GEORGIA INSTITUTE OF TECHNOLOGY

OFFICE OF CONTRACT ADMINISTRATION

- PROJECT ADMINISTRATION DATA SHEET

X | ORIGINAL REVISION NO.
Project No. E-21-602 (R-6081-040) GTRC/A% DATE 1/ 23,/ 86
Project Director: _J. Schlag Schookdb EE
Sponsor: Control Data Corporation
Bloomington, MN 55420

Type Agreement: CDC Proj. No. 85Gl01
Award Period: From 10/1/85 To _9/30/87 {Performance) "'937% {Reports)
Sponsor Amount: This Change Total Q Date

Estimated: $§ $

Funded: § 100,000 $ 100,000
Cost Sharing Amount: $ N/A Cost Sharing No: N/A

Title:

Microcomputer/Data Service Network Protocéls

ADMINISTRATIVE DATA
1) Sponsor Technical Contact:

Mr. Jim lucas

OCA Contact

Ralph Grede X 4820

2) Sponsor Admin/Contractual Matters:

Ms. Marianne Johnson

Control Data Corporation

Research Grants Financial Monitor

300 Embassy Row

Control Data Corporation

Atlanta, GA 30328

8100-34th Avenue South

__(404) 399-2440

Bloomington, MN 55420

Defense Priority Rating:

(or) Company/Industrial Proprietary:

N/A
N/A

Military Security Classification:

RESTRICTIONS

See Attached N/A

Supplemental Information Sheet for Additional Requirements.

Travel: Foreign travel must have prior approval — Contact OCA in each case. Domestic travel requires sponsor
approval where total will exceed greater of $500 or 125% of approved proposal budget category.

Equipment: Title vests with _Sponsor - However none is proposead.

COMMENTS: 8

S AT
POLVAIST DN

See "Sponsored Research Projects Guidelines and Practices" handb/g.(ék"'for @\

©

Control Data Corp. Policies & Procedures.

= u{¢ TN _.x\
N

;:") ol Al "
o A ey
K2} &
N e,
COPIES TO: SPONSOR’S I. D. NO.
Project Director Procurement/EES Supply Services GTRC
Rescarch Administrative Network Research Security Services Library
Rescareh Property Management Reworte Coordinator (DCA) Project File

Accintie.,

Raznarnk Cammaniratinne {2)

e AL Tones: lLegal

;sEORGIA INSTITUTE OF TECHNOLOGY OFFICE OF CONTRACT ADMINISTRATION

SPONSORED PROJECT TERMINATION/CLOSEOUT SHEET

Date 5/11/88

Project No. E-21-602 School/Lab rp

Includes Subproject No.(8) A-4431/Schlag

Project Director(s) j. schlae

GTRC /cam
Sponsor__Control Data Corporation Bloomington, MN 55420
) A;"““" ‘n\’ -~ r(; {
Title Microcomputer/ Data Service Network tocals
Effective Completion Date: 9/30/87 (Performance) 3/31/88 (Reports)

Grant/Contract Closeout Actions Remaining:
None
Final Invoice or Copy of Last Invoice Serving as Final
Release and Assigrment
Final Report of Inventions and/or Subcontract:
Patent and Subcontract Questionnaire
sent to Project Director [::]

Govt. Property Inventory & Related Certificate

Classified Material Certificate

o0 OUed

Other

Continues Project No. Continued by Project No.
COPIES TO:

Project Director Facilities Management = ERB
Research Administrative Network Library

Research Property Management GTRC

Accounting Project File

Procurement /GTRI Supply Services Other

Research Security Services
Reports Coordinator (OCA)
Program Administration Division
Contract Support Division

F Xl bu

Standardized Protocols Between
Microcomputers and Data Service Networks

Introduction

The rapid growth of computer applications coupled with the development of
inexpensive, small computer systems has made drastic changes in the role of
the large mainframe computer service network. These changes have been
produced primarily by the shift of computer intelligence from the main host
to the user-based systems. This shift has precipitated a need for changes
in many of the other computer functions such as data base management,
application programs, data security and communication protocols. This
effort addresses issues within the single area of computer communication
protocols in the computer service network and the impact of modern computer
networks on the protocol requirements., Of particular interest to this
project will be the areas of communication hardware, data transmission
structure, error detection, error correction, encryption, data base
security, data format exchange, and data base management command exchange.

To understand the need for new user/computer service communication
protocols, it is useful to understand the evolutionary trends occuring in
the entire network. The user in a service computer network in the 1970 time
frame was a simple CRT terminal or hard copy device with no local processing
or data storage capability. The user communicated with the host computer
over a commercial grade telephone line using a standard RS232 protocol at a
speed of 300 BAUD. The data was transmitted in standard, ASCII form with no
communication security, data encryption, error detection or error
correction. This communication was handled by a communication adapter at
the host site which could have been as simple as a telephone switching
network. The communication adapter connected the user to the central
operating system which in turn called up the particular application program
that was requested by the user., The application program handles the great
majority of all of the user/host controlling inputs and outputs to the user,
inputs and outputs to the host data base, input and output formats, data
security, data encryption, error detection, and error correction., Many of
these application programs were executed in a Batch Mode and supplied
little, if any, direct communication with the remote user. Interaction
operation was also limited by the extremely slow communication speed between
the user and the host. In this type of system the application program
served as the center of both processing and control of the computer
operation,

During the early 1980 period the service networks developed a large variety
of computer communication networks to effectively handle larger volumes of
more sophisticated data transmissions. These networks effectively removed
the communication demands from the central computer but did not remove the
host application programs as the center of processing activity.

With the development of inexpensive personal and business computers, the
large service computer network is undergoing a number of organizational
changes. The typical user in 1990 time frame will be a small business or
personal computer with local application programs and mass storage
capability. The majority of the interactive applications processing will be
performed at the local user level with the computer service network
supplying access to large data bases for portions of the processing
information. The bulk of the user/host communication will still be handled
via commercial telephone connections, but at considerably higher
transmissions rates (4800, 9600 BAUD). The information to and from the
local user will be processed by a much more sophisticated communications
adapter which can connect the user into different segments of the operating
system or possibly even direct access to the host data base. The operating
system can access a variety of application programs which would normally be
extremely large programs that could not be executed on the local computer or
specialized data base management systems which are tailored to make specific
types of operation on the host data base. The operating system level
mightalso allow a direct contact between the remote user and the data base
itself. The data bases will be extremely large and more likely to be shared
between a number of users than the data bases of the 1970°s.

A major problem in a system of the 1990°s will be to keep the executable
files on remote updated by the host system in a timely and cost effective
manner. To better understand the issues involved in solving this problem,
it is useful to examine the block-level diagrams illustrated in Figures 1l-4
of the segments a typical 1990 data transfer system. The management system
segment, common to all four segments, will have the role of coordinating
the four modules that in turn generate the updates to modify an old file
into a new version, transport the updates through the various elements of
two communication systems, and finally reconstructing a new file from the
old and incorporating the transmitted updates. A summary of the system
elements being examined is offered below.

The data generation system, illustrated in Figure 1, consists of eight
elements. Four of these simply represent the old and new source files and
their corresponding executable files, which serve as inputs to the download
file generator. The function of the download file generator is to generate,
based on a scheme to be described later, a file with information for
decomposing an old executable file and reconstructing it to mirror the new
executable file. The generated file will be dependent upon the instruction
set about which information is available through the instruction table.
Ideally, information in the instruction table will be the output of the
automatic instruction table generator which will be a program, probably
based on artificial intelligence, to take an instruction set and extract
information about it necessary for use in the download file generator. The
new download file is the output of the download file generator and the input
to the data communication system illustrated in Figure 2. In this system,
there are four blocks, the first of which is labeled "packet convert" and
which accurately describes its function. For checking and error detection
purposes it is more efficient to send data in packets. The data packets are

MANAGEMENT 5YSTEM

i)

DATA GENERATION S5YSTEM

0LD op |
SOURCE—— EXEL, —)
FILE FILE
opuol |
GENERATOR[| POWALDAD 1=
SOURCE— BXEL
FILE XL

AUTOMATIL
INSTRUCTIDN 3 IN3TR.
TABLE TABLE
GENERATOR
I: I E |_| Rl E 1 GEORGIA INSTITUTE OF TECHNDLOGY |
CONTROL DATA CORPORATION

DATA COMMUNICATION GYSTEM
[DCC1_ JJH. GCHLAG] 3/BR

MANAGEMENT 5YSTEM

L

DATA [OMMUNICATION 5YSTEM

=Y

- ERROR
PACKET | o
CONVERT Egg%ﬁg

3 ENCRYP.
CODING

COMM.
FROTOCOL

N\

F1IGURE 2

GEORGIA INGTITUTE OF TECHNOLOGY

CONTROL DATA CORPORATION
DATA COMMUNICATION SYSTEM

"~ CDCCZ_] JH. SCHLAG] 3766

MANAGEMENT 5YSTEM

h" 4

DATA COMMUNICATION 5YSTEM

ERROR
COMM. y il % ENCRYP. PACKET
[PROTOCOL EEB%H-« CODING _’H CONVERTT?
&_ R
F I E l_l R E EI GEDRGIA INGTITUTE OF TECHNOLDGY

CONTROL DATA CORPORATION
DATA COMMUNICATION SYSTEM

CDCC3_ [JH. GCALAG] ___3/86 |

MANAGEMENT 5YS5TEM

a4

DATA RECONSTRUCTION SYSTEM

OLD
EXEC, F—
FILE
NEW
EXECUTABLE NEW
_FILE —)ﬂ EXEL.
GENERATOR FILE
NEW
~—— DOWDLOAD —)
FILE
INSTR.
TABLE
FIGURE & o

GEORGIA INSTITUTE OF TECHNOLOGY

CONTROL DATA CORPORATION
DATA COMMUNICATION SYSTEM

COCC4 | JH. GCHLAG] _ 3/BR

then subject to error detection and correction and to encryption for
security as indicated by the next two blocks in Figure 2.

The need for higher BAUD rates over commercial telephone lines will increase
the probability of data transmission errors, but the use of packet protocols
will increase the probability that these errors can be detected. The
technique used for error detection will most likely be a vertical or
possibly vertical and horizontal cyclic redundancy code. Certain single and
multiple bit errors can be corrected using packet protocols and particular
coding schemes such as the Hamming code.

A number of factors will increase the need for encrypting data between the
user and the host service network. With little or no application program om
the host computer, the data transmitted will more likely be the essential
data base unfiltered by application programs at the host., The use of shared
data bases will tend to make companies more security comnscious. New
regulations such as the Privacy Act will increase the responsibility of
companies to maintain secure data.

Even though proper encryption can maintain the security of the data
transmitted between the host and user, additional steps must be provided to
keep unauthorized users from accessing or changing specific areas of the
data base. As more of the applications programs are moved to the user
system, more responsibility for data base security will fall on the
communication system. -

Data packets, having been error corrected and encrypted for security, pass
to the fourth block, the communication protocol block in the system.
Definite protocols need to be established between host and system including
packet acknowledgement and retransmission. Through these protocols data is
transmitted from host to remote use. Figure 3 is mirror image of Figure 2
and represents the fact the the functions of the data communication systems
of the remote system in Figure 3 mirror those of the host system in Figure
2.

The data reconstruction system is illustrated in Figure 4. The new
download file contains the packets of data produced by the data
communication system of the remote system., This input along with the old
executable file that resides at the remote site are submitted to the new
executable file generator which, with information from the instruction
table, reconstructs the old executable to a new executable file identical to
that in Figure 1. Details of the schemes developed for the download file
generator of Figure 1 and the new executable file generator are presented
later. As was noted earlier, to make sure that all the modules described
interact properly, all are controlled by a management system. Through the
management system the host makes program changes and sends them to all the
remote users who are eligible to receive them. By the same system the
remote user advises the host when updates have been completed successfully.
When the remote signs on, the host should request that an update be made

automatically; the remote user can then respond with his desires. The
management system keeps account of which systems have been updated,

Each of the system elements and their interrelation will be areas of
changing needs related to communication protocols between the host and the
user. Each of these areas has proved to be fertile ground for researchers.
Publications with results of work in the areas have been assembled in a
library both for assessment of the current status and for future reference.
A bibliography of these publications is included as an appendix.

The issues described above relate to the broad context of the problem of
keeping the executable file on the remote terminals updated by the host.
For the initial effort a narrower focus was taken with a concentration on a
scheme for downloading the file generator and new file generation.

To date, the schemes available to keep update files available at the remote
terminals have been compacting schemes that assumed no a priori information
at the receiver and involved sending entire new files, but in as compact and
efficient manner as possible. In contrast, the new scheme that is the
subject of this report assumes that an cld file exists at the remote and
needs merely to be updated. The new scheme involves examining the changes
that need to be made and sending omly the information necessary to make the
changes.

New Update Scheme

The basic idea in the new update scheme that is being developed is to begin
with an old executable file that requires an update and that exists both at
the remote and the host systems. An update to the old file is made at the
host. The objective is to tramsmit the update to the remote system. In the
new scheme this is done by decomposing the old file at the remote and
reconstructing it with update information to in fact make a replica of the
new executable at the remote system.

This update process will by nature mean that the instructions from the old
executable file will be located in a different position in the new
executable file. In order to implement the changes in an existing code, it
is useful to examine first the types of information fields involved imn an
instruction and then the ways these fields change with changes of position.

Four Types ¢of Information Fields

l. OP code fields specify the type of instruction, such as "MOV",
that is to be executed and by its very nature is position
independent.

2. A second type of position independent fields is a general class of
position independent fields, other than OP code fields (e.g.
fieldsthat specify registers).

Four Ways

Relative position dependent fields specify information such that
if moved from one position to amother, the value of the number in
the field will be changed by the amount relative to the amount it
moved.

Absolute position dependent fields are fields specifying values
whose magnitude changes according to its absolute position in

memory.

to Transfer Data

1.

Absolute position valid data packets involves moving groups of
instructions that are independent of position as illustrated in
Figure 5 and as follows:

a. remove n bytes of data from the old executable file starting
at the old file data pointer

b. place n bytes of data in new file starting at the new file
data pointer with no changes to the data packet

¢. add n to both old and new pointers

Offset position valid data packet involves receiving a command
that identifies the type of move and the value of n, as well as
two offset values, both relative and absolute, as illustrated in

Figure 6 and as follows:

a. remove n bytes of data from the old executable file starting
at the old file data pointer

b. add current relative offset value to all relative dependent
fields

¢. place data packet back in new executable file

d., add n to old and new data pointers

Delete Data Packet from the old executable file by subplying the
value of n and then add n to old data pointer as illustrated in
Figure 7. '

Add Data Packet involves receiving n bytes of new data from
communication channel (host) as illustrated in Figure 8 and as

follows:

a. place n bytes of new data starting at the data pointer in the
new executable file

b. add n to new file data pointer

TOTAL BYTES IN PACKET = 2

OLD EXECUTABLE FILE

ABSOLUTE POSITION
DATA PALKET

INFORMATION FROM
COMMUNICATION

CHANNEL

1. PACKET TYPE CODE (1 BYTE)

2, NUMBER OF BYTES TO MOVE (1 BYTE)

v
NEW EXECUTABLE FILE
OLD FILE
DATA POINTER
NEW FILE
MOVE N BYTES DATA POINTER .
WITH NO CHANGE

FIGURE S

GEORGIA INSTITUTE OF TECHNOLOGY

CONTROL DATA CORPORATION
ABSOLUTE POSITION DATA PACKET

| CDCCS__ JJH. GCHLAG] _ 3/86 |

OFFSET
DATA

TOTAL BYTES IN PACKET = 2

OLD EXECUTABLE FILE

OLD FILE
DATA POINTER

|

FOSITION
FACKET

INFORMATION FROM
COMMUNICATION
CHANNEL

1. PACKET TYPE CODE (1 BYTE)
2. NUMBER OF BYTES TO MOVE (1 BYTE)

NEW EXECUTABLE FILE

NEW FILE
DATA POINTER

MOVE N BYTES
WITH ADDED OFFSETS

FIGURE B

CONTROL DATA CORPORATION
DFFSET POSITION DATA PACKET

GEORGIA INSTITUTE OF TECHNOLOGY

[OCCE | JH. SCHLAG | 3/86

TOTAL BYTES IN PACKET = 2

DELETE
DATA PALKET

INFORMATION FROM
COMMUNICATION
CHANNEL

1. PACKET TYPE CODE (1 BYTE)
2. NUMBER OF BYTES TO DELETE (1 BYTE)

OLD EXECUTABLE FILE

NEW EXECUTABLE FILE

OLD FILE
| DATA POINTER

NEW FILE
DATA POINTER ﬁ

FILURE 7

CONTROL DATA CORPORATION
DELETE DATA PACKET

GEORGIA INSTITUTE OF TECHNOLOGY |

— [OCC7 | JH. SCHLAG] 3/8F

ADD
DATA PACKET

TOTAL BYTES OF DATA =N + 2

OLD EXECUTABLE FILE

OLD FILE
k DATA POINTER

INFORMATION FROM
COMMUNICATION

v

ADD N BYTES OF
NEW DATA

CHANNEL

1. PACKET TYPE CODE (1 BYTE)

2. NUMBER OF BYTES TO MOVE (1 BYTE)
3. N BYTES OF NEW DATA

NEW EXECUTABLE FILE

NEW FILE
DATA POINTER i

FIGURE d

CONTROL DATA CORPORATION
ADD DATA PACKET -

GEDRGIA INGTITUTE OF TECHNOLOGY

[DCC7] JH. GCHLAG | /85

In the worst case, by exercising data transfers types 3 & 4, the old file
will be completely replaced by a new executable file, in much the same way
as is currently done. When the changes are extensive, it may be the most
efficient way to proceed. In many other instances, when the changes are
minor, considerable savings in time and money could be realized with the new
scheme.

A Trial Scheme

Based on the informationm presented above a trial scheme has been devised and
is illustrated in following example.

A sample assembly language program was selected at random (Duke University
Computer Science homework problem number 4). An additional instruction was
added to the program and it was re-assembled. The old and new code were
printed and the proposed scheme was manually applied to indicate the degree
of saving in download efficiency. The following indicates the bytes that
would be sent in the download file.

Download codes for sample program

Data Number of bytes
Position independent code 1 byte
256 1 byte
Position independent code 1 byte
256 1 byte
Position independent code 1 byte
256 1 byte
Position independent code 1 byte
256 1 byte
Position independent code 1 byte
133 1 byte
Add data code 1 byte

1 1 byte
B8 1 byte
Position offset code 1 byte
Relative position offset 1 byte
Absolute position offset 1 byte
215 1 byte
Total 19 bytes

Analysis of sample program using proposed download scheme

Total bytes in program = 1373 bytes

Types of data fields / bytes per field:

Position independent fields = 1157 bytes
Absolute position dependent fields = 215
Number of bytes required to tramsmit each field type:
Position independent data = 10 bytes
Added data = 3 bytes
Absolute position dependent data = 6 bytes
Total number of bytes required for transmission = 19 bytes
Ratio of direct download to proposed scheme = 72.3

Instruction Set Investigation

To investigate the validity of the new trial scheme, an example of a machine
language instruction is selected to check the following:

1. to see if using this format, does there exist data that cannot be
taken apart and put back together again,

2. to check on the efficiency of the scheme, that is can you have as
few variations as possible and still be effective.

BIBLIOGRAPHY

Cryptography
1. Wyn L. Price, "A Review of the Development of Standards for Data

Encipherment,"Proceedings of the NATO Advanced Study Institute, Bonas,
France, '11-22 July 1983, pp. 629-641.

Victor Mansfield, "Encryption Methods," PC Tech Jourmal. pp. 96-114,
April 1985.

Bill Hancock, "Network Encryption or “No, That“s Not A Bad Packet!"
The DEC Professional, pp. 49-56, July 1985.

Error Correction

1.

R. Stefanelli, "Multiple Error Correction in Arithmetic Units with
Triple Redundancy," Advances in Microprocessing and Microprogramming,
PP. 205-215, 1984,

Error Correction Codes

1'

2-

Akira Shiozaki, "Recollection Error of Higher-Order Correlation Matrix
Continuous-Type Associative Memory," Kybernetes, vol. 14, pp. 173-177,
1985,

"Reduced Performance Impact or Error Correcting Coding,'" IBM Technical
Disclosure Bulletin, pp. 5551-5552, vol. 27, No. 10A, March 1985.

Error Detection

l.

L. Chariglione, L. Corgnier, L. Masera, "Reliable Communication for
Multiservice Terminals,"GLOBECOM “84 Conference Record, IEEE 1984, pp.
308-12, Vol. 1 :

W. Michael Trautwein, "Concurrent Error-Detection/-Correction of
Logical Operations," Proceedings 2nd GI/NTG/GMR Conference, Bonn,
Germany, 19-21 Sept 1984, pp. 189-201

C. S. Benning, D. N. Moen, Q. G, Schmierer and S. A, Tibbitts, "Error
Detection for Data Compressor,” IBM Technical Disclosure Bulletin, Vol.
27, No. 9, February 1985.

W. David Schwaderer, "CRC Calculation," PC Tech Journal, Vol. 3,no. 4,
pp. 118-133, April 1985.

Packet-Switching

1.

W. Hsieh and B. Kraimeche, "Analysis of an End-to-End Group
Acknowledgement Error Control Mechanism in a Packet-Switched Network,"
IEEE GLOBECOM 1984 Conference Record, Vol. 1, pp. 344-348, 1984.

N. M. A. Ayad, F. A. Mohammed, M. A. Madkour and M. S. Metwally,
"Performance Comparison of Quasi-Static Routing Algorithms for Packet-
Switched Computer Networks," Computer Communications Review, Vol. 15,
no. 1, pp. 18-47, January 1985

A. N. Venetsanopoulos, W. Waung, "Adaptive Bifurcation Routing
Algorithms for Computer-Communication Networks," Kybernetika, pp. 178-
197, Volume 21 (1985), Number 3.

Mark J. Kiemele, Udo W. Pooch, "Topological Optimization of an
Integrated Circuit/Packet-Switched Computer Network,"Proceedings of the
1984 Winter Simulation Conferemce, pp. 605-618.

Protocols

1.

Joshua Etkin, Daniel Tabak, "Communication Protocols of Distributed
Systems: How Far Should We Folow The Standardization Trend?",
Proceedings of the Computer Networking Symposium, pp. 113-121, December
1984,

L. M. Likhachev and D, P. Sokolov, "Automatic Construction of Protocols

For Packet-Switching Networks," Avtomatika i Vychislitel’maya Tekhnika,
VO].. 18, NO- 1’ ppo 3-8, 1984-

Kaoru Kurosawa, Hiroshi Koike, and Shigeo Tsujii, "A New Specification
and Validation Method for Communication Protocols - A Proposal of a
Composite State Diagram Mixed with Logical Relations,”" GLOBECOM 84
Conference Record, Vol. 1, pp. 157-163, 1984,

M. Bonatti, A. Briccoli, L. Fratta, "Performance Evaluation of
Retransmission Protocols in Processor Interconnection Networks,"
GLOBECOM 84 Conference Record, Vol. 1, pp. 130-136, 1984,

Victor L. Voydock, Stephen T. Kent, "Security Mechanisms in a Tramsport
Layer Protocol," Computer Networks Netherlands, vol. 8, no. 5-6, pp.
433-449, 1984,

Saumya K. Debray, Ariel J. Frank, Scott A, Smolka, "On the Existence
and Construction of Robust Communication Protocols for Unreliable
Channels," Foundation of Software Technology and Theoretical Computer

Science, Fourth Conference proceedings, pp. 136-151, 1984

7.

Abbas El1 Gamal and Alon Orlitsky, "Interactive Data Compression,”

Proceedings of 25th Annual Symposium on Foundations of Computer
Science, pp. 100-108, 1984,

Microprocess Chips

1.

2.

Boris Allen, "An Old-Fashioned Processor? Part One," Computing The
Magazine, p. 21, July 4, 1985.

Boris Allen, "An Old-Fashioned Processor? Part Two," Computing The
Magazine, p. 20, July 11, 1985,

Boris Allen, "0ld Fashioned Processor? Part Three," Computing The
Magazine, p. 21, July 18, 1985.

Jack Sterett, Al Brown and Gary Hornbuckle, "Maintaining Compatibility
When Upgrading The 8086/87," Digital Design, pp. 55-60, July 1985.

D. V. Shouse, "On the Fly” CRC-16 Byte-wise Calculation for 8088-based
Computers," IEEE Micro (USA), Vol. 5 no. 2, pp. 67-75, April 1985.

STANDARDIZED PROTOCOLS BETWEEN
MICROCOMPUTERS AND DATA SERVICE NETWORKS

by

Dr. Jay H. Schlag

School of Electrical Engineering

Georgia Institute of Technology

March 16,1987

prepared for

Control Data Corporation

Standardized Protocols Between
Microcomputers and Data Service Networks

Introduction

This report is the annual report covering the first year of a two year
effort to investigate standardized protocols between microcomputers and data
service networks, The first half of this report was presented earlier as a
semi~annual report. The second half is a continuation of that report and is
a discussion of the work that has been done during the remainder of that
year.

The rapid growth of computer applications coupled with the development of
inexpensive, small computer systems has made drastic changes in the role of
the large mainframe computer service network. These changes have been
produced primarily by the shift of computer intelligence from the main host
to the user-based systems. This shift has precipitated a need for changes
in many of the other computer functions such as data base management,
application programs, data security and communicatiom protocols. This
effort addresses issues within the single area of computer communication
protocols in the computer service network and the impact of modern computer
networks on the protocol requirements. Of particular interest to this
project will be the areas of communication hardware, data transmission
structure, error detection, error correction, encryptionmn, data base
security, data format exchange, and data base management command exchange,

To understand the need for new user/computer service communication
protocols, it is useful to understand the evolutionary trends occuring in
the entire network. The user in a service computer network in the 1970 time
frame was a simple CRT terminal or hard copy device with no local processing
or data storage capability. The user communicated with the host computer
‘over a commercial grade telephone line using a standard RS232 protocol at a
speed of 300 BAUD. The data was transmitted in standard, ASCII form with no
communication security, data encryption, error detection or error
correction. This communication was handled by a communication adapter at
the host site which could have been as simple as a telephone switching
network. The communication adapter connected the user to the central
operating system which in turn called up-the particular application program
that was requested by the user. The application program handles the great
majority of all of the user/host controlling inputs and outputs to the user,
inputs and outputs to the host data base, input and output formats, data
security, data encryption, error detection, and error correction. Many of
these application programs were executed in a Batch Mode and supplied
little, if any, direct communication with the remote user. Interaction
operation was also limited by the extremely slow communication speed between
the user and the host, In this type of system the application program
served as the center of both processing and control of the computer
operation.

During the early 1980 period the service networks developed a large variety
of computer communication networks to effectively handle larger volumes of
more sophisticated data transmissions. These networks effectively removed
the communication demands from the central computer but did not remove the
host application programs as the center of processing activity.

With the development of inexpensive personal and business computers, the
large service computer network is undergoing a number of organizational
changes. The typical user in 1990 time frame will be a small business or
personal computer with local application programs and mass storage
capability. The majority of the interactive applications processing will be
performed at the local user level with the computer service network
supplying access to large data bases for portions of the processing
information., The bulk of the user/host communication will still be handled
via commercial telephone connections, but at considerably higher
transmissions rates (4800, 9600 BAUD). The information to and from the
local user will be processed by a much more sophisticated communications
adapter which can connect the user into different segments of the operating
system or possibly even direct access to the host data base., The operating
system can access a variety of application programs which would normally be
extremely large programs that could not be executed on the local computer or
specialized data base management systems which are tailored to make specific
types of operation on the host data base. The operating system level

might also allow a direct contact between the remote user and the data base
itself. The data bases will be extremely large and more likely to be shared
between a number of users than the data bases of the 19707s.

A major problem in a system of the 1990”s will be to keep the executable
files on remote updated by the host system in a timely and cost effective
manner. To better understand the issues involved in solving this problem,
it is useful to examine the block-level diagrams illustrated in Figures l-4
of the segments a typical 1990 data transfer system. The management system
segment, common to all four segments, will have the role of coordinating
the four modules that in turn generate the updates to modify an old file
into a new version, transport the updates through the various elements of
two communication systems, and finally reconstructing a new file from the
old and incorporating the transmitted updates. A summary of the system
elements being examined is offered below.

The data generation system, illustrated in Figure 1, consists of eight
elements. Four of these simply represent the old and new source files and
their corresponding executable files, which serve as inputs to the download
file generator. The function of the download file generator is to generate,
based on a scheme to be described later, a file with information for
decomposing an old executable file and reconstructing it to mirror the new
executable file. The generated file will be dependent upon the instruction
set about which information is available through the instruction table.
Ideally, information in the instruction table will be the output of the
automatic instruction table generator which will be a program, probably
based on artificial intelligence, to take an instruction set and extract

MANAGEMENT 5YSTEM

)

DATA GENERATION 5YSTEM

OLD OLD
GOURCEp—3A EXEC. 3
FILE h FILE
e B
GENERATOR[| POWNLDAD (1=
NEW | NEW
SOURCE p——A EXEL. ——3
FILE FILE
| E—
IﬁgEHPTTIIDEN INSTR
TABLE — TABLE
GENERATOR
F I E U RE ‘I |_GEORGIA INSTITUTE OF TECHNOLDGY
CONTROL DATA CORPORATION

DATA COMMUNICATION SYSTEM

COCC1] JH. GCHLAG] 3/86

MANAGEMENT 5YSTEM

)
DATA COMMUNICATION 5YSTEM

ERROR
PACKET | ENCRYE. MM,
=3 converT [BETELT 1 tioing [fewitotn.
L
FIGURE 2

GEORGIA INSTITUTE OF TECHNOLOGY

CONTROL DATA CORPORATIDN
DATA COMMUNICATION SYSTEM

EOCC2]| JH. SCHLAG 3/86

MANAGEMENT 5YSTEM

l

DATA COMMUNICATION 5YSTEM

FIGURE 3

ERROR
covm, | ERROR ENCRYF. PACKET
#PRDTDEEIL DETECT [\ [OOING || CONVERT
— .
GEORGIA INSTITUTE OF TECHNOLDGY

CONTROL DATA CORPORATION
DATA COMMUNICATION SYSTEM

CDCC3 | J.H. SCHLAG] 3/86

MANAGEMENT 5YSTEM

|

DATA RECONSTRULCTION 5YSTEM
- -1
OLD
EXEL. y
FILE
EXE‘PUETVAELE NEW
FILE - EXEL.
GENERATOR FILE
NEW | E
—3 DOWDLOAD —
FILE
T
INSTR.
TABLE
FIGURE &4

GEORGIA INSTITUTE OF TECHNOLOGY

CONTROL DATA CORPORATION
DATA COMMUNICATION SYSTEM

~DCLL&] JH. GLHLAG] __ 3/66

information about it necessary for use in the download file generator. The
new download file is the output of the download file generator and the input
to the data communication system illustrated in Figure 2. In this system,
there are four blocks, the first of which is labeled "packet convert" and
which accurately describes its function. For checking and error detection
purposes it is more efficient to send data in packets. The data packets are
then subject to error detection and correction and to encryption for
security as indicated by the next two blocks in Figure 2.

