cars. 

In his PhD Thesis (Ref 5), Randal C Nelson proposes the use of certain measures of flow field 

divergence as a qualitative cue for obstacle avoidance.  It has been shown that directional divergence of the 

2D motion field indicates the presence of obstacles in the visual field of an observer,  undergoing 

generalized rotational and translational motion.   Divergence information has been calculated from image 

sequences, based on the directional separation of optical flow components and the temporal accumulation 

of information.  The use of the system to navigate between obstacles has been demonstrated by 

experimental results.  This approach essentially does not do obstacle detection in 3D space,  but instead 

successfully comes up with a ‘No-Go’ direction approach, skipping directly to the obstacle avoidance part. 
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In their paper
6
, Young et. Al. present an approach to obstacle detection, using optical flow without 

recovering range information.  A linear relationship, plotted as a line called reference flow line, has been 

used to detect discrete obstacles above or below the reference terrain.  The parameters of the reference flow 

line are estimated using the optical flow of a specific part of the picture that is assumed to be obstacle-free.   

Slopes of surface regions have also been computed.  Objects that intersect with the reference space line and 

occlude it, cause different flow values than the reference line and can thus be detected.   It may be seen that 

this approach may work effectively for ground robots in general, and for UAVs during landing, but does 

not seem very useful in normal 3D flight of a robotic UAV, primarily because of absence of any reference 

or obstacle free terrain data in completely unknown flying environments. Ref 7 and 8 also present 

approaches for obstacle detection and avoidance in either structured, or partially known environments. 

Nicholas Hatsopoulos and James Anderson
9
 also use optical flow, but instead calculate time to contact, 

which is an optical property.  However, they describe in the paper that this approach, which has been 

proposed for collision avoidance in cars, is not effective in realistic driving environments, when the 

surfaces are not very flat and are not perpendicular to the center of camera axis. 

Nakao et al
10

 present a method of 3D shape reconstruction of objects for a camera mounted on a robotic 

arm with the object being modeled on the turn table.  This approach effectively uses a single camera and an 

Extended Kalman Filter for 3D shape 

reconstruction.   However, this paper 

does not seem to address the 

correspondence problem in detail, 

(probably because there are very few 

feature points in the scene in such 

structured environment).      

Besides, there had been a lot of 

literature under the heading of 

‘Structure from Motion’ problem.   

The problem at hand may be 

considered as an improved solution 

approach to such a problem. 

The problem attempted in this 

paper is that of a single sensor, which 

is a camera and the solution being 

sought here in this paper is that for a 

3D problem in perfectly unknown 

world for potential test vehicle as 

GTMax UAV (Figure 1).  The details 

of the proposed approach are 

described in the following section. 

 

II. Proposed 3D Obstacle Detection: Lateral Flight 

A. Equations of Camera Motion 
For the present problem,  it is supposed that a camera is capturing 2D images and is mounted on a 

UAV.   Immediately after the detection of feature points in the scene,  UAV stops its forward flight and 

instead starts flying around the object, following a circular path,  where the flight path is tangent to the 

radial vector to the object.   UAV flies in a radius of flight ‘r’,  with angular velocity ‘ω’ at a constant 

altitude ‘h’ .  The relative position of the camera in 3D space is ‘x’, ‘y’, ‘z’ and its orientation is ‘φ’, ‘θ’ and 

‘ψ’  (Refer Figure 2 below).   This is an extreme case of obstacle avoidance maneuver selected to maximize 

predicted ability to generate the 3D map. 

With the vehicle frame of reference as North-East-Down (NED), the following states and their rates are 

obtained for the camera 

  
x
y
z

H
J
I
K=

rsinωt
rcosωt

@ h
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LJ

I
MK+ ∆Position   and  

xA
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H
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I
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@ rωsinωt

0

H
LJ

I
MK+ ∆Velocity    (1) 

Figure 1. GeorgiaTech GTMax UAV – Potential test 

vehicle for approach developed here 
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where x,y,z are the position states, with dot notation specifying the rate and ∆Position and ∆Velocity are 

the error values for position and velocity vectors modeled as Gaussian noise vector of size 3x1, 

respectively.   (Values of the noise covariances have been chosen keeping in view similar calculations e.g. 

in Ref 11).   

