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Abstract 

Couplers that link together two or more numerical simulations are well-known abstractions in the Earth 
System Modeling (ESM) community.  In the past decade, reusable software assets have emerged to 
facilitate scientists in implementing couplers.  While there is a large amount of overlap in the features 
supported by software coupling technologies, their implementations differ significantly in terms of both 
functional and non-functional properties.    Using a domain analysis method called feature analysis, we 
explore the spectrum of features supported by coupling technologies used to build today’s production 
ESMs.  The results of the feature analysis will enable automatic code generation of ESM couplers. 

Motivation 

Coupling is essential for implementing multi-physics models made up of two or more interacting 
computer simulations. A quintessential example of such coupled models is a general circulation model 
of the Earth’s climate, which involves several interacting components simulating the Earth’s 
atmosphere, oceans, land, and sea ice systems. The software components that link together and 
mediate interactions between these models are called couplers. Couplers are well-known abstractions in 
the geophysical and other scientific communities, although their implementations differ vastly. With 
respect to Earth System Models (ESMs), no standardized reference architecture has emerged. Instead, 
couplers are designed to address particular modeling situations. The design space of couplers is 
constrained by properties of the existing models, such as software architecture, dependencies on third 
party libraries, numerical and scientific characteristics, as well as the nature of the target computational 
environment. 

Because coupling numerical modeling components is a common need, a number of technologies have 
emerged in the form of reusable software assets to facilitate building coupled scientific applications. 
Indeed, this is a classic software engineering problem with a range of partial solutions: Some 
technologies are abstract and general-purpose, while others are highly targeted at particular domains. 
General solutions have appeal because they can be applied to a broad range of applications and because 
they promote a high level of model independence. However, general solutions may increase the burden 
on adopters to implement more of the required functionality from scratch. At the other end of the 
spectrum, highly targeted solutions offer customized capabilities that require little or no additional code 
from developers. Nevertheless, in order to take advantage of reusable coupling technologies, 
applications must conform to the narrow scope of the reusable software, such as adopting its 
architectural style. 
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The purpose of this technical report is to present the results of a feature analysis of coupling 
technologies we conducted in preparation for automatically generating couplers for numerical ESMs. In 
the next section we give an explanation of Generative Programming and describe a domain analysis 
mechanism called feature analysis, which is a prerequisite to generating couplers. We then give a brief 
example of a feature diagram.  In the next section, we describe existing taxonomies of coupling 
technologies already found in the literature.  Finally, we describe the specific process that we undertook 
to arrive at a feature diagram for coupling technologies and present the results of our feature analysis in 
the form of a series of feature diagrams with a brief description of each feature. 

Feature Analysis of Coupling Technologies 

Our approach to addressing coupling technology adoption is based on Generative Programming. 
Generative programming is a software engineering method for automatically generating members of 
software families by assembling reusable components into final products based on a declarative 
requirements specification [1]. Couplers can be seen as members of a family of modules with similar 
requirements (e.g., they coordinate data communication among models, transform and interpolate field 
data based on the numerical properties of the constituent models, and manage use of parallel 
computing resources). 

A prerequisite to creating couplers generatively is the need to understand the space of possible 
couplers. What features do couplers require? What features are common across couplers and what 
features vary? How should those features be implemented to address the structure of existing modeling 
components? A key step in generative programming is feature analysis in which similarities and 
variations among members of a family of systems are made explicit. Feature analysis determines a 
multi-dimensional design space for describing a family of applications. The output is a feature model 
that identifies a concise and descriptive set of common and variable properties of domain concepts. The 
feature model represents the intention of a software family and can be used to infer the set of possible 
family instances, called the extension.  Once a feature model has been produced, elements can be 
selected to produce a configuration, describing a desired family member. An automated generator can 
then be used to produce the actual code for that member. 

One way to view a domain is as a set of related software applications [2]. Taking this view, a feature 
analysis of couplers involves studying existing software systems used for coupling ESMs. The ESM 
community has already developed reusable software assets in the form of coupling libraries and 
frameworks, and we have conducted a feature analysis of these existing software assets in support of a 
generative programming tool we are building. While no two systems are identical, our analysis has 
revealed significant overlap in the features supported by these coupling technologies. However, there 
are also significant variations in what features are supported and how the features are implemented. A 
feature model of couplers makes these similarities and differences explicit and is a prerequisite to 
building couplers generatively. 

