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WINDOWLESS TECHNIQUES FOR LPC ANALYSIS *  

by 

T. P. Barnwell 

Abstract 

The purpose of this work was to study, experimentally, two 

windowless LPC analysis algorithms for use in speech digitization. 

The two algorithms are a circular autocorrelation technique which 

utilizes the pseudo-periodic nature of voiced speech, and a reflec-

tion coefficient estimation technique suggestion by John Parker Burg. 

Both techniques showed considerable promise in the experimental 

results. 

This work was pursued with support from the National Science Foundation 

(NSF-GK- 3745l and ENG76-02029). 



I. Introduction  

This paper examines two refinements to the linear predictive 

coding (LPC) algorithm for speech analysis. In neither of these 

methods is the input speech signal multiplied by an explicit window 

function before analysis, yet both methods produce linear predictor 

coefficients which always correspond to predictor polynomials whose 

roots are inside the unit circle. Experiments were designed to study 

the quality and acceptability of the spectral estimates produced by 

these methods in LPC vocoder applications. The experiments suggest 

that both of the methods considered produce acceptable spectral estimates 

using fewer speech samples than the other methods which require the 

speech data to be multiplied by a window function. 

II. Theory and Background  

Most LPC vocoders can be represented by the block diagram of 

Figure 1. In all cases, the speech signal is first sampled to produce 

the input sequence {s
i
}, and then two types of feature extraction are 

performed. The first feature extraction, called the "LPC Analysis 

Algorithm," consists of estimating parameters in all pole digital 

filter model so that the spectrum of the transfer function of the digital 

filter approximates the spectrum of the transfer function formed by com-

bining the effects of the glottal pulse shape, the shape of the upper 

vocal tract, and the effect of radiation from the mouth. Numerous 

forms for the digital filter model and for the analysis algorithm have 

been presented in the literature (1),(2),(7),(12),(17),(18). The second 

feature extraction, called the "Pitch Period Algorithm," consists of 



making a voiced-unvoiced decision for the input speech and estimating 

the fundamental frequency of the excitation (F 
0
)for the voiced sounds. 

This algorithm may either operate on the input speech signal, or may 

operate in conjunction with the LPC Analysis Algorithm. Numerous pitch 

period detectors have been presented in the literature (2),(6),(13), 

(15),(19). 

For the purposes of this paper, the following form of the "LPC 

Analysis Algorithm" is of interest. The input sequence is first 

divided into frames at a fixed frame interval of L samples. An analysis 

window length, M, id determined for each frame (this may be fixed or 

variable). Over each analysis window, it is assumed that the speech 

• signal can be suitable modeled by 

N 
s. = 	a.s.. 	 (I) 

j=1 3 1-3  

(wheres.1 
 is an estimate of s. and N is the number of poles in the all 

pole model), for an appropriate choice of {a }. Minimizing E = y (Si  - s.) 
i=1 

over one window length results in the set of equations 

. 1 	a.( 	. 	. 	) 	/ 
j=1 3  i=1 

s 1-s
3 l-k 	i=1 

ss
i-k 

k = 1,2,...,N 

Letting 	 , and 
i=1  jk 	1-j 1-k 	 1 	

R = [ rik] 

P 	(r01 1 ""rON" 
then the solution for the LPC coefficients is given by 

=  

A = R
-1

P. = 

(2)  

(3) 

The corresponding receiver filter has the z transform 
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H(Z) =  	 (4) 

1 - 	a.z j  
j=1 3  

where G can be calculated from 

N 	 1/2 

G =- 	a.r 	. 
oo j=1 	° 

There have been a number of methods proposed for the calcula- 

tion of r. and the solution of equation 3. Atal and Hanauer (1) 
ij 

present a method which does no windowing of the input speech, causing 

R to be a sample covariance matrix. Their method gives good spectral 

estimates for comparatively few speech samples, but results in a receiver 

filter (equation 4) which may be unstable. Markel and Gray (16),(17) and 

Makhoul (11),(12) first multiply the input speech by a window function 

of length M. This causes R to be a Toeplitz autocorrelation matrix, which, 

in turn, both forces the receiver filter, H(z), to be stable (within quan-

tization) and allows the use of the Levinson inversion algorithm (1) 

for the inversion of the matrix R. Under these circumstances 

+. 
r...R 	. R. . 	= 	y 	w 	s 	w-..s . 

1 ] 	,-, 	Ri_l k=-03 k-j k-j k-1 k-1 (6) 

where {w.} are the samples of the window function, and the Levinson 

algorithm can be expressed as 

A = R 
1 	0 

a
1 
= R

1
/R

0 

(5) 



2 
A
n 
= (1 - k

n-1
)A
n-1 

n-1 
K = ( X a. 
	

R- R )/A 
n i=1 

n-i 	n n 

an = -k 
n n 

n-1 	n-1 
a. 

• 

= a. 	+ k a  
n n-i 

In this algorithm, the {k n} are the partial correlation coefficients 

defined by Itakura and Saito (7),(8), and are so named because the 

Levinson algorithm, in this context, is exactly equivalent to a sampled 

linear regression analysis of the windowed speech signal. Wakita (20) 

hasshownthatareafunctions{C.}in a lossless acoustic tube model for 

the vocal track may be calculated from the {k
n 

by . 

1 + k. 
C. = = 1 

It should be noted that the {k
n
} parameter set may be calculated from 

any set {an} by the algorithm 

B. = -a. 

k = B
N 

N N 

k = B
n 

n 
 

n-1 	 2 
B. 	= (B. - k nn B

n 
-1

)/(1-k
n

) 	i = 1,...,(n-1) 	 (9) 
1 	1  

(7) 

(8) 
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and that {an} may be derived from knlby 

a
1 
= -k1  

1 

n-1 	n-i 
a. = a. 	+ k a . 	i = 1,...,(n-1) i 	i 	n n-1 

an = -k 
n 	n 

If the set {a
n} results in an unstable receiver filter realization, 

then lk
n
1 > 1 for some value of n. 

There are several other methods which have been proposed (2),(18) 

for solving equation 3, but these all fall generally into one of the 

two general types discussed above: the "covariance" method and the 

"autocorrelation" method. The major drawback of the covariance method 

is that it may produce an unstable receiver is to function. The autocor-

relation method, on the other hand, distorts the input signal by estimating 

a speech spectrum which has been convolved with the transform of the 

window function. Because of the form of the spectrum for vowel sounds, 

the effect of convolving this window is generally to broaden the spectral 

peaks. The broading effect is inversely dependent on the window length. 

Both of the methods discussed in this paper always result in a 

stable LPC receiver filter realization. Simultaneously, they do not impose 

"window" distortion on their estimates of the autocorrelation. Both 

methods represent a middle ground between the "autocorrelation" method 

and the "covariance" method. Both methods introduce their own unique type 

of distortion. In neither case is this distortion as easily analyzed as 

in the case of "window" distortion. For this reason, both methods are 

studied experimentally. 

(10) 
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Method 1 - Circular Correlation 

There is one set of circumstances in which the covariance method 

may be turned into a true autocorrelation method without the application 

of a window. This case occurs when the input speech signal is periodic 

and the analysis window length is exactly one period. If this were truly 

exactly the case, then the exact autocorrelation for the speech signal 

could be calculated from one period of the speech signal from 

T  
R. = 1 — / s.s. . 3 	T T. 	1 1+3 

1=1 

Since s
k 

= s
k-T

, where T is the number of samples in one period, then 

i_j 

. .. 	. + 	X R 	 s.s.,. 	j = 	 (12) 
3 T 	

ss 
1 1+3 	. 	, 	1 

i=1 	 1=T-3+1 

Now, even if the input speech signal is not periodic, the auto-

correlation function calculated by equation 12 is the true autocorrelation 

function of an infinite periodic signal represented by s i ,...sT  . Hence 

the covariance matrix calculated for this periodic signal is Toeplitz, 

resulting in a stable receiver filter. 

The realization of this analysis algorithm requires the availability 

of a ptich period detector for the voiced speech. Since such a detector 

is also necessary for the voicing information, this is no great constraint. 

There are two specific effects of the algorithm. First, since the average 

pitch period in voiced speech is smaller than the minimum required window 

length in the autorcorrelation method, there is an average reduction in 

the computation time of the analysis algorithm. Second, the well-understood 

distortion caused by convolving the speech spectrum with the transform of 
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Ire window functions has been traded for the less obVious distortion. 

due to inexact pitch period extractions and the effect of approximating 

a non-periodic signal by a periodic one. 

4 	 In all, three forms of the circular windowing algorithm were 

explored. In the first form, one pitch period per frame was used for the 

calculation of the autocorrelation function. In the second form, two 

adjacent pitch periods per frame were used, In the third form, a single 

pitch period was used, but it was taken to be the average of two adjacent 

pitch periods. 

Method 2 - The Burg Spectral Estimate 

Using a form of spectral estimate proposed by Burg (4),(5), it is 

possible to do an unwindowed spectral estimate without the assumption of 

periodicity. To see how this works, first note that the autocorrelation 

method begins by estimating the autocorrelation function, (R0 ,..., y, 

by windowing the speech signal and using equation 6. This approximate 

autocorrelation function is then used with the Levinson algorithm to 

produce "exact" values for {a,}, or, equivalently {k } o r {C.}. The point 

is that the autocorrelation functions are an input to the algorithm, while 

the {a.}, {k.},  or {C.} are the output. But all four sets, (R0 ,...,R1,1 ), 

(Ro ,a1 ,...,aN) (Ro ,k1 ,...,kN ), and (Ro ,C 1 ,...,CN), are equivalent in the 

sense that any set may be directly derived from any other. Hence, there 

is no necessity in estimating the autocorrelation . function. The problem 

might also be approached by estimating {k i } and Ro  in a way which does not 

window the speech. In such an algorithm, (R 0 ,...,RN), an estimate of the 

autocorrelation function, would be an output rather than an input. 

To see how the Burg estimation technique works in this context, assume 

• 

• 



that, by some means, we have arrived at an estimate of the first n partial 

correlation coefficients, (k
l' 
 ...,k

n
). From equation (10), we also have 

n 
the nth order predictor, (a 1 ,...,a

n
). Now from equation (10), the n + 1st 

n  

order predictor is given by (a
n 
+ k a

n
, a

n 
+ k

n+1
an 

 n-1'
--.

'
an 

 n 
+ k

n+1
a
l
n

'
-kn+1 ). 

may be calculated 

n 	 n 
f. = s. - X 	. 	

n+1 i-n-1 
+ k 	(s 

1 	1 	
j=1 3 1-3  

L bi  - s a
n  
s . 	L 	.. 	 . 	

n 
a y 	. 	. 	. 

1 
j=1 
	1+j 

+ k
n+1

(s  i+n+1 	n -3+1
s 
 1+3 

). 
j=1 

F 
	 r n 

Lettinge.=s - /a-
n 
 sarlds. - /. ads. , then 

1 	
j .1 3  i-3 	

1 
j=1 

f.
1  =e.1 

+k
n+1 C i-n-1 

b.1  = 1 + 
kn+1 

ei+n+1 • 

To find the total error, e
2
, we have 

m-n-1 	 M-n-1 2 	 2 
(17) e = X 	(e

i+n+1 
+ k

n+1i
)2 + X 	(C

i 
 + k

n+1
e
i+n+1

) . 
i=1 	 i=1 

Minimizing this expression with respect to k
n+1 

gives 

M-n-1 
-2  

1 i+n+1 

• k 
	i=1 

n+1
1  

(13) 

(14) 

(15) 

(16) 

(18) 

(c 2 + e
i+n+1

) 1 
i=1 
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For n = 0, equation 18 becomes 

k
1 

= 	 2 
s
1 

M-1 	s
2 

2 4-  . v 	21 	2 L S. + 
1=2 

Hence, equations (19), (18), and (10) form a recursion which allows the 

estimation of the LPC coefficients without the application of a window 

function. This recursion simultaneously estimates the partial correla-

tion coefficients {k.}, which can be used directly in the partial cor- 

relation fortareceiverfiltershowninFigurel-Forthismethod,lk.ki 

for all 1(5), which is a necessary and sufficient condition for the sta-

bility of the receiver filter. 

III. The Experiments  

The purpose of the experiments was to test the effectiveness of the 

two windowless LPC algorithms against a high quality LPC. The vocoder 

which was chosen was an autocorrelation LPC which uses a Hanning window 

and a Toeplitz inversion algorithm. To this end, two experiments were 

designed: one to look explicitly at spectral estimates from the various 

algorithms; and the other to compare the algorithms for quality in a 

vocoder environment. 

The input data for all the tests were six English sentences, spoken 

by different speakers (4 male and 2 female), and samples to 12 bits 

resolution at 8 kHz. All sentences were pre-emphasized using a two tap 

FIR filter with coefficients of 1 and -.95. The basis for comparison for 

quality was taken to be the above mentioned autocorrelation vocoder using 

M-1 
-2 	s . s. 

i=1 	1+1  
(19) 
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a 240 sample Banning window, transmitting unquantized coefficients (32 bit 

Floating Point), updating every 120 samples (15 msec), and using a 10 tap 

. prediction-filter. The pitch detector is a high quality outside detector 

called the "multiband" detector (2). The simulations were done on the 

Georgia Tech mini-computer based digital signal processing facility (3). 

This facility is a highly interactive, graphically oriented computer 

complex which allows very flexible algorithm development and testing. 

A total of 13 configurations of the vocoder were studied and com-

pared, and the systems are summarized in Table I. Besides the basic auto-

correlation LPC, autocorrelation algorithms with window lengths of 120, 90, 

60, and 30 samples were also simulated. For the Burg algorithm, analysis 

window lengths of 240, 120, 90, 60, and 30 were used. For the circular 

correlation LPC, three forms of the algorithm were studied. The first 

form used on pitch period of data per frame, the second form used two pitch 

periods of data per frame, and the third form used the average of two 

adjacent pitch periods as data in each frame. In all unvoiced frames an 

"assigned" pitch period of 100 samiles was used for the analysis. 

The Spectral Tests 

In the spectral tests, all test systems were simulated for all six 

sentences using a 256 point frame interval. For each frame, a 128 point 

spectrum was calculated from 

2 

S
k 

1 
10 

1 - 1 a e-iPk7  
p 128 

p=1  

k = 1,...,128 	 (22) 
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If S
ijk 

is the kth spectral point of the jth frame of the ith sentence., 

then the spectral measure which is calculated between systems "a" and 1-3" 

is given by 

96 	 128 
1 	r 	 b 

i=1  
y 	y G 

1 	
A ---) L (20 log s

a 	
- 20 log s., ) 

E = 
i3 128 

k=1 	
ijk 	 ..jk 

(23) 
j= 

   
ab 	

y
6 96 

i=1 J .' 

where G„ is the gain from the jth frame of the ith sentence. It is 
ij 

intended that E
ab 
 be a rcugh quantitative measure of the difference in the 

spectral estimates given by systems "a" and "b". Two comparison tests 

were run using equation 23. In the first test, system 'a" was always taken 

to be the autocorrelation LPC with the 240 sample window (system 1). In 

the second, system "a" was taken to be the same as before for the other 

autocorrelation LPC's, but was taken to be the 240 sample LPC system wing 

the "Burg" spectral estimation procedure (system 6) for the "Burg" LPC's of 

other window lengths, and was taken to be the single pitch period unaw;raged 

form of the circular correlation LPC (system 11) for the other forms of 

the circular correlation algorithm. 

The Quality Tests 

The only true test for the effectiveness of an LPC algorithm is a 

test of the output speech quality. In order to develop some results in 

this area, all 13 systems were simulated ussing all six input sentences. 

The results were then recorded on magnetic tape in the form A-B-A, where 

A is the 240 point "high quality" vocoder (system 2), and B is the test 

system. Informal judgements were then made on the relative quality of the 

systems. 

'9 1 



IV. Results and Conclusions  

. An example of the spectral estimates for a vowel given by the Levinson 

and Burg techniques is shown in Figure 2. As can be seen, noticable dis-

tortion occurs much sooner using the windowed Levinson technique than when 

using the unwindowed Burg technique. The spectra from the various 

techniques were viewed using interactive graphics, and this example is 

fairly representative. 

The Burg technique also looks good from the results of the spectral 

tests. The Burg technique consistently gives better spectral estimates 

down to below 60 sample analysis length (Figure 3), and this phenomeDon 

was true on a sentence by sentence test as well (Figure 4 and Figure 5). 

Below 60 samples, the Levinson technique is consistently better, but this 

is not relevant in a vocoder environment, since the quality produced at 

30 sample analysis windows is poor for either algorithm. 

Figure 6 shows the results of comparing spectra from both the Levinson 

technique and the Burg technique with system 1 only. It should be pointed 

out that this test is highly unfair to the Burg algorithm, since it is being 

asked to simulate the window distortion present in the Levinson technique. 

In spite of this, the Burg estimates are still better - than the Levinson 

estimates at 90 and 120 samples. This is a very impressive result. 

In the quality tests, it was judged that audible distortion first 

occured with the Levinson technique in system 2 (120 sample analysis), 

and the quality was completely unacceptable in system 3 (90 sample 

analysis). In the Burg tests, however, it was judged that no audible 

distortion occurs until system 9 (60 sample analysis). These results 

agree quite well with the results of the spectral tests. 

-12- 



In the case of the circular correlation vocoder, it was judged that 

the quality of the single pitch period form was equal to that of the high 

quality systems (system 1 and system 6). Further, using two pitch periods 

(system 12) or averaging two pitch periods (system 13) had no perceivable 

effect on quality. 

Based on these results, it appears that both windowless LPC analysis 

algorithms are capable of producing good quality speech using smaller 

average analysis windows than those used by algorithms requiring the 

windowing of the input speech. It would be noted, however, that both, 

algorithms represent an increase in complexity over the autocorrelation 

techniques and this disadvantage must be judged against the advantage of 

samller analysis windows. 

V. Summary  

Two windowless LPC analysis techniques, the circular correlation 

technique and the Burg techniques, were developed and tested. Simulation 

results show that both methods offer the potential high-quality LPC at 

related small analysis window lengths. 
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Figure 2. Comparison of Spectra for "Autocorrelation" and "Burg" LPC Analysis 
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Figure 3. Average Spectra/Differences (E ab ) for the Autocorrelation 

Method and the Burg Method for LPC Analysis. The 
Reference System for the Autocorrelation Analysis is 
the 240 Sample Windowed Autocorrelation LPC. The 
Reference System for the Burg Analysis is the 240 Sample 
Burg LPC. 
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the Autocorrelation LPC. The Reference System is the 240 
Sample Windowed Autocorrelation LPC. 
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for the Autocorrelation LPC. The Reference System is the 
240 Point Burg LPC. 
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System for Both Algorithms is the 240 Sample Windowed 
Autocorrelation LPC. 



SYSTEM 1 

WINDOW SIZE 
(SAMPLES) ANALYSIS ALGORITHM WINDOW 

1 240 Levinson Henning 

2 120 Levinson Hanning 

3 90 Levinson Henning 

4 60 Levinson Hanning 

5 30 Levinson Henning 

6 240 Burg None 

7 120 Burg None 

8 90 Burg None 

9 60 Burg None 

10 30 Burg None 

11 1 Pitch. Pcriod Circular Correlation None 

12 2 Pitch Period Circular Correlation None 

13 1 Averaged Pitch Period Circular Correlation None 

TABLE I. Summary of the Systems Tested 



APPENDIX I 

Test Utterances for the Quality and Spectral Difference Studies 

The six test utterances used in this study were: 

1. The pipe began to rust while new. 

2. Add the sum to the product of these three. 

3. Open the crate but don't break the glass. 

4. Oak is strong and also gives shade. 

5. Thieves who rob friends deserve jail. 

6. Cats and dogs each hate the other. 

These utterances were compiled by the Defense Communication Agency 

for use in pitch and voicing studies. The speakers represent a large 

range of pitch characteristics. The sentences are from the 1969 Revised 

List of Phonetically Balanced Sentences [17]. The utterances were 

sa 	at S.0 Hz and Quantized to 12 bit linear PCH resolution. 



Appendix II 

This Appendix gives a complete compilation of the Spectral Differences 

(E
ab

) computed in this study. The sentence numbers refer to the sentences 

of Appendix I. The system numbers are given in Table 1. 

Eab Sentences 

System a System b 1 2 3 4 5 6 

2 1 2.90 2.73 2.72 2.99 2.64 2.71 

3 1 3.57 3.39 3.39 3.71 3.16 3.42 

4 / 1 4.15 4.17 3.91 4.23 3.84 4.11 

5 1 5.22 5.22 5.24 5.23 4.87 4.82 

6 1 1.66 1.45 1.76 1.59 1.37 1.34 

7 1 2.42 2.33 2.53 2.43 2.40 2.43 

8 1 3.24 3.02 3.16 3.32 2.96 2.83 

9 1 3.97 3.99 3.84 4.14 3.48 3.61 

10 1 5. 1 2 5.02 5.38 5.33 5.03 4.68 

11 1 4.16 4.26 3.58 3.12 3.35 3.21 

12 1 3.76 3.70 3.24 2.93 2.94 2.83 

13 1 3.92 3.77 3.47 3.15 3.30 3.12 

7 6 2.22 2.02 2.38 2.11 2.34 2.27 

8 6 2.29 2.53 2.89 2.95 2.82 2.57 

9 6 3.56 3.47 2.45 3.69 3.28 3.32 

10 6 4.74 4.61 5.02 4.96 4.85 4.45 

12 11 1.59 1.85 1.46 1.07 1.32 1.23 

13 11 1.76 2.21 1.87 1.53 1.87 1.67 
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ABSTRACT  

A method for recursively calculating the 
autocorrelation functions for LPC analysis in a 
vocoder environment is developed theoretically 
and studied experimentally. The method has 
three specific advantages: (1) it requires 
very little memory for its implementation; 
(2) it is realized by a structure consisting 
of several identical modules; and (3) the 
effective window length may be changed without 
varying the structure. Experimental results 
showed the speech quality to be comparable to 
(but slightly superior to) that produced by an 
autocorrelation LPC using a Hanning window. 

I. INTRODUCTION 

This paper deals with an alternate method 
of calculating the autocorrelation function for 
use in an autocorrelation LPC vocoder. The 
analysis portion of such a vocoder has two tasks: 
the extraction and quantiziation of parameters 
from a parametric spectrum analysis; and the 
extraction of features for the excitation func-
tion (pitch detection). The latter task has 
been approached in many ways (1) and is not a 
subject of this paper. The former task, which 
may also be thought of as the extraction of 
parameters in a vocal tract model, can be further 
divided into two subtasks: the calculation of 
the autocorrelation functions; and the matrix 
inversion of the autocorrelation matrix. Since 
the autocorrelation matrix is Toeplitz, its 
inversion can be accomplished by the compact 
Toeplitz inversion algorithm (2). The first 
subtask, however, is much less compact, requiring 
windowing operations and buffering operations in 
addition to the extensive calculations (multiples 
and adds) required for the autocorrelation func-
tion. 

This paper presents an alternate method for 
calculating the autocorrelation functions used 
in an autocorrelation LPC. By using an infinite 
length window, the autocorrelation calculation 
can be made recursive. This method results in 
moderate reductions in calculations for some 

*This work was supported by the National Science 
Foundation (ENG 76-02029) 

structures, with great reductions in the buffer 
storage requirements and the control logic re-
quirements for an LPC transmitter. ThiA method 
further results in speech quality equivalent to 
the traditional "Hanning window" realization. 

II. THEORY 

Figure 1 shows a block diagram of a conven-
tional autocorrelation LPC vocoder transmitter. 
In this system, the input speech signal is 
sampled, quantized, and (generally) pre-empha-
sized into an input sequence {s i }. 

