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Abstract 
Building aircraft with navigation and control 

systems that can complete flight tasks is complex, 
and often involves integrating information from 
multiple sensors to estimate the state of the vehicle.  
This paper describes a method, in which a glider 
can fly from a starting point to a predetermined end 
location (target) precisely using vision only.  Using 
vision to control an aircraft represents a unique 
challenge, partially due to the high rate of images 
required in order to maintain tracking and to keep 
the glider on target in a moving air mass.  Second, 
absolute distance and angle measurements to the 
target are not readily available when the glider does 
not have independent measurements of its own 
position.  The method presented here uses an 
integral image representation of the video input for 
the analysis.  The integral image, which is obtained 
by integrating the pixel intensities across the image, 
is reduced to a probable target location by 
performing a cascade of feature matching functions.  
The cascade is designed to eliminate the majority of 
the potential targets in a first pruning using 
computationally inexpensive process.  Then, the 
more exact and computationally expensive 
processes are used on the few remaining candidates; 
thereby, dramatically decreasing the processing 
required per image.  The navigation algorithms 
presented in this paper use a Kalman filter to 
estimate attitude and glideslope required based on 
measurements of the target in the image.  The 
effectiveness of the algorithms is demonstrated 
through simulation of a small glider instrumented 
with only a simulated camera. 

Nomenclature 
∆  angle between the camera centerline and 

the line through the center of the window 

δ  actuator deflection 

γ track angle 

θ pitch angle 

φ roll angle  

ψ  heading angle with respect to the desired 
flight path 

Clδa aileron effectiveness 

Cmδe elevator effectiveness 

Cnδr rudder effectiveness 

CINT model error integration coefficient 

d distance to the window 

dh vertical off-track position 

dt discrete time step 

dy lateral off-track position 

EKF Extended Kalman Filter  

FOV Field of View 

GN&C  Guidance Navigation and Control 

S width of window 

I Grayscale Image Intensity 

II Integral Image of Pixel Intensities 

k iteration number 
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px horizontal position in pixels 

py vertical position in pixels  

RI Region of Interest 

u forward velocity 

UAV Unmanned Aerial Vehicle 

Subscripts 
W window 

mid midline of the image 

des desired 

a aileron 

r rudder 

p in pixels 

trim trim position 

unroll unrolled 

H horizontal component  

V vertical component 

Introduction 
Autonomous mechanical flight has historically 

utilized a wide array of sensors to estimate the 
precise state of the vehicle.  This is a contrast to 
what is seen in nature where a bird uses senses 
similar to our own to navigate and maintain a 
predetermined course.  Although, other senses are 
utilized vision appears to be dominant.  These ideas 
have prompted this research, which in contrast to 
most previous autonomous vehicles, uses camera 
images only to estimate the vehicle's state. 

The task chosen to demonstrate the algorithms 
is to find an open window on the side of a building 
using vision, and fly autonomously through the 
window.  This straight forward objective provides a 
framework for developing and demonstrating the 
possibilities of GN&C using only vision. 

There are two main bodies of previous work in 
this area.  The first research area is in the stability 
aspects of vision based control.  Until recently this 
research has dealt principally in the development of 
vision based control laws for manufacturing robots; 
however, the increasing desire to launch fleets of 
UAV's which operate as a team has ignited new 

research in vision-based feedback control for aerial 
vehicles, as described in [1].  The second, and most 
prevalent, area is research for developing 
autonomous vehicles which utilize vision in 
conjunction with other sensors.  In this case the 
vision is used for trajectory planning as described in 
[2], or for precise determination of relative position 
as described in [3].   

This paper focuses on utilizing vision alone to 
determine the state of the vehicle, the flight plan, 
and generate control commands.  This differs from 
the more common target seeking missile, which 
also uses traditional sensors.  A completely vision 
based flight control system has the advantage of 
having a very simple hardware configuration, 
making it a low cost solution for an autopilot 
system.  This also makes it attractive as a 
completely isolated backup system. 

Flight Configuration 
There are four main components needed to fly: 

an aircraft, an Image Processing and Flight Control 
Computer (FCC), a Ground Control Station (GCS), 
and a video camera.  The final configuration of 
these systems was chosen in order to maximize the 
reusability of the system for this and other projects.    

