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Abstract— This paper discusses estimation and guidance
strategies for vision-based target tracking. Specific
applications include formation control of multiple unmanned
aerial vehicles (UAVs) and air-to-air refueling. We assume 
that no information is communicated between the aircraft, 
and only passive 2-D vision information is available to 
maintain formation. To improve the robustness of the
estimation process with respect to unknown target aircraft 
acceleration, the nonlinear estimator (EKF) is augmented with
an adaptive neural network (NN).  The guidance strategy
involves augmenting the inverting solution of nonlinear line-
of-sight (LOS) range kinematics with the output of an 
adaptive NN to compensate for target aircraft LOS velocity. 
Simulation results are presented that illustrate the various 
approaches.

I. INTRODUCTION 
S demonstrated in recent events, UAVs are 

becoming an important component of our military
force structure. Looking forward, maintaining a formation
while executing missions in the presence of terrain and 
obstacles is seen as an important challenge. It will also
remain important to minimize communication between
vehicles. In this paper, we focus on measurement,
estimation and formation control guidance strategies [1]-
[4].

Although imperfectly understood, flocking behavior of
birds, schooling behavior of fish, and even studies of
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swarming insects have provided inspiration for concepts of
coordinated multi-vehicle operation [5]. Existing work on
coordinated group motion include a distributed behavioral
approach to synthesizing the flocking motion of boids [6]
(bird and fish-like objects).

Most of the approaches for formation control assume that
a leader vehicle state of motion is known at least partially
to the follower (neighboring) vehicles [1]-[3]. The approach 
taken here is to observe these quantities through passive
vision information. That is, a single camera is provided
with a view of another aircraft, and that imagery is
processed in real-time to determine other aircraft state 
information. We assume that the image is represented in
terms of a noisy measurement of image center and size [7]. 
The image size measurement is not a viable measurement at 
large ranges, and in this case we rely on bearing
information. This represents a “worst case” for vision-based
formation control. We construct an Extended Kalman filter
(EKF) to estimate relative velocity and position, which we 
utilize in the guidance policy [7],[8]. In general, regardless 
of the approach taken to processing vision-based data, the
distance between one vehicle and any other vehicle is
difficult to estimate. If we use poor range estimates to
control a vehicle performing station-keeping with the
target, a dangerous proximity may occur. It is well known
that the accuracy of range estimation depends on camera
translating motion, and the best translation for range 
estimation is a motion parallel to its image plane [9].

Another associated problem is the influence of the
unknown target aircraft acceleration on the estimates
provided by the EKF. The unknown acceleration acts as 
unmodeled disturbances on the estimation process, giving
rise to biased or even diverging estimates. In this paper, we 
discuss a method to augment an EKF with a neural network
(NN) based adaptive element that provides robustness to
unknown and unmodeled dynamics. In a complementary
approach, the nominal guidance policy associated with 
regulating the vision measurements is augmented with the
output of an adaptive NN that compensates for the effect of 
target aircraft motion on the dynamics of these
measurements.

For the guidance strategies, we assume that the aircraft 
do not communicate velocity vector information. The lack
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of relative velocity vector information is treated as
modeling uncertainty, whose effect on line-of-sight (LOS) 
range (output) regulation is to be canceled by the output of
an online adaptive neural network (NN) [4]. As a result, 
each vehicle can regulate both the range and relative 
orientation to a leader and/or neighboring vehicle without
knowing the state and control policy of that vehicle. It is
assumed that each vehicle can measure or estimate its own 
speed, heading, range and LOS angle to other vehicles.

Obstacle avoidance is a problem that, in general, cannot
be completely separated from that of maintaining a 
formation, as obstacle avoidance considerations must take
precedence. There are numerous approaches to static 
obstacle avoidance. A popular approach is the Artificial
Potential Field Approach [10]. Other approaches include
Motion Planning [11] and “Steer Towards Silhouette Edge” 
[12]. In this paper we describe and implement the latter
approach, as in [4].