This input sequence is then divided into 
"frames". At a fixed frame interval, a window 
is applied to the sampled signal. For convenience 
in future developments, let j be the index of 
the last sample used in a particular frame, and 
define w„ the ith sample of the window function, 
such that w=0 for i>0 (i.e., wi  is indexed 
backwards, so that for finite length windows, 
wii0 for -M<i<O, where M is the window length). 
This windowing at frame j results in a new 
sequence 

E 	= s.w. ij 	1 j-i 

A Hanning window of 20-30 msce duration is typic-
ally used. The exact autocorrelation function 
for the windowed speech is then computed from 

CO 

Rkj  = L 	Eij Ej+ki 	k=0,1....,M 	(2) 

where Rki  is the k th  autocorrelation lag for the 
window placement j. This computation is clearly 
finite because of the finite length window. 
These autocorrelation lags are then used as input 
to the Toeplitz inversion algorithm to find 
values for the control parameters for the receiver 
filter. 

There are several problems with this approach 
to calculating the autocorrelation functions 
needed for the LPC analysis. First, in general, 
for good quality speech, the windowed areas must 
overlap. FOr example, typical frame intervals 
are of the order of 15 msec while typical window 
length are of the order of 30 msec. Thus, many 
speech samples may be used in forming the auto-
correlation functions for more than one frame. 
Second, the general framing and buffering 

(1) 

1 
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k+1-a k+1 
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problems associated with handling overlapping 
windows give rise to computational architecutes 
which are complex and unweildy. 

Both of the above problems can be avoided if 
the requirement for finite length windows is re-
laxed. What is of interest, clearly, is a class 
of windows which, though infinite in length, are 
very small outside a (say) 30 msec region. One 
such class of windows can be formed as the im-
pulse response of a second order digital filter 
having two real poles. Such a filter impulse re-
sponse is shown in Figure 2, and has the z 
transform: 

H(z) = 	 (3) 
(1-az

-1
1 	

-1 ) 

where a and a are the pole locations. Applying 
equation (1) to equation (2), the autocorrelation 
functions for a windowed sequence can be rewritten 
as 

s.s. 	w. .w. . 
n3 	i=....,  1 l+k 3 -1 3-1-k 

Now, by defining 

W. = w.w. 
jk 	3 3-k 

where: 

Bk+1a2-ak+1 6 2 
b = 	  
1 	ce-$ 

al  = (a
2
+0

2-aft) 

_ (a2B2.1.a 3B+03m)  

a
3 
= a

3a 3 

If a is allowed to be equal to B, then the results 
reduce to 

b
o 

= (k+l)a
k 	

(12a) 

b1 
= (k-1)a

k+2 	
(12b) 

of  = 2a2 
	

(12c) 

a
2 
= -3a

4 	
(12d) 

a
3 
= a

6 	
(12e) 

These equations show that the required auto-
correlation functions can be calculated recursive-
ly as shown in Figure 3. 

(4) 

(5) 

S. 	= s.s. Sik 	1 1+k 
(6) III. ANALYSIS OF THE RECURSIVE STRUCTURE  

Then equation (4) may be rewritten as 

X 	S. W.. 	 (7) 
x3 	. 	ik 3-1-k 

From this equation it can be seen that the kth 
 autocorrelation lag can be expressed as the con-

volution of the sequence (Si k ) and the window 
function (Wik). Further, since Wi k  is the product 
of two window functions, then Wk(z), the z trans-
form of Wik, is given by the convolution of the z 
transforms of the two window functions (wi  and 

wi+k ) • 

Now, if the window is allowed to be infinite 
in length, and if further, it is taken to be the 
impulse response of a second order digital filter 
given in equation (3), then Wk(z) may be written 
as 

f 
W(z) = 1 ,H(v)H(z/v)v ldv 

j 

or 

v  
W(z) - 1 dv. 

2rj - 1 
(1-av 1 ) (1 -nv ) (1-A (1-0) 

Evaluating this expression gives 

b
o
+b

1
z

1 

W(z) = 

Several points should be made about the 
structure of Figure 3. First, note that it is a 
point by point system which acts identically on 
every sample, hence, no buffering is required 
other than that shown in Figure 3. Second, note 
that the window "length" is entirely controlled by 
the parameter a, and the same number of calcula-
tions are required reguardless of the window 
length or frame interval. Third, note that the two 
multiples in the non-recursive portion of the 
linear filters [(k+l)ak  and (k-1) oik+2] need only 
be done once at each frame interval and not on 
every sample. Fourth, note that the constant mul-
tiplies in the recursive portion of the linear 
filters are all the same, allowing less constant 
storage and/or simpler filter realizations. Fifth, 
since there is no queueing problem here, the frame 
control logic is very simple. Last, since all the 
window information is contained in the linear 
filter coefficients, then no extensive ROM storage 
is needed to support the window function. 

Table 1 gives a comparison for the multipli-
es, ROM storage, and RAM storage needed for the 
recursive autocorrelation algorithm and two forms 
of the Hanning windowed autocorrelation algorithm. 
Note that the use of intermediate buffer 
storage results in fewer multiplies for the tradi-
tional structure than for the recursive structure. 
The logical complexity of the recursive structure, 
of course is considerably simpler than the double 
buffered, queueing structure necessary for the 
Henning windowed LPC. It is difficult to do com-
parisons between the two realizations (this is 

(9) 

1-a
1
z

1
-a2z

2
-a3z

-3 

2 

p 



certainly a case where multiplies are not a good 
measure of complexity), but it is safe to state 
that the traditional structure would work well for 
interrupt driven high speed programmable device 
realizations for the LPC analysis, while the re-
cursive architecture would work well for hard 
wired (LSI) realizations. 

IV. THE EXPERIMENTAL STUDY 

In the experimental study, six sentences were 
synthesized both using a Panning windowed auto-
correlation vocoder at various window lengths and 
also using the recursive autocorrelation calcula-
tion for two equal poles for various values of a. 
This data was then used in informal listening 
tests and, in addition, a spectral distance 
measures was computed for approximately corres-
ponding (in terms of window lengths) systems in 
the two groups. The  spectral tests were performed 
as follows: 

For each frame, a 128 point spectrum was 
calculated from 

V. RESULTS 

A recursive structure for computing the auto-
correlation functions needed for LPC analysis was 
proposed and studied experimentally. The results 
showed the new structure to have several advan-
tages over traditional window structures and the 
experimental results showed the perceptual quality 
of the new structure to be comparable with the 
traditional systems. 

VI. REFERENCES 

1. Barnwell, T. P., Brown, J. E., Bush, A. M., 
and Patisaul, C. R., "Pitch and Voicing in 
Speech Digitization," Final Report, Georgia 
Institute of Technology Report No. E-21-620-
74-BU-1, August 1974. 

2. Levinson, N., "The Wiener R.M.S. Error 
Criterion in Filter Design and Prediction," 
Journal of Mathematics and Physics, Vol. 25, 
No. 4, 1947, pp. 261-278. 

3. Barnwell, T. P. and Bush, A. M., "A Mini-
computer Based Digital Signal Processing 
Facility," EASCON '74 Proceedings, October 9, 
1974. 

(13) 	4. 	Barnwell, T. P., "Windowless Techniques. for 
LPC Analysis," Submitted for publication. 

VII. APPENDIX 	A 

Test Utterances for the Quality and Spectral  
Difference Studies  

The six test utterances used in this study 

If Sijk is the kth spectral point of the jth frame 
of the ith sentence, then the spectral measure, 
which is calculated between systems "a" and "b", 
is given by 

S
k 

- 

 

1 

 

2 
k=1,...,128 

 

10 
1 - y a

p
e 	

128 
p=1 

 

    

were: 
6 96 	128

r 	a 
X 	

1 
G..(----) L (20 log 	-20log 

b 	2 
ijk 	sijk ) 

i=l j=1 
1 128 	

s 
k=1  
6 96 
X 	y G.. 

i=1 j=1 13  

1. The pipe began to rust while new. 
2. Add the sum to the product of these three. 
3. Open the cate but don't break the glass. 
4. Oak is strong and also gives shade. 
5. Thieves who rob friends deserve jail. 
6. Cats and dogs each hate the other. 

(14) 

where Gij  is the gain from the )th frame of the 
ith sentence. It is intended that Eab be a rough 
quantitative measure of the difference in the 
spectral estimates given by systems "a" and "b." 

The results of the spectral distance tests 
are given in Table 2. Other tests using this same 
measure (4) show that spectral distances of less 
than 3 db, as is the case for these systems, 
represent a very small variation between systems. 

The informal listening tests agree with the 
spectral tests. In all cases, the corresponding 
systems were judged to be very similar in quality, 
with the recursive system being slightly favored. 
Clearly, formal listening tests must be performed 
before any true ranking between these methods may 
be obtained. However, the results here show the 
systems to be very similar in quality. 

These utterances were compiled by the Defense 
Communication Agency for use in pitch and voicing 
studies. The speakers represent a large range of 
pitch characteristics. The sentences are from the 
1969 Revised List of Phonetically Balanced 
Sentences [17]. The utterances were sampled at 
8.0 Hz and quantized to 12 bit linear PCM 
resolution. 

kl  
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TABLE 1. Comparison of Recursive and Non-Recursive 
Autocorrelation Structures 

Multiplies/ 
Frames 

NON-RECURSIVE 

Method 1 	Method 2 

RECURSIVE 

(144,214,(A.1)N/2 3(N4.N/2) 4m(H41)42Ne1 

Storage (RCM) 1/2 1/2 201.1).3 

Storage (RAM) 21.•11 IAA 4N.3 

EXAMPLE (L.240, M.120. R.10) 

MiltipleS/ 
Prase 

2825 7185 5301 

Storage (ROM) 120 120 25 

torage (RAM) 600 360 43 
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'Nanning Window Auto.= ***** Lion Calculation. 

SYSTEM 
A 

SYSTEM 
' 	s Rib  (db1 

Harming Window 
140 Points 
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a . .929 1.79 

Henning Window 
240 Points 

Recursive 
a . .99 1.21 
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Recursive 
o . .981 1.33 
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240 Points 

Recursive 
a . .982 1.47 

Banning Window 
240 Points 

Recursive 
a . .983 1.81 

Nanning Window 
240 Points 

Recursive 
a . .984 2.01 

Nanning Window 
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n • .985 2.21 
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Thomas P. Barnwell, III 
School of Electrical Engineering 
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Atlanta, Georgia 30332 

Abstract  

This paper examines two refinements to the linear 
predictive coding (LPC) algorithm for speech analysis. 
In neither of these methods is the input speech signal 
multiplied by an explicite window function before 
analysis, yet both methods produce linear predictor 
coefficients which always result in a stable receiver 
configuration. Experiments were designed to study the 
quality and acceptability of the spectral estimates 
produced by these methods for LPC vocoders. The 
experiments suggest that both methods produce acceptable 
spectral estimates using fewer speech samples than the 
other methods which require the speech data to be 
multiplied by a window function. 

I. Theory and Background 

Most currently popular LPC vocoders can be 
represented by the block diagram of Figure 1. In all 
cases, the speech signal is first sampled into the 
input sequence (s.), and then two types of feature 

extraction are performed. The first feature extraction, 
called the "LPC Analysis Algorithm," consists of 
estimating parameters in an all pole digital filter 
model so that the spectrum of the transfer function 
of the digital filter approximates the spectrum of the 
transfer function formed by combining the effects of 
the glottal pulse shape, the shape of the upper vocal 
track, and the damping effect of radiation from the 
mouth. Numerous forms for the digital filter model 
and for the analysis algorithm have been presented in 
the literature (1),(2),(7),(12),(17),(18). The second 
feature extraction, called the "Pitch Period Algorithm," 
consists of making a voiced-unvoiced decision for the 
input speech and estimating the fundamental period of 
the excitation (F0) for the voiced sounds. This 

algorithm may either operate on the input speech signal, 
or may operate in conjunction with the LPC Analysis 
Algorithm. Numerous pitch period detectors have been 
presented in the literature (2),(6),(13),(15),(19). 

For the purposes of this paper, the following form 
of the "LPC Analysis Algorithm" is of interest. The 
input sequence is first divided into frames at a fixed 
frame interval of L samples. An analysis window length, 
M, is determined for each frame (this may be fixed or 
variable). Over each analysis window, it is assumed 
that the speech signal can be suitably modeled by 

;. = 2] a s- 	 (1) 
j 1-3 

j=1 

(where
i 

is an estimate of s
i 
and N is the number of 

poles in the all pole model), for an appropriate choice 

of (a.) . Minimizing E = 73 (s —; ) 2  over one window 
1 i=1 

length results in the set of equations 

73 a.( 	s 	s 	)= 	s s. 	k=1,2,...,N.(2) 
j=1 3  i=1 	k  i=1 Lk  

Letting r.k  = 7] 	 and letting A
T
=(ai ,...,am ), 

i=1 

R= [r. k], and PT k 	 rON)' then the solution for 

the LPC coefficients is given by 

- 1 
A = R P . 	 (3)• 

The corresponding receiver filter has the z transform 

H(Z)= 	 (4) , 

1 - 2 ae /  
J= 1  4  

where G can be calculated from 
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There have been a number of methods proposed for 
the calculation of r

ij 
and the solution of equation 3. 

Atal and Hanauer (1) present a method which does no 
windowing of the input speech, causing R to be a sample 
covariance matrix. Their method gives good spectral 
estimates for comparatively few speech samples, but 
results in a receiver filter (equation 4) which may be 
unstable. Markel and Grey (16),(17) and Makoul (11), 
(12) first window the input speech with a window func-
tion of length M. This causes R to be a Toeplitz 
autocorrelation matrix, which, in turn, both forces 
the receiver to be stable (withing quantization) and 
allows the use of the Levinson inversion algorithm (10) 
for the inversion of R. Under these circumstances, 

+c• 
rij  = Ri_ j  = Rj _ l 	 (6)cicL 

where (mi. ) are the samples of the window function, and 

the Levinson algorithm can be expressed as 

Al 
= R

0 

a l  = R1/R0  

k - - RI/R0 	 (7 ) 

A
n 

= (1 - k 2 
)An-1 n-1 

n-1 
k
n 

= ( 	an-  R 	- R )/A 
i 	n-i 	n n 

i=1 

an = - k 
n n 

an _ an-1 + k an-1 
i 	i 	n n-i  

If the set Can ) results in an unstable receiver filter 

realization, then Ika l > 1 for some value of n. 

There are several other methods which have been 
proposed (2),(18) for solving equation 3, but these all 
fall generally into one of the two general types dis-
cussed above: the "covariance" method and the 
"autocorrelation" method. The major drawback of the 
covariance method is that it may produce an unstable 
receiver filter, a condition which must be detected and 
corrected if the receiver is to function. The auto-
correlation method, on the other hand, distorts the 
input signal be estimating a speech spectrum which has 
been convolved with the transform of the window function. 
Because of the form of the spectrum for vowel sounds, 
the effect of convolving this window is generally to 
broaden the spectral peaks. This effect is magnified 
by short windows. 

Method 1 - Circular Correlation 

There is one set of circumstances in which the 
covariance method may be turned into a true autocor-
relation method without the application of a window. 
This case occures when the input speech signal is 
periodic and the analysis window length is exactly one 
period. If this were truly exactly the case, then the 
exact autocorrelation for the speech signal could be 
calculated from one period of the speech signal from 

Rj 	T = — 	s.s i+j 	 (11) 
i=1 

Since s
k 

= s
k-T' 

where T is the number of samples in 

one period, then 

R 	[ E T-j ss 	E ss 
T 	i i+j 	 i+j-T] 

Rj 
 

j = 0,...,N . 	(12) 

Now, even if the input speech signal is not 
periodic, the autocorrelation function calculated by 
equation 10 are the true autocorrelation function of 
an infinite periodic signal represented by 
(s 1 „...,s0. Hence the covariance matrix calculated 

for this periodic signal is Toeplitz, resulting in a 
stable receiver filter. 

The realization of this analysis algorithm requires 
the availability of a pitch period detector for the 
voiced speech. Since such a detector is also necessary 
for the voicing information, this is not great con-
straint. There are two specific effects of the 
algorithm. First, since the average pitch period in 
voiced speech is smaller than the minimum required 
window length in the autocorrelation method, then there 
is an average reduction in the computation time of the 
analysis algorithm. Second, the well-understood 
distortion caused by convolving the speech spectrum 
with the transform of the window functions has been 
traded for the less obvious distortion due to inexact 
pitch period extractions and the effect of approximating 
a non-periodic signal by a periodic one. 

Method 2 - The Burg Spectral Estimate 

Using a form of spectral estimate proposed by 
Burg (4),(5), it is possible to do an unwindowed spec-
tral estimate without the assumption of periodicity. 
To see how this works, first note that the autocorrela-
tion method begins by estimating the autocorrelation 
function, (R0,...,Rm ), by windowing the speech signal 

and using equation 6. This approximate autocorrelation 
(10) 	function is then used with the Levinson algorithm to 

a1 = - k 

	

1 	1 

n n-1 	n-i 
a
i 
 = ai 

 + k
n
a
n-i 

n = k . 

	

a
n 	n 

 

A = 1,...,(n-1) 

In this algorithm, the (Ica) are the partial correlation 

coefficients defined by Itakura and Saito (7),(8), and 
are so named because the Levinson algorithm, in this 
context, is exactly equivalent to a sampled linear 
regression analysis of the windowed speech signal. 
Wakita (20) has shown that area functions (Ci) in a 

lossless acoustic tube model for the vocal track may be 
calculated from the (Ica) by 

I+ k4  
C 	C  
i 	i+1 1-k 	' CN+ 1 = 1 . 
	 (8) 

It should be noted that the (Ica) parameter may be 

calculated from any set tad by the algorithm 

BN = - a 

k = m  B
N 

k = Bn n n 

B
n-1 

= (B
i  - k n n 

B
n 
-1

)/(1-k
2
a) A = 1,...,(n-1) (9) 

and that (an ) may be derived from (ka) by 
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Figure 2. Comparison of Spectra for "Autocorrelation" and "Burg" LPC Analysis 
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The Spectral Tests 

In the spectral tests, all test systems were 
simulated for all six sentences using a 256 point frame 
interval. For each frame, a 128 point spectrum was 
calculated from 

2 

S
K 	10 
	 , K = 1,...,128 . 

1- E a e 
p=1 p 
	128 
	

(22) 

th 	 th 
If Sijk is the k-- spectral point of the 1-- frame of 

th 
the i-- sentence, then the spectral measure which is 
calculated between systems "a" and "b" is given by 

6 	96 128 
Eab = 2] 	2] 	E (Silk 	i - Sb 

jk
) 2 	 (23) 

i=1 j=1 K=1 

It is intended that E
ab 

be a rough quantitative measure 

of the difference in the spectral estimates given by 
systems "a" and "b". Two comparison tests were run 
using equation 23. In the first, system "a" was always 
taken to be the autocorrelation LPC with the 240 sample 
window (system 1). In the second, system "a" was 
taken to be the same as before for the other autocor-
relation LPC's, but was taken to be the 240 sample Burg 
(system 6) for the other Burg LPC's, and was taken to 
be the single pitch period unaveraged form of the 
circular correlation LPC (system 11) for the other forms 
of the circular correlation algorithm. 

The Quality Tests 

The only true test for the effectiveness of an 
LPC algorithm is a test of the output speech quality. 
In order to develop some results in this area, all 13 
systems were simulated using all six input sentences. 
The results were then recorded on magnetic tape in the 
form A=B=A, where A is the 240 point "high quality" 
vocoder (system 2), and B is the test system. Informal 
judgements were then made on the relative quality of 
the systems. 

III. Results and Conclusions  

An example of the spectral estimates for a vowel 
given by the Levinson and Burg techniques is shown in 
Figure 2. As can be seen, noticable distortion occurs 
much sooner using the windowed Levinson technique than 
when using the unwindowed Burg technique. The spectra 
from the various techniques were viewed using inter-
active graphics, and this example is fairly representa-
tive. 

The Burg technique also looks good from the 
results of the spectral tests. The Burg technique 
consistently gives better spectral estimates down to 
below 60 sample analysis length (Figure 3). Below 60 
samples, the Levinson techniques is consistently better, 
but this is not relevant in a vocoder environment, since 
the quality produced at 30 sample analysis windows is 
poor for either algorithms. 

Figure 4 shows the results of comparing spectra 
from both the Levinson technique and the Burg technique 
with system 1 only. It should be pointed out that this 
test is highly unfair to the Burg algorithm, since it 
is being asked to simulate the window distortion present 
in the Levinson technique. In spite of this, the Burg 
estimates are still better than the Levinson estimates 
at 90 and 120 samples. This is a very impressive 
result. 

Figure 3. E., for the Autocorrelatioe LPL's and the " 

"Burg" LPC's where System "a" is System I for 
the Autocorrelstion LPC's end System 6 for the 
"Burg" LPC's. 

EA. 

p
y

M  

"Autosorreletton" LPC 

"Sorg.  LPC 

0 	30 	60. 	90 	120 	150 

Analyst. Windom Length 

Figure 4. E.b  for the Autocorrelstioe LPL's and the 

"Sure LPC'• where System "." is •away. System 1. 
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produce "exact" values for (ad, or, equivalently, (k i ) 

or (Ci ). The point is that the autocorrelation func-

tions are an input to the algorithm, while the (a i ), 

(ki ), or (Cd are the output. But all four sets, 

(R0 ,...,RN ), (Ro ,a1 ,...,aN ) (Ro ,ki ,...,kN ), and 

(R0 ,C1  ..... CN), are equivalent in the sense that any 

set may be directly derived from any other. Hence, 
there is no necessity in estimating the autocorrelation 
function. The problem might also be approached by 
estimating (ki

) and Ro  in a way which does not window 

the speech. In such an algorithm, (R0 ,...,RN), an 

estimate of the autocorrelation function, would be an 
output rather than an input. 

To see how the Burg estimation technique works in 
this context, assume that, by some means, you have 
arrived at an estimate of the first n partial correla-
tion coefficients, (ki ,...,kn). From equation 10, you 

nth also have the n-- order predictor, 
	1n 

 (a
n 

... a
n
). Now 

from equation 10, the n+1 1-1  order predictor is given by 
(a+k an an i.N. an 	anl.k an _ k 	) 
` 1 n+1 n' 2 n+1 n-l'"'' n n+1 1 , 	n+1 
Based on this predictor, both the forward error (f i ) 

and the backward error (bi) may be calculated 

n 	 n 

	

f.=s. - E as. +k 	(s j=1 j i-j n+1 -n- j=1 
 n  a 
n-j+1

s 
 i-j

)  

(13) 

n 	 n 

	

bi =s.- 2: ans 	1-1( 
1  j=1 	i+j 	

n+1(eL+n+1- a 	s. ) j=1  n -j+1 1+j ° 

(14) 

	

n 	 n 
Letting e. = s - 2: ans. 	and gi = s i - 2: ans i  

1 	j=1 	1-i 	 j=1 	+I' 
then 

	

f
i 

= e
i 
+ k

n+1 
	 (15)  

Hence, equations 19, 18, and 10 form a recursion which 
allows the estimation of the LPC coefficients without 
the application of a window function. 

II. The Experiments  

The purpose of the experiments was to test the 
effectiveness of the two windowless LPC algorithms 
against a high quality LPC. The vocoder which was 
chosen was n autocorrelation LPC which uses a Hanning 
window and a Toeplitz inversion algorithm. To this 
end, two experiments were designed: one to look 
explicitly at spectral estimates from the various 
algorithms; and the other to compare the algorithms 
for quality in a vocoder environment. 

The input data for all the tests were six English 
sentences, spoken by different speakers (4 male and 
2 female), and sampled to 12 bits resolution at 8 kHz. 
All sentences were pre-emphasized using a two tap FIR 
filter with coefficients of 1 and -.95. The basis for 
comparison for quality was taken to be above mentioned 
autocorrelation vocoder using a'240 sample Hanning 
window, transmitting unquantized coefficients (32 bit 
Floating Point), updating every 120 samples (15 msec), 
and using a 10 tap prediction filter. The pitch 
detector is a high-quality outside detector called the 
"multiband" detector (2). The simulations were done 
on the Georgia Tech mini-computer based digital signal 
processing facility (3). This facility is a highly 
interactive, graphically oriented computer complex 
which allows very flexible algorithm development and 
testing. 