 
 

 

The orientation and orientation rates of the camera are given by 

   
φ
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ψ

H
LLJ

I
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c
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H
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I
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ψ
A
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0
0
@ω

H
LJ

I
MK+ ∆AngRate    (2) 

where Ф, θ, ψ define the orientation of the camera on the UAV, Фc is the installation angle of camera on 

UAV, dot notation specifies the rate and ∆Orientation & ∆AngVelocity are the noise values for Orientation 

and orientation rates, modeled as Gaussian noise vectors of size 3x1, respectively. 

For conversion between body frame and vehicle frame,  the rotation matrix is as follows 

   

1 0 0 cos 0 sin cos sin 0

0 cos sin 0 1 0 sin cos 0

0 sin cos sin 0 cos 0 0 1

bv
L

θ θ ψ ψ

φ φ ψ ψ

φ φ θ θ

−     
     = −     
     −     

     (3) 

and  

            
T

vb bv
L L=             (4) 

B. Z-test for Correspondence 
Statistical Z-test method has been used to solve the correspondence problem between the estimated 

corners from database and the measurements.   The Z-test has been taken for a certain error index (J) and is 

defined as the square of this index divided by its variance (C) i.e Ztest value=J
2
/C.   Both the estimation 

error covariance (matrix P) and the measurement error covariance (matrix R) have been taken into account 

while calculating C (equations 5 & 6).   Then the Z-test value is inversely related to the likelihood of an 

event that a given measurement corresponds to the corner point chosen.   Thus for example, if there is a 

Initial Flight Path 
(obstacle free) at 
altitude ‘h’ above 
ground level 

Lateral Flight Path after 
detection of some 
features in the image 
plane.  The UAV flies  
with angular velocity    
‘ω’,  in an arc of radius   
‘r’ at a constant altitude  
‘h’. 

Radius of flight ‘r’ 

An obstacle in 3D space. 
Each of its corners has 
coordinates X,Y,Z in 
inertial frame 

Image plane of camera. 
The obstacle in 3D space is 
projected on 2D image plane with 
every corner having two 
coordinates each (yk and zk). (Also 
refer Figure 4) 

The relative position 
between camera and 
the object is x,y,z.   
The orientation of the 
camera in inertial frame 
is φ,θ,ψ 

Constant altitude 
‘h’ above ground 
level is maintained 
throughout the 
simulated flight 

North 

East 

Down 

  

Figure 2. Camera Mounted on a UAV with a Detected Object in the Scene 
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Figure 4.   A Standard Pin-Hole Camera Model
11

 

large error between the measurement and the image data, but the measurement also has a large uncertainty, 

then the probability of its correspondence should be higher than the case in which, the measurement has a 

small uncertainty.   Thus each corner point is to be assigned to a point, which attains the least Z-test value, 

meaning thereby, the highest likelihood. 

For Z being the projected measurement vector onto image plane and X being the relative position vector 

in 3D space,  the error index J and its variance C for calculating Z-test value are defined as  

        2 2J dx dy= +    
T T

X X Z Z
C C PC C RC= +     (5) 

where         
X

v

J
C

X

∂
=

∂
  and 

Z

J
C

Z

∂
=

∂
         (6) 

are the two components of the variance C of the error 

index J. 

In the figure 3,  Z is the projected measurement 

vector onto image plane and xk is the projected 

database corner vector onto the image plane.  Hence, 

it may be noted that the residual vector is 
 

d = Z - xk     (7) 

C. Pin-Hole Camera Model 

Assuming that the camera is mounted at the 

center of gravity of the vehicle, let Lbv denote a known camera attitude represented by a rotation matrix 

from inertial to the camera frame.   A camera frame is taken so that the camera’s optical axis aligns with its 

Xc(t)axis.   Then the relative position in camera frame will be as follows 

          X = Xv – Xp  (in inertial frame)       (8) 

          Xc = Lbv X   (in camera frame)       (9) 

where           Xc = [Xc(t)   Yc(t)   Zc(t)]
T 

        (10) 

and the subscript ‘v’ is used for vehicle position vector, the subscript ‘p’ is used for the the object position 

vector,  subscript ‘c’ is used for the camera and upper case (bold-italic) X indicates a 3x1 relative position 

vector in 3D space. 

