
1

VISION-ONLY AIRCRAFT FLIGHT CONTROL
Christophe De Wagter1

Delft University of Technology, Delft, The Netherlands
 Alison A. Proctor2 and Eric N. Johnson3

Georgia Institute of Technology, Atlanta, GA, 30332

1 Graduate Research Assistant
Email: C.deWagter@student.tudelft.nl
2 Graduate Research Assistant
Email: alison_proctor@ae.gatech.edu
3 Lockheed Martin Assistant Professor of Avionics Integration
Email: Eric.Johnson@aerospace.gatech.edu

Abstract
Building aircraft with navigation and control

systems that can complete flight tasks is complex,
and often involves integrating information from
multiple sensors to estimate the state of the vehicle.
This paper describes a method, in which a glider
can fly from a starting point to a predetermined end
location (target) precisely using vision only. Using
vision to control an aircraft represents a unique
challenge, partially due to the high rate of images
required in order to maintain tracking and to keep
the glider on target in a moving air mass. Second,
absolute distance and angle measurements to the
target are not readily available when the glider does
not have independent measurements of its own
position. The method presented here uses an
integral image representation of the video input for
the analysis. The integral image, which is obtained
by integrating the pixel intensities across the image,
is reduced to a probable target location by
performing a cascade of feature matching functions.
The cascade is designed to eliminate the majority of
the potential targets in a first pruning using
computationally inexpensive process. Then, the
more exact and computationally expensive
processes are used on the few remaining candidates;
thereby, dramatically decreasing the processing
required per image. The navigation algorithms
presented in this paper use a Kalman filter to
estimate attitude and glideslope required based on
measurements of the target in the image. The
effectiveness of the algorithms is demonstrated
through simulation of a small glider instrumented
with only a simulated camera.

Nomenclature
∆ angle between the camera centerline and

the line through the center of the window

δ actuator deflection

γ track angle

θ pitch angle

φ roll angle

ψ heading angle with respect to the desired
flight path

Clδa aileron effectiveness

Cmδe elevator effectiveness

Cnδr rudder effectiveness

CINT model error integration coefficient

d distance to the window

dh vertical off-track position

dt discrete time step

dy lateral off-track position

EKF Extended Kalman Filter

FOV Field of View

GN&C Guidance Navigation and Control

S width of window

I Grayscale Image Intensity

II Integral Image of Pixel Intensities

k iteration number

2

px horizontal position in pixels

py vertical position in pixels

RI Region of Interest

u forward velocity

UAV Unmanned Aerial Vehicle

Subscripts
W window

mid midline of the image

des desired

a aileron

r rudder

p in pixels

trim trim position

unroll unrolled

H horizontal component

V vertical component

Introduction
Autonomous mechanical flight has historically

utilized a wide array of sensors to estimate the
precise state of the vehicle. This is a contrast to
what is seen in nature where a bird uses senses
similar to our own to navigate and maintain a
predetermined course. Although, other senses are
utilized vision appears to be dominant. These ideas
have prompted this research, which in contrast to
most previous autonomous vehicles, uses camera
images only to estimate the vehicle's state.

The task chosen to demonstrate the algorithms
is to find an open window on the side of a building
using vision, and fly autonomously through the
window. This straight forward objective provides a
framework for developing and demonstrating the
possibilities of GN&C using only vision.

There are two main bodies of previous work in
this area. The first research area is in the stability
aspects of vision based control. Until recently this
research has dealt principally in the development of
vision based control laws for manufacturing robots;
however, the increasing desire to launch fleets of
UAV's which operate as a team has ignited new

research in vision-based feedback control for aerial
vehicles, as described in [1]. The second, and most
prevalent, area is research for developing
autonomous vehicles which utilize vision in
conjunction with other sensors. In this case the
vision is used for trajectory planning as described in
[2], or for precise determination of relative position
as described in [3].

This paper focuses on utilizing vision alone to
determine the state of the vehicle, the flight plan,
and generate control commands. This differs from
the more common target seeking missile, which
also uses traditional sensors. A completely vision
based flight control system has the advantage of
having a very simple hardware configuration,
making it a low cost solution for an autopilot
system. This also makes it attractive as a
completely isolated backup system.

