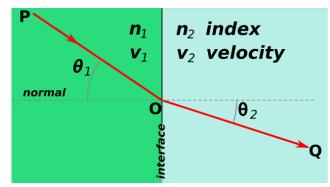
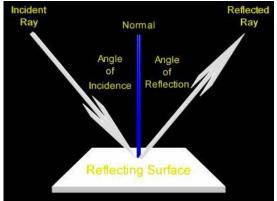


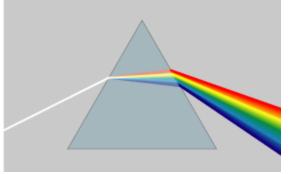
Halogen-Free, UV-Curable High Refractive Index Materials for Light Management

Dr. Mike J. Idacavage Strategy Technology Group Cytec Industries, Inc. October 12, 2010

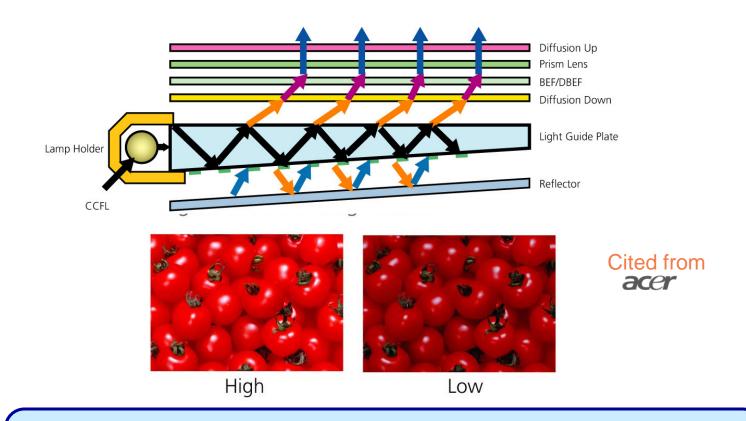
Georgia Tech Nano@Tech seminar series


CYTEC Functions of Refractive Index


3 Functions of Refractive Index


- Refraction: Light rays change direction when they cross the interface from one material (n₁) to another material (n₂);
- Reflection: Light reflects partially from the inter-surfaces of 2 materials that have different refractive index;
- Dispersion: Dispersive effect due to the diversity of the wavelengths of the light, the bending effect being frequency dependent.

$$\frac{\sin\theta_1}{\sin\theta_2} = \frac{v_1}{v_2} = \frac{n_2}{n_1}$$


CYTEC Potential Applications of High RI Materials

- Brightness enhancing films
- Anti-reflective coatings
- High-reflective coatings
- Bragg reflectors
- Optical fiber coatings
- Plastic lenses
- Graded index optical lenses
- Fresnel lenses
- Photonic devices
- Security Coatings

Various applications for high refractive index materials


CYTEC Brightness Enhance Films

A micro-replicated prism film (made from high RI materials) that is used to increase display brightness by managing the exit angle of light.

CYTEC Material Requirements

- Optical Properties
- Mechanical Properties
- Adhesion
- Formulation Capability
- Process-ability
- Cost
- Product Stewardship

Requirements driving need for new materials/technologies

Theory for Making High RI Materials

Higher refractive index (n) is often achieved by increasing polarizability (γ) and/or increasing density (ρ) .

- 1. Aromatic Rings
- 2. Halogen Atoms (CI, Br)
- 3. Hetero Atoms (S, P)
- 4. Inorganic-Organic Hybrid Nanomaterials

Lorentz - Lorenz Equation

$$n^2 = \frac{\frac{8}{3}\pi N_A \gamma \rho + M}{M - \frac{4}{3}\pi N_A \gamma \rho}$$

n ≡ Refractive Index

M = Repeat Unit MW

 $N_{\Delta} \equiv Avogadro's Constant$

 $\gamma \equiv Polarizability$

 $\rho = Density$

Polarizability number

A/M	Н	C	N	0	F	S	P	Cl	Br	I	Ti	Zr	CH ₄	C ₆ H ₆
γ	0.67	1.76	1.10	0.80	0.56	2.90	3.63	2.18	3.05	5.35	14.6	17.9	2.59	10.0

Theory guides our new materials R&D

CYTEC Technical Strategy

- Traditional Approach Organic Synthesis/Formulation
- New Approach Inorganic Organic Hybrid Nanocomposite - Nanoparticle Dispersion

Overall technical strategy for the development of High RI Materials.