Similar to the domain analyses done by the Earth System Curator [3] and Metafor [4] projects, our work 
focuses specifically on couplers and coupling technologies for ESMs. Our starting point is existing 
couplers and coupling technologies, which gives credibility to the analysis and ensures that the results 
are a true reflection of state-of-the-practice models. Feature analysis allows us to uncover the breadth 
of features supported by coupling technologies while leaving room to go deeply into one particular 
feature when desired. Features are abstract, supporting the specification of relevant aspects of coupling 
technologies, without being tied to certain programming constructs or architectural structures. Features 
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may be functional or non-functional in nature—that is, we can specify not only what kinds of operations 
are supported, but how they are accomplished (e.g., features related to performance and security). The 
same feature may manifest itself quite differently across the range of coupling frameworks. Therefore, 
we can specify that a feature exists without saying too much about how it is implemented. 

The results of a feature analysis can be expressed as a feature diagram—an annotated tree in which 
nodes represent features in the domain, where a feature is an element of user-visible functionality. 
Nodes are connected with directed edges and edges have decorations that define the semantics 
between parent and sets of child nodes.  Figure 1 shows a simple feature diagram for a car. 

 

Car

EngineTransmission
Navigation 

System

Automatic Manual
Voice 

Activated

Touchscreen 

Activated
4 Cylinder 6 Cylinder Turbo

Constraint:

Manual Transmission 

requires Turbo Engine
 

Figure 1 – Example Feature Diagram 

The root node of a feature diagram is called the concept node. The example diagram describes the 
concept Car. All nodes directly below the concept node represent features and lower nodes represent 
subfeatures. Mandatory features are denoted by a simple edge ending with a filled circle. In the 
example diagram, both Transmission and Engine are mandatory features. Optional features are denoted 
by a simple edge ending with an open circle. In the example, the Navigation System feature is optional. 
Subsets of features may be alternatives to each other, meaning that exactly one member of the subset 
is included in any configuration. This possibility is represented in the feature diagram by connecting the 
edges pointing to alternative features with an arc. The Transmission feature has two alternative 
subfeatures: Automatic and Manual. If an arc connecting edges pointing to two or more features is filled 
in, it indicates that the set of features are or-features. Within a set of or-features, any non-empty subset 
of the features is included in the description. In the example, if the optional Navigation System feature is 
included, then it will be either Voice Activated, Touchscreen Activated, or both. 

Feature diagrams may also contain textual constraints that enforce dependencies among features. 
Mutual-exclusion constraints are used to describe illegal combinations of features and requires 
constraints indicate that the presence of one feature requires the presence of another. An example 
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constraint that could be imposed is that selecting the Manual Transmission feature requires also 
selecting the Turbo Engine feature. 

We have extended the feature diagram notation in two ways in this document. First, we allow diagrams 
to be split into pieces. A box in a diagram may have its background shaded. This means that the 
corresponding feature and its subfeatures are elaborated in a separate diagram. Second, where a 
feature has many subfeatures, each of which is not further elaborated, then, instead of using boxes, we 
present the subfeatures as a bulleted list under the given feature. 

Existing Taxonomies of Coupling Technologies 

To our knowledge, this is the first application of feature analysis to coupling technologies.  That being 
said, there are existing taxonomies in the literature describing coupling technologies based on 
dimensions that overlap with those identified in our feature analysis.  Bulatewicz offers a high-level 
taxonomy of coupling methodologies based on how models are integrated.  The four approaches 
identified are:  monolithic, scheduled, communication-based, and component-based [5].  The monolithic 
approach is a brute force method, requiring manual merging of code from two existing models into a 
single code base.  The scheduled approach leaves the models as independent programs that do not 
affect each other directly during execution.  Instead, the output from one model is used as input to the 
next model. Communication-based approaches allow models to remain as independently executing 
programs that exchange data during execution via some form of message passing [6, 7].  This approach 
requires instrumentation of model source code at certain locations with library calls for sending 
(pushing) and receiving (pulling) data.  Component-based approaches require that model source code be 
modularized into reusable software components.  Components have standard interfaces that can be 
connected together in a variety of configurations to exchange data.  