Flight Configuration
There are four main components needed to fly:

an aircraft, an Image Processing and Flight Control
Computer (FCC), a Ground Control Station (GCS),
and a video camera. The final configuration of
these systems was chosen in order to maximize the
reusability of the system for this and other projects.

Aircraft
In order to achieve the objective, the aircraft

needs to be small enough to fit through a
realistically sized window; this limits the payload
capacity of the aircraft. Based on this constraint it
was determined that the most suitable aircraft
would be a small glider. By eliminating the engine,
the payload capacity of the aircraft was maximized,
and the logistics were minimized.

Image Processing and Flight Control
Computer (FCC)

In order to eliminate the need for customized
hardware, the image processing and the flight
control calculations are performed on remote
computer located on the ground or on another aerial
vehicle near the glider. This eliminates the size
constraint for this component. The FCC uses a
framegrabber to obtain still images from the video
camera. By utilizing a framegrabber, the images

3

are sent directly to the FCC's memory at a high rate.
The framegrabber chosen for this is the Sensoray
Model 311, which can provide images to the FCC at
30 frames/sec. Once the images are processed
servo control signals are generated, encoded and
sent back to the glider using a standard R/C
transmitter.

 Ground Control Station (GCS)
The GCS is a standard laptop that runs either

Windows or Linux. The GCS software generates
an OpenGL based display of the vehicle's position
estimate as well as the location of the window, and
the results of the image processor. The GCS
communicates with the FCC via wireless Ethernet;
this maximizes the flexibility of the system,
allowing the GCS operator to monitor the progress
from a remote location. Through this data link, the
GCS operator can send commands to the aircraft,
and the FCC reports state estimates and the results
of the image processor back to the ground.

Camera
The camera chosen was a small 350 line CCD

video camera, and the video is sent to the FCC via
video transmitter.

Figure 1 shows one support configuration for
the glider, where the FCC and video receiver are
carried onboard a second autonomous vehicle.
Although, this configuration is the most flexible,
determining a position and velocity estimate for the
glider is more difficult, and the glider control must
be sufficiently accurate such that the window
remains in the field of view of the camera.

Figure 1 Support Configuration for the Glider

Machine Vision
The problem of tracking a moving window at a

high rate in real-time is not as easy for a machine as
it is for a living creature. The image analysis
routines need to be robust, fast and precise. A
strategy for tracking the window was developed
based on [4], which uses Rapid Object Detection
applied on face recognition.

High speed and high precision are opposing
requirements, precision usually requires more
processing time, whereas speed requires less. An
approach to this dilemma was found in [4]. The
idea is to consider every static image coming from
the frame grabber as a separate picture, which is
thought to contain the target. In order to find the
position of the target window as fast as possible,
every possible location of the window in pixels is
considered, and assigned a score. If the score of the
most likely location exceeds a certain threshold, the
image is considered to be good and the location is
recorded.

Integral Image
The image analysis uses pattern matching to

detect the square window. High speed pattern
matching is achieved by using an Integral Image of
Pixel Intensities. Finding the average pixel
intensity of a square region is then reduced to four
array references, or a multiple of this for more
complex patterns. The integral image is found as:

)y',I(x' y) II(x,
yy' x,x'

∑
≤≤

= Eq 1

where I(x, y) is the grayscale image intensity and
II(x, y) is the integral image. Each array location in
the integral image represents the sum of the
intensities of all of the pixels above and to the left
of it. Calculating the integral image only requires
one pass only over the original image with the value
at each pixel location being:

() ()
() ()yx,I + 1-y1,-xII -

 1-yx,II +y1,-xII y) II(x, =
 Eq 2

Then the sum the intensities of any rectangle can be
computed with four array references, using the sum

4

() ()
() ()hyx,II -yw,xII -

yx,II + hyw,xII
II -II II + II h)w,y, rect(x, 3214

++
++=

−=
 Eq 3

as demonstrated in Figure 2.

Figure 2 Feature Definition in an Integral Image

Cascade of Classifiers
Assigning a probability to every possible pixel

location of a window can be a time consuming
problem. By utilizing a Rejective Cascade of
Classifiers, as shown in Figure 3 this process was
made considerably faster.