The need for higher BAUD rates over commercial telephone lines will increase
the probability of data transmission errors, but the use of packet protocols
will increase the probability that these errors can be detected. The
technique used for error detection will most likely be a vertical or
possibly vertical and horizontal cyclic redundancy code. Certain single and
multiple bit errors can be corrected using packet protocols and particular
coding schemes such as the Hamming code.

A number of factors will increase the need for encrypting data between the
user and the host service network., With little or no application program on
the host computer, the data transmitted will more likely be the essential
data base unfiltered by application programs at the host. The use of shared
data bases will tend to make companies more security conscious. New
regulations such as the Privacy Act will increase the responsibility of
companies to maintain secure data.

Even though proper encryption can maintain the security of the data
transmitted between the host and user, additional steps must be provided to
keep unauthorized users from accessing or changing specific areas of the
data base. As more of the applications programs are moved to the user
system, more responsibility for data base security will fall on the
communication system.

Data packets, having been error corrected and encrypted for security, pass
to the fourth block, the communication protocol block in the system.
Definite protocols need to be established between host and system including
packet acknowledgement and retransmission. Through these protocols data is
transmitted from host to remote use. Figure 3 is mirror image of Figure 2
and represents the fact the the functions of the data communication systems
of the remote system in Figure 3 mirror those of the host system in Figure
2. s ©

The data reconstruction system is illustrated in Figure 4. The new

download file contains the packets of data produced by the data
communication system of the remote system. This input along with the old
executable file that resides at the remote site are submitted to the new
executable file generator which, with information from the instruction
table, reconstructs the old executable to a new executable file identical to
that in Figure 1. Details of the schemes developed for the download file
generator of Figure 1 and the new executable file generator are presented
later. As was noted earlier, to make sure that all the modules described

interact properly, all are controlled by a management system. Through the
management system the host makes program changes and sends them to all the
remote users who are eligible to receive them. By the same system the
remote user advises the host when updates have been completed successfully.
When the remote signs on, the host should request that an update be made
automatically; the remote user can then respond with his desires. The
management system keeps account of which systems have been updated.

Each of the system elements and their interrelation will be areas of
changing needs related to communication protocols between the host and the
user. Each of these areas has proved to be fertile ground for researchers.
Publications with results of work in the areas have been assembled in a
library both for assessment of the current status and for future reference.
A bibliography of these publications is included as an appendix.

The issues described above relate to the broad context of the problem of
keeping the executable file on the remote terminals updated by the host.
For the initial effort a narrower focus was taken with a concentration on a
scheme for downloading the file generator and new file generation.

To date, the schemes available to keep update files available at the remote
terminals have been compacting schemes that assumed no a priori information
at the receiver and involved sending entire new files, but in as compact and
efficient manner as possible. In contrast, the new scheme that is the
subject of this report assumes that an old file exists at the remote and
needs merely to be updated. The new scheme involves examining the changes
that need to be made and sending only the information necessary to make the
changes.,

New Update Scheme

The basic idea in the new update scheme that is being developed is to begin
‘with an old executable file that requires an update and that exists both at
the remote and the host systems. An update to the old file is made at the
host. The objective is to transmit the update to the remote system. In the
new scheme this is done by decomposing the old file at the remote and
reconstructing it with update information to in fact make a replica of the
new executable at the remote system.

This update process will by nature mean that the instructions from the old
executable file will be located in a different position in the new
executable file, In order to implement the changes in an existing code, it
is useful to examine first the types of information fields involved in an
instruction and then the ways these fields change with changes of position.

Four Types of Information Fields

1. OP code fields specify the type of instruction, such as "MOV",
that is to be executed and by its very nature is position
independent.

2.

A second type of position independent fields is a general class of
position independent fields, other than OP code fields (e.g.
fields that specify registers).

Relative position dependent fields specify informatiom such that
if moved from one position to another, the value of the number in
the field will be changed by the amount relative to the amount it
moved,

Absolute position dependent fields are fields specifying values
whose magnitude changes according to its absolute position im
memory .

Four Ways to Transfer Data

1.

Position independent data packets involve moving groups of

instructions that are independent of position as illustrated in
Figure 5 and as follows:

a. remove n bytes of data from the old executable file starting
at the old file data pointer

b. place n bytes of data in new file starting at the new file
data pointer with no changes to the data packet

c. -add n to both old and new pointers

Offset position valid data packet involves receiving a command
that identifies the type of move and the value of n, as well as
two offset values, both relative and absolute, as illustrated in

Figure 6 and as follows:

a. remove n bytes of data from the old executable file starting
at the old file data pointer

b. add current relative offset value to all relative dependent
fields

c. change all absolute fields to reflect the mew code position
d. place datajpacket back in new executable file

e, add o to old and new data pointers

Delete Data Packet from the old executable file by supplying the

value of n and then add n to old data pointer as illustrated in
Figure 7.

TOTAL BYTES IN PALKET = 2

ABSOLUTE POSITION
DATA PALKET

INFORMATION FROM
COMMUNICATION

OLD EXECUTABLE FILE

OLD FILE
DATA POINTER

MOVE N BYTES
WITH NO CHANGE

p---=-

CHANNEL
1 PACKET TYPE CODE (1 BYTE)

2 NUMBER OF BYTES TO MOVE (1 BYTE)

NEW EXECUTABLE FILE

NEW FILE
DATA PDINTER ji

FIGURE S

GEORGIA INSTITUTE OF TECHNOLOGY

CONTROL DATA CORPORATION
ABSOLUTE POSITION DATA PALKET

[OCC5 | JH. SLHLAG] 3/86 |

OFFSET POSITION
DATA PALKET

TOTAL BYTES IN PACKET = 2

OLD EXECUTABLE FILE

OLD FILE
?AATA POINTER

INFORMATION FROM
COMMUNICATION

¢

MOVE N BYTES
WITH ADDED DFFSETS

NEW FILE
DATA POINTER |

CHANNEL
1. PAKET TYPE CODE (1 BYTE)

2 NUMBER OF BYTES TO MOVE (1 BYTE)
3, RELATIVE POSITION OFFSET (2 BYTES)

NEW EXECUTABLE FILE

FIGURE B

GEORGIA INSTITUTE OF TECHNOLOGY

CONTROL DATA CORPORATION
QFFSET POSITION DATA PACKET

[DCCB JJH. SCHLAG] /86|

TOTAL BYTES IN PACKET = 2

DELETE
DATA PACKET

INFORMATION FROM
COMMUNICATION

OLD EXECUTABLE FILE

OLD FILE
h DATA POINTER

CHANNEL
1 PACKET TYPE CODE (1BYTE)

2 NUMBER OF BYTES TO DELETE (1 BYTE)

NEW EXECUTABLE FILE

NEW FILE
DATA POINTER

FIGURE 7

GEORGIA INSTITUTE OF TECHNOLOGY

CONTROL_DATA CORPORATION
DELETE DATA PACKET

“[DLL7__JJH. GLALAG] __ 3/86

L ——————— s

AOD
DATA PACKET

TOTAL BYTES OF DATA =N+ 2

OLD EXECUTABLE FILE

OLD FILE
L DATA POINTER

INFORMATION FROM
COMMUNICATION

v

\

- ADD N BYTES OF
NEW DATA

CHANNEL

1. PACKET TYPE CODE (1 BYTE)

Z NUMBER OF BYTES TO MOVE (1.BYTE)
3. N BYTES OF NEW DATA

NEW EXECLITABLE FILE

NEW FILE
DATA POINTER

/

\

FIGURE B

GEORGIA INSTITUTE OF TECHNOLOGY

CONTROL DATA CORPORATION
ADD DATA PALKET -

“IOCL7 T JH SLHLAG] __ 3/86__

- - - —————— e — s vw e e me e

4, Add Data Packet involves receiving n bytes of new data from
communication channel (host) as illustrated in Figure 8 and as
follows:

a. place n bytes of new data starting at the data pointer in the
new executable file

b. add n to new file data pointer

In the worst case, by exercising data transfers types 3 & 4, the old file
will be completely replaced by a new executable file, in much the same way
as is currently done. When the changes are extensive, it may be the most
efficient way to proceed. In many other instances, when the changes are
minor, considerable savings in time and money could be realized with the new
scheme,

A Trial Scheme

Based on the information presented above a trial scheme has been devised and
is illustrated in the following example.

A sample assembly language program was selected at random (Duke University
Computer Science homework problem number 4). An additional instruction was
added to the program and it was re-assembled. The old and new code were
printed and the proposed scheme was manually applied to indicate the degree
of saving in download efficiency. The following indicates the bytes that
would be sent in the download file.

Download codes for sample program

Data ' Number of bytes
Position independent code 1 byte
256 1 byte
Position independent code 1 byte
256 1 byte
Position independent code 1 byte
256 1 byte
Position independent code 1 byte
256 ' 1 byte
Position independent code 1 byte
133 1 byte
Add data code 1 byte
1 1 byte
B8 1 byte
Position offset code 1 byte
Relative position offset 2 byte
215 1 byte

Total 17 bytes

Analysis of sample program using proposed download scheme

Total bytes in program = 1372 bytes
Types of data fields / bytes per field:
Position independent fields = 1157 bytes
Absolute position dependent fields = 215
Number of bytes required to transmit each field type:
Position independent data = 10 bytes
Added data = 3 bytes
Absolute position dependent data = 4 bytes
Total number of bytes required for transmission = 17 bytes
Ratio of direct download to proposed scheme = 1372/17= 80.7
Instruction Set Investigation |

To investigate the validity of the new trial scheme, an example of a machine
language instruction is selected to check the following:

1, to see if using this format, does there exist data that cannot be
taken apart and put back together again, ‘

2. to check on the efficiency of the scheme, that is, can you have as
few variations as possible and still be effective.

Second Six Months Effort

The objectives for the second six months of effort include the following.
The first objective was to classify a subset of the 8086 language into the
field structure proposed to the communication scheme and to build an
instruction table for that subset. A second objective was to install two
compilers on the IBM personal computer; in fact, compilers for three high-
level languages, "C", Pascal, and Fortran, were installed. The third
objective was to run several examples of inserting and deleting lines from
each of these compiler-level languages. The fourth objective was to compare
the machine language code before and after the changes to calculate the
efficiency that would result from using the proposed communication scheme,
The fifth objective was to identify the problem features of the DOS COMl
communication port. The work involved in reaching each of these objectives
is discussed below.

Instructions Clagsified by Field Structure

To classify a subset of the 8086 language into the field structure proposed
to the communication scheme described earlier, some example instructions
were examined in detail so that the effect of a position change on each
field in that instruction could be evaluated. Fields that are position
independent require no adjustmeni in the update scheme. Fields that are
either relative or absolute position dependent will require an adjustment in
the update situation. ' The appropriate adjustments will be made based om
information in an instruction table. : This instruction table will be based
on information gained through the analysis of position dependencies of
various fields.

The first instruction to be examined is
MOV destination,source

which transfers a byte or a word from the source operand to the destination
operand. This instruction was chosen as an example for discussion because it
has the potential for many different combinations of fields. This
instruction comprises a set of seven instructions each characterized by the
nature of the operands involved. The first of those seven involves a memory
or register operand to/from a8 register operand. The encoding of this
combination of operands cam be described as

T N B ‘

. 1
{ [‘ . . - . he
flOOOlO(d w| mod{reg%r{m disp 19T&1sg hi

1 1111; 1,101 TR/
if d=1 then SRC=EA,DEST=REG,else SRC=REG,DEST=EA, where
SRC=gource ,DEST=destination,REG=register ,EA=effective address,and disp-1 and
disp-h are the displacement, lower and higher order bits, respectively. Note
that w=0 or 1 to indicate a register width of ome or two bytes,
respectively. The fields into which the bytes of the instruction have been
separated for analysis are indicated by vertical dotted lines. The
character of the position dependencies of each field is indicated by: I =
position independent, including OPeration codes, R = relative position

dependent, and A = absolute position dependent. As indicated above, The
first three fields that comprise the first byte are positien independent, as
is the second field of the second byte. The first field of the first byte
is an OP code, which is always position independent. The values of d, .
indicating the direction of the move, w, indicating the width of the data to
be moved, and reg, specifying the register involved in the move, once set
for an instruction, would not change with a change in position. The mod
and r/m fields in the second byte are used in combination to indicate the
addressing mode when one of the operands is in memory, as indicated in
Table 1. Since one of a number of these combinations would be assigned for
a particular instruction, and since many of the combinations correspond to
operand effective addresses that would be relative position dependent, it
would be necessary to examine these fields for a particular instruction;
however, once an addressing mode has been set for an instruction, changing
the position of the instruction will not change the addressing mode, so the
mod and r/m fields are themselves position independent. The last two bytes,
which are optional, are used to specify the displacement of the data from
the beginning of the data stack. In the update process, if lines of code
are inserted that refer to data which simultaneously is inserted in the
stack, but after the data referred to by the instruction in question, then
the values in the displacement fields would not change with position.
However, when lines of code are inserted which add data in the stack above
data referenced by the instruction im question, the value of the
displacement will change by an amount corresponding to the amount of data
that was inserted. In this case, the fields containing displacement
information are considered to be relative position dependent., For these
reasons, the displacement fields could be either relative position dependent
or independent.

Using the logic described above, the other MOV instructions were analyzed.
The field characterizations are summarized below.

Immediate Operand to Memory or Register Operand:

b l | | | I

) []

|
I
l

(1100011 w [mod'000 r/m | disp=lo! disp-hi | data data if w=l |
1 ! 1 f | 1
1 '1 1 I 1. BRI ' R/T |1 " 1

where SRC=data, DEST=EA.

In this case all fields are position independent, except the third and
fourth bytes which indicate displacement. These fields, for the reasons
noted above, are relative position dependent or independent.

Immediate Operand to Register:

|
vl \
I‘IOII'WTreg | data | data if w=l |
1
I'1] S ¢

f
1] 1 ‘ I

[l 4

SRC = data, DEST=REG.

In this case all fields are position independent.

Memory Operand to Accumulator:
l '

P
[1010000(w | addr—low | addr-high |
t I

I 't | R/I R/I
if w=0 then SRC=addr ,DEST=AL
else SRC=addr+l:addr ,DEST=AX.

The first two fields are position independent. Moving data in memory to the
accumulator involves only the direct addressing mode, which means that the
address is equivalent to displacement; therefore, like displacement fields,
these address fields are either relative position dependent or independent.

Accumulator to Memory Opera?d:

v !
'

{
| 10100001:w [addr-low | addr-high |

I I ; ‘R/I ; R/I

if w=0 then SRC=AL, DEST=addr
else SRC=AX,DEST=addr+l:addr.

Like the previous instruction, the first two fields are position
independent; and the address fields are either relative position dependent
or independent.

Memory or Register OFerand to Segment Register:
|
I

t [l]

t .
[10001110 ! mod | O reg! r/m | disp-lo| disp-hi |
S SN NI ST S T4 l R/I

I

if reg not equal 0l then SRC=EA, DEST=REG
else undefined operation.

As usual, the OP code in the first byte is a position independent field.
The second byte is divided into four fields. The first and fourth are
independent for reasons noted above. The second field contains one bit,1is
equal to 0 and is position independent. The third field in the second byte
is two bits long, specifies a segment register, and is, therefore, position
independent. g

Segment Regiqter to Memory or Register Operand:
: o (
|

(10001100 | mod Olreg'r/m | disp—lo | disp-hi i

1 ! | \
or! 1: I I { B/L | R/I

I

SRC=REG,DEST=EA

As in the instruction described above, the OP code in the first byte and
field is position independent, as is the zero bit and field in the second
byte. The field in the second byte specifying the segment register is also
position independent. The fields denoted by mod and r/m are independent.
The displacement fields that are the third and fourth bytes are relative
position dependent or independent.

Turning now to an instruction other than ones related to MOV, consider the
following:

NOP

NOP (No Operation) causes the CPJ to do nothing. NOP does not affect any
flags. It is encoded as

(10010000 |
I

This single byte is one field which is an OP code and is position
independent.

Based on the analysis presented above, an instruction table was prepared and
is presented as Table 2.

Installation of Compilers

To evaluate the effect that a high~level language compiler would have on the
field dependencies described above, three compilers were installed on the
IBM personal computer. The three high-level languages whose compilers were
installed are "C",PASCAL, and FORTRAN. They were installed on the IBM XT
personal computer with 640K of memory and a 10 megabyte hard disk. The
installation was complex and time consuming, but the installation
documentation was adequate. The parameters associated with each is listed
below.

Microsoft FORTRAN 77 Compiler Rev 3.30
Microsoft PASCAL Compiler Rev. 3.31
Microsoft C Compiler Rev. 4.00

/[.

Evaluation of Effect of Code Insertion andtDeletion

For each of the high-~level language compilers installed, a sample program
was coded and compiled , generating the associated assembly code. For the
"C" compiler, a sample program was selected from The "C" Programming
Language, by Brian W. Kernighan and Dennis M. Ritchie, page 26. A copy of
the program and associated assembly language code is included as Appendix A.
A new line of code, adding a new variable, "min", was inserted into the
original program., The program was then recompiled, generating new assembly
code. The new program and associated assembly code are included as Appendix

TABLE 1 MOD AND R/M PARAMETERS
FIRST OPERAND CHOICE DEPENDS ON ADDRESSING MODE
1. FIRST OPERAND IN MEMORY
A, INDIRECT ADDRESSING
MOD = 00 => DISP = 0

MOD = 01 => DISP = DISP-LO SIGN EXTENDED
MOD = 10 => DISP = DISP-HI, DISP-LO

R/M OPERAND EFFECTIVE ADDRESS
000 (BX) + (SI) + DISP

001 (BX) + (DI) + DISP

010 (BP) + (SI) + DISP

011 (BP) + (DI) + DISP

100 (S1) + DISP

101 (DI) + DISP

110 (BP) + DISP

111 . (BX) + DISP

B. DIRECT ADDRESSING
MOD = 00
R/M = 110
OPERAND EFFECTIVE ADDRESS = DISP-HI, DISP-LO

2. FIRST OPERAND IN REGISTER

MOD = 11
R/M REGISTER
8-BIT (W=0) 16-BIT (W=1)

000 AL AX

001 CcL (¢

010 DL DX

011 BL BX

100 AH SP

110 " DH SI

111 BH DI

TABLE 2 INSTRUCTION TABLE FORMAT
General instruction Table

Starting bit of OPCODE

Ending bit of OPCODE

OPCODE value

Starting bit of d parameter
Starting bit of w parameter
Starting bit of mod parameter
Starting bit of reg parameter
Starting bit of r/m parameter
Starting bit of data value
Number of data bits

Starting bit of disp value
Number of disp bits

Starting bit of address value
Number of address bits

Notes:

1. If the starting bit is zerc then the parameter is not used

2. If the number of bits is indicated as a W, then the number
of bits is controlled by the W parameter

MOV instructioanable Example
Memory or Register Operand to/from Register Operand:

Starting bit of OPCODE 1
Ending bit of OPCODE 6
OPCODE value 100010
Starting bit of d parameter
Starting bit of w parameter
Starting bit of mod parameter
Starting bit of reg parameter
Starting bit of r/m parameter
Starting bit of data value
Number of data bits

Starting bit of disp value
Number of disp bits

Starting bit of address value
Number of address bits

[

COEHROOO O W~
o

MOV instruction Table Example
Memory Operand to Accumulator

Starting bit of OPCODE
Ending bit of OPCODE
OPCODE value 101000
Starting bit of d parameter
Starting bit of w parameter
Starting bit of mod parameter
Starting bit of reg parameter

~

QO wo

Starting bit of r/m parameter
Starting bit of data value
Number of data bits

Starting bit of disp value
Number of disp bits

Starting bit of address value
Number of address bits

HOOOQOCOQ

B. A similar procedure was followed for each of the other two compilers.
The FORTRAN results are included as Appendices C and D. The PASCAL results
are included as Appendices E and F. The efficiency of the proposed download
scheme 1s illustrated in Table 3. In each case the file size ratio of the
direct download file to the proposed download scheme was over 100. For
example in the C program example a conventional direct download would

require 6558 bytes and the download with the proposed scheme would require
62 bytes.

TABLE 3 COMPARISION OF RESULTS FROM

DOWNLOAD SCHEME

C Program Example

Total Program Size = 6558

PROPOSED

Data Section Number of Download Download
Bytes Type Bytes

Before-Insert 14 Pos. Indep. 2

Added Code 6 Add Data 8

After Insert 216 Rel. Dep. 2

Run Time Library 6342 Rel. Dep. 50

Total 6558 62

Ratio of direct download to proposed scheme = 105.7

FORTRAN Program- Example

Total Program Size = 31054

Data Section Number of Download Download
Bytes Type Bytes

Befofe Insert 200 Pos. Indep. 2

Added Code 22 Add Data 24

After Insert 1005 Rel. Dep. 8

Run Time Library 29828 Rel. Dep. 234

Total “31054 268

Ratio of direct download to proposed scheme = 115.8

PASCAL Program Example

Total Program Size = 37314

Data Section Number of Download Download
Bytes Type Bytes

Before Imsert , 36 Pos. Indep. 2

Added Code 16 Add Data

After Insert 561 Rel. Dep.
Run Time Library. 36701 Rel. Dep.
Total 37314

Ratio of direct download to proposed scheme = 118.8

Protocol of the COM] communication port on the IBM personal computer

The protocol for the IBM personal computer COMl communication port has
a number of features that make computer-to-computer communications
difficult when operating under DOS. These features involve both the
hardware and software of the communication port. This section of the report
describes the problem features, and it documents a group of assembly
language subroutines that have been written to control the port directly
from a higher-level language.

Problem Features of the DOS COM]l Communication Port

The following hardware and software features create problems in
communicating between two computers under DOS:

1., If a character has arrived at the COMl communication port prior to the
operating system accessing the port, the system declares the receiver-full
status to be a device error and will cause a run-time error.

2. When the communication port is initialized to receive data, the clear-to-
send line is set high, but the data terminal ready line is set low. If the
full hardware handshake lines are implemented between two COMl communication
ports, the receiving port will inhibit the sending port and no data will be
transmitted.

3. The software termination for a IOS input om the COMl port is a control Z
character, but the output protocol traps the transmission of a control Z on
output so that the output protocol is not compatible with the input
protocol. :

4. The software protocol automatically sends both a carriage return and a .
line feed at the end of a string output, but the input only requires a
carriage return to terminate the string input. This extra line feed
character sent on the output usually ends up as a character left in the
receiver register at the end of a transmission, which results in a run-time
error as described in item 1.

The following assembly language programs were written to allow a user to
access the COMl port directly from a high-level program.

ICILS - Reads the line status of the COMl port

ICIMS - Reads the modem status of the COMI port

IC1INT - Initializes the COMl port configuration

ICIMCO - Set the value of the COMl port modem control lines
IC1TD - Sends ome character to the COMl port

ICITDW - Sends one character to the COMl port after the
transmitter buffer is empty

ICIRD - Reads one character from the COMl port with a null
indicating no character is available

ICIRDW - Reads one character from the COMl port after a character
becomes available

The following FORTRAN subroutines were written to supplement the assembly
language routines.

C1RSTR - Read a string of characters into a character array from
the COMl port.

C1SSTR -~ Send a string of characters from a character array to the
COM1 port.

APPENDIX A

C COMPILER LISTINGS

#define MAXLINE 1000 /* maximum input line size */

main() /* find longest line */

{
int len; /* current line length */
int max; /* maximum length seen so far */
char line[MAXLINE]; /* current input line */
char save[MAXLINE]; /* longest line, saved */
max = 0;
vhile ((len = getline(line, MAXLINE)) >0)
if (len > max) {
max = len;
copy(line, save);
if (max > 0) /* there was a line */
printf("%s", save);
}

getline(s, lim) /* get a linme into s, return length */
char sl];

int lim;

{

int ¢, 1i;

for (i=0; i<lim-1 && (c=getchar()) && cl="\n"; ++i)
s[i] = c;

if (¢ == “\n") {
s[i] = ¢;
++1;

}

s[i] = “\0";

return(i);

}

copy(sl, 82) /* copy sl to s2; assume 82 big enough */
char sl[], s2[];
{

int 1i;
i=20;

while ((82[i] = sl[i]) I= “\0")
++1; -

PAGE 1

04-06-87
08:10:40
Line# Source Line Microsoft C Compiler Version 4.00
1
2 #define MAXLINE 1000 /* maximum input line size */
3
4 main() /* find longest line */
5 {
6 int len; /* current line length */
7 int max; /* maximum length seen so far */
8 char line[MAXLINE]; /* current input line */
9 char save[MAXLINE]; /* longest line, saved */
10
11 max = 0;
12 while ((len = getline(line, MAXLINE)) >0)
13 if (len > max) {
14 max = len;
15 copy{line, save);
16
17 if (max > 0) /* there was a line */
18 printf("%s", save);
19 }

main Local Symbols

Name

max . .
line. .
save, .
len . .

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

getline

Class Offset Register

e o o s s o o e » s o 8uto =-07d4
e o o o s e o o o o o auto -07d2
e s+ s o o s o s ¢ o o auto ~-03ea
e + o« o o o o s s o o auto -0002

getline(s, lim) /* get a line into s, return length */
char s[];

int lim;

{

int ¢, 1i;

for (i=0; i<lim-1 && (c=getchar()) && cl="\n"; ++i)
sli] = ¢;

if (¢ == “\n") {
s[i] = ¢;
++i;

}

sli] = “\0";

return(i);

Local Symbols

Line# Source Line

Class

auto
auto
param
param

Offset

-0004
-0002
0004
0006

Register

PAGE 2
04-06-87
08:10:40

Microsoft C Compiler Version 4,00

/* copy sl to 82; assume 52 big emough */

35 }

36 :

37 copy(sl, 82)

38 char s1[], s2[];

39 {

40 int i;

41

42 i=0;

43 while ((s2[i] = 81[i]) I!= “\0")
44 ++1i; '
45 }

copy Local Symbols

Name

Global Symbols

Name

COpPY. &
getchar

getline
main. .,
printf.

Code size = 00e7 (231)
Data size = 0003 (3)
Bss size = 0000 (0)

No errors detected

Class
auto

param
param

Type

Offset

-0002
0004
0006

near function
near function
near function
near function
near function

Register
Size Class
*kk global
*kk extern
*hk global
*kk global
*kk extern

Offset

00bd
ek
0061

0000
*kk

APPENDIX B

C COMPILER LISTINGS
WITH INSTRUCTION ADDED

#define MAXLINE 1000 /* maximum input line size */

main() /* find longest lime */

{
int len; /* current lipe length */
int max; /* maximum length seen so far */
int min; /* -~- new variable added */
char line[MAXLINE]; /* current input line */
char save[MAXLINE]; /* longest line, saved */
max = 0;
min = 123; /* new line added */
while ((len = getline(line, MAXLINE)) >0)
if (len > max) {
max = len;
copy(line, save);
if (max > 0) /* there was a line */
printf("Zs", save);
}
getline(s, 1lim) /* get a line into s, return length */
char s[];
int lim;
{
int ¢, i;
for (i=0; i<lim-1 && (c=getchar()) && c!="\n"; ++i)
s[i] = c; .
if (c == “\n”) {
s(i] = ¢c;
++1;
}
s[i] = “\0";
return(i);
}

copy(sl, 82) /* copy sl to s2; assume s2 big enough */
char sl[], s2[];
{

int i;
i=20;

while ((s2[i] = sl1[i]) I= “\0")
++i;

Line# Source Line

e e e e e e e e
VONOOUVMPLNNFEFODOVO~NGOWVPBWN -

NN
N~ O

N
w

main Local

Name

max .
line.
min .
save.
len .

#define

PAGE 1
04-06-87
08:18:27

Microsoft C Compiler Version 4.00

main() /* find longest line */

{

}

Symbols

int len; /* current line length */

int max; /* maximum length seen so far */

int min; /* -=-- new variable added */

char line[MAXLINE]; /* current input line */
char save[MAXLINE]; /* longest line, saved */

max = 0;
min = 123; /* new line added */
while ((len = getline(line, MAXLINE)) >0)
if (len > max) {
max = len;
copy(line, save);

if (max > 0) /* there was a line */
printf("Zs", save);

Class Offset Register

auto -07d46

« + ¢« o o auto -07d4
« « ¢ « o guto -03ec
e« o ¢« o o auto -03ea
e « o « o auto -0002

MAXLINE 1000 /* maximum input line size */

getline(s, lim) /™ get a line into s, return length */
char sl];
int lim;

{

int c, i;

for (i=0; i<lim-1 &% (c=getchar()) && cl="\n"; ++i)

s8[i] = ¢;

if (¢ == “\n”) {
s[i] = ¢;
++1;

36
37
38

}
s[i] = “\0";
return(i);

getline Local Symbols

Name

Line# Source

L] .
e & 5 o
e & 8 e
-
a ® o @

N 0
.

39
40
41
42
43
44
45
46
47
48
49

Class
Line
e o & o o o o = auto
« ¢ 5 e s s s @ auto
e o & £+ o = & @ par‘m
s+ * ¢ « s « o « Pparam
}

copy(sl, 82) /* co
zhar ell], s2l[];

copy Local Symbols

Name

i * . » - - -
sl.
52- » v » - -

Global Symbols

Name

CODPY« « .
getchar .,

getline .
main, . .
printf. .

.

