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ABSTRACT

This paper introducesmicrocontracts, which are contracts

for “slices” of the Internet connectivity along dimensions

such as time, destination, volume, and application type.

Microcontracts are motivated by the observation that In-

ternet service providers carry traffic for different classes

of customers that use the ISP’s resources in a variety of

different ways and, hence, impose different costs on the

ISPs. For example, customers have little incentive to move

less important traffic from a peak time interval unless their

contract reflects the ISP’s costs in that time interval. To ad-

dress this inefficiency, microcontracts divide connectivity

into fine-grained units so that prices more directly reflect

the costs that the ISP bears for delivering the connectiv-

ity at that time. We explore the feasibility of applying

microcontracts in realistic Internet service provider set-

tings by characterizing the traffic patterns from a transit

network along two specific dimensions: time-of-day and

distance travelled. We argue that microcontracts are both

feasible and advantageous to both buyers and sellers of

Internet connectivity. We develop a model to help ISPs

derive customer demand functions from observed traffic

patterns; using this model, we show that making contracts

for Internet connectivity more fine-grained can improve

the aggregate gain of an ISP and its customers.

1. Introduction

Internet connectivity depends traffic exchange between

cooperating Internet Service Providers (ISPs) that estab-

lish contracts with each other. This cooperation led to

the growth of the Internet accompanied by an increasing

diversity of users, applications, access technologies, and

networks. Unfortunately, the flexibility of Internet con-

tracts has not kept pace with this increasing diversity: con-

tracts for transit between ISPs mostly conform to “one

size fits all”, bulk connectivity or some variant (e.g., peer-

ing, paid peering, or customer-provider contracts). A ma-

jor shortcoming of this inflexibility is that the prices that

users pay for connectivity do not directly reflect either the

value that a customer has for the connectivity or the cost

incurred by the ISP for carrying that customer’s traffic.

In an attempt to address these shortcomings, we ex-

plore how to structure contracts to more directly reflect the

costs that an ISP incurs for carrying a customer’s traffic

flows. Specifically, we introduce microcontracts, which

are “slices” of Internet connectivity along different us-

age dimensions, such as time, destination, volume, or ap-

plication. Unlike current “one size fits all” routing con-

tracts, which trade connectivity in bulk, microcontracts of-

fer finer granularity in traffic exchange. For example, an

ISP could offer one microcontract for traffic sent during

peak hours of the day and another for off-peak times. Such

contracts enable the exchange of more fine-grained goods,

ultimately making resource allocation more efficient and

increasing the utility for customers and providers.

Our ultimate goal is to develop a framework to facilitate

the implementation of microcontracts. Given traffic de-

mands from customer networks and the associated infras-

tructure cost, an ISP could ultimately answer the follow-

ing questions: (1) At what granularities and along what

dimensions should it sell connectivity to its customers; (2)

At what price should it offer these contracts to each cus-

tomer? This paper does not completely answer these ques-

tions; we take a first step towards our goal, by building a

connectivity market model and, backed by the data from

a transit ISP, exploring the potential benefits of microcon-

tracts for both buyers and sellers.

Some network providers already implement a rudimen-

tary form of microcontracts called tiered pricing, where

customers may pay different amounts depending on their

network usage patterns. In 2008, Latin American cellular

providers began to roll out differentiated pricing for “on-

net” traffic (i.e., traffic in their own networks) [1]. Re-

cently, AT&T Wireless started charging different prices

for cellular data plans, based on total traffic volume [9].

Even for transit connectivity, some ISPs offer differenti-

ated pricing based on where their customers send the ma-

jority of their traffic [2]. Researchers have also studied the

benefits of tiered pricing. Kesidis et al. [6] and Shakkot-

tai et al. [8] studied the benefits of volume-based pricing.

Jiang et al. [5] and Hande et al. [4] applied a tiered pricing

model based on time.