Aircraft 
In order to achieve the objective, the aircraft 

needs to be small enough to fit through a 
realistically sized window; this limits the payload 
capacity of the aircraft.  Based on this constraint it 
was determined that the most suitable aircraft 
would be a small glider.  By eliminating the engine, 
the payload capacity of the aircraft was maximized, 
and the logistics were minimized.   

Image Processing and Flight Control 
Computer (FCC) 

In order to eliminate the need for customized 
hardware, the image processing and the flight 
control calculations are performed on remote 
computer located on the ground or on another aerial 
vehicle near the glider.  This eliminates the size 
constraint for this component.  The FCC uses a 
framegrabber to obtain still images from the video 
camera.  By utilizing a framegrabber, the images 
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are sent directly to the FCC's memory at a high rate.  
The framegrabber chosen for this is the Sensoray 
Model 311, which can provide images to the FCC at 
30 frames/sec.  Once the images are processed 
servo control signals are generated, encoded and 
sent back to the glider using a standard R/C 
transmitter.  

 Ground Control Station (GCS) 
The GCS is a standard laptop that runs either 

Windows or Linux.  The GCS software generates 
an OpenGL based display of the vehicle's position 
estimate as well as the location of the window, and 
the results of the image processor.  The GCS 
communicates with the FCC via wireless Ethernet; 
this maximizes the flexibility of the system, 
allowing the GCS operator to monitor the progress 
from a remote location.  Through this data link, the 
GCS operator can send commands to the aircraft, 
and the FCC reports state estimates and the results 
of the image processor back to the ground. 

Camera 
The camera chosen was a small 350 line CCD 

video camera, and the video is sent to the FCC via 
video transmitter.   

Figure 1 shows one support configuration for 
the glider, where the FCC and video receiver are 
carried onboard a second autonomous vehicle.  
Although, this configuration is the most flexible, 
determining a position and velocity estimate for the 
glider is more difficult, and the glider control must 
be sufficiently accurate such that the window 
remains in the field of view of the camera. 

 

Figure 1 Support Configuration for the Glider 

 

Machine Vision 
The problem of tracking a moving window at a 

high rate in real-time is not as easy for a machine as 
it is for a living creature. The image analysis 
routines need to be robust, fast and precise. A 
strategy for tracking the window was developed 
based on [4], which uses Rapid Object Detection 
applied on face recognition.   

High speed and high precision are opposing 
requirements, precision usually requires more 
processing time, whereas speed requires less.  An 
approach to this dilemma was found in [4].  The 
idea is to consider every static image coming from 
the frame grabber as a separate picture, which is 
thought to contain the target.  In order to find the 
position of the target window as fast as possible, 
every possible location of the window in pixels is 
considered, and assigned a score. If the score of the 
most likely location exceeds a certain threshold, the 
image is considered to be good and the location is 
recorded.   

Integral Image 
The image analysis uses pattern matching to 

detect the square window. High speed pattern 
matching is achieved by using an Integral Image of 
Pixel Intensities.  Finding the average pixel 
intensity of a square region is then reduced to four 
array references, or a multiple of this for more 
complex patterns. The integral image is found as: 

 )y',I(x'  y) II(x,
yy' x,x'

∑
≤≤

=  Eq 1 

where I(x, y) is the grayscale image intensity and 
II(x, y) is the integral image.  Each array location in 
the integral image represents the sum of the 
intensities of all of the pixels above and to the left 
of it.  Calculating the integral image only requires 
one pass only over the original image with the value 
at each pixel location being: 

( ) ( )
( ) ( )yx,I + 1-y1,-xII  -

 1-yx,II  +y1,-xII  y) II(x, =
 Eq 2 

Then the sum the intensities of any rectangle can be 
computed with four array references, using the sum   
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( ) ( )
( ) ( )hyx,II -yw,xII  - 

yx,II  + hyw,xII
II -II II  + II   h)w,y, rect(x, 3214

++
++=

−=
 Eq 3 

as demonstrated in Figure 2. 

 

Figure 2 Feature Definition in an Integral Image 

Cascade of Classifiers 
Assigning a probability to every possible pixel 

location of a window can be a time consuming 
problem.  By utilizing a Rejective Cascade of 
Classifiers, as shown in Figure 3 this process was 
made considerably faster.   