Offset Register

PAGE 2
04-~06-87
08:18:27

Microsoft C Compiler Versiom 4.00
-0004
-0002

0004
0006

py sl to s2; assume 82 big emough */

int i;
i=20; _
while ((s82[i] = sl[i]} I= “\&")
++1;
}
Class Cffset Register
v > L] “ a - - . a“lt> o _0 00 2
« « 1 a o - e e param 0004
w o * s o o s o param 0006
Type Size Class Offset
e « o » o o o« o near function *kk global 00c3
e« ¢« s+ o2 s s o o near function dekk extern *kk
o o ¢ o s o« o « near function *kk global 0067
e« o ¢ s+ s o+ o near function Tk global 0000
¢ ¢ ¢« « o« « o o near function *kk extern *kk

Code size = 00ed (237)
Data gize = 0003 (3)
Bss size = 0000 (0)

No errors detected

APPENDIX C

FORTRAN COMPILER LISTINGS

c TELEPHONE NUMBER PROGRAM

1000 FORMAT(5X, ”TELEPHONE/ADDRESS PROGRAM REV 1.07)

1001 FORMAT(5X,”ENTER NAME STRING”)

1002 FORMAT(70A)

1003 FORMAT(1X,70A)

1004 FORMAT(/,5X,”TO CONTINUE TYPE C, ELSE SPACE")

1005 FORMAT(1A)

1006 FORMAT(/,5X,”SORRY I CAN NOT MATCH THAT AT ALL !!!°)

1007 FORMAT(/,5X, SORRY CAN NOT FIND ANY MORE NAMES TO MATCH”)

CHARACTER*70 IN,ITL
CHARACTER*1 IC

c
WRITE(*,1000)
WRITE(*,1001)
READ(*,1002) IN

C

c FIND END OF LINE

C

DO 20 I=1,69

LEN = 70 - 1

ICT = IN(LEN:LEN)

IF(ICT.NE.” “) GO TO 50
20 CONTINUE

¢ }

c SEARCH FOR NAME
c

50 IFF = 0

ICF = 0
OPEN(150,FILE="\DTIL\TNUM")

100 READ(150,1002,END=400) ITL

110 ICT = ITL(1:1)
IF(ICT.EQ.”:”) GO TO 300
IF(ICT.EQ.” “) GO TO 100

c CHECK FOR PERSON MATCH

DO 150 I=1,LEN
IF(IN(I:I).NE.ITL(I:I)) GO TO 100
150 CONTINUE

c PERSON MATCHES

IFF = 1

170 WRITE(*,1003) ITL
READ(150,1002,END=400) ITL
ICT = ITL(1:1)
IF(ICT.EQ.” “) GO TO 170
ICF = 0

200 WRITE(*,1004)

. READ(*,1005) IC

IF(IC.NE.”C”) STOP

Loaon

350

370

£2O0O0O

IF(IC.EQ.0) GO TO 110
GO TO 100

CHECK FOR COMPANY MATCH

DO 350 I=],LEN

J=I+1

IF(IN(I:I),NE,ITL(J:J)) GO TO 100
CONTINUE

COMPANY MATCHES

IFF =]

ICF = 1

WRITE(*,1003) ITL
READ(150,1002,END=400) ITL
ICT = ITL(1:1)
IF(ICT.NE. #”) GO TO 370
GO TO 200

END OF FILE

IF(IFF.EQ.0) WRITE(*,1006)
IF(IFF.EQ.1) WRITE(*,1007)
CLOSE(150)

STOP

END

APPENDIX D

FORTRAN COMPILER LISTINGS
WITH INSTRUCTION ADDED

c TELEPHONE NUMBER PROGRAM

1000 FORMAT(5X, TELEPHONE/ADDRESS PROGRAM REV 1.0°)

1001 FORMAT(5X, ENTER NAME STRING”)

1002 FORMAT(70A)

1003 FORMAT(1X,704A)

1004 FORMAT(/,5X,”TO CONTINUE TYPE (¢, ELSE SPACE”)

1005 FORMAT(1A)

1006 FORMAT(/,5X, SORRY I CAN NOT MATCH THAT AT ALL !!1°)

1007 FORMAT(/,5X, SORRY CAN NOT FIND ANY MORE NAMES TO MATCH”)

CHARACTER*70 IN, ITL
CHARACTER*1 IC

WRITE(*,1000)
WRITE(*,1001)
READ(*,1002) IN

c FIND END OF LINE

DO 20 I=1,69

LEN = 70 - 1

ICT = IN(LEN:LEN)
IF(ICT.NE.” 7) GO TO 50
CONTINUE

o

ek dede do dodede e o dede sk sk e e ke e e ke e e e e e e e e ke ke e e ke 1 e v e e e e e do e e ke de e dede do e g e do do dede dode e dode ke ko ke k

INSTRUCTION ADDED

e de dede dede e de ke dok dode e e ke e o ke o de e e s de dedede dek g e de dede do vk de e de dede v dode dode dodede e dede ke dededeok ke koke ke kk

s ErNeNeNsNe ol]

J=1%T1

SEARCH FOR NAME

uwooo

o

IFF = 0

ICF = 0
OPEN(150,FILE="\UTIL\TNUM")
100 READ(150,1002,END=400) ITL
110 ICT = ITL(1:1) ,
IF(ICT.EQ.”:") GO TO 300
IF(ICT.EQ.” “) GO TO 100

c CHECK FOR PERSON MATCH
DO 150 I=1,LEN
IF(IN(I:I).NE.ITL(I:I)) GO TO 100
150 CONTINUE
c PERSON MATCHES

IFF =]

170

200

LOooOoo

350

370

£2OO0O0

WRITE(*,1003) ITL
READ(150,1002,END=400) ITL
ICT = ITL(1:1)

IF(ICT.EQ.” “) GO TO 170
ICF = 0

WRITE(*,1004)

READ(*,1005) IC
IF(IC.NE.“C”) STOP
IF(IC.EQ.0) GO TO 110

GO TO 100

CHECK FOR COMPANY MATCH

DO 350 I=1,LEN

J=I+1

IF(IN(I:I),NE,ITL(J:J)) GO TO 100
CONTINUE

COMPANY MATCHES

IFF =]

ICF =]

WRITE(*,1003) ITL
READ(150,1002,END=400) ITL
ICT = ITL(1:1)
IF(ICT.NE. #°) GO TO 370
GO TO 200

END OF FILE

IF(IFF.EQ.0) WRITE(*,1006)
IF(IFF.EQ.1) WRITE(*,1007)
CLOSE(150)

STOP

END

APPENDIX E

PASCAL COMPILER LISTINGS

program hmwrkl;

var
x, d : array[0..16] of real;
b, n, i, k, j : integer;
Z, V ! real;

begin

n :=16;
z :=0.96;

{ Instruction added }
z := 0.96;

{the array x will be filled with nodal points, the element d[i] will
contain £[x(i)]}
for i := 0 to n do
begin
x[i] := -1 + (i/8);
dli] := 1/(1 + sqr(100*x[i]));
end;

{fill the array d such that element d[i] contains f[x(i),...,x(n)]}
for k := 1 to n do
begin
b := n - k3
for i := 0 to b do
dli] := (d[i+l] = d[i]l)/(x[i+k] - x[i]);
end;

{calculate Newton form with ceneters x(n)...x(1)}
v :=d[o];
for j =1 to n do

v 1= d[j] + ((z - x[]])*v);

{print the result}
writeln(“The answer is “,v);
end.

APPENDIX F

PASCAL COMPILER LISTINGS
WITH INSTRUCTION ADDED

program hmwrkl;

var
x, d : array[0..16] of real;
b, n, i, k, j : integer;
z, Vv : real;

begin

n :=16;
z :=0.96;

{the array x will be filled with nodal points, the element d[i] will
contain £[x(i)]}
for i := 0 to n do
begin
x[i] = =1 + (i/8);
dli] := 1/(1 + sqr(100*x[i]));
end;

{£ill the array d such that element d[1] contains f[x(i),...,x(n)]}
for k :=1 to n do
begin
b :=n - k;
for i := 0 to b do
di] := (d[i+l] - dli])/(x[i+k] - x[i]);
end;

{calculate Newton form wlth ceneters x(m)...x(1)}
v = d[0];
for j :=1 to n do

v :=d[j] + ((z - x[j])*v);

{print the result}
wvriteln(“The answer is 7,v);
end.

Final Report

STANDARDIZED PROTOCOLS BETWEEN
'MICROCOMPUTERS AND DATA SERVICE NETWORKS

By

Dr. Jay H. Schlag

Mr. Henry Owen

Mrs. Katharine L. Schlag

February, 1988

GEORGlA INSTITUTE OF TECHNOLOGY

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA
SCHOOL OF ELECTRICAL ENGINEERING
ATLANTA, GEORGIA 30332

STANDARDIZED PROTOCOLS BETWEEN
MICROCOMPUTERS AND DATA SERVICE NETWORKS
by
Dr. Jay H. Schlag

Mr. Henry Owen
Mrs. Katharine L. Schiag

1 February 1988

TABLE OF CONTENTS

SECTION PAGE
1. INTRODUCTION 1
2. BACKGROUND 2
3. ALGORITHM CONSIDERATIONS 3
-Instruction Format Decoding 3
Header Identification 16
Code Segment Identification 16
Data Segment Identification 17
Example of Segmentvldentification- 5 18
File-Comparison Approaches 22
4. ALGORITHM . 24
Overview 24
Host Update Algorithm 26
Update File Format 32
Offset- Packet Format 34
New Packet Format 34
Remote Update Algorithm 35

5. SOFTWARE DEVELOPMENT 37

TABLE OF CONTENTS (Continued)

SECTION PAGE
6. FUTURE DIRECTIONS 49
Header Algorithm 49
Data Segment Algorithm 49
File-compare Algorithm Efficiency 49
Prototype Code Demonstration | 50
Analysis of Packet Size Versus Overhead Bytes 50

Examination of Methods for Error Correction and Encryption 51
.APPENDIX A 52

APPENDIX B ‘ 67

LIST OF FIGURES
FIGURE
1. Instruction Format Types
2. Algorithm Flow Chart
3. 256 P;)ssible TYPE Assignments Based on First Byte
4. Header Fields and Their Explanations
5. Example of " .map” File
6. Example of a Header File
7. Programs Used by the Update Algorithms
8. Host Update Algorithms
9. Update File Format
10. Remote Update A(gorithms
11. CDC Libraries
12. Flow Chart of RDBIN.PAS Program
13. Flow Chart of LEXEC.PAS Program
14. Flow Chart of COMPEX.PAS Program

15. Flow Chart of BPACK.PAS Program

PAGE

10

19

21

25

27

33

34

38

39

40

41

42

16. List of Assembly Language Subroutines of COM1 Port Access 43

17. List of Fortran Subroutines of COM1 Port Access

44

Standardized Protocols Between
Microcomputers and Data Service Networks

SECTION 1

INTRODUCTION

The rapid growth of computer applications coupled with the development
of inexpensive, small computer systems has drastically changed the role
of the mainframe computer service network, primarily because computer
intelligence has shifted from the main host to the user-based systems.
This shift has precipitated a need for changes in many other computer
functions such as data base managerment, applications programs, data -
security and communication protocols. Control Data Corporation initiated
a two-year effort with Georgia Tech to address issues within the single
area of computer communication protocols in the computer service
network and the impact of modern computer networks on the protocol
requirements. Of particular interest are the areas of communication
hardware, data transmission structure, error detection, error correction,
encryption, data base security, data format exchange, and data base
management command exchange. The main thrust of this effort has been
to develop of an efficient algorithm to keep the executable flesona
remote computer updated by the host system and to investigate the
related issues.

This report is the final report on that two-year effort. An annual report
was submitted covering the work done in the first year. Included in that
report are the results of a literature search with resuits of recent work

in the above referenced areas of interest, both for the assessment of the
current status and for future reference; a description of the system
elements involved in updating an executable file on the remote from the
host system; a discussion of the proposed new update scheme including an
analysis of the information fields in an instruction and methods of
transferring data; the results of trial data in each of several

compiler-level languages processed with the new update scheme and the
efficiency that would result from using the new scheme; and a discussion
of the problem features of the DOS COM1 communication port. Those
results will not be repeated here, but will be summarized where
necessary for clarity and continuity. The reader is referred to the annual
report for details.

SECTION 2

BACKGROUND

During the 1970 time frame the user in a service computer network was a
simple CRT terminal or hard-copy device with no local processing or data
storage capability. During the early 1980 period the service networks
developed a large variety of computer communication networks to
effectively handle larger volumes of more sophisticated data
transmissions. These networks effectively removed the communication
demands from the central computer but did not remove the host
application programs as the center of processing activity. With the
development of inexpensive personal and business computers, the typical
user will require local application programs and mass storage, with the
computer service network supplying access to large data bases for
portions of the processing informatior.. A major problem in a system of
the 1990's will be to keep the executable files on a remote computer
updated by the host system in a timely and cost effective manner.
Currently when an application program is changed on the host system, the
new executable file is transmitted in toto to the remote user to replace

the old executable file. This process is both time consuming and costly.
The new update scheme compares at the host system both the old and new
executable files. Any differences in the files, including different offsets
from change in position, additional data, and information from deleted
data, are incorporated into a file, hopefully much smaller than the new
executable file, that is transmitted to the remote user. Information in

this file is then used to reconstruct the old executable file at the remote
into a new executable file that matches the one at the host system. If the
changes have been minor, there is the potential to save a great deal of
time and money.

To design an algorithm to realize this kind of update scheme, a number of
considerations must be taken into account. During the first year of this
effort Georgia Tech examined several issues and made some preliminary
estimates of the efficiencies that might be realized. The results were
promising. More specifically, Georgia Tech examined four types of
information fields that comprise machine-level instructions for the

impact that changes in a program would have on them, as well as four
ways to transfer data packets to properly account for that impact. During
the second year project personnel used new insights gained in the areas of
information fields and data transfer to examine the instruction formats,
header segments and data segments, and the file comparison algorithms
that might be used or modified to detect the differences between the old
and new executable files. Results from these examinations will be
presented in Section 3 below. Section 4 is devoted to a description of the
update algorithm that was designed. Section 5 is a discussion of future
directions that are recommended for the refinement and expansion of the
update approach developed during this effort.

SECTION 3

ALGORITHM CONSIDERATIONS

To develop an algorithm that will update an executable file using as much
of the old file as possible as the building blocks for the new file, Georgia
Tech personnel carefully examined a number of issues believed to be
critical to the initial development of the update algorithm investigated.
The results, presented below, were incorporated into the algorithm
outlined in Section 4. The detailed study of some of the remaining issues
are outside the scope of this effort, but are identified and discussed
briefly in this report as future directions for this program.

The algorithm must identify the instructions that are common between
various versions of the program. In identifying these instructions, the
algorithm must recognize identical instructions which have different
offsets in their data, displacement, or address fields. In order to search
an executable file for instructions, the header and data segments must be
removed from consideration, since these segments do not contain
instructions. The header and data segments are handled separately, with
their transmission algorithms being different from the code segment.

INSTRUCTION FORMAT DECODING

The INTEL 8086/8088 instruction set is made up of many different
instruction formats. The “iIAPX 86/88, 186/188 Users' Manual”, 1985,
lists the formats for each instruction type in Table 1-22. The

instructions are made up of subfields which are summarized in Table
1-21. When an instruction is relocated in a program, subfields within the
instructions change to reflect the new instruction location. By examining
the subfields in each instruction as shown in Table 1-22, the bytes in an
instruction format that may change upon relocation may be identified. The
above referenced tables are include as Appendix A of this report. A
summary of those fields which may change upon instruction relocation

includes the following bytes in the instructions:

DISP-LO Lower-order byte of an unsigned displacement

DISP-HI Higher-order byte of an unsigned displacement

IP-LO Lower-order byte of a new instruction pointer
value

IP-HI Higher-order byte of a new instruction pointer
value

CS-LO prer-order byte of a new code segment

CS-HI Higher-order byte of a new code segment

IP-INC8 8-bit signed increment to instruction pointer

IP-INC-LO Lower-order byte of signed 16-bit instruction
pointer increment

IP-INC-HI Higher-order byte of signed 16-bit instruction
pointer increment ’

ADDR-LO Lower-order byte of direct address (offset) of
memory operand

ADDR-HI Higher-order byte of direct address (offset) of
memory operand

DATA-LO Lower-order byte of data

DATA-HI Higher-Order byte of data

For a given instruction, it is necessary to identify the fields that may
change upon instruction relocation. By examining Table 1-22, sixteen
different cases may be identified. These sixteen different cases are

shown in Figure 1. In this figure, only those bytes which are underlined
may change upon relocation

In order to determine the format for a given instruction, several bit fields
within a given instruction must be examined. The first field is the most
significant eight bits (the first byte) of the instruction. For all

instructions which do not contain displacements, the format is now
determined. For instructions which may have displacements, the number
of displacement bytes must be determined. These are determined from the
MOD field bits which are the two most significant bits in the second byte
of an instruction. For MOD=11 there are no displacement bytes, for
MOD=10 there are two displacement bytes, and for MOD=01 there is one
displacement byte. If MOD=00 and also R\M=110 then two displacement
bytes follow. The R\M field is located in the three least significant bits

in the second byte of an instruction.

There are two special cases in which the OPCODE must be used in
conjunction with the register field to determine the instruction format.

The register field consists of of third, fourth, and fifth bits of the second
instruction byte as counted from MSB to LSB. For OPCODE Hex F6 and
REG=000, one data byte will be contained at the end of the instruction.

For OPCODE Hex F7 and REG=000, two data bytes will be contained at the
end of the instruction.

The flow chart for determining the instruction format is shown in Figure
2. The result of this format algorithm is an assigned instruction format
type for every possible instruction. It should be noted that the first eight
bits of all instructions are not always sufficient to determine the
instruction type. Every instruction is assigned an initial instruction type
based on the first eight bits and a table look-up scheme; then by
examining additional bits in those cases where it is necessary, the
correct instruction format assignment is always obtained. The initial
instruction format assignment is made from Figure 3. Figure 3 represents
all of the 256 possible initial assignments based upon the first eight bits
of an instruction. The table is read by referencing the position in the
table and equating this position to the corresponding first eight entries of

10
11
12

13

. 14

15

16

BYTE 1

BYTE 1

BYTE 1

BYTE 1

BYTE 1

BYTE 1

BYTE 1

BYTE 1

INSTRUCTION FORMAT
BYTE 2
BYTE2 _DISP-LO
BYTE2 _DISP-LO _DISP-HI
BYTE2 DATA-LQO DATA-HI
BTYE2 DISP-LO DATA-LO _DATA-HI
BYTE2 DISP-LO DISP-HI DATA-LO _DATA-HI
BYTE2 BYTE3

BYTE2 DISP-LQ BYTE4

BYTE1 BYTE2 DISP-LO _DISP-HI BYTES

BYTE 1 DAIAJ.Q DATA-H!

BYTE 1

BYTE 1

BYTE 1

BYTE 1

BYTE 1

BYTE 1

BYTE 2

ADDR-LO ADDR-HI

IP-INC-LO |P-INC-HI
IP-LO IP-HI_ L£S-L0 CS-HI
JP-INC8

Figure 1 Instruction Format Types

ASSIGN FORMAT TYPE

BASED UPON OPCODE
USING TABLE LOOK-UP
SPECIAL CASE OF F6 |———— IF REG = 000 TYPE 7
ELSE TYPE 1
i 4
SPECIAL CASE OF F7 |———P» IF REG = 000 TYPE 4
ELSE TYPE 1
IF MOD =01 TYPE 2
TYPE = 1 > IF MOD =10 TYPE 3

IF (MOD = 00 AND R/M =110)
TYPE 3

———

IF MOD = 01 TYPE 5

IF MOD = 10 TYPE 3

IF (MOD = 00 AND R\M = 110)
TYPE 6

TYPE = 4 —

-«

IFMOD =01 TYPE S8

IFMOD = 10 TYPE 9

IF (MOD = 00 AND R/M = 110)
TYPE 9
B\D

Figure 2 Algorithm Flow Chart

INSTRUCTION INSTR.

FIRST BYTE TYPE
00 1
01 1
02 1
03 1
04 11
05 10
06 13
07 13
08 1
09 1
oA 1
0B 1
ocC 11
oD 10
OE 13
OF 13
10 1
11 1
12 1
13 1
14 11
15 10
16 13
17 13
18 1
19 1
1a 1
1B 1
ic 11
iD 1¢
1E 13
1F 13
20 1
21 1
22 1
23 1
24 11
25 10
26 13
27 13
28 1
29 1
2A 1
2B 1
2¢ 11
2D 10
2E 13
2F 13
Figure 3. 256 Possible TYPE Assignments Based on First Byte

v ” s i e T N i - .

INSTRUCTION INSTR.

FIRST BYTE TYPE
30 1
31 1
32 1
33 1
34 11
35 _ 10
36 13
37 13
38 1
39 1
3A 1
3B 1
3c 11
3D 10
3E 13
3F 13
40 13
41 13
42 13
43 13
44 13
45 13
46 13
47 13
48 13
49 : 13
42 13
4B 13
4ic 13
4D 13
4E 13
4F 13
50 13
51 13
52 13
53 13
54 13
55 13
56 13
57 13
58 13
59 13
5A 13
5B 13
5C 13
5D 13
5E 13
5F 13

Figure 3. Continued

10

INSTRUCTION INSTR.

FIRST BYTE TYPE
60 13
61 13
62 13
63 13
64 13
65 13
66 13
67 13
68 13
69 13
6A 13
6B 13
6C 13
6D 13
6E 13
6F 13
70 16
71 16
72 16
73 16
74 16
75 16
76 16
77 16
78 16
79 16
7A 16
7B 16
7¢C 16
7D 16
7E 16
7F 16
80 7
81 4
82 7
83 7
84 1l
85 1l
86 1l
87 1
88 1
89 1
8A 1
8B 1l
8C 1
8D 1
8E 1
8F 1

Figure 3. Continued

11

INSTRUCTION
FIRST BYTE

90
91
92
93
94
95
96
97
98
99
9A
9B
9C
9D
9E
9F
AO
Al
A2
A3
A4
A5
A6
A7
A8
A9
AA
AB
AC
AD-
AE
AF
BO
Bl
B2
B3
B4
B5
B6
B7
B8
B9
BA
BB
BC
BD
BE
BF

Figure 3. Continued

oy e s e

INSTR.
TYPE

13
13
13
13
13
13
13
13
13
13
15
13
13
13
13
13
12
12
12
12
13
13
13
13
11
10
13
13
13
13
13
13
11
11
11
11
11
11
11
11
10
10
10
10
10
10
10
10

12

INSTRUCTION INSTR.

FIRST BYTE TYPE
Co 13
Cl 13
c2 10
C3 13
C4 1
C5 1
Cé6 7
Cc7 4
cs 13
C9 13
CaA 10
CB 13
cC 13
CcD 11
CE 13
CF 13
DO b S
D1 b
D2 1
D3 1
D4 11
D5 11
D6 13
D7 13
D8 11
D9 1
DA 1l
DB 1l
DC 1l
DD 1l
DE 1l
DF 1]
EO 16
El 16
E2 16
E3 16
E4 11
ES 11
E6 11
E7 11
E8 14
E9 14
EA 15
EB 11
EC 13
ED 13
EE 13
EF 13

Figure 3. Continued

INSTRUCTION INSTR.

FIRST BYTE TYPE
FO 13
Fl 13
F2 i3
F3 i3
F4 13
F5 13
Fé6 7
F7 4
F8 13
F9 13
Fa 13
FB 13
FC a3
FD 13
FE 1
FF 1

Figure 3. Continued

14

©pwe e e g v—————y o 7n e g3 = o e e e - -
A . . — s e . e L T ™ S ey g v e <\ @ =

an instruction. As an example the first eight entries of Figure 3 are
~ repeated below with the corresponding first instruction byte:

First Byte Type

00 1
01 1
02 1
03 1
04 11.
05 10
06 13
07 13

The table entries are determined from Table 1-23 by assuming that the
instructions contain no displacements and a type is assigned on that basis.
The table type value is then changed later in the algorithm as shown in the
flow chart (Figure 2) based upon the MOD bits. The complete table
contains an initial type assignment for @ach of the 256 possible cases for
the first byte of an instruction.

The format types contained in the table contain types which appear to be
redundant. For example, Type 1 and Type 11 appear the same. The
difference is that Types 1,4, and 7 are types that require that the MOD
field be examined to determine the number of displacement bytes that are
included in the instruction. All other types are not affected by the MOD
bits. The algorithm uses Types 1,4, and 7 to signify that the algorithm
must examine the MOD bits to make a final determination of the format of
the instruction.

Once the instruction format type is known, the number of bytes for that
instruction is known, as well as the location of the bytes in the

instruction that may change upon instruction relocation. This information
is critical in determining which bytes to ignore during a file comparison
so as to determine when two segments of code are identical except for
instruction relocation offsets.

15

HEADER IDENTIFICATION

An executable program consists of two parts. The first part is a header
record that contains control and relocation information. The second part
is the actual load module. The header record contains information about
the size of the executable module, where it is to be loaded into memory,
and relocation offsets to be inserted into incomplete machine addresses.
The header fields and their explanation are shown in Figure 4.

The size of the header may be determined by the following procedure. In
the executable file, obtain the hex values in the ninth and tenth bytes of
the file. (Count the first hex byte as one, not zero.) The tenth byte is
most significant, the ninth byte is least significant. This hex value should
be converted to decimal and then multiplied by 16 since the header size is
given in 16-byte increments. This is the size of the header in bytes.

CODE SEGMENT IDENTIFICATION

The code segment may be located by using the " .map” output of the linker.
The beginning of the code segment in the output from the Micrsoft PASCAL
compiler is located two bytes after the header; therefore, the first code
segment'’s location, relative to the start of the executable file, is at a an
offset value equal to the size of the header plus two bytes. The end of the
code segment is determined from the " .map" file, which is an output from
the linker. The procedure for determining the end of the code segment is
as follows. In the " .map" file as output by the linker, find the class of
"encode” shown in the "class” column. In the column "start” is shown the
end of the code segment. This value is relative to the header size and must
be added to the header size which is determined from the header as
discussed above. After adding the header size to the code segment value,
the end of the code segment’s location, relative to the beginning of the
executable file, is now known.

DATA SEGMENT IDENTIFICATION

The start of the data segment is deterrnined from the end of the code

16

_ Relative

Hex Position: Field:
00 Hex 4D5A. The Linker inserts this code to identify the
file as a valid EXE file
02 Reserved
04 Size of the file including the header, in 512-byte
increments ("pages”)
06 Number of relocation table items following the formatted
portion of the header
08 Size of the header in 16-byte increments. The purpose of
this field is to help locate the start of the executable
module that follows this header
0A Reserved
oC High/low loader switch. You decide at the start of LINK
whether your program is to load for execution at a low
(the usual) or a high memory address. Hex 0000 indicates
high and hex FFFF indicates Jow
OE Offset location in the executable module of the Stack
' Segment
10 Address that the Loader is to insert in the SP register
when transferring control to the executable module
12 Checksum value — the sum of all the words in the file
(ignoring overflows) used as a validation check for lost
data
14 The offset that the Loader is to insert in the IP
register when transferring control. to the executable
module
16 The offset location in the executable module of the Code
Segment
18 The offset of the first relocation item in this file
1A Reserved
1B Relocation table containing a variable number of
relocation items, as identified at offset 06
Figure 4 Header Fields and their Explanations

17

segment. The data segment begins at the end of the code segment and
continues to the end of the executatle file. This may not always be true,
but it is true for all Microsoft Pascal examples run during this effort.

EXAMPLE OF SEGMENT IDENTIFICATION

To illustrate the procedure for determining the locations of the various
segments in an executable file, the following example is provided. The
required input information is the " .map" file from the linker, and the

" .exe" file. An example " .map" file is shown in Figure 5, and an example
header portion for the same example is shown in Figure 6.

The procedure to identify the segments is as follows:

Step 1: In the " .exe" file obtain the hex values in the ninth and tenth bytes
of the file. In this example the values are 60 and 00, respectively.

Step 2. Convert this value to decimal and muitiply the result by 16. In
this example, this is 96 times 16, indicating a header size of 1536 bytes.

Step 3. Determine the beginning of the code segment by adding two bytes
to the size of the header; therefore, the code segment in this example
begins at 1538 bytes into the file.

Step 4: In the " .map" file as output by the linker, find the class of
"encode" shown in the "class" column. In the column "start” is shown the
hex location of the end of the code segment. In this example, this value is
0436E hex.

Step 5: Add the header size to the value obtained in step 2. The result is
the end of the code segment and the beginning of the data segment. In this
example, this value is 1536 + 17262, which yields 18798 bytes.
The summary of the results from this example are:

Header begins at 0 and ends 1536 bytes into the file

Code begins at 1538 and ends 18798 bytes into the file
Data begins at 18799 and ends at the end of the file

18

— e e

i
%

.map " File

Of "

=]
-

Exampls

5

Figure

19

Figure 5 Example of " .map " File

(continued)

20

4D
5A
8A
01
2C
00
6A
01
60
00
81
00
FF
FF
19
05
00
08
F5
0:)
FoO
06
04
00
IE
00
00
00

N

NSNS\

IDENTIFIES FILE AS A VALID .EXE FILE

002C IS SIZE OF FILE IN 512 BYTE INCREMENTS
2CH * 512 = 22528

NUMBER OF RELOCATION TABLE ITEMS FOLLOWING HEADER
0l6AH = 362

SIZE OF HEADER IN 16 BYTE INCREMENTS
0060H * 16 = 1536

OFFSET LOCATION IN .EXE MODULE OF STACK SEGMENT
0519H

OFFSET LOCATION IN .EXE MODULE OF CODE SEGMENT
0004H -

Figure~ 6. Example of a Header File

21

FILE- COMPARISON APPROACHES

In a typical situation only minor changes have been made to the update
program. In that case many, perhaps most of the instructions will be the
same except for minor differences. The minor differences include
different offsets in the data, displacements, or address fields. The
approach to compare these files must be able to recognize matching
instruction pairs that are either identical or different only in the minor

ways mentioned above and explained later and to account for these minor
changes in the transmission process so that the new file can be
reconstructed from the old with the correct modifications.

To this end a number of existing file-compare algorithms were examined

to see if existing software could be used or adapted for this application.
Notable among the papers found in the literature were: "A Fast Algorithm

for Computing Longest Common Subsequence," by James Hunt of Standford
University and Thomas G. Szymanski, Communications of ACM, Volume 20,
No. 5, May 1977; "Algorithms for the Longest Common Subsequence
Problem," by Daniel S. Hirschberg of Princeton University, Journal of the

Association for Computing Machinery, Volume 24, No. 4, October 1977,
pages 664-675; and " File Comparison Algorithms,"” by Tom Steppe, Dr,

Dobb's Journal of Software Tools, September 1987, pages 28-33 and
54-60. Of these three, the last proved to be most useful since it reviewed
several types of algorithms including the longest common subsequence
type referenced in the first two articles. Copies of the articles are
included as Appendix B. -

Basically, file-compare algorithms look for line matches, then report

lines not included as matches as differences. The differences are usually
expressed as insertions, deletions and changes that must be made to make
the files match. Algorithms are evaluated to answer the questions: Is it
efficient? Is it robust? Can it let differences go undetected? Can it let
matches go undetected? Can it detect blocks of text that have been
moved? There are several popular algorithms. The "scan until next match”
algorithm starts at the tops of both files and matches as many lines as
possible. When a difference is detected, the next M lines are scanned until
at least N consecutive matches are found. The main advantages of this
algorithm is time efficiency and minimal memory requirements; the main
problem with this algorithm is that it is not robust over a variety of

22

situations. A second type of algorithm is called the "longest common
subsequence” algorithm. This algorithm finds the longest common, though
not necessarily consecutive, sequence of lines in the two files. This type
of algorithm often produces the best reports when comparing files that do
not involve moved blocks of code, but it can be slow. A third type, called
"extended unique matching" is based on the idea that a line that occurs
once and only once in each file must be the same line. These pairs of
"unique” lines determine the initial set of unmatched lines. Then, in each
file, the lines adjacent to each match are examined and, if identical, are
added to the set of matched lines, and the process is repeated. Though
efficient in time and space, it is prone to detecting false differences. A
fourth type of algorithm, developed by Steppe, is called the "recursive
longest matching sequence.” This method scans both files looking for the
longest sequence of consecutive lines. This block then divides the files
into top and bottom halves, each of which is then scanned. The process is
repeated until no more matches can be found. The space for this algorithm
is linear but the time is quadratic. A modification to the algorithm can
reduce the time required. All of these algo:ithms were designed to handle
text files, though many of the concepts apply to executable files as well.

