
Control Data Corp. Policies & Procedures.
Cr)

, I ,

GEORGIA INSTITUTE OF TECHNOLOGY 	 OFFICE OF CONTRACT ADMINISTRATION

PROJECT ADMINISTRATION DATA SHEET

I X I ORIGINAL

GTRC/

School ib

REVISION NO.

Project No. 	F-21-602 (R-6081-0A0)

DATE 1/ 23/ 86

Project Director: 	J. Schlag

EE

Sponsor: 	Control Data Corporation

Bloomington, MN 55420

Type Agreement: 	CDC Proj. No. 85G101

—937V-I ia;/_ Award Period: From 	10/1/85 	To 9/30/87 	(Performance) 	 (Reports)

Total 	

i

 Date

Estimated: $ 	

Funded: $ 	100, 000 	$ 	100,000

Cost Sharing Amount: $ 	 N/A 	Cost Sharing No: 	N/A

Title: 	Microcomputer/Data Service Network ProtocOls

ADMINISTRATIVE DATA

1) Sponsor Technical Contact:

OC:A Contact Ralph Grede X 4820

2) Sponsor Admin/Contractual Matters:

Sponsor Amount: This Change

Mr. Jim Lucas

Control Data Corporation

300 Embassy Row

Atlanta, GA 30328

(404) 399-2440

Ms. Marianne Johnson

Research Grants Financial Monitor

Control Data Corporation

8100-34th Avenue South

Bloomington, MN 55420

Defense Priority Rating: 	Military Security Classification: 	N/A

	

(or) Company/Industrial Proprietary: 		N/A

RESTRICTIONS

See Attached 	N/A 	 Supplemental Information Sheet for Additional Requirements.

Travel: Foreign travel must have prior approval — Contact OCA in each case. Domestic travel requires sponsor

approval where total will exceed greater of $500 or 125% of approved proposal budget category.

Equipment: Title vests with Sponsor — However none is proposed.

COMMENTS:

See "Sponsored Research Projects Guidelines and Practices" handbw* for

COPIES TO: SPONSOR'S I. D. NO. 	

Procurement/E ES Supply Services
Research Security Services
fle ...:ort! Coordinator (OCA)
62s ■ rnnr,1- rsnr,rirntinir•atinnt

Project Director

Research Administrative Network
Rea..r!- Property Management

GTRC

Library

Project File
A Tones: Leual

I•11

Ell

;EORGIA INSTITUTE OF TECHNOLOGY
	

OFFICE OF CONTRACT ADMINISTRATION

SPONSORED PROJECT TERMINATION/CLOSEOUT SHEET

Date 5/11/88

Project No. F- 21 - 602 	 School/Lab FT

Includes Subproject No.(s) A-4431/Schlac

Project Director(s) ,j, schi n

GTRC /ION

Sponsors="uData5A2.0

Title 	Microcomputer/ Data Service Netwuk 	tcYcais

Effective Completion Date: 9/30/87

 (Performance) 3/31/88 	(Reports)

Grant/Contract Closeout Actions Remaining:

None

Final Invoice or Copy of Last Invoice Serving as Final

Release and Assignment

Final Report of Inventions and/or Subcontract:
Patent and Subcontract Questionnaire
sent to Project Director 71

ED Govt. Property Inventory & Related Certificate

Classified Material Certificate

Other

Continues Project No.

COPIES TO:

Project Director
Research Administrative Network
Research Property Management
Accounting
Procurement/GTRI Supply Services
Research Security Services
Reports Coordinator (OCA)
Program Administration Division
Contract Support Division

Continued by Project No.