In some sense, microcontracts generalize tiered pric-

ing: with microcontracts, network service providers can

slice contracts according to arbitrary granularities along a

number of different dimensions where user behavior (and

hence, the cost of a user) may vary. In particular, user be-

havior may vary according to time, destination, volume,

and application type, as follows:

• Time. Some customers may use network predomi-

nantly during the day, while others may use it more

at night.
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• Destination. Some customers may be mainly inter-

ested in service to a small set of geographically close

destinations, while others may primarily use interna-

tional links and/or backbone.

• Volume. Some customers may send very little traf-

fic, whereas other customers may send much larger

volumes.

• Application type. Some customers may use applica-

tions that are far more sensitive to delay (e.g., voice

or video) than other customers, whomay depend less

on low delay or jitter.

Despite this variation, network providers do not com-

monly use tiered pricing, perhaps because it is difficult to

determine how to set the appropriate granularities for con-

tracts and the prices for each granularity. This paper takes

a first step towards tackling this challenge.

This paper presents three contributions. First, we de-

velop a general Internet connectivity market model to

show that microcontracts can improve utility for both buy-

ers and sellers of Internet connectivity. Second, we derive

a “business case” for constructing microcontracts along

the time and destination dimensions; this analysis mines

network traffic from a large European Internet service

provider network; we find that different adjacent customer

networks have varying traffic patterns that use different

network resources at different times. This non-uniformity

reveals an opportunity for an ISP to structure contracts that

more directly match each customer’s demand. Finally,

we show, using real network traffic data, how ISPs and

their customers benefit from time and destination micro-

contracts, and that most aggregate benefit is achieved with

few pricing intervals.

2. Modeling Microcontracts

In this section we present a case for microcontracts. We

explore the following questions:

• Is an ISP better off if it sells microcontracts?

• Are the customers of that ISP better off?

• Under what conditions they are better off?

• How fine-grained should microcontracts be?

One of the main challenges in answering these questions

is that current traffic demands only tell us about traffic vol-

umes under the current contracts. First and foremost, we

cannot tell what will happen to consumer demand if an ISP

changes these prices. In other words, we do not know the

consumer demand function. We also do not know how to

estimate the ISP profit. Our model tackles these two chal-

lenges. We construct a model that captures how ISP profit

and consumer demand vary with the price of connectivity

in each slice (this section). We then evaluate microcon-

tracts using our model and a traffic demand matrix from a

large European ISP (Section 3). We show that using mi-

crocontracts that divide demand into smaller intervals by

time or destination can increase profit for both ISPs and

their customers.

2.1 Market Model

We first introduce a simple, general market model for

Internet connectivity. Our model has two types of agents:

• ISPs that maximize profit by choosing the granu-

larity of the Internet connectivity in various dimen-

sions, and setting the prices in those dimensions.

The ISP’s profit is computed by subtracting costs

from revenue derived from sold bandwidth.

• Customers, such as other ISPs, companies, or home

users that purchase bandwidth. The users respond to

price changes by reducing or increasing their traffic

according to their demand function. The net pay-

off to consumers (utility of consumption minus pay-

ments) is called consumer surplus.

In addition to ISP profit and consumer surplus, we are in-

terested in measuring social welfare: this is aggregate gain

of all market agents.

We refer to the granularity of a microcontract in a par-

ticular dimension as a pricing slice. Consider a simple

example, where an ISP structures its contracts with two

pricing slices in the time dimension: one for day and one

for night. The ISP can then set a higher price during the

day when usage is higher, in an attempt to extract more

profit and/or encourage users to use resources at night. We

aim to determinewhether such a strategy would leave ISPs

and/or customers better off. Sincemarket interaction is not

a zero-sum game, in some cases all agents will benefit. In

other cases, some agents will be made worse off, but as

long as social welfare increases, it is in principle possible

to design a payment mechanism that provides incentives

for both ISPs and customers to deploy microcontracts.

2.2 Estimating the Effects of Microcontracts

We aim to model the effects of microcontracts on both

consumer surplus and ISP profit, to determine whether

users and ISPs are better off, respectively, as a result of

microcontracts. Due to space constraints, in this section

we only provide key definitions and the main assumptions

of our methodological approach.