An algorithm, based in part on some of these concepts, was conceived to
address the special case of the executable file. The basic idea is to do an
instruction by instruction comparison on the code sections of the old and
new files where a file may have beer padded at the end with "never
match” code to make them the same size. On the first pass the largest
block of consecutive matches will be identified and the size and location
noted. The files will then be compared again with one of the files shifted
by one line, as if the file were wrapped around to form a circle with the
beginning and ending lines of each file touching. This is the reason the
files must be made the same length. The process continues until the
largest possible block of matches has been found. Note that a match is
declared even if the offsets in their data, displacements, or address fields
do not match. This block is, in effect, set aside and the whole process is
repeated with the remainders of the files, which hopefully are much
smaller. This process is continued until it is no longer feasible to

search for matches; that is, when the remaining code segments or pieces
are of a size that it is more cost effective to transmit the code in toto

than to spend the overhead to form packets, etc. to follow the scheme
outlined. The algorithm for the update scheme will incorporate the file
compare approach just described.

23

SECTION 4

ALGORITHM

Overview

There are two algorithms involved in the transmission of modified code.
The host computer algorithm and the remote computer algorithm, run on
the host and the remote computers, respectively.

The host computer algorithm requires a copy of the old host binary
executable program (the unmodified program) as well as the new host
binary executable program (the new version of the program). The host
converts both of these binary program versions to hexadecimal
representations and then compares the two programs. This comparison
identifies the code segments that are identical in both the old and the new
programs including those code segments that are different only by offset
values in the various instruction subfields. The host algorithm generates
a host update file which is decoded by the remote computer algorithm so
as to generate the necessary changes to the remote computer's old remote
binary executable file. This is accomplished in the remote computer by
first converting the old remote binary executable program into an old
remote hexadecimal executable program version. The new remote
hexadecimal executable program is generated from the old executable
program instructions, which are modified as necessary, and the
instructions which are transmitted to the remote computer in the host
update file. After the new remote hexadecimal executable program is
generated, the program is converted into the new remote binary
executable program. Figure 7 is an illustration of the files that the
algorithm uses and the resulting files that are generated by the algorithm.

24

OLD HOST OLD HOST
BINARY p| HEX
EXECUTABLE | EXECUTABLE
PROGRAM PROGRAM
NEW HOST NEW HOST
BINARY HEX
EXECUTABLE ® execuTABLE
PROGRAM PROGRAM
Remote Computer
OLD REMOTE
BIN ARY OLD REMOTE
EXECUTABLE | g HEX
PROGRAM EXECUTABLE
PROGRAM
Figure 7

Host Computer

HOST
UPDATE
PROGRAM

--

NEW REMOTE

EXECUTABLE
PROGRAM

NEW REMOTE
BINARY
EXECUTABLE
PROGRAM

Programs Used by the Update Algorithms

25

HOST UPDATE ALGORITHM

The host update algorithm is shown in Figure 8. The algorithm begins by
converting the binary executable files of both the old and the new
programs into hexadecimal representations. The hexadecimal
representation of the new program is then used to determine the size of
the new header.

The data section of the new executable file as determined from the new
header and the " .map” output of the compiler is then identified and is
stored in the host update file for transmission as a new packet.

In the next step of the algorithm, the old executable code segment is
compared to the new executable code segment with all of the offset fields
of each instruction nulled out. This nulling of all instruction offsets

allows for the identification of code segments that are identical except

for offsets. The offset fields that are .wulled out are identified earlier in
this report in the section entitled "INSTRUCTION FORMATS".

The compare algorithm orders the matching code segments with the
largest matching code segment first. Each succeeding code segment is
smaller in size. '

Once the matching code segments have been identified, the lines in the
new executable code which are not matches with the old code are
identified. These code segments are to be transmitted to the remote
computer as new packets.

After identifying the instructions in the new program which may be
generated from the old program that resides in the remote computer, the
process of determining the required offsets that may be added to the old
resident code is initiated. During this process the actual transmission
packets are formed. Using the matching code segment list, a pointer to
the old executable code where the largest matching code segment is
located is set to the corresponding value. These pointers will be
transmitted to the remote computer to identify where to obtain the old
code segments and where to place these offset modified instructions in
the new code.

26

CONVERT BINARY TO HEX

l

OBTAIN HEADER OF NEW
EXECUTABLE AND STORE IN
UPDATE AS A NEW PACKET

!

OBTAIN DATA SECTION OF NEW
EXECUTABLE: AND STORE IN
UPDATE FILE AS A NEW PACKET

;

COMPARE OLD EXECUTABLE CODE
WITH NEW EXECUTABLE CODE,
OFFSET FIELDS ZEROCED

GENERATE LIST OF MATCHING

CODE SEGVENTS ORDERED
WITH LARGEST FIRST

GENERATE |lIST OF NEW LINES IN
NEW EXECUTABLE CODE

v

Figure 8 Host Update Algorithm

27

4

USING MATCHING SEGMENT
LIST, DETERMINE OLD AND NEW
EXECUTABLE POINTERS FOR
AMATCHING CODE SEGMENT

!

ON A LINE BY LINE BASIS,
COMPARE OLD EXECUTABLE
CODE AND NEW EXECUTABLE
CODE SEGMENTS

B

PLACE PRESENT INSTRUCTIONS
OPCODE, INSTRUCTION TYPE,
AND OFFSET I?l LOOKUP TABLE

!

STORE OPCODE, TYPE,OF=SET

NQUEUE
k

YES ARE ALL INSTRUCTIONS IN THIS
l MATCHING SEGMENT DONE?

¥ 1O

GET THE NEXT INSTRUCTION,

STORE OFFSET PACKET DOES THE OPCODE ALREADY | MO |

IN UPDATE FILE INCLUDING:| | EXIST IN THE LOOKUP TABLE?
1) SIZE OF PACKET

2) OLD CODE POINTER ¥ YES

3) NEW CODE POINTER ‘ NO
4) OPCODE, INSTRUGTION DOES THE OFFSET DIFFER?
TYPE, AND OFFSETS : { YES
IN QUEUE \
STORE OFFSET PACKET IN
; UPDATE FILE INCLUDING:
ARE ALL MATCHING 1) SIZE OF PACKET
INSTRUCTIONS DONE? 2) OLD CODE POINTER
3) NEW CODE POINTER
YES 4) OPCODE,INSTRUCTION TYPE,

AND OFFSETS IN QUEUE

v

UPDATE POINTERS AND CLEAR
TABLE, CLEAR QUEUE

Figure 8 Host Update Algorithm (continued)

28

USING LIST OF NEW SEGMENTS
IN NEW EXECUTABLE,DETERMINE
NEW POINTER VALUE, SET OLD
POINTER VALUE TO ZERO

TO INDICATE NEW PACKET

:
STORE NEW PACKET IN UPDATE
FILE INCLUDING:
1) SIZE OF PACKET
2) ZERO VALUE CLD POINTER
(1D AS NEW PACKET)

3) NEW POINTER
4) INSTRUCTIONS TO BE ADDED

1,

ARE ALL NEW SEGMENTS DONE? NO

STORE TERMINATION PACKET
IN UPDATE FILE
(LE. PACKET WITH ZERO SIZE)

Figure 8 Host Update Algorithm (concluded)

29

On a line by line basis, the old executable instruction is compared to the
new executable instruction. The opcodes are always the same since the
compare algorithm used in previous steps has identified the matching
segments (with the offsets nulled). The offsets are not nulled out in this
portion of the algorithm, so any offset that differs from the instruction's
old location and it's new location are identified. Each instruction that
contains an offset field may have one, two ,three, or up to four bytes of
offsets associated with it. The algorithm treats each byte independently
and determines the value of an offset byte that is added to the respective
instruction's offset byte to to obtain the new correct offset byte. The
offsets that are required because of code relocation may be either a
positive or negative offset. The algorithm always adds the offset byte
ignoring any carry out that may be generated. This approach does not
implement a signed addition, so that true addition or subtraction is
carried out (i.e. not a two's complement type addition); however, a number
can always be identified that may be added to obtain the correct final
offset value.

Once the offset value for a given instruction is determined, the
instruction’s opcode, instruction format, and offset values are stored in a
dynamic lookup table. The opcode and the instruction type identify how
many offset fields are in the instruction and where they are located. For
each different opcode and instruction type combination encountered, an
entry in the offset table is made. For each instruction which is
encountered in a given matching segment, a search in the offset table is
made. If the instruction does not already exist in the offset table, it is
added, even if all offsets in that instruction are zero. If an encountered
instruction does exist in the offset table, the offset of the present

version of the instruction must match the previous entry or else the
present instruction cannot be included in the present packet. Once all of
the instructions in a given matching code segment have been entered into
the offset table, or in the event of an instruction that cannot be included
in the present packet, the packet itself is formed and entered into the
host update file.

30

A packet which is formed in this part of the algorithm is an offset packet
which consists of the following information:

1) the size of the packet

2) the old code pointer which iclentifies where the old code is
located in the old executable file

3) the new code pointer which identifies where the old code will be
~ placed in the new executable file after the instructions are
modified as specified in the offset lookup table

4) the offset lookup table for this packet of instructions. This
included the opcode, the instruction format type, and the
offsets for each different instruction contained in the packet.

Once a packet is formed, the offset table is cleared and the process is
repeated for the next group of instructions until the groups of matching
instructions are depleted.

At this point, the packets of new instructions must be formed. The output
of the algorithm includes a list of the new code segments in the new
executable file. This list is used to determine which instructions must be
transmitted to the remote computer as new code. Using this list of new
code segments, a pointer to the location in the new executable file is set,
indicating where the new instructions will be placed. A new instruction
packet is then formed. This new instruction packet contains the
following:

1) the size of the packet
2) the old program pointer, which is set to a zero value since
the new code does not come from any part of the old program and

a zero value in the pointer allows the receiver algorithm to
identify this packet as a new instruction packet

31

3) the new program pointer which indicates where in the new
executable program the new instructions will be placed

4) the actual instructions which are to be placed in the new
executable program

After all new instruction packets have been formed, the update file has a
packet with zero size placed at the end to identify that the end of the file
has been reached.

UPDATE FILE FORMAT

The update file (as shown in Figure 9) consists of the following
information in this order:

1) The new header information which is placed in the file és new
instruction packets. This allows the new header to be
transmitted as is with no modifications.

2) The new data segment information which is placed in the file as
new instruction packets. This allows the new data segments to .
be transmitted as is with no modifications.

3) The offset packets which contain the locations of usable old
instructions and the new offsets which should be used in the new
version

4) The new instruction packets which contain those new
instructions that are to be added to the new program

32

NEW HEADER
DATA PACKET

NEW DATA
SEGMENT PACKET

OFFSET PACKETS

NEW INSTRUCTION
PACKETS

Figure 9 Update File Format

33

OFFSET PACKET FORMAT

The offset packets contain the size, pointers, and instruction offsets in
the following order:

1) size of packet (2 bytes)

2) old pointer (4 bytes)

3) new pointer (4 bytes)

4) opcode, instruction type, offsets (variable size)
5) opcode, instruction type, offsets (variable size)

6) etc., until all different instructions in packet listed. Thus the size
of the packet is variable depending upon the number of entries in

the offset list

NEW PACKET FORMAT

The new packets contain the size, pointers, and instructions in the
following order:

1) size of packet (2 bytes)
2) old pointer set to zero value (4 bytes)
3) new pointer (4 bytes)
4) complete instruction (variable size)
5) complete instruction (variable size)

6) etc., until all new code has been include

34

REMOTE UPDATE ALGORITHM

The remote computer algorithm accepts as input the update file which has
been embedded in it the packets which are used to generate the new code
on the remote computer. Thus, the inputs to the remote algorithm are the

- old remote executable file, and the new update file. The output of the
remote algorithm is the new remote executable file. The remote

algorithm is shown in Figure 10.

The remote algorithm begins by converting the old remote executable
binary file to a hexadecimal representation. Portions of this executable
file are used to generate the new executable file.

The update file is read next to identify a packet. The packet size is read
to determine if the algorithm is completed. For a nonzero packet size, the
old pointer value is read and a pointer is set to this location in the old
remote executable file. The new pointer is read next, a pointer to indicate
where the code will be placed in the new executable file set. If the old
pointer is set to a zero value, the packet is a new instruction packet and
all of the new instructions contained in the packet should be written to

the new executable file as is.

In the event that the old pointer is equal to a zero value, the packet is an
offset packet. The instruction opcodes, instruction type, and offsets are
read in and used in a table lookup scheme to modify all instructions that
are encountered in the old executable code segment that is being written
into the new executable.

After the entire packet is written into the new executable file, the

process is repeated until all packets have been transformed into the new
code. The process ends when a zero size packet is encountered.

35

CONVERT REMOTE OLD
EXECUTABLE TO HEX

’

=

READ SIZE OF PACKET IN

UPDATE FILE

IS SIZE OF PACKET ZERO?

+N)

READ OLD POINTER AND
SET POINTER ON OLD FILE

CONVERT NEW
EXECUTABLE HEX
TO BINARY

v

READ NEW POINTER VALUE
AND SET POINTER ON NEW FILE

!

YES IS OLD POINTER EQUAL TO
L ZERO?
WRITE "SIZE" *
NEW BYTES TO READ IN AND LOOKUP OPCO|
NEW FILE AND INSTRUCTION TYPE TO
OBTAIN OFFSET
WRITE INSTRUCTION AND
NEW OFFSET TO NEW FILE
YES HAS "SIZE" BYTES BEEN
WRITTEN TO NEW FILE?
ND
INC POINTERS
Figure 10 Remote Update Algorithm

36

v

SECTION 56

SOFTWARE DEVELOPMENT

An integral part of the design and and implementation of an algorithm is
software development. Several programs were written both to implement
and to test various parts of the algorithm. These programs are listed and
described below and are illustrated in corresponding figures, Figures
11-17.

1. CDC Libraries
CONVERT- converts binary integers to ASCIl HEX for printing

MODTYPE- imp'ements the algorithm in Figure 2 that modifies the
instruction conversion table

BLKDISP- finds the displacement fields in an instruction and makes the
fields equal to zero

2. RDBIN.PAS

This program is a byte by byte listing of any file in decimal and
hexadecimal form. 1t is used as a debugging tool to look at headers and
data segments.

Inputs:
File to be listed

Outputs:

Decimal listing
Hexadecimal listing

37

CDC LIBRARY ~- CDCI1.LIB

CONVERT
INTHEX

MODTYPE:

BLKDISP

Figure 11 CDC Libraries

38

READ BINARY — RDBIN.PAS

DECIMAL
OUTPUT
EXECUTABLE |
« EXE RDBIN.EXE
HEXADECIMAL
OUTPUT

Figure 12 Flow Chart of RDBIN.PAS Program

39

LIST EXECUTABLE - LEXECS.EXE

EXECUTABLE
*.EXE

INSTRUCTION

TABLE LEXECS.EXE

OUTPUT

INSTRUCTION
CHARACTER

START OF DATA SEG. ———

LISTING

OPTION:

BLANK DISPLACMENT
FIELDS

Figure 13 Flow Chart of LEXEC.PAS Program

40

COMPARE EXECUTABLE - COMPEX.PAS

EXECUTABLE

*.EXE

INSTRUCTION
TABLE

COMPEX.EXE

OUTPUT

INSTRUCTION

CHARACTER

START OF DATA SEG.
OLD/NEW

TABLE

OPTION:

LOG FILE

Figure 14 Flow Chart of COMPEX.PAS Program

41

BUILD PACKETS - BPACK.PAS

EXECUTABLE
*.EXE

INSTRUCTION
TABLE

COMPEX.EXE

DOWNLOAD
PACKETS

INSTRUCTION
CHARACTER

COMPEX
OUTPUT
TABLE

Figure 15 Flow Chart of BPACK.PAS Program

42

COM1 PORT ACCESS
ASSEMBLY LANGUAGE SUBRCUTINES

ICILS ~ Read Line Status

ICIMS - Read Modem Status

ICIINT - Initialize Configuration
ICIMCO - Set Modem Control Lines
ICITD - Send One Character

ICITDW - Send 6ne Charecter / Wait
ICIRD - Read One Character

ICiRDW - Read One Character / Walit

Figure 16 List of Assembly Language Subroutines
of COM1 Port Access

43

COM1 PORT ACCESS
FORTRAM SUBROUTINES

CIRSTR - Read a String of Characters

CI1SSTR - Send a String of Characters

Figure 17 List of FORTRAN Subroutines
of COM1 Port Access

44

3. LEXECS5.PAS

This program lists a file in instruction format and automatically finds
the beginning of the code section from data in the header. The header and
data segment are listed byte by byte in Hex form. The code section is
listed by instruction in Hex form.

Inputs:
Executable file to be listed
Instruction Table- Instructions / instruction type
Instruction Character- Number c¢f bytes and displacement fields
of instruction types
Start of data segment- Determined for Linker Map

Outputs:
Listing of header, code and data segment

Options:
Blank displacement fields

4. COMPEX PAS

This program, the implementation of which is illustrated in Figure 8,
compares files for matching blocks. The displacement fields are blanked
and the files are compared for largest matching blocks.

Inputs:
Old executable file
New executable file
Instruction Table
Instruction character
Start of data segment for old and new program

Outputs:
Block table of matching blocks

Options:
Generate a log file of each compare iteration for debugging

- 45

5. BPACK.PAS

This program builds packets for the download file. The displacement
fields are not blanked. The offsets are determined and the packets
formed. Header and Data segments are sent as new data.

Inputs:
Old executable file
New executable file
Instruction table
Instruction character
Output from COMPEX program

Outputs:
Packet ready for download

6. COM1 Port Access Programs

The protocol for the IBM personal cornputer COM1 communication port has
a number of features that make computer-to-computer communications
difficult when operating under DOS. These features involve both the
hardware and software of the communication port. Below are described
the problem features as well as a group of assembly language subroutines
that have been written to control the port directly from a higher-level
language.

The following hardware and software features create problems in
communicating between two computers under DOS:

1. If a character has arrived at the COM1 communication port prior to the
operating system accessing the port, the system declares the
receiver-full status to be a device error and will cause a run-time error.

2. When the communication port is initialized to receive data, the
clear-to-send line is set high, but the data terminal ready line is set low.
If the full hardware handshake lines are implemented between COM1
communication ports, the receiving port will inhibit the sending port and
no data will be transmitted.

46

3. The software termination for a DOS input on the COM1 port is a control
Z character, but the output protocol is not compatible with the input
protocol.

4. The software protocol automatically sends both a carriage return and a
line feed at the end of a string output, but the input only requires a
carriage return to terminate the string input. This extra line feed

character sent on the output usually ends up as a character left in the
receiver register at the end of a transmission, which results in a run-time
error as described in item 1.

The following assembly language programs were written to allow a user
to access the COM1 port directly from a high-level program.

IC1LS - Reads the line status of the COM1 port

IC1MS - Reads the modem status of the COM1 port

IC1INT - Initializes the COM1 port configuration

IC1IMCO - Sets the value of the COM1 port modem control lines
IC1TD - Sends one character to the COM1 port

IC1TDW - Sends one character to the COM1 port after the transmitter
buffer is empty

IC1RD - Reads one character from the COM1 port with a null
indicating no character is available

IC1RDW - Reads one character from the COM1 port after a character
becomes available

The following FORTRAN subroutines were written to supplement the

47

assembly language routines:

C1RSTR - Reads a string of characters into a character array from the
COM1 port

C1SSTR - Sends a string of characters from a character array to the
COM1 port

48

SECTION 6

FUTURE DIRECTIONS

HEADER ALGORITHM

The header record contains information about the size of the executable
module, where it is to be loaded in memory, and where the address of the
stack register and relocation offsets are to be inserted into incomplete
machine addresses. The largest amount of information in the header
consists of the relocation table containing the relocation items. Each
relocation item consists of a two-byte offset value and a two-byte

segment value.

At the present the proposed algorithms do not attempt to capitalize on the
similarities between an old program header and a new program header. |t
may be possible to develop an algorithm that can use the old header
relocation table to derive the new header relocation table.

DATA SEGMENT ALGORITHM

The proposed procedure for transmitting the changes from a host computer
to a remote computer does not attempt to use the old data segments in the
generation of the new data segments. At present the new data segment is
transmitted in its entirety. The new data segments should be derivable
from the old data segments in such a manner as to reduce the amount of
information required to be transmitted to generate the new executable

file data segments. An additional algorithm can be developed to handle
this portion of the files.

FILE-COMPARE ALGORITHM EFFICIENCY

There are several issues that should be addressed that have the potential
to improve the file-compare efficiency. The first issue relates to large

49

amount of memory required with the proposed scheme. For a file of size =
N, the present required array size is BN. This is hard to accomplish on a
PC in PASCAL. Though there is a memory of size 640K bytes, the compiler
limits its use to 64K. Perhaps a solution to this problem can be found by
using a mainframe, another language:, or maybe finding a way around the
compiler to get access to the rest of the memory. The second issue
relates to the fact that the present scheme requires a full copy of both

the old and new files, and hence a large memory. It is-true, however, that
the operation is done only once for many downloads and that the operation
can be done on a mainframe. These advantages may outweigh the
disadvantage of a large memory requirement.

Prototype Code Demonstration

A prototype code demonstration should be prepared. There are five steps

to the development of a prototype code demonstration, some of which have
been executed already. The code listing software, LEXECS, and the
compare algorithm software, COMPEX, are complete. The packet formation
software, BPACK, has been written, but has not been debugged. The
regeneration software has been flow charted and is illustrated in Figure

10, but has not been coded or debugged. A demonstration of the program
has not been debugged. The last three tasks need to be completed before a
demonstration can be presented.

Analysis of Packet Size Versus Overhead Bytes

A certain number of overhead bytes are required in the preparation and
transmission of each packet. This number varies with the contents of a
particular packet. Clearly a packet corresponding to a large block of code
warrants the overhead bytes required for its transmission; a packet
corresponding to a very small block of code may not. An analysis needs to
be done to determine at what point it is more economical to send a block
of code in toto as opposed to sending a packet of information describing
how to modify the old code to mirror the new code.

50

Examination of Methods for Error Correction and Encryption

When large amounts of data are transmitted over commercial phone lines,
the issues of error detection and correction and data encryption are of
primary concern. Methods addressing both of these issues were identified
and briefly reviewed early in this effort. Information embedded in
overhead bytes is used to detect and correct errors using a variety of
pattern recognition techniques such as the higher-order correlation

matrix associative memory method of Shiozaki. The various techniques
identified in the literature need to be carefully evaluated for their
appropriateness to the update scheme developed under this effort.

Through efforts by The National Bureau of Standards and others, data
encryption techniques have been greatly improved over the years,
especially with the adoption of the IBM-based, DES algorithm under the
American National Standards Institute's title, " Data Encryption
Algorithm." Work, such as Cipher Block Chaining, which establishes a
chained relationship between successive blocks of ciphertext and detects
unauthorized modifications, continues to improve encryption techniques.
An investigation of these and other pattern recognition techniques
pertinent to the data security in the proposed scheme should be
investigated.

51

APPENDIX A

SATA TRAMBFER

SOV = Nave:

RP@Ister MEMOry 10/ 170M rEguaier
RGO 1O TOQUENY I Mamory
eneciae o reguver
Memory 10 stc umuintod
AGCUMWAIO! 1O MemOry

Regterer: memory 10 segment nﬁnnm

SOPTET IRgIeIY 10 FGISHT! MEMOry

PUBH » Push:

Pmguster | mewnary

POF = Pap:

Aagarer i memory

Tabie 1-22 8088/88 Instruction Encoding

90 0rg 11

52

TeBadzte THEL3StEe TOAAITTIA TRRARRTE TROEAJILE TROAlRr
100010dw | mod Mg tim ONeL0y [o]

110001 1w |mog 00 rim ©Nr4L0} Lo L] J omdent I
1019 wreg e tamidwei

1010000 w L [2.

11000 w G- [2.1

10001V 10 |mog 0 BA t/m {O%P-LO) OWP -4

10301100 | mog 0 M rim WAL 0P -+)

t1tr M‘llllil |W-LO0J MJ

91010 reg

9Qdragt 10

tgeat 11 muouoan Ds-L0}] OWP) |

(¢ 1011 ey -

DATA TRANSFEA (Cant'¢.)
ECHE = Eashengs:
RNQistnr /Mamory with regietes

FARputor with SBCUMWINID!

N = WPt trem:
Fmeg port

Veradie port

OVUY & Owtput to:

Fmeg port

Yarabie port

NLAT n Transiste byte to AL
LEA = Load €A to register
LOS = Losd poimer 10 0S
LES = Load powter to ES
LAME & Load AM rth fags
BANF = Store AM 10 Hags
PUSHF a Push Nags

POPF o Pop Hegs

ARITHEETIC
ADD = age:
Rng/ MEMory wiith reguaer 1 erher

VRGN 1) rEgISIET MAMOrY

SRARGING® 10 SCTUMULAOr

ADC » Add with sarvy:
g/ MemOry BIR reguter 15 snher
MGG 10 rEQINENY | MeMOry

RedEie 10 BOCUMIEIG!

MC = ingrement:

Ragiveer /memory

AdA = ABCN asiust tor aad

BAA « Oucanet avwet tor add

Table 1-22 8086/88 insiruction Encoding (continued)

TOBADR1EO TOHAa3210 TORANRIG TOLA3NIE TARAI2E

190088011 w| man nqu;[OISP-LO) 1 (DRP-41)]
1988 mg

111381 8w DATALl J

1v101 18w

IBRNYRRK] o‘VuJ

11011 w

1101011

10001101) mos reg ©m {Rg*-LO) (OWP-HI
11900101 | mog reg ¢im ©SPLO) (DS P-sit)
11000100) mod reg ¢/m os»LO) O
1001111

18¢11 1140

1001Y100

10011V 0

0N0000cw | moo reg ¢/ {DISe-LO) [+ 1]
1000008 w| mos 000 rim Ds*.L0 {DBR-HI) oats r-nn..-mJ
en00010w oata oaa il we) }
0001000 w({mos reg fim {OgPL0) {OagP-+H)
1000880 w ! mog 01V 0 /m P (-] - 1 “ln--L].
0001010 w - darg ¥ we1

IAEE RN] mooom:[OsP-LO] (Ol 1) J
01006 reg

e011 011

ee180 1V

53

Table 1-22 8088/88 instruction Encoding (continued)

ARITHEETG (Cont'd.)

S = Subtrmst: . TORAI2 IS T8542218 76343216 THBAIRIE TRBOIIVS (A EEER BN]
Roy/Memery and rgister 1o uiher 081008 w | mod ray rim (DNr-LO} L]

VRGBS TOM OGN / Memory 1006000 uw [mog ' & Y 1/® (ONP-LOy 0N o J _ur—uJ
WRRESISty O ADCUMASID! s0101 10w -y da #w=t

358 « Suttrast whh barvewr:

Aoy MOMOry ang regusies 1 ariher 008116 d w |™mog rp rim (DWPLO) (ORP-4n
medie ITOm rOgIteT / Iemery 100800 w | mom @1 1 rim (DWP-LO) (DWP) dan l _nu,-mJ
IMORETS fTOM SCCUMUINGY 000110 w daw daen ¥ we)
ORC Desrement:
RegIster ! mamory 11111 ttw|mea 001 an {OISP.LO) L (D3P0 J
Ragiser 01001 reg
.
LA Change sgn 11110t1w |™meg 011 rml (OH,-LOY ['W*Ll
CM# = Compare:
REQ1sier | MOMOry and register 00t t'0dw |moa reg rim {OegP-LOY [
IMMEGISIe BIIh TgINNeY / memary 1000003 w [moa t t 1 rtm’ ©O$P-LO) (OSP-1n aes j damd e -;]
WRROGTE Wi BCCUIRMBI 00VV V10w asuy
AAS ASCHE achut lor pudtract 001t 11t
DAS Decwnal adjust lor sudtract eo0tottt
A Munply (unssgned) 111101 1w |[mogt 00 rm (OSP-LO) (OLgP-mn)
WBUL integer muttrdly (signed) 11110t 1w |meat 01 rim 1DrSP-LO) 1088P 1)
AAN ASCH acyus! for muihply 1101010000007 010 (O$P-LD) (OISP.-n .
DIV Dinncde (unmgned) 1t111Q11w|[maa 1t t 0 r/m (O1SP-LOY QP+
DN Inieger drnde (Lgned) 1111017t w|[meat 1Y rim (ORSP-LOy {OgP-)
AAD ASCE acyust 1O greuse ’ 1rototoet|000d101tQ D3P-LO) (OSP4}
CBW Convert Oy to word 18011000
CWD Convan word 10 double ward Tto01100t
LOGC
HOT nwert 111101 w [mog 01 D e/em (OISP-LO) (OegP-rm)
SHL/BAL Sheit logical ! MriRematc ol 110100vw [moa t Q0 rim 1DISP-LO) (OIS0
BHA Shert logueas Tight 110100vw mog t 01 cim (O8P-LO) (D8P-Mn ‘
BAR Sheit arunmetsc rght 110100vw [moa ')" o'm (D8PLO) (AP0
AOL Aoiste ioh 11901 00vw [moa 000 r'm 1O1SP-LOY D8P+

54

Table 1-22 3088/88 inutruction Encoding (continued)

LOBIC (Cant'e.} PEE 43318 T8 4)1318 TOKAIRI1E THHA3219 TOGARRIE TES4212110
ROA Rome rgnt 198900y w Mmoo 0 0 1 ¢/m {DISPL Oy OBP.MI)

RCL Rowe Mrough carvy fieg ieh 1181 88vw {moa 014 rim {DISP-LO) OIEP -1

ACR Aowe Mrough Carry 1ght 118188 vw [moa 019 eim {OBP.LO: D)

ANO = Ana.)