Facilities Management - ERB
Library
GTRC
Project File
Other

Standardized Protocols Between
Microcomputers and Data Service Networks

Introduction

The rapid growth of computer applications coupled with the development of
inexpensive, small computer systems has made drastic changes in the role of
the large mainframe computer service network. These changes have been
produced primarily by the shift of computer intelligence from the main host
to the user-based systems. This shift has precipitated a need for changes
in many of the other computer functions such as data base management,
application programs, data security and communication protocols. This
effort addresses issues within the single area of computer communication
protocols in the computer service network and the impact of modern computer
networks on the protocol requirements. Of particular interest to this
project will be the areas of communication hardware, data transmission
structure, error detection, error correction, encryption, data base
security, data format exchange, and data base management command exchange.

To understand the need for new user/computer service communication
protocols, it is useful to understand the evolutionary trends occuring in
the entire network. The user in a. service computer network in the 1970 time
frame was a simple CRT terminal or hard copy device with no local processing
or data storage capability. The user communicated with the host computer
over a commercial grade telephone line using a standard RS232 protocol at a
speed of 300 BAUD. The data was transmitted in standard, ASCII form with no
communication security, data encryption, error detection or error
correction. This communication was handled by a communication adapter at
the host site which could have been as simple as a telephone switching
network. The communication adapter connected the user to the central
operating system which in turn called up the particular application program
that was requested by the user. The application program handles the great
majority of all of the user/host controlling inputs and outputs to the user,
inputs and outputs to the host data base, input and output formats, data
security, data encryption, error detection, and error correction. Many of
these application programs were executed in a Batch Mode and supplied
little, if any, direct communication with the remote user. Interaction
operation was also limited by the extremely slow communication speed between
the user and the host. In this type of system the application program
served as the center of both processing and control of the computer
operation.

During the early 1980 period the service networks developed a large variety
of computer communication networks to effectively handle larger volumes of
more sophisticated data transmissions. These networks effectively removed
the communication demands from the central computer but did not remove the
host application programs as the center of processing activity.

With the development of inexpensive personal and business computers, the
large service computer network is undergoing a number of organizational
changes. The typical user in 1990 time frame will be a small business or
personal computer with local application programs and mass storage
capability. The majority of the interactive applications processing will be
performed at the local user level with the computer service network
supplying access to large data bases for portions of the processing
information. The bulk of the user/host communication will still be handled
via commercial telephone connections, but at considerably higher
transmissions rates (4800, 9600 BAUD). The information to and from the
local user will be processed by a much more sophisticated communications
adapter which can connect the user into different segments of the operating
system or possibly even direct access to the host data base. The operating
system can access a variety of application programs which would normally be
extremely large programs that could not be executed on the local computer or
specialized data base management systems which are tailored to make specific
types of operation on the host data base. The operating system level
mightalso allow a direct contact between the remote user and the data base
itself. The data bases will be extremely large and more likely to be shared
between a number of users than the data bases of the 1970's.

A major problem in a system of the 1990's will be to keep the executable
files on remote updated by the host system in a timely and cost effective
manner. To better understand the issues involved in solving this problem,
it is useful to examine the block-level diagrams illustrated in Figures 1-4
of the segments a typical 1990 data transfer system. The management system
segment, common to all four segments, will have the role of coordinating
the four modules that in turn generate the updates to modify an old file
into a new version, transport the updates through the various elements of
two communication systems, and finally reconstructing a new file from the
old and incorporating the transmitted updates. A summary of the system
elements being examined is offered below.

The data generation system, illustrated in Figure 1, consists of eight
elements. Four of these simply represent the old and new source files and
their corresponding executable files, which serve as inputs to the download
file generator. The function of the download file generator is to generate,
based on a scheme to be described later, a file with information for
decomposing an old executable file and reconstructing it to mirror the new
executable file. The generated file will be dependent upon the instruction
set about which information is available through the instruction table.
Ideally, information in the instruction table will be the output of the
automatic instruction table generator which will be a program, probably
based on artificial intelligence, to take an instruction set and extract
information about it necessary for use in the download file generator. The
new download file is the output of the download file generator and the input
to the data communication system illustrated in Figure 2. In this system,
there are four blocks, the first of which is labeled "packet convert" and
which accurately describes its function. For checking and error detection
purposes it is more efficient to send data in packets. The data packets are