Another high-level distinction among coupling technologies is whether the technology is a coupling 
library or a coupling framework. Coupling libraries, especially those in which each model is a separate 
executable, are usually designed to minimize the amount of code changes required to produce 
coupleable numerical models. This requirement recognizes that many complex numerical models have 
long development histories, and that, consequently, code maintainers are often wary of extensive code 
restructurings. Examples of coupling libraries are the PSMILe library with the OASIS coupler [8] and the 
Typed Data Transfer library [9]. Each of these software assets act as a toolkit of functions typically 
required when coupling models, such as parallel data transfer utilities, spatial grid interpolation 
algorithms, and algorithms for time averaging of physical quantities and conservative regridding. 
Coupling libraries typically allow each model in a coupled application to remain as an independent 
executable, supplying data as it becomes available and requesting data when it is needed. The 
capabilities provided by coupling libraries can be used as a foundation for building couplers. For 
example, the Community Climate System Model coupler (the latest is CPL7) is based on the Model 
Coupling Toolkit library [10, 11]. 

Coupling frameworks, on the other hand, enforce a component-based architectural design on the 
constituent models. That is, models must be represented as components that satisfy abstract interfaces 
and interact with the framework in a predetermined way. Examples of frameworks requiring adoption of 
abstract component interfaces include CCA-compliant frameworks [12], Cactus [13], and the Earth 
System Modeling Framework (ESMF) [14]. The fundamental difference between a coupling framework 
and a library is inversion of control, the architectural choice in which a reusable asset invokes client 
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code, rather than the client code calling the reusable asset, as is normally the case with libraries. That is, 
with frameworks, users’ code must be modified to conform to the calling conventions of the framework. 

While both libraries and frameworks provide capabilities required for coupling ESMs (such as distributed 
data management and grid interpolation), only frameworks provide a built-in control structure. As 
expected, there are tradeoffs involved: Capabilities within a library can often be added without 
architectural changes to existing codes. This was a requirement of the PSMILe library used for 
communication with the OASIS coupler. Existing codes can be instrumented with relatively nonintrusive 
“put” and “get” calls. On the other hand, the structure provided by a framework adds a level of 
consistency to models, encouraging maintainability and separation of concerns (e.g., separating the 
purely scientific code from the code responsible for control and communication). 

Jagers provides a multi-dimensional comparison of coupling technologies by considering several 
independent factors, including whether the technology defines a framework (“a reusable 
implementation of a software architecture”), defines standard interfaces, provides a reference 
implementation, supports plug and play / graphical coupling, supports high-performance computing 
environments, and supports programming language interoperability [15].   

Coupling Technologies Analyzed 

The coupling technologies we analyzed are currently used in scientific applications or are under active 
development. Our goal is to paint a relevant picture of the state of the practice for ESM couplers. Table 
1 lists the coupling technologies we considered. It is important to note that the studied technologies 
each have a different scope of use. As such, this is not an apples-to-apples comparison, but is intended 
to reveal the set of features that are relevant when writing couplers for ESMs and, ultimately, for 
generating them. 

 

Acronym Full Name Reference Latest Released Version 

BFG2 Bespoke Framework Generator [16] bfg2-beta 

ESMF Earth System Modeling Framework [14] ESMF_4_0_0rp2 

FMS Flexible Modeling System [17] Riga (internal) 

MCT Model Coupling Toolkit [11] 2.6.0 

OASIS/PSMILe Ocean Atmosphere Sea Ice Soil / PRISM 
System Model Interface Library 

[8] OASIS4 

TDT Typed Data Transfer [9] 12 June 2008 

Table 1 - Analyzed Coupling Technologies 
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Feature Analysis Process 

The feature analysis we conducted is based on information found in technical documentation that 
accompanies the coupling technologies (e.g., programming guides, user manuals) as well as articles that 
describe the technologies and their uses. The initial feature analysis was conducted in a bottom-up 
fashion by gathering a large list of features that couplers support. The resulting feature diagram 
contained over one hundred features at the leaf level. We dealt with this complexity by abstracting 
related sub-features into common higher-level features, sometimes producing a hierarchy several levels 
deep. During this process we have defined a vocabulary that describes the space of features supported 
by couplers for ESMs. When alternative terms were found in the literature, we either chose one of the 
terms or selected a different term which we felt described the semantics of the set of alternatives. In an 
attempt to appeal to a broad audience of researchers and scientific modelers interested in coupling 
technologies, we have tried to avoid jargon terms that are only well-known within highly specialized 
communities.  