2.2.1 Consumer Demand and Surplus

To understand how the granularity and prices of micro-

contracts affect customers, we first model consumer sur-

plus; to do so, we must first derive a function that repre-

sents how demand in a slice would change with the price

for that slice. We derive a functional form for consumer

demand by assuming that consumers are represented us-

ing an α-fair utility model, as in other models for demand

in communication networks [7]. The demand function for
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this utility takes the following form; we omit the details

due to space constraints:

Qi(pi) = aip
ǫ

i , (1)

where pi is the price set by an ISP for slice i,Qi(pi) is the
quantity users buy in slice i given pi, ǫ is the elasticity, and
ai is a demand coefficient. Elasticity determines how con-

sumers respond to price changes and allows us to model

the behavior of different classes of users; higher elasticity

means that a user is more sensitive to changes in price.

Ultimately, consumer behavior depends on the elastic-

ity, ǫ, and the demand coefficient, ai, for each slice. Un-

fortunately, we do not know either of these parameters. To

find the unknown demand coefficients, we fit the demand

function to our traffic data, making two key assumptions.

First, we assume that the ISP is currently setting a sin-

gle price for all slices. Second, we assume that the ISP is

currently maximizing revenue according to this constraint

and the demand function. This second assumption allows

us identify the optimal price, given the observed demand;

we then use this optimal price and the observed demand to

solve for the demand coefficients. (Given the optimal price

p∗ and the measured quantity qi for slice i, the demand co-

efficient is simply ai = qi/p∗
ǫ.) The second problem is

that elasticities of users are unknown. To solve this prob-

lem, we run experiments across a range of elasticities and

observe how consumer demand varies in each case. Note

that although we estimate different demand coefficients in

each slice, we assume elasticity is the same in different

slices.

2.2.2 ISP Profit

To model how ISPs will set prices for microcontracts,

we must develop a model for ISP profit. ISP profit equals

the revenue that it receives from selling connectivity mi-

nus its costs.

Revenue. An ISP’s revenue in slice i is simply the price

that the ISP sets for that slice, multiplied by the quantity

that it sells at that price (as determined from the consumer

demand function): piQi(pi).

Cost. An ISP’s cost is more challenging to define. First,

cost has several different aspects, each of which need to

be modeled: an ISP’s cost usually consists of operational

expenses (OPEX), which depend on usage, such as leas-

ing long distance capacity; and capital expenses (CAPEX)

that include fixed costs such as infrastructure. Second, ca-

pacity use affects ISP costs in different ways, depending

on the dimension. For example, with regard to time, shift-

ing traffic to off-peak hours can increase revenue without

increasing cost, since the traffic is carried on infrastructure

that has been provisioned for peak usage. On the other

hand, shifting traffic to different parts of the network in-

frastructure can affect costs significantly, since different

network links and circuits incur different costs.

Let q = (q1, . . . , qK) denote the vector of realized de-

mands across slices. We let C(q) denote the cost to the

ISP for serving the traffic vector q. In general, the cost is

the total network cost to serve this traffic. For example,

if q measures demands over time slices, then C(q) is the
total cost to serve the peak traffic, i.e., C(q) = cmaxi qi.
Note that in the latter case, no additional cost is incurred if

the peak provisioning is not exceeded; thus in particular,

if the ISP is aware of a peak constraint in advance, then it

can simply provision for it and choose prices to maximize

revenue. On the other hand, if q measures demands over

distance slices, thenC(q)might be modeled as a distance-

weighted sum of costs across slices, e.g.,C(q) =
∑

i
ciqi,

where ci increases with distance. Note that these are sim-

ple abstractions of the same underlying cost structure: pro-

visioning sufficient network resources to meet demand.

The ISP’s profit can thus be written:

Π(p) =
∑

i

piQi(pi)− C(Q1(p1), . . . , QK(pK)), (2)

where pi is the price in slice i, andQi(pi) is the demand in

slice i. Given this expression for ISP profit, we can solve

for the optimal price necessary to compute the demand

function coefficients for different slices.