Figure 3 Rejective Cascade of Classifiers

 The classifier begins by scoring each pixel
against a simple criterion using an efficient
algorithm. The location is then either rejected or
accepted based on the score. If the location is
accepted for further evaluation, a second classifier
is used which has a more specific criteria and a
more computationally expensive algorithm. This
process is then repeated until the location is rejected
or all of the levels of the cascade have been
completed. This approach allows highly probable
candidates to be examined in detail while highly
improbable candidates are eliminated immediately.

A well designed cascade can tremendously
speed up the processing time of an image, while

achieving a high positive detection ratio. However,
care must be taken when designing each stage of
the classifier to ensure that the correct location is
not eliminated early.

The first stage of the process is to determine a
region of interest (RI) in the image. The RI is a
subset of the real image where the target is thought
to reside. The size and location of this region are
determined from location of the target in the
previous image and the estimate of the vehicle's
current state. During certain stages of flight this
can dramatically decreases the processing time as it
can rule out a large portion of the image before the
integral image is even created.

The second stage of the process is to build an
integral image of the RI and apply the classification
scheme shown in Figure 4. Since, during daylight
hours, an open window is generally darker than the
wall on which it is contained, the criteria were
chosen to find features which have a dark
rectangular inner region with a lighter border.

Figure 4 Cascade of Features

The first classifier has only one comparison. It
checks if the average intensity of the inside of the
feature is darker than the average intensity of the
border. This simple and robust classification usually
eliminates 70 percent of possible window locations
with minimal chance for rejecting a true window
location. If the location passes, it's score is the ratio
of intensity of the inner region and the border, with
the smallest score being the best.

If the location passes the first test, the second
classifier is applied. The second classifier utilizes
the same window characteristic, but checks it more

5

vigorously. It has four comparisons and checks
whether all four sides of sides of the border are all
individually darker than the center of the window.
This removes a lot of false positives, like trees and
other objects, which pass the first classifier. The
features previous score is then multiplied by the
ratio of intensities again to get the final score for
that feature. The feature with the lowest score is
chosen, and the position of its centroid in pixels, px
and py, are stored as the final window location.

Additional filtering, which looks for the
correct window orientation based on the state
estimate could have been performed on the few
features which passed the second level of the
cascade. However, during development, it was
determined that by utilizing these two filters the
quality of recognition was satisfactory.

Size and Rotation
Once the window location is known, the size

and rotation is measured, as shown in Figure 5. The
horizontal size of the window in pixels, SHp, is
measured by simple thresholding using the intensity
levels found in the cascade. A region around the
features centroid known to be larger than the
window is selected and all of the pixels whose
intensity is less than the average intensity of the
border are counted. This method is easy to
implement and it proved to work well for
homogenous windows.

Figure 5 Image Measurements

Since the window may take up as few as 15
pixels, it was necessary to utilize a very rough
measurement of the windows rotation. During the
size measurement procedure, the farthest point from
the center in each quadrant was designated the

corner. Since each corner should be at a 45 degree
angle from the x axis of the window, the average
deviation from this gives a measure of the windows
rotation angle, φW, as long as the aircraft roll
remains less than 45°.

Navigation and Control Strategies
Once the image analysis has determined the

position of the window in the video frame, the
control commands can be derived. Several
strategies for controlling the aircraft were
investigated. The simplest being to simply keep the
window centered in the camera frame. This turned
out to have a number of problems, which are
discussed in the following section. These
investigations led to the final solution which
decouples the lateral and vertical movements and
utilizes an Extended Kalman Filter (EKF) to
estimate the vehicle state. This allowed a more
sophisticated controller to be used.

Keeping the Target Centered
The simplest idea was to have a controller

keep the window centered on the camera image at
all times. The elevator would control the vertical
deviations and the ailerons would control the
horizontal. However, this setup has shown stability
problems in the lateral navigation.

The issue is that the position of the window,
when not centered, is highly affected by the roll
angle of the aircraft, φ. Suppose, for example, there
is a lateral disturbance, and the window ends up
right of the center. The lateral controller would
then turn right to compensate. This implies a right
roll angle, which will have the window move
upwards. The vertical controller would then
compensate, and will start aiming higher than the
actual window.

Uncoupled roll-position interaction
A better method is to uncouple the lateral and

vertical roll interaction by removing the roll
movement of the camera. This is easily achieved,
once a reliable value of φ is available. The unrolled
target location becomes:

() ()
() ()φ−+

φ−=
cospypy
sinpxpxpx

mid

midunroll Eq 4

6

() ()
() ()φ−+

φ−−=
cospypy
sinpxpxpy

mid

midunroll Eq 5

Since all of the measurements are made in
pixels and all of the state estimates are in a local
coordinate system, it is necessary to convert
between the two systems. In doing so it is helpful
to define a scale factor which relates the pixel width
of the image to the field of view.