A total of 13 configurations of the vocoder were 
studied and compared, and the systems are summarized 
in Table I. Besides the basic autocorrelation LPC, 
autocorrelation algorithms with window lengths of 120, 
90, 60, and 30 samples were also simulated. For the 
Burg algorithm, analysis window lengths of 240, 120, 
90, 60, and 30 were used. For the circular correlation 
LPC, three forms of the algorithm were studied. The 
first form used one pitch period of data per frame, 
the second form used two pitch periods of data per 
frame, and the third form used the average of two 
adjacent pitch period as data in each frame. 

bi  = ti  kni.1 ei+n+1 
	 (16) 	

TABLE I. SUMMARY OF THE SYSTEMS TESTED 

To find the total error, e 2 , we have 

M-n-1 	 M-n-1 2 
e  = 	̀e1+n+1 +kn+l'

r 
 i ), 

 2 ,, 	
2+ 	(gi+klrFiej+n+i) 

' 
2=i+1 	 i=1 

(17) 

Minimizing this expression with respect to k n.1.1  gives 

M -n -1 

-2 2-7' 
2=1  k 	- 

n+1 	M-n-1 
2 	2 

) 
i=1 	1 	2-Fn+1  

For n = 0, equation 18 becomes 

(19) 

SYSTEM # WINDOW SIZE ANALYSIS ALGORITHM WINDOW 
(SAMPLES) 

1 240 Levinson Henning 

2 120 Levinson Fanning 

3 90 Levinson Hanning 

4 60 Levinson Hanning 

5 30 Levinson Hanning 

6 240 Burg None 

7 120 Burg None 

8 90 Burg None 

9 60 Burg None 

10 30 Burg None 

11 1 Pitch Circular None 
Period Correlation 

12 2 Pitch Circular None 
Period Correlation 

13 1 Averaged Circular None 
Pitch Period Correlation 

(18) 

M-1 
-2 2: s.s,., 

k
1 

- 	2=1 1  "1  
M-1 2 	7, 2 	2 

s1/2 	s y, sM/2 1=2 



In the quality tests, it was judged that audible 
distortion first occured with the Levinson technique 
in system 2 (120 sample analysis), and that quality was 
completely unacceptable in system 3 (90 sample analysis). 
In the Burg tests, however, it was judged that no 
audible distortion occurs until system 9 (60 sample 
analysis). These results agree quite well with the 
results of the spectral tests. 

In the case of the circular correlation vocoder, 
it was judged that the quality of the single pitch 
period form was equal to that of the high-quality 
systems (system 1 and system 6). Further, using two 
pitch periods (system 12) or averaging two pitch 
periods (system 13) had no preceivable effect on 
quality. 

Based on these results, it appears that both 
windowless LPC analysis algorithms are capable of 
producing good quality speech using smaller average 
analysis windows than those used by algorithms requiring 
the windowing of the input speech. It should be noted, 
however, that both algorithms represent an increase in 
complexity over the autocorrelation techniques and this 
disadvantage must be judged against the advantage of 
smaller analysis windows. 

IV. Summary 

Two windowless LPC analysis techniques, the 
circular correlation technique and the Burg techniques 
were developed and tested. Simulation results show 
that both methods offer the potential high-quality LPC 
at related small analysis window lengths. 
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I. INTRODUCTION 

1.1 Background  

This is the final report for NSF Grant ENG76-02029. This work was 

proposed in July 1975, and was funded at a level of $60,000 for a period 

of two years. The principal investigator was Dr. Thomas P. Barnwell, III, 

Associate Professor of Electrical Engineering at the Georgia Institute of 

Technology. The original grant funded Dr. Barnwell at a level of approxi-

mately 25% time for two years and two graduate students for 33% time for 

two years. The budget was later amended to increase the graduate student 

participation slightly and to decrease Dr. Barnwell's time accordingly. 

Under the amended budget, the grant began in April 1976 and was completed 

in August 1978. 

The two graduate students supported on this grant were Mr. James D. 

Marr and Mr. Panagiotis E. Papamichalis. Both of these students have 

completed all of their requirements for the Ph.D. degree except those 

associated with their thesis work. In neither case is their thesis work 

complete, but in both cases they are heavily involved in their thesis 

research. It is estimated that both students should complete their degree 

within the next year. 

1.2 Results  

In all, there are seven areas in which this grant has produced re-

sults worthy of note. Each of these areas will be discussed in some detail 

in the following chapters. In this introduction, each will be discussed 

briefly. 
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1.2.1 Recursive Autocorrelation Analysis  

A method of computing the autocorrelation functions for LPC 

(Linear Predictive Coding) analysis of speech in a recursive, point by 

point fashion was developed and tested. The quality of the speech pro-

duced by this LPC structure was found to be as good as or better than 

that of other methods. This algorithm has three specific advantages. 

First, the structure of the analysis algorithm is much simpler than that 

of other algorithms, making the hardware implementation of the LPC trans-

mitter less complex. Second, the total amount of memory required for the 

algorithm is very small compared to other algorithms. Third, and of most 

importance to the work of this grant, it is very easy to do time varying 

framing for low bit rate coding using this technique. 

1.2.2 Burg Analysis of Speech  

A technique for estimating LPC coefficients for speech suggested by 

John P. Burg was investigated experimentally. It was found that this 

technique resulted in high quality LPC coded speech while using fewer 

samples (-60) than that needed by the autocorrelation method, but still 

maintaining the guaranteed receiver stability not available from the 

covariance method. 

1.2.3 Circular Correlation for LPC Analysis--A New Technique for Computing  

The autocorrelation/covariance function for LPC analysis by forcing 

the nearly periodic voiced portions of speech to be truly periodic was 

developed. This technique has three advantages. First, the autocorrela-

tion and the covariance methods are identical for this technique. Second, 

the receiver filter is always stable. And last, since no window is applied 

to the speech, there is no biasing of the estimates of the LPC parameters, 

2 



as there is in the autocorrelation method. 

1.2.4 Objective Measures for Speech Quality  

During the same time period in which this NSF grant was active at 

Georgia Tech, a considerable program in the area of objective measures 

for speech quality was also active. This effort was mostly funded by the 

Defense Communications Agency under two contracts (RADC-F30602-75-C-0118 and 

• 

`'DCA 100-78-0003). 	This work is mentioned here because some small portion 

of the resources of this grant were involved in the speech quality measure 

study, and because the results of quality study were heavily utilized in 

this study. 

1.2.5 Differential Coding in the Area Function Domain  

This is the thesis area of Mr. James D. Marr. This study has in-

vestigated the feasibility of two-dimensional prediction techniques for 

improved coding of area functions for LPC vocoders. The utility of this 

-approach has been demonstrated experimentally, and detailed coding algo-

rithms are currently under development. 

1.2.6 Variable Length Acoustic Tube Model  

A technique which varies the number and lengths of the tubes in 

an acoustic tube model of the vocal tract has been developed and tested. 

This technique, which is a subject in Mr. Panagiotis E. Papamichalis' 

thesis area, has been shown to have good potential for reducing the bit 

rate in LPC systems. 

1.2.7 Variable Analysis Using PARCOR Coefficients  

Variable coding schemes for the vocal tract parameters for LPC 

analysis were also studied. These also are part of the thesis area of 

Mr. Panagiotis E. Papamichalis. In these techniques, a choice is made 
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between several alternate coding forms by the use of objectively computable 

distortion measures. A search algorithm similar to a Viterbi technique is 

used to reduce the search time. 

1.3 Publications  

Thus far, there have been two conference papers and one journal 

article resulting from this research grant. Reprints of these papers are 

included in Appendix A. In addition, another conference paper, entitled 

"LPC Analysis Using a Variable Acoustic Tube Model" has been accepted for 

the International Conference on Acoustics, Speech, and Signal Processing 

in April 1979. Included in Appendix A is also a paper resulting from the 

speech quality work, which, as stated before, was only partially supported 

by this grant. 

The Ph.D. thesis work supported by this grant is expected to result 

in two theses within the next year. It is projected that at least two 

journal articles and several conference papers will result from this work. 

In addition to the students supported under this grant, another 

Ph.D. student, Captain Larry Kizer, is working in the area of recursive 

autocorrelation analysis. This work is a direct result of work done on 

this grant. 
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II. THE BASIC CONCEPTS 

2.1 Information in the Speech Signal  

In recent years there has been considerable interest in the develop-

ment of systems for efficiently digitizing speech signals for transmission 

over digital channels. The techniques employed range from the comparative-

ly simple "intermediate" bit rate systems, such as Adaptive Delta Modulation 

(ADM) and Adaptive Differential Pulse Code Modulation [1-4] to the more 

complex "low" bit rate systems, such as Vocoders and Linear Predictive 

Coders [5-8]. The Linear Predictive Coder (LPC), in its many forms, has 

received particular attention, and models for the LPC which produce highly 

intelligible, good quality speech at 2400 bps have been demonstrated [9]. 

Devices such as the LPC are currently expensive to produce, but techno-

logical trends indicate a continuing reduction in unit costs. 

Comparatively little work has been done on "very low" bit rate 

(less than 1000 bps) transmission of speech. It is a well-known fact that 

the actual information rate in the speech signal is considerably less than 

2400 bps (probably about 400 bps [10]). Speech digitization systems which 

could work in this range would be very useful for speech transmission in 

systems where channel costs are very high, such as long range underwater 

communications, and in systems which store a large amount of speech for 

later digital reproduction. 

In the final analysis, the quality of speech communication system 

must be defined in perceptual terms. When a speaker uses a communication 

system, he creates an acoustic signal which contains a multitude of 

P 
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information to be transmitted to the listener at the receiver. This 

information includes the detailed content of the utterance, plus addi-

tional information about the speaker's identity and the speaker's atti-

tudes. In high quality speech communication systems, all this information 

is transmitted correctly so that the listener accepts the acoustic signal 

at the receiver as an acceptable substitute for the original. 

It is possible to view the information in the speech signal in 

several ways. One approach is to state that the relevant information is 

in the time details of the acoustic waveform. Clearly, if the instan-

taneous behavior of the acoustic signal at the receiver matches the time 

behavior of the acoustic signal at the transmitter, then high quality 

transmission is assured. However, systems which try to follow the time 

behavior of the speech signal generally require relatively high bit rates. 

Another approach to modeling the information in speech is to view 

the speech signal as the output of a linear ._system in which one or more 

sources in the vocal tract have been filtered by the time varying acoustic 

filter imposed by the shape of the upper vocal tract. This is the model 

used in vocoder applications and the data compression is achieved by de-

convolving the effects of the vocal tract filter from the characteristics 

of the sources. Due to the mechanical nature of the vocal tract, the 

filter characteristics and the source characteristics vary relatively 

slowly with time. Hence, the data rates associated with vocoder systems 

-are generally lower than those for systems which transmit the detailed 

time waveforms. 

It is also possible to model the information in speech in linguistic 

terms. This should be an interesting approach, since it deals directly 

6 



with the perceptual information to be transmitted. Linguistically, the 

information in the speech signal occurs on several hierarchically struc-

tured levels. On the lowest level is the phonemic, or "segmental," 

information. Above the phonemic level is the "word" level, which can be 

further subdivided by syllabic or morphemic structure. Above the word 

level lies the syntactic structure, which hierarchically groups words 

according to the phrase structure of the sentence. Imposed on the syn-

tactic structure is the semantic level, which deals with the meaning of 

the utterance. On other levels are such information as speaker's atti-

tudes and speaker identity. These linguistic quantities are, in turn, 

mapped into perceived quantities such as meaning, stress, intonation, 

juncture, and emphasis. "Stress" here refers to numeric prominence 

levels assigned by linguists to certain syllables in an utterance. These 

levels can be completely related, by rule, to the syntactic structure 

[11]. "Emphasis," on the other hand, refers to extra prominence given to 

transmit the speaker's attitude. 

When a listener perceives a speech signal, he uses numerous acous-

tic cues in decoding the information. What is of major importance, 

however, is that he also uses his own extensive knowledge about both the 

language and the current semantic environment to help him understand the 

utterance. Speech perception is a complex process involving active pre-

diction and correction by the perceiver, as well as the decoding of 

acoustic cues. 

Many of the specific classes of information in speech have been 

shown to have individually identifiable, though overlapping, correlates 

in the acoustic speech signal [11-15]. It is known, for example, that the 

7 



pitch contour strongly reflects the syntactic structure [14]. Struc-

tural effects can likewise be found, to a lesser extent, in segment 

durations and segment intensities [14,15]. Phonemic information, on the 

other hand, seems to be mostly encoded in the filtering effect of the 

upper vocal tract on the various vocal tract sources. It should be 

noted, howeVer, that, in all cases, there is some overlap between 

acoustic domains. For example, there are clear effects in the pitch 

contour due to segmental information and, likewise, the structural con-

text can be demonstrated to affect the characteristics of the vocal tract 

filter. This, of course, is not surprising. The mechanical constraints 

of the speech production system itself precludes the possibility of in-

dividually controlling any specific acoustic feature in a continuous 

speech signal. 

It is not true, however, that the listener uses all the available 

acoustic features in understanding speech. There is good evidence, in 

fact, that a relatively small amount of information is used. But certain 

key information must be present. Structural information is of great im-

portance, since the listener cannot use his great knowledge about the 

language if he cannot recognize word boundaries, phrase boundaries, etc. 

Hence, pitch, the major acoustic correlate of structure, is very important. 

The technique, therefore, in a very low bit rate speech digitiza-

tion system is to accurately represent the perceptually important features. 

-Clearly, the ideal solution is to extract the relevant information on all 

levels from the input speech signal, encode and transmit this information, 

and then create a new, perceptually equivalent, speech signal at the 

receiver. This method, of course, is tantamount to speech recognition, 
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and impossible in any reasonable speech compression system. However, in 

many cases, it is possible to use knowledge about the speech perception 

process and the speech production system to aid in reducing the data rate 

in speech compression systems. 

this study, the LPC vocoder structure was used as a vehicle to 
- - 	- - 	- 	 .  

study very low bit rate speech digitization systems. Some of the research 

involved techniques which did not, in themselves, reduce the bit rate of 

an LPC vocoder, but which offered alternate approaches to the low bit 

rate problems. Other techniques studied led directly to low bit rate 

realizations. 

2.2 The LPC Vocoder  

Since virtually all the results reported here deal with some form 

of the LPC vocoder, it is of value to quickly review several forms of the 

LPC algorithm. 

The basic linear predictive coder model of speech is shown in 

Figure 2.1. In this model, it is assumed that: 

(1) Speech is either voiced or unvoiced. 

(2) The vocal tract transfer functions can be effectively 

modeled by an all pole filter. 

This model works well for vowels, liquids, glides, and the phoneme /h/, 

- -and has proved perceptually sufficient for the other speech sounds. 

Finding a solution for the coefficient vector at a time n reduces to 

minimizing the quadratic 



min[(R A -P )
T (R A -P )] 

=n-n -n 	=n-n -n (2.1) 

resulting in 

A = 
-1 
RP 

-n 	=n -n (2.2) 

where 

and 

p -n 
k=n-L 

(2.3) 

-s
k-1

-  

s
k -2 

(2.4) 

s
k-N 

In these expressions, sk  is the k
th 

speech sample, N is the number of 

taps in the all pole model, L is the window size, and R n  is a covariance 

matrix. If the speech is windowed using a finite length window, then Rn 

 becomes a Toeplitz matrix. In particular, 
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• • 	R
n,N -2 	

R
n,N -1 

R
n,0 

R
n,1 

R
n,N -3 

R
n,N -2 

R
n,1 

R
n,0 

R = 
=n (2.5) 

_Rn,N -1 n,0 

and 

R
n,1 

R
n,2 

(2.6) P = 
—n 

R
n,N 

where 

+co 
P. 	= 	s.s..w. 	w. 

3 3-1 3-n 3-n-i 
(2.7) 

and w
k 

is the k
th 

sample of the window function. This form of the LPC 

was first introduced by Itakura and Saito [16], and has been studied ex-

tensively in recent years [6,9,8]. It has several advantages. First, 

the coefficients obtained represent a best fit [17] to the spectrum of 

the windowed speech. Second, within quantization error, the receiver 

filter is guaranteed to be stable. Third, the well-known Toeplitz matrix 

p 

1 1 



inversion method [18] can be used to solve equation (2.2). This is con-

siderably more efficient computationally than other =inversion methods. 

This method can be summarized by the recursion 

A
l 
= R

o 

1 
a
1 
= R

1
/R

o 

k
1 
 = -R

1
/R

o 

2 
A
n
= (1-k

n-1
)A
n-1 

n-1 
k = ( y an-1R-R 

 )/A 
n i=1 

n-I n n 

a
n 
= -k 

n n 

n-1 	n-1 an-1 

• 

= 	+ k a 
1 	1 	n n-1 

(2.8a) 

(2.8h) 

for n=2 through N. This inversion yields an additional set of parameters, 

kl ...,km , called the PARCOR (partial correlation) coefficients, which 

contain the same information as A, but which have the following features: 

(1) There exists an equivalent receiver filter (within 

quantization) using the PARCOR coefficients 

directly (see Figure 2.2). 

(2) It is a necessary and sufficient condition for the 

stability of the receiver filter that the magnitude 

of the PARCOR coefficients be less than 1. 

12 



Noise 
Generator 

• • • 

Z- - • • • 

Voiced 

Pitch 

Pulse 
Generator 

Unvoiced 

st-2 

st—N 

a1 

a2 Si 
s. = AT S- + Gx- 

aN 

FIGURE 2.1 	FEEDBACK FORM OF THE LPC SPEECH MODEL 



1 

• • 	• 

• • 	• 

4 0-1 an-1 . = 1, ..., n-1 

relation of algorithm to feedback 
form of the LPC 

a rrl = _ kn 

Voiced 

Unvoiced 

Pulse 
Generator 

	■ 

- -- 
Noise 
Generator 

FIGURE 2.2 ACOUSTIC TUBE FORM OF THE LPC SPEECH MODEL 



(3) 	If the Burg analysis method is used, then the 

quantization algorithm can be incorporated into 

the analysis to yield the optimum quantized 

parameter set. 

The PARCOR coefficients also have another nice feature. Wakita 

[19] has shown that area functions ICA in a lossless acoustic tube model 

for the vocal track may be calculated from the {k 
n
}by 

l+k. 
C. = C.

[

1 ] 	, C 	=1 (2.9) 

Using the acoustic tube LPC model for speech coupled with the 

Toeplitz inversion algorithm leads to a particularly nice environment 

to study quantization of parameters. First, the area function (AREAi,k ) 

represents a two dimensional function which is correlated in both dimen-

sions. It is correlated in the time dimension because of the quasi-

static behavior of the vocal tract and in the spacial direction by the 

physical constraints of the articulators. - Second, any quantization al-

gorithm investigated can be "built in" to the analysis algorithm because 

of the properties of the Burg technique [14]. Stated in terms of equation 

(2.8), if k
i 

is incorrect, k
i+1 

through k
N 

are the best spectral match, 

given the error in k.. 
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III. VARIATIONS ON THE LPC ANALYSIS TECHNIQUES 

This chapter describes some theoretical and experimental work 

which was done concerning the basic LPC algorithm. The purpose of this 

work was both to understand better the LPC process and to develop 

analysis techniques more suited to the low bit rate techniques discus-

sed in Chapters V, VI, and VII. Papers describing all the work described 

here have appeared 	in the open literature, and the reader is 

referred to Appendix A for a more detailed discussion. 

3.1 Circular Correlation  

As was discussed in the previous chapter, traditionally there have 

been two basic approaches to the LPC analysis problem: the covariance 

- method [5]; and the autocorrelation method [8]. Proponents of the co-

-.variance method argue that they get an unbiased estimate of the underlying 

model parameter and that the covariance method generally needs fewer 

points in the analysis. Proponents of the autocorrelation method argue 

that they are matching the speech spectrum, a perceptually meaningful goal, 

and point out that they always have a stable receiver filter. 

There is one set of circumstances in which the covariance method 

may be turned into a true autocorrelation method without the application 

of a window. This case occurs when the input speech signal is periodic 

and the analysis window length is exactly one period. If this were truly 

exactly the case, then the exact autocorrelation for the speech signal 

could be calculated from one period of the speech signal from 

I 
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1 T  
R. = — L s.s. . 
j 	T 	1 1+3 

i=1 
(3.1) 

Since s
k
= 
sk-T, 

 where T is the number of samples in one period, then 

1 T-j 

T 
R
j 
 = ( L 	

1 
s.s. + . + 	X 	

i+j-T 
s.$), j = 0, O. . . ,N 3  

i=1 	 i=T-j+1 
(3.2) 

Now, even if the input speech signal is not periodic, the autocor-

relation function calculated by equation (3.2) is the true autocorrelation 

function of an infinite periodic signal represented by s l ,...,sT . Hence, 

the covariance matrix calculated for this periodic signal is Toeplitz, 

resulting in a stable receiver filter. 

The realization of this analysis algorithm requires the availa-

bility of a pitch period detector for the voiced speech. Since such a 

detector is also necessary for the voicing information, this is no great 

constraint. There are two specific effects of the algorithm. First, 

since the average pitch period in voiced speech is smaller than the 

minimum required window length in the autocorrelation method, there is 

an average reduction in the computation time of the analysis algorithm. 

Second, the well-understood distortion caused by convolving the speech 

with the transform of the window functions has been traded for the less 

obvious distortiol due to inexact pitch period extractions and the 

effect of approximating a non-periodic signal by a periodic one. 

In all, three forms of the circular windowing algorithm were ex-

plored. In the first form, one pitch period per frame was used for the 

calculation of the autocorrelation function. In the second form, two 

adjacent pitch periods per frame were used. In the third form, a single 
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pitch period was used, but it was taken to be the average of two adjacent 

pitch periods. 

3.2 The Burg Spectral Estimate  

Using a form of spectral estimate proposed by Burg [20,21], it is 

possible to do an unwindowed spectral estimate without the .assumption of 

periodicity. To see how this works, first note that the autocorrelation 

method begins by windowing the speech signal and then estimating the 

autocorrelation. This approximate autocorrelation function is then used 

with 	 or, 

equivalently{k.}or ICi 1. The point is that the autocorrelation functions 

are an input to the algorithm, while the {a i }, {ki}, or {c i } are the out-

put. But all four sets, (R0 ,...,RN), (Ro ,a1 ,...,aN)(Ro ,k1 ,...,kN ), and 

(Ro ,C1 ,...,CN ), are equivalent in the sense that any set may be directly 

derived from any other. Hence, there is no necessity in estimating the 

autocorrelation function. The problem might also be approached by esti-

mating {ki }  and R
0 
 in a way which does not window the speech. In such an 

algorith, (R0 ,...,RN), an estimate of the autocorrelation function, would 

be an output rather than an input. 

To see how the Burg estimation technique works in this context, 

assume that, by some means, we have arrived at an estimate of the first 

n partial correlation coefficients, (k1n
), and the n

th 
order pre-

dictor, (a
1
,...,a

n
). Now the n+ 1

st 
order predictor is given by 

(an
1 
 + k 

n+1 a
nn, an

2  k n+1 an-1" 
n 

' an 
n 

+ kn+ial, -kn+1) 
	

Based on this predictor, 
.•  

bothaforwarderror(yandabackwarderror(b.
1
)may be calculated 
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n+1 
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M-n-1 

M-n-1 
-2 	X 4.e. 

1 1+n+1 
i=1 

2 	2 
(.+e. 
• i+n+1 ) 

i=1 

k - 
1 

s 	M1 
2 

s
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2 

2 .L 	2 
s. +— 

1=2 

M-1 
- s.s. • 1+1 

i=1 
(3.9) 

n n 
L f. = 	- X an s. +k 	(s. 	- L an 	s. 1 	 3 1-j 	n+1 1-n-1 	n-j+1 13 j=1 	 j=1 

n n 
r 

	

b. ---- s. - y an s. 	+k 	(s. 	- / a
n 	

s. 	) . 1 	1 	3 i+j 	n+1 1+n+1 	n-j+ i+j j=1 	 j=1 

n 	 n 
Letting e

i
=s

i
- X a.s 	and 4= si - X a.s. ., then 

i- j j=1 	 j=1 3 1+3  

f. = e. +k 
1 	n+1 i-n-1 

	

b. = 	+ k e 
1 	1 n+1 i+n+1 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

To find the total error, e
2
, we have 

2 M-n-1 
= 	y (e. 	+k.

2 	 . + k. 
i+n+1 	n+14) 

+ 
1 	 1 	n+1

e 
 1+n+1 	

(3.7)
)2 e 

i=1 	 i=1 
cc 

 

Minimizing this expression with respect to k
n+1 gives 

(3.8) 

For n=0, equation (3.8) becomes 
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Hence, equations (3.8) and (3.9) form a recursion which allows the esti-

mation of the LPC coefficients without the application of a window func-

tion. This recursion simultaneously estimates the partial correlation 

coefficients {k.), which can be used directly in the partial correlation 

form of the receiver filter shown in Figure 2.2. For this method, tk.(<1 

for all i, which is a necessary and sufficient condition for the stability 

of the reciever filter. 