CYTEC Organic Synthesis/Formulation

Highly Aromatic (Meth) Acrylate Resins

> 2-Phenoxyethyl acrylate

- -n = 1.51, liquid'
- Viscosity 20 cPs @ 25°C
- Aromatic rings = 1

Bisphenol-A-epoxy diacrylate

- -n = 1.55,
- Viscosity 800,000 cPs @ 25°C
- Aromatic rings = 2

Compromise between refractive index and viscosity

CYTEC Organic Synthesis/Formulation

Halogenated Acrylates

- Chlorinated Isobornyl Acrylate
 n = 1.54, liquid
 Very high concentration of chlorine
- Tribromophenoxyethyl Acrylate
 n = 1.56, solid
 High concentration of bromine
- Pentabromophenyl methacrylate
 n = 1.71, solid
 Very high concentration of bromine

Higher halogenation, higher RI value, but ...

CYTECNew demands from global markets

- Halogen-Free materials are the preferred requirement globally due to growing environmental concerns;
- Higher Refractive Index value for higher performance;
- Lower viscosity requirement for coat-ability @ room temperature.

Fast market changes generate many technology challenges

Heteroatom Resins from Organic Synthesis/Formulation

> Phenylthiolethyl acrylate

- n = 1.56, liquid
- Good diluent,

$$\begin{array}{c}
O\\
S-CH_2CH_2O-C-C=CH_2
\end{array}$$

>MPSMA Bis(methacryloylthiophenyl)sulfide

- n = 1.66, solid

Existing technologies for making halogen-free, high RI materials

Heteroatom Resins from Organic Synthesis/Formulation

Synthesized Heteroatom Urethane (Meth) acrylates

Properties	Oligomer 1	Oligomer 2
Halogen Free	Yes	Yes
Appearance	Clear liquid	Clear, dark brown, viscous liquid
Color (Gardner)	<1	<12.5
RI (L,), n _D ²⁰	1.606	1.639
Molecular Weight (Mn) GPC	560	1,600
Viscosity (cPs @ 60 °C)	1,250	15,000
Density (g/cm³)	1.18	1.20

Multi-aromatic rings and hetero atom-containing Urethane (Meth)acrylate – New Invented proprietary technology

Heteroatom Resins from Organic Synthesis/Formulation

Performance Data of 3 Formulations based on heteroatom containing aromatic urethane (meth)acrylate oligomers

Performance	Formulation 1	Formulation 2	Formulation 3	
Halogen Free	Yes	Yes	Yes	
n _D ²⁰ (liquid)	1.5653	1.5658	1.5706	
RI of Cured film	1.5886	1.5883	1.5906	
Viscosity at 25°C	1840	1290	5500	
Viscosity at 60°C	149	113	325	
Pencil hardness	2H	1H	Н	
UV-cure Dosage (mJ/cm²)	880	880	880	
Tensile, psi	2700	2039	2337	
Elongation, %	59	20	37	
Modulus, psi	49508	52798	77719	
Toughness, psi	764	279	652	
Adhesion to PET film, 5B=100% adhesion	5B	5B	5B	

Higher RI provides higher latitude for formulating

Halogen-free, Sulfur-free Resins from Organic Synthesis/Formulation

A new halogen-free and S-free oligomer has been developed.

Oligomer	Properties
Halogen Free, Sulfur-free	Yes
Molecular Weight (Mn) by GPC	2,750
Appearance	Clear, viscous liquid
Color (Gardner)	<1
RI (L, 589 nm @ 20 °C)	1.599
Viscosity (cP @ 60 °C)	117,000
Density (g/cm3)	1.16
Functionality	2 (can be higher)

The viscosity reduction can be achieved with reactive monomer dilution.