=

2
FOVtan

pixelsin image ofwidth SF Eq 6

Since images usually have a different number
of pixels and a different FOV in the horizontal and
vertical directions, this scale factor can be different
for the two directions.

Simply using the uncoupled vertical and
horizontal displacement angles to determine the
controller commands can give good results, but is
sensitive for camera angle errors or crosswind. The
problem can be seen in Figure 6, where the unrolled
angle from the centerline of the camera to the line
through the window is ∆H, which can be
approximated by:

()
X

midunroll
H SF

pxpx −
=∆ Eq 7

Figure 6 Off-track and Angle Measurements

Only one measurement for lateral navigation,
∆H, is feasible from the images. However, this
measurement really incorporates ψ and the track
angle, γH, where γH arises from dy. In addition to
the fact it is not possible to distinguish the
contributions of these two parameters, their gains
can vary a lot during the flight. When the vehicle is
far from the target, ∆H is sensitive to changes in ψ
and less sensitive to changes dy. On the other hand,
when it is close, dy can cause a large error in ∆H

compared to ψ. This creates a difficult gain
scheduling problem, especially, when precise
distance measurements are not available.

Therefore, it seems that it is important to
estimate dy and ψ as well as φ. However, the
crosswind also needs to be estimated with this
measurement.

Navigation and Controller Design
This section describes the design of the

Extended Kalman Filter (EKF) which is described
in [5]. There are two main parts to an EKF, a
nonlinear process model and a nonlinear
measurement model. By comparing the real
measurements to measurements which are predicted
by the model, it is possible to generate a gain
matrix, called the Kalman gain, which combines the
measurements and the information from the
dynamic model in such a way as to minimize the
error covariance of the final solution.

An EKF requires an initial guess for each of
the state variables and covariance information about
the process model and about each of the individual
measurements. In order for the EKF to converge
quickly, it is important to have accurate initial
conditions and to wisely choose covariance
information.

The following measurements are retrieved
from each image during the flight:

• Horizontal Window Size

• Window Rotation

• Horizontal position of the Window

• Vertical position of the Window

The filter then uses this data to estimate following
information about the state of the vehicle relative to
a window of known size and location:

• Roll Angle

• Distance to the Window and Vehicle Speed

• Off-track Position and Yaw

Dynamic Model of Glider
The model of the glider is a very important

part of the filter, as it gives the filter its required

7

precision. On the other hand, obtaining values for a
model can be a difficult job, and if different gliders
are used, the model will have to be updated over
and over. Therefore, the choice was made to keep
the model as simple as possible. The glider model
in the navigation filter is propagated forward in
time using Euler integration and is completely
described using only the following five parameters:

• Clδa Aileron effectiveness

• Cmδe Elevator effectiveness

• Cnδr Rudder effectiveness

• δtrim Elevator trim setting

• CINT Model error integrator coefficient

Each portion of the model is described in the
sections that follow.

Roll:
Rolling motion is described with equation

dtC kamk1k a
δ+φ=φ

δ+ Eq 8

where dt is the discrete time step for the update.
Choosing the model noise covariance wisely, this
simple model gives a satisfactory propagation of
roll.

Distance and Speed:
The next step is the distance measurement.

Image analysis provides a value for the approximate
size of the window, which can be turned into a
distance. The vehicle distance model used
extremely simple:

dtudd kk1k −=+ Eq 9

where d is the distance to the window and u is the
forward speed. In the filter u is modeled as a
constant speed, but the estimation of u can change
from measurement information.

Off-track position and Yaw:
The lateral camera angle, ∆H, is the sum of the

off-track angle, γH, and the heading error, ψ, as
illustrated in Figure 6. It is difficult to accurately
measure either one of these separately from a single
image. One could go back to image analysis to
make additional measurements; angles of the
window border could be measured to attempt to
calculate the off-track position, since it causes an
angle to occur between the top and bottom line of

the window. These angles, however, are too small
to be useful for this application. Instead, the EKF
will be used to estimate off-track distances during
simulator flight tests, using only the four
measurements described above. The coupled two-
state model is:

() dtusindydy kkk1k ψ+=+ Eq 10

()
dt

u
φtan

gψψ
k

k
k1k +=+ Eq 11

By using the EKF, it is possible to ignore the fact
that ψ and dy are coupled and let the filter sort
things out.