 

Figure 3 Rejective Cascade of Classifiers 

 The classifier begins by scoring each pixel 
against a simple criterion using an efficient 
algorithm.  The location is then either rejected or 
accepted based on the score.  If the location is 
accepted for further evaluation, a second classifier 
is used which has a more specific criteria and a 
more computationally expensive algorithm.  This 
process is then repeated until the location is rejected 
or all of the levels of the cascade have been 
completed.  This approach allows highly probable 
candidates to be examined in detail while highly 
improbable candidates are eliminated immediately.   

A well designed cascade can tremendously 
speed up the processing time of an image, while 

achieving a high positive detection ratio.  However, 
care must be taken when designing each stage of 
the classifier to ensure that the correct location is 
not eliminated early.  

The first stage of the process is to determine a 
region of interest (RI) in the image.  The RI is a 
subset of the real image where the target is thought 
to reside.  The size and location of this region are 
determined from location of the target in the 
previous image and the estimate of the vehicle's 
current state.  During certain stages of flight this 
can dramatically decreases the processing time as it 
can rule out a large portion of the image before the 
integral image is even created.  

The second stage of the process is to build an 
integral image of the RI and apply the classification 
scheme shown in Figure 4.  Since, during daylight 
hours, an open window is generally darker than the 
wall on which it is contained, the criteria were 
chosen to find features which have a dark 
rectangular inner region with a lighter border.   

 

Figure 4 Cascade of Features 

The first classifier has only one comparison. It 
checks if the average intensity of the inside of the 
feature is darker than the average intensity of the 
border. This simple and robust classification usually 
eliminates 70 percent of possible window locations 
with minimal chance for rejecting a true window 
location.  If the location passes, it's score is the ratio 
of intensity of the inner region and the border, with 
the smallest score being the best. 

If the location passes the first test, the second 
classifier is applied. The second classifier utilizes 
the same window characteristic, but checks it more 
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vigorously. It has four comparisons and checks 
whether all four sides of sides of the border are all 
individually darker than the center of the window. 
This removes a lot of false positives, like trees and 
other objects, which pass the first classifier. The 
features previous score is then multiplied by the 
ratio of intensities again to get the final score for 
that feature.  The feature with the lowest score is 
chosen, and the position of its centroid in pixels, px 
and py, are stored as the final window location. 

Additional filtering, which looks for the 
correct window orientation based on the state 
estimate could have been performed on the few 
features which passed the second level of the 
cascade.  However, during development, it was 
determined that by utilizing these two filters the 
quality of recognition was satisfactory. 

Size and Rotation 
Once the window location is known, the size 

and rotation is measured, as shown in Figure 5.  The 
horizontal size of the window in pixels, SHp, is 
measured by simple thresholding using the intensity 
levels found in the cascade. A region around the 
features centroid known to be larger than the 
window is selected and all of the pixels whose 
intensity is less than the average intensity of the 
border are counted.  This method is easy to 
implement and it proved to work well for 
homogenous windows. 

 

Figure 5 Image Measurements 

Since the window may take up as few as 15 
pixels, it was necessary to utilize a very rough 
measurement of the windows rotation.  During the 
size measurement procedure, the farthest point from 
the center in each quadrant was designated the 

corner.  Since each corner should be at a 45 degree 
angle from the x axis of the window, the average 
deviation from this gives a measure of the windows 
rotation angle, φW, as long as the aircraft roll 
remains less than 45°. 

Navigation and Control Strategies 
Once the image analysis has determined the 

position of the window in the video frame, the 
control commands can be derived.  Several 
strategies for controlling the aircraft were 
investigated.  The simplest being to simply keep the 
window centered in the camera frame.  This turned 
out to have a number of problems, which are 
discussed in the following section.  These 
investigations led to the final solution which 
decouples the lateral and vertical movements and 
utilizes an Extended Kalman Filter (EKF) to 
estimate the vehicle state.  This allowed a more 
sophisticated controller to be used. 

Keeping the Target Centered 
The simplest idea was to have a controller 

keep the window centered on the camera image at 
all times. The elevator would control the vertical 
deviations and the ailerons would control the 
horizontal. However, this setup has shown stability 
problems in the lateral navigation. 