The organization of the paper is as follows. Section II 
summarizes the theory for vehicle state estimation. Section 
III describes the guidance strategy for formation control 
and describes the approach to avoiding static obstacles. In 
Section IV we present and discuss simulation results for 
each approach.

II. BEARINGS-ONLY TARGET STATE ESTIMATION 

A. Filter Design
The EKF formulation described in [8] is utilized per other
vehicle that requires state estimation. At most, this could
include all vehicles in the formation estimating the state of 
all others. The four states used per filter have the dynamics
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where  is the bearing to the other aircraft, r is the range,
and  and are the horizontal relative acceleration 

components in a Cartesian frame, i.e., the acceleration of
the target minus the acceleration of the platform doing the
estimation. These components are illustrated in Figure 1,
for aircraft i tracking aircraft j.
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Fig. 1.  Illustration of parameters for tracking of aircraft j by aircraft i.

Here it assumed that each vehicle knows its own heading 
though typical sensing methods. As a result, the relative
bearing information provided by vision sensing another
aircraft is immediately converted to a bearing to the other
aircraft. The acceleration of the platform doing the 
estimation is considered known through measurement. This
EKF formulation is extended to a three-dimensional case by
adding an elevation angle and its changing rate to the
measurement and state. 

B. Range Observability
Range information is unobservable without certain

maneuvers. It is well known that the best relative motion
for range estimation accuracy is a motion that is 
perpendicular to the line-of-sight (LOS) [9]. The optimal
maneuver for range estimation is determined by
maximizing that “best” motion [13]. For the bearings-only
target state estimation, analysis of the contributing factors
to the range estimate covariance indicates that a large
magnitude of gives more accurate range estimation. This 
also makes sense physically, as viewing the tracked vehicle 
from a different direction will provide information about 
position in an additional dimension.  From this analysis, it
is concluded that  should be maximized in order to obtain
an accurate range estimate. At the same time, it is preferred 
that the relative bearing stay close to its prescribed 
desirable value. Also, it is important to limit the
acceleration . Therefore, an optimization problem that 
maximizes the predicted range estimation accuracy is
formulated as

dt
KK

d }
2

)(
2

{min 22212

subject to the relative motion dynamics (1). The
Hamiltonian H and the Euler-Lagrange equations for this
optimization problem are formulated as given by (2).
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where 1 and 2 is Lagrange multipliers. Those equations
can be solved analytically and the optimal solution for the
bearing angle is derived as follows.
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Since  and are positive, all coefficients have a 
nonzero imaginary value. That is, the optimal relative
bearing angle is represented as sine and cosine functions.
For example, if we choose  and  which 
satisfy , then

1K 2K ic

1K 2K
121KK )(t becomes simply

tBtA sincos , 1K (4)

C. Subtended Angle
In the previous section, we derived the optimal relative

maneuver that maximizes the range estimation accuracy.
However, it is not desirable that a follower aircraft always
needs to make maneuvers during tracking a target aircraft.
The alternative strategy to maintain range observability
while avoiding a maneuver is to introduce a new
measurement of a subtended angle [7]. An image of the
target provides indirect observation of the range through
measurement of target size in the image plane. The size of
the target is defined to be the longest axis of the plane
(typically, the wing span). Measuring the angle subtended
by the target size in the image plane renders range
observable. The EKF is augmented with an additional
target size state to utilize the subtended angle measurement.

D. Adaptive Estimation
A method for augmenting a linear time invariant

estimator with a NN based adaptive element was described 
in [14].  This approach has recently been extended to 
augment an EKF [15].  These approaches provide
robustness to unknown and unmodeled dynamics in the
process. A critical application of the adaptive EKF lies in
the realm of tracking maneuvering targets, particularly in
the bearings-only target-tracking problem. It is well known 
in the target-tracking literature that the accuracy of the 

resulting EKF estimates depends extensively on the target
behavior. The universal approximation property of NNs has 
paved the way for NN-based identification and estimation
schemes that may account for these unknown modeling
errors/uncertainties in the process. The training signal for
the NN is generated by the residuals produced by the EKF. 
The residuals are the difference between the image plane 
measurements and the EKF estimates.