 

 

 

  zk 

yk 

X 

Y 

Xc 

Lbv 

Rotation 
from inertial 
frame to 
camera 
frame 

Inertial Frame 

Camera 
Frame 

Xp 

Position vector of 
object being 
modeled 

Yc 

Zc 

f 

xk 

Object’s position 
projected on the 
image plane 

  Xv 

Image Plane 

Focal length 

Position 
Vector of 
Camera 

 Z 

xk dx 

 dy 

Z 

d 

Figure 3. The Residual Vector 
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Assuming a pin-hole camera model as shown in the Fig 4,  the object position in the image at a time 

step tk is given by (lower case xk is a 2x1 vector in the image plane) 

           x
k

=
y

k

z
k

F G
=

f

X
ck

ffffffffffff

A

Y
ck

Z
ck

H
J

I
K         (11) 

This equation is non-linear with respect to the relative state.   (Hence an Extended Kalman Filter has been 

used here). 

In the implementation, focal length ‘f’ of the camera has been assumed to be unity without loss of 

generality. 

Following Eqns 5, 6 and 7,  we can now write expressions for the components of Variance matrix C as 

Cx and Cz, using chain rule as follows: 

  C
X

=
∂J

∂ X v

fffffffffffff

=
∂J

∂d

ffffffff

A

∂d

∂x
k

fffffffffff

A

∂x
k

∂ X v

fffffffffffff   and  C
Z

=
∂J

∂Z

fffffffff

=
∂J

∂d

ffffffff

A

∂d

∂Z

fffffffff    (12) 

D. Extended Kalman Filter 

Predict: 

The predicted stage (before the new measurement) of the Extended Kalman filter is defined by 

           
1( , )k k kX f X U

− −

−=    

which, for this case of no dynamnics and no input for the feature point being modeled, simplifies to 

           1k k
X X

− −

−=
            

(13) 

The estimation covariance matrix is defined by
 

           
1

T

k k k k k
P F P F Q

− −

−= +           

which for no dynamics case, simplifies to 

           1k k k
P P Q

− −

−= +
          

(14) 

Update: 

The Kalman gain, the state and the estimation covariance for update stage (after the new measurement) are 

given by 

           ( )
T T T

k k k k k k kK P H H P H R
− −= +      (15) 

k k kX X K d
−= +∑           (16) 

k k k k k
P P K H P

− −= −∑          (17) 

where Rk is the measurement error covariance matrix.  The observation matrix Jacobian Hk , which is 

defined as partial derivative of the residual vector (d) with respect to partial derivative of the state (X) is 

calculated here as 

. k
k

k

xd d
H

X x X

∂∂ ∂
= =

∂ ∂ ∂
         (18) 

For the vectors d, X and xk defined above, this is evaluated as (where I2 is a 2x2 identity matrix) 

2

k

d
I

x

∂
= −

∂
  and  

∂x
k

∂X

fffffffffff

=
1

X ck

ffffffffffff

@ xk I 2

B C
       (19) 

so that Hk turns out to be: 

H
k

=@
1

X
ck

ffffffffffff

A I
2
A @ x

k
I

2

B C
       (20) 

 

Similarly the covariance matrix Rk (measurement error covariance) is defined as 

            R
k

=
∂d

∂Z

fffffffff

A R A
∂d

∂Z

fffffffff

f gT

         (21) 

which is evaluated as: 

             R
k

= I
2
A R A I

2            (22) 

where R is the measurement noise covariance. 
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It may be seen now that the components of Variance matrix C,  as Cx and Cz  given above,  may be 

evaluated as: 

           C X =
∂J

∂ X v

fffffffffffff

=
∂J

∂d

ffffffff

A H k = 2 d
T
A H k

     (23) 

C
Z

=
∂J

∂Z

fffffffff

=
∂J

∂d

ffffffff

A

∂d

∂Z

fffffffff

= 2 d
T
A I

2
      (24) 

E. 3D Modeling Algorithm 

The above equations have been implemented in the 3D scene modeling algorithm as shown in Fig 5.   

The algorithm starts when a feature point is detected in the scene.  This information is being fed to the 

program by the frame grabber after image processing and segmentation.   Further, the camera calibration 

information is also being fed to the program by GTMax onboard systems, which includes its location in 3D 

space and installation angle on the UAV, besides the knowledge of its FOV (Field of View) and its image 

plane size.   The UAV then starts flying in a circular path of radius ‘r’.  Equations 1 – 4 give the position, 

orientation and respective rates for the camera and equations 8, 9 and 10 give the position information in 

camera and inertial frame.  For the first iteration,  as the estimation database is empty,  all the feature points 

as measured in the image frame,  go into the estimation database without establishing any correspondence.   