FIGURE 1
■ 	

MANAGEMENT 5

DATA GENERATION SYST

OLD
SOURCE

FILE

NEW
SOURCE

FILE

OLD
EXEC.
FILE

)

)

NEW
EXEC.
FILE

AUTOMATIC
INSTRUCTION

TABLE
GENERATOR

)

IN
TA

DOW
F

GENE

GEORGIA INSTITUTE OF TECHNOLOGY
CONTROL DATA CORPORATION

DATA COMMUNICATION SYSTEM

COCCI 	I J.H. SCHLAG I 	3/06

2 FIGURE

DATA COMMUNICATION 5

ENCRY
[ODIN

1111■Ell
PACKET

CONVERT
ERROR

DETECT
CODING

MANAGEMENT

GEORGIA INSTITUTE OF TECHNOLOGY
CONTROL DATA CORPORATION

DATA COMMUNICATION SYSTEM

COCC2 	J.H.SCHLAG 	3/06

FIGURE] GEORGIA INSTITUTE OF TECHNOLOGY
CONTROL DATA CORPORATION

DATA COMMUNICATION SYSTEM

COCC3 	I J.H. SCHLAG I 	3/66

MANAGEMENT 5

I
DATA COMMUNICATION 5

MANAGEMENT SYSTEM

DATA RECONSTRUCTION SYSTEM

NEW
EXEC.
FILE

OLD
EXEC.
FILE

NEW
DOWDLOAD

FILE

NEW
EXECUTABLE

FILE
GENERATOR

•MMEN■lill

INSTR.
TABLE

FIGURE 4

GEORGIA INSTITUTE OF TECHNOLOGY

CONTROL DATA CORPORATION
DATA COMMUNICATION SYSTEM

EDEC4 	I J.H. SCHLAG I 	3/06

then subject to error detection and correction and to encryption for
security as indicated by the next two blocks in Figure 2.

The need for higher BAUD rates over commercial telephone lines will increase
the probability of data transmission errors, but the use of packet protocols
will increase the probability that these errors can be detected. The
technique used for error detection will most likely be a vertical or
possibly vertical and horizontal cyclic redundancy code. Certain single and
multiple bit errors can be corrected using packet protocols and particular
coding schemes such as the Hamming code.

A number of factors will increase the need for encrypting data between the
user and the host service network. With little or no application program on
the host computer, the data transmitted will more likely be the essential
data base unfiltered by application programs at the host. The use of shared
data bases will tend to make companies more security conscious. New
regulations such as the Privacy Act will increase the responsibility of
companies to maintain secure data.

Even though proper encryption can maintain the security of the data
transmitted between the host and user, additional steps must be provided to
keep unauthorized users from accessing or changing specific areas of the
data base. As more of the applications programs are moved to the user
system, more responsibility for data base security will fall on the
communication system.

Data packets, having been error corrected and encrypted for security, pass
to the fourth block, the communication protocol block in the system.
Definite protocols need to be established between host and system including
packet acknowledgement and retransmission. Through these protocols data is
transmitted from host to remote use. Figure 3 is mirror image of Figure 2
and represents the fact the the functions of the data communication systems
of the remote system in Figure 3 mirror those of the host system in Figure
2.

The data reconstruction system is illustrated in Figure 4. The new
download file contains the packets of data produced by the data
communication system of the remote system. This input along with the old
executable file that resides at the remote site are submitted to the new
executable file generator which, with information from the instruction
table, reconstructs the old executable to a new executable file identical to
that in Figure 1. Details of the schemes developed for the download file
generator of Figure 1 and the new executable file generator are presented
later. As was noted earlier, to make sure that all the modules described
interact properly, all are controlled by a management system. Through the
management system the host makes program changes and sends them to all the
remote users who are eligible to receive them. By the same system the
remote user advises the host when updates have been completed successfully.
When the remote signs on, the host should request that an update be made

automatically; the remote user can then respond with his desires. The
management system keeps account of which systems have been updated.