III. GUIDANCE FOR FORMATION FLIGHT

The estimates of the range and LOS angle (bearing) from
the EKF described above are used in guidance policies for 
keeping formation. The guidance policies are based on
commanding a velocity vector in order to regulate the range 
and LOS angle to desired values, while avoiding obstacles
in the environment [4]. An alternate way of formulating the
guidance policy is to not use the estimates from the EKF 
because of the possibility of biased estimates, but directly 
regulate the subtended angle and LOS angle to desired
values [17].  In the sections below, we discuss the problem
formulation for vision-based formation control of multiple
UAVs.

A. Problem Formulation
We formulate the problem of vision-based formation
control in the framework of NN-based adaptive output
feedback control [16]. The range (or, subtended angle) and 
the LOS angle are treated as outputs available from vision
sensors for feedback and control. We assume that the
vehicles do not communicate velocity vector information.
The lack of relative velocity vector information is treated as
modeling uncertainty, whose effect on LOS range (output)
regulation is to be canceled by the output of an adaptive
NN.

We design an inverting controller augmented with a NN
for aircraft i (follower) for regulating the LOS range 

with respect to aircraft  (leader) [4]. The controller 
architecture is as shown in Fig 2. 

ijr

j

Reference

Model

Dynamic

Compensator

Dynamic

Inversion
Actuator Plant

comy
cy

y
~

TDL

TDL

Neural

Network
Error

Observer

�

Actuator

Model

Plant

Model

� y

û
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Fig. 2. MRAC architecture for Output Feedback Control and with 
Pseudo-Control Hedging (PCH).
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Aircraft  constructs a pseudo-control signal  that

represents desired LOS range kinematics with respect to the
aircraft . The pseudo-control signal is the sum of signals
from a reference model, a dynamic compensator and an
adaptive NN as shown in Fig 2. The expression for  is 

given below

i ji,

j

ji,

jiadijjicpjicji rrkr
i ,,,,  (5) 

The relative degree of  with respect to the speed and

heading of aircraft i is 1. Hence the range command ,
for the separation between the aircraft  and , is filtered
through a first order reference model. The dynamic
compensator is just a proportional error controller in this
case. The NN output  compensates for the unknown 

leader aircraft velocity. The inputs to the NN are the
delayed values of the LOS range and angle time histories,
and the delayed values of the own aircraft speed and
heading time histories.
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The pseudo-control signal ji,  represents the 
commanded LOS range-rate for aircraft i with respect to
aircraft . The pseudo-control signal is inverted to give a

commanded velocity vector

j

iFCV  for aircraft .  In case

aircraft is regulating LOS range with respect to multiple
neighboring aircraft, say  in number, then the
commanded velocity vector for aircraft i is given by the
vector sum of the pseudo-control signals oriented along the
LOS direction from aircraft i  to aircraft  [4],

i
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The velocity vector command that is input to an inner-
loop controller. The inner-loop controller generates
acceleration commands to achieve the velocity vector 
command of the formation controller.

B. Static Obstacle Avoidance
The controller design strategy for static obstacle

avoidance is based on a reactive “steer towards silhouette
edge” approach [12]. The idea is to project the shape of 
nearby obstacles onto the local, velocity-fixed frame of the
vehicle. If this projected shape, adjusted (enlarged) to allow 
for the size of the vehicle and uncertainty, surrounds the
origin of the velocity frame, then some portion of the
obstacle is dead ahead (see figure 3). The vehicle must steer 
away to avoid a collision, and the most efficient direction to

turn is toward the portion of the projected shape that is
closest to the origin.

Bi
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Fig. 3.  Illustration of obstacle avoidance approach described here.
Lateral acceleration required to miss target is applied once it exceeds a 
threshold value.