Vertical Flight Path Angle:
For the vertical flight path, there is a similar

ambiguity to that seen in the lateral direction. The
vertical measurement obtained encompasses both
the pitch and an altitude error above the initial glide
path. This issue is compounded when there is
insufficient trim data for the elevator. However, it
was determined that, by allowing the flight path to
move with the aircraft and recalculating the desired
pitch angle so that the glider intercepts the window,
acceptable controller performance is achieved.
Therefore, it is sufficient to model the pitch angle
as:

()dtC trimemk1k e
δ−δ+θ=θ

δ+ Eq 12

Measurement Model
The measurement model in an EKF predicts

what the measurement should be based on the state
estimation predicted by the dynamic model.

Window Size:
The predicted window size in pixels is directly

related to the distance the vehicle is from the
window. The relation between window size
measurement in pixels and distance state in feet is
derived from:

X
1k

WH
1kpH SF

d2
S

Ŝ ⋅=
+

+
 Eq 13

where SHW is the real dimension of the window in
feet, and SFX is the scale factor from Eq 6 for the
horizontal direction.

8

Rotation Angle:
The predicted roll angle of the window is

simply:

1k1kW ++ φ−=φ Eq 14

Vertical and Horizontal Position:
In order to predict the vertical and horizontal

position of the window on the image, the distance to
the window dy, ψ, and θ need to be estimated.

Using small angle approximations, the lateral
position of the window can be estimated as:

() ()

X
1k

1k
1k

X
1k

1k1k1k1k
1k

SF
d
dy

SF
d

sindcosdyx̂p

⋅







+ψ≈

⋅
ψ+ψ

=

+

+
+

+

++++
+

 Eq 15

Similarly, by making a small angle
approximation and assuming that the altitude error
is zero, the vertical position of the window can be
calculated as:

() ()

Y1k

Y
1k

1k1k1k1k
1k

SF

SF
d

sindcosdhŷp

⋅θ≈

⋅
θ+θ

=

+

+

++++
+ Eq 16

Enhancing the Off-Track Estimation
Although this simple model gives good results

when simulating flights, one thing that this model
can not deal with is crosswind, or an error in
camera alignment. Both of them can be
compensated for by flying with a single crab angle.

However, the crab angle is an additional state
to be estimated. Instead of adding the crosswind to
the EKF state, it was estimated separately using the
error in the model of ψ for input. Errors in the ψ
prediction are mainly due to lateral wind, the
camera not being aligned with the direction of flight
or the roll angle having a bias. The approach
developed in this paper is to integrate ψ, in order to
estimate the necessary crab angle. The idea being
that, since the heading error itself is being driven to
zero by the controller, the remaining error would be
the result of cross wind or misalignment. Then, by
driving the heading to the crab angle instead, the
errors in the heading will be minimized.

The Controller
The controller was designed around a standard

proportional feedback controller. Using an
integrator was investigated; however, it turned out
to be too slow for the short high precision flight.
Therefore, the integrator was replaced by a
proportional term on the flight path angles. Since,
the angle error is very small at large distances it
does not influence the controller until the glider gets
close to the window.

The lateral controller uses two loops. The first
determines the desired roll angle φdes, which is
derived from dy and γH, and limited to ±30° to
prevent 360° rolls.

()HHdPdes KKdyK γ−∆+φ−=φ α Eq 17

Then it has a high gain controller for the desired roll
angle:

()desRa K φ−φ=δ Eq 18

The vertical controller sets the pitch angle to
the vertical angle between the window and the
camera centerline, ∆V, minus the trim position.

()trimVPe K θ−∆=δ Eq 19

This causes the glider to fly a curved path instead of
a straight line.

Simulation Results
The system presented in this paper was tested

in two ways. Firstly, the effectiveness of the image
analysis was tested using multiple video fragments
of different kinds of windows and square openings.
The results were promising, with the image
processor tracking the windows in real time for all
the scenarios, as shown in Figure 7.