Each of the system elements and their interrelation will be areas of
changing needs related to communication protocols between the host and the
user. Each of these areas has proved to be fertile ground for researchers.
Publications with results of work in the areas have been assembled in a
library both for assessment of the current status and for future reference.
A bibliography of these publications is included as an appendix.

The issues described above relate to the broad context of the problem of
keeping the executable file on the remote terminals updated by the host.
For the initial effort a narrower focus was taken with a concentration on a
scheme for downloading the file generator and new file generation.

To date, the schemes available to keep update files available at the remote
terminals have been compacting schemes that assumed no a priori information
at the receiver and involved sending entire new files, but in as compact and
efficient manner as possible. In contrast, the new scheme that is the
subject of this report assumes that an old file exists at the remote and
needs merely to be updated. The new scheme involves examining the changes
that need to be made and sending only the information necessary to make the
changes.

New Update Scheme

The basic idea in the new update scheme that is being developed is to begin
with an old executable file that requires an update and that exists both at
the remote and the host systems. An update to the old file is made at the
host. The objective is to transmit the update to the remote system. In the
new scheme this is done by decomposing the old file at the remote and
reconstructing it with update information to in fact make a replica of the
new executable at the remote system.

This update process will by nature mean that the instructions from the old
executable file will be located in a different position in the new
executable file. In order to implement the changes in an existing code, it
is useful to examine first the types of information fields involved in an
instruction and then the ways these fields change with changes of position.

Four Types of Information Fields

1. OP code fields specify the type of instruction, such as "MOV",
that is to be executed and by its very nature is position
independent.

2. A second type of position independent fields is a general class of
position independent fields, other than OP code fields (e.g.
fieldsthat specify registers).

3. Relative position dependent fields specify information such that
if moved from one position to another, the value of the number in
the field will be changed 1by the amount relative to the amount it
moved.

4. Absolute position dependent fields are fields specifying values
whose magnitude changes according to its absolute position in
memory.

Four Ways to Transfer Data

1. 	Absolute position valid data packets involves moving groups of
instructions that are independent of position as illustrated in
Figure 5 and as follows:

a. remove n bytes of data from the old executable file starting
at the old file data pointer

b. place n bytes of data in new file starting at the new file
data pointer with no changes to the data packet

c. add n to both old and new pointers

2. 	Offset position valid data packet involves receiving a command
that identifies the type of move and the value of n, as well as
two offset values, both relative and absolute, as illustrated in
Figure 6 and as follows:

a. remove n bytes of data from the old executable file starting
at the old file data pointer

b. add current relative offset value to all relative dependent
fields

c. place data packet back in new executable file

d. add n to old and new data pointers

3. 	Delete Data Packet from the old executable file by supplying the
value of n and then add n to old data pointer as illustrated in
Figure 7.

4. 	Add Data Packet involves receiving n bytes of new data from
communication channel (host) as illustrated in Figure 8 and as
follows:

a. place n bytes of new data starting at the data pointer in the
new executable file

b. add n to new file data pointer

NEW EXECUTABLE FILE OLD EXECUTABLE FILE

OLD FILE
DATA POINTER

NE
MOVE N BYTES DATA

WITH NO CHANGE

WM ■ MMI NM

W FILE
POINTER

ABSOLUTE PEI
DATA PACKE

TION
T

TOTAL BYTES IN PACKET = 2

INFORMATION FROM
COMMUNICATION

CHANNEL

1, PACKET TYPE CODE (1 BYTE)