To illustrate the concept, it is assumed that the obstacles
are contained within bounding spheres (circles in 2
dimensions), and that the centers  and radii  of 
the obstacles are known. The goal of this strategy is to keep 
an imaginary line  of length , originating at the
vehicle current position and extending in the direction of
the velocity vector, from intersecting with any obstacle
boundary. The length of this line is typically based upon the
vehicle’s speed and maneuverability. An obstacle further
away than this length  is not an immediate threat.

oo YX , or

oL oD

oD
Corrective steering action to avoid an obstacle involves a 

speed and heading change command. The heading change 
command OA  is towards the closest projected edge of 
the obstacle as shown in figure 4. No speed change is used. 
The corresponding lateral acceleration command can 
replace the formation flight command when obstacle 
avoidance is required. When the hazard has passed, the 
vehicle then returns to the formation.

IV. SIMULATION RESULTS

Figures 4 and 5 show results obtained with the bearings-
only, non-adaptive target state estimation approach. We
consider a team of 3 aircraft flying in formation in a 2
dimensional environment in the presence of obstacles.
Aircraft #2 is the leader. It sets the trajectory for the 
formation by commanding a sequence of heading changes
while maintaining a constant speed. Each follower aircraft
regulates a time-dependent relative position to the leader. In 
addition, the 3 aircraft are also commanded to avoid
obstacles.

The ground track for a typical simulation result is
illustrated in figure 4. The leader performs a series of left
and right turns, although during one of the turns it must
avoid an obstacle instead. The two followers also 
occasionally must avoid one of the four obstacles. The 
position estimate for the leader is also shown for each of
the two followers. Here, the relative commanded position is 
held constant, and estimation performance suffers. 
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Fig. 4.  Ground track of a typical result. The formation starts at the
bottom, and proceeds to the top. Aircraft #2 (center) is the leader. The 
estimated positions for the leader are also plotted for both followers. Both 
followers and the leader are occasionally required to maneuver to avoid 
one of the four fixed obstacles. Without utilizing a time-dependent
formation shape, range tends to be under-predicted.

A slight periodic time dependency is added for the result
in figure 5. The changes in commanded relative position,
yields acceptable estimation performance.
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Fig. 5.  The formation starts at the bottom, and proceeds to the top. 
Aircraft #2 (center) is the leader. The estimated positions for the leader are 
improved by slight periods changes in formation shape.

Figure 6 shows tracking results with a highly
maneuvering leader aircraft. Only 1 follower aircraft is 
included in this simulation. The leader aircraft commands a 
sinusoidal heading maneuver at constant speed. The upper 
plot shows the trajectory of the leader, and the follower and 
an estimate of the leader trajectory by the follower. The

bottom plot shows the true range, estimated range by the
Follower and the commanded range. The reason for the
poor estimates is that the model for the leader acceleration 
used in the estimation process is highly inaccurate. 

Figure 7 show results for the same leader aircraft 
maneuver obtained by augmenting the EKF with an
adaptive NN, where the true and estimated ranges 
correspond very well, indicating that the NN is able to
reconstruct target acceleration.

Fig. 6. Range Estimation for a sinusoidally maneuvering leader with non-
adaptive bearings-only approach. The estimated range varies significantly
from the true range because the Leader acceleration is not accurately 
modeled in the estimation process. 

Fig. 7. Range Estimation for a sinusoidally maneuvering leader with 
adaptive bearings-only approach. The range estimation is excellent 
compared to the non-adaptive bearings only approach, the NN is able to 
reconstruct target acceleration. 

Figure 8 shows the trajectory of a team of 4 aircraft in
formation and simultaneously avoiding obstacles. Aircraft 1 
is the leader aircraft and the other three are followers. Each 
aircraft regulates LOS range from each other. 
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Fig. 8. Multiple Aircraft Formation with Adaptive Guidance Strategy 

Fig. 9 shows the errors in commanded range for all pairs
of aircraft. Note that the errors go to zero in the steady-
state. The range is shown in non-dimensionalized units.
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Fig. 9. Commanded Range Errors with Adaptive Guidance Strategy

V. CONCLUSIONS

In this paper, approaches for vision-based estimation
and formation control of multiple aircraft are discussed and
implemented. No communication is required between
vehicles, and simple passive vision processing is assumed,
sufficient only to provide noisy bearing and image size
measurements. Effects of unmodeled leader aircraft
acceleration on the estimation and guidance processes are
shown, and adaptive methods to compensate for the same
are discussed and demonstrated in simulation.