RI of Inorganic Compounds

RI values of some inorganic compounds

Compound	Crystalline Form	Refraction Index, n ^D
Al_2O_3	Col. Hex.	1.768, 1.76
Sb ₂ O ₄	N. Cervantite(W powder),	2.00,
or $(Sb_2O_3Sb_2O_5)$	N. Senarmontite(Sb ₂ O ₃ ,W cub),	2.087,
	N. Valentinte (Sb ₂ O ₃ , Col rhomb)	2.18, 2.35,
CdO	Brown Cub	2.490
CaO ₂	White tetr.	1.895
Cu ₂ O	N. Cuprite, red, oct. cub.	2.705
FeO	N. Wuestite, blk. Cub.	2.32
Fe ₂ O ₃	N. Hematite, red-brn to blk trig	2.94-3.01
PbO	Massicot. Yel. Rhomb.	2.51-2.71
MnOMnO ₃ (II,III)	N. Hausmanntite, blk. Tetr(rhomb)	2.15-2.46
SnO ₂	N. Cassiterite, white tetr.or hex. or rhomb)	1.997-2.093
TiO ₂	N. octahedrite, anatase, br-blk, tetr	2.554-2.493
	N. Brookite, white, rhomb	2.586-2.741
	N. Rutile, Col. tetr	2.616-2.903
ZnO	N. Zincite, white hex.	2.008-2.029
ZnS	N. Sphalerite, col. Cub.	2.368
ZnSe	Yelsh. to redsh. Cub.	2.89
ZnTe	Red cub.	3.56
ZrO ₂	N. Baddeleyite, colyel-brn monocl.	2.13-2.19-2.20

Targeted inorganic/organic hybrid nanocomposites due to the high refractive index of inorganic compounds

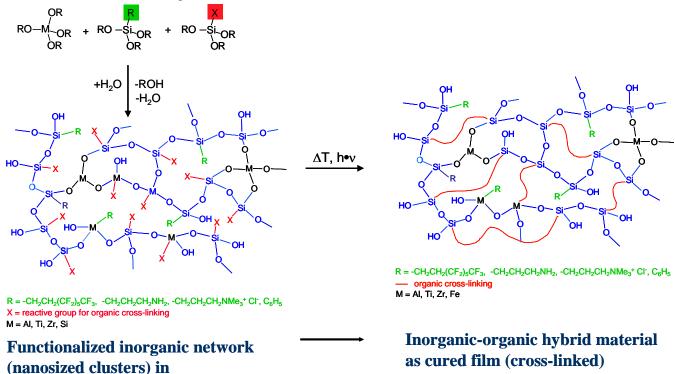
CYTEC Inorganic-Organic Hybrid Nanocomposite

Two Possible Technologies for Preparing Inorganic-Organic Hybrid Nanocomposite Materials

- A. Sol-Gel Chemistry and Process:

 The process involves the transition of a system from a liquid "sol" (mostly colloidal) phase into a solid "gel"
 - liquid "sol" (mostly colloidal) phase into a solid "gel" phase.
- B. Nanoparticle Dispersion Nanocomposite: Use commercially available nanoparticles as raw materials
 - --- Surface modify nanoparticles
 - --- Disperse surface modified nanoparticles into UV resins.

Hybrid nanocomposite combines advantages of inorganic and organic phases.



Sol-Gel Process

- Metal alkoxides, chlorides or nitrates are hydrolyzed and condensed
- Low temperature reaction conditions required
- Condensation generates highly crosslinked M-O-M networks with H₂O or ROH as byproducts

CYTEC Inorganic-Organic Hybrid Nanocomposite

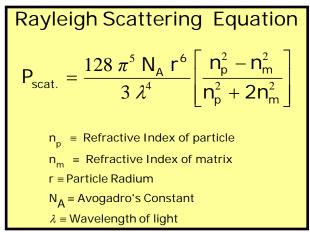
A. Sol-Gel Chemistry and Process

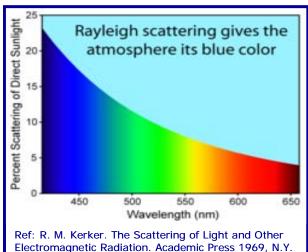
Challenges/Issues:

- Incomplete hydrolysis/condensation
- Poor hydrolytic stability

molecular dispersed solution

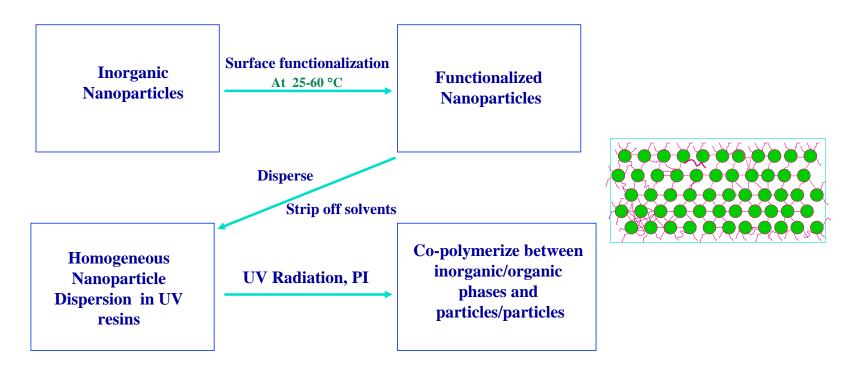
Frequent crack problems for cured films




Nanocomposite Challenge

- Overcome Rayleigh Scattering for optical transparency
 - Designed matrix and nanoparticle to manage refractive index difference (Δn).
 - Dispersed nanomaterial into primary particles to minimize particle size (r).

Rayleigh Scattering caused by large and uneven particle size is the major issue.



Nanoparticle Surface Modification

- Commercial Nanoparticle are usually aqueous dispersions of inorganic oxides or metal particles
- Converts commercially available Nanoparticles that are hydrophilic and non-reactive to Nanoparticles that are hydrophobic and curable
- Modify the surface of the Nanoparticles with organic groups such as those containing UV curable functionality

CYTEC Inorganic - Organic Hybrid Nanocomposite

B. Nanoparticle Dispersion – Nanocomposite:

The key technical challenge is nanoparticle surface modification

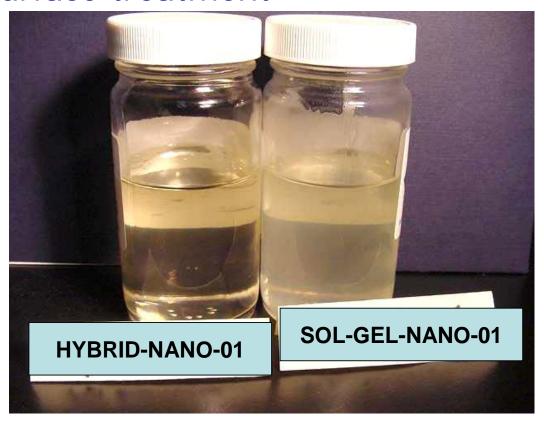
CYTEC Surface Treatment Achievements

- Surface treatment technology enables inorganic
 Nanoparticles to be compatible in organic medium without agglomeration
- Surface treatment technology enables low viscosity, even with high Nanoparticle loads;
- Surface treatment technology overcomes Raleigh-Scatter issues for optical transparency

Innovated proprietary nanomaterial surface treatment for dispersion into high refractive index UV resins.

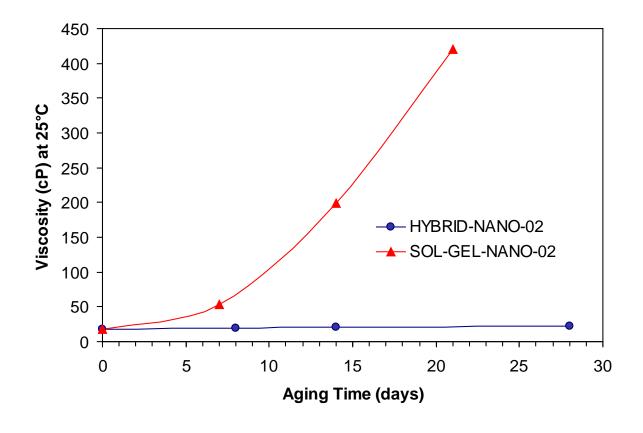
Acrylated Nanocomposites

Inorganic-Organic Hybrid Nanocomposite Material



High optical transparence indicates no Rayleigh Scattering issue.

Stability Comparison


- Sol-Gel-Nano-01: normal Sol-Gel process
- Hybrid-Nano-01: Nanoparticle dispersion with new surface treatment