Clearly the set of features resulting from the analysis are interrelated. However, our goal is to maintain, 
as much as possible, orthogonality among the features in the diagrams. Orthogonality promotes 
separation of concerns, concept independence, and enhances our ability to reason about a single 
feature without importing non-essential aspects of other features. 

For readability, we present the feature analysis as a series of feature diagrams. The top-level concept is 
“coupling technology.” The first diagram includes the top-level concept and five broad feature 
categories. Each of these top-level features are further refined in separate diagrams. Along with each 
diagram, we provide brief definitions of each feature, in the form of a glossary. 
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Coupling Technologies Feature Diagrams 

Figure 2 shows the top-level feature diagram. The entire feature space is divided into five major 
categories: Capabilities, Target Environment, Setup, Software Architecture, and Grids. 

 

Coupling Technology

Target

Environment

Software

Architecture
Setup GridCapability

 

Figure 2 - Top Level of Coupling Framework Feature Diagram 

 

Term Definition 

Capabilities Functional requirements  

Target Environment Properties of the computational environment  

Setup Initialization and configuration procedures  

Software Architecture Structural characteristics of the coupled models  

Grids Properties of numerical grids  
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Software Architecture 

 

Figure 3 - Software Architecture Feature 

 

Term Definition 

Components The high-level software elements present in the coupled application including how 
the component boundary lines are drawn 

Connectors Behavioral patterns describing how the high-level structures (components) are 
interconnected 

Control Mechanisms by which overall execution is mediated 

Style Idiomatic patterns of component and connector organization including constraints on 
their interactions 

Inversion of 
Control 

The client code implements predefined interfaces that are called by the framework 
using a predetermined control pattern 

Embedded Calls to library functions providing coupling-related capabilities are embedded directly 
in client code 

Sandwich Client code sits between framework superstructure and library infrastructure 

Central Registry Component is connected to a central registry that contains knowledge of related 
components 

Point to Point Component is connected directly to one or more other components 

Mediator Separate mediator component encapsulates interactions between components 
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Components 

 

Figure 4 - Components Feature 

 

Term Definition 

Type Functional roles that a component can play in the overall coupled model 

Computational Implements numerical algorithms 

Diagnostic Transforms internal data for external validation 

Scientific Expresses scientific equations 

Coupling Communicates data among models 

Interpolation Data interpolation between models 

Visualization Prepares data for external display 

Post processing Transforms model output data for external consumption 

Grid Data Exchange Transforms grid data for access by another model 



Technical Report GT-CS-10-18 Version 1.0 – October 5, 2010 10 

 

Input-Output Communication with file system or user 

Null No functionality 

Properties Non-functional properties of components 

Access to Science 
Content 

The means by which the component makes use of scientific computations 

Hooks Call to science code located elsewhere  

Embedded The component contains encoded science 

None A purely infrastructural component that contains no embedded science 

Field Granularity To what degree the overall coupling responsibilities are partitioned 

Single Coupler component responsible for managing data communication for a single field 

Multiple Coupler component responsible for managing data communication for multiple fields 

Generality Degree to which specific kinds of components are recognized by the coupling 
technology 

Component-
Specific 

Technology requires specific kinds of components 

Pluggable Technology supports plugging in various kinds of components 
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Connectors 

 

Figure 5 - Connectors Feature 

 

Term Definition 

Type Communication mechanism employed 

Libraries Communication mediated by third party software libraries 

Parallel Data Transfer Whether transfer of data in parallel is supported 

Protocol Extensibility The degree to which the communication protocol can be extended by the user 

Non-functional 
Characteristics 

Properties of how the connector’s protocol functions 

SSH security SSH secured channels 

Synchronization Coordination mechanism 

Blocking Blocking synchronization 

Non-blocking Non-blocking synchronization 
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Buffering Support for buffering of data during transmission 

Byte swapping Support for byte reordering across heterogeneous machine architectures 

Block data transfer Degree to which data can be transferred in bulk 
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Control 

 

Figure 6 - Control Feature 

 

Term Definition 

Locus The location of control of the coupled application 

Model The constituent models within a coupled application maintain control (multiple 
autonomous models interacting) 

Integrated Driver/Coupler Component responsible for coupling also maintains the locus of control 

Driver A single driving component coordinates the execution of the coupled models 