3. Microcontracts in Practice

Summary. We estimate the benefits of microcontracts us-

ing real traffic data from a large European ISP. We present

results for two dimensions: time and destination. For each

dimension, we first analyze the usage patterns in poten-

tial pricing intervals, and show that they vary significantly

across the intervals. This variation encourages the use of

microcontracts: by applying different prices for each inter-

val, an ISP can price connectivity more directly according

to the costs that it incurs for carrying traffic for that inter-

val. In some cases, it may also encourage its customers

to shift traffic to intervals with less traffic, thereby reduc-

ing operational cost and increasing profit. We then de-

scribe general cases where both ISPs and their customers

can benefit from microcontracts in each dimension.

Data. We use the traffic demand data from a UK transit

ISP. The ISP transits approximately 1.4 petabytes of data a

day, with peak at approximately 200 Gbit/s and off-peak at

50 Gbit/s. In this ISP, we identify 445 large customerswho

transport their traffic between seven major PoPs. We make

no assumptions on the type of traffic that is exchanged.

Our goal is to show that selling connectivity in slices based

on time or destination is practical and can benefit both the

sellers and the buyers.

3.1 Time Microcontracts

We explore the potential benefits of microcontracts in

the time dimension. We ask whether both ISPs and cus-

tomers can benefit if ISPs sell contracts for specific inter-
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Figure 1: Maximum aggregate speed observed in 2-hour interval.

vals of time, rather than in bulk. We begin with some ob-

servations about temporal patterns in network traffic. For

customer traffic that is elastic, we show that time-based

microcontracts can help ISPs reduce their peak load by en-

couraging customers to shift some of their traffic to time

intervals that are less busy. We also observe that differ-

ent customers send traffic at different times of day and,

hence, that microcontracts can improve consumer surplus

by more directly pricing the connectivity for these differ-

ent customers according to its true cost.

3.1.1 Observations

Time-based microcontracts allow ISPs to reduce their

peak load by encouraging more elastic customers to move

traffic to periods with less load. Shifting traffic from these

customers can directly reduce ISP’s costs. Most of the

traffic on the Internet exhibits a diurnal pattern. In ad-

dition, according to the Arbor Networks Atlas Observa-

tory study [3], a large fraction of Internet traffic is non-

interactive (e.g., P2P traffic) or could be cached closer

to customers (e.g., VoD traffic), which makes it easier to

time-shift it. Prices that more directly reflect the cost of

carrying traffic during each time interval could encourage

customers to shift some of this traffic to night and early

morning time-slots, thus reducing load at peak times and,

hence, the ISP’s overall costs.

Figure 1 shows the rates at which ISP’s customers

download data. It plots the highest aggregate download

rates in in a two-hour interval; the peak to off-peak ratio is

about 4:1. Pricing traffic at higher rates during peak time

intervals could encourage some of this traffic volume to

shift to other less-busy time intervals, reducing peak uti-

lization and using resources more efficiently during other

times. Figure 2 shows the number of customers that peak

at each one-hour interval; most peak between 3 p.m. and

11 p.m. Although our evaluation does not directly model

this behavior, this observation implies that an ISP could

offer different contracts to different users, depending on

when they peak. Using these observations as a starting

point, we quantify how time microcontracts can benefit
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Figure 2: Number of users peaking in 2-hour interval.

ISPs and customers.

3.1.2 When do time microcontracts help?

If customer traffic demand were unbounded, an ISP

could reduce prices to maximize utilization in all time in-

tervals; this is unrealistic. Instead, we treat customers as

having a finite set of tasks to accomplish (e.g., upload-

ing files, watching movies) that could be spread across

different time intervals, with different preferences. To

model this, we hold the total traffic volume constant (C =∑
n

i=1
qi). In the context of the model, this implies that

when an ISP increases the price for traffic in one time in-

terval, it must reduce the price in another to maintain the

same total traffic volume for that customer.