Since this was only 2D information from the image plane, the third dimension is unknown and is supposed 

to be zero i.e. all points are supposed to lie on the ground plane initially.  When the subsequent image 

information is received,  the estimation points in the database are projected onto image plane (via equation 

11) and the residual vector is calculated between the new measurement and the estimated points on image 

plane (equation 7).  Z-test correspondence is done to establish which measurement corresponds to which 

estimated value (equations 5, 6, 7 and 12) and the new values are updated with the extended Kalman filter 

(equations 13 to 24).  If correspondence is not established between a measured feature points in the image, 

with any of the estimated feature points, this feature point is recognized as a new point.  Conversely if an 

estimated feature point existed, for which there was no corresponding measurement in the new image, this 

is marked for  deletion.  However, it is actually not deleted unless it remains without correspondence for 

next consecutive N images.  This is done to ensure, that if a feature point temporarily goes out of view, it is 

not deleted immediately, otherwise the whole simulation time would increase, if it came back into the view 

later on and was instead recognized as a new feature requiring new estimation starting from ground plane. 

F. Simulation Results 

As a first case, a cube was selected with eight corners (or eight feature points).   This known model of 

the cube was used to verify the ability of the algorithm to successfully generate its 3D model using the 2D 

image information captured from the camera.   The simulation results are as presented in Fig 6.   In this 

figure, the solid (magenta) lines indicate the object to be modeled, the blue diamonds indicate the 

progressive outcome of corner estimation from the proposed algorithm, whereas the wavy black arcs 

indicate the flight path of the camera.   The final figure (at 60 sec) shows that the blue diamonds approach 

the actual corners of the object being modeled, indicating a successful 3D obstacle detection for this case.    

As a next case, a scene comprising of 35 feature points was chosen, as various corners of high-risers in 

a typical urban scenario.  The simulation results for lateral flight path are shown in Fig 7.   In this figure 

also, the solid (magenta) lines indicate the object to be modeled, the blue diamonds indicate the progressive 

outcome of corner estimation from the proposed algorithm, whereas the wavy black arcs indicate the flight 

path of the camera.   The final figure (at 100 sec) shows that the blue diamonds approach the actual corners 

of the object being modeled, indicating a successful 3D obstacle detection for this case as well.   
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Initialize: 
Radius of lateral Flight, Angular Velocity, Process Noise 
Covariance for position, velocity, orientation & orientation rate 
Error Vector for Kalman Covariance matrix P and measurement 
noise covariance 

Start simulation loop 

Initialize: measured feature 2D coordinates and feature 3D 
coordinates in data base 
Evaluate: 
Camera Motion (Position, Velocity, Orientation, Orientation rate) 
Rotation Matrix 
Measure: Feature point 2D coordinates in Image Plane 

Predict (EKF): Process noise Covariance, State, State Error 
Covariance 
Assign: Measurements as Database 

Read: Camera installation angle on UAV, its 
Field of View,  Image Plane Size,  Flight Altitude 

     1
st
 Iteration ? 

Project 3D Database features onto 2D image plane 

     min ztest value<threshold? 

Go to next measured feature 

For each 2D measured feature, find Z-test value for its 
correspondence with projected database features 

Start when any feature in the image is detected 

Update Database for newly detected feature 
Update stage of Kalman Filter: Find Hk, K, updated state, new P 

Update Database for deletion of invisible features; Goto next iter. 

Generate 3D model from 
all features points in Database 

No 

No 

Figure 5.   The Proposed Algorithm 
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c) At time 24 sec 
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d) At time 36 sec 
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f) At time 60 sec 

 
 Figure 6.   Flight Simulation results with 8 feature points.  Image processing is updated at 10 

frames / sec.  Convergence is good at 60 sec, traveling 25 deg around the object. 
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f) At time: 100sec 

 Figure 7.   Flight Simulation results with 35 feature points.  Image processing is updated at 10 

frames / sec.  Convergence is good at 100 sec, traveling 40 deg around the object. 
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Table 1 below gives the values used for the simulation.    

Table 1.   Values used for simulation: Lateral Flight 

Flight altitude above ground level 140 ft 

Radius of flight about the object 140 ft 

Angular velocity around the object 0.36 deg/sec 

Camera field of view 30 deg 

Position error in all three states each 1% 

Velocity error in all three states each 1% 

Orientation error in all three states each 0.01% 

Angular velocity error in all three states each 0.01% 

 

 The simulation results of Figure 6 and 7 show that the proposed algorithm can successfully generate a 3D model 

of the scene, from 2D image information.   This modeling only requires one camera as the sensor.  These results 

have been achieved for an unknown world and no constraints were put on the environment being modeled.  No 

attributes of the environments were provided to the system, except for the 2D images being captured by the camera.  