Rpg/ MEMOTy with register 10 adher 001000dw |mog reg rim NSP-LO) {OBF-1h

WMEthal® 10 regISIer/ Mmemory 10000800w |[mog 100 e/m (e P-LQ) (OrEP-m1) ™ r -.‘-LJ
WnIned e 10 SCCUMUIS1Or 0010010 ™ seta ols o w= 1

TEST » Ang hewtion ts Nags Ae reswh:

Rpg1a181 / Memory and regisier 0001080 w [mog g im {OI8P-LO| (DegP-H1)
NNedate Gas 8N regIeter I Mmemory 11930V 17w |mod 0 00 tim {OI8»-LOY OSP4 -y l mnv-;‘
Bnmediate Gals Sng SCCumuistor 1010100 w datla
OR w Or:
oy memory and 18Q18ter 10 BrTher 0000180 w [mod rmg /m N8P0 {ONEm-)
Wnmedate 10 fegIster s memory V000080 w |mag 0)Y iim {DEP-LO) (ONEP-+1) asta 4[ola H w=1 J
mmeciate 10 aCumuistor o001 10w cata dotn i wel

\
ZOR » Exohumive ar:
Aoy | Memory and registe 10 Siiher 001108dw [mog g rm SP-LO) DRI -
RGN 10 TOQIIISS | MOMDTY 00118410 w dots N8P0} OBP-) -ia J elg wel]
OGN 10 BCCUMUIaTO! 00118V 8w o asta i wet
STRING RANIPULATION
MG = Aepeet 1111801
BOVE « dove bye word 101001 8w -
ChIPS w Compare bye/ worg 1010011 w
DAL = Soan byw/ wora 1DtetY 1w
LODS = Load bywe/wd 10 AL/AX L REARN X
STD8 = S0 tywe/wa from AL /A 101816 w

)

55

Table 1-22 8086/88 instruction Encoding (continued)

CONTROL TRANAFER
CALL = Cas:

Oirect waiwn segment
WHITRC! Wi pegment

Darect intersegment

Merac) miorsagmant

JBP « Unsonditinnal Jump:
Dwrect wethen sogmant
Oirect writen sagmeni-shon
INGIECT MW Segment

Direc1 mrersegment

AET « Suvarn vam CALL:

Wetwn segmem

WiV 20Q BOIng wenad 10 35

Intgraagment
NMIrIegMEn S0GING KAMetue 10 3P

/4T = Jvmp on eque’ tero

S/ INGE = Jump On 988/ NOT DRESNT O UM
JLE/ NG a Jump O l9se OF SQUN! | RO Greeier
28/ IMAK & Jump On DEIE / Ot SBTVE O SQu
R/ MNA = et On DS Of SAVEI] MOt aDDve
IP/IPE = Jump on parity ! panty sven

30 = Jumg on overhew

JB® Jumg on sign

JNE/ ST = Jug On net S { Aot e
JML/JQE = Jump O Aot B) Oreeser OF SCus
JNLE/ H8 = Jumg On net lesa Or Saual! greser
S0/ LAR = Jump ON AL DAIOR! abOVE OF Seuel
JRBR/IA = Jump O NOL DOIOW Or SRvel/ abOVe
S0P/ 3P0 « Jufg On Aot par! BEr 08

JI00 = Jump on Aot CeerRew

Tassazre

resaze

56

19181000 BnC-LO PINC-H
11171 [moe 010 om {OBPAL0) (ISP} J
11010 L 2] v
Cs-io -
1v111 mig 0 1 Y erm (OISPL0) (OGP I
0100 PanC-LO WPANC-HI J
191 PINCS
11111 (mea 1 00 e/m (OEPLO) ISPt J
g10v90 w0 wnt
C8o cs-n
111V Imag 1 80 im (BP0 (WH;J
boo1
0000 et~ [m-mj
G101
G100 -0 uu-mJ
tp100 wNCS
111700 wanca
117110 wancs
10810 wanch
tov e P-INCS
110610 PINCE
19000 NG
t1008 NCE
19101 PaNCS
tieen 1P4NCS
1111 PG
1081 e
19111 N
1191 [-]
1980 L]

Tes4an310 78421210

Table 1-22 8088/88 Instruction Encoding (continued)

CONTROL TRANSFER (Cont'y.}

BT = Aptors wm CALL:

SRS = Jumg on ROt LGN

LOOP o Losp CX e
LOOPZ/LOOPE u Lowp white 1870/ Sguel
LOOPNL/LOOPNTE » LOSD whint nOl 2or/ Squel

JCXT & Jump on CX 2oro

T = Wtprrapt:

Tyse soucind

Typa)

ITO = InrTupt on Swprtiow

MET = nsarrupt tetutn

PROCESSON CONTROL
CLC w Ciner carvy
mv-ummmmy
$TC = Batcarvy
CLD = Ciger orwrecuon
$TD = Bat grection
CU = Cawar miprrup!
ATl = Set mierrupt
WLT e mant

WAIT = Wil

B8C = Encape mn;muml
AOCK @ Bus fock pretia

SEGMENT w Overrde prefix

7680028 Yeb422 0

111180 P<nCa
11100018 NG
13160001 BNCE
111880009 Lol -]
1110881 [L -]
110010 DATAd J

119011009

118019318

11001111

1111010
e ——r

Tedanae

maa,,,wrml w-ﬁ.onj [] l

0biregt Ve

57

Teoan2 8

Tee432 0

Table 1-23 Machine instruction Decoding Guide

HEX18T !.YT"‘EARY IND BYTE BYTES3,4,5,8 ASM-38 INSTRUCTION FORMAT
00 0000 0000 | MOD REG R/M | (DISP-LO),(DISP-HI) ADD REG8/MEMB, REGS
o1 0000 0001 [MOD REG R/M | (DISP-1.0),(DISP-HI) ADD REG18/MEM18,AREG18
02 0000 0010 (MOD REG R/M | (DISP-..0),(DISP-HI) ADD REG8.REG8/MEMS8
03 0000 0011 | MOD REG R/M | (DISP-1.0),(DISP-HI) ADD REG18,AREG18/MEM18
04 0000 0100 | DATA-8 ADD AL.IMMED8
05 0000 - 0101 [DATA-LO DATA-HI ADD AX,IMMED18
08 0000 0110 PUSH ES
07 0000 0111 POP ES

18T BYTE

HEX BINARY 2ND BYTE 8YTES3,4,5,8 ASM-38 INSTRUCTION FORMAT
08 0000 1000 (MOD REG R/M | (DISP-1.O),(DISP-HI) OR REG8/MEMB8.REGS
09 0000 1001 | MOD REG R/M | (DISP-1.0).(DISP-HI) OR REG18/MEM16,REG16
0A 0000 1010 | MOD REG R/M | (DISP-1.0),(DISP-HI) OR REG8,REGS/MEMS
o8 0000 1011 | MOD REG R/M | (DISP-1.0),(DISP-HI) OR REG16,REG16/MEM16
oC 0000 1100 | DATA-8 OR AL, IMMEDS8
oD 0000 1101 [DATA-LO DATA-HI OR AX,IMMED16
(13 0000 1110 PUSH Cs
OF 0000 1111 (not used)

10 0001 0000 | MOD REG R/M | (DISP-L.O).(DISP-HI) ADC REGB/MEMS.REGS

1" 0001 0001 | MOD REG R/M | (DISP-L.O),(DISP-HI) ADC REG16/MEM16.REG16

12 0001 0010 | MOD REG R/M | (DISF-L0).(DISP-HI) ADC REGS8,REG8/MEMS8

13 0001 0011 | MOD REG R/M | (DISP-LO),(DISP-HI) ADC REG18,REG16/MEM16

14 0001 0100 | DATA-8 ADC AL,IMMEDS8

15 0001 0101 | DATA-LO DATA-HI ADC AX.IMMED16

16 0001 0110 PUSH sS

17 0001 01 : POP SS

18 0001 1000 | MOD REG R/M | (DISP-LO).(DISP-HI) S8B REG8/MEMS, REGS

19 0001 1001 | MOD REG R/M | (DISP-LO).(DISP-HI) s88 REG16/MEM16,REG16

1A 0001 1010 | MOD REG R/M | (DISF-LO).(DISP-HI) S8B REGB.REG8/MEME

18 0001 1011 | MOD REG R/M | (DISP-LD).(DISP-HI) s$Bs REG18,REG16/MEM16

1C 0001 1100 [DATA-8 S8B AL, IMMEDS8

10 0001 1101 | DATA-LO DATA-HI sBB AX,IMMED16

1E 0001 1110 PUSH Ds

1F 0001 1111 POP Ds -

20 0010 0000 | MOD REG R/M | (DISP-LD).(DISP-HI) AND REGS/MEMS, REGS

Fy| 0010 0001 | MOD REG R/M | (DISP-LD)}.(DISP-HI) AND REG16/MEM16,REG16

22 0010 0010 | MOD REG R/M | (DISP-LOD).(DISP-HI) AND REG8.REG8/MEMB

23 0010 0011 | MOD REG R/M | (DISP-LD),(DISP-HI) AND REG16,REG16/MEM16

24 0010 0100 | DATA-8 AND AL IMMEDS

25 0010 0101 { DATA-LO DATA-HI AND AX,IMMED16

26 0010 . 0110 ES. (segment override
prefix)

27 0010 0111 DAA

28 0010 1000 | MOD REG R/M | (DISP-LO},(DISP-HI) sus REG8/MEMS, REGS

2 0010 1001 | MOD REG R/M | (DISP-LO).(DISP-HI) sSuB REG16/MEM16,REG16

2A 0010 1010 | MOD REG R/M | (DISP-LOI,(DISP-HI) sus REGS8,REGS/MEMS

28 0010 1011 | MOD REG R/M | (DISP-LO,(DISP-HI) SuB REG16,REG18/MEM16

2C 0010 1100 | DATA-8 sus AL,IMMEDS

2D 0010 1101 | DATA-LO DATA-HI SuB AX,IMMED16

2E 0010 1110 Cs: (segment override
pretix)

2F 0010 1111 DAS

k1] 0011 0000 | MOD REG R/M | (DISP-LC),(DISP-HI) XOR REG8/MEMS8.REGS

k] 0011 0001 | MOD REG R/M | (DISP-LC),(DISP-HI) XOR REG16/MEM16,REG16

2 0011 0010 | MOD REG R/M [(DISP-LC).(DISP-HI) XOR REG8.REGS/MEMS

3 0011 0011 | MOD REG R/M | (DISP-LQ),(DISP-HI) XOR REG16.REG18/MEM16

u 0011 0100 | DATA-8 XOR AL IMMEDS

35 0011 0101 { DATA-LO DATA-HI XOR AX,IMMED16

k] 0011 0110 SS: (segment override
prefix)

58

Table 1-23 Machine instruction Decoding Guide (continued)

1STBYTE ‘
“HEX | BINARY 2ND BYTE BYTES 34,58 ASM-88 INSTRUCTIQE FORMAT
37 0011 0110 AAA
38 0011 1000 | MOD REG R/M | (DISP-LO),(DISP-HI) CMP REG8/MEMS REGS
» 0011 1001 | MOD REG R/M | (DISP-LO),(DISP-HI) o V] REG18/MEM18,REG18
3A 0011 1010 | MOD REG R/M | (DISP-LD),(DISP-HI) CMP REG8,REG8/MEMS
38 0011 1011 | MOD REG R/M | (DISP-L0),(DISP-HI) CMP REG18,REG18/MEM18
3C 0011 1100 | DATA-8 CMP AL.IMMEDS
30 0011 1101 | DATA-LO DATA-HI CMP AX,IMMED18
3E 0011 1110 0s: (segment override
= prefix)
3F 0011 1111 AAS
40 0100 0000 INC AX
4 0100 0001 INC (09 {
42 0100 0010 INC DX
43 0100 0011 INC - BX
44 0100 0100 INC sP
45 0100 0101 INC 8P .
48 0100 0110 INC Si
47 0100 0111 INC o}
48 0100 1000 DEC _ AX
) 0100 1001 DEC cX
4A 0100 1010 DEC DX
48 0100 1011 DEC B8X
4C 0100 1100 DEC SP
40 0100 1101 DEC B8P
4E 0100 1110 DEC Si
4F 0100 1111 DEC DI
50 0101 0000 PUSH AX
51 0101 0001 PUSH (094
52 0101 0010 PUSH (0} {
53 0101 0011 PUSH BX
54 0101 0100 PUSH SP
55 0101 0101 PUSH -1
56 0101 0110 PUSH Si)
57 0101 0111 PUSH Dt
58 0101 1000 POP AX
8 0101 1001 POP CX
5A 0101 1010 POP DX
58 0101 1011 POP BX
5C 0101 1100 POP SP
50 0101 1101 POP BpP
SE 0101 1110 POP Sl
5F 0101 1111 POP o]}
60 0110 0000 (not used)
81 0110 0001 (not used)
82 0110 0010 (not used)
83 0110 00M1 (not used)
64 0110 0100 (not used)
85 0110 0101 (not used)
66 0110 0110 (not used)
67 0110 0111 _(not used)

Table 1-23 Machine instruction Decoding Guide (continued)

1STBYTE L
HEX BINARY 2ND BYTE BYTES 3.4,5,8 ASM-88 INSTRUCTION FORMAT
[} 0110 1000 {not used)
] 0110 1001 (not used)
8A {0110 1010 (not used)
-] 0110 1011 (not used)
s8C 0110 1100 (not used)
D 0110 1101 (not used)
8E 0110 1110 (not used)
oF 0110 111t (not used)
70 0111 0000 [IPINCS JO SHORT-LABEL
n 0111 D001 | IP-INC8 JNO SHORT-LABEL
n” 0111 0010 |IP-INC8 JB/JNAE/ SHORT-LABEL
JC
73 0111 0011 [IP-INC8 JNB/JAE/ SHORT-LABEL
JNC
74 0111 0100 | IP-INC8 JE/JZ SHORT-LABEL
75 0111 0101 | IP-INCB JNE/JNZ SHORT-LABEL
76 0111 0110 |IP-INC8 JBE/JNA SHORT-LABEL
44 0111 0111 [IP-INCS JNBE/JA SHORT-LABEL
by] 0111 1000 | IP-INCB JS SHORT-LABEL
78 0111 1001 {IP-INCB JNS SHORT-LABEL
7A 0111 1010 |IP-INC8 JP/JPE SHORT-LABEL
78]0111 1011 |IP-INC8 JNP/JPO SHORT-LABEL
C 0111 1100 | IP-INC8 JL/IJNGE SHORT-LABEL
(] 0111 1101 | IP-INC8 JNL/JGE SHORT-LABEL
7€ 0111 1110 | IP-INC8 JLE/JNG SHORT-LABEL
7F 0111 1111 | IP-INCB JNLE/JG SHORT-LABEL
80 1000 0000 | MOD 00O R/M | (DISP-LO)(DISP-HI), ADD REG8/MEMS.IMMEDS
DATA-§ ’
50 1000 0000 | MOD 001 R/M | (DISP-LO).(DISP-HI), OR REGB/MEMSB,IMMEDS
DATA-8
80 1000 0000 | MOD010R/M | (DISP-LO).(DISP-HI), ADC REGB/MEMS.IMMEDS
. DATA-8
80 1000 0000 |MOD 011 R/M | (DISP-LO),(DISP-HI), SBB REG8/MEMS IMMEDS
DATA-8
80 1000 0000 | MOD 100 R/M | (DISP-LO}.(DISP-HI), AND REG8/MEMS8 IMMEDS
- DATA-8
80 1000 0000 | MOD 101 R/M | (DISP-LO) (DISP-HI), SuUB REG8/MEMS IMMEDS
DATA-8
80 1000 0000 |[MOD 110 R/M | (DISP-LO).(DISP-HI), XOR REGB/MEMS,IMMEDS
DATA8
80 1000 0000 ([MOD 111 R/M (DISP-LO),(DISP-HI), CMP REGB/MEMS, IMMEDS
DATAS
)] 1000 0001 | MOD OO0 R/M (DISP-LO),(DISP-HI), ADD REG16/MEM16,IMMED16
DATA-LO.DATA-HI
81 1000 0001 | MOD 001 R/M (DISP-LO),(DISP-HI), OR REG18/MEM16,IMMED16
DATA-LD,DATA-HI
81 1000 0001 | MOD 010 R/M | (DISP-LO) (DISP-HI), ADC REG16/MEM16,IMMED16
DATA-LO,DATA-HI
8t 1000 0001 | MOD 011 R/M (DISP-LO).(LISP-HI), SBB REG16/MEM16,IMMED16
DATA-LO,DATA-HI

60

Tabie 1-23 Machine instruction Decoding Guide (continued)

1STBYTE
HEX | BINARY | 2ND BYTE BYTES3,4,5,6 ASM-38 INSTRUCTION FORMAT
81 1000 0001 |MOD 100 R/M | (DISP-LO),(DISP-HI), AND REG18/MEM18,IMMED18
- DATA-LO,DATA-HI
81 1000 0001 |MOD 101 R/M | (DISP-LO),(DISP-HI), sus REG16/MEM18,IMMED18
DATA-LO,DATA-HI
1] 1000 0001 |MOD 110 R/M | (DISP-LO).(DISP-HI), XOR REG16/MEM18,IMMED18
DATA-LO,DATA-HI :
a 1000 0001 |MOD 111 R/M | (DISP-LO).(DISP-HI), CMP REG18/MEM18,IMMED16
DATA-LO,DATA-HI
82 1000 0010 | MODOOOR/M | (DISP-LO),(DISP-HI), ADD REG8/MEMS,IMMEDS
. DATA-8
82 1000 0010 | MOD 001 R/M {not used)
82 1000 0010 | MODO10R/M | (DISP-LO),(DISP-HI), ADC REG8/MEMS IMMEDS
DATA-8
82 1000 0010 | MOD 011 R/M | (DISP-LO).(DISP-HI), B1-1-} REG8/MEMS8,IMMEDS
DATA-8 '
82 1000 0010 | MOD 100 R/M {not used)
82 1000 0010 | MOD 101 R/M (DISP-LO),(DISP-HI), SuB REG8/MEMS,IMMEDS
DATA8 .
82 1000 0010 | MOD 110R/M (not used)
82 1000 0010 | MOD 111 R/IM | (DISP-LO),(DISP-HI), CMP REGS/MEMS IMMEDS
DATA-8
83 1000 0011 | MODOOO R/M | (DISP-LO),(DISP-HI), ADD REG16/MEM18, IMMEDS
DATA-SX
83 1000 0011 | MOD 001 R/M {not used)
83 1000 0011 |[MODO10 R/M | (DISP-LO), (DISP-HI), ADC REG16/MEM16.IMMEDS
DATA-SX
83 1000 0011 |MOD 011 R/M | (DISP-LO),(DISP-HI), 1-1:} REG16/MEM18 IMMEDS
DATA-SX :
83 1000 0011 |MOD 100 R/M (not usea)
83 1000 0011 | MOD 101 R/M | (DISP-LO),(DISP-H}), suB REG16/MEM16,IMMEDS
g DATA-SX
83 1000 0011 |MOD 110 R/M (not used)
83 1000 0011 |MOD 111 R/M | (DISP-LO).(DISP-HI), CMP REG16/MEM16,IMMEDS
DATA-SX
84 1000 01 MOD REG R/M | (DISP-L.O),(DISP-H) TEST REG8/MEMB REGS
85 1000 0101 [MODREG R/M | (DISP-1.O),(DISP-HI) TEST REG16/MEM16,REG16
] 1000 0110 | MOD REG R/M | (DISP-L.0).(DISP-HI) XCHG REG8.REG8/MEMS
87 1000 0111 | MOD REG R/M | (DISP-1.0),(DISP-HI) XCHG REG16,REG16/MEM18
88 1000 1000 | MOD REG R/M | (DISP-..0),(DISP-HI) MOV REG8/MEMB8.REGS
89 1000 1001 [MOD REG R/M | (DISP-1.0),(DISP-HI) MOV REG16/MEM16/REG16
8A 1000 1010 | MOD REG R/M | (DISP-L.O),(DISP-HI) MOV REG6, REG8/MEMS
88 1000 1011 | MOD REG R/M | (DISP-L.O),(DISP-HI) MOV REG16,REG16/MEM16
ac 1000 1100 | MODOSR R/M | (DISP-L.O),(DISP-HI) MOV REG16/MEM16,SEGREG-
8C 1000 1100 | MOD 1—- R/M (not used)
80 1000 1101 | MOD REG R/M | (DISP-L.O).(DISP-HI) LEA REG16,MEM16
8E 1000 1110 | MODOSRR/M | (DISP-..O),(DISP-HI) MOV SEGREG,REG18/MEM16
8E 1000 1110 |MOD1-R/M (not used)
8F 1000 1111 {[MOD 00O R/M | (DISP-L.O).(DISP-HI) POP REG18/MEM18
8F 1000 1111 | MOD 001 R/M (not used)
8F 1000 1111 | MOD 010 R/M (not used)

61

H086/8088 CPU

Tabie 1-23 Machine Instruction Decoding Guide (continued)

1STBYTE
HEX BINARY 2ND BYTE BYTES 3,4,5,8 ASM-88 INSTRUCTION FORMAT
8F 1000 1111 |[MODO11R/M (not used)
8F (1000 1111 |MOD100R/M (not used)
8F |[1000 1111 |MOD101R/M {not used)
8F 1000 1111 [MOD110R/M (not used)
8F 1000 1111 {MOD 11T R/M (not used)
90 [1001 0000 NOP (exchange AX,AX)
9 |1001 0001 XCHG AX.CX
| 74 1001 0010 XCHG AX,DX
93 1001 0011 XCHG AX,.BX
94 1001 0100 XCHG ‘AX,SP
% 1001 o1 XCHG AX,BP
96 1001 0110 XCHG AX,SI
87 1001 0111 XCHG AX,DI
98 1001 1000 csw
9% 1001 1001 CwWD
A |1001 1010 | DISP-LO DISP-HI,SEG-LO, CALL FAR_PROC
SEG-HI)
98 1001 10M WAIT
9C 1001 1100 PUSHF
90 1001 1101 POPF
9E 1001 1110 SAHF
8F 1001 1111 LAHF
A0 {1010 0000 { ADDR-LO ADDR-HI MOV AL ,MEM8
Al 1010 0001 | ADDR-LO ADDR-H! MOV AX ,MEM16
A2 |1010 0010 | ADDR-LO ADDR-HI MOV MEMS AL
A3 1010 0011 | ADDR-LO ADDR-HI MOV MEM16 AL
A4 |1010 0100 MOVS DEST-STR8,SRC-STR8
A5 [1010 0101 MOVS DEST-STR16,SRC-STR16
A {1010 0110 CMPS DEST-STR8,SRC-STRs8
A7 |1010 o111 CMPS DEST-STR16,SRC-STR16
A8 1010 1000 | DATA-8 - TEST AL,IMMEDS
A9 (1010 1001 { DATA-LO DATA-FI TEST AX,IMMED16
AA [1010 1010 §T0S DEST-STR8
AB 1010 1011 §TOS DEST-STR16
AC 1010 1100 LODS SRC-STR8
AD [1010 1101 LODS SRC-STR16
AE 1010 1110 SCAS DEST-STR8
AF 11010 1111 SCAS DEST-STR16
B0 1011 0000 | DATA-8 MOV AL IMMEDS
B1 1011 0001 | DATA-8 MOV CL,IMMEDS
B2 {1011 0010 |DATA-8 MOV DL,IMMEDS
B3 1011 1011 | DATA-8 MOV 8L,IMMEDS
B84 |1011 0100 |DATA-8 MOV AM,IMMEDS
BS 1011 0101 | DATA-8 MOV CH,IMMEDS
B6 1011 0110 | DATA-8 MOV ~ OH,IMMEDS
B7 |1011 0111 | DATA-8 MOV BH,IMMEDB
BS 1011 1000 { DATA-LO DATA-HI MOV AX,IMMED16
B89 1011 1001 | DATA-LO DATA-HI MOV CX,IMMED16
BA 1011 1010 | DATA-LO DATA-HI MOV OX,.IMMED16
BB 1011 1011 | DATA-LO DATA-H! MOV BX,IMMED16

62

8088/8088 CPU

Table 1-23 Machine Instruction Decoding Guide (continued)

18T BYTE
_ITE(X BINARY 28O BYTE BYTES 3,4,5.8 ASM-88 INSTRUCTION FORMAT

BC | 1011 1100 | DATA-LO DATA-HI MOV SP IMMED18
80 1011 1101 | DATA-LO DATA-HI| MOV BP.IMMED18
B8E 1011 1110 | DATA-LO DATA-HI MOV SIIMMED18

8F 1011 1111 { DATA-LO DATA-HI MQV Di,IMMED1S

Co 1100 0000 {not used)

ct 1100 0001 (not used)

c2 1100 0010 | DATA-LO DATA-HI RET IMMED18 {intraseg)
C3 | 1100 o001 RET {intrasegment)
C4 1100 0100 | MOD REG R/M | {DISP-i.0O),(DISP-HI) LES REG168,MEM18
C5 | 1100 0101 | MOD REG R/M | (DISP-1.0),(DISP-HI} LDS REG16,MEM18
Cc8 1100 0110 | MOD 000 R/M {DISP-1.Q),(DISP-H)), MOV MEMS IMMEDS

‘DATA-8

(o] 1100 0110 | MOD 001 R/M (notused) -

C8 1100 0110 {(MODO10R/M (not used)

(o 1100 0110 { MODO11 R/M {(not used)

(o] 1100 0110 | MOD 100 R/M (not used)

Cc8 | 1100 0110 {MOD 101 R/M {not used)

c8 | 1100 0110 |MOD110R/M {not used)

C§ | 1100 0110 |MOD 111 R/M {not used)

c7 1100 0111 | MOD 000 R/M (DISP-LO),(DISP-H1), MOV MEM18,IMMED18

DATA-LO,DATA-HI
- C7 {1100 0111 {MODOOIR/M |- (notused)

c7 1100 0111 |MODO1OR/M {not ysed)

c7 1100 0111 | MOD 011 R/M (not ysed)

c7 1100 0111 |MOD 100 R/M (not ysed)

c? 1100 0111 { MOD 101 RIM {not used)

(074 1100 0111 |MOD 110 R/M {not ysed)

c7? 1100 0111 {MOD111R/M (not used

C8 1100 1000 {not ysed)

(o] 1100 1001 (not used) -

Ca 1100 1010 | DATA-LO . DATA-HI RET IMMED16 {intersegmaent)
CB | 1100 1011 RET {intersegment)
cC 1100 1100 INT 3

co 1100 1101 | DATAS INT IMMEDS8

CE 1100 1110 INTO

CF 1100 1111 IRET

Do 1101 0000 { MOD 00O R/M | (DISP-LQ),(DISP-HI) ROL REGS8/MEMS 1
D0 |} 1101 0000 | MOD 001 R/IM | (DISP-LO},(DISP-HI) ROR REG8/MEMS,1
Do 1101 0000 | MOD 010 R/M {DISP-LO) {DISP-HI) RCL REGB/MEMS. 1
DO 1101 0000 | MOD 011 R/M {DISP-LO).{DISP-HI) RCR REGB/MEMS, 1
00 1101 0000 | MOD 100 R/M (DISP-LO).(DISP-HI) SAL/SHL REG8/MEMS 1
D0 | 1101 0000 { MOD 101 R/M | (DISP-LO),(DISP-HI) SHR REG8/MEMS 1
DO | 1101 0000 [MOD 110 R/M {not used) .
00 | 1101 0000 |MOD111R/M | (DISP-LO).(DISP-HI) SAR REG8/MEMS,1
D1 1101 0001 | MOD D00 R/M | (DISP-LO),(DISP-HI) ROL REG16/MEM18,1
D1 1101 0001 | MODOO1 R/M | (DISP-LQ) (DISP-HI ROR REG18/MEM16,1
D1 1101 0001 |MODOIOR/M {DISP-LO),(DISP-HI) RCL REG18/MEM16,1
D1 1101 0001 [MODO11R/M | (DISP-LO)(DISP-HI) RACR REG18/MEM18,1
D1 1101 0001 | MOD 100 R/M {DISP-LO),(DISP-HI) SAL/ISHL REG18/MEM16.1

63

8086/8088 CPU

Tabie 1-23 Machine instruction Decoding Guide (continued)

1STBYTE)
WEX BINARY 2ND BYTE BYTES 3,4,5,8 ASM-B8 INSTRUC‘I’IDN FORMAT
D1 1101 0001 {MOD 101 R/M (DISP-LO),(DISP-HI) SHR REG16/MEM16,1
D1 1101 0001 |MOD 110 R/M (not used)
D1 1101 0001 |MOD 111 R/M (DISP-LD)(DISP-HI) SAR REG16/MEM16,1
D2 1101 0010 {MODOOO R/M | (DISP-LD),(DISP-HI) ROL REGB/MEMB,CL
D2 1101 0010 {MOD 001 R/M | (DISP-LD),(DISP-HI) AOR REG8/MEMS,CL
D2 1101 0010 |MODO10R/M (DISP-LLO).(DISP-HI) RCL REGB/MEMS,CL
D2 1101 0010 | MODO11 R/M | (DISP-1.0) (DISP-HI) RCR REGB/MEMSB,CL
D2 1101 0010 |MOD100R/M | (DISP-.O),(DISP-HI) SAL/SHL REGS8/MEMS8.CL
D2 1101 0010 | MOD 101 R/M (DISP-1.0),(DISP-HI) SHR REGB/MEMS8,CL
D2 1101 0010 |MOD 110 R/M (not used) .
D2 1101 0010 |MOD 111 R/M | (DISP-1.O),(DISP-HI) BAR REGB8/MEMS,CL
D3 1101 0011 |MODOOOR/M | (DISP-1.O),(DISP-HI) ROL REG16/MEM16,CL
D3 1101 0011 |MOD 00t R/M | (DISP-1.O),(DISP-HI) ROR REG16/MEM16,CL
D3- | 1101 0011 { MOD 010 R/M | (DISP-1.0),(DISP-HI) RCL REG16/MEM16,CL
D3 1101 0011 |MOD 011 R/M | (DISP-L.O),(DISP-HI) RCR -REG16/MEMI16,CL
D3 1101 0011 [MOD 100 R/IM | (DISP-1.0),(DISP-HI) SAL/SHL REG16/MEM16,CL
03 1101 0011 | MOD 101 R/IM (DISP-1.0).(DISP-HN SHR REG16/MEM16,CL
D3 1101 0011 [MOD 110R/M (not used)
D3 1101 0011 |MOD 111 R/M | (DISP-L.O),(DISP-RI) SAR REG16/MEM16,CL
D4 1101 0100 | 00001010 AAM
DS 1101 0101 | 00001010 AAD
D6 1101 0110 (not used)
07 1101 0111 XLAT SOURCE-TABLE
08 1101 1000 | MOD 000 R/M
1IXXX | MOD YYY R/M | (DISP-LO). (DISP-HI) ESC OPCODE.SOURCE
DF 1101 1111 |MOD 111 R/M :
EO 1110 0000 | IP-INC-8 LOOPNE/ SHORT-LABEL
LOOPNZ
E1 1110 0001 | IP-INC-8 LOOPE/ SHORT-LABEL
LODPZ
E2 1110 0010 | IP-INC-8 LOOP SHORT-LABEL
E3 1110 0011 |IP-INC-8 JCXZ SHORT-LABEL
E4 1110 0100 | DATA-8 IN AL,IMMEDS8
ES 1110 0101 | DATA-8 IN AX IMMEDS
E6 1110 0110 | DATA-8 - ouT - AL IMMEDS
E? 1110 0111 |DATA-8 ouT AX,IMMEDS
E8 1110 1000 | IP-INC-LO IP-INC-HI CALL NEAR-PROC
E9 1110 1001 |IP-INC-LO IP-INC-HI JMP NEAR-LABEL
EA 1110 1010 {IP-LO IP-HI,CS-LO,CS-HI JMP FAR-LABEL
EB 1110 1011 | IP-INC8 JMP SHORT-LABEL
EC 1110 1100 IN AL,DX
ED 1110 101 IN AX,DX
EE 1110 1110 ouT AL.DX
EF 1110 1111 ouT AX.DX
Fo 1111 0000 LOCK (prefix)
F1 1111 0001 (not used)
F2 1111 0010 | REPNE/REPNZ
F3 1111 0011 REP/REPE/REPZ
F4 1111 0100 HLT
F5 1111 0101 CMC

64

Tabie 1-23 Machine instruction Decoding Guide (continued)

1ST BYTE .
L,.rg BINARY 2ND BYTE BYTEY 3,4,5.6 ASM-38 INSTRUCTION FORMAT
1 Fé 1111 0110 |MOD 000 R/M (DISP-1.0},(DISP-HI), TEST REGS/MEMS,IMMEDS

DATA-8 ’

Fé 1111 0110 |MOD 001 R/M (not used)

F8 1111 0110 |MOD 010 R/M (OISP-L.0),(DISP-HI) NOT REG8/MEMS

F8 1111 0110 |MODO011 R/M (DISP-L.0),(DISP-HI) NEG REG8/MEMS

F8 1111 0110 |MOD 100 R/M (DISP-LO},(DISP-HI) MUL REG8/MEMS

Fé 1111 0110 |MOD 101 R/M {DISP-LO)},(DISP-HI) IMUL REG8/MEMS8

Fé 1111 0110 |MOD 110 R/M (DISP-LO) (DISP-HI) - DIV REGS8/MEMS

F8 1111 0110 |[MOD 111 R/M (OISP-LO),(DISP-HI) [+])" REG8/MEMS

F? 1111 0111 |MODOOO R/M | (DISP-LO),(DISP-HI), TEST REG18/MEM18 IMMED18
DATA-LO,DATA-HI

F7 1111 0111 |MOD 001 R/M (notused) *

F7 1111 0111 [MODOIOR/M (DISP-LO),(DISP-HI) NOT REG16/MEM18

F7 1111 0111 |[MOD 011 R/M (DISP-LO) (DISP-HI) NEG REG18/MEM18

F7 1111 0111 |MOD 100 R/M (DISP-LQ).(DISP-HD) MUL REG18/MEM18

F7 1111 0111 [MOD 101 R/M (DISP-LO).(DISP-HI) IMUL REG18/MEM168

F7 1111 0111 |MOD 110 R/M (DISP-LQ),(DISP-HI) DIV REG18/MEM16

F7 1111 0111 [MOD 111 R/M (DISP-LQ),(DISP-HI) 10V REG18/MEM18

F8 1111 1000 CcLC

F9 1111 1001 STC

FA 1111 1010 CLI

FB 1111 1011 STl

FC 1111 1100 cLD

FO 111 10 ' STD

FE 1111 1110 [MOD 00O R/M (DISP-LO),(DISP-HI INC REG8/MEMS

FE 1111 1110 |MOD 001 R/M (DISP-LO),(DISP-HI) DEC REG8/MEMS8

FE 1111 1110 | MODO1OR/M (not used)

FE 1111 1110 [MOD 011 R/M (notused)

FE 1111 1110 |[MOD 100 R/M (not used)

FE 1111 1110 |[MOD 101 R/M (not used)

FE 1111 1110 | MOD 111G R/M (notused)

FE 1111 1110 [MOD 111 R/M (not used)

FF 1111 1111 [MOD 00O R/M (DISP-LO),(DISP-HI) INC MEM18

FF 111 1111 [MOD 001 R/M (DISP-LO).(DISP-HI) DEC MEM16

FF 1111 1111 [MOD010R/M {DISP-LO).(I2ISP-HI) CALL REG16/MEM16 (intra)

FF 1111 1111 |MOD 011 R/M (DISP-L0O),(IDISP-HI) CALL MEM16 (intersegment) .