3.3. The Recursive Autocorrelation Calculation Technique  

The recursive autocorrelation technique is a variation on the 

autocorrelation form of the LPC vocoder. In particular, it is exactly 

an autocorrelation vocoder in which the window which is used is the im-

pulse response of a simple 2-pole IIR filter. 

To see how this works, first recall that in an ordinary autocor-

_relation analysis, the input sequence, {s}, is first divided into frames. 

For convenience, in future developments, let - j be the index of the last 

th 
sampleusedinaparticularframe,anddefinew.,the 

.
sample of the 

window function, such that for i<0. This windowing at frame j re-

sults in a new sequence 

&..13 = s.w. . 	 (3.10) 

A .Hanning window of 20-30 msec duration is typically used. The exact 

autocorrelation unction for the windowed speech is then computed from 

CO 

i=co 

	

.. 

1-1-1t
E 	,j 

	

. 	 k= 0,1, 	,M (3.11) 

20 



where Rk . is the k
th 

autocorrelation lag for the window placement j. 

This computation is clearly finite because of the finite length window. 

These autocorrelation lags are then used as input to the Toeplitz in-

version algorithm to find values for the control parameters for the 

- receiver filter. 

There are several problems with this approach to calculating the 

autocorrelation functions needed for the LPC analysis. First, in 

general, for good quality speech, the winnowed areas must overlap. 

For example, typical frame intervals are of the order of 15 msec while 

typical window lengths are of the order of 30 msec. Thus many speech 

samples may be used in forming the autocorrelation functions for more 

than one frame. Second, the general framing and buffering problems as-

sociated with handling overlapping windows give rise to computational 

architectures which are complex and unwieldy. 

Both of the above problems can be avoided if the requirement for 

finite length windows is relaxed. What is of interest, clearly, is a 

class of windows which, though infinite in length, are very small outside 

a (say) 30 msec region. One such class of windows can be formed as the 

impulse response of a second order digital filter having two real poles. 

Such a filter impulse response is shown in Figure 3.1, and has the z 

transform 

H (z) - 

1 
(3.12) 

(1-az
1

) (1-P2
-1

) 

where a and 0 are the pole locations. Applying equation (3.10) to 

equation (3.11), the autocorrelation functions for a windowed sequence 
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FIGURE 3.1 	WINDOW FUNCTIONS DERIVED FROM IMPULSE RESPONSE 
OF TWO POLE FILTER WITH TWO EQUAL, REAL POLES. 



can be rewritten as 

Now, by defining 

= L 	s.s. 	w. .w. . x3 	1 1+k 3-1 3-1-k 
(3.13) 

  

and 

W. = w.w. 
3k 	3 3-k 

(3.14) 

S = s.s. S. 1 1+k 
(3.15) 

Equation .(3:13) may be rewritten as 

+m 
= X 	S., W. . 

x3 	1K 3-1,k 
(3.16) 

From this equation it can be seen that the k
th 

autocorrelation lag can 

be expressed as the convolution of the sequence 
(Sik) 

 and the window 

function (W
ik 
 ). Further, since W

ik 
 is the product of two window functions, 

then Wk (z), the z transform of W
ik 
 , is given by the convolution of the z 

transforms of the two window functions (w. and w 
1 	i+k).  

Now, if the window is allowed to be infinite in length, and if 

further, it is taken to be the impulse response of a second order digital 

filter given in equation (3.12), then, for example, W
0 
 (z)may be written 

as 
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(3.20a) bo = 	 a -8 
a 

k-Fl - k+1 

b1 - a - 13 
B  k+1 a -a 2 k+1

8 
 2 

(3.20b) 

 

Wo (z) = 
1

H(v)H(z/v)v
-1
dv (3.17) 

or 

v-j i (E)k- j 
W (z) - 

1  
2Trj 

 (1-av
-1 

 ) (1-13v
-1

) (1- a —) (1- 13—v ) dv  
z 

 

(3.18) 

Evaluating this expression gives 

(3.19) wk  (z)- 
1-a

1  z
-1

-a
2
z
-2 	-3 

-a
3z 

b
o
+b l

z
-1  

where 

a
1 
 = (a

2
+ 8

2
+ a13) 

a2 
= -(a

2
8
2
+ a

3
8+ 8

3
a) 

a3 =
3
8
3 

If a is allowed to be equal to 8, then the results reduce to 

b
o 
= (k+l)a

k 

(3.20c) 

(3.20d) 

(3.20e) 

(3.21a) 
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b
1  = (k-1)a

k+2 

a
1 
 = 3a2  

a
2 
= -3a

4 

(3.21b) 

(3.21c) 

(3.21d) 

3.21e) 

These equations show that the required autocorrelation functions 

can be calculated recursively as shown in Figure 3.2. 

3.4 Results  

All three of the techniques discussed in this chapter were studied 

experimentally using both objective and subjective measures for the speech 

fidelity. Since those studies have been published, and a detailed des-

cription of the experiments involved is included in Appendix A, that 

information will not be repeated here. Instead, this section will 

present a summary of the important results. 

3.4.1 The Circular Correlation  

The circular correlation technique was found to give spectral 

estimates which were very similar to those given by the autocorrelation 

technique using a 240 point Hamming window. The perceived quality of the 

synthesized speech was essentially the same as that of the autocorrelation 

method. The averaging technique and the use of two pitch periods in the 

analysis interval gave no discerible improvement. 

The main point here is that this technique gives good results 

using an average of about 60-100 points in the analysis interval. This 

is a considerable savings over the 200-300 point autocorrelation method. 
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3.4.2 The Burg Spectral Estimation  

The Burg windowless estimation technique was also found to give 

spectral estimates and qualities which were comparable to the autocor-

relation method. However, the Burg technique consistently needed fewer 

points in the analysis to get the same quality. In particular, the Burg 

technique consistently gives better spectral estimates down to about 60 

sample analysis length. Below 60 samples, the autocorrelation technique 

is consistently better, but this is not relevant in a vocoder environment, 

since the quality produced at 30 sample analysis windows is poor for 

either algorithm. 

In the quality tests, it was judged that audible distortion first 

occured with the autocorrelation technique with a 120 sample window, and 

the quality was completely unacceptable with a 90 sample window. In the 

Burg tests, however, it was judged that no audible distortion occurs 

until a 60 sample analysis interval is used. These results agree quite 

well with the results of the spectral tests. 

In short, the Burg technique gives results comparable to the auto-

correlation method while using, in general, less points in the analysis. 

3.4.3 The Recursive Autocorrelation System  

The recursive autocorrelation form of the LPC analysis has many 

important features. First, it is a point by point system which acts 

identically on every sample, hence no buffering is required other than 

that shown in Figure 3.2. Second, the window "length" is entirely 

controlled by the parameter a, and the same number of calculations are 

required regardless of the window length or frame interval. Third, the 

two multiplies in the non-recursive portion of the linear filters 
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((k+l)a
k 

and (k-1)a
k+2

) need only be done once at each frame interval 

and not on every sample. Fourth, the constant multiplies in the recur-

sive portion of the linear filters are all the same, allowing less con-

stant storage and/or simpler filter realizations. Fifth, since there is 

no queueing problem here, the frame control logic is very simple. Last, 

since all the window information is contained in the linear filter 

coefficients, then no extensive ROM storage is needed to support the 

window function. 

In the tests using the objective and subjective quality tests, the 

recursive autocorrelation LPC was found to be comparable to and slightly 

better than'the 240 point autocorrelation LPC. 

This system is of interest in low bit rate systems mainly because 

of its ability to supply results at arbitrary and time varying frame in-

tervals without appreciable increase in the computational load. 
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IV. OBJECTIVE QUALITY MEASURES 

The work reported in this chapter was mostly funded by the Defense 

Communication Agency, and not the National Science Foundation. It is re-

ported here because a small portion of the resources of this grant went 

into this work, and because the results of this work are used elsewhere 

in this effort. The structure and results of the objective quality mea-

sure study are only summarized here. For a more detailed report, the 

reader is refered to Appendix A and Rome Air Development Center report 

RADC-TR-78-122, under contract F30602-75-C-0118. 

4.1 The Objective Measures  

The problem of rating and comparing the speech quality produced by 

digital communication algorithms is a difficult one, particularly if the 

candidate systems are highly intelligible. Under these circumstances, in-

telligibility tests, such as the DRT [221, may not suffice to resolve 

small differences in acceptability. Direct user preference tests, such 

as the PARM 1231 have been found to be useful for this purpose, but they 

are not highly cost effective. Moreover, they provide no diagnostic in-

formation which could be of value in remedying the distortions caused by 

the algorithms under study. 

Objective measures which can be computed from sample speech 

materials offer a possible alternative to subjective acceptability measures. 

It should be noted, however, that the perception of speech is a highly com- 

plex process involving not only the entire grammar and resulting syntactic 

A 

29 



structure of the language, but also such diverse factors as semantic con-

text, the talker's attitude and emotional state, and the characteristics 

of the human auditory system. Hence, the development of a generally ap-

plicable algorithm for the prediction of user reactions to any speech 

distortion must await the results of future research. However, the ef-

fects of certain classes of distortion are potentially predictable on the 

basis of current knowledge. It was the purpose of this study to quantify 

the effectiveness of a group of simply computable objective measures for 

speech quality for predicting the subjective preference for a wide class 

of speech coding systems. 

In a recent study conducted by the Defense Department Consortium 

on speech quality, a large number of speech digitization systems were 

subjectively compared using the Paired Acceptability Rating Method (PARM) 

Test [23] developed at the Dynastat Corporation. The systems tested in-

cluded a representative sample of the intermediate rate and low rate sys- 

tems which had been implemented in hardware at the time of the study, and, 

consequently, offered a large user acceptability data base covering many 

classes of distortion present in modem speech digitization algorithms. 

The existence of the PARM data base offered a unique opportunity to mea-

sure the ability of objective measures to predict true subjective 

acceptability scores. 

4.2 The Objective Fidelity Measures  

The objective measures studied included both true metrics and 

other measures. In order to qualify as a true metric, a distortion 

measures, D(X,Y), between two signals, X and Y, must meet the following 
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conditions: 

(1) D(X,Y) = 0 iff X=Y 

D(X,Y) 0 if X^Y 

(2) D(X,Y) = D(Y,X) 

(3) D(X,Y) 5 D(X,Z) + D(Z,Y) 	. 

Some of the distortion measures in this study meet these requirements, 

while others do not. 

4.2.1 Spectral Distance Measures  

Spectral distance, in this context, refers to a distance measure 

between a sampled envelope of the spectrum of the source or unprocessed 

speech signal and a degraded form of the signal. Since there are many 

methods for approximating the "short-time spectrum" of a signal, there 

are correspondingly many metrics which may be formed from a speech sig-

nal. A good measure should have two characteristics: it should consis-

tently reflect perceptually significant distortions of different types; 

and, it should be highly correlated with subjective quality results. 

A total of sixteen spectral distance measures and related measures 

were studied in this project. Let V(0), -Trir, be the short time power 

spectral envelope for a frame of the original sentence and let VI(0) be 

the power spectral envelope for the corresponding frame of distorted 

sentence. In this discussion, it is assumed that the proper time syn-

chronization has occured, and that V(8) and VI(0) are for the same frame 
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of speech. Due to the fact the gain variations are not of interest here, 

the spectra V(6) and V 1 (0) may be normalized to have the same arithmetic 

mean either in a linear or a log form. A geometric distance between the 

spectra of the distorted and original spectra may be taken in several 

ways, including spectral distance 

D(0) = v(0) - v' (e) 	, 	 (4.1) 

the difference in the log spectra 

	

D(0) = 10 log10V(6) - 10 1og 10W(6) 	 (4.2) 

the source normalized distance measure, 

D(8) = Di(0) - V' (8)]/v(8) 	, 	 (4.3) 

and the ratio of power spectra 

D(8) = V(0)/V 1 (6) 	• 	 (4.4) 

Of these measures, (4.1) and (4.2) can form the basis for true metrics, 

while (4.3) and (4.4) cannot. A large class of distance measures can be 

defined as the weighted Lp  norm "d p" by 
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w(v,v ',6) ID( 6)1 Pd 8 

d (V,W,W) = 
-n  

-
W(V,V',6)d6 

Tr 

(4.5) 

• 

where W(V,V 1 ,6) is a weighting function which allows functional weight-

ing based on either of the power spectral envelopes or on frequency. In 

this study, W(V,V',0)= 1, and (4.5) reduces to 

+Tr 
d (V,V') = [ -iTT 	ID(0)1

p
de]

1/p 1 

- T1 

(4.6) 

Clearly, the higher the value of "p," the greater the emphasis on large 

spectral distances. This measure may be digitally approximated by 

sampling D(6), giving 

1 r  
d (v, V') ' [T1  ' I D(1211)1 13 ] 1/13  

m=1 
(4.7) 

4.2.2 The LPC Spectral Distance Measures  

Since the output speech waveform is a convolution between a 

spectral envelope "filter" and excitation signal, then a deconvolution 

is necessary for spectral envelope comparisons. The LPC analysis is 

itself a parametric spectral estimation process, and may be used to 

extract an approximation of the spectral envelope. If the LPC parameters 

are (al ,...,a
n
), then the spectrum function V(6), is given by 

G
2 

V(8) = 	 -n<65.0 	 (4.8) 
IA(eje)I2 
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1 
N
CC 	p l/p 

= [-N L 
m=1 

(4.10) 

where 

N 
A(z) = 1 - 	a.z  

1=1 1 
(4.9) 

This approximation can be used to calculate any of the measures suggested 

above. 

There are a number of additional measures which can be calculated 

from A(z). These are not true spectral distance metrics or measures, 

but are related, and have the additional feature that they are easy to 

calculate. Several of these measures are simply geometric distances in 

the parameter domains, such as feedback coefficients, PARCOR coefficients, 

area functions, and pole locations. In each of these cases, we can 

define d as 

where
m 

is the m
th 

parameter (PARCOR coefficient, area function, etc.), 

and N is the number of parameters involved in the representation. 

In another approach, the original speech signal is analyzed 

using an LPC analysis, and the inverse filter waveform is formed by 

 

N 

	

e. 	- / 	a.s. . 

	

1 	1 
j=1 

3 1-3 
(4.11) 

 

. 
Whereaj istile]

th 
 L.PCCOefficientarlds.is the i

th 
speech sample. 

This optimal filter is then used to inverse filter the distorted 

waveform, resulting in 
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N 
e! = s!

1 
 - X a.s

1
! 
-j 
 . 

1 	 j  
j=1 

The measure which is used is then 

L 
X e! P 

 i=1  

X ep 
j=1 1  

lip 

d = 
p 

(4.12) 

(4.13) 

where L is the total number of samples in the utterance. 

4.2.3 Cepstral Spectral Distance Measures  

Another technique used often for deconvolving the spectral en-

velope from the excitation is cepstral analysis [24,25]. A cepstral 

distance measure, d
1
, can be computed from 

= 	lc -c.k  d1 	
k  

k=o 
(4.14) 

where C
k 

and C' are the cepstral components for the original and the 

test signal, respectively. For the same reason that cepstral deconvolu-

tion works well on speech, only a few coefficients need to be used 

(< 40) to calculate d l . Since the cepstral measure is computationally 

intensive (2 FFT's per frame) and since it has been shown that d 1  cal-

culated from A(z) is very highly correlated with d
1 

calculated from the 

cepstrum [24], then it does not appear that the cepstral measure is very 

attractive. However, the cepstral measure is attractive since CCD's 

offer potential for cheap FFT's using the CHIRP-Z Transform. 
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4.3 The PARM Correlation Study  

As was stated in 4.1, the PARM subjective quality data base offers 

a good chance to study the correlation between the objective measures 

under consideration and the isometric subjective results available from 

the PARM. Since many of the objective measures under study are compu-

tationally intensive, the computer time limited the total number of 

speech digitization systems which could be used as part of the study. 

In all, eight systems were studied. These systems were chosen to (1) re-

present a cross-section of speech digitization techniques, including 

waveform coders (CVSD), LPC's channel vocoders, and APC's, and (2) these 

systems overlapped with the systems used in the development of a para-

metric quality test, called the "QUART" Test [26]. This allows some 

minimal correlation studies between the objective quality measures pro-

duced here and the parametric results available from the QUART test. 

4.3.1 The Statistical Analysis  

The objective measures used in this study are shown in Table 4.1. 

The speech data used for this study was twelve sentences for each 

of two speakers (LL and CH) for each of the systems of Table 4.1. 

In the correlation study, the categories recognized were "SUBJECT" 

and "SPEAKER." If the information had been available as to exactly which 

sentence was involved in which PARM, then "SENTENCE" could have been a 

category, increasing the degrees of freedom by approximately a factor of 

six. The correlation coefficients calculated were from 

p- 1 
	

Pa 
K subjects speakers systems 

(4.15) 
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1. D
1 
 LOG LPC 

2. D
1 
 LOG LPC GAIN WEIGHTED 

3. D
2 
LOG LPC 

4. D
2 
LOG LPC GAIN WEIGHTED 

5. D
4 
LOG LPC 

6. D
4 
LOG LPC GAIN 

7. D2 LINEAR 

8. D
2 
LINEAR GAIN WEIGHTED 

9. D
1 
 CEPSTRUM 

10. D
1 
 CEPSTRUM GAIN WEIGHTED 

11. D
2 PARCOR 

12. D
2 
FEEDBACK 

13. D
2 
AREA 

14. D
2 
POLE LOCATION 

15. D
2 
ENERGY RATIO 

Table 4.1 Objective Measures Used in 
the PARM Correlation Study 
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where 

X 	D-D 
Pa = ( 

as   
)( 

a 
 

a
s 	

a
D 

(4.16) 

where-"a" is the condition including subject, speaker, and system, D
a 

is 

the distortion measure for that system, D is the estimate of D, X
a 

is the 

subjects response to condition "a", X
s 

is the average response for that 

subject over all systems, Ci s  is the sample standard deviation for the 

subject "s," and a
D 

is the sample standard deviation for the objective 

distortion measures. 

In order to understand how these results are tabulated, it is 

first necessary to understand how results from the objective measures 

can be used to predict results from subjective tests. 

The more straightforward way of deriving an estimate of the 

subjective quality is now given. Since both the subjective and objective 

measures for quality are means of a large number of independent estimates, 

then their marginal probability distribution functions are asymptotically 

normal, and, by the Bivariate Central Limit theorem, the joint probability 

distribution function is given by the Bivariate normal distribution: 

f(X,D) - 
1

exp[ - 	f( 
1 	

) - 
2 2p(X-i.)(D-i) 

 +
325

)
2
}I 

2(1-p
2

) 	X 	aXaD 
a
D 

2TraX
a
D4-; 	

a 

(4.17) 

where X is the subjective measure, D is the objective measure, a
X 
 is the 

variance of the subjective measure, a D  is the variance of the objective 

38 



measure, and p is the correlation coefficient. For this case, the mini-

mum variance unbiased estimator of X from D is given by 

pax 
X =R + 	(D 

a
D 

where the variance of this measure is given by 

2 
E(X-E(XID))

2 
 =

x
(-p

2 
 ) . 

(4.18) 

(4.19) 

If X, D, ax , alp , and p were known, this problem would be solved, since 

this is enough information to calculate confidence intervals on X or to 

do null hypothesis testing between systems. However, estimates for these 

quantities, called X, D, a
X
, a

D
, and p, must be used instead, and these 

quantities are random variables themselves. Hence, the p.d.f. 

(Probability Distribution Function) is no longer normal, and is, in 

general, very difficult to calculate in closed form. 

However, considering the problem from the point of view of regres-

sion analysis theory offers additional information. The form of the 

linear regression estimation is given by 

X = r3
1

+ (3
2
D . (4.20) 

From the Gauss-Markov Theorem [27], the least squares estimate is the un-

biased minimum variance estimate for X, and for this case (this is really 

an LPC analysis) 
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N 	N 	N 
X X.D.-( X X.)( X D.) 	— 

j=1 3 	3  j=1 3 

 r 	

j=1 3 	PaX = 	 = 	 (4.21) N 	N  
L D. 	

a 
- ( y D.) 2 	D 

2 

j=1 3 	j=1 

and 

N 	N 	- pa D 1 
13 1 = 

ii ( y X . 	J 
-13 2 y D.) = 	... - 	x . 

j= 1 	j=1 	 0
D 

(4.22) 

Two points should be made here. First, these results show that the mini-

mum variance unbiased estimator of X and D is gotten by using the minimum 

variance unbiased estimations for D, X, a
X 
 , a 

D
, and p in Equation 2.28. 

Second, it should be noted that under a mild set of conditions easily 

met by the tests here, four conditions hold: (1) a minimum variance 

unbiased estimate for a 2 , the variance in our approximation of the 

subjective quality, is given by 

N 
-2 - 	2 

	

; N12 	- 	D ) 

	

X = N2 	 1 - 2 i 
j=1 

(4.23) 

(2) minimum variance unbiased estimates for the variance in p1 is given 

by 

-2 
-2 	-2 1 	X  
a = a (N  

	

X N 	N 
	- ) 

1 1 	 y (x.-x) 
2 

i= 1 

(4.24) 

(3) a minimum variance unbiased estimate for the estimate for 8
2 

is given 

by 
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-2 

2 	N 
GX 	

(4.25) 

i=1 
(Xi -X) 

 

and (4) the estimates for S 1 and 0
2 

(0
1 
 and S2 )are normally distributed, 

-2 2 - 	2 	-2 	2 
the statistics formed from ax/ax, 

2 
 /ax , and QS /ax  are x

2 
distributed, 

1 	 P2 
and all five estimates are independent. These four points give all of 

the statistical power necessary to do all the hypothesis testing and 

confidence interval estimation which is normally associated with sta-

tistical testing and estimation. For example, if a confidence interval 

for
I 
was desired, it is only necessary to note that (8

1 
 -8 	) is t 

1 13
1 

distributed, and the confidence interval is given by 

- L
a (N-2)

13
1 

< 73  
13. 1 	Ua(N-2) (3 1 

< 
	 1 

(4.26) 

where U
a(N-2) 

and L
a (N-2)are 

 the upper and lower significance limits for 

a t distributed (u=0, a=1) for N-2 degrees of freedom and probability a. 

There are really two questions which these tests seek to answer. 

First, assuming that the estimate we have for correlations, means, and 

variance are exactly correct, what would then be the confidence intervals 

on our estimate of X? This question seeks to ascertain the potential of 

the objective measures used here to predict subjective results. Second, 

considering all the distorting factors in our analysis, especially our 

errors, in estimating 0 1  and 02 , what then is the resolving power of our 

test? These questions address the usable resolving power of subjective 

acceptability estimates based on the analysis performed so far. The 
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answer to the first question can be addressed by applying equation 4.19 

to the estimate of the correlations (equation 4.15) of the correlation 

coefficients. The answer to the second question can be observed by 

applying equation 4.22 to the data. 

4.4- The Experimental Results 

The correlation studies described above were carried out on three 

sets of the data: all the systems; only the vocoder systems (LPC and 

channel vocoders); and only the waveform coders. The results for the 

three studies are given in Tables 4.2, 4.3, and 4.4, respectively. 