9

Figure 7 Image Processing Results

Once the image processor was tested, the
whole system was implemented in a real time
simulation environment described in [6]. This
environment contains a dynamic model of the
glider, simulated video transmission and datalinks,
GCS software, and the navigation and image
processing code discussed in this paper. For Closed
Loop simulations, an scene generated representation
of the camera view was used as an image. This
tested the navigation filter and real time image
tracking. The structure of the simulation is shown
in Figure 8.

Figure 8 Simulation Architecture

Figure 9 shows the simulation scene generator.
The blue aircraft represents the output of the
navigation filter and the red aircraft is the position
of the simulation model.

Figure 9 Screenshot of the Simulator Graphics

With the simulator it was possible to test all
aspects of the EKF design. Figure 10 shows the
distance and speed estimates obtained by the filter
during a simulated flight and Figure 11 shows the
results of the off-track distance and yaw angle
estimations. In these cases, the glider must
overcome an initial perturbation of 15° in φ;
however, the crosswind is zero.

Figure 10 Distance Estimation to the Window
without Crosswind

10

Figure 11 Off-Track Estimation without
Crosswind

Figure 12 shows results from simulator run
with heavy left crosswind and the same initial
perturbation of 15° to the right in φ. In subplot b)
one can see the difference between φ and the
estimatedϕ̂ . In plot c) the glider finds to the
necessary crab angle to compensate the crosswind.
Plot d) has the off-track error in time. Notice the
accurate trend with a scale error, since absolute
measurements are not available.

Figure 12 State Estimations with 9ft/sec
Crosswinds

Figure 13 shows the results when the initial
perturbation is in the same direction as the
crosswind would generate. The filter is then forced
to believe the glider behavior is caused mainly by

the initial perturbation and needs a lot more time to
estimate crosswind. Nevertheless the error-
integrator flies the glider to the center of the target.

Figure 13 Off-Track Estimation with Crosswind
and Perturbation in the Same Direction

Figure 14 shows the vertical results from
simulator. The glide slope is not constant since it
just controls the vertical camera angle ∆V to a
certain predetermined value related to the glide
slope.

Figure 14 Vertical Flight Path

Conclusions and Further Research
Simulation tests showed that vision-only

aircraft flight control is effective, even with very
few image analysis measurements and a simple
glider model.

Simulations showed that a 1/3 crosswind
versus launch speed velocity ratio is the maximum
the glider can handle, without losing track of the
window. Should 10 feet/second winds be expected,
the glider would have to fly at least 25 to 35 feet per
second forward speed.

There are two main research areas that extend
from this preliminary examination of visually
guided aerial vehicles. The first step will be to take
the methods outlined in this paper from simulation
and apply them in actual flight testing. The second
is to explore other possible applications, including
guidance to a landing on a runway.

11

Acknowledgements
The authors would like to acknowledge the

contributions of Tobias Breithaupt, Henrick
Christophersen, Suresh Kannan, and Wayne Pickell,
who made this research possible.

References
 [1] Vidal, Rene, Omid Shakernia, Shankar
Sastry,2003, "Formation Control of Nonholonomic
Mobile Robots with Omnidirectional Visual
Servoing and Motion Segmentation" To appear:
2003 IEEE Conference on Robotics and
Automation .

 [2] Sinopoli, Bruno, Mario Micheli, Gianluca
Donato and T. John Koo, 2001, "Vision Based
Navigation for an Unmanned Air Vehicle",
Proceedings of the IEEE International Conference
on Robotics and Automation, May 2001,pp
1757-1765.

 [3] Saripalli , Srikanth, James F. Montgomery, and
Gaurav S. Sukhatme, 2002, "Vision-based
autonomous landing of an unmanned aerial
vehicle," IEEE International Conference on
Robotics and Automation, Volume 3, 2002 pp.
2799-2804

[4] Viola, P., M. Jones, 2001, Rapid Object
Detection using Boosted Cascade of Simple
Features, Computer Vision and Pattern
Recognition.

[5] Weltch, Greg, Gary Bishop,, 2002, An
Introduction to the Kalman Filter, University of
North Carolina at Chapel Hill, TR 95-041.

[6] Johnson, E. and S. Mishra.,2002, Flight
Simulation for the Development of an Experimental
UAV, Proceedings of the AIAA Modeling and
Simulation Technologies Conference.