REFERENCES

[1] A. V. Das, R. Fierro, V. Kumar, J. P. Ostrowski, J. Spletzer, and C. 
J. Taylor, “A Vision-based Formation Control Framework,” IEEE

Trans. on Robotics and Automation, Vol. 18, No. 5, October 2002,
pp 813-825.

[2] A. Proud, M. Pachter, and J. J. D’Azzo, “Close Formation Control,”
AIAA Guidance, Navigation and Control Conference, Portland, OR, 
August 1999.

[3] M. R. Anderson and A. C. Robbins, “Formation Flight as a 
Cooperative Game,” AIAA Guidance, Navigation and Control 
Conference, Reston, VA, August 1998.

[4] R. Sattigeri,, A. J. Calise, and J. H. Evers, “An adaptive vision-based 
approach to decentralized formation control,” AIAA Guidance,
Navigation, and Control Conference, Providence, RI, August 2004.

[5] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm intelligence: 
from natural to artificial systems, Oxford University Press, 1999.

[6] C. W. Reynolds, “Flocks, Herds and Schools: a Distributed
Behavioral Model,” Computer Graphics, 21(4): 71-87,1987.

[7] A. Betser, P. Vela, and A. Tannenbaum, “Automatic Tracking of 
Flying Vehicles Using Geodesic snakes and Kalman filtering,” 
Accepted for publication in IEEE Conference on Decision and 
Control, 2004.

[8] V. J. Aidala and S. E. Hammel, “Utilizing of modified polar 
coordinates for bearings-only tracking,” IEEE Trans. Automatic
Control, 28:283-294, 1983.

[9] L. Metthies and T. Kanade, “Kalman filter-based Algorithms for 
Estimating Depth from Image Sequences,” International Journal of 
Computer Vision, 3.209-236, 1989.

[10] O. Khatib, “Real-Time Obstacle Avoidance for Manipulators and 
Mobile Robots,” International Journal of Robotics Research, 1986.

[11] E. Frazzoli and M. Dahleh, “Real-time Motion Planning for Agile 
Autonomous Vehicles,” American Control Conference, June 2001,
pp. 43-49.

[12] C. Reynolds, “Not Bumping Into Things,” Notes on "obstacle
avoidance" for the course on Physically Based Modeling at 
SIGGRAPH 88. Available: 
http://www.red3d.com/cwr/nobump/nobump.htmlT

[13] Y. Watanabe, E.N. Johnson, and A.J. Calise, “Optimal 3-D Guidance 
from a 2-D Vision Sensor,” AIAA Guidance, Navigation, and 
Control Conference, Providence, RI, August 2004.

[14] N. Hovakimyan, A. Calise, V. Madyastha, “An Augmenting
Adaptive Observer Design Methodology for Nonlinear Processes,”
Proc.  IEEE Conf. On Decision and Control, vol. 4, Dec. 2002, pp.
4700-4705.

[15] V. Madyastha, and A.J. Calise,  “An Adaptive Filtering Approach to 
Target Tracking,” Submitted to American Control Conference, 2005.

[16] N. Hovakimyan,  A.J., Calise,  “Adaptive Output Feedback Control
of Uncertain Multi-Input Multi-Output Systems using Single Hidden 
Layer Networks,” International Journal of Control, 2002.

[17] E.N. Johnson, A.J. Calise, R. Sattigeri, Y. Watanabe, V. Madyastha,
“Approaches to Vision-based Formation Control,” Accepted for
publication in IEEE Conference on Decision and Control, 2004.

5084