Staging The set of predetermined stages that the driver expects constituent models to 
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support 

Initialize Driver can request model initialization 

Run Driver can request model execution 

Finalize Driver can request model finalization 

Invocation Ordering 
Mechanism 

The mechanism by which the driver determines the order of called models 

Constraints Pre-specified rules 

Fixed Schedule Pre-specified order 

Varying Schedule Order can vary at run-time 

Termination Control 
Mechanism 

The mechanism by which the driver determines that execution should be terminated 

Convergence Execution terminates when degree of change of a field is less than a specified 
absolute or relative amount 

Preset Limit Execution terminates after a fixed number of iterations 

Exception / Alarm / Event 
Handling 

Are raised exceptions, alarms and/or events supported 

Startup Whether the driver is responsible for starting up models that participate in the 
coupled application 

Just Driver Driver starts only itself 

Driver and Component Driver starts itself and its subcomponents 

Control Loops Properties of the iterative structures used to coordinate overall execution of the 
coupled application 

Nested Support for nested update schedules 

Mismatched Request-
Supply Frequencies 

Support for different request and supply frequencies 

Different Calendars Support for different calendar schemes 
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Capabilities 
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Mxlog N)

· Inter-grid (exchange 

grid, transfer vector)

· Spatial integration

· On-processor sums

· Dynamic compaction

· Subgrid scale variability

· User defined

· Correction vs. data in 

files
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averaging

· Linear combinations of 

fields

· Linear value 

transformations

· Stable flux exchange 

numerics

Redistribution / 

Repartitioning

· Broadcast

· Scatter / gather

OtherClock Calendar

  

Figure 7 - Capabilities Feature 

Term Definition 

Transformation Data alteration performed when moving data between models 

Interpolation / 
Regridding 

The spatial and temporal interpolation capabilities supported by the coupling 
technology 

Redistribution / 
Repartitioning 

The ability to move data among address spaces in parallel 

Broadcast The ability to broadcast multi-dimensional data from a single address space into 
multiple address spaces 

Scatter/Gather The ability to distribute multi-dimensional data from a single address space into 
multiple address spaces (scatter) and vice versa (gather) 

Data Assimilation The degree to which the coupling technology provide support for incorporating 
observational datasets 

Clock A construct for keeping track of model time 
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Calendar Support for calendar functions 
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Setup 

 

Figure 8 - Setup Feature 

 

Term Definition 

Configuration How the coupled application’s setup is parameterized to enable user configurations 

Mechanism Medium and format of effecting a configuration change 

XML Configuration parameters in XML file 

Text Configuration parameters in plain text file 

Checkout/configuration 
parameter 

Configuration set by incorporating certain source code 

Compile parameter Configuration set statically via a compile-time parameter 
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Runtime parameter Configuration set dynamically via a run-time parameter 

Run Configuration settings related to the run of the coupled application 

Time Step Configuration of time step length for the coupled model and constituent models 

Duration Length of run 

Mapping to 
Executables 

 

Topology The high-level spatial arrangement of components including how they are mapped 
onto processors 

Component-processor 
mapping 

Assignment of components to processors 

Point-to-Point 
connections 

How data output from one component is mapped to inputs of another component 

Component sequence  

Data How data structures are initialized before the central computation begins 

Fields Initialization of field data elements 

Data transfer protocols  

Boundary values Initialization of data objects containing boundary conditions 

Physical constants Initialization of physical constants 

Field-level Metadata Configuration of field descriptors 

Component Conformance 
Checking 

The ability to confirm (statically or dynamically) that a component conforms to 
certain properties 

Index Space Partitioning The mechanism by which the global index space is partitioned among available 
computational resources 

Variable Priming Responsibility for initializing data structures before a run 

Master Process  

Subprogram  
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Component itself Each component is responsible for priming its own data structures 

File Initial values are read from a data file 
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Grids 

The material in this section is an impoverished version of the feature analysis performed to produce the 
GFDL grid spec.  For details refer to [18]. 