We can show that, in the context of our model, keep-

ing the total traffic volume constant means that the orig-

inal pricing already maximizes the ISP’s profit (we omit

this proof due to space constraints). Thus, we evaluate the

effects of microcontracts in terms of an operational goal,

such as reducing peak utilization or reducing traffic vari-

ance over the intervals. We then quantify how an social

welfare changes as the ISP increases the number of time

slices. In this paper, we focus on peak reduction.

Given a peak traffic load, K , over all time intervals, the

ISP can attempt to reduce this peak load by some frac-

tion β < 1 by selling microcontracts over different time

intervals and pricing each interval to encourage customer

demand during peaks to shift to different intervals. An ISP

can determine the optimal pricing for each time interval by

solving the following optimization:

maximize :

n∑

i=1

piQi(pi)

s.t. :

n∑

i=1

Qi(pi) = C

s.t. : Qi(pi) ≤ βK, ∀i ∈ 1 · · ·n

w.r.t. : pi, ∀i ∈ 1 · · ·n (3)

Larger values of β reduce ISP profit and social welfare.
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Figure 3: Social welfare increase as an ISP is increasing pricing

granularity — both ISP profit and customer surplus is growing and

contributing to it. ISP reduced peak utilization by 30% and gener-
ated higher social welfare when more pricing intervals were used.

The plot shows results for different elasticities.

The relevant question in the context of microcontracts,

however, is by how much this profit is affected when ISP

increases the number of pricing intervals n. For example,

using three intervals in the day, an ISP can set three differ-

ent prices for intervals 12 a.m.–8 a.m., 8 a.m.–4 p.m., and

4 p.m.–12 a.m..

Intuitively, selling contracts on more time slices should

allow the ISP to extract more profit for the same peak re-

duction. To quantify this gain, we solve above maximiza-

tion using a simple heuristic: First, we assume that the ISP

can sell contracts for n equal length intervals. We then find

intervals that exceed βK and set the price point in these in-

tervals so that resulting demand is reduced to βK . Then,

we take the volume we just “eliminated” and apply this

volume to underutilized intervals, starting with the most

utilized interval below βK level, by reducing the price in

those intervals according to the demand function. We then

explore how increasing n (i.e., selling more fine-grained

microcontracts) affects social welfare.

Figure 3 shows that increasing the number of time inter-

vals increases social welfare. In fact, both ISP profit and

customer surplus contribute to this increase. As expected,

the more elastic customer traffic is, the higher the social

welfare (since the ISP loses less revenue trying to provide

incentive for users to move traffic to different times). Ad-

ditionally, most of the additional profit that an ISP gains

by applying microcontracts can be extracted with a rela-

tively small number of pricing granularities. For example,

using 12 two-hour time intervals yields an 8% increase in

profit, which is more than half of the additional profit that

an ISP would achieve with 48 30-minute time intervals.

This result is promising for implementing time-based mi-

crocontracts in practice: it suggests that there is a “sweet

spot” whereby an ISP can increase its profits significantly

without incurring the overhead of introducing arbitrarily

fine-grained microcontracts.

3.2 Destination Microcontracts
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Figure 4: Traffic volume breakdown by distance it traversed.

We explore the potential benefits to an ISP and cus-

tomers for selling destination-based microcontracts. We

first observe that individual traffic flows travel differ-

ent distances on the ISP backbone, implying that these

flows cause the ISP to incur different costs for each

flow. We also observe that there are different “types” of

customers—some who primarily send traffic regionally,

and others who are primarily long-haul.

3.2.1 Observations

We first aim to quantify the distance that different traffic

flows travel. Figure 4 shows the traffic volume breakdown

by distance for traffic carried by a transit ISP in the UK.

The distance shown reflects the distance between the PoPs

where traffic enters and leaves the network. Most of the

traffic stays at the same router or traverses less than 20

miles, but a significant part of the traffic travels more than

100 miles and thus utilizes long distance infrastructure. In

fact we observe that 67 clients (13%) send more than half

of their traffic over 100 miles and longer distances. This

observation implies that an ISP has a potential to improve

both its profits and consumer surplus by offering contracts

that are more specifically tailored to customers.