Several points should be made here. First, the correlation coefficients 

for a number of measures are quite high, some as high as .83. The 

"BEST" measures seem to be gain weighted spectral distance measures, as 

expected. Second, however, note the estimated standard deviations are 

somewhat larger than desirable. This indicates that more data should be 

used to better establish these results. Third, note that much better 

results are obtained for the small subclasses than for the whole. This 

indicates that these measures work best if the systems being tested are 

preclassified according to the type of distortion expected. 

These are certainly encouraging results. With measures as highly 

correlated as these, there is good expectation of creating a viable ob-

jective quality test. However, the relatively large estimated standard 

-deviations in the estimates which include all statistics indicate more 

data must be processed to increase the resolving power of these tests 

to a maximum. 
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.SPECTRAL 
DISTORTION 
MEASURES 

D
1 
 LOG LPC 

LOG LPC GAIN WEIGHTED 

D
2 LOG LPC 

D
2 LOG LPC GAIN WEIGHTED 

D
4 

LOG LPC 

D
4 

LOG LPC GAIN WEIGHTED 

D
2 
LINEAR LPC 

D
2 
LINEAR LPC 

D
1 
 CEPSTRUM 

D, CEPSTRUM GAIN WEIGHTED 

PARCOR 

D
2 
FEEDBACK 

D, AREA 

D2 POLE LOCATION 

D
2 
ENERGY RATIO 

P 
... 
a
eI 

ae 

-.76 10.24 22.24 

-.79 8.13 16.13 

-.78 8.85 16.71 

-.81 7.21 13.3 

-.73 14.31 24.12 

-.78 8.31 16.3 

-.61 17.21 30.9 

-.66 13.21 27.1 

-.79 7.64 14.91 

-.81 6.98 13.91 

-.55 22.1 40.7 

-.23 37.1 61.2 

-.76 12.41 21.6 

-.25 21.6 40.7 

+.78 9.2 18.3 

p = Correlation estimate 

a
eI 

= Ideal standard deviation estimate (assuming p=p) 

a
e 

= Standard deviation estimate (full statistics) 

Table 4.2 Results of Correlation Study 
For Total Set of Systems 
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SPECTRAL 
DISTORTION 
MEASURES 

D
1 
 LOG LPC 

D
1 
 LOG-LPC GAIN WEIGHTED-  

D
2 LOG LPC 

D
2 
LOG LPC GAIN WEIGHTED 

D
4 

LOG LPC 

D
4 

LOG LPC GAIN WEIGHTED 

D
2 
LINEAR LPC 

D2 LINEAR LPC GAIN WEIGHTED 

D CEPSTRUM 

D
1 
 CEPSTRUM GAIN WEIGHTED 

D
2 
PARCOR 

D
2 
FEEDBACK 

D
2 
AREA 

D
2 
POLE LOCATION 

D
2 

ENERGY RATIOS 

p a
eI 

a
e 

-.79 8.13 14.23 

-.81 7.15 12.2 

-.79 8.27 18.3 

-.83 6.63 13.4 

-.77 8.95 18.1 

-.81 7.29 14.9 

-.70 16.31 31.6 

-.74 14.52 28.4 

-.81 7.52 13.72 

-.83 6.81 13.14 

-.61 18.22 34.31 

-.33 29.2 43.21 

-.78 10.21 21.21 

-.36 36.3 61.3 

+.80 7.82 14.9 

A 

p = Correlation estimate 

a
eI 

= Ideal standard deviation estimate (assume p=p) 

a e = Standard deviation estimate (full statistics) 

Table 4.3 Results of Correlation Study 
Using Only Vocoders 
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SPECTRAL 
DISTORTION 
MEASURES 

D
1  LOG LPC 

LOG LPC GAIN WEIGHED 

D
2 LOG LPC 

D
2 
LOG LPC GAIN WEIGHTED 

D
4 

LOG LPC 

D
4 

LOG LPC GAIN WEIGHTED 

D
2 
LINEAR LPC 

D2 LINEAR LPC GAIN WEIGHTED 

D1  CEPSTRUM 

D, CEPSTRUM GAIN WEIGHTED 

D
2 
PARCOR 

D
2 
FEEDBACK 

D
2 
AREA 

D
2 POLE LOCATION 

D2 ENERGY RATIO 

p aeI ae 
-.79 8.23 14.12 

-.80 7.91 13.98 

-.78 9.41 18.91 

-.82 6.78 12.21 

-.76 12.2 24.31 

-.80 7.98 18.32 

-.73 14.23 29.31 

-.75 12.9 26.21 

-.79 9.21 18.51 

-.81 6.91 12.91 

-.58 27.4 42.95 

-.21 40.2 51.2 

-.74 18.4 40.91 

-.31 29.6 51.9 

+.76 16.3 33.6 

1 p = Correlation estimate 
A 

eel = Ideal standard deviation estimate (assuming p=p) 

e 
= Standard deviation estimate (full statistics) 

Table 4.4 Results of Waveform Coder Using 
Only Waveform Coders 
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4.5 Summary  

The major results of this study can be summarized as follows. 

(1) A number of objective quality measures, particularly spectral 

distance metrics, offer considerable promise in predicting subjective 

quality results. 

(2) Some of the measures tested are clearly better than the 

others. The best are the gain weighted D 2  log LPC spectral distance 

measure and the gain weighted cepstral measure. These two measures are 

highly correlated with each other. 

(3) Several measures do consistently poorly. Two of these are 

the D
2 
feedback coefficient measure and the D

2 
pole location measure. 

The pole location measure would probably improve if some sort of formant 

extraction was attempted. 

(4) The D
2 
area measure did quite well. This is interesting 

since it is so computationally compact. 

(5) Gain weighting gave a slight, but consistent, improvement 

in the subjective-objective correlations. 

(6) Based on the values of P obtained in this study, the potential 

for using several of the measures for predicting subjective scores is 

good. However, it should be noted that, even if p=p, the resolving 

power of these tests falls short (by approximately a power of 2-2.5) of 

the subjective tests themselves. However, subjective and objective 

measures may be combined to improve resolution. This is easily done so 

long as the number of subjective tests used warrants the use of the 

Bivariate Normal Distribution. 
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(7) The resolving power of the actual tests which resulted from 

this study are nowhere near as good as the "potential" resolving power. 

This is because the resolving power of the tests in this study on p was 

not good enough. This could be improved by doing a lower level correla-

tion between a subject's response and the objective measure for the exact 

sentence used, and by using a larger p iortion of the PARM data base as 

part of the study. It should be noted, however, that although it is 

interesting to speculate on the improvement in the estimates of p that 

further testing would accomplish, no results should be assumed until 

the testing is complete. 
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V. DIFFERENTIAL CODING OF AREA FUNCTIONS 

The results presented in this chapter are from the work of Mr. 

James Marr. Mr. Marr's thesis area involves using two dimensional dif-

ferential and adaptive coding techniques in the area function domain 

for LPC coding. 

5.1 Background  

As was discussed in chapter II of this report, there are several 

equivalent parametrization for the LPC vocoder's vocal tract information: 

the feedback coefficients of the direct form filter {a.}; the partial 

correlation coefficients (PARCOR) or reflection coefficients for the 

"acoustic" tube filter {k.}; the pole locations of the filter transfer 

function {p
i
}; the normalized area functions in the acoustic tube model 

{C.}; or the autocorrelation function of the input speech {R.). These 

parameters may be interchanged using the various transforms discussed 

in Chapter II. The choice of a particular parameter for coding depends 

on several factors, including the statistical properties of the parameters, 

the sensitivity of the resulting speech to the quantization errors, and 

the stability of the receiver filter. Stability is automatically 

guaranteed so long as all the reflection coefficients have a magnitude 

less than 1, or equivalently, the area functions have areas greater than 

zero. The overall quality of the resulting system depends on the inter-

action of many factors, such as talker characteristic, quantization, etc. 

The area function parameterization seems to be attractive for 



seceral reasons. First, as in the case of the reflection coefficients, 

the stability of the receiver filter can be guaranteed. Second, since 

the resulting parameters are approximations for vocal tract area func-

tions, it is not unreasonable to expect that the parameters would be 

spatially -correlated. Third, since the articulators of the vocal tract 

cannot move instantaneously, it could be expected that the parameters 

would be correlated in time as well. All these factors tend to make 

the area functions a good candidate for two dimensional differential 

coding. The major problem with this hypothesis is that the area functions 

obtained from the analyses of Chapter II are only an approximation to the 

true area functions of the vocal tract. In particular, the model does 

not handle loss correctly [28] and the model does not match well for 

ficatives or voiced functions. Hence, the utility of area functions for 

coding must be demonstrated experimentally. 

Figure 5.1, which appeared in the proposal for this work, shows 

the test environment proposed for the two diemshional quantitization of 

the area function parameters. It was proposed to study predictors of the 

form 

L 
AREA  

i,k = 
X b.[ AREAi -3 

.,k] + 
t[AREAi,k+l]  + k[AREA

i -1,k-1
] 

. 
j=1 3  

where i is the time index, k is the spatial index with k=1 at the mouth, 

L was projected to be either L=1 or L=2, b
i
, t, and 2, are tap multipliers, 

and the parameters were assumed to be transmitted in a spatially ascend-

ing order to insure causality. In the experimental study reported here, 

the domain of the predictor was extended to include all causally 
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Predictor Equation 

L ------- 
AR EAj,k  = E bj [AREA• • 

j=1 

+ t[AREAi ' k+ 1] 

+k[AREAi_Lk_ll 

Narrow Band Channel 
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FIGURE 5.1 TEST ENVIRONMENT FOR THE TWO—DIMENSIONAL 
QUANTIZATION OF THE AREA FUNCTION PARAMETERS. 



available information from the past, and it was further assumed that an 

arbitrary ordering of the parameters in the spatial dimension could be 

made for transmission. Hence, the concept of causality was unique to 

the particular ordering being considered, and, for example, a particular 

area, AREA. , might be predicted from its two spatially adjacent neigh-

bors, AREAi,j+1 and AREA. . ,, if the transmission order guarantees the 

availability of these two areas. 

The vocal tract coding problem is illustrated in Figure 5.2. The 

quantization problem can be simply described as follows. A parameter 

which is to be quantized is represented digitally by a large number of 

bits and a corresponding large number of possible values. The purpose 

of a quantizer is to encode the parameter by mapping it into a smaller 

number of possible values. If the number of values is N, the a quantizer 

may be completely characterized by 2N-1 numbers, the N allowable values 

assumed by the quantized parameter 	and the N-1 boundary points be- 

tweenthequantizerregionsfB.I. The coding operation consists of as-

signingacodeword,C(U.), to each allowable output value of the quanti-

zer. If fixed length codes are used, the number of bits required is 

log 2N. Codes need not be fixed length, and may be coded according to the 

probability of occurrence of the particular level from the quantizer, or 

may be combined with other codes for joint coding for more bit efficiency. 

In a fixed quantizer, the values {U} and {B,
i
} remain fixed for 

all time. For a uniform quantizer, Ui =A(i-1)+A/2, where A=RANGE/N, and 

B.= 	i=1,2,...,N. A maximum entropy or equal area quantizer is one 

in which the area accumulated in the Probability Density Functions between 

any two adjacent boundaries, B
. 
and 

Bi+1' 
is a constant independent of i 
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and equal to 1/N. A MAX quantizer is one in which the levels U
. 
and B

. 

are chosen to minimize the MSE between the input parameters and the 

quantized parameters. An adaptive quantizer may scale all the quantizer 

control set, .[U.1 and {B.), by a single control value, or it may set 

each of the values individually. Most work has been done on adaptive 

quantizers using a single control parameter[1-3]. 

Quantization and prediction can be separated in different coders 

as shown in Figure 5.3. If the parameter being coded is modeled as a 

stationary random process and if quantization error is ignored, then it 

is possible to choose the predictor taps optimally in a MSE sense. The 

problem of finding an optimum predictor in the presence of quantization 

error is nonlinear in nature, and has not been solved in general. The 

normal procedure, and the one employed in this work, is to first design 

an optimum fixed predictor assuming no quantization error, and then to 

design a quantizer and an associated adaption strategy for the relatively 

white "error" signal (see Figure 5.3). 

5.2 Initial Experiment  

Throughout the experimental work described in this chapter, the 

vocoder implementation which was used was the "recursive autocorrelation" 

vocoder described in Chapter III. The vocoder, call SLPC, is particularly 

appropriate for this study for two reasons. First, it is a very good 

quality vocoder, and has been shown to be at least the equal of the other 

standard LPC vocoders in quality. Second, a change in frame rate has a 

relatively small impact on the computational load for this algorithm. 

Hence, this vocoder could be reasonably used to implement strategies with 

fast frame rates and a few bits per frame. 
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As an initial experiment, a sentence, "Add the sum to the product 

of these three," spoken by a female was analyzed by SLPC and the area 

functions for every point (i.e., a frame interval of one sample) were 

computed. In this analysis, the speech was low pass filtered to 3.2 kHz 

and sampled to 12 bits resolution at an 8 kHz sampling rate. A pre-

emphasis filter with a slope of 6 db per octave up to 2 kHz and 12 db 

per octave beyond 2 kHz was applied to the speech before analysis. This 

filter, which is designed to correct for the combined effects of radiation 

sampling and the glottal pulse shape [10], was designed using a Kaiser 

window [29] and was implemented as a 64 point FIR filter. The SLPC 

window length parameter had a value of .99 representing an approximate 

window length of 240 samples. 

Several experiments were run based on these data. First, a plot 

of the point by point area function and gain was made for this entire 

sentence (the plot was about 15 feet long). Figure 5.4 shows a portion 

of this plot. Close examination of this plot yielded two points. First, 

for the window length chosen, there was very little pitch synchronous 

variation in the analyzed data. Second, the two dimensional correlation 

among the parameters was clearly visible. Calculating correlation among 

points in these plots for a 16 msec (128 sample) time lag resulted in 

correlation coefficients ranging from .7 to .97 in the time dimension and 

.6 to .97 in the spatial dimension. These results indicate that some 

improvement can be expected from differential coding. 

5.3 Optimal Fixed Prediction  

5.3.1 Designing Optimal Predictors  

As a first step, it was decided to design a number of predictors 
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which were optimal in the MSE sense in the area function domain, and to 

evaluate the improvements obtained by the use of these predictors. The 

general form of such predictors is 

AREA. = 	1 	AREA 
lj 	 k,t 	t-k,j-t 

k 	2, 
prediction 

region 

(5-1) 

By defining a set of two-tuples, J(m), one for each value of i,j for which 

bij 
	

then Eq. 5-1 becomes 

 N 	/N 
ARE 	

= m=1 
y b

J(m)
AREA 

(i,j) -J(m) 
(5-2) 

where N is number of nonzero filter taps. For a. particular pattern, J, 

and a particular spatial area function, j, we may form the squared error 

2  
e.. = (AREA.. /\2. 
13 	13 	13 

(5-3) 

Summing over the time dimension, i, taking N partial derivatives, one 

each for the set bJ(m), 
 and setting the resulting N equations to zero, 

gives the result 

 

b = 
-1 

M P 
JJ J 

(5-4) 

     

where 
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bJ(1) 

bJ(2) 

(5.5) P_ b = 
J 

b
J (m) PJ(m) 

and 

R 
=JJ 

In these expressions, 

= PJ(n). 

and 

I 
M 	= 	/ mn 	. 

r1 

i=1 

-•••• 

. 	. 	M 
M11 	M12 1N 

■•■ 

M21 	M22 

. 	• 

• 

MN 1 	 mNN 

I 
/ 	AREA . . • AREA 

 

AREA . 	• AREA .
-J(n) ij -J (m) 	ij 

(5.6) 

(5.7) 

(5.8) 

and I is the number of sample points in the experimental data set. Note 

that the "j" index, i.e. the spatial index, is carried through here be-

cause this analysis is always particular to one spatial position. 
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5.3.2 Choice of Predictor Patterns  

The major question to be addressed in this experimental work is 

what patterns of predictor coefficients could be expected to give worth-

while improvements for differential coding. To test this, several classes 

of predictor regions were identified. Examples from each of the pattern 

classes is given in Figure 5.5. In class 1, only patterns involving 

area functions at the same spatial location were included. In class 

2, only causally acceptable points at the same time were considered, 

assuming the order of transmission was from the mouth to the glottis. 

In class 3, non-causal patterns at the same time were considered. In 

class 4, more complex patterns involving both the time and spatial 

dimensions were considered. In all, 36 patterns were studied. 

5.3.3 The Experimental Design  

After the patterns were designed, optimal predictors for each 

were designed using the sentence from Section 5.2 with a frame interval 

of 128 samples. Once the predictors were designed, they were reapplied 

to the same sentence and the L2 16g spectral distance measure (see 

Chapter IV) was used to measure the distortion between the original LPC 

spectral estimates and the predicted LPC spectral estimates. A summary 

of these distances, in db, are given in Table 5.1. 

Several points should be made concerning these results. First, 

a few predictor coefficients (-3), whether in the spatial or time 

dimension, appear to give good prediction gains. However, large pre-

dictor patterns do not improve the result appreciably, and, in several 

instances, the results are worse. This is because, even though the 

squared error in the area function domain must always decrease, the 

60 



TERMS USED IN MAKING PREDICTION 
I TERM

# 	

BEING PREDICTED 

f  

0-111-0 

0-110-41-0 

CLASS I 

CLASS III 

lips 

past 
	s 
future 

glottis 

CLASS IV 

SAMPLE PREDICTOR PATTERNS 

FIGURE 5.5 PREDICTOR PATTERNS 



Table 5.1 Results for Selected Predictors 

CLASS I II III IV 

PATTERN 0 1 1P 2P 3P 4P 1G 2G 1L 2L 1G1L 1G1P 1G2P 
2P1
4M

G 2P2M 

GAIN 	MSE 5743 2518 2467 2440 2436 2425 2463 2435 2432 
dB 26.8 7.98 7.98 6.58 8.36 6.55 10.6 9.42 8.97 

AREA 1 MSE 91.9 80.7 74.6 74.5 74.5 74.2 83.5' 75.1 72.5 63.2 63.2 43.6 74.4 
dB 20.4 8.59 9.28 9.46 9.60 9.97 11.6 12.3 11.1 10.2 10.4 9.84 9.24 

AREA 2 MSE 4.38 3.17 3.07 3.07 3.07 3.00 2.85 2.67 2.87 2.74 2.14 2.14 2.14 1.54 2.99 
dB 12.5 7.27 7.59 7.61 7.55 7.32 5.98  5.31 8.01 8.07 4.07 4.97 4.92 4.13 7.22 

Abbreviations: 

Patterns - 1P means 1 term in past is used for predictors; 2P means 2 terms, etc. 
G means terms toward glottis, L toward lips, and M mixed (both past and to side) 
0 means only the mean is used, and 1 means the estimate is the previous value. 

MSE 	- Mean square error in estimate of area for a given pattern. 

dB 	- Spectral L
2 
distance for a given pattern. 



spectral distance may still increase. 

The basic result here is that a few predictor taps appear to 

give solid gains for differential coding techniques. However, going to 

a large number of taps does not result in a correspondingly large im-

provement in the spectral distance. 

5.4 Quantization  

At this point in his thesis work, Mr. Marr is beginning to deal 

with the problem of quantizer design for predictive coding. The class 

of quantizers under study include equal area, Max, uniform, and loga-

rithmic in both a fixed and adaptive form. At the time of this report, 

there are no publishable results in this area. 
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CHAPTER VI 

LPC ANALYSIS USING A VARIABLE 

ACOUSTIC TUBE MODEL 

This chapter presents work which is from the thesis area of Mr. 

Panagiotis Papamichalis. A paper to be presented jointly by Mr. 

Papamichalis and Dr. Barnwell on this material has been submitted to 

the International Conference on Acoustic, Speech, and Signal Processing 

which will be held in April 1979. 

6.1 Basic Concepts  

Linear Predictive Coding of speech has been used extensively in 

evaluating many basic speech parameters such as pitch, formant frequen-

cies, vocal tract area functions, etc. As was discussed in Chapter II, 

in LPC, speech is modeled as a sequence of stationary frames generated 

by a filter with a transfer function 

H(z) - 

1- 	a z
-k 
	A(z) 
	 (6.1) 

k=1 

and this filter realization may be transformed into a form in which the 

vocal tract is represented as a concatenation of a number of tubes of 

constant diameter as in Figure 6.1. The cross area of the m
th 

tube is 

A
m 

and represents a value of the area function describing the vocal 

tract. In the usual approach, the number of tubes is equal to the order 
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of the filter and to the number of PARCOR coefficients. PARCOR coef-

ficients lc i  and area functions are interrelated through 

A
m 	

1-k
m 	

A
m-1

-A
m 

or k = 

	

Am-1 
l+k

m 	
m Am-1+Am 

(6.2) 

One of the algorithms discussed in Chapter III for computing the 

PARCOR coefficients is Burg's Method [19,20]. As was shown there, Burg's 

technique in general needs fewer points in the analysis window than the 

autocorrelation method [8] and it has the special feature that it com-

pensates somewhat in later stages for the errors made in earlier stages 

of computation. It is this last feature of the Burg algorithm which is 

the basis for the approach discussed here. 

It is intuitively reasonabe to expect that an acoustic tube model 

involving fewer tubes than 10 may well give acceptable results for some 

speech conditions. If one simply uses fewer LPC coefficients to do this 

approximation, then the effect is to model the vocal tract by a set of 

tubes whose total length is shorter than before [28]. A more pleasing 

solution would be to use a model having the same total length, but one 

in which certain internal tube sections have been made longer. This can 

be achieved by forcing the reflection coefficient between the two tubes 

to be zero. Now, if Burg's method is used for the analysis, we can expect 

some of the errors introduced by this procedure to be corrected in the 

higher order computations. Once we have forced some of the reflection 

coefficients to be zero, the tubes in the acoustic tube model are no 

longer of equal length, bur are all multiples of the basic length. 
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6.2 The Experimental Procedure  

It was the purpose of this experiment to quantify the distortion 

caused by using acoustic tube models such as those described above for 

the synthesis of speech. To this end, a classic LPC vocoder was imple-

mented which was based on Burg's algorithm, had a frame interval of 16 

cosec (128 samples at 8 kHz), and which used the PARCOR coefficients as 

the quantized parameter set [16]. The algorithm was then augmented to 

allow sets of reflection coefficients (the reader should recall that re-

flection coefficients and PARCOR coefficients are the same parameter 

set) to be forced to zero. The basic model used, contained 10 tubes, and 

experiments were performed on models containing 7 to 3 tubes. These 

cases were called 7BURG to 3BURG, respectively. 

For each case (3BURG-7BURG), an exhaustive search among all pos-

sible tube configurations of that class for each frame was made, and the 

combination which exhibited the least distortion was chosen. In all, 

four different distortion measures were used in this study. The details 

of the distortion measuring procedure will be described in the next 

section. In all cases, the distortions were measured with respect to 

the unquantized PARCOR coefficients obtained from 10BURG analysis. 

In all, three basic variations of this experiment were performed. 

In the first, all analysis was done for the whole sentence using a fixed 

number of tubes. In the second, the frame by frame analysis was allowed 

to vary based on the absolute distortion level and on an algorithm which 

increased the distortion based on the number of parameters transmitted. 

The third variation was to allow the reflection coefficients to be fixed 

to some value other than zero. This is particularly appropriate for areas 
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nearer the glottis, where it can be expected that the shape of the vocal 

tract is fixed, but not necessarily of equal area. This phenomenon has 

been observed experimentally [30] -- . Hence, the different PARCOR coef-

ficients were fixed to their average value, as determined by statistical 

analysis over a six sentence-six speaker set. The corresponding histo-

grams which were derived, agreed pretty closely with the ones given in 

[30]. Particularly, for the first two PARCOR coefficients which have 

histograms both skewed and spread over the entire interval [-1,1], zero-

ing was used as well as fixing their values to the corresponding average 

values. 

6.3 Results and Issues in the Algorithm  

6.3.1 Fidelity Measures  

The following four fidelity (distance) measures were used to cal-

culate the distance between each combination of every case mentioned 

above and the reference set of PARCOR coefficients. 