 

Figure 9 - Grid Feature 
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Target Environment 

 

Target

Environment

Execution

Model

Memory

· Shared

· Distributed

Multiple 

Processors

Programming

Language

· Fortran (77,90)

· C/C++

· Java

· Python

· Matlab

· Multi-lingual

Platform

· Supercomputer

· Workstation / laptop

· Web service

Concurrency
Multiple 

Threading

Operating

System

· Unix (Linux, *BSD, 

AIX, OSX)

· Windows(98, NT, 2K, 

XP, Cygwin)

Data Types

 

Figure 10 - Target Environment Feature 

 

Term Definition 

Platform A broad classification of the target computational environment(s) supported 

Execution Model A high-level description of the supported memory architectures (shared and/or 
distributed), support for concurrency and multi-processing, and the use of multiple 
threads 

Memory Supported memory architecture 

Shared Shared memory architecture 

Distributed Distributed memory architecture 

Concurrency Support for concurrent execution 

Multiple Processors Support for multi-processing 

Multiple Threading Use of multiple threads 
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Operating System Supported operating systems 

Programming Language Supported programming languages 
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Data Types 

 

Figure 11 - Data Types Feature 

 

Term Definition 

Primitives The lowest level, atomic data types supported by the coupling technology  

Composites The kinds of composite data structures supported 

User-defined User-defined data types are supported 

ANSI Standard ANSI standard types are supported 

Serialization Data serialization is supported 

 



Technical Report GT-CS-10-18 Version 1.0 – October 5, 2010 24 

 

References 

[1] K. Czarnecki and U. W. Eisenecker, Generative Programming:  Methods, Tools, and Applications: 
Addison-Wesley, 2000. 

[2] M. Simos, et al., "Organization Domain Model (ODM) Guidebook, Version 2.0," 1996. 

[3] R. Dunlap, et al., "Earth System Curator: Metadata Infrastructure for Climate Modeling," Earth 
Science Informatics, vol. 1, pp. 131-149, 2008. 

[4] Metafor Home Page. Available: http://metaforclimate.eu/ 

[5] T. Bulatewicz, "Support for model coupling:  An interface-based approach," PhD Dissertation, 
Unversity of Oregon, Eugene, OR, 2006. 

[6] S. Valcke and S. Redler, "OASIS4 User Guide," August 25, 2006 2006. 

[7] S. Buis, et al., "PALM: A Computational Framework for Assembling High-Performance Computing 
Applications," Concurrency and Computation: Practice and Experience, vol. 18, pp. 231-245, 
2006. 

[8] R. Redler, et al., "OASIS4--A Coupling Software for Next Generation Earth System Modelling," 
Geoscientific Model Development, vol. 3, pp. 87-104, 2010. 

[9] C. Linstead, "Typed Data Transfer (TDT) User's Guide," Potsdam Institute for Climate Impact 
Research, Potsdam2004. 

[10] A. P. Craig, et al., "Cpl6: The New Extensible, High-Performance Parallel Coupler for the 
Community Climate System Model," International Journal for High Performance Computing 
Applications, 2005. 

[11] J. Larson, et al., "The Model Coupling Toolkit:  A New Fortran90 Toolkit for Building Multiphysics 
Parallel Coupled Models," International Journal for High Performance Computing Applications, 
vol. 19, pp. 277-292, 2005. 

[12] D. E. Bernholdt, et al., "A component architecture for high-performance scientific computing," 
International Journal of High Performance Computing Applications, vol. 20, pp. 163-202, 2006. 

[13] T. Goodale, et al., "The Cactus Framework and Toolkit: Design and Applications," in Vector and 
Parallel Processing - VECPAR 2002, 2003. 

[14] V. Balaji, et al., "ESMF User Guide Version 3.1," 2009. 

[15] H. R. A. Jagers, "Linking Data, Models and Tools: An Overview," in International Congress on 
Environmental Modelling and Software Modelling for Environment's Sake, Ottawa, Canada, 
2010. 

[16] C. W. Armstrong, et al., "Coupling integrated Earth System Model components with BFG2," 
Concurrency and Computation: Practice and Experience, vol. 21, pp. 767-791, 2009. 

http://metaforclimate.eu/


Technical Report GT-CS-10-18 Version 1.0 – October 5, 2010 25 

 

[17] V. Balaji, "The FMS Manual:  A developer's guide to the GFDL Flexible Modeling System," 
December 17, 2002 2002. 

[18] V. Balaji, et al. (2007). Gridspec: A standard for the description of grids used in Earth System 
models. Available: http://www.gfdl.noaa.gov/~vb/gridstd/gridstd.html 

 

 

http://www.gfdl.noaa.gov/~vb/gridstd/gridstd.html