The issue is that the position of the window, 
when not centered, is highly affected by the roll 
angle of the aircraft, φ. Suppose, for example, there 
is a lateral disturbance, and the window ends up 
right of the center.  The lateral controller would 
then turn right to compensate.  This implies a right 
roll angle, which will have the window move 
upwards. The vertical controller would then 
compensate, and will start aiming higher than the 
actual window.  

Uncoupled roll-position interaction 
A better method is to uncouple the lateral and 

vertical roll interaction by removing the roll 
movement of the camera. This is easily achieved, 
once a reliable value of φ is available. The unrolled 
target location becomes: 

( ) ( )
( ) ( )φ−+

φ−=
cospypy
sinpxpxpx

mid

midunroll  Eq 4 
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( ) ( )
( ) ( )φ−+

φ−−=
cospypy
sinpxpxpy

mid

midunroll  Eq 5 

Since all of the measurements are made in 
pixels and all of the state estimates are in a local 
coordinate system, it is necessary to convert 
between the two systems.  In doing so it is helpful 
to define a scale factor which relates the pixel width 
of the image to the field of view.   









=

2
FOVtan

pixelsin  image ofwidth SF  Eq 6 

Since images usually have a different number 
of pixels and a different FOV in the horizontal and 
vertical directions, this scale factor can be different 
for the two directions. 

Simply using the uncoupled vertical and 
horizontal displacement angles to determine the 
controller commands can give good results, but is 
sensitive for camera angle errors or crosswind. The 
problem can be seen in Figure 6, where the unrolled 
angle from the centerline of the camera to the line 
through the window is ∆H, which can be 
approximated by:   

( )
X

midunroll
H SF

pxpx −
=∆  Eq 7 

 

Figure 6 Off-track and Angle Measurements 

Only one measurement for lateral navigation, 
∆H, is feasible from the images.  However, this 
measurement really incorporates ψ and the track 
angle, γH, where γH arises from dy.  In addition to 
the fact it is not possible to distinguish the 
contributions of these two parameters, their gains 
can vary a lot during the flight. When the vehicle is 
far from the target, ∆H is sensitive to changes in ψ 
and less sensitive to changes dy. On the other hand, 
when it is close, dy can cause a large error in ∆H 

compared to ψ.  This creates a difficult gain 
scheduling problem, especially, when precise 
distance measurements are not available. 

Therefore, it seems that it is important to 
estimate dy and ψ as well as φ.  However, the 
crosswind also needs to be estimated with this 
measurement.  

Navigation and Controller Design 
This section describes the design of the 

Extended Kalman Filter (EKF) which is described 
in [5].  There are two main parts to an EKF, a 
nonlinear process model and a nonlinear 
measurement model.  By comparing the real 
measurements to measurements which are predicted 
by the model, it is possible to generate a gain 
matrix, called the Kalman gain, which combines the 
measurements and the information from the 
dynamic model in such a way as to minimize the 
error covariance of the final solution. 

An EKF requires an initial guess for each of 
the state variables and covariance information about 
the process model and about each of the individual 
measurements.  In order for the EKF to converge 
quickly, it is important to have accurate initial 
conditions and to wisely choose covariance 
information.   

The following measurements are retrieved 
from each image during the flight: 

• Horizontal Window Size    

• Window Rotation   

• Horizontal position of the Window   

• Vertical position of the Window  

The filter then uses this data to estimate following 
information about the state of the vehicle relative to 
a window of known size and location: 

• Roll Angle   

• Distance to the Window and Vehicle Speed  

• Off-track Position and Yaw  

Dynamic Model of Glider  
The model of the glider is a very important 

part of the filter, as it gives the filter its required 
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precision. On the other hand, obtaining values for a 
model can be a difficult job, and if different gliders 
are used, the model will have to be updated over 
and over. Therefore, the choice was made to keep 
the model as simple as possible. The glider model 
in the navigation filter is propagated forward in 
time using Euler integration and is completely 
described using only the following five parameters: 

• Clδa Aileron effectiveness 

• Cmδe Elevator effectiveness 

• Cnδr Rudder effectiveness 

• δtrim Elevator trim setting 

• CINT Model error integrator coefficient 

Each portion of the model is described in the 
sections that follow. 

Roll: 
Rolling motion is described with equation 

dtC kamk1k a
δ+φ=φ

δ+  Eq 8 

where dt is the discrete time step for the update.  
Choosing the model noise covariance wisely, this 
simple model gives a satisfactory propagation of 
roll. 