2. NUMBER OF BYTES TO MOVE (1 BYTE)

FI 131iRE 5

GEORGIA INSTITUTE OF TECHNOLOGY
CONTROL DATA CORPORATION

ABSOLUTE POSITION DATA PACKET

COCC5 	I J.H. SCHLAG I 	3/06

ION
T

OFFSET POSIT
DATA PACKE

NE
DATA

W FILE
POINTER

■ MO MI MI ■ EMI

6 FIGURE

TOTAL BYTES IN PACKET = 2

NEW EXECUTABLE FILE

MOVE N BYTES
WITH ADDED OFFSETS

OLD FILE
DATA POINTER

t 	
■

OLD EXECUTABLE FILE

GEORGIA INSTITUTE OF TECHNOLOGY
CONTROL DATA CORPORATION

OFFSET POSITION DATA PACKET

CDCCE 	I J.H. SCHLAG I 	3/86

INF ORMATI
COMMUNI

CHAN

1.PAC

2. NU

ON FROM

NEL
CATION

KET TYPE CODE (1 BYTE)

MBER OF BYTES TO MOVE (1 BYTE)

GEORGIA INSTITUTE OF TECHNOLOGY
CONTROL DATA CORPORATION

DELETE DATA PACKET

COCC7 	I J.H. SCHLAG I 	3/86

DELETE
DATA PACKE T

ION FROM
CA

L
I ON

KET TYPE CODE (1 BYTE)

MBER OF BYTES TO DELETE (1 BYTE)
TOTAL BYTES IN PACKET = 2

INFORMAT
COMMUNI

CHAN

1. PAC

2. NU

OLD FILE
DATA POINTER

I
OLD EXECUTABLE FILE

r

NEW EXECUTABLE FILE

NE W FILE
DATA POINTER

FIGURE 7

NEW EXECUTABLE FILE

OLD FILE
DATA POINTER

W FILE
POINTER

1

S OF
A

- -1

NE
DATA

ADD N BYTE
NEW DAT

GEORGIA INSTITUTE OF TECHNOLOGY
CONTROL DATA CORPORATION

ADD DATA PACKET

[DM I J.H. SCHLAG I 	3/06

ADD
DATA PACKS T

TOTAL BYTES OF DATA = N + 2

INFORMATION FROM
COMMUNICATION

CHANNEL

1.PACKET TYPE CODE (1 BYTE)

2. NUMBER OF BYTES TO MOVE (1 BYTE)

3. N BYTES OF NEW DATA

FIGURE

In the worst case, by exercising data transfers types 3 & 4, the old file
will be completely replaced by a new executable file, in much the same way
as is currently done. When the changes are extensive, it may be the most
efficient way to proceed. In many other instances, when the changes are
minor, considerable savings in time and money could be realized with the new
scheme.

A Trial Scheme

Based on the information presented above a trial scheme has been devised and
is illustrated in following example.

A sample assembly language program was selected at random (Duke University
Computer Science homework problem number 4). An additional instruction was
added to the program and it was re-assembled. The old and new code were
printed and the proposed scheme was manually applied to indicate the degree
of saving in download efficiency. The following indicates the bytes that
would be sent in the download file.

Download codes for sample program

Data 	 Number of bytes

Position independent code 	 1 byte
256 	 1 byte
Position independent code 	 1 byte
256 	 1 byte
Position independent code 	 1 byte
256 	 1 byte
Position independent code 	 1 byte
256 	 1 byte
Position independent code 	 1 byte
133 	 1 byte
Add data code 	 1 byte
1 	 1 byte
B8 	 1 byte
Position offset code 	 1 byte
Relative position offset 	 1 byte
Absolute position offset 	 1 byte
215 	 1 byte

Total 	 19 bytes

Analysis of sample program using proposed download scheme

Total bytes in program = 1373 bytes

Types of data fields / bytes per field:

Position independent fields = 1157 bytes

Absolute position dependent fields = 215

Number of bytes required to transmit each field type:

Position independent data = 10 bytes

Added data = 3 bytes

Absolute position dependent data = 6 bytes

Total number of bytes required for transmission = 19 bytes

Ratio of direct download to proposed scheme = 72.3

Instruction Set Investigation

To investigate the validity of the new trial scheme, an example of a machine
language instruction is selected to check the following:

1. to see if using this format, does there exist data that cannot be
taken apart and put back together again,

2. to check on the efficiency of the scheme, that is can you have as
few variations as possible and still be effective.