The scene modeling has been achieved in 60 seconds of flight for 8 feature points, and 100 seconds of flight for 35 

feature points.   The successful 3D scene modeling required flying through a very small arc of lateral flight, as 

compared to the size of object being modeled.   There had been no need to capture images from all sides of the 

objects being modeled.  Thus the approach is more practical than a typical ‘Structure from Motion’ problem, which 

requires right, left, top or other views of the object, in order to generate its 3D model.    The algorithm does 

require some feature points in the scene.   Hence if no feature points are detected in the scene, the algorithm implies 

that there are no obstacles to be avoided and the initial flight path of the UAV may be continued without any 

disruption. This is almost always true in real world scenarios.  However, there could be one exception of that of a 

flat wall in front, which is discussed as ‘Future Work’ in Section V. 

III. 3D Obstacle Detection : Forward Flight 

A. Introduction 
In their research paper

12
,  Matthies, Kanade and Szeliski present Kalman Filter-based Algorithms for Estimated 

Depth from Image Sequences.   Besides other conclusions,  they have shown  that 

1) For a translating camera,  the accuracy of depth estimates increases with increasing distance of image 

features from the focus of expansion (FOE,  which is a point in the image where translation vector pierces 

the image). 

2) Best translations are parallel to the image plane and the worst are forward along the camera axis. 

3) For practical fields of view,  the accuracy of depth extracted from forward motion will be effectively 

unusable for a large part of the image.   Thus for practical depth estimation,  forward motion is effectively 

unusable compared with lateral motion. 

B. Proposed Approach 

Section II of this paper demonstrated that Lateral flight gives good 3D scene modeling of objects from 2D image 

data.  (In fact depth is just one coordinate of any feature point in 3D space).  This substantiates deduction 2 above.   

This however, is apparently an awkward flight maneuver form a practical perspective in the sense that a UAV,  

which was supposed to fly forward,  has to start flying laterally,  as soon as some object is detected in the scene,  in 

order to estimate its depth or 3D location in space.   Hence, here an attempt was made to do depth estimation while 

flying forward, which is in conflict to what was recommended in conclusion 3 above.   However, two facts are 

important here. 

Firstly, estimation of 3D positions of those objects is attempted, which do not lie exactly at focus of expansion, 

because if the features exactly lie at FOE, there is no solution to the problem.   This is in accordance with the first 

deduction mentioned above.   We propose that if the features are not at FOE, even flying forward could give 
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reasonable depth estimation.  Of course the accuracy would improve with increasing distance of features from FOE, 

as stated in Ref 12 above. 

Secondly, it may be noted that the conclusions in the above-referred paper were arrived at by linearizing the 

system equations and using a Kalman Filter.  In this paper however, it is investigated, whether the use of non-linear 

Extended Kalman Filter instead of a regular Kalman Filter, can provide good results for forward flight of a UAV. 

Accordingly it is proposed in this work that, subject to the two considerations just mentioned above, flying 

forward will give depth estimation, which is of practical use,  as opposed to deduction 3 of above referred paper. 

Implementation of this 3D obstacle detection in forward flight, changes only the equations of motion of camera 

i.e. equations 1 for position and velocity of Section II above.   All other equations presented for Lateral flight in 

Section II above, remain valid in this forward flight case as well.   This also applies to fig 3 (Residual Vector), fig 4 

(Pin-hole Camera Model) and fig 5 (Proposed Algorithm).   The changes required in equations 1 for position and 

velocity are:  ω=0 (for no lateral flight),  2nd (forward) component of position vector added with a factor ‘a x t’, 

where ‘a’ is forward velocity and t is time.  Also second component of velocity vector is added with this constant 

factor ‘a’ (forward velocity).  Hence the new equations are 

     
x
y
z

H
J
I
K=

0
r + a A t

@ h

H
LJ

I
MK+ ∆Position   and  

xA

yA

zA

H
LJ

I
MK=

0
a

0

H
LJ

I
MK+ ∆Velocity     (1)’ 

To avoid the obstacles in FOE, the speed of flight is a critical factor.   If it is too high, the images of the objects, 

which are enlarging, in this case as the motion is towards them, will quickly occupy almost whole of the image, 

including FOE as well.  Hence the 3D scene modeling would not be possible.  On the contrary if the speed of flight 

is too low, there is less variation in the subsequent images, and hence less new information in those images.  This 

will in turn prolong the simulation time to an unacceptable extent.   In this case of 35 feature points, the optimum 

speed of flight was found by iterations in repeated simulations, so as to achieve the correct 3D modeling at a 

relatively high speed. 