FF 1111 1111 [MOD 100 R/M (DISP-LO),(DISP-HI) JMP REG16/MEM16 (intra)

FF 1111 1111 [MOD 101 R/M | (DISP-LO).(DISP-HI) JMP MEM18 (Intersegment)

FF 1111 1111 {MOD 110 R/M (DISP-LO),(DISP-HI) PUSH MEM16

FF 1111 1111 [MOD 111 R/M (not used)

65

jbh 1-21 Key to Machine Instruction Encoding and Decoding

IDENTIFIER EXPLANATION
MOD Mode tield; described in this chapter.
REG Register field; dascribed in this chapter.
RIM Register/Memory field, described in this chapter.
SR Segmentregister code: 00=ES, 01=CS, 10=SS, 11=DS.
w,$,0.v, 2 Singie-bit instryction fields; described in this chapter.
DATA-8 8-bit Immediate constant.
DATA-SX 8-bit immediate vaiue that is automatically sign-extended to 18-bits
before use.
DATA-LO Low-order byte of 18-bit immediate constant.
DATA-HI High-order byte of 16-bit immediate constant.
(DISP-LO) Low-order byte of optional 8- or 16-bit unsigned displacement; MOD
indicates if present.
{DISP-HI) High-order byte of optional 18-bit unsigned displacement; MOD
indicates if present.
IP-LO Low-order byte cf new |P value.
IP-HI High-order byte 0f new IP value
Cs-LO Low-order byte of new CS value.
CS-HI High-order byte of new CS value.
IP-INCB $-bit signed increment to instruction pointer.
IP-INC-LO Low-order byte of signed 16-bit instruction pointer increment.
IP-INC-HI High-order byte of signed 16-bit instruction pointer increment.
ADDR-LO Low-order byte of direct addreas (olfset) of memory operand; EA not
calculated.
ADDR-HI| Migh-order byte of direct address (offset) of memory operand; EA not
' calculated.
—_— . Bits may contain any vaive,
XXX First 3 bits of ESC opcode.
Yyy Second 3 bits of ESC opcode.
REGS 8-bit generai register operand.
REG16 18-bit generai register operand.
MEM8E 8-bit memory operand (any addressing mode).
MEM1E 16-bit memory 0parand (any addressing mode).
IMMEDS 8-bit immediate operand.
‘IMMEDW 16-bit immediate operand.
SEGREG Segment register operand.
DEST-STRS8 Byte string addre:ssed by DI.

Table 1-21 Key to Machine instruction Encoding and Decoding (continued)

IDENTIFIER EXPLANATION
SRC-STRS Byte string addrivased by Si.
DEST-STRi18 Word string addressed by DI.
SRC-STR18 Word string addressed by Sl.
SHORT-LABEL Label within £127 bytes of instruction.
NEAR-PROC Procedure in current code segment.
FAR-PROC Procedure in ancother code segment.
NEAR-LABEL Labei in current code segment but tarther than —128 to +127 bytes
from instruction. - -
FAR-LABEL Label in another code segment.
SOURCE-TABLE XLAT transiation table addressed by BX.
OPCODE ESC opcode operand.
SOURCE ESC register or memory operand. .

66

APPENDIX B

s
-

Algorithms for the Longest Common Subs;quencé Problem

DANIEL §. HIRSCHBERG ‘ T~
-/\‘ - ~—~ -
Princeion University, Princeton, New Jersey e e e

ABSTRACT. Two algorithms are presented that solve the longest common subscquence problem. The first
algorithm is applicable in ‘the general case and requires O(pn + n log n) time where p is the length of the
longest common subsequence. The second algorithm requires time bounded by O(p(m + 1 - p)logn). In the
common special case where p is close to m, this algorithm takes much less time than n*.

KEY WORDS AND PHRASES: subsequence, common subscquence,.algorithm

CR CATEGORIES: 3.73, 3.79, 525, 5.39

Introduction o l — _
We start by defining conventions and terminology that will be used throughout this
paper.. _

String C= = €4€3 - €y is @ subsequence of string A = a.a, ‘- au if there is a mapping
F:{1,2,..,p}—=1{1,2, ..., m} such that i) = k only if ¢; = @, and F is a monotone
strictly increasing function (i.e. F(i) = u, F{(j) = v, andi < imply thatu < v). Ccanbe
formed by deleting m_— p (not necessarily adjacent) symbols from A. For example,
“course” is a subsequence of ‘“computer science.”

String C is a.common subsequence of strings A and B if C is a subsequence of A and
also a subsequence of B.

String C is a longest common subsequence (abbreviated LCS) of string A and B if C is
a common subsequence of A and B of maximal length, i.e. there is no common subse-
guence of A and B that has greater length. '

Throughout this paper, we assume that A and B are strings of lengthsm andn, m <n,
that have an LCS C of (unknown) length p.

We assume that the symbols that may appear in these strings come from some alphabet
of sizet. A symbol can be stored in memory by using log bits, which we assume will fit in
one word of memory. Symbols can be compared (a = 5?) in one time unit.

The number of different symbols that actually appear in string B is defined to be s
(which must be less than n and ¢).

The longest common subsequence problem has been solved by using a recursion
relationship on the length of the solution {7, 12, 16, 21]. These are generally applicable
algorithms that take O(mn) tirne for any input strings of lengths m and n even though
the lower bound on time of J(mn) need not apply to all inputs [2]. We present
algorithms that, depending on the nature of the input, may not require guadratic time
to recover an LCS. The first algorithm is applicable in the general case and requires
O(pn + n log n) time. The second algorithm requires time bounded by O((m + 1 —p)p
log n). In the common special case where p is close to m, this algorithm takes time ,
Copyright © 1977, Association for Computing Machinery, Inc. General permission to republish, but not for
profit, all or past of this material is granted provided that ACM's copyright notice is given and that reference i
made to the publication, to its date of issue, and to the fact that reprinting privileges were granted by
permission of the Association for Computing Machioery. -
This research was supported by a National Science Foundation graduate feliowship and by the National Science '+~
Foundation under Grant GJ-35570. ardd
Author’s present address: Department. of Electrical Engineering, Rice University, Houston, TX 77001.

Journal of the Amoriatien ior Computing Machimiry, Vol. 34, No. 4, Ocoher 1977, pp. 664-675.

67

Algorithms for the Longest Common Subsequence Problem < ' 665

much less than n*. We conclude with references to other algonthms for the LCS
problem that may be of interest..m;ury sun o iz 2 amrr L0 amoaad +d M
P'l Algoruhm NS z-’ ‘ ilrﬂ{ .e_.: b Uf. STEUR BN z:-«- 'i;! lﬂfs::.:ir”-:ﬁ-’
We present in tlus sectron algorithm ALGD which wnl] ﬁnd an LCS in time O(pn +
n log n) where p is the length of the LCS. Thus this algorithm may be preferred for
applications where the expected lenglh of an LCS is sma.ll relanve to the lengths of the
input strings. SRR SN e v Fota i _ -

Some preliminary deﬁnmons are as follows N .

We represent the concatenation of strings X and Y by X ||Y A

~ Ay Tepresents the string a,a, -+ @, (elements 1 through ; of string A) Sumla.rly, the
prefix of length j of string B is represented by By. ,

We define L(i, j) to be the length of the LCS of prefixes of lengtth and j j of smngsA
and B, i.c. the length of the LCS of A,, and By;. s e Lyt

@, j) represents the positions of a; and ,, the ith element of stnng A and the]th
element of string B. We refer to i (j) as the i-value (j-value) of (1,). Lot

We define {(0, 0)} to be the set of O-candidates, and we define (z 1) 0 be a k-
candidate (for k = 1) if a;, = b; and there exist i’ and j’ such that i’ < i,j’ <. j, and
{i’,j') is a (k = 1)candidate. We say that (i*, /') generates {i,j)- . N -

. -Define a, = by = $ where $ is some symbol that does not appear m stnngs Aor B
- Lemma 1. Fork =1, {,j)is a k-candidate iff L(i,j) 2 k and a, = b,. Thus there is a

common subsequence of length k of A yand By. -

Proor. By induction on k. ¢, j) is a-1-candidate iff a, = b, (by deﬁmtron), in wluch
case L(i, j) necessarily is at least 1. Thus the lemma is true for k' = = 1. Assume it is true
for k — 1. Consider k. If (i, j) is a k-candidate then there exist i’ < i and j* < j such
that {i*, j') is a (k — 1)}-candidate. By assumption, there is a common subsequence D’ =
ddy -+ dp., of Ay and B,y. Since g, = b, ((, j) is a k-candidate), D =-D’ Jla, is a
common subsequence of length k of Ay and By. Thus L(i,j) = k. -

Conversely, if L(i, j) = k anda, = b,, then there existi’ </ andj’ <j such thata‘. =
bp and LG’ j') = LG, j) - 1=k~ 1. G, 1{ isa(k ~ 1)-c.and1date (by inductive
hypothesis) and thus (i, j) is a k-candidate. O

The length of an LCS is p, the maximum value of k such that there exists a k-
candidate. As we shall see, to recover an LCS, it suffices to maintain the sequence of a 0-
candidate, l-candidate, ... , (p — 1)-candidate, and a p-candidate such that in this
sequence each i~candidate can generate the (; + 1)-candidate for0 s i <p.

Rule. Letx = (x,,xy andy = (y,, ys) be two k-candidates. If x, = y, and xy = y,, -

then we say that y rules our ¥ (x is a superfluous k-candidate) since any (k + 1)-
candidate that could be generated by x can also be generated by y. ‘Thus, from the set
of k-candidates, we need consider only those that are minimal under the usual vector
ordering. Note that if x and y are minimal elements then x; < y, iff x; > y,.

LeMMA 2. Let the ser of k-candidates be {(i,, j)} (r = 1, 2,_...). We can rule our
candidates so that (after renumbering) i, < iy < - and j; > j, > i

Proof. Any two k-candidates {, 1) and_¢’, j'Tsatxsfy one of the following (wnhout
loss of generality, i < i'):

Vi<i',j=j. S - a
QR i<it, j>g.
3)i=i ,j\sj _ — IS

@i=i,j>). '
In cases (1) and (3) ¢’, ;') can be ruled out; m case (4) ¢, Dmn be ruled out and case (2)
satisfies the statement of the lemma. Thus any set of k-candidates which cannot be
reduced by further application of the rule will satisfy the condition mted .in -the
lemma.~ O <z om s s1sai 1 0 70 130 awlne— anrrd arriagie-A ! mm:up-nu ad
= The set of k-candidates, reduced by apphcauon of the gule so-u ‘to “satisfy _the
statement of Lcmma 2’;::: the rmmmul elemenm of the et of k—andxdnu (since no

Pl S e

68

o,

R -
3"‘"& “‘ AL T s ar- 2
I e T

.'., . oo m.lt‘bﬂ nm‘.\tdu?_ .-t"r-.m') o DthlL N lnSannc
element can rule out’s m:n:m‘u element) and will be called the set of minimal k-
candidates. By Lemma 2, there is at most one minimal k-candidate for each i-value.

We note that if {, j) is a minimal k-candidate then L(i, j) = k and {, j) is the k-
candidate with j-value i having smallest j-value j such that L(i, j) = k.) i

Lemma 3. Fork = 1, {,))is a minimal k-candidate iff j is the minimum value such
that b, = a, and low < j < high, where high is the minimum j-value of all k-candidates
whose i-value is less than i (no upper limit if there are no such k-candidates) and low is the
minimum j-value of all (k — 1)-candidates whose i-value is less than i.

- Proor. Assume that (i, j) is a minimal k-candidate. If j = high then there is a k-
candidate ¢', j') such thati’ < | andj' = high < 7. i, ;) would be ruled out by ¢, j)
and thus would not be minimal. -

Ifj < low, then there is no (k —~ 1)-candldate that can geénerate (z j). @, j) would not
be a k-candidate. '

by=a,is requxred by the definition of k-candldate and low < j < high has just been
shown. If j and j' both satisfy fhese constraints,j <j', then ¢, j') is ruled out by {, j).
Thus, for a pamcularz j must be the minimum j-value of all k-candidates satisfying

_these constraints. : ,

The if of the lemma has thus been shown. . - - -

The converse is easily shown: If (i, j) is not a k-candidate, then either a, # b, or there is
no (k — 1)-candidate that can generate (i, j). That is, the j-value of all (k — 1)-candidates
with i-value less than { is greater than or equal to j. This is equivalent to j < low.

If (i, j) is a k-candidate but is not minimal, say i’} j') rules out {i, j}, theni{’ =i andj’' =<
j. I£i' <i,then clearlyj < high is violated. Otherwise,i’ = i. In this case j* > low since
(', j') must be generated from a (k — 1)-candidate and b, = a, since (', j) is a k-
candidate. Alsoj’ <j < high. Thusj' satisfies all the constraints and; is not the minimum
value that does so, a contradiction. "D

We present algorithm ALGD, which, using the results of Lemma 3, obtains an LCS
C of length p of input strings A and B in time O(pn + n log n).

The algorithm is based on-am efficient representation of the L matrix. Since L is
nondecreasing in both arguments, we may draw contours in its matrix as shown in the
following example:

. , B .
- NS e . —
R b a a b a
- e oo Ao
b 2 2 2 2 '
c 22 22 2
Ay 22222 :
b 2 3 3 3 3
b E) 2|33 3@4 ,

R

The entire matrix is specified by its contours. The contours are described by sets of - -

minimal k-candidates. The contour between L-values of k — 1 and k is defined by the set
of minimal k-candidates whose elements are posmoned at the convex corners of the

contour.:~ = 7+ -rieoinoe Cos Eeor e T

To keep track of the minimal k-candxdates, we use the matrix D. D[k i] is the j-value
of the unique minimal k-candidate having i-value of i or 0 if there is no such minimal k-
candidate. Thus D{k, i] describes the contours by giving the number of the first column

of row i that is in region k (if that number is different from D{k, i — 1]). =~ =%

69

Sidigoss

A b bk L

it i

3
B

Algorithms for the Longest Common Subuquence Problem 667

- lowcheck is the smallest i-value of a (k -~ 1)-candidate. FLAG has value 1 i there are
any k-candidates.

NB[§] is the number of times symbol 8 occurs in stnng B PB [0, 1], .,
PB[6,NB(0]] is the ordered list, smallest first, of positions in B in which symbol @ occurs.

If ¢, the size of the symbol alphabet, is not large compared to n, then we may index an
array by the bit representation of a symbol. Otherwise, if ¢t 2> n, then we construct a
‘balanced binary search tree which provides a mapping from symbols that appear in string
B to the integers 1 through s (there are s different symbols that appear in B). Whenever
string element a, appears as an array subscript (as in Ma,]), it should be understood that
we are indexing N by the integer s; which has been obtained (during initialization for
- ALGD) from traversing the search tree just described. If a; does not appear in B, then
the integer s, is zero. An equivalerit assumption is followed for subscript b, in step 1.

ALGD(m,n, A, B, C,p)

1. NB(8)—Oforo=1,..,s
--. PB(8,0)~—0fora=1,..,s
©, PB(0,0] ~0; PB(0, 1] «~0
* forj « 1step] wntil n do

NB(b] — NB(b] + 1

PB(b,, NB(b,J] ~j ' s : : : .
- B(b]) —j)) N
2. D{0,/]—0Ofori=0,..,m
lowcheck «— 0
3. fork — 1mep1ldo
begin
4. N[g] —NBglforo=1,..,s o
N{0] ~1
FLAG «~ 0
low «— D{k - 1, lowcheck] —. _
high ~n + 1 ——
5. fon«-lowchxk+1ﬂplndlm
begin
6. while PB(a,, Ma,] = 1] > low doN[a,_] «-N[a,_] -1
7. i high > PB(a,, N{a/]] > low l
1. them . ’
high «- PBla,, Nfa]l
Dik, i] « high .
~ M FLAG = 0 then {{owcheck = i; FLAG « 1}
end -
else Dik,i] «~ 0

8. ¥ Dk = 1,i] > 0 then low «— D{k - 1,1] : -
ead loop of step §
9. HFLAG = 0 then go to step 10 -
esd loap of step 3
10. p—k -1
k~—p
fori+—m+1ntep—- lumth Odo- -— - -
i D{k, i] > 0 then .
Cp = a
ke~—k=-1
ead

Tbe loop of step 3 evaluates the set of minimal k-candidates fork = 1, 2, ...". The loop
of step 5 evaluates the set of minimal k-candidates, smallest i-value first, and fills in the
D array accordingly (in the examgle given previously this is left-to-right) while scanning
the chains of occurrences of a given character in B with largest j-value first (right-to-left).
For each i, i can be the i-value of a minimal k-candidate if there is a j satisfying the
constraints of Lemma 3. This is tested by determining the minimum j-value of symbol g,
that is greater than low If that vnlue is less than Iugh t.hen (a, j) i 2 mmnna] k-c:ndxdate

LR § PRSI) chia A P

x.;_;.‘,,’ b a"p'\zds..t V& P il T Proeeds 15, WIPRE I S S -

70

" Algorithms for the Longest Common Subsequence Problem 669

Steps 7 and 8 are done in constant time. Total time is 0(pm) Step 9 is done in

constant time. Total time is 0(p| Step 10 is done in txme O(m). Tota.l cxecunon time is

thus as stated above. O - B * R e
Notc that forp = 0(log s), ALGD requu'es nme 0(pn) Qe *—-*‘».-'" o

pelogn Algon:hm

We now consider a special case that often occurs in applications such as determmmg
the discrepancies between two files, one of which was obtained by making minor
alterations to the other (and we wish to recover those a]terations). We assume that
there is an LCS of length at least m — ¢ (for some given ¢).

If Cis an LCS of A and B, there will be at most ¢ elements of A that do not appear in
C. The position of each such element will be called a skipped position. Thus there are at
most € skipped positions. We define e to be ¢ + 1. ‘

If G, j) is a minimal k-candidate that can be an element in an LCS (that is, a, = b, is the
kth element of an LCS), then k = i < k + ¢ (otherwise more than ¢ positions in A would
be skipped). We shall call such candidates feasible k-candidates. Leth =i — k. Then0 =
h = ¢ and A is the number of positions in A that have been skipped thus far (through
Gx+a)- By Lemma 2, there is at most one feasible k-candidate with i-value of i.

Let the feasible k-candidate pairs (i-value and j-value) be held in arrays Fand G, e.g.
¢ + k, j) would be described by F{h] = h + k, G{h] = j. If there is no feasible k-
candidate with i-value A + k, let F[r] = Flh - 1], G[A] = G[# — 1], and define F[-1]
= 0, G{-1] = n + 1 By this construction and by Lemma 2, F is a nondecreasing
sequence and G is a nonincreasing sequence.

Define NEXTB(9,) to be the minimum r > j such that b, = 4. If there is no such r,
then NEXTB(9, j) is defined tobe n + 1.

Lemma 6. If(,) is a feasible k-candidate ,then j = NEXTB(a;, G[h]), where h =i —
k and where G{h] is the value associated with the set of feasible (k — 1)-candidates.

Proor. Let {, j) be a feasible k-candidate. By definition of k-candidate, there must

- exist i’ < i and j' < j such that {i’, j') is a feasible (k — 1)}-candidate. By Lemma
3, j is the minimum (over possible j') of NEXTB(a,, j'). But /7 < j’ implies that
NEXTB(#, ") s NEXTB(8, j'). Therefore j = NEXTB(a;, min possible j'). Since j-
values of minimal k-candidates decrease as their i-values increase, the minimum
possible j’ is the j-value of the feasible (k — 1)-candidate whose i-value is as large as
possible but less than i = h + k, i.e. not more than h + (k — 1). G{h] is precisely that
j-value. So we conclude that j =- NEXTB(a,, Gih). O

In order t¢ be able to recover an LCS, we shall keep track (for each feasible k-
candidate) of which A positions in A have been skipped. A straightforward method,
keeping values of F[h] for all A and k, requires space of O(pc). We shall use a data
structure that requires only O{e* + n) space wlthout changing the order of magnitude of
time requirements.

Let there be an array KEEP whose clements are triples such that

KEEP[x] = (aa[x], nskip(x], pt [x]).”

P is an array of size e such that, aftcr the set of feasible k-candidates has been
determined, x = P[] will be the index of the element of KEEP thadt has information
enabling recovery of a common subsequence that has a,q,; = b, as its kth element. F[A]
= b k, and thus precisely 4 of the elements ay, ... , @) Will not appear in the common
subsequence. To recover the common subsequence, it is sufficient to recover these A
skipped positions. If x = 0, then no positions were s]npped and ifx < 0 then thcre is no
common subsequence to be recovered.

The method of recovery is as follows: - o N

If x is zero, there are no more skipped positions to be recovered SNy
. Otherwise, aa{x] is the largest index of a skipped position in string A . n.tlap[x] is the
number of consecutive positions ending in aafx], all of which are skipped positions.

71

670 . a1 s !,NA“.]' ramtmY) 13 DANIEL §. HIRSCHBERG

If all of the skipped A-positions have been recovered, then prx] is zero.

Otherwise, pf[x] is the index of KEEP that has information enabling recovery of the
skipped A-positions having indices smaller than aa[x] —mskip[x] + 1.

Example. If positions 2, 5, 6, 7, 9, 10 in string A correspond to a common
subsequence of length 6 (of A,), then A = 4 and KEEP{ P[4]] will enable recovery of
positions 1, 3, 4, B: aa[P[4]] = 8, nskip[P[4]] = 1, pr[P[4]] = y ‘(another index of
KEEP). aa[y] = 4, nskip[y] = 2 (positions 3 and 4 have been skipped), pi{y] =
2. aa[z] = 1, nskip[z] = 1, pr{z] = O (all skipped positions have been recovered).

Reference counts are kept for each element of KEEP. Spaces in the KEEP array are
maintained by garbagé collection functions GETSPACE which provides an available
space and PUTSPACE which places a newly available space (i.e. one whose reference
count drops to zero) on the garbage linked list. See T10] for implementation techniques.

We now present ALGE, which uses Lemma 6 in order to solve the LCS problem in
time O(pe log n):

ALGE{m,n, A, B,C,p, ¢
1. F(h), Glh] —~Oforh =0, ¢
P[0] = 0; Plh]«— ~1forh = 1, .., €
2. for k «— 1 step 1 while there were candidates found in the last pass do-
begin
3. imax~0
jmin —n + 1
4. forh «— O step 1 until ¢« do

S. P=—h +k
j «— NEXTB(,, Glh)
Hj=jmn.
6. then begin .
F{h] «— imax —
Glh) + jmin
NEWPR] = -1
ud e .
7. eise begin
nskip «— (i = 1) - F{h]
¥ nskip = 0
thea NEWP[h] « P[h]
eise begin ’
NEWP(h] «— GETSPACE
KEEP[NEWP[h]] « ¢ - 1, nskip, P[h - nskip])
end
8. imax «— i
jmin - j
FlR] =i
Glh] —j
end
9. and loop of step 4
10. If no k-candidates were found thes goto step 13
for i «— 0 step 1 until ¢ do

begin
11. REMOVE(P[i)
Pli] = NEWP([i]
ead loop of step 10
12. end loop of step 2
13. x + min h such that P[] 2 0, —1 if none such
p—k -1
Hx <0 ORp <m - ¢ then {print “NO"; goto slep 15}
14. RECOVER
15. END of ALGE

SUBROUTINE RECOVER
1 SKIP[x + 1] =0 v . -

72

Algorithms for the Longest Com:non Subsequence Problem ; 671
2. whiley % do

L.:, count e n.rktp[y]

.. position + aa[y]
3., whilecount > 0do

SKIP(x] « position
L xex =1 :
position «- position =~ 1
count « count = 1
end loop of atep 3
-y —piy]
- ... end loop of step 2
4. x+1
k1 .
" for « 1 step 1 wntil lastnawch do
-- - i -SKIP[:] thelu —x+1
Ca a4
] ko—k+1
. _end o

5 END OF RECOVER

The loop of step 2 evaluates sets of feasnble k-candidates t'or k = 1 2, The loop
of step 4 evaluates whether there is a feasible k-candidate bhaving precxsely h skipped
positions, for A = 0, 1, ..., ¢, by using Lemma 6 to determine the j-value for a
particular /-value and then checking, by using Lemma 2, whether {, j) is minimal. imax
is the maximum i-value of feasible k-candidates generated thus far (i.e. with i-values
less than the current value of i); jmin is the corresponding j-value (which is the
minimum j-value of feasible k-Candidates generated thus far). If {, j) is a-feasible k-
candidate, then it is stored in the /7 and G arrays and information will be stored in-P[h],
enabling recovery of any additional skipped positions that occur between i and F[hA] as
well as the skipped positions occurring before FTh] ((F[A], G[A]) is a (k — 1)-candidate
that can generate (i, j)). The h skipped positions corresponding to (F{A], G[A]) are
recoverable by accessing KEEP[P[h]]. In general there may be more than one feasible .
k-candidate that will be generated by (F[A], G[h]). Thus we must not destroy P[4] until
all required references to XEEP[P[A]] are made. For this reason, new values for the P
array are stored in the NEWP array. When we no longer need the old values of P (after
‘the inner loop of steps 4-9), we can then replace them with the new values, being
careful to decrement reference caunts of KEEP elements that were pomted 10 by the
old P array. -

Function REMOVE(:) decrements the reference count of KEEP[x] (unless x = 0 in
which case nothing is done), and, if KEEP[x] now has reference count zero, then a call
will be made to REMOVE(pt[x]) after KEEP(x] has been put on the garbage linked list
by usrng PUTSPACE. PR

-, -

l

~

Implemenmnon o f NEXTB - ~.

. The following should be done before using ALGE:

1. Sort the symbols in A and then construct a baianced binary search tree of symbols that appear in string A.
Cet there be g3 such symbols (s5 < m).
2. fork « 1 step | satfl 55 do LAST[I:] -
3. fori «— 1 step 1 watil n do
begin
find out that b = 0.
.]~ LAST(k]
" LAST[k] «i T '
- i % OnnnHEXTU]o—:
" ofse FIRSTTk] «—i . = .
. -dloop of step 3

73

t
)

= 672 S 2 dv.\'“ &a.upw&.(. '\n:ﬂmo'J Yeuy] .‘E’:‘ .qmm‘?‘c
'thc-l 00 et Cenes ad ,_.1\.,~. ‘.“-N_-.:u..u_,. Sl then aTyl ;‘;’ -
btka-lluplllﬂ&r‘o g TR T T b Tyt '.r_‘!!. P
begin : : :

Place the positions j of B much that b, = 8, into N[start] through Nlstart + an = 1] where #, occurs nn
times in string B. The first position in B st which 6, occurs is at FIRST[k]. If 6, occurs at position /, then
the next occursence of 6, im 2! will be at position NEA’I‘U‘] unless LASTTk] = j, in which cut\here are no
more occurrences of 6, in B.

S[k] &= nart ‘) 7 /’_/ ~ ™.
QT «— Start + nn K

-d - .

We can find out that ay=-8, in time O(log s). N[S[1]:5[k + 1] — 1] holds the block
of positions j with b; = @, - This block of cells can be searched by using binary search of
a linearly ordered array [11 Sec 6.2, 1] NEXT(a,, j) can thus be executed in time
O(log n). - - —

If 5 is very small, then the following alternate way of computmg NEXTB(6, j) may be
preferred: Instead of comstructing a compressed array in step 4, construct a NEXTB
matrix while in step 3. For eachd, set NEXTB[k, (] = i forj = ¢t < i.This will resuit in
time and space complexity (of the sctup) of O(sn). The function NEXTB(#,]) can be .
evaluated by determining that § = 6, in time O(log) and by doing a sxmple table look-

- up.

ALGE retains k-candidates, as did ALGD, except for tﬁosc ‘candidates that cannot

lead to a sufficiently long common subsequence because too many A-positions have

already been skipped. The (k -+ 1)-candidates that can be generated by the d.ropped Ic-
candidates also skip too many A4 -positions. - - T e ;
LemMa 7. ALGE retains all feas:ble k-candidates. .. = —— : -
Proor. By induction on k. It is trivially true for £ = 0 (the F.and G \u'rays are
initialized to zero in step 1). Assume that the set of feasible (k — 1)-candidates has been

evaluated and stored 'in arrays F and G. ALGE generates the sat of feasible k-

candidates in order of increasing i-value. F[h] is to hold i =k + k if i is an jwvalue of a

feasible k-candidate; otherwise F[h] is to hold the maximum i/’ < i such taat i’ is a

feasible k-candidate. G[#] is.to hold the corrcsponding j-value. imax and jmix hold the

last-generated feasible k-candidate, which, by Lemma 2, has the maximum i-value and
mmimum j-value generated thus far. Step 3 initializes them to correctly indicate that no
k-candidates have yet been generated. Step S evaluates the j-value fora given potential
k-candidate by using Lemma 6. Ifj = jmin then, even though the necessary cordition for

feasibility has been met, ¢, j) is not minimal since it would be ruled out by (imax, jmin). .