Distance and Speed: 
The next step is the distance measurement. 

Image analysis provides a value for the approximate 
size of the window, which can be turned into a 
distance.  The vehicle distance model used 
extremely simple: 

dtudd kk1k −=+  Eq 9 

where d is the distance to the window and u is the 
forward speed. In the filter u is modeled as a 
constant speed, but the estimation of u can change 
from measurement information.  

Off-track position and Yaw:  
The lateral camera angle, ∆H, is the sum of the 

off-track angle, γH, and the heading error, ψ, as 
illustrated in Figure 6.  It is difficult to accurately 
measure either one of these separately from a single 
image.  One could go back to image analysis to 
make additional measurements; angles of the 
window border could be measured to attempt to 
calculate the off-track position, since it causes an 
angle to occur between the top and bottom line of 

the window. These angles, however, are too small 
to be useful for this application.  Instead, the EKF 
will be used to estimate off-track distances during 
simulator flight tests, using only the four 
measurements described above.  The coupled two-
state model is: 

( ) dtusindydy kkk1k ψ+=+  Eq 10 

( )
dt

u
φtan

gψψ
k

k
k1k +=+  Eq 11 

By using the EKF, it is possible to ignore the fact 
that ψ and dy are coupled and let the filter sort 
things out. 

Vertical Flight Path Angle: 
For the vertical flight path, there is a similar 

ambiguity to that seen in the lateral direction.  The 
vertical measurement obtained encompasses both 
the pitch and an altitude error above the initial glide 
path.  This issue is compounded when there is 
insufficient trim data for the elevator.  However, it 
was determined that, by allowing the flight path to 
move with the aircraft and recalculating the desired 
pitch angle so that the glider intercepts the window, 
acceptable controller performance is achieved.  
Therefore, it is sufficient to model the pitch angle 
as: 

( )dtC trimemk1k e
δ−δ+θ=θ

δ+  Eq 12         

Measurement Model 
The measurement model in an EKF predicts 

what the measurement should be based on the state 
estimation predicted by the dynamic model.   

Window Size: 
The predicted window size in pixels is directly 

related to the distance the vehicle is from the 
window.  The relation between window size 
measurement in pixels and distance state in feet is 
derived from: 

X
1k

WH
1kpH SF

d2
S

Ŝ ⋅=
+

+
 Eq 13 

where SHW is the real dimension of the window in 
feet, and SFX is the scale factor from Eq 6 for the 
horizontal direction. 
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Rotation Angle: 
The predicted roll angle of the window is 

simply: 

1k1kW ++ φ−=φ  Eq 14 

Vertical and Horizontal Position: 
In order to predict the vertical and horizontal 

position of the window on the image, the distance to 
the window dy, ψ, and θ need to be estimated. 

Using small angle approximations, the lateral 
position of the window can be estimated as: 

( ) ( )

X
1k

1k
1k

X
1k

1k1k1k1k
1k

SF
d
dy

SF
d

sindcosdyx̂p

⋅







+ψ≈

⋅
ψ+ψ

=

+

+
+

+

++++
+

 Eq 15 

Similarly, by making a small angle 
approximation and assuming that the altitude error 
is zero, the vertical position of the window can be 
calculated as: 

( ) ( )

Y1k

Y
1k

1k1k1k1k
1k

SF

SF
d

sindcosdhŷp

⋅θ≈

⋅
θ+θ

=

+

+

++++
+  Eq 16 

Enhancing the Off-Track Estimation 
Although this simple model gives good results 

when simulating flights, one thing that this model 
can not deal with is crosswind, or an error in 
camera alignment.  Both of them can be 
compensated for by flying with a single crab angle.  

However, the crab angle is an additional state 
to be estimated. Instead of adding the crosswind to 
the EKF state, it was estimated separately using the 
error in the model of ψ for input.  Errors in the ψ 
prediction are mainly due to lateral wind, the 
camera not being aligned with the direction of flight 
or the roll angle having a bias.  The approach 
developed in this paper is to integrate ψ, in order to 
estimate the necessary crab angle.  The idea being 
that, since the heading error itself is being driven to 
zero by the controller, the remaining error would be 
the result of cross wind or misalignment.  Then, by 
driving the heading to the crab angle instead, the 
errors in the heading will be minimized.  