C. Forward Flight Simulation Results 

The simulation results for 3D obstacle detection in forward flight are presented in Figure 8.    In this figure, the 

solid (magenta) lines indicate the object to be modeled, the blue diamonds indicate the progressive outcome of 

corner estimation from the proposed algorithm, whereas the wavy black line indicates the forward flight path of the 

camera.   The final figure (at 125 sec) shows that the blue diamonds approach the actual corners of the object being 

modeled, indicating a successful 3D obstacle detection for this case. 

The table below gives the values used for the simulation 

Table 2.   Values used for simulation : Forward Flight 

Flight altitude above ground level 140 ft 

Forward Velocity 1.4 ft/sec 

Camera field of view 30 deg 

Position error in all three states each 1% 

Velocity error in all three states each 1% 

Orientation error in all three states each 0.01% 

Angular velocity error in all three states each 0.01% 

 

The results in figure 8 show that the proposed algorithm can successfully generate a 3D model of the scene, from 

2D image information while flying forward towards the obstacle.   The speed of flight is critical, as with too high a 

speed, obstacles will overlap the FOE.  Too low a speed, on the contrary, will give very less new information for the 

update.  Successful 3D modeling will not be possible in both such cases.  Comparing the results of lateral flight 

simulations (Section II) and the results presented here, it can be said that, flight duration required to generate a 3D 

model of the scene while flying forward, was 25% more than the duration of flight required for lateral flight case. 

Subject to the two conditions of features not exactly at FOE and using EKF for non-linearities, the simulation results 

show that for practical fields of view, the depth extracted from forward motion is indeed usable for a large part of 

the image. 
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b) At time: 25 sec 
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c) At time: 50 sec 
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d) At time: 75 sec 
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e) At time: 100 sec 
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f) At time: 125 sec 

 

 
Figure 8. Forward Flight Simulation results with 35 feature points.  Image processing is updated at 

10 frames/sec and UAV is flying forward at 1.4ft/sec.  Convergence is good at 125 sec. 
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IV. Analysis of Results 

It may be realized that for detecting NX number of feature points (in 3D space), we have NX*NZ correspondences 

to be established, where the NZ is the number of feature points picked up (observed) in every image.   This holds for 

every iteration except the first one, when the database is empty and there is no correspondence to be done.  So if the 

frame rate is ‘f’ frames per second and the simulation gives satisfactory results after ‘t’ seconds, then the total 

number of images we use in the simulation are 

Number of images utilized: NI = f*t 

Hence the total number of correspondences, the algorithm has to establish is given by 

No of Correspondences = NX*NZ*NI – 1 

It may be seen that as the number of feature points in the scene increases (i.e. as NZ increases),  the number of points 

in the database NX also increases accordingly (as the scene feature points eventually end up as points in the database,  

once the correspondence is established and 3D coordinates are found).  Hence the computational effort increases 

tremendously, which in turn results in a need for much more simulation time, as well as, many more number of 

images required, in order to satisfactorily do the 3D obstacle detection/modeling.  For the simulations above, the 

computational effort increased by about 14.7 times with an increase in number of feature points by 4.4 times 

(precisely from 4.054 seconds of computer time required to simulate 8 feature points vis-à-vis 60.201 seconds 

required to detect 35 feature points to within 2.5% of accuracy) for lateral flight.  This further increased by yet 

another 25% for forward flight. 

For the above analysis,  we supposed a frame rate of 10 frames per second.   Hence if the simulation ran for 60 

seconds, 600 images were used (case of Fig 6 above).   If a better frame grabber / image processor is available so 

that, about 30 frames per second rate is available,  the simulation time will reduce to 20 seconds,  which in turn 

means,  lesser duration of lateral flight required, to correctly model the scene. 