Viscosity-Time Profile

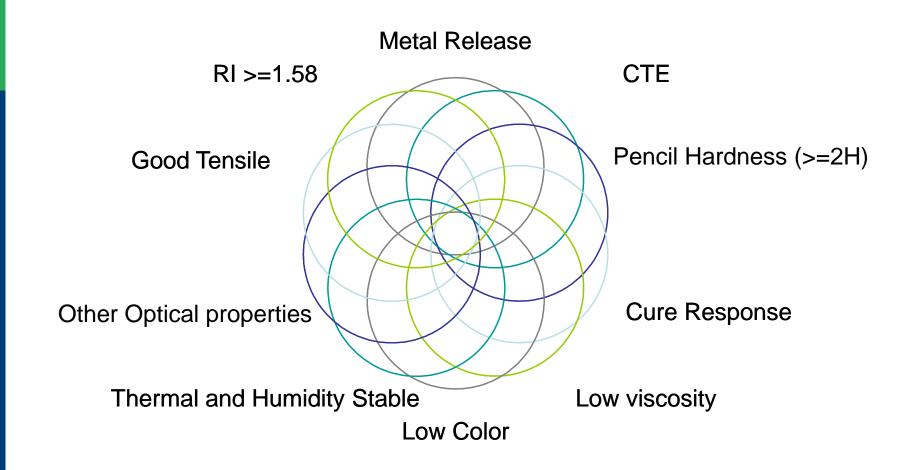
Samples aged at 60°

Acrylated Nanocomposites

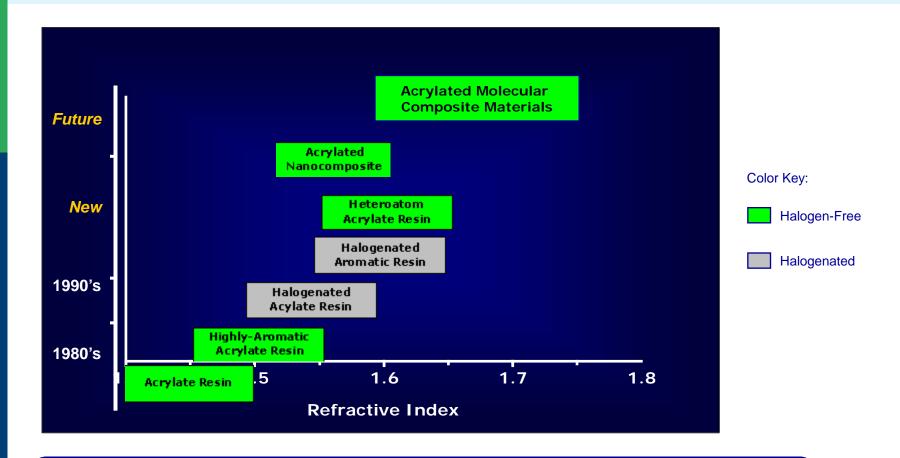
Properties of Nanoparticle Dispersions

High RI Nanoparticle Dispersion	Properties
Halogen Free	Yes
Organic Medium	UV-resin
Appearance	Very light yellow, clear liquid
Color (Gardner)	<1
RI (L, 589 nm @ 25 °C)	1.56 -1.59
Viscosity (cP @ 25 °C)	1,500 – 15,000
Density (g/cm3)	1.20- 1.26

Good stability @ 60°C for a week, @ room temperature for at least 6 month, no agglomeration, no significant increase in viscosity.


Acrylated Nanocomposites

Performance of UV-Curable Inorganic-Organic Hybrid Nanocomposite Formulation


Performance	Value
Halogen Free	Yes
Appearance	Clear liquid with yellow color
Color (Gardner)	<1
Density (g/cm³)	1.24
n _D ²⁰ (liquid)	1.55
RI of Cured film	1.58
Viscosity at 25°C	2,500
Viscosity at 60°C	100
Pencil hardness	5H
UV-cure Dosage (mJ/cm²)	880
Tensile, psi	4,000
Elongation, %	4.5
Tg °C (tan delta)	70
Toughness, psi	100
Adhesion to PET film, 5B=100%	5B

Easy to be formulated, advanced performance in comparing to neat organic resins.

CYTEC It's not only high RI

CYTEC Technology Roadmap

Long term research efforts focus on higher refractive index, better performance, more environment friendly technologies

CYTEC Conclusions

- •Based on a broad understanding of the refractive index, new technologies have now been developed to address multichallenges from fast growing global markets.
- •Multi- aromatic rings and heteroatom containing urethane acrylates were developed to have a high RI (>1.60) while halogen-free.
- ■Newly developed surface chemistry leads to new Nanoparticle dispersion (Nanocomposite) products that overcome Rayleigh scattering. (Halogen-free, low viscosity material with 1.59+ RI).

CYTEC Acknowledgements

Special acknowledgement to the following colleagues:

- Jeffrey Wang
- Marcus Hutchins
- Kenneth Woo