BIBLIOGRAPHY

Cryptography

1. Wyn L. Price, "A Review of the Development of Standards for Data
Encipherment,"Proceedings of the NATO Advanced Study Institute, Bonas,
France, 11-22 July 1983, pp. 629-641.

2. Victor Mansfield, "Encryption Methods," PC Tech Journal. pp. 96-114,
April 1985.

3. Bill Hancock, "Network Encryption or 'No, That's Not A Bad Packet!"
The DEC Professional, pp. 49-56, July 1985.

Error Correction

1. 	R. Stefanelli, "Multiple Error Correction in Arithmetic Units with
Triple Redundancy," Advances in Microprocessing and Microprogramming,
pp. 205-215, 1984.

Error Correction Codes

1. Akira Shiozaki, "Recollection Error of Higher-Order Correlation Matrix
Continuous-Type Associative Memory," Kybernetes, vol. 14, pp. 173-177,
1985.

2. "Reduced Performance Impact or Error Correcting Coding," IBM Technical
Disclosure Bulletin, pp. 5551-5552, vol. 27, No. 10A, March 1985.

Error Detection

1. L. Chariglione, L. Corgnier, L. Masera, "Reliable Communication for
Multiservice Terminals,"GLOBECOM '84 Conference Record, IEEE 1984, pp.
308-12, Vol. 1

2. W. Michael Trautwein, "Concurrent Error-Detection/-Correction of
Logical Operations," Proceedings 2nd GI/NTG/GMR Conference, Bonn,
Germany, 19-21 Sept 1984, pp. 189-201

3. C. S. Benning, D. N. Moen, Q. G. Schmierer and S. A. Tibbitts, "Error
Detection for Data Compressor," IBM Technical Disclosure Bulletin, Vol.
27, No. 9, February 1985.

4. W. David Schwaderer, "CRC Calculation," PC Tech Journal, Vol. 3,no. 4,
pp. 118-133, April 1985.

Packet-Switching

1. W. Hsieh and B. Kraimeche, "Analysis of an End-to-End Group
Acknowledgement Error Control Mechanism in a Packet-Switched Network,"
IEEE GLOBECOM 1984 Conference Record, Vol. 1, pp. 344-348, 1984.

2. N. M. A. Ayad, F. A. Mohammed, M. A. Madkour and M. S. Metwally,
"Performance Comparison of Quasi-Static Routing Algorithms for Packet-
Switched Computer Networks," Computer Communications Review, Vol. 15,
no. 1, pp. 18-47, January 1985

3. A. N. Venetsanopoulos, W. Waung, "Adaptive Bifurcation Routing
Algorithms for Computer-Communication Networks," Kybernetika, pp. 178-
197, Volume 21 (1985), Number 3.

4. Mark J. Kiemele, Udo W. Pooch, "Topological Optimization of an
Integrated Circuit/Packet-Switched Computer Network,"Proceedings of the
1984 Winter Simulation Conference, pp. 605-618.

Protocols

1. Joshua Etkin, Daniel Tabak, "Communication Protocols of Distributed
Systems: How Far Should We Folow The Standardization Trend?",
Proceedings of the Computer Networking Symposium, pp. 113-121, December
1984.

2. L. M. Likhachev and D. P. Sokolov, "Automatic Construction of Protocols
For Packet-Switching Networks," Avtomatika i Vychislitel'naya Tekhnika,
Vol. 18, No. 1, pp. 3-8, 1984.

3. Kaoru Kurosawa, Hiroshi Koike, and Shigeo Tsujii, "A New Specification
and Validation Method for Communication Protocols - A Proposal of a
Composite State Diagram Mixed with Logical Relations," GLOBECOM 84
Conference Record, Vol. 1, pp. 157-163, 1984.