Figure 9 presents with error analysis, for the simulation results presented in Figures 6, 7 and 8.   One sample 

point randomly has been chosen for each of the three cases.   All the three estimated coordinates of the selected 

feature points in the database has been compared with the actual value of coordinates.   The results in Fig 9 show 

that all cases converge to the actual point locations,  to within about +3%.   This indicates successful convergence of 

features points to their actual locations in 3D space. 

In the algorithm however, simulation is stopped when the average error from each of the three coordinates from 

all the feature points in the scene are successfully modeled (to within about +3% of the actual locations in 3D 

space).   This means that for a case of 35 feature points, there are 35x3=105 coordinates to be estimated correctly. 

It may be said that the obvious merit of this approach in both lateral and forward flight,  is that of providing a 

capability of 3D obstacle detection and modeling by using only one camera.  This is of significant importance for 

future miniature UAVs,  which might not be capable of carrying any other sensor,  except for a single camera.   The 

information that is obtained as a result of this algorithm,  is that of a full scale 3D model of the scene,  which may be 

directly utilized for any mission planning, as desired.   On the contrary,  the algorithm has an obvious constraint of 

tremendous increase in computational effort with an increase in number of feature points. 

Further,  the lateral flight pattern for such obstacle detection may also seem as a constraint,  at least to a mission,  

which was that of moving forward towards the goal/target.  The forward flight does overcome this constraint but 

increases computational effort by another 25%, and comes with a constraint of having no feature points at FOE.  Yet 

another constraint is that of at least having some feature points at all,  in the scene.  If the UAV takes-off e.g in front 

of a flat wall,  there are hardly any feature points to be detected and modeled.  Such a problem,  in fact,  is a 

recommended subject of future work,  as discussed in Section V. 
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i) 

 Figure 9. Error percentage versus time for sample points.   Plots a), b) and c) show estimation error 

progression in X, Y & Z coordinates, respectively,  for a sample point from figure 6.   Plots d), e) & f) are 

similar plots for a sample point from figure 7,  whereas plots g), h) & i) are for figure 8 upto 100seconds. 
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V. Conclusions & Future Work 

 From the proposed algorithm and associated simulations it is concluded that, the proposed algorithm can 

successfully generate a 3D model of the scene, from 2D image information.  This modeling only requires one 

camera as the sensor.  The results were achieved for an unknown world and no constraints were put on the 

environment being modeled.  No attributes of the environments were provided to the system, except for the 2D 

images being captured by the camera.  The 3D scene model gives information of size and location of all obstacles in 

the scene.  This information is sufficient to initiate an obstacle avoidance maneuver in 3D space.  In the case of 

lateral flight the scene modeling has been achieved (to within +3% of actual 3D locations of the feature points) in 60 

sec of flight for 8 feature points,  and 100 sec of flight for 35 feature points.  Successful 3D scene modeling required 

flying through a very small arc of lateral flight, as compared to the size of object being modeled.   There had been no 

need to capture images from all sides of the objects being modeled.  Thus the approach is much better as compared 

to a typical ‘Structure from Motion’ problem, which requires right, left, top or other views of the object.  In the case 

of forward flight, the speed of flight is critical, as with too high a speed, obstacles will overlap the FOE.  Too low a 

speed, on the contrary, will give very less new information for the update.  Successful 3D modeling will not be 

possible in both such cases, while flying forward.  Comparing the results of lateral flight simulations with that of 

forward flight, it can be said that, flight duration required to generate a 3D model of the scene while flying forward, 

was 25% more than the duration of flight required for lateral flight case.  Subject to the two conditions of features 

not exactly at FOE and using EKF for non-linearities, the simulation results for forward flight show that for practical 

fields of view, the depth extracted from forward motion is indeed usable for a large part of the image.  The algorithm 

does require some feature points in the scene, both in case of lateral flight as well as forward flight.   Hence if no 

feature points are detected in the scene, the algorithm implies that there are no obstacles to be avoided and the initial 

flight path of the UAV may be continued without any disruption.  This is almost always true in real world scenarios.  

However, there could be one exception of that of a flat wall in front, which is discussed below. 

In future, it is planned to integrate some of the single sensor based approaches similar to Flow Field Divergence 

concept and/or Optical flow concept (as referred in Section I above) with the algorithm proposed in this paper.  To 

handle the case of having no feature points in the scene (e.g a flat wall in front), a non-scanning (and hence a low 

weight) laser range finder may also be integrated with this set-up.  The final approach is planned to be implemented 

on GTMax UAV. 
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