The Controller 
The controller was designed around a standard 

proportional feedback controller. Using an 
integrator was investigated; however, it turned out 
to be too slow for the short high precision flight. 
Therefore, the integrator was replaced by a 
proportional term on the flight path angles. Since, 
the angle error is very small at large distances it 
does not influence the controller until the glider gets 
close to the window.  

The lateral controller uses two loops.  The first 
determines the desired roll angle φdes, which is 
derived from dy and γH, and limited to ±30° to 
prevent 360° rolls. 

( )HHdPdes KKdyK γ−∆+φ−=φ α  Eq 17 

Then it has a high gain controller for the desired roll 
angle: 

( )desRa K φ−φ=δ  Eq 18 

The vertical controller sets the pitch angle to 
the vertical angle between the window and the 
camera centerline, ∆V, minus the trim position. 

( )trimVPe K θ−∆=δ  Eq 19 

This causes the glider to fly a curved path instead of 
a straight line. 

Simulation Results 
The system presented in this paper was tested 

in two ways.  Firstly, the effectiveness of the image 
analysis was tested using multiple video fragments 
of different kinds of windows and square openings.  
The results were promising, with the image 
processor tracking the windows in real time for all 
the scenarios, as shown in Figure 7. 



9 

 

Figure 7 Image Processing Results 

Once the image processor was tested, the 
whole system was implemented in a real time 
simulation environment described in [6].  This 
environment contains a dynamic model of the 
glider, simulated video transmission and datalinks, 
GCS software, and the navigation and image 
processing code discussed in this paper.  For Closed 
Loop simulations, an scene generated representation 
of the camera view was used as an image.  This 
tested the navigation filter and real time image 
tracking.  The structure of the simulation is shown 
in Figure 8. 

 

Figure 8 Simulation Architecture 

Figure 9 shows the simulation scene generator.  
The blue aircraft represents the output of the 
navigation filter and the red aircraft is the position 
of the simulation model. 

 

Figure 9 Screenshot of the Simulator Graphics 

With the simulator it was possible to test all 
aspects of the EKF design.  Figure 10 shows the 
distance and speed estimates obtained by the filter 
during a simulated flight and Figure 11 shows the 
results of the off-track distance and yaw angle 
estimations.  In these cases, the glider must 
overcome an initial perturbation of 15° in φ; 
however, the crosswind is zero. 

 

Figure 10 Distance Estimation to the Window 
without Crosswind 
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Figure 11  Off-Track Estimation without 
Crosswind 

Figure 12 shows results from simulator run 
with heavy left crosswind and the same initial 
perturbation of 15° to the right in φ. In subplot b) 
one can see the difference between φ and the 
estimatedϕ̂ .  In plot c) the glider finds to the 
necessary crab angle to compensate the crosswind. 
Plot d) has the off-track error in time. Notice the 
accurate trend with a scale error, since absolute 
measurements are not available. 

 

Figure 12 State Estimations with 9ft/sec 
Crosswinds 

Figure 13 shows the results when the initial 
perturbation is in the same direction as the 
crosswind would generate. The filter is then forced 
to believe the glider behavior is caused mainly by 

the initial perturbation and needs a lot more time to 
estimate crosswind. Nevertheless the error-
integrator flies the glider to the center of the target. 

 

Figure 13 Off-Track Estimation with Crosswind 
and Perturbation in the Same Direction 

Figure 14 shows the vertical results from 
simulator. The glide slope is not constant since it 
just controls the vertical camera angle ∆V to a 
certain predetermined value related to the glide 
slope.   

 

Figure 14 Vertical Flight Path 

Conclusions and Further Research 
Simulation tests showed that vision-only 

aircraft flight control is effective, even with very 
few image analysis measurements and a simple 
glider model.  

Simulations showed that a 1/3 crosswind 
versus launch speed velocity ratio is the maximum 
the glider can handle, without losing track of the 
window.  Should 10 feet/second winds be expected, 
the glider would have to fly at least 25 to 35 feet per 
second forward speed.  

There are two main research areas that extend 
from this preliminary examination of visually 
guided aerial vehicles.  The first step will be to take 
the methods outlined in this paper from simulation 
and apply them in actual flight testing.  The second 
is to explore other possible applications, including 
guidance to a landing on a runway.  
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