4. M. Bonatti, A. Briccoli, L. Fratta, "Performance Evaluation of
Retransmission Protocols in Processor Interconnection Networks,"
GLOBECOM 84 Conference Record, Vol. 1, pp. 130-136, 1984.

5. Victor L. Voydock, Stephen T. Kent, "Security Mechanisms in a Transport
Layer Protocol," Computer Networks Netherlands, vol. 8, no. 5-6, pp.
433-449, 1984.

6. Saumya K. Debray, Ariel J. Frank, Scott A. Smolka, "On the Existence
and Construction of Robust Communication Protocols for Unreliable
Channels," Foundation of Software Technology and Theoretical Computer
Science. Fourth Conference proceedings, pp. 136-151, 1984

7. 	Abbas El Gamal and Alon Orlitsky, "Interactive Data Compression,"
Proceedings of 25th Annual Symposium on Foundations of Computer
Science, pp. 100-108, 1984.

Microprocess Chips

1. Boris Allen, "An Old-Fashioned Processor? Part One," Computing The
Magazine, p. 21, July 4, 1985.

2. Boris Allen, "An Old-Fashioned Processor? Part Two," Computing The
Magazine, p. 20, July 11, 1985.

3. Boris Allen, "Old Fashioned Processor? Part Three," Computing The
Magazine, p. 21, July 18, 1985.

4. Jack Sterett, Al Brown and Gary Hornbuckle, "Maintaining Compatibility
When Upgrading The 8086/87," Digital Design, pp. 55-60, July 1985.

5. D. V. Shouse, "On the Fly' CRC-16 Byte-wise Calculation for 8088-based
Computers," IEEE Micro (USA), Vol. 5 no. 2, pp. 67-75, April 1985.

STANDARDIZED PROTOCOLS BETWEEN
MICROCOMPUTERS AND DATA SERVICE NETWORKS

by

Dr. Jay H. Schlag

School of Electrical Engineering

Georgia Institute of Technology

March 16,1987

prepared for

Control Data Corporation

Standardized Protocols Between
Microcomputers and Data Service Networks

Introduction

This report is the annual report covering the first year of a two year
effort to investigate standardized protocols between microcomputers and data
service networks. The first half of this report was presented earlier as a
semi-annual report. The second half is a continuation of that report and is
a discussion of the work that has been done during the remainder of that
year.

The rapid growth of computer applications coupled with the development of
inexpensive, small computer systems has made drastic changes in the role of
the large mainframe computer service network. These changes have been
produced primarily by the shift of computer intelligence from the main host
to the user-based systems. This shift has precipitated a need for changes
in many of the other computer functions such as data base management,
application programs, data security and communication protocols. This
effort addresses issues within the single area of computer communication
protocols in the computer service network and the impact of modern 'computer
networks on the protocol requirements. Of particular interest to this
project will be the areas of communication hardware, data transmission
structure, error detection, error correction, encryption, data base
security, data format exchange, and data base management command exchange.

To understand the need for new user/computer service communication
protocols, it is useful to understand the evolutionary trends occuring in
the entire network. The user in a service computer network in the 1970 time
frame was a simple CRT terminal or hard copy device with rio local processing
or data storage capability. The user communicated with the host computer
over a commercial grade telephone line using a standard RS232 protocol at a
speed of 300 BAUD. The data was transmitted in standard, ASCII form with no
communication security, data encryption, error detection or error
correction. This communication was handled by a communication adapter at
the host site which could have been as simple as a telephone switching
network. The communication adapter connected the user to the central
operating system which in turn called up - the particular application program
that was requested by the user. The application program handles the great
majority of all of the user/host controlling inputs and outputs to the user,
inputs and outputs to the host data base, input and output formats, data
security, data encryption, error detection, and error correction. Many of
these application programs were executed in a Batch Mode and supplied
little, if any, direct communication with the remote user. Interaction
operation was also limited by the extremely slow communication speed between
the user and the host. In this type of system the application program
served as the center of both processing and control of the computer
operation.