(a) Mean-square-log-spectral distance which is expressed by 

1  
D
1 
= 	'AVM'

2 de 	
(L

2 
norm) 

-u 

where 

G'  
AV(e) = kn( 	e- ) — tn( Jo 

A(e3  ) 	A' (e )  

or by Parceval's theorem, 
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D
1 = (Co - o 

 C')
2 
+ 2 y (ck  -C I

k
)
2 

k=1 

where C. and C! are the cepstral coefficients corresponding to the refer- 

ence 	

1 

 set of parameters and to the parameters under examination, respectively. 

As suggested in [36], the infinite series can be truncated to yield 

L 
D
1 	

(C 
o 
 -C'

0
)
2 
+ 2 y (ckk  -c.)

2 
k=1 

where L typically was taken to be L=30. 

(b) Mean-absolute-log-area distance given by 

1 
D = — y Ig.-g'l 	(L1  norm) 2 p 	1 

i=1 

where gi  =log((l+Ki )/(1-Ki ))= log(Ai_ 1/Ai) is the log-area ratio. Again, 

g. and g' correspond to reference and test parameters, respectively. 

(c) Mean-square-log-area distance given by 

L D
3 
= 1 — L (g.-g!)

2 
 (L2 

norm) 
i=1 

with g
i 

and g' defined as above. 

(d) Finally, the mean-square-area distance was used as a fidelity 

measure, given by the relation 

p-1 
1 r 	2 

D4 = 	L (A.
1-A!) 	

(L
2 

norm) 
i=o 

with A
i 
and A! being the area functions corresponding to reference and test 
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parameters, respectively.. The area functions can be derived from PARCOR 

coefficients using equation 6.2 with the initial assumption A =1. 

When the above four fidelity measures were used and then speech 

was resynthesized, it was noted that for low distortion cases, e.g., for 

the 8BURG or 7BURG, there was no significant (perceptual) difference 

between the four distortion measures. Yet, for higher distortions, e.g., 

for the cases 3BURG or 4BURG, the difference does become significant 

with D
4 
being the worst and D

2 
and D

3 the best (with no perceived dif-

ference between D
2 
and D

3
). D

1 
falls in between, but it is inferior to 

D2  or D3 . For the extensions of the algorithm only D3  was used. 

6.3.2 Quantization  

As explained in [30] and [37], the sensitivity to errors due to 

quantization increases if the PARCOR coefficients acquire values close 

to the boundaries of the interval [-1,+1]. This problem is alleviated 

by quantizing a transformed set of parameters. So one can use either 

log-area quantization[30] where the parameters A
i 
= kn((l+k

i
)/(1-k

i
))are 

quantizedorinversesinequantizationwheretheparametersA.=sin
-1 

 (k,) 

are quantized. In the current applications, inverse sine quantization 

was preferred. Here, additional improvement can be derived from Burg's 

method by performing the quantization immediately after each PARCOR co- 

efficient was computed so that the method compensates in later coefficients 

for the quantization error made in previous coefficients. 

6.3.3 The Selection Rules  

Normally, the distance measure gets larger as we increase the 

number of PARCOR coefficients forced to zero, i.e. as we proceed from 

7BURG to 3BURG. Yet, if the zeroed coefficients are not transmitted 
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(as will be examined below), we might be willing to accept a larger 

distortion as a price for a lower transmission rate. If we represent 

the optimum distortions of 3BURG to 7BURG as D3B to D7B, the above idea 

can be stated as follows: We select for transmission the set of para-

meters corresponding to nBURG iff DnB < a n*D7B where n is the smallest 

ofthenumbersj,j=3,...,6satisfying a.*D7B. Hence, the decision 

threshold is expressed a percentage of D7B. Of course a n>l, n=3,...,6 

and a.a. if i>j. 
1 

a
n
's could be constants of the form 1+a, where a is a function 

of the bit rate reduction. Yet, one expects that higher distortion in 

unvoiced (low energy) frames is subjectively more acceptable than in 

voiced (high energy) frames. So, the coefficients a
n
's for the above 

rule were chosen to be of the form 

a
n 
= 1+b

n
/E 

where b
n 

is a function of the bit rate reduction and E is the energy of 

the frame under consideration. 

6.3.4 Experimental Results  

The experimental study concerning the variable length acoustic 

tube model is still in progress, and the results are not complete enough 

at this time to be presented here. However, several solid results are 

available. First, there is essentially no perceptual difference between 

8BURG, 9BURG, and 10BURG. This means that an eight tube model behaves 

as well as the ten model. Second, the log area distance measure behaves 

better than the other distance measures, and, in general, the other 
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distance measures behave as they did in the quality tests. The log area 

distance measure was not tested in the quality tests. 
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VII. VARIABLE RATE TRANSMISSION OF SPEECH 

The approach described in this chapter is from the thesis work of 

Mr. Panagiotis Papamichalis. 

7.1 Basic Concepts  

It is a well known fact that the characteristics of speech which 

are related to the shape of the vocal tract do not vary quickly with 

time because of the mechanical constraints on the articulatory system. 

This fact is used explicitly in traditional LPC vocoders by first as-

suming the signal is stationary during frames of up to 30 msec, and then 

using time series methods on this quasi-stationary signal to extract 

parameters related to the vocal tract shape. Such parameters are the 

poles of an all-pole model of the vocal tract, the coefficients of the 

all-pole filter, the area-functions of the vocal tract or, equivalently, 

the reflection coefficients or the PARCOR coefficients k., related to 

area functions A. through 
3 

	

A. 	l+k. 
1-1 	1 

	

A. 	1-k. 

	

1 	1 
(7.1) 

This analysis is usually applied to frames of speech which are 15-30 

msec long at a time interval of 10-20 msec. If the order of the all- 

pole model is p, then each frame is characterized by p PARCOR coefficients. 

These coefficients, together with the gain of the filter and the informa-

tion about the pitch period, are sufficient to resynthesize the speech. 

I 
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coefficients as compared to the later ones [30]. Hence, it is expected 

that it is more important to update the early (front) PARCOR coefficients 

than the later (back) ones. 

The algorithm described in this section has two unique features. 

First, it may transmit subsets of the possible parameters, including 

"all" or "none." Second, the decision on how many parameters to send 

is postponed until later analysis demonstrates the combination with the 

least distortion. The exact characteristics of the algorithm are as 

follows. For each analysis frame, 10 PARCOR coefficients are calculated, 

A = fk1 ,k2 ,...,k 10). Besides A, three other subsets are considered: 

B = {k1 ,k2 ,k3 ,k 4 ,k5 }; C = (k1 ,k 2 }; and D = { }. Assume that at a cer-

tain point s (see Figure 7.1), a set s = {1(1,),...,k1 0} has been sent. 

If, at the next frame, the decision is made to transmit A, then we say 

we follow branch 1 and this results in a distortion D1 . If branch 2 is 

followed, B is transmitted, and there is a distortion of D 2 , and so on. 

Now, instead of making a decision, each of the nodes, S 11 , S12 , S13 , and 

is considered as a new origin, and the process is repeated (Figure 514
, 

7.1(b)). The new distortions are given by 

	

D:= D + (Distortion by following branch j) 	 (7.3) 
nj 

Going an additional step results in 

	

. + (Distortion by following branch k) 	 (7.4) Dnjk  = D 

and so on. Theoretically, this could be continued till the end of the 
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input speech and then select for transmission the path with the least 

distortion. This cannot be done for two reasons. One is the storage 

requirement and the other is the delay between input and output speech. 

So after a certain number of steps (in Figure 7.2 after 3 steps), a de-

ciSion is made. Among all distortions in the last, the N th step, the 

smallest is selected and the node U to which it corresponds is identified. 

The path R-S-T-U (see Figure 7.2) leads to U. Then the combination of 

PARCOR coefficients which corresponds to node S of the 1st step is 

transmitted but no further transmission takes place at the moment. From 

the constructed tree only one-fourth is retained, i.e. the one starting 

from node S and the rest is discarded. Now S becomes the new origin as 

it was R before, everything is shifted backwards by one order and the 

N
th 

step becomes N-lst step. Each node of the N-lst step is extended 

as in Figure 7.1 and a new decision about step 1 is made. This implies 

that a new input at step N causes a decision for step 1. 

7.3 Considerations in the Algorithm  

The input PARCOR coefficients are assumed to be already quantized. 

For quantization, inverse-sine quantization scheme [30] was used. By 

varying the number of quantization levels (e.g. by halving them) fur-

ther compression can be achieved at the expense of the quality of the 

resynthesized speech. 

This trade-off between bit rate and speech quality is a major 

concern in the above algorithm and it is expressed in the distance mea-

sure used, which can be written as 

D = f
1 
 (r) + f

2
(d) (7.5) 
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FIGURE 7.2 TREE STRUCTURE WITH OPTIMUM PATH R-S-T-U 



I 

i.e. the distortion is an (increasing) function f
1 
of the bit rate r, and 

an (increasing) function f 2  of the distance measure d. The distance 

measure d was selected to reflect the change of the speech quality. 

Three distance measures were used to measure the difference between 

transmitting all the new PARCOR coefficients and transmitting some new 

and some old PARCOR coefficient: 

(a) The mean square log spectral distance, 

(b) The mean absolute log area distance, and 

(c) The mean square log area distance. 

Most experimentation has been done with distance (c) for reasons explained 

in Chapter VI. 

It is obvious that, for branch 1, f
2
(d

1
)=0. 

Since there are four possible sets of PARCOR coefficients which 

may be transmitted, then there are some overhead bits associated with 

this scheme. These overhead bits are necessary to indicate which branch 

was followed. Also, the gain is always transmitted. Say that the above 

requirements result in b bits/frame. Depending on the number of 

quantization levels used, following branch 1 results in transmitting b
1 

bits/frame for PARCOR coefficients, following branch 2, b 2  bits/frame 

etc. For normalization purposes, all bit rates are divided by b+b 1 

 (which is the bit rate for branch 1) and 1 is subtracted. Then, if d 2 , 

d3, d
4 

are the distance measures for the other branches, equation (7.5) 

becomes 
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branches from the nodes of N-1 step but then it retains only the M paths 

which lead to the M least distances (Figure 7-3). In our case, M was 4. 

It is expected that eventually the first steps will merge, as suggested 

in Figure 7.3, leading to an unambiguous decision. 

Dynamic Programming  

In Dynamic Programming [34], or the equivalent Viterbi Algorithm 

[35], it is often assumed that only a finite number of states is possible 

and instead of working with a tree which requires much storage, a trellis 

is possible. Although this is not exactly true in the case considered, 

the algorithm described in Section 7.2 can be further modified. 

Each set of PARCOR coefficients A (Figure 7.4) is divided into 3 

	

parts: Al  = {k 1 ,k 2 }, A2  = {k3 ,k4 ,k5 } and A3  = {k6 , 	,k10}, i.e. 

A T 
= [A

l 
A
2 
A
3
] in vector form. At the next step, we input a set of PARCOR 

coefficients B = [B
1 

B
2 
 B 3 ] T  andfollowing branches 1 to 4 the following 

combinations are possible: [B
1 
B
2 
 B3 ] T

, 
[B

1 
B
2 
 B 3 ] T , [B

1 
A
2 
A
3

]
T 

and 

T 	 T 
[A

1 
A
2 
A
3
]. Every vector [a S y] is considered a state. In step 2, 

the states are those of step 1 (i.e. 1) plus 3 new. In step 3 the states 

are those of step 2 (i.e. 4) plus 6 new (distinct) ones, and so on. 

How many new states are added at each step? Assume that we are 

at the i
th 

step with input vector y = [y
1 y2 y3] T .  All the new states 

will have first component y l . Then i of them will have 3rd component A3 

 (Figure 7.5), i-1 will have 3rd component B3 , etc. In all there are 

	

i + (i-1) + . . . +1 = i(i+1)/2 	 (7.8) 

new states at step i. Hence, for step k there are possible distinct 

states 
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i(i+l) 	k(k+1)(k+2)  
2 	 6 

i=1 
(7.9) 

and for a trellis N steps deep, the total number of nodes (which will 

determine the storage requirement) is 

k(k+1)(k+2) 	N(N+1) (N+2) (N+3)  
6 	 24 

k=1 
(7.10) 

The result of equation (7.9) can be compared with the 4
k-1 

nodes of the 

th 
k 	step in the original tree and equation (7.10) with 

C k-1 4
N
-1  L 4 	- 

3 
k=1 

nodes for the whole tree of depth N. 

Tables 7.1 and 7.2 give a numerical comparison, while Figure 7.6 

shows the paths which end at the possible distinct states. From Figure 

7.6, it is obvious that if the dynamic programming approach is applied at 

step k, we need not retain more than k(k+1)(k+6)/6 paths. (The number 

on each node of Figure 7.6 indicates how many new PARCOR coefficients 

were transmitted.) When a decision is made, the whole optimum path is 

transmitted and the process is started again from the last node of the 

optimum path. Also, it is possible to make the depth of the trellis 

variable so that the optimum path is transmitted when the last node of 

the path corresponds to following branch 1. 
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Table 7.1 

Number of States at Each Step 

Step 
k k(k+1) (k+2)/6 4

k-1 
 

1 1 1 

2 4 4 

3 10 16 

4 20 64 

5 35 256 

6 56 1024 

7 84 4096 

8 120 16384 

9 165 65536 

10 220 262144 
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Table 7.2 

Total Number of Nodes for a Tree (Trellis) of Depth N 

DEPTH 
N N(N+l) (N+2) (N+3)/24 (4

N
-1)/3 

1 1 1 

2 5 5 

3 15 21 

4 35 85 

5 70 341 

6 126 1365 

7 210 5461 

8 330 21845 

9 495 87381 

10 715 349525 
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7.5 Results  

Speech was sampled at 8 kHz and was analyzed using frames 240 

samples long with their beginning 128 samples apart. The PARCOR co-

efficients were generated using Burg's approach and each of them was 

quantized the moment of calculation so that higher order coefficients 

compensate for the quantization error made in lower order coefficients. 

Inverse sine quantization was used with the number of levels for each 

PARCOR coefficient given in Table 7.3. The distance measure used is 

the mean square log area distance 

	

10 	14-k
li  

d
2 

= y (in 	in 	
2i

)
2 

	

12
1=1 	1-k11 

. 	1-k
2i 

(7.11) 

whose statistics for the particular sentence considered appear in Table 

7.4. 

Finally, Table 7.5 gives how many times each branch was followed 

for two different values of the weighting coefficients a 2 , a 3 , a
4 
 of 

equation (7.6). The same table gives the calculated bit rate in bits 

per second for those two cases. This bit rate refers only to the PARCOR 

coefficients and it is an average since for certain frames more bits 

were sent than others. To this, one must add 2 overhead bits per frame 

and 3 bits per frame for DPCM coded gain, i.e. one must add 5.8000/128= 

313 bits per second, and also the bits necessary for the transmission 

of pitch information. 

To a first informal hearing, the resynthesized speech sounded very 

good for both cases and hence the bit rate is considered to be very low. 

Further experimentation is necessary and a comparison with Magill's 

approach [32] is under consideration. 
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Table 7.3 

Number of Quantization Levels  

208 

145 

136 

75 

60 

56 

65 

28 

16 

10 

Table 7.4 

Statistics of Distance Measures 

Standard 	Maximum 
Branch 	Mean 	Deviation 	Value  

2 0.1031 0.1231 0.6778 

3 0.1903 0.2172 1.521 

4 0.3298 0.4702 3.776 

Table 7.5 

Variable Transmission Rates 

Branch 

Times Followed 

= 	=a
l
= 1 = a

3
=a 	= 0.8 

1 14 12 
2 27 22 
3 21 21 
4 125 132 

bps 666 573 
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WINDOWLESS TECHNIQUES FOR LPC ANALYSIS* 

 by 

T. P. Barnwell 

Abstract 

The purpose of this work was to study, experimentally, two 

windowless LPC analysis algorithms for use in speech digitization. 

The two algorithms are a circular autocorrelation technique which 

utilizes the pseudo-periodic nature of voiced speech, and a reflec-

tion coefficient estimation technique suggestion by John Parker Burg. 

Both techniques showed considerable promise in the experimental 

results. 

* 
This work was pursued with support from the National Science Foundation 
(NSF-GK-3745l and ENG76-02029). 



I. Introduction  

This paper examines two refinements to the linear predictive 

coding (LPC) algorithm for speech analysis. In neither of these 

methods is the input speech signal multiplied by an explicit window 

function before analysis, yet both methods produce linear predictor 

coefficients which always correspond to predictor polynomials whose 

roots are inside the unit circle. Experiments were designed to study 

the quality and acceptability of the spectral estimates produced by 

these methods in LPC vocoder applications. The experiments suggest 

that both of the methods considered produce acceptable spectral estimates . 

 using fewer speech samples than the other methods which require the 

speech data to be multiplied by a window function. 

II. Theory and Background  

Most LPC vocoders can be represented by the block diagram of 

Figure 1. In all cases, the speech signal is first sampled to produce 

the input sequence {s}, and then two types of feature extraction are 

performed. The first feature extraction, called the "LPC Analysis 

Alaorithm," consists of estimating parameters in all pole digital 

filter model so that the spectrum of the transfer function of the digital 

filter approximates the spectrum of the transfer function formed by com-

bining the effects of the glottal pulse shape, the shape of the upper 

vocal tract, and the effect of radiation from the mouth. Numerous 

forms for the digital filter model and for the analysis algorithm have 

been presented in the literature (1),(2),(7),(12),(17),(18). The second 

feature extraction, called the "Pitch Period Algorithm," consists of 



making a voiced-unvoiced decision for the input speech and estimating 

the fundamental frequency of the excitation (F 
0
)for the voiced sounds. 

This algorithm may either operate on the input speech signal, or may 

operate in conjunction with the LPC Analysis Algorithm. Numerous pitch 

period detectors have been presented in the literature (2),(6),(13), 

(15),(19). 

For the purposes of this paper, the following form of the "LPC 

Analysis Algorithm" is of interest. The input sequence is first 

divided into frames at a fixed frame interval of L samples. An analysis 

window length, M, id determined for each frame (this may be fixed or 

variable). Over each analysis window, it is assumed that the speech 

signal can be suitable modeled by 

N 
s. = X a.s. 
1 	 3 1- 3 j=1 

(wheres.
1 
 is an estimate of s

1 
 . and N is the number of poles in the all 

- 2 
pole model), for an appropriate choice of1. Minimizing E = y (si - s) 

	

ai 	
1=1 

over one window length results in the set of equations 

N 

 y a.( X s. .s. 	) = X s.s. 	k = 1,2,...,N 
j=1 3  i=1 1-3 1-k 	i1 1 1-k  

Letting r
3
.
k 
= / s. .s. 	and letting A

T 
= (a.,...,aN), R = [rjk) and d 

1=1  1 

A = R71P. 

(1) 

T 
= (r01'...'rON)' then the solution for the LPC coefficients is given by 

(2) 

(3) 

The corresponding receiver filter has the z transform 



H(Z) 	 (4) 

1- 	aj z 3 
 j=1 

where G can be calculated from 

G = [r 
oo 3 

 •- 	a.r
0 	

. 
j=1 

(5) 

There have been a number of methods proposed for the calcula- 

tion of r..
ij 
 and the solution of equation 3. Atal and Hanauer (1) 

present a method which does no windowing of the input speech, causing 

R to be a sample covariance matrix. Their method gives good spectral 

estimates for comparatively few speech samples, but results in a receiver 

filter (equation 4) which may be unstable. Markel and Gray (16),(17) and 

Makhoul (11),(12) first multiply the input speech by a window function 

of length M. This causes R to be a Toeplitz autocorrelation matrix, which, 

in turn, both forces the receiver filter, H(z), to be stable (within quan-

tization) and allows the use of the Levinson inversion algorithm (1) 

for the inversion of the matrix R. Under these circumstances 

+co 

. 	. rij 
	I-j 

R3-1 	w 
k-)

s 
 k-j

w 
 k-1

s 
 k-i =_m 

(6) 

where 1;42  are the samples of the window function, and the Levinson 

algorithm can be expressed as 

A
l 

R
0 

a
1 
= R

1
/R

0 



1 -R1
/R

0 

2 
A = (1 - k

n-1
)A
n-1 

n-1 
n-1 

IC = 	1 EL 	Ft . 	
n  

	

i=1 1 	n-1 	n 

n 	n-1 	n-1 a .  .= a . 	+ k a 
1 	1 	n n-I. 

In this algorithm, the fk
n
I are the partial correlation coefficients 

defined by Itakura and Saito (7),(8), and are so named because the 

Levinson algorithm, in this context, is exactly equivalent to a sampled 

linear regression analysis of the windowed speech signal. Wakita (20) 

hasshownthatareafunctionsfcJin a lossless acoustic tube model for 
1 

the vocal track may be calculated from the {k
n 

by 

1 + k. 11  
C.1 

C
i+1 11 - k. 

, C
N+1 

= 1 

It should be noted that the fk
n

) parameter set may be calculated from 

any set ;ad by the algorithm 

B. = -a. 
1 	1 

=  BN  
N 

k
n 
= B

n 

. -1 = (B. - k B
n 

)/(1-k
2

) 	i = 1,...,(n-1) 
1 	1 	n n-1 	n 

.M1 	 -4- 



and that {an} may be derived from {kn}by 

1 
a
1 
= -k

1 

n-1 	n-i 

	

a. = a. 	+ k a . 	i = 1,...,(n-1) 1 	3. 	n n-I 

n 	_ 
n 
a = 

If the set {an} results in an unstable receiver filter realization, 

then 1k
n 

> 1 for some value of n. 

There are several other methods which have been proposed (2),(18) 

for solving equation 3, but these all fall generally into one of the 

two general types discussed above: the "covariance" method and the 

"autocorrelation" method. The major drawback of the covariance method 

is that it may produce an unstable receiver is to function. The autocor-

relation method, on the other hand, distorts the input signal by estimating 

a speech spectrum which has been convolved with the transform of the 

window function. Because of the form of the spectrum for vowel sounds, 

the effect of convolving this window is generally to broaden the spectral 

peaks. The broading effect is inversely dependent on the window length. 

Both of the methods discussed in this paper always result in a 

stable LPC receiver filter realization. Simultaneously, they do not impose 

"window" distortion on their estimates of the autocorrelation. Both 

methods represent a middle ground between the "autocorrelation" method 

and the "covariance" method. Both methods introduce their own unique type 

of distortion. In neither case is this distortion as easily analyzed as 

in the case of "window" distortion. For this reason, both methods are 

studied experimentally. 

(10) 



the window functions has been traded for the less obvious distortion 

due to inexact pitch period extractions and the effect of approximating 

a non-periodic signal by a periodic one. 

In all, three forms of the circular windowing algorithm were 

explored. In the first form, one pitch period per frame was used for the 

- calculation of the autocorrelation function. In the second form, two 

adjacent pitch periods per frame were used. In the third form, a single 

pitch period was used, but it was taken to be the average of two adjacent 

pitch periods. 

Method 2 - The Burg Spectral Estimate 

Using a form of spectral estimate proposed by Burg (4),(5), it is 

possible to do an unwindowed spectral estimate without the assumption of 

periodicity. To see how this works, first note that the autocorrelation 

method begins by estimating the autocorrelation function, (R 0 ,...,c, 

by windowing the speech signal and using equation 6. This approximate 

autocorrelation'function is then used with the Levinson algorithm to 

Droduce"exact"valuesfor { a-}, 0r,equivalentlYfic.lor {C }. The point 

is that the autocorrelation functions are an input to the algorithm, while 

theia.1, -(ki- , or {c.
1
} are the output. But all four sets, (R0 ,....,%). 

1  

(Ro ,ki ,...,km), and (Ro ,C1 ,...,CN), are equivalent in the 

sense that any set may be directly derived from any other. Hence, there 

is no necessity in estimating the autocorrelation . function. The problem 

might also be approached by estimating {k i } and Ro  in a way which does not 

window the speech. In such an algorithm, (R0 ,...,y, an estimate of the 

autocorrelation function, would be an output rather than an input. 