3.2.2 When do destination microcontracts help?

We aim to quantify the benefits that distance-based mi-

crocontracts can provide to ISPs and customers. As be-

fore, we assume that customers have a constant number

of tasks to accomplish; thus, we keep the aggregate traffic

level across all distance intervals constant (C =
∑

i
qi).

We set cost ci to be proportional to the distance in the in-

terval i and maximize for profit over all intervals:

maximize :

n∑

i=1

piQi(pi)−

n∑

i=1

ciQi(pi)

s.t. :

n∑

i=1

Qi(pi) = C

w.r.t. : pi, ∀i ∈ {1 · · ·n} (4)
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Figure 5: Social welfare change as ISP is increasing the number of

pricing tiers. Customer surplus is reduced with more granularities,
but the growth in ISP profit outweighs it for higher elasticities.

We transform the objective function and use convex opti-

mization to find a price setting that maximizes ISP profit.

Figure 5 shows how social welfare changes as the ISP

offers microcontracts on an increasing number of distance

intervals. As expected, as the number of intervals in-

creases, the effect of pricing granularity diminishes. In-

troducing just three pricing intervals yields about 85% of

the social welfare increase achieved with six pricing in-

tervals. In practice, a transit ISP might set one price for

traffic staying in the PoP, another price for traffic within a

region, and a third price for traffic leaving the continent.

Although not shown in the plot, most of the social wel-

fare gain is due to increasing ISP profits; consumer sur-

plus decreases as the number of intervals increases. When

elasticity is low, ISP profit increase is minimal, as it has

difficulty encouraging users to switch to shorter distances

(since traffic level must remain constant). This trend pro-

vide two insights: First, a social planner should encourage

adoption of distance microcontracts only if customers in

the market are elastic enough. Second, because microcon-

tracts decrease consumer surplus, the consumer will not

participate in the market unless ISPs offer somehow share

the surplus with customers (e.g., through discounts).

4. Summary and Research Agenda

Although the Internet’s applications and users have

evolved and diversified over the last decade, the Inter-

net’s contract structure has remained stagnant and rigid.

This rigid structure has resulted in contracts for Internet

connectivity that do not efficiently match user demands

for connectivity to the connectivity that ISPs are actually

selling. This paper suggests that ISPs might instead sell

microcontracts, which allow ISPs to “slice” Internet con-

nectivity along various dimensions such as time, destina-

tion, volume, and application type. Microcontracts es-

sentially package Internet connectivity according to finer

granularities, recognizing that buyers of Internet connec-

tivity may have unique and specific traffic demands (e.g.,

biased towards some application type, set of destinations,

or times of day). Using real traffic demands from a large

ISP, we have shown how offering microcontracts whereby

customers can purchase connectivity that more closely

matches their traffic demands improves both profit for

ISPs and utility for buyers.

Judicious application of microcontracts could help

solve other real-world problems that operators face to-

day. Destination-based microcontracts between ISPs

could help prevent ISPs from having to perform hot-potato

routing: the ISP that receives traffic from its neighbor

could charge a higher rate for the traffic that will cross

its backbone and a lower rate for the traffic destined to its

local clients. Application or destination-based microcon-

tracts could allow ISPs to exchange payments for some

types of traffic while exchanging other traffic for free.

Although the model we have presented suggests that mi-

crocontracts can often benefit both buyers and sellers of

Internet connectivity, this paper has merely presented the

case for microcontracts but has not demonstrated how an

ISP can structure their microcontracts to solve problems

such as the ones mentioned above. In addition to exploring

the feasibility of microcontracts for other dimensions (i.e.,

volume, application type), our future work will explore

how an ISP can realize microcontracts in practice based

on their traffic demands. We aim to develop an optimiza-

tion framework whereby an ISP can determine the price

granularities and prices for the contracts that it should sell

to each customer, given current traffic demands. We will

also explore other practical questions, such as how such

microcontracts can be metered or enforced in practice.
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