During the early 1980 period the service networks developed a large variety
of computer communication networks to effectively handle larger volumes of
more sophisticated data transmissions. These networks effectively removed
the communication demands from the central computer but did not remove the
host application programs as the center of processing activity.

With the development of inexpensive personal and business computers, the
large service computer network is undergoing a number of organizational
changes. The typical user in 1990 time frame will be a small business or
personal computer with local application programs and mass storage
capability. The majority of the interactive applications processing will be
performed at the local user level with the computer service network
supplying access to large data bases for portions of the processing
information. The bulk of the user/host communication will still be handled
via commercial telephone connections, but at considerably higher
transmissions rates (4800, 9600 BAUD). The information to and from the
local user will be processed by a much more sophisticated communications
adapter which can connect the user into different segments of the operating
system or possibly even direct access to the host data base. The operating
system can access a variety of application programs which would normally be
extremely large programs that could not.be executed on the local computer or
specialized data base management systems which are tailored to make specific
types of operation on the host data base. The operating system level
might also allow a direct contact between the remote user and the data base
itself. The data bases will be extremely large and more likely to be shared
between a number of users than the data bases of the 1970's.

A major problem in a system of the 1990's will be to keep the executable
files on remote updated by the host system in a timely and cost effective
manner. To better understand the issues involved in solving this problem,
it is useful to examine the block-level diagrams illustrated in Figures 1-4
of the segments a typical 1990 data transfer system. The management system
segment, common to all four segments, will have the role of coordinating
the four modules that in turn generate the updates to modify an old file
into a new version, transport the updates through the various elements of
two communication systems, and finally reconstructing a new file from the
old and incorporating the transmitted updates. A summary of the system
elements being examined is offered below.

The data generation system, illustrated in Figure 1, consists of eight
elements. Four of these simply represent the old and new source files and
their corresponding executable files, which serve as inputs to the download
file generator. The function of the download file generator is to generate,
based on a scheme to be described later, a file with information for
decomposing an old executable file and reconstructing it to mirror the new
executable file. The generated file will be dependent upon the instruction
set about which information is available through the instruction table.
Ideally, information in the instruction table will be the output of the
automatic instruction table generator which will be a program, probably
based on artificial intelligence, to take an instruction set and extract

MANAGEMENT SYSTEM

DATA GENERATION SYSTEM

OLD
EXEC.
FILE

DOWNLOAD
FILE

GENERATOR

INSTR.
TABLE

11.11.M■1)11

NEW
DOWNLOAD

FILE

OLD
SOURCE

FILE

NEW
EXEC.
FILE

NEW
SOURCE

FILE

AUTOMATIC
INSTRUCTION

TABLE
GENERATOR

FIGURE 1 GEORGIA INSTITUTE OF TECHNOLOGY
CONTROL DATA CORPORATION

DATA COMMUNICATION SYSTEM

CCM 	J.H. SCHLAG 	3/86

2 FIGURE

STEM DATA MMMLINIEATION

MANAGEMENT

PACKET
CONVERT

ERROR
DETECT
CODING

ENCRY
[ODIN

GEORGIA INSTITUTE OF TECHNOLOGY
CONTROL DATA CORPORATION

DATA COMMUNICATION SYSTEM

COCC2 1 J.H. SCHLAGI 	3/BE

GEORGIA INSTITUTE OF TECHNOLOGY
CONTROL DATA CORPORATION

DATA COMMUNICATION SYSTEM

CDCC3 	I J.H. SCHLAG 1 	3/06

FIGURE 3

MANAGEMENT 5Y5TEM

DATA COMMUNICATION SYSTEM

PACKET
CONVERT

ENCRYP