To see how the Burg estimation technique works in this context, assume 



that, by some means, we have arrived at an estimate of the first n partial 

correlation coefficients, 
(k11 

 ...,k
n
). From equation (10), we also have 

the nth order predictor, (a1 ,...,a
n
). Now from equation (10), the n + 1st 

n n 	n 
order predictor is given by (a1  + 

kn+1an' 
a
2 
+ k

n+1
a
n-1'

...,a
: 

+ k
n+1

a
1

'
-k
n+1

). 

Based on this predictor, both a forward error (f.) and a backward error (b. 1) 

f. = s. - 	ans. 	+ k 	(s 
1 	

a. . 	 n 

j=1 7 1-i 	n+1 	
L a 	s .) .+1 

j=1 n-3  

n n 
L

n 	 r 
b. = Si - L a.s. 	+ k 	(s. 	- / an 	.). i 	1 	3 i+j 	n+1 i+n+1 	' n -j+1 3.+3 

j=1 	 j=1 

may)De :calculated 

(13) 

(14) 

(15) 

(16) 

n 	 n 
1 

Letting e. = s - L a.s
i-j 	 1 	• and C

i 
= s. - 	a.s. +j  , then 3 	 r 3  

j=1 	 j=1 

f. = e. + k 	C. 1 	1 - n+1 1-n-1 

b. = C. + kn+1 
e
i+n+1 

To find the total error, e
2
, we have 

m-n-1 	 M-n-1 	 2 2 	 2 
e = 	y 	(e. 	-1- kC.)+/(C. -1- k 	e. 	) . 	(17) i+n+1 	n+1 i 	 i 	n+1 i+n+1 

i=1 	 i=1 

Minimizing this expression with respect to k
n+1 

gives 

M-n-1 
-2 	Ce

i  i=1 1 +n+1 

kn+1 - M-n-1 
(18) 

(4 + e. 
1 	i+n+1)  

i=1 



■ 

For n = 0, equation 18 becomes 

k - 	 
1 	2 

s
2 

	

s
1 
 M-1 

2 	M 
+ 	s . 

2 
 

1  

Hence, equations (19), (18), and (10) form a recursion which allows the 

estimation of the LPC coefficients without the application of a window 

function. This recursion simultaneously estimates the partial correla- 

tioncoefficientsik
a.
A, which can be used directly In the partial cor- 

relationforrareceiverfiltershowninFigureI-ForthisnLetllocLkkl 1  

for all i(5), which is a necessary and sufficient condition for the sta-

bility of the receiver filter: 

III. The Experiments  

The purpose of the experiments was to test the effectiveness of the 

two windowless LPC algorithms against a high quality LPC. The vocoder 

which was Chosen was an autocorrelation LPC which uses a Harming window 

and a Toeolitz inversion algorithm. To this end, two experiments were 

designed: one to look explicitly at spectral estimates from the various 

algorithms; and the other to compare the algorithms for quality in a 

vocoder environment. 

The input data. for all the tests were six English sentences, spoken 

by different speakers (4 male and 2 female), and samples to 12 bits 

resolution at 8 kHz. All sentences were pre-emphasized using a two tap 

FIR filter with coefficients of 1 and -.95. The basis for comparison for 

quality was taken to be the above mentioned autocorrelation vocoder using 

M-1 
-2 	s s. 

1 1+1 i=1   



a 240 sample Harming window, transmitting unquantized coefficients (32 bit 

Floating Point), updating every 120 samples (15 msec), and using a 10 tap 

prediction filter. The pitch detector is a high quality outside detector 

called the "multiband" detector (2). The simulations were done on the 

Georgia Tech mini-computer based digital signal processing facility (3). 

is'a - highly 	oriented computer 

complex which allows very flexible algorithm development and testing. 

A total of 13 configurations of the vocoder were studied and com-

pared, and the systems are summarized in Table I. Besides the basic auto-

correlation LPC, autocorrelation algorithms with window lengths of 120, 90, 

60, and 30 samples were also simulated. For the Burg algorithm, analysis 

window lengths of 240, 120, 90, 60, and 30 were used. For the circular 

correlation LPC, three forms of the algorithm were studied. The first 

form used on pitch period of data per frame, the second form used two pitch 

periods of data per frame, and the third form used the average of two 

adjacent pitch periods as data in each frame. In all unvoiced frames an 

"assigned" pitch period of 100 samiles was used for the analysis. 

The Spectral Tests 

In the spectral tests, all test systems were simulated for all six 

sentences using a 256 point frame interval. For each frame, a 128 point 

spectrum was calculated from 

2 

S
k 

1 
10 

1- 
	a e-iPk7  
p=1  p 128 

k = 1,...,128 	 (22) 



If S . is the kth spectral point of the jth frame of the ith sentence, 
ijk    

then the spectral measure which is calculated between systems "a" and "b" 

is given by 

96 	 128 2  
1 	 a 	 b 

F 	1 G. (-----) 1 (20 log s
i 	

- 20 log s
ijk) j i 128 

i=1 j=1 	 k=1 	 jk  (23) 
6 96 
y 	y G., 

1=1 j=1 1- 

where G..
j 
 is the gain from the jth frame of the ith sentence. It is 

intended that E
ab 
 be a rough quantitative measure of the difference in the 

spectral estimates given by systems "a" and "b". Two comparison tests 

were run using equation 23. In the first test, system "a" was always taken 

to be the autocorrelation LPC with the 240 sample window (system 1). In 

the second, system "a" was taken to be the same as before for the other 

autocorrelation LPC's, but was taken to be the 240 sample LPC system using 

the "Burg" spectral estimation procedure (system 6) for the "Burg" LPC's of 

other window lengths, and was taken to be the single pitch period unaveraged 
• 

m4 	form of the circular correlation LPC (system 11) for the other forms of 

the circular correlation algorithm. 

The Quality Tests 

The only true test for the effectiveness of an LPC algorithm is a 

-__test of the output speech quality. In order to develop some results in 

this area, all 13 systems were simulated ussing all six input sentences. 

The results were then recorded on magnetic tape in the form A-B-A, where 

A is the 240 point "high quality" vocoder (system 2), and B is the test 

system. Informal judgements were then made on the relative quality of the 

systems. 



IV. Results and Conclusions  

An example of the spectral estimates for a vowel given by the Levinson 

and Burg techniques is shown in Figure 2. As can be seen, noticable dis-

tortion occurs much sooner using the windowed Levinson technique than when 

using the unwindowed Burg technique. The spectra from the various , 

techniques were viewed using interactive graphics, and this example is 

--fairly,,representative. 

The Burg technique also looks good from the results of the spectral 

tests. The Burg technique consistently gives better spectral estimates 

down to below 60 sample analysis length (Figure 3), and this phenomenon 

was true on a sentence by sentence test as well (Figure 4 and Figure 5). 

Below 60 samples, the Levinson technique is consistently better, but this 

is not relevant in a vocoder environment, since the quality produced at 

30 sample analysis windows is poor for either algorithm. 

Figure 6 shows the results of comparing spectra from both the Levinson 

technique and the Burg technique with system I only. It should be pointed 

out that this test is highly unfair to the Burg algorithm, since it is being 

asked to simulate the window distortion present in the Levinson technique. 

In spite of this, the Burg estimates are still better than the Levinson 

estimates at 90 and 120 samples. This is a very impressive result. 

In the quality tests, it was judged that audible distortion first 

occured with the Levinson technique in system 2 (120 sample analysis), 

and the quality was completely unacceptable in system 3 (90 sample 

analysis). In the Burg tests, however, it was judged that no audible 

distortion occurs until system 9 (60 sample analysis). These results 

agree quite well with the results of the spectral tests. 



1 In the case of the circular correlation vocoder, it was judged that 

the quality of the single pitch period form was equal to that of the high 

quality systems (system 1 and system 6). Further, using two pitch periods 

(system 12) or averaging two pitch periods (system 13) had no perceivable 

effect on quality. 

Based on these results, it appears that both windowless LPC analysis 

algorithms are capable of producing good quality speech using smaller 

average analysis windows than those used by algorithms requiring the 

windowing of the input speech. It would be noted, however, that both 

algorithms represent an increase in complexity over the autocorrelation 

techniques and this disadvantage must be judged against the advantage of 

smaller analysis windows. 

V. Summary  

Two windowless LPC analysis techniques, the circular correlation 

technique and the Burg techniques, were developed and tested. Simulation 

results show that both methods offer the potential high-quality LPC at 

related small analysis window lengths. 
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-to.any speech distortion must await the results 
-of future research. However, the effects of 
certain classes of distortion are potentially 
predictable on the basis of present knowledge. 

• In particular, substantial progress has been 
made in quantifying the importance of such 
acoustic features as pitch, intensity, spectral 
fidelity, and speech/noise ratio to the intelli-
gibility, speaker recognizability as well as the 
overall acceptability of the received speech 
signal. Thus'far, little success has accompa-
nied efforts to predict the subjective conse-
quences of other than relatively simple forms 
of signal degradation, but recent developments 
in digital signal processing techniques [3,4], 
suggest a number of efficient objective measures 
which could be highly correlated with user 
acceptability. 

ABSTRACT 

A statistical correlation study between - 18 ob=i
jective quality measures and a data base of subjec-
tiVe quality measures from the Paired AcceprAhil 4 tY 
Rating Method (PARM) was done for nine communica-
tion systems, including waveform coders, channel 
vocoders, linear predictive coders, and adaptive 
predictive coders. The results of this study•sbow 
which of the candidate objective measures are most 
effective in predicting the subjective results: 
The measure which was found to be most effective -/' 
over all systems was a gain weighted L 2  spectral' 
distance metric which had a correlation coefficient 
of -.83. *Supported by DCA/DCEC via the RADC Post -
Doctoral Program. 

INTRODUCTION  

In recent years, considerable effort has 
been devoted to the development and implementa-
tion of efficient algorithms for digitally en-
coding speech signals. These algorithms, which 
are utilized chiefly in digital communications,  
systems and digital storage systems, cover a 
wide range of techniques, and result in systems 
which vary greatly in cost, complexity, data 
rate, and quality. 

The problem of rating and comparing these 
systems from the standpoint of user acceptance 
is a difficult one, particularly since the 
candidate systems are usually highly intelli-
gible. Hence, intelligibility tests, such as 
the DRT [11, may not suffice to resolve small 
differences in acceptability. Direct user 
preference tests such as the PARM [2] have been 
found useful for this purpose but are not highly 
cost effective. Moreover, they provide no diag-
nostic information which could be of value in 
remedying the deficiencies of systems being 
tested. 

: - Objective - measures -which - can be computed 

from sample speech materials offer a possible 
alternative to subjective acceptability measures:: 
It should be noted, however, that the perception 
of speech is a highly complex process involving 
not only the entire grammar and the resulting 
syntactic structure of the language, but also 
such diverse factors as semantic context, the 

speaker's attitude and emotional state, and the... 
characteristics of the human auditory system. 
Hence, the development of a generally applicable 
algorithm for the prediction of user reactions 

In a recent study conducted by the Defense 
Department Consortium on speech quality, a large 
number of speech digitization systems were sub-
jectively tested using the Paired Acceptability 
Rating Method (PARM) Test [5] developed at the 
Dynastat Corporation. The systems tested in-
cluded a representative cross-section of the in-
termediate rate and low rate systems which had 
been implemented in hardWare at the time of the 
study, and, consequently, offered a large user 
acceptability data base covering most classes of 
distortion present in modern speech digitization 
algorithms. The existence of the PARM data base 
offered a unique opportunity to measure the 
ability of objective measures to predict true 
subjective acceptability scores. 

This paper describes an experimental study 
-of the relationship between a number of objective 
quality measures and the subjective acceptability 
measures available from the PARM study. In this 
study, a group of 15 candidate objective measures 
were identified and then applied to the same 

......-speech samples on which the PARM tests were per- - 7= 
TfOrmed: Minimum variance estimates for the cor- -- 

 relation coefficients between the objective and 
-subjective measures were then computed. 

": 1f-Fr --- thiS study, three classes-of objective 
quality measures were considered: spectral dis-
tance measures, parametric distance measures, 
and a residual energy ratio measure. 

Spectral distance, in this context, refers  
to a distance measure between a sampled envelope 

: of the source or unprocessed speech signal and a 

CH1285-6/78/0000-0595$00.75@19781EEE 



A final measure which can be easily derived 
from LPC analysis is illustrated in Figure 1. 
The original speech signal is analyzed using an 
LPC analysis, and the inverse filtered waveform 
is formed by 

N 
e = S. - 	a.s. 
i 	1 	

j71  

ware a. is the j 
.th 
 LPC coefficient and si is the 

spe2Ch sample. This optimal filter is then 
used to inverse filter 4-11e distorted waveform,... 
resulting in :„ 

'el 	s! ry 	. 
1 	-1= j=1 - g  1-i 

The measure which is used is then 

(10) 

degraded form of the signal. Since there are many 
methods for approximating the "short time spec-

trum" of a signal, there are correspondingly many 
metrics which may be formed from a speech signal. 

Let V(8), -x<6<w, be the short time power spectral 
envelope for a frame of the original sentence and 

let v.(0) be the power spectral envelope for the 
corresponding frame of distorted sentence. In 
this discussion, it is assumed that the proper 
time synchronization has occured, and that V(0) 
and V'(6) are for the sane frame of speech. Due 
to the fact the gain variations are not of in-
terest here, the spectrums V(8) and W(0) may be 
normalized to have the same arithmetic mean either 
in a linear or a log form. In this study, two .: 
spectral distance measures were considered: the 
linear spectral distance, given by 

D(0) = V(8) -- V' (0) , 	 (1) 

and the difference in the log spectrums, given by 

D(8) 7 10 log10V(0)  - 10 log10V'(8) 	(2) 

A large class of distance measures can be 
defined as the weighted L norm "d p" by 

where W(V,V',6) is a weighting function which al-
lows functional weighting based on either of the 
power spectral envelopes or on frequency. In this 
study, W(V,V',8)=1, and (3) reduces to 

d (V,V . ) = 	TT ID(6)113d6]1/P 
P 	2n 	

(4) 
1  

A(z) = 1 - 	a.z-i  
N 

(7) 
i=1 

This approximation can be used to calculate any 
of the measures suggested above. 

In addition to spectral distance measures, 
it is of interest to investigate objective mea-
sures based on geometric distances in domains 
where the vocal tract filter has been parame-
terized in some way. Several of these parame-
terizations can be associated with the LPC model, 
such as feedback coefficients, PARCOR coefficients, 
area functions, and pole locations. Another in-
teresting parameterization would be the cepstral 
coefficients from homomorphic deconvolution [5, 
6]. In each of these cases, we can define d as 

NN  
d (,C') = 	y lam - ca l P

]
1119 	(8) 

th 
where C is the m parameter (PARCOR coefficient, 
area function, etc.), and N is the number of 
parameters involved in the representation. When 
cepstral coefficients are used by Parseval's 
Theorem, d2 

 can be calculated from the cepstrum 
by 

CO 

d2  = 	ICk  -co 	 (9) 
k=o 

where Ck  and C.;c  are the cepstral components for 
the original and the test signal, respectively. 
For the same reason that cepstral deconvolution 
works well on speech, only a few coefficients 
need to be used (< 40) to calculate d2. Since 
the cepstral measure is computationally intensive 
(2 FFT's per frame) and since it has been shown 
that d2 calculated from A(z) is very-highly cor-
related with d2 calculated from the cepstrum 
[7], then it does not appear that the cepstral 
measure is very attractive. 

P
d (V,V',W) - 1_ 71.  %.1 (V,W,6)1D(6)1 Pd 

1+7  W(V,IP,8)d6 
J 

1/p 

(3) 

    

ra=1 

Clearly, the higher the value of "p," the greater 
the emphasis on large spectral distances. This 
measure may be digitally approximated by sampling 
D(6), giving 

M 
d (V,V 1 ) ""s" m 	ID(11171)1 1 1. /P  

- 7 	m=1 

Since the output speech waveform is a convo- 
lution between a spectral envelope "filter" and 

;_. 	excitation signal, then a deconvolution is neces- 
-1  sary for spectral envelope comparisons. The 1..PZ. 

analysis is itself a parametric spectral estima- 
tion process, and was chosen to extract an ap- 
proximation of the spectral envelope. If the 
LPC parameters -.are (al  , ... , a) , then  the spectrum 
function LV(8),, las -given by 

tr,-,9711L ,z,-_ 
-.-.1-7-..Y.... 	V(8) - 	  , 2 

Ure'..!2t-:,1zs.-- -  , , .1A(e i 
-1, a^ 	-ToreIgm.a. 	.-?,. "7 

wherek:na .1.-balVi4 -:i..1 	% '.57-' 7, - - .. 	_., 
_ • 

(6) 

.596 



where 

W'(m)d 
P.m 

(13) 

In the case of all the distance measures, 
the total sentence measure was computed from 

cMc  

m=1 

D-& 
Pa - 	 a) 

clearly_betler than jaw  
The best .axe the gain weighted 
D2  log LPC spectral distance 
measure and the gain weighted 
cepstral treasure. These two 
measures are highly correlated 
with each other. 

(3) Several measures do consistently 
poorly. Two of these are the D2: 

 feedback coefficient measure and 
the D2 pole location measure. 
_The pole location measure would 
probably improve if some sort of 

7 

(12) d = 
p 	L 

i=1 1  

L 	1/p 

I eP  

eI P  

j=1 

where L is the total number of samples in the 
utterance. 

In the correlation study, the categories 
recognized were "SUBJECT" and "SPEAKER." The 
correlation coefficients calculated were from 

1 	pa  
K subjects speakers systems - 

p  = 

I woo 
m=1 . 

In this expression, D is the total distortion 
for the entire sentence set, W'(m) is a weight-
ing function, a m  is the "d " measures defined 
previously at - 	mth  frame Ef the analysis, and 
M is the total number of analysis frames. 
W'(m) was taken to be 

W' (m) = 1 , 	 (14) 

and 

W' (m) = Gm 
	 (15) 

_ 	- — 
where Gm  is the LPC gain of the original sentence 
in the mth  frame. The LPC analyses were always 
done with a Hamming windowed, autocorrelation 
LPC with a frame interval of 256 samples and a 
window width of 240 samples. The gain weighting 
here was included to see how the overall outcome 
would be effected as a matter of academic inter-
est. The hypothesis is that, since the vocalics 
contain a large portion of the information, and 
since the gain is always greater for vocalics, 
then a gain weighted measure might be more highly 
correlated with perceptual results. 

where "a" is the condition including subject 
speaker and system, Da is the distortion 

of D,,Xa  is the subjects response to condition 
"a", Xs  is the average response for that sub-
ject over all systems, a s  is the sample standard 
deviation for the subject '"s," and aD  is the 
sample standard deviation for the objective 
distortion measures. 

THE EXPERIMENTAL RESULTS 

The correlation studies described above 
were carried out on three sets of the data all 
the systems; only the vocoder systems (LPC and 
channel vocoders); and only the waveform coders. 
The results for thejhree : sterlies are summarized 
in Table 2. SeVeral POints should be made here. 
First, the correlation coefficients for a number 
of measures are quite high, some as high as .83. 
The "BEST" measures seem to be gain weighted 
spectral distance measures, as expected. Also, 
note that much better results are obtained for 
the small subclasses than for the whole. This 
indicates that these measures work best if the 
systems being tested are preclassified according 
to the type of distortion expected. 

SUMMARY 

THE PARM CORRELATION STUDY u. 

As was stated in the introduction, the PARM 
subjective quality data base offers a good chance 
to study the correlation between the objective 
measures under consideration and the isometric 
subjective results available from the PARM. 
Since many of the objective measures under study 
are computationally intensive, the computer time 
limited the total number of speech digitilation  
systems which could' be Used -as part of the study. -  

- Iri alt,'eight syeters -Were - studied,as'ihOWnin 
Table 1. These systems were chosen to represent 
a cross-section of speech digitization techniques, 

if including waveform coders (CVSD), LPC's, channel 
vocoders, and 

The objective measures used in this study 
are summarized in Table 2. The speech data used 
for this study was twelve sentences for each of 
two male speakers for each of the systems ofl 
Table 1. 

The major results of this study can be 
summarized as follows: 

(1)- A number of objective quality 
measures, particularly spectral 
distance metrics, offer considerable 
promise in predicting subjective 
results.' 

(2) Some of the measures tested are 
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1. CVSD - 32-0% 

2. CVSD - 16-0% 

3. CVSD - 9.6-0% 

4. LPC - 4.8-0% (Lincoln Labs) 

S . LPC - 3.6-0% (Lincoln Labs) 

6. LPC = 2.4-0% (Lincoln Labs) 

7. APC 7  0% 

8. PARKHILL - 20 db S/N 

. HY2 = 2.4-0% 
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t:.,formant extraction was attempted. - 

44) The D2 area measure did quite 
well. This is interesting since 
it is so computationally compact. 

(5) Gain weighting gave a slight, but 
consistent, improvement in the 
subjective-objective correlations. 
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The corresponding receiver filter has the z transform 
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Figure 1. Typical Architecture for an LPC Vocoder 
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Abstract  

This paper examines two refinements to the linear 
predictive coding (LPC) algorithm for speech analysis. 
In neither of these methods is the input speech signal 
multiplied by an explicite window function before 
analysis, yet both methods produce linear predictor 
coefficients which always result in a stable receiver 
configuration. Experiments were designed to study the 
quality and acceptability of the spectral estimates 
produced by these methods for LPC vocoders. The 
experiments suggest that both methods produce acceptable 
spectral estimates using fewer speech samples than the 
other methods which require the speech data to be 
multiplied by a window function. 

I. Theory and Background  

Most currently popular LPC vocoders can be 
represented by the block diagram of Figure 1. In all 
cases, the speech signal is first sampled into the 
input sequence (s i ), and then two types of feature 

extraction are performed. The first feature extraction, 
called the "LPC Analysis Algorithm," consists of 
estimating parameters in an all pole digital filter 
model so that the spectrum of the transfer function 
of the digital filter approximates the spectrum of the 
transfer function formed by combining the effects of 
the glottal pulse shape, the shape of the upper vocal 
track, and the damping effect of radiation from the 
mouth. Numerous forms for the digital filter model 
and for the analysis algorithm have been presented in 
the literature (1),(2),(7),(12),(17),(18). The second 
feature extraction, called the "Pitch Period Algorithm," 
consists of making a voiced-unvoiced decision for the 
input speech and estimating the fundamental period of 
the excitation (F0) for the voiced sounds. This 

algorithm may either operate on the input speech signal, 
or may operate in conjunction with the LPC Analysis 
Algorithm. Numerous pitch period detectors have been 
presented in the literature (2),(6),(13),(15),(19). 

W• 

For the purposes of this paper, the following form 
of the "LPC Analysis Algorithm" is of interest. The 
input sequence is first divided into frames at a fixed 
frame interval of L samples. An analysis window length, 
M, is determined for each frame (this may be fixed or 
variable). Over each analysis window, it is assumed 
that the speech signal can be suitably modeled by 

N 

s - 23 a a. 
1 j=i 	—i  

(where ; i  is an estimate of si  and N is the number of 

poles in the all pole model), for an appropriate choice 

. 
of (a

i
). Minimizing E = 2; (s —s ) 2  over one window 

i=1 
length results in the set of equations 

23 	23  aj
( 	s i—j s

i—k
) = 77 s i s i—k k=1,2,...,N.(2) 

j=1 i=1 	 i=1 

Letting r 	= 2; s
i-j1 

s.
-k 

and letting A
T
= (ai  ..... aN ), 

jk  i=1 

R= [ rjk] , and P
T 

( = 'r01"."rON)' then the solution for 

the LPC coefficients is given by 

N 
1- E a4z- J 

j=1 J  

where G can be calculated from 

G = [r oo - 2; aj roji ' 
j=1 

(1) 

H(Z)-  (4) 

(5) 
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l+k 
Ci  = Ci+4

1
_ k 	

i 	
= 1 

It should be noted that the (k
n

) parameter may be 

calculated from any set (an) by the algorithm 

(8) 

g

• 

 _ 8i 

kN  = BN  

k = Bn  n n 

Bn-1 = (B
i  - kn n B

n 
1 )/(1-k

2
) / - 	 (9) 

and that (an) may be derived from (kn) by 

1 
= a1- k1  

n n-1 	n-i 
ai  = ai  + knan_ i  = 1,...,(n-1) 

There have been a number of methods proposed for 
the calculation of r ij 

and the solution of equation 3. 

Atal and Hanauer (1) present a method which does no 
windoWing of the input speech, causing R to be a sample 
covariance matrix. Their method gives good spectral 
estimates for comparatively few speech samples, but 
results in a receiver filter (equation 4) which may be 
unstable. Markel and Grey (16),(17) and Makoul (11), 
(12) first window the input speech with a window func-
tion of length M. This causes R to be a Toeplitz 
autocorrelation matrix, which, in turn, both forces 
the receiver to be stable (withing quantization) and 
allows the use of the Levinson inversion algorithm (1 0 ) 
for the inversion of R. Under these circumstances, 

+.8 
rij  = Ri.i - 	 mk_i sk_ i wi.i sk_ i 	(6) 

where (mil are the samples of the window function, and 

the Levinson algorithm can be expressed as 

A1 = R0 

al  - RI/R0  

ki  - - R1/R0  

A
n 
 - (1 - k

2 
)A 

n-1 n-1 

n-1 
kn = ( 27 ani- Rn-i  - Rn  )/A n i=1 

a
n 

= - k 
n n 

a
n = an-1  + k an-1 
i 	i 	n n-i 

In this algorithm, the (k 
n
)are the partial correlation 

coefficients defined by Itakura and Saito (7),(8), and 
are so named because the Levinson algorithm, in this 
context, is exactly equivalent to a sampled linear 
regression analysis of the windowed speech signal. 
Wakita (20) has shown that area functions (Ci ) in a 

lossless acoustic tube model for the vocal track may be 
calculated from the (kil ) by 

If the set (an) results in an unstable receiver filter 

realization, then lknl > 1 for some value of n. 

There are several other methods which have been 
proposed (2),(18) for solving equation 3, but these all 
fall generally into one of the two general types dis-
cussed above: the "covariance" method and the 
"autocorrelation" method. The major drawback of the 
covariance method is that it may produce an unstable 
receiver filter, a condition which must be detected and 
corrected if the receiver is to function. The auto-
correlation method, on the other hand, distorts the 
input signal be estimating a speech spectrum which has 
been convolved with the transform of the window function. 
Because of the form of the spectrum for vowel sounds, 
the effect of convolving this window is generally to 
broaden the spectral peaks. This effect is magnified 
by short windows. 

Method 1 - Circular Correlation 

There is one set of circumstances in which the 
covariance method may be turned into a true autocor-
relation method without the application of a window. 
This case occures when the input speech signal is 
periodic and the analysis window length is exactly one 
period. If this were truly exactly the case, then the 
exact autocorrelation for the speech signal could be 
calculated from one period of the speech signal from 

R = -ss 	 (11) 
j 	T 	i i+j • 

i=1 

Since sk  = sk _T , where T is the number of samples in 

one period, then 

T-j 
R.
j T 

	

=- 	sis i+4 + 2] 	s sii, 4 ri 
1 

i=1 	
J i=T-j+l 

j = 0,...,N . 	(12) 

Now, even if the input speech signal is not 
periodic, the autocorrelation function calculated by 
equation 10 are the true autocorrelation function of 
an infinite periodic signal represented by 
(s i ,...,sT). Hence the covariance matrix calculated 

for this periodic signal is Toeplitz, resulting in a 
stable receiver filter. 

(7) 

an  .= k 	. 
n

n 

The realization of this analysis algorithm requires 
the availability of a pitch period detector for the 
voiced speech. Since such a detector is also necessary 
for the voicing information, this is not great con-
straint. There are two specific effects of the 
algorithm. First, since the average pitch period in 
voiced speech is smaller than the minimum required 
window length in the autocorrelation method, then there 
is an average reduction in the computation time of the 
analysis algorithm. Second, the well-understood 
distortion caused by convolving the speech spectrum 
with the transform of the window functions has been 
traded for the less obvious distortion due to inexact 
pitch period extractions and the effect of approximating 
a non-periodic signal by a periodic one. 

Method 2 - The Burg Spectral Estimate 

Using a form of spectral estimate proposed by 
Burg (4),(5), it is possible to do an unwindowed spec-
tral estimate without the assumption of periodicity. 
To see how this works, first note that the autocorrela-
tion method begins by estimating the autocorrelation 
function, (R0 ,...,RN ), by windowing the speech signal 

and using equation 6. This approximate autocorrelation 
(10) 	function is then used with the Levinson algorithm to 

♦
rN

.W
  A

a
l•

M
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Figure 2. Comparison of Spectra for "Autocorrelation" and "Burg" LPC Analysis 
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1 	 1 
30 	60 	 to 	120 	150 

Anelysim Window Length 

rigure 3. fa,  for the Autocorre1atfon LPC's and the . 

^aura" LPC's where System "a" is System 1 for 
the Awtocorrelacion LPC's and System 6 for the 
'Burg" LW.. 

gab 

The Spectral Tests 

In the spectral tests, all test systems were 
simulated for all six sentences using a 256 point frame 
interval. For each frame, a 128 point spectrum was 

calculated from 

2 
1 

10 
1 - E ap e 128 p 

P=1  

th 
If Sijk 

is the k-- spectral point of the j• frame of 

the i
tt sentence, then the spectral measure which is 

calculated between systems "a" and "b" is given by 

6 	96 128 

E 	
E E 	(sa 	

• 
sb  )2 	 (23) 

sb 	 ijk 	ijk 
i=1 j=1 K=1 

It is intended that E
ab 

be a rough quantitative measure 

of the difference in the spectral estimates given by 
systems "a" and "b". Two comparison tests were run 
using equation 23. In the first, system "a" was always 
taken to be the autocorrelation LPC with the 240 sample 
window (system 1). In the second, system "a" was 
taken to be the same as before for the other autocor-
relation LPC's, but was taken to be the 240 sample Burg 
(system 6) for the other Burg LPC's, and was taken to 
be the single pitch period unaveraged form of the 	 0 

circular correlation LPC (system 11) for the other forms 
of the circular correlation algorithm. 

The quality Tests 

The only true test for the effectiveness of an 
LPC algorithm is a test of the output speech quality. 
In order to develop some results in this area, all 13 
systems were simulated using all six input sentences. 
The results were then recorded on magnetic tape in the 
form A=B=A, where A is the 240 point "high quality" 
vocoder (system 2), and B is the test system. Informal 
judgements were then made on the relative quality of 
the systems. 

III. Results and Conclusions  

An example of the spectral estimates for a vowel 
given by the Levinson and Burg techniques is shown in 
Figure 2. As can be seen, noticable distortion occurs 
much sooner using the windowed Levinson technique than 
when using the unwindowed Burg technique. The spectra 
from the various techniques were viewed using inter-
active graphics, and this example is fairly representa-
tive. 

- 
The Burg technique also looks good from the ___ 

results of the spectral tests. The Burg technique 
consistently gives better spectral estimates down to: 
below 60 sample analysis length (Figure 3). Below 60 - 
samples, the Levinson techniques is consistently better, 
but this is not relevant in a vocoder environment, since 
the quality produced at 30 sample analysis windows is 
poor for either algorithms. 

SK  K = 1,...,128 . 

(22) 

1.1 	• - 

'73 
6 

Figure 4 shows the results of comparing spectra 
from both the Levinson technique and the Burg technique 
with system 1 only. It should be pointed out that this 
test is highly unfair to the Burg algorithm, since it 
is being asked to simulate the window distortion present 
in the Levinson technique. In spite of this, the Burg 
estimates are still better than the Levinson estimates 
at 90 and 120 samples. This is a very impressive 
result. 

1 
	

1 
O 	 30 	60 	SO 	220 	150 

Analysis Window Length 

Figure 4. La  for the Autocorrelation LPC's and the 

"Burg' LPC' ■ where System NO ie always !rite. 1. 
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produce "exact" values for (a t ), or, equivalently, (k i ) 

or (CO. The point is that the autocorrelation func-

tions are an input to the algorithm, while the [a l), 

[1(0, or (CO are the output. But all four sets, 

(R0,...,RN), (Ro ,a 1 ,...,aN ) (Ro pk i ,...,y, and 

(Ro,C1,...,C14), are equivalent in the sense that any 

set may be directly derived from any other. Hence, 
there is no necessity in estimating the autocorrelation 
function. The problem might also be approached by 

estimating (ki ) and Ro  in a way which does not window 

the speech. In such an algorithm, (R0 ,...,Ro ), an 

estimate of the autocorrelation function, would be an 
output rather than an input. 

To see how the Burg estimation technique works in 
this context, assume that, by some means, you have 
arrived at an estimate of the first n partial correla-
tion coefficients, (k 1 ,...,kn). From equation 10, you 

nth also have the n-- order predictor, (al ,...,an). Now 
th 

from equation 10, the n+ 1— order predictor is given 

	

(an +k 	a , a +K 	a
n ,...,a

n
+k 	a,- k 	). n 

	

1 n+1 n 2 n+1 n-1 	n n+1 1 	n+1 
Based on this predictor, both the forward error (f i ) 

and the backward error (b ) may be calculated 

	

f, = s„ - E an,s. +k 	(s 	- 	an 	s 	) j=i  j 	n+1 1-n-1 j.1  n-j+1 i-j -  

(13) 

n 	 n 
n 

	

b 	 a.s. +k 	(s 	- 	an 	s 	) ' 3 i+j 	n+1 .4+n+1 	n-j+1 i+j 
j=1 	 j=1 

(14) 

Nn, 

	

Letting e
i 
= s

i
- L., an s. 	and t

i
= s

i 
- 73 ans.

'Al. j=1 	L-3 	 j=1  
then 

	

ft = ei 
+ k

n+1 
t
L-n-1 
	 (15)  

Hence, equations 19, 18, and 10 form a recursion which 
allows the estimation of the LPC coefficients without 
the application of a window function. 

II. The Experiments  

The purpose of the experiments was to test the 
effectiveness of the two windowless LPC algorithms 
against a high quality LPC. The vocoder which was 
chosen was n autocorrelation LPC which uses a Henning 
window and a Toeplitz inversion algorithm. To this 
end, two experiments were designed: one to look 
explicitly at spectral estimates from the various 
algorithms; and the other to compare the algorithms 
for quality in a vocoder environment. 

The input data for all the tests were six English 
sentences, spoken by different speakers (4 male and 
2 female), and sampled to 12 bits resolution at 8 kHz. 
All sentences were pre-emphasized using a two tap FIR 
filter with coefficients of 1 and -.95. The basis for 
comparison for quality was taken to be above mentioned 
autocorrelation vocoder using a 240 sample Manning 
window, transmitting unquantized coefficients (32 bit 
Floating Point), updating every 120 samples (15 msec), 
and using a 10 tap prediction filter. The pitch 
detector is a high-quality outside detector called the 
"multiband" detector (2). The simulations were done 
on the Georgia Tech mini-computer based digital signal 
processing facility (3). This facility is a highly 
interactive, graphically oriented computer complex 
which allows very flexible algorithm development and 
testing. 

A total of 13 configurations of the vocoder were 
studied and compared, and the systems are summarized 
in Table I. Besides the basic autocorrelation LPC, 
autocorrelation algorithms with window lengths of 120, 
90, 60, and 30 samples were also simulated. For the 
Burg algorithm, analysis window lengths of 240, 120, 
90, 60, and 30 were used. For the circular correlation 
LPC, three forms of the algorithm were studied. The 
first form used one pitch period of data per frame, 
the second form used two pitch periods of data per 
frame, and the third form used the average of two 
adjacent pitch period as data in each frame. 

by 

b
i 
= t

i 
+ k

n+1 
e1_11.1_

1 
	 (16) 	

TABLE I. SUMMARY OF THE SYSTEMS TESTED 

To find the total error, e
2
, we have 

2 
M-n-1 	 M-n-1 

2 e  . E (ei 1 + kn+iti ) 2 + l's (ti +kn+le il,n+1 ) 
j=i+1 	 i=1 

(17) 

Minimizing this expression with respect to kn+, 

-2 E tiet+n+1. 
L=1 

14-n-1 , F2 4.  2 
ei+n+1.' 

For n = 0, equation 18 becomes 

H-1 
-2 2D s isi+1 

 f=1 
M-1 2 	 2 

61/2 1-j 	6M/2 ,t=2  

SYSTEM # WINDOW SIZE ANALYSIS ALGORITHM WINDOW 
(SAMPLES)  

	

1 
	

240 
	

Levinson 	 Henning 

	

2 
	

120 
	

Levinson 	 Henning 

	

3 
	

90 
	

Levinson 	 Henning 

4. 	 60 
	

Levinson 	 Henning 

	

5 
	

30 
	

Levinson 	 Henning 

	

6 
	

240 
	

Burg 	 None 

	

7 
	

120 
	

Burg 	 None 

	

8 
	

90 
	

Burg 	 None 

	

9 
	

60 
	

Burg 	 None 

	

10 
	

30 
	

Burg 	 None 

	

11 	1 Pitch 
	

Circular 	 None 
Period 
	

Correlation 

	

12 	2 Pitch 
	

Circular 	 None 
Period 
	

Correlation 

	

13 	1 Averaged 
	

Circular 	 None 
Pitch Period 	Correlation 

k11+1 = 

k
1  

gives 

(18) 

(19) 



I 

In the quality tests, it was judged that audible 
distortion first occured with the Levinson technique 
in system 2 (120 sample analysis), and that quality was 
completely unacceptable in system 3 (90 sample analysis). 
In the Burg tests, however, it was judged that no 
audible distortion occurs until system 9 (60 sample 
analysis). These results agree quite well with the 
results of the spectral tests. 

In the case of the circular correlation vocoder, 
it was judged that the quality of the single pitch 
period form was equal to that of the high-quality 
systems (system 1 and system 6). Further, using two 
pitch periods (system 12) or averaging two pitch 
periods (system 13) had no preceivable effect on 
quality. 

Based on these results, it appears that both' 
windowless LPC analysis algorithms are capable of 
producing good quality speech using smaller average 
analysis windows than those used by algorithms requiring 
the windowing of the input speech. It should be noted, 
however, that both algorithms represent an increase in 
complexity over the autocorrelation techniques and this 
disadvantage must be judged against the advantage of 
smaller analysis windows. 

IV. Summary 

Two windowless LPC analysis techniques, the 
circular correlation technique and the Burg techniques, 
were developed and tested. Simulation results show 
that both methods offer the potential high-quality LPC 
at related small analysis window lengths. 
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ABSTRACT 

A method for recursively calculating the 
autocorrelation functions for LPC analysis in a 
vocoder environment is developed theoretically 
and studied experimentally. The method has 
three specific advantages: (1) it requires 
very little memory for its implementation; 
(2) it is realized by a structure consisting 
of several identical modules; and (3) the 
effective window length may be changed without 
varying the structure. Experimental results 
showed the speech quality to be comparable to 
(but slightly superior to) that produced by an 
autocorrelation LPC using a Hanning window. 

I. INTRODUCTION 

This paper deals with an alternate method 
of calculating the autocorrelation function for 
use in an autocorrelation LPC vocoder. The 
analysis portion of such a vocoder has two tasks: 
the extraction and quantiziation of parameters 
from a parametric spectrum analysis; and the 
extraction of features for the excitation func-
tion (pitch detection). The latter task has 
been approached in many ways (1) and is not a 
subject of this paper. The former task, which 
may also be thought of as the extraction of 
parameters in a vocal tract model. can be further 
divided into two subtasks: the calculation of 
the autocorrelation functions; and the matrix 
inversion of the autocorrelation matrix. Since 
the autocorrelation matrix is Toeplitz, its 
inversion can be accomplished by the compact 
Toeplitz inversion algorithm (2). The first 
subtask, however, is much less compact, requiring 
windowing operations and buffering operations in _ 
addition to the extensive calculations (multiplea-
and adds) required for the autocorrelation func-
tion. 

This paper presents an alternate method for 
calculating the autocorrelation functions used 
in an autocorrelation LPC. By using an infinite 
length window, the autocorrelation calculation 
can be made recursive. This method results in 
moderate reductions in calculations for some 

*This work was supported by the National Science 
Foundation (ENG 76-02029) 

structures, with great reductions in the buffer 
storage requirements and the control logic re-
quirements for an LPC transmitter. This method 
further results in speech quality equivalent to 
the traditional "Hanning window" realization. 

II. THEORY 

Figure 1 shows a block diagram of a conven-
tional autocorrelation LPC vocoder transmitter. 
In this system, the input speech signal is 
sampled, quantized, and (generally) pre-empha-
sized into an input sequence {s i ). 

This input sequence is then divided into 
"frames". At a fixed frame interval, a window 
is applied to the sampled signal. For convenience 
in future developments, let j be the index of 
the last sample used in a particular frame, and 
define w., the ith sample of the window function, 
such that wi=0 for i>0 (i.e., w i  is indexed 
backwards, so that for finite length windows, 
wi. 0 for -M<i<O, where M is the window length). 
This windowing at frame j results in a new 
sequence 

tij = s.wj-i 	
(1) 

A Hanning window of 20-30 msce duration is typic-
ally used. The exact autocorrelation function 
for the windowed speech is then computed from 

• 

Rkj 	/ tij ti+kj 

where Rki  is the kth  autocorrelation lag for the 
window placement j. This computation is clearly 
finite because of the finite length window. 
These autocorrelation lags are then used as input 
to the Toeplitz inversion algorithm to find 
values for the control parameters for the receiver 
filter. 

There are several problems with this approach 
to calculating the autocorrelation functions 
needed for the LPC analysis. First, in general, 
for good quality speech, the windowed areas must 
overlap. FOr example, typical frame intervals 
are of thie order of 15 msec while typical window 
length are of the order of 30 msec. Thus, many 
speech samples may be used in forming the auto-
correlation functions for more than one frame. 
Second, the general framing and buffering 

k=0,1....,M 	(2) 
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problems associated with handling overlapping 
windows give rise to computational architecutes 
which are complex and unweildy. 

Both of the above problems can be avoided if 

111111 

	

	

the requirement for finite length windows is re- 
laxed. What is of interest, clearly, is a class 
of windows which, though infinite in length, are 
very small outside a (say) 30 msec region. One 
such class of windows can be formed as the im-
pulse response of a second order digital filter 
having two real poles. Such a filter impulse re-
sponse is shown in Figure 2, and has the z 
transform: 

H(z) = 	  
-11 	-

1 	
(3) 

(1-az )(1-Bz ) 
 

where a and B are the pole locations. Applying 
equation (1) to equation (2), the autocorrelation 
functions for a windowed sequence can be rewritten 
as 

• 
Rkj 	. 	sisi+kwj-iwj-i-k 

Now, by defining 

W . = w.w. 3k 	3 3-k 

and 

Sik = s.s. 
i+k 

Then equation (4) may be rewritten as 

Rkj  = ./ SikWj _j_k  

From this equation it can be seen that the k th 
 autocorrelation lag can be expressed as the con-

volution of the sequence (Sik ) and the window 
function (Wik). Further, since Wik  is the product 
of two window functions, then Wk(z), the z trans-
form of Wik, is given by the convolution of the z 
transforms of the two window functions (wi  and 

wi+k ) • 

Now, if the window is allowed to be infinite 
in length, and if further, it is taken to be the 
impulse response of a second order digital filter 
given in equation (3), then Wk(z) may be written 
as 

1

3 

 r  
W()__7-= 	9H(v)H(z/v)v 	v 

or 
-j-ii

7.)
ik-j 

1 L 	
dv. W(z) 	7 (l-acv 	(1_13v-1 ) (l_al)  (1_,B 12.z ) 

Evaluating this expression gives 

b
o
+b

1
z 

1 

W(z) - 

where: 

a  
k+1—a k+1 
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If a is allowed to be equal to B, then the results 
reduce to 

bo 
= (k+l)a

k 
(12a) 

b
1 
 = (k-1)a

k+2 
(12b) 

al 7157? (12c) 

a
2 
= -3a

4 
(12d) 

a
3 
= a

6 
(12e) 

These equations show that the required auto-
correlation functions can be calculated recursive-
ly as shown in Figure 3. 

III. ANALYSIS OF THE RECURSIVE STRUCTURE 

Several points should be made about the 
structure of Figure 3. First, note that it is a 
point by point system which acts identically on 
every sample, hence, no buffering is required 
other than that shown in Figure 3. Second, note 
that the window "length" is entirely controlled by 
the parameter a, and the same number of calcula-
tions are required reguardless of the window 
length or frame interval. Third, note that the two 
multiples in the non-recursive portion of the 
linear filters ((k+l)ak  and (k-1 )ak+2 ) need only 
be done once at each frame interval and not on 
every sample. Fourth, note that the constant mul-
tiplies in the recursive portion of the linear 
filters are all the same, allowing less constant 
storage and/or simpler filter realizations. Fifth, 
since there is no queueing problem here, the frame 
control logic is very simple. Last, since all the 
window information is contained in the linear 
filter coefficients, then no extensive ROM storage 
is needed to support the window functicn...._-.. -  

. 	' 	. 

Table 1 gives a comparison for the multipli-
es, ROM storage, and RAM storage needed for the 
recursive autocorrelation algorithm and two forms 
of the Hanning windowed autocorrelation algorithm. 
Note that the use of intermediate buffer 
storage results in fewer multiplies for the tradi-
tional structure than for the recursive structure. 
The logical complexity of the recursive structure, 
of course is considerably simpler than the double 
buffered, queueing structure necessary for the 
Manning windowed LPC. It is difficult to do com-
parisons between the two realizations (this is 

(4) 

(5) 

(6) 

(7) 

(8) 

1-a
1 
 z 
-1 

-a2z
-2

-a3z
-3 
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certainly a case where multiplies are not a good 
measure of complexity), but it is safe to state 
that the traditional structure would work well for 
interrupt driven high speed programmable device 
realizations for the LPC analysis, while the re-
cursive architecture would work well for hard 
wired (LSI) realizations. 

V. 	RESULTS 

A recursive structure for computing the auto-
correlation functions needed for LPC analysis was 
proposed and studied experimentally. The results 
showed the new structure to have several advan-
tages over traditional window structures and the 

IV. 	THE EXPERIMENTAL STUDY 

experimental results showed the perceptual quality 
of the new structure to be comparable with the 
traditional systems. 
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APPENDIX A 

10 
-312."  1 - 	y 	ape   128 

P=1  

is the kth spectral 
sentence, then 

calculated between 
by 

were: 

Test Utterances for the Quality and Spectral 
Difference Studies 

The six test utterances used in this study 

6 	
1 96 	128 

r 	 a 	 b 2 y y G..  ( 	) L (20 log s i jk-20 log silk ) 
.1 j=i  13 128 k=1  

6 96 
y G.. 

i=1 j=1 13  

1. The pipe began to rust while new. 
2. Add the sum to the product of these three. 
3. Open the cate but don't break the glass. 
4. Oak is strong and also gives shade. 
5. Thieves who rob friends deserve jail. 
6. Cats and dogs each hate the other. 

(14) 

where Gij  is the gain from the )th frame of the 
ith sentence. It is intended that E ab be a rough 
quantitative measure of the difference in the 
spectral estimates given by systems "a" and "b." 

The results of the spectral distance tests 
are given in Table 2. Other tests using this same 
measure (4) show that spectral distances of less 
than 3 db, as is the case for these'systems -v . 
represent a very small variation between systems. 

The informal listening tests agree with the 
spectral tests. In all cases, the corresponding 
systems were judged to be very similar in quality, 
with the recursive system being slightly favored. 
Clearly, formal listening tests must be performed 
before any true ranking between these methods may 
be obtained. However, the results here show the 
systems to be very similar in quality. 

These utterances were compiled by the Defense 
Communication Agency for use in pitch and voicing 
studies. The speakers represent a large range of 
pitch characteristics. The sentences are from the 
1969 Revised List of Phonetically Balanced 
Sentences [17]. The utterances were sampled at 
8.0 Hz and quantized to 12 bit linear PCM 
resolution. 
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VALE 2. Spectral Distance Measures for Recursive auto-- 
Correlation Ai Cnopared to 243 Sample (30 mace, 
Manning window Autocorrelation Calculation. 
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