In this case step 6 sets F{A] and GlA] to imax and jmin. Ifj < jmin, thep §, j) it minimal

since it cannot be ruled out by any previously generated k-mndjdate (j < jmin) and it

cannot be ruled out by any future generated k-candidate (all future i’ > i). In this case

step 8 sets F[h] and G[A] and also updates imax and jmin. O Hoa"300 ar e T o
THEOREM 3. ALGE correttlv compute: :he LCS of strings A and B xf the LCS is of
length at least m — €. "+ ~ Cow T

Proor. By Lemma 7, ALGE correctly keeps mmlmal k-ce.ndxdates Thus,xf there
is a common subsequencc of length p @ m —~ ¢, then there is a minimal p-cindidate |
which will be feasible. The data structure of ALGE keeps track, for each fessible k-.
candidate {, j), of the h = i -~ k positions in string A that have been skippei in the
common subsequence of length k of A,, and B,,. P{#] points to the element of KEEP,
that contains the necessary information. P is updated in step 7 when a feaible k-
candidate is generated. If any additional positions are skipped (between the k-caadidate
@G, j) and the (k — 1)-candidate (', /) that generated {, j)), then that inforrmtion is
recorded in an element of KEEP as well as a pointer, enabling recovery of tie A —
nskip previously skipped A-positions (of ¢i’, j)). Subroutine RECOVER recovers the
skipped positions of a feasible p-candidate by reversing the process in which they were
stored and then computes the LCS by deleting the skipped positions from strmg 4.

THEOREM 4. For €= 0(n'"?), ALGE rcquzre: space linear in n. - -

. i L
-t ¢ .

74

Algorithms for the Longest Common Subsequence Problem ' 673

. ProoF. The KEEP array requires O(e?) space: The common subsequence implicd by
k-candidate (1 + k, j) has h skipped A-positions, 4 < ¢, and thus can use at most k& spaces
in the KEE P array. The total number of spaces referred to by all feasible k-candidates is
thus at most e(e + 1)/2. Adding to that the (exactly) ¢ references to get the set of feasibie
(k + 1)-candidates gives a total of no more than (e? + ¢)/2. Each element of array KEEP
requires four words (aa, nskip, pt, and a reference counter). O L

The arrays and space that they use are as follows: F[e], Gle], C[p] Ple], NEWP[e]
KEEP[Z:’ + 2¢), FIRST[ss], NEXT[n), LAST[ss], SKIP[e], S[ss], N[n). -

- The NEXTB function requu'es at most 2n locations to store the various balanced
binary search trees.~ -

- Thus a total of at most 2¢* + 7e + 4n + p ¥ 3ss locat1ons is used Fore = O(n"’), space
__Trequirements are linear inn. O T O LTI AR
" _THEOREM 5. ALGE requires time O(pe log n).

"Proor. Preprocessing for the NEXTB function requires ‘time Oon log m) Step 1
takes time O(e). Step 2 executes steps 3-12 p times. Step 3 takes constant time for a
.total time of O(p). Step 4 executes steps 5-9 at most ¢ times. Step 5 takes time O{log n)
for a total time of O(pe log n). Steps 6-9 take constant time for a total time of O(pe).
Steps 10-12, excluding time spent in function REMOVE take ttme O(e) for a total ttme
of O(pe). -

Subroutine RECOVER recovers at most € skipped posmons (taking time O(e)) and
then deletes them from string A (taking time O(m)) for a tot:l time of O(m).

The number of references (to array KEEP) removed is at most the number of
references inserted. There are at most pe references inserted (one per execution of step
7), and the amount of time (per reference removal) spent in function REMOVE is
constant. Therefore the total time spent in function REMO VE is O(pe).

Therefore the total time of execution of ALGE is O(petogn). O

It is noted that step 5, requiring O (log n) time, is the bottleneck, causing total time
requirements of O{pe log). P._van Emde Boas's recent algorithm for priority queues
[19] appears capable of solving the position-finding problem in time O(log log n) If sa,
this would reduce the time bound of this problem to O(pe log log n).

ALGE assumes that ¢ is known. If ¢ is not known, then set ¢ « 2 and proceed
through the algorithm. If that value of e is insufficient (i.e. there is no common
subsequence of length m — ¢), then double the guess for e and contmue 1terat1vely until
a common subsequence is found. |

Total time spent will be (letting & be the multtpllcatlve coefficient of the time
requirement)

- 2pk logn + 4pk logn + 4 epk log n,

which is less than 2pek Iog n. Since e < 2(m + 1 — p), we can recover an LCS in ume
O(p(m + 1 — p)log n). St - o

Other Algorithms

The only known algorithm for the’ l:CS problem with worst-mse behavior less than
quadratic is due to Paterson [14]. The algorithm has complexity O(a®log log n/log n). It
uses a “Four Russians” approach (see [3] or [1, pp. 244-247]). Essentially, instead of
matrix L (where L[i, j] is the length of an LCS of 4,, and B,;,) being calculated one
--element at a time (see [7]), the matrix is broken up into boxes of some appropriate size
k. The high sides of a box (the 2k — 1 elements of L on the edges of the box with
largestindices) are computed from L-values known for boxes adjacent to it on the low
side and from the relevant symbols of A and B by using a look-up table whlch was
precomputed.
The algorithm assumes a fixed alphabet size although modxﬁcauons to the algonthm
may be able to get around that condition. - -, | ceocell el Tt

75

T

674 .) ,- - T

There are 2k + 1 elements of L adjacent to a box on the low side. Two adjacent L-
elements can differ by either zero or cne. There are thus 2* possibilities in this respect.
The A- and B-values range over an alphabet of size s for each of 2k elements, yielding a
multiplicative factorof s**, and the total. mumber of boxes to be precomputed is therefore
23a+s 0 Each such'box can be precouputed in time O(k®) for a total precomputing
time of O(k?22+losa) ST

There are (n/k)* Boxes to be looked up, each of whxch will require O(k log k) time to
" be read, for a total time of O(ntlog k/k). ~ =~

The total executian time will thereforé-be O(k?2tk+los 8! 4 njog k /k). If we letk = log
n/2(1 + log s), we see that the total exerution time will be O(n*log log n/log n). -

LTI -+ DANIEL 8. HIRSCHBERG

B

Restrictions on the ECS Problem

-Szymanski [17] shows that if we consider the LCS praoblem with the restriction that no
symbol appears more than once within either input-string, then this probiem can be
solved in time O{n Tog n).

In addition if one of the input strings is the string of integers 1 — n, this problem is
equivalent to finding the longest ascending subsequencc in a string of distinct integers. If
we assume that a comparison between mtegexs can be done in unit time, this problem can
be solved in time O(n log log n) by using the techniques of van Emde Boas [18].

ACKNOWLEDGMENT. | wou]d like to thank the (anonymous) referees for their many
helpful suggestions vhich have led to a material improvement in the readability of this
paper. = . . : S ~ :
REFERENCES =~

(Note. References [4-4 8, 9, 13, 15, 20, 22, 23] arc not cited in the text.)

1. AKO, A.V., Horcacet, J.E., aXD ULtuax, J.D. The Design and Analysis of Compuer Algorithms.

Addison-Wesley, Raading, Mass., 1974.

2. Ano, A.V,, Huscisexg, D.S.,’anp ULLuan, J.D. Bounds on the eomplexny of the longesx common__
"~ subsequence problea.J. ACM 23, 1 (Jan. 1976), 1-12. s
3. Arwazazov, V.L., Binic, E.A., Kzoneop, M.A., aND FaRADZEV, I.A. On economic construction of .

the transitive closure of a d.lrecled graph. Dokl. Aknd Nauk SSSR 194 {1970), 487-488 (in Russian) .~
Esglish transl. in Sovier Matk. Dokl. 11, 5 (1970), 1209-1210. e
4. CavataL, V., Krazser, D A., aND KNutH, DLE. Seclected combinatorial research problems S'I' AN
C$-72-292, Stanford U., Stanford, Calif., 1972, p. 26.
5. CHVATAL, V., aND SaNKOFF, D. Longest common subsequences of two random sequences. STAN-CS-
75-477, Stanford U.. Stanford, Calif., Jan. 1975. =
6. Hoescuzexg, D.S. On finding maximal common subsequences TR-IS6 Comptr. Sci. Lab., Princeton -
U., Princeton, NJ ,Aug. 1974, . o -
7. Hnscmuc D.S. A linear space algomhm for computmg mwmnl common subsequences. Comm
© ACM 18, 6 (June 1975), 341-343. - - - —_3
8. Hmscuperg, D.S. The longest common suhequence problem. Ph.D. Th., Princeton U., Princeton,
NJ., Aug. 1975. Y
9. Huwnt, J.W., anp Szvmansk, T.G.- A fast algorithm for computing longest common :ubsequeneﬂ v
Comm. ACM 20, 5 (May 1977), 350-353, : v
10. KNUTH D.E. The Ant of Computer ngmmmg, Vol. 1: Fundamental Algandun.r Addxson-WeslGY- i
~ . Reading, Mass., sec. ed., 1973, - -, : il
11. Knuti, D. E. The At of Campuzer ngmmmg ‘Vol. 3: Sorting and Searching. Addison-Wesley,, -
Reading, Mass., 1973. L -
12. Lowrance, R., AND WaGNER, R A. An enensnon of the smng—to-stnng correction pmblem J. Aci 2
T 22,2 (April 1975), 177-183. N ,_
13. NeeDprEMAN, S.B., AND WunscH, C.D. A gcnenl method appiicable to the search for similarities in- f
. the amino acid sequence of two proteins. J. Mol. Biology 48 (1970), 443—453. : .-“‘:_:
14. PatERSON, M.S. Unpublished manuscript. U. of Warwick, Coventry, England, 1974. iin'
15. Sanxorr, D. Matching sequences under deletion/insertion constraints. Proc. Nat. Acad. Sci. USA 6. }‘
(Jan. 1974), 4-6. :
16. SerLess, P.H. An algorithm for the distance Lerween two finite sequences. J. Combinawrial 77"’-"7”

JA

Ser. A, 16 (1974), 253-258.) :

_v

76

‘g - b T ornsst Common Sub. . v me Prolt -

' - Sast Nflbe Ak, 0T MTLC, . proniee TR-170, Comptr. S.
Fare o, M3 Jan. 1975 -
YA s e log nt am-line cortt o for Xl " awn..@. 1R 78
RN R YO SNCYL T T
oL e PR o 7Y B3 I VAR U A SN 'V ca oS 16 A L
- T gt el et YOTS e, 95-80
Coovs N Vst st o P R
R Tpt G o 2ie-220.
D The -5 .coonme el .
ta A K dounds P

“ a3, b Un e on,utin . 4[N I -P S
i, Uler aos ot o L :

[E+ias

5y MEVISED 1 GLAR ST

77

Programming G. Manacher, S.L. Graham
Techniques Editors

A Fast Algorithm for
Computing Longest
Common
Subsequences

James W. Hunt
Stanford University

Thomas G. Szymanski
Princeton University

Previously published algorithms for finding the
longest common subsequence of two sequences of length
o have had a best-case running time of O(n?). An
algorithm for this problem is presented which has a
ranning time of O((r + n) log n), where r is the total
sumber of ordered pairs of positions at which the two
sequences match. Thus in the worst case the algorithm
has a running time of O(n? log n). However, for those
applications where most positions of one sequence
match relatively few positions in the other sequence,
running time of O(n log n) can be expected.

Key Words and Phrases: Longest common
subsequence, efficient algorithms

CR Categories: 3.73, 3.63, 5§.25

Copyright © 1977, Association for Computing Machinery. Inc.
Genceral permission to republish, but not for profit, all or part 9'
this material is granted provided that ACM’s copyright notice
given and that reference is made to the publication, to its date of
issue, and to the fact that reprinting privileges were granted by per-
mission of the Association for Computing Machinery.

The work of the first author was partially supported by Bell
Laboratories’ Cooperative Research Fellowship Program. The work
of the second author was partially supported by NSF Grant
GJ-35570 and DCR74-21939. .

Author's addresses: J.W. Hunt, Department of Electrical
Engineering, Stanford University, Stanford CA 94305, _T-G'
Szymanski, Dept. of Electrical Engineering and Computer Science.
Priceton University, Brackett Hall, Engineering Quadrangic.
Princeton, NJ 98540.

Communications May 1977
of Volume 20
the ACM Number §

78

DORCLI0TN

Many algorithms (1, 4, 6] for finding the longest
pommon subsequence of two sequences of length n
Mave appeared in the literature. These algorithms all
thave a worst-case (as well as a best-case) running time
ol O(~*).!

.. A more relevant parameter for this problem is r, the

number of matching pairs of positions within the
quences in question. We shall present an O((r+n)
pg n) algorithm for the longest common subsequence
oblem. In the worst case this is of course O(n* log n).
pwever, for a large number of applications, we can
Sepect 7 to be close to n. In these situations our al-
forithm will exhibit an O(n log n) behavior. Typical of
faech applications are the following:
4) Finding the. longest ascending subsequence of a
. permutation of the integers from 1 to 2 [3].
2) Finding & maximum cardinality linearly ordered
subset of some finite collection of vectors in 2-space
s [71.
BF3) Finding the edit distance between two files in
R which the individual lines of the files are con-
b sidered to be atomic. The longest common subse-
5 quence of these files, considered as sequences,
8 represents that common ‘“core” which does nor
f have to be changed if we desire to edit one file
f . into the other.

[bus in the general case our algorithm wﬂl not take

och longer than the algorithms of (1, 4, 6], whereas in
oy common applications, our algonthm will per-
prm substantially better.
k. Let A be a finite sequence of elements chosen from
pme alphabet. We denote the length of 4 by | A4 |.
j/] is the ith element of 4 and A[i;j] denotes the se-
nce Afi], Ali+1], -+, AUl
i If Uand ¥ are ﬁmtc sequences, then Uis said tobe a
osequence of V if there exists a monotonically in-
Bpeasing sequence of integers 7y, 73, - - , Fip such that
U] = Vir for 1 < i < |UJ|. Uisacommon subse-
Jwence of A and B if U is a subsequence of both 4 and
A longest common subsequence is a common subse-
ppeace of greatest possible length.
* Throughout this paper 4 and B will be used to
tnote the sequences in question. For ease of presenta-
we shall assume both sequences have the same
agth which will be denoted by n. The number of
ments in the set {(i, /) such that A[/] = RB[j]} will
denoted by r.

inary Results

f: The key data structure needed by our algorithm is
P armay of “threshhold values” T, defined by T, =
smallest j such that A[1:i] and B{l:] contain a

g non subsequence of length k. For example, given
MUCDCes A = ghcbdda, B = badbabd we have T, =

l, T;,g - 3, T‘J - 6, T;,¢ - 7, T;,; = undefined.

Each 7,, may thus be considered as a pointer
which tells us how much of the B sequence is needed to
produce a common subsequence of length k with the
first i elements of A4.

Note that each row of the T array is strictly in-
creasing; that is,

Lemma 1. If T.’,l, T.‘,g, .
Tia<Tig< -+ < T;,.

Proor. Consider the common subsequence of
length k contained in A[l:i] and B[1:T.,]. Clearly
BIT,,] is the last member of this common subsequence
or else T, would not be minimal. Therefore 4[1:/] and
B{1:T;»— 1] contain a common subsequence of
lcngthk—l,thatis,T.'.g-‘ST.')_l. a

This linear ordering is of paramount importance in
the efficient implementation of our algorithm.

Suppose that we have computed 7T, for all velues
of k and wish to compute T, for all values of k.
We first show T, ; must liein a specific range of values.

LEMMA 2. Tiiy € Tigaa £ Tiae

PROOF. If A4[1:i] and B[1:T;,] have a common sub-
sequence of length k, then certainly A[l:i+1] and
B“:T.'_g] do also. Thus Tinie < Tir.

By definition, A[l:i4+1)and B[l:T,.;.] have a
common subsequence of length k. Deleting the last
element from each of these sequences can remove at
most one element from this common subsequence.
thus A[l:i/] and B[1:T.,;.— 1] have a common subse-
quence of length k — 1. Accordingly 7,41 < Tip1a — 1
and T4, < Ti+l,x . a

The following rule suffices to compute 7',,,, from
T.‘,g-l and T."g.

LEMMA 3.

smallest j such that Ali+ 1) = B[i]
TH-I.& =

-, T, are defined, then

and T, <j < Ti.h
T;. if no such j exists.

PROOF.

Case 1. No such j exists. By the minimality of
Tions, any common subsequence of the sequences
A[l:i+1] and B[l1:T.,.] must have B[T.,.] as its
last element. Moreover, by Lemma 2 and the prermnise
of this case, B[T,,,.] does not match A[i+4 1]. There-
for the same common subsequence of length k is also
contained in A[1:i] and B[1:T 1] Thus Tix € Tia
and by Lemma 2, T, must equal 7,1 .

Case 2. There exists @ minimal j for which A[i-+1]
= B(j] and T .4 < j € Ty . Certainly A4(1:i+1] and
B[1;] contain a common subsequence of length k,
namely the length k—1 common subsequence of

1 An unpublished result of Michael Paterson shows how to
construct an O(n*/log n) algorithm for the longest common ;ub-
sequence problem for sequences over a finite alphabet, and an
O((n* log log n)/log m) algorithm for sequences over an infinite
ordered alphabet. All results of this paper apply to the case of the
infinite ordered aiphabet.

Communications May 1977
of Volume 20
the ACM Number §

A[1:i] and BT ,,] with the pair A[i+1], B{j] “tacked”
onto the end. Thus Tox < J.

Assume temporarily that 7.y, < j. Since Lemma
2 guarantees that T,y < Tia. We can conclude that
the last element of the length k common subsequence
of A[l:i+1] and B[1:T.;,.] does not match Ali+1].
Thus A[1:/] and B[1:T:;.] also contain a common
subsequence of length k which implies that Tix <
Tiaa. By Lemma 2 then, Tix = Tiua. However,
by the above assumption and the premise of this case,
Tiia <j< Tix, implying that 7,4 # Tinas - This
contradiction leads us to conclude that the original
assumption of T.y: < j is incorrect and hence we
must have Ty, = . O

We can now present an O(n® log n) algorithm for
determining the length of the longest common subse-
quence. Subsequent refinements will enable us to not
only improve the running time to O((r + n) log n) but
also recover the actual longest common subsequence.

Algorithm 1

element array A(1:n), B{1:n);

isteger array THRESH(0:n];

imteger i, J, k;

THRESHI0] := 0

for { := 1 gstep 1 until n do
THRESHi) := rn 4+ 1;

for i :=] step 1 until n do
forj := nstep — 1 uatdl 1 do

if A[i] = B{j] then

begin
find k such that THRESHk -1] < j < THRESHIk];
THRESHI’(] c= ’

oad:

print largest k such that THRESHIK] » n + 1;

The correctness of the algorithm follows from
consideration of the invariant relation “THRESHI[k]
= T..: for all k” which holds at the start of each
iteration on i, and the invariant relation “THRESH[k]
= T,, for all k”” which holds at the end of each itera-
tion on i.

Since the THRESH array is monotonically in-
creasing (Lemma 1) we can utilize a binary search to
implement the “find” operation in time O(log n).
Thus Algoritbm 1 may be implemented to run in
O(nt log n) time.

Finally, notice that the direction of the loop on j
is crucial. Suppose that for some value of i, A[i] matches
scveral different B elements in a given ‘‘threshold”
interval, say B[ji], - -+, Blja] with THRESH[k—-1] =
Tigua < j1 €+ < jmu €T iq:, = THRESHIK].
From Lemma 3, we see that T,, = j; and that
THRESHk] should be updated to this value. Since
the inner loop of Algorithm 1 considers values of j in
decreasing order, each of the values jm, jm—1, - - , j1
will cause THRESH|k] to take on successively smaller
values until it is set equal to the desired value of j; .
If instead the loop on j ran upwards from 1 to n, then
not only would THRESH[k] be set to j,, but
THRESH[k+1] would be set to j,, THRESH[k+2]

82
80

would be set to j; and so forth. Since these latter as-
signments are unwarranted, we see that the loop on j
must run downwards.

The Algorithm

A small amount of preprocessing will vastly im-
prove the performance of Algorithm 1. The main
source of inefficiency in this algorithm is the inner
loop on j in which we repeatedly search for elements
of the B sequence which match A4[i]. Linked list tech-
niques obviate the need for this search.

For each position / we need a list of corresponding
J positions such that A[i] = B[j]. These lists must be
kept in decreasing order in j. All positions of the A
sequence which contain the same element may be
set up to use the same physical list of matching j's;
for the sequences A = abcbdda, B = badbabd the de-
sired lists are

MATCHLISTI]] = (5, 2)
MATCHLIST[2] = (6,4, 1)
MATCHLIST[3] = ()
MATCHLIST[4) = MATCHLIST[2)
MATCHLIST|S] = (1,3) ’
MATCHLIST|6) = MATCHLIST(5]
MATCHLIST(7] = MATCHLISTI[1].
We can now display ow: final algorithm,

Algorithm 2
clement array A[1:n), B{1:n);
imteger array THRESH(0:n];
list array MATCHLIST(1:n);
pointer array LINK[1:1);
pointer PTR;
comment Step 1: build linked lists;
for { :=] gtep 1 xmtil 7 do

set MATCHLISnl] (= <j1 ,j’ g v ,j,) such that

A>h> - >jand Ali] = Bl,lfor 1 S q < p;

comment Step 2: initialize the THRESH array;
THRESHI0) := 0;
for i := 1 step 1 umtil n do

THRESHi) :=n + 1;
LINK0] := null;
comment Step 3: compute successive THRESH values;
for i := 1 step 1 wntil # do

for j on MATCHLISTi| do

find k such that THRESH[k—1] < j £ THRESHI[k];
#fj < THRESHk] then
begin

THRESHLk] := j;

LINKk] := newnode (i,], LINK[k—-1));
od;
oad;
comment Step 4: recover longest common subsequence in reverse

order;
k := largest k such that THRESHk] » n + 1;

PIR := LINK]K];
while PTR » null do
begin
priat (I, /) pair pointed to by PTR;
sdvance PTR;
oad;
Communications May 1977
of Volume 20
the ACM Number §

The subroutine mewnmode invoked in step 3 is a
subroutine which creates a list node whose fields con-
tain the values of the arguments to mewnode. These
arguments are, respectively, an index of a position in
the A sequence, an index of a position in the B se-
quence, and a pointer to some other list node. The
value returned by newnode is a pointer to the list
node just created.

THEOREM 1. Algorithm 2 finds and prints a longest
common subsequence of the sequences A and B in time
O((r + n) log n) and space O(r + n).

PROOF. Step 1 can be implemented by sorting each
sequence while keeping track of each element’s original
position. We may then merge the sorted sequences
creating the MATCHLISTs as we go. This step takes
a total of O(n log n) time and O(n) space.

Step 2 clearly takes O(n) time.

The two outer loops of step 3 should be considered
as a single loop over all pairs (i, j) such that Afi] =
B[j] taken in order of decreasing j within increasing i.
In other words, the outer loops of step 3 induce ex-
actly r executions of the innermost statements of
step 3. Since these innermost statements involve one
binary search plus a few operations which require
constant time, we conclude that the time requirement
for step 3 is O(n + rlog n).

In this step we also implement a simple back-
tracking device that will allow us to recover the longest
common subsequence. We record each (i, j) pair which
causes an element of the THRESH array to change
value. Thus whenever THRESH|k] is defined, LINKT[k]
points to the head of a list of (i, j) pairs describing a
common subsequence of length k. Since at most one
list node is created per search, Step 3 will require the
allocation of at most O(r) list nodes.

In step 4 we recover the actual longest common sub-
sequence. Clearly this takes at most O(n) time. 0

We note that certain input sequences such as
A = “aabaabaab...” and B = ‘“ababab...” cause
Algorithm 2 to use O(r) space even if list nodes are
reclaimed whenever they become inaccessible. See
[4] for an algorithm which never uses more than O(n)
space nor less than O(n*) time.

A Final Note

The key operations in the implementation of our
algorithm are the operations of inserting, deleting, and
_testing membership of elements in a set where all ele-
ments are restricted to the first » integers. Peter van
Emde Boas has shown that each such operation can
be performed in O(log log n) time [2]. His data stuc-
ture requires O(n log log n) time for initialization.
Although the necessary algorithms are quite complex,
we can use them to present the following theoretical
result.

»
81

THEOREM 2. (a) Algorithm 2 can be implemented
to have a running time of O(r log log n + n log n) over an
infinite alphaber. (b) Algorithm 2 can be implemented
to have a running time of O((n + r) log log n) over a
fixed finite alphaber. (c) The longest ascending subse-
quence of a permutation of the first n integers may be
Jound in O(n log log n) time.

ProOF. The problem of part (c) is, of course,
equivalent to finding the longest common subse-
quence of the given permutation and the sequence
1,2, .-+, n. All three parts of the theorem use basically
the same algorithm although the implementation of
some of the steps varies slightly. We shall present a
common analysis.

In all three cases we require O(n log log #) time to
initialize van Emde Boas’s data structures. Step 1 e¢n-
tails a sorting procedure to set up the MATCHLISTS.
For the infinite alphabet case, this sort can be done in
O(n log n) time. In the other two cases, we can ust a
distribution sort to create the MATCHLISTs in O(n)
time. Step 2 takes O(n) time, step 3 takes O(n + r
log log n) time and step 4 takes O(n) time. Fipally,
for the permutation case note that each integer
appears exactly once in each sequence and thus we have
r=n o

Acknowledgments. The authors are indebted to M.
Douglas Mcllroy who first suggested this problem to
us. Harold Stone suggested a variant of the problem
(described and solved in [5]) which led to the develop-
ment of the present algorithm. Alfred V. Aho end
Jefirey D. Ullman provided us with several enlightzn-
ing conversations including the particular example
given following Theorem | which shows that our al-
gorithm can require as much as O(r) space. Peter van
Emde Boas made several helpful comments on an
early draft of this paper.

Received May 1975; revised January 1976

References

1. Chvatal, V., Kiarner, D.A., and Knuth, D.E. Selected
combinatorial research problems. STAN-CS-72-292, Dep.
Comptr. Sci., Stanford U., Stanford, Calif., June 1972

2. van Emde Boas, P. Preserving order in a forest in less than
logarithmic time. 16th Annual Symp. on Foundations Comptr.
Sci., Oct. 1975, pp. 75-84.

3. Fredman, M.L. On computing the length of longest increasing
subsequences. Discrete Mathematics 11, 1 (Jan. 1975), 29-35.

4. Hirschberg, D.S. A linear space aigorithm for computing
maximal common subsequences. Comm. ACM 18, 6§ (June 1975),
341-343,

S. Szymanski, T.G. A special case of the maximal common
subsequence problem. TR-170, Dep. Electrical Eng., Princeton U.,
Princeton, N.J., Jan. 1975.

6. Wagner, R.A. and Fischer, M.J. The string-to-string correctior
problem. J. ACM 21,1 (Jan. 1975), 168-173.

7. Yao, AC. and Yao, F.F. On computing the rank function for
8 set of vectors. UTUCDCS-R-75-699, Dep. Comptr, Sci., U. of
Illinois at Urbana-Champaign, Urbana, IIl., Feb. 1975.

Communications May 1977
of Volume 20
the ACM Number §

ARTICLES

File Comparison
Algorithms

everal popular algorithms ex-
S ist for comparing two files.

All of these actually look first
for matches rather than differences.
After the matching process has been
completed, the remainders of the
files that are not included in the
matches are then reported as differ-
ences. (See Figure 1, page 29.)

The algorithms differ greatly in
their conceptualization of the prob-
lem, however. In this article, I exam-
ine several algorithms for comparing
text files—specifically, source code
files—using a line as the basic unit of
comparison. The ideas and algo-
rithms 1 present here, however, can
be extended to other types of files
and other units of comparison as
well. I also present a new algorithm
with some interesting properties.

Evaluating The Algorithms
Any file comparison algorithm
should be evaluated according to sev-
eral criteria:

= Is it efficient? Time efficiency
(speed) and space efficiency (memo-
ry usage) are both practical consider-
ations. Usually they are related to the
lengths of the files being compared.
»Is it robust? No algorithm is flawless.
For any given file comparison algo-
rithm, it is always possible to concoct
devious situations in which its per-
formance appears less than perfect.
The algorithm should, however, be
able to produce reasonable differ-
ence reports for a variety of test
cases. ‘

« Can it let differences go undetected?
No algorithm should allow a file dif-
ference to go undetected.

Tom Steppe, P.O. Box 2887, Ann Ar-
bor, M1 48106. Tom designs and devel-
ops software written exclusively in C.

by Tom Steppe

Determining which
Jiles are more equal
than others

« Can it let matches go undetected? If
an algorithm can overlook matching
lines, it will report these lines as dif-
ferences when they are not. If the
file comparison is being performed
to produce a delta file, this usually is
not a major problem, even though
each undetected match does increase
the size of the delta file unnecessari-
ly. If the differences are to be in-
spected visually, however, a report
of false differences can be a serious
drawback.

Say, for example, that you do not
have a file comparison utility and so
vou have to compare two files by
eye. This process is certainly tedious
and prone to error, especially if some
of the differences are subtle. If you
now use a file comparison utility that
is known to report false differences,
you have to inspect the output by eye
and decide which reported differ-
ences are true differences. The utili-
ty has not really done the job for you,
it has only made your "by eye” in-
spection a smaller job that is still
prone to error.
= Can it detect blocks of text that have
been moved? Typically, if a block of
text has been moved, it simply shows
up in the report of differences as a
large deletion of text at one location
and a large insertion of text at anoth-
er. Unfortunatelv, no differences
within the moved block are
highlighted.

When a file comparison is used to
create a delta file, the ability to detect

moved blocks of text is probably de-
sirable because it can lead to smaller
delta files. But, when a file compari-
son is performed so that the differ-
ences can be inspected visually, the
ability to detect moved blocks is not
always as handy as it might seem 1o
be. Trying to report the moved
blocks is often difficult and can lead
to complicated reports of the differ-
ences, especially when a large block
of text is moved, a piece of that block

“is moved to another location, a piece

of that piece is moved to stil' another
location, and so on. Also, the differ-
ence report can sometimes be over-
burdened by uninteresting reports of
small blocks (one-line and two-lire
blocks of text! being moved all over
the place.

Only one algorithm discussed here
can inherently detect moved blocks
of text. The other algorithms, howev-
er, can be extended to do so, as fol-
lows. After applying the algorithrn,
replace each matching line in each
file with a line that is guaranteed
never to match. This leaves only the
differences, which could contain
moved blocks of text. Next, reapp y
the algorithm to the transformed
files. Any match that is found in this
pass will represent a moved block of
text (see Figure 2, page 29). Continue
this process iteratively until no new
matches can be found. Of course, the
cost of this iterative behavior is long-
er execution time.

These criteria help to provide a
useful basis for surveying popular
file comparison algorithms.

Popular Algorithms
for Finding Matches

Scan Until Next Match
The “scan until next matching se-

28

82

Dr. Dobb's Journal, Septernber 1937

quence” algorithm is probably the
oldest method of file comparison.
This algorithm starts at the tops of
both files and matches as many lines
as possible. When a difference is de-
tected, the next M lines are scanned
until at least N consecutive matching
lines are found. If a sequence of N or
more consecutive matching lines is
found, the process begins again after
the matching sequence. If such a se-
quence is not found, the process be-
gins again M lines further down in
the files. This process is repeated un-
til the ends of the files are reached.

The values of M and N can be ad-
justed to affect the algorithm's per-
formance. The value‘of M is used to
control efficiency by restricting the
number of lines that will be exam-
ined while searching for a sequence
of matching lines. When an improp-
er sequence of matching lines is dis-
covered, the algorithm can be reap-
plied using a new value for N that is
larger than the length of the improp-
er sequence. In this way, the algo-
rithm will overlook the undesirable
sequence because it contains fewer
than N matching lines, but as is al-
ways the case, the algorithm will also
overlook any legitimate matching se-
quences that contain fewer than N
lines (see Figure 3, page 30). Unfortu-
nately, these matching lines are then
reported as differences. All too often,
this algorithm produces bad reports
in common situations.

Although this algorithm is often
highlv time efficient, requires mini-
- mal memory, and frequently pro-
: duces good difference reports, it does
not take long to become frustrated
with its shortcomings and inherent
problems and begin looking for a bet-
ter solution.

Longest Common Subsequence
Think of a file as representing a se-
quence of lines. A subsequence of
those lines is defined simply as any
sequence of lines that results from
removing zero or more lines from
the original sequence— for example,
the longest subsequence of any se-
quence of lines is the sequence itself,
with zero lines removed. Also, a se-
quence of zero lines would be a sub-
sequence of any sequence because it
could be created by removing all the
lines from any sequence.

The ‘“longest common subse-

quence” approach to file comparison
takes the two files to be compared
and finds the longest sequence of
lines that is a subsequence of each of
the files' lines—the longest common
subsequence (see Figure 4, page 30},
Tie details of the algorithm are not
discussed here, but sources of such
discussions are included in the bibli-
ographyv. The Unix diff command is
based on this algorithm.

This algorithm provides a simple,
compact formalization of the file
comparison problem and produces
reasonable difference reports in a va-
riety of test cases. The reports are
quite acceptable whether the com-
parison is being used for visual in-
spection of the differences or for cre-
ating a delta file. In fact, among all
the algorithms discussed here, it is
probably safe to say that this one con-

fiie1 fle2
A A
B BB
c c
- D - E R
E F
Difference report:

2 B

2 BB

4 D

deleled

inserted

5 F

HEHARHOOO0THH#HHHH#HHARERHHHHHH## #file1
o e = ChANGE 1O
HARRRHO000IHARAHAARRAARRRAFREAHH HTE2
HERBBHOO00NHHAAARAARRAFHAARRRAH 4 #Tl1
o o A A
EAREERO000T##HHH#HRERERRER SR HF 02
HABERROO001H#AAHRAFRRARR RN HRHFH# #TIC1

o -

HURURHO0001#HRHARABRBRARRRABHRH R HIC2

Figure 1: File comparison algorithms actually look first for line matches anc'
then report lines that are not included in the matches as differences. The differ-
ences are usually expressed as the changes, insertions, and deletions that can be
applied to one file to make it identical to the other.

First iteration:
filel file2
A A
) B
C X
D Y
E - E
F F
C
D

Second iteration:
(Previous matches
are blanked out.)

file1 file2
? ?
? ?
X
Y
? ?
? ?

Figure 2: Moved blocks of text can be found by applying a standard line-
matching algorithm to the files and then reapplying the algorithm iteratively tc

the remainders of both files.

83

FLE COMPARISONS
(continued from page 29)

sistently produces the best reports
when comparing files that do not in-
volve blocks of text that have been
moved.

Sometimes the quality of the re-
ports can be overshadowed by issues
of time and space efficiency. This is
not always true, but situations that
include a poor combination of large
files and limited computer resources
can lead to less than desirable per-
formance by this algorithm. A basic
implementation of the algorithm re-
quires linear space and quadratic
time. In some cases, the quadratic
time can prove to be unacceptable. In
summary, the “longest common sub-
sequence’’ algorithm produces excel-
lent reports, but it can be slow.

Extended Unique Line Maiching

The "“extended unique line match-
ing'" algorithm is based on the idea
that a line that occurs once and only
once in edach file must be the same
line. These pairs of "unique” lines
determine the initial set of matched

N=3 N =4
A A A A
B B B B
c c c c

o ~E D E
E F E F
F G F G
G [G i
H J H J
I K | \1
J D J D
K E K E
F F

G G

H H

| 1

J N\

K K

Figure 3: The ““scan until next
matching sequence” algorithm often
produces bad reports in common situ-
ations. When N=3, the algorithm set-
tles for matches of three lines, never
| realizing that a match of eight lines is
possible. When N=4, it discovers the
match of eight lines but does not de-
tect the remaining match of three lines
(A, B, C).

lines. (Imaginary lines at the tops and
the botloms of the files are also add-
ed to the set of matched lines.) Then,
in each file, the lines adjacent to each
match are examined and, if identical,
are added to the set of matched lines.
This process is repeated until no new
matches can be found.

This algorithm has strong intuitive
appeal. It is efficient, being linear in
both time and space. Also, it is the
only popular algorithm that inher-
ently detects blocks of text that have
been moved (even if some differ-
ences exist within the blocks). Moved
blocks can be detected because the
search for pairs of unique lines is in
no way sequential and, therefore,
can result in matches that indicate
that a block of text has been moved.
Note that the algorithm can find a
moved block of text only if it contains
a unique line match within it.

A significant problem with this al-
gorithm is that it is prone to allowing
some matches to go undetected. This
occurs when matching lines are not
neatly flanked by either unique line
matches or the adjacent matches that
have grown outward from unique
line matches (see Figure 5, below).

This algorithm is fast and can fre-
quently detect moved blocks of text,
but a sacrifice is often made in the
quality of the difference report.
Probably its best application is in the
generation of delta files when speed
is the primary concern.

A New Algorithm

The "'recursive longest matching se-
quence’’ algorithm uses a simple yet
effective approach to the problem.

This method first scans both files
from beginning to end, loocking for
the longest sequence of consecutive
matching lines. That sequence is
then thought of as dividing each of
the two files into an upper section
and a lower section. Then, the algo-
rithm proceeds by scanning both up-
per sections looking for the longest
sequence of consecutive matching
lines and, similarly, both lower sec-
tions for the same. These matching
sequences then divide their respec-
tive sections, and the process con'in-
ues recursively until no more match-
es can be found.

This method of file comparison is
easy to understand and produces ac-
ceptable difference reports across a
spectrum of test cases. It uses linear
space but quadratic time. Because
time efliciency can be a problem in
some situations, a simple modifica-
tion of the algorithm is needec. An
explanation of the modification re-
quires an understanding of the meth-
od used to locate the longest se-
quence of matching lines between
sections of two files.)

First of all, once the longest se-
quence is known, it can be identified
by a pair of starting lines—one line
from each file that specifies where
the sequence begins in that file. So,
when searching for the longest se-
quence, candidate pairs of star-ting
lines are examined successively (in
some intelligent order that starts at
the beginnings of both file sections),
and information is continually main-
tained about the length and location
of the longest sequence of matching
lines that has been discovered so far.

file1 file2
A A
B c
o}
D B
E
F
D

Figure 4: The “longest common se-
quence” algorithm finds the longest
(not necessarily consecutive) se-
quence of lines that (s contained i
both files. -

fiel fie2

W O®>» > >
1 I@mow>>» > |

Figure 8: The “extended unique line
matching™ algorithm is prone to de-
tecting false differences. In this case,
no matches are found (because there
are no unique line matches) and all
lines are reported as differences.

30

84

Dr. Dobb’s Journal, September 1987

FLE COMPARISONS
(continued from page 30)

When the ends of the file sections are
reached, the longest sequence is
known and information about the se-
quence is reported.

The modification to this algorithm
allows the searching to stop if a se-
quence of N matching lines is found,
realizing that it might not be the lon-
gest sequence that would be discov-
ered if the searching were allowed to
continue to the ends of the sections.

No long-enough value:

filet file2
ara sequence
A A| 2nd sequence
8 B
A A
B B| 1stsequence
C C
4th sequence

Long-enough value=2:

file1

A A| 1stsequence
B8 B
A A
B8 B| 3rd sequence
C C

Figure 6: With the “recursive longest matching sequence’” algorithm, the use
of a long- ‘nough value often finds exactly the same sequences of matching lines
although the discoveries may occur in a different order.

This allows the searching to end pre-
maturely (before the longest se-
quence has been assured) and can
save considerable time. N is called
the “long-enough’ value. The effects
of the long-enough value can be ex-
amined by choosing some test pairs
of files and comparing the behavior |
of the algorithm when a long-
enough value is used and when one
is not used. Quite often, the use of a
reasonable long-enough value will
find exactly the same sequences of
matching lines (although the discov-
eries may occur in a different order),
thus producing an identical report of
the differences but with a significant
improvement in speed (see Figure 6,
page 32). In fact, the use of a reason-
able long-enough value allows this
algorithm to perform in essentially
linear time for typical cases, over-
coming the previous worry of time
efficiency.

The long-enough vaiue is a param-
eter that you can specify. To deter-
mine a good value for your purposes,
first guess at the length of the longest

Delta Files and User Reports

A file comparison utility is a versatile
tool for a range of situations. It is use-
ful to partition these situations into
two distinct cases.

In the most common case, a file
comparison is performed so that the
differences between two versions of
a text file can be inspected visually.
The differences are usually ex-
pressed as the changes, insertions,
and deletions that can be applied to
one file to make it identical to the
other file. In this case, the primary
job of the comparison is to produce a
concise and readable report of the
differences.

In the course of editing, a file com-
parison can be used in this way to
highlight the differences between a
previous version of a file and the cur-
rent version. Valid modifications can
be verified, and spurious edits can be
detected. As another example, if a
new version of a program is pro-
duced, a partial test of its integrity
could include a file comparison of its
output with the output from a previ-
ous version of the program that is
known to be correct. If the two out-

puts compare favorably, the new
program passes this integrity test. If
they do not compare favorably, an-
other file comparison can be used in
the debugging process to highlight
the changes between a version of a
source code file that is known to
work and the version that does not
work.

In the second case, a file compari-
son is performed to generate a délta
file—a file that contains a report of
the differences between the two

files. If the file comparison is thought

of as comparing an old file with a
new file, a backward delta file is de-
signed so that it contains all the infor-
mation necessary to recreate the old
file, given the new file. A forward
delta file is designed to be able to re-
create the new file, given the old file.
In either case, one of the original files
can be eliminated without loss of in-
formation. If the delta file is smaller
than the file it allows to be eliminat-
ed, this will result in a savings of disk
space. The primary job of a file com-
parison in this case is to produce a
compact delta file.

This use of a file comparison utility
is particularly common in version
control systems that maintain multi-
ple historical versions of source code
files. Only the current version of a
source code file is saved, whereus a
backward delta file is saved for each
historical version. Any historical ver-
sion can be recreated by applying
the appropriate delta files to the cur-
rent version of the file. The savings
in disk space can be tremendous. (Al-
ternatively, some version control sys-
tems save the first version of the file
and the subsequent forward delta
files.)

This usage is also common in tele-
communications applications where
a file at one or more remote sites has
to be updated from a host. A forward
delta file is created on the host by
comparing the new file with the old
file (a copy of the file that exists at the
remote site). If the delta file is small, it
is often more efficient to transmit the
forward delta file and apply it to the
old file than it is to transmit the new
file in its entirety.

32

85

Dr. Dobb’s Journal, September 1987

ALE COMPARISONS
(continued from page 32)

sequence of lines you can imagine
appearing more than once in‘a typi-
cal file. The long-enoughuvalue
should be at least one larger than
your guess. This will help the algo-
rithm to avoid matching the wrong
instance when a sequence of lines
appears multiple times in a file. If a
particular choice of long-enough val-
ue produces unsatisfactory differ-
ence reports, the algorithm can al-
ways be applied again with a larger
value. When comparing C source
code, I typically choose a generous
value of 25, and I rarely have to re-

run the comparison.
The ‘“recursive longest matching
sequence’' algorithm is particularly

~ well suited to take advantage of some

common hash code technology as a
means of improving time perform-
ance even more. In applications that
involve repetitive string compari-
sons, it is often useful to calculate
hash codes initially for all the strings.
Then, the hash codes are compared
instead of the strings themselves. The
comparison of two hash code values
is much quicker than is the compari-
son of two strings. If the hash codes
are not equal, the strings cannot pos-
sibly be the same and need not be
compared. If the hash codes are
equal, only then must the strings be
compared to prove or disprove their
equality.

The performance benefits are
even more dramatic when hash
codes are used with the “recursive

i longest matching sequence” algo-

rithm. When searching for the lon-
gest sequence of matching lines,
strings do not have to be compared
every time a pair of matching hash
codes is found. Instead, strings only
have to be compared once a se-
quence of matching hash codes is
found that is longer than the Jongest
sequence yet found.

The time efficiency can be im-
proved even further if a hash code
table is maintained for each file. The
table should consist of an array that
contains as many elements as there
are possible hash code values. Each
element of the array should consist
of a linked list of line numbers for
lines whose hash code values are

Lequal to the array index. This table

can easily be created by processing
each line in the file, calculating its
hash code value, and adding its line
number to the proper linked list.
Now, while searching for the longest
sequence of matching lines by exam-
ining pairs of starting line numbers,
the number of candidate pairs can be
greatly reduced. For any given line
in one file, only those lines in the
other file that have the same hash
code value {as can be easily deter-
mined from the file’s hash code ta-
ble) need to be considered.

A basic C implementation of the
“recursive longest matching se-
quence’” algorithm is shown in List-
ing One, page 54. Its simplicity, com-
bined with a long-enough value
modification and some clever use of
hash codes, makes it a viable solution
to the file comparison problem. It is
suitable for both delta creation and
visual inspection purposes.

Availability

All the source code for articles in this
issue is available on a single disk. To
order, send $14.95 to Dr. Dobb’s Jour-
nal, 501 Galveston Dr., Redwood City,

CA 94063, or call (415) 366-3600, ext.

216. Please specify issue number and
format (MS-DOS, Macintosh, Kaypro).

You can also purchase a full-fea-
tured executable version of this algo-
rithm from Stepping Stone Software,
P.O. Box 2887, Ann Arbor, MI 48106
for $30. The available format is Ms-
DOS 5%-inch DSDD.

Bibliography

Heckel, Paul. ‘A Technique for Isolat-
ing Differences Between Files.” Com-
munications of the ACM, vol. 21, no. 4
(April 1978): 264-268.

Hirschberg, D. S. “A Linear Space Al-
gorithm for Computing Maximal
Common Subsequences.” Communi-
cations of the ACM, vol. 18, no. 6 June
1975): 341-343.

Wagner, Robert A.; and Fischer, Mi-
chael J. “The String-to-String Correc-
tion Problem." Journal of the Associa-
tion for Computing Machinery, vol.
21, no. 1 January 1974). 168-173.

DDJ

(Listing begins on page 54.)

Vote for your favorite feature/article.
Circle Reader Service No. 2.

cm el Crmtam b sno~

86

Lo T TR FLE.COMPARISONS |

b e

Listing One (Texi begins on page 28.)

/i
** Copyright (c) 1987,

e

Tom Steppe. All rights reserved.

** This module compares two arrays of lines (representing
** files) and reports the sequences of consecutive matching
** lines between them using the “recursive longest matching
** sequence” algorithm. This is useful for implementing a
** file comparison utility. :
e

** Compiler:
*/

Microsoft (R) C Compiler Version 4.00

t#include <stdio.h>
#include <ctype.h>
tinclude <string.h>
tinclude <malloc.h>

/* Boolean type and values. */
typedef int BOOLEAN;
t#define TRUE 1

f#define FAISE 0

/* Minimum macro. */
tdefine min(x, y) (((x) <= (y)) 2 (%) : (y))

/* Value to indicate identical strings with stramp. */
#define ALIKE O

/* Result of hashing function for a line of text. */
typedef unsigned int HASH;

/* Mask for number of bits in hash code.
#define MASK (unsigned int) OxOFFF

(12 bits). */

/* Number of possible hash codes. */
tdefine HASHSI2 (MASK + 1)

/* Information about an entry in a hash table. */
typedef struct tblentry
{

int frst; /* First line $# with this hash code. */
int last; /* Last line # with this hash code. */
} TBLENTRY;

/* Information about a line of text. */
typedef struct lineinf
{

HASH hash; /* Hash code value. */
int nxtln; /* Next line with same hash (or 0). */
} LINEINF;

/* Information about a file. */
typedef struct fileinf
{

char rext; /* Array of lines of text. */
LINEINF *1line; /* Array of line info structs. */
TBLENTRY *hashtbl; /* Hash table. */

} FILEINF:

/* Function declarations. */

BOOLEAN filamp {char **, int, char **, int, int);
" BOCOLEAN get_inf (char **, int, FILEINF *);

HASH calc_hash (char *);

void fnd_seq (FILEINF *, int, int,

FILEINF *, int, int, int);

BOOLEAN chk_hashes (LINEINF *, LINEINF *, int);

int ent_matches (char **, char **, int);

void rpt_seq (int, int, int):;

/i"i*i'iiii"*'i!i"'i'iit""'i'it""'itm"'i'ii"'ii""

** compare compares two arrays of lines and reports the
**x gequences of consecutive matching lines. The zeroth

54 87

Dr. Dobb’s Journal, September 1987

Coae

** element of each array is unused so that the index into
** the array is identical to the associated line number.
L &

** RETURNS: TRUE if comparison succeeded.

bl FALSE if not enough memory.

ifiiiii'*it'*'ﬁ*'i"'if'iiiiti'ii'i"'ii'*"'ﬁ'i'f"ii*iiif,

BOOLEAN compare {al, nl, a2, n2, lngval)

char *val; /* {I) Array of lines of text in #1. */
int nl; /* (I) Number of lines in al.

{Does not count Oth element.) */
char **a2; /* (I) Array of lines of text in #2. */
int n2; /* (I) Number of lines in a2.

(Does not count Oth element.) */
int lngval; /* (I) ™"Long enough” value. */
{
FILEINF £1; /* File information for #1. */
FILEINF £2: /* File information for #2. */
BOOLEAN ren; /* Return value. */

/* Gather information for each file, then compare. */
if (rtn =
{(get_inf (al, nl, &fl) & get_inf (a2, n2, &£2)))
{ .

fnd_seq (¢f1, 1, nl, &f2, 1, n2, lngval);
}

return (rtn);

)

/i!ittttttit'iiittt'ttt't'tutttttiiitttttittii'tttttttttttti

** get _inf calculates hash codes and builds a hash table.:
-

** RETURNS: TRUE if get_inf succeeded.
. FALSE if not enough memory.

"*ii"'ttﬁ*"*it'i'i'i'iﬂ'Wwﬁti'i"t""iiii!iit'iiti'iﬁﬁi,

static BOOLEAN get_ inf (a, n, f)

char *23; /* (I) Array of lines of text. */

int n; /* (I) Number of lines in a. */

FILEINF xf. /* (0) File information. */

(_

unsigned int size; /* Size of hash table. */
register int i; /* Counter. */
TBLENTRY *entry; /* Entry in hash table. */

/* BAssign the array of text. */
f->txt = a;

/* Allocate and initialize a hash table. */
size = HASHSIZ * sizeof (TBLENTRY):

if (f->hashtbl = (TBLENTRY *) malloc {(size))
{

}

else
{

memset ((char *) f->hashtbl, '\0', size):

return (FALSE);
}

/* If there are any lines: */
if (n > 0)
{
/* Allocate an array of line structures. */
if (f->line = (LINEINF *)
malloc {((n + 1) * sizeof (LINEINF *)))
{
/* Loop through the lines. */
for (i = 1; 1 <= n; i++)
{

(continued on next page)

88

Ne ot

i . FILECOMPARISONS

Listing One (Listing continued, text begins on page 28.)

/* Calculate the hash code value. */
f->line(i] .hash = calc_hash (f->txt[i]);

/* Locate the entry in the hash table. */
entry = f->hashtbl + f->line[i].hash;

/* Update the linked list of lines with */
/* the same hash code. */
f->line[entry->last].nxtln = i;
f->line[i]l.nxtln = 0;

/* Update the first and last line */
/* information in the hash table. */
if (entry->frst == 0)

{

)
entry->last = {i;

entry->frst = i;

}
}
else
{
return (FALSE):
}
}
else
{
f->line = NULL;
}

return (TRUE);
}

/!iitt!ttittii!i!!iiittitttiittttttitttwtittttiittittﬁtttii!
** calc_hash calculates a hash code for a line of text.
"

** RETURNS: a hash code value.

iit’ititttttit‘iti‘itittt‘ttt‘ititi”ti*’ltttitttittiitiiit/
static HASH calc_hash (buf)

char *buf; /* (I) Line of text. */
{
register unsigned int chksum; /* Checksum. */
char *g; /™ Pointer. */
HASH hash; /* Hash code value. */

/* Build up a checksum of the characters in the text. */
for (chksum = 0, s = buf; *s; chksum "= *s++)

(
}

/* Combine the 7-bit checksum and as much of the */
/* length as is possible. */
hash = ((chksum & Ox7F) | ((s - buf) << 7)) & MASK;

return (hash);
}
/iitii’t’t’i’t’iittttttttttt’ttitiittttw’Ittttttittiittttttt
** Given starting and ending line numbers, fnd_seq finds a
** »good sequence” of lines within those ranges. fnd seq
** then recursively finds “good sequences” in the sections
** of lines above the “good sequence” and below it.

!iiiiiiii’”"’i!"ttit"”t’ii"'i"i’*tI't"""'tiii’i"/

static void fnd_seq (fl, begl, endl, f2, beg2, end?, lngval)

/* (1) File information for #1. */
/* (1) First line # to compare in #1. */
/* (I) Last line # to compare in #1. */

FILEINF *£1;
int begl;
int endl;

56

89

Dr. Dobb’s Journal, September 19:.7

FILEINF *£{2; /* (1) File information for #2. */
int beg2; /* (1) First line $# to compare in $2. */
int end2; /* (1) Last line # to compare in $2. */
int lngval; /* {I) "Long enough® value. */
{
LINEINF *linel; /* Line information ptr in #l. */
LINEINF *line2; /* Line information ptr in #2. */
register int limit; /* Looping limit. */
int 1nl; /* Line number in $1. */
int 1n2; /* Line number in #2. */
register int 1ln; /* Working line number. */
BOOLEAN go; /* Continue to lcop? */
int most ; /* Longest possible seq. */
int mostl; /* Longest possible due to #1. */
int most2; /* Longest possible due to $2. */
int ent; * /* Length of longest seq. */)
int oldent, /* Length of prev longest seq. */
int n; /* Length of cur longest seq. */
int ml; /* Line of longest seq. in #1. */
int m2; /* Line of longest seq. in #2. */

/* Initialize. */
go = TRUE;
linel = fl->line;
line2 = f2->line;
]

/* Initialize longest sequence information. */

ent = 0; /* lLength of longest seq. */

ml = begl - 1; /* Line # of longest seg. in #1. */
m2 = beg2 - 1; /* Line # of longest seq. in #2. */
oldent = 0; /* length of prev longest seq. */

/* Calculate maximum possible number of consecutive */
/* lines that can match (based on line ¢ ranges). */
mostl = endl - begl + 1;
most2 = end2 - beg2 + 1;

/* Scan lines looking for a "good sequence”.

** Compare lines in the following order of line numbers:
*%

** {1, 1)

** {1, 2), (2, 1), (2, 2)

*= {1, 3), (2, ¥, 3, L), (3, 2), (3, 3)

** etc. -
*/

for {lnl = begl, 1nZ = beg2; TRUE; lnl++, 1ln2++)
{

if (ln2 <= end2 - cnt)
/* There are enough lines left in #2 such that it */
/* is possible to find a longer sequence. */
{
/* Determine the limit- in #1 that both */
/* enforces the order scheme and still makes */
/* it possible to find a longer sequence. */
limit = min (lnl - 1, endl ~-—cnt);

/* Calculate first potential match in #1. %/
for (ln = fl->hashtbl[line2[1ln2]).hash].frst;
In && 1ln < begl; ln = linel([ln].nxtln)
{ .

}

/* Loop through the lines in #1. */
for (; ln && ln <= limit; ln = linel([ln]).nxtln)
{
if (linel[ln).hash == line2[1n2).hash &&
linel(ln + cnt].hash ==
line2[1ln2 + cnt].hash &&
'{ln = ml == 1ln2 - m2 &&
In < ml + cnt && ml != begl - 1))
/* A candidate for a longer sequence has */

(continued on next page)

90

FILE COMPARISONS

Listing One (Listing continued, text begins on page 28.)

/*
I
/¥
/*
{

}

been located. The current lines */
match, the current lines + ont match, */
and this sequence is not a subset of */
the longest sequence so far. */

/* Calculate most possible matches. */
most = min (endl - 1ln + 1, most2);

/*
/*
/*
/*
if

First compare hash codes. If the */

number of matches exceeds the */
longest sequence so far, then */
compare the actual text. */

(chk_hashes (linel + 1n,
line2 + 1ln2, cnt) &&
(n = cnt_matches (fl->txt + 1n,
f2->txt + 1ln2, most)) > cnt)
This is the longest seq. so far. */

/* Update longest sequence info. */
oldent = ent;

ent. = n;
ml = 1ln;
m2 = 1n2;
/* 1f it's long enough, end the */
/* search. */
if (ent >= lngval)
{
break;

}

/* Update limit, using new count. */
limit = min (1nl - 1, endl - cnt);

/* If it's long enough, end the search. */
if (ent >= lngval)

{

break;

)

most2-~;

}
else

{

go = FALSE;

)

/* This file i{s exhausted. */

/* Repeat the process for the other file. */
if (lnl <= endl - ent)

{

limit = min (ln2, end2 - ent);

for (ln = f2->hashtbl[linel([lnl].hash].frst;
1n && ln < beg2; ln = line2[ln].nxtln)

{
}

for (; 1n && ln <= limit; ln = line2([ln].nxtln)

{

if (linel(lnl].hash == lineZ[1ln].hash &k
linel[lnl + ent].hash ==
line2 [1n+ cnt) .hash &&

(lnl - ml
lnl < ml +

== ln - m2 &&
cnt && m2 != beg2 - 1))

most = min (end2 - ln + 1, mostl);

if (chk_hashes (linel + 1lnl,
line2 + ln, cnt) &&

58

91 .

Dr. Dobb’s Journal, September 1987

(3o v v

~

- : ’ "\é- AL

il
—_ T

METRN

¥ NN

(n = cnt_matches (fl->txt + 1lnl,
f2->txt + 1ln, most)) > ent)

oldent = ent;

ent = n;
ml = 1nl;
m2 = 1n;

if (ent >= lngval)
{

)

break;

limit = min (in2, end2 - ent):

)

if (cnt >= lngval)
{
break;

}

mostl-~;
}
else if (!go)
{

break; /* This file is exhausted, also. */
}

/* If the longest sequence is shorter than the “long */
/* enough” value, the "long enough" value can be */
/* adjusted for the rest of the comparison process. */
if (ent < lngval)

{

}

ingval = ent;

if (ent >= 1)
/* Longest sequence exceeds minimum necessary size. */
(
if (Ml != begl && m2 != beg2 && oldent > 0)
/* There is still something worth comparing */
/* previous to the sequence. 4
{
/* Use knowledge of the previous longest seq. */
fnd =eq {fl, begl, ml - 1,
f2, beg2, m2 -~ 1, oldent):
}

/* Report the sequence. */
rpt_seq (ml, m2, ent);

if (ml + cnt - 1 != endl ¢&¢ m2 + ent - 1 != end2)
/* There is still something worth comparing */
/* subsecuent to the sequence. */
{
fnd_seq (f1l, ml + cnt, endl,
f2, m2 + cnt, end2, lngval);

}

/.-..‘-."---"'ﬂilfl......-.-.'.*--'..."*"*."."*'**'.'**.
** chk_hashes determines whether this sequence of matching
** hash codes is longer than ent. It knows that the first
** pair of hash codes is guaranteed to match.

*w
** RETURNS: TRUE if this sequence is longer than cnt.
* FALSE Lf this sequence is not longer than cnt.

'**.'.'t.l"i*'.‘!*tl'l’*""'l'...‘**"**.."'.“""*"'*“ii/

(continued on next page)

92

™Mo ™~ 1 . cmm Al Cnmtmimibhme 100~

. FILECOMPARISONS

Listing One (Listing continued, text begins on page 28.)

static BOOLEAN chk_hashes (linel, line2, cnt)

LINEINF *linel; /* (I) Line information for #1. */
LINEINF *line2; /* (1) Line information for #2. */
register int ent; /* (1) Count to try to exceed. */

{
register int n; /* Count of consecutive matches. */

for (n = 1; n <= cnt &é&
({(++linel) ~>hash == (++lime2)->hash); n++)

{
)

.
’

return {n > cnt):

)

/.!.ii!!i!iii*‘!!!!*!*"*ii*iiiiiiili**'i.*i..*i.*...ii***ii*

** cnt_matches counts the number of consecutive matching
** lines of text.
xE

** RETURNS: number of consecutive matching lines.

.i.‘i!!!!!*!!**!**!**iw*iiii*****i‘*i*tiii.**i..i**...*i*i./

static int cnt_matches (sl, s2, most)

char *xgl; /* (I) Starting line in file #1. */
char **52; /* (I) Starting lire in file #2. */
register int most; /" (I) Most matching lines possible. */
{

register int n; /* Count of consecutive matches. */

/* Count the consecutive matches. %/

for (n = 0; n < most && stromp (*sl++, *s2++4) == ALIKE;
n++) :

{

.

)

return (n);

)

/'*..*"**"'****i****'!!i**i*it**i*iit*‘*tt"*"*"'."'.""*

** rpt_seq reports a matching sequence of lines.

itttt"t**ii"ii"'..i"*.ti"i.t'itt.tliittttittttttttttttt/
static void rpt_seq (ml, m2, ent)

int ml; /* (I) Location of matching sequence in #1. */
.int m2; /* {I) location of matching sequence in #2. */
int ent: /* (I) Number of lines in matching sequence. */
{
fprintf (stdout, .
*Matched %5d lines: (%5d - %5d) and (%5d - %5d)\n",
ent, ml, ml + cnt - 1, m2, m2 + ent - 1);

End Listing

93

Dr. Dobb’s Journal, September 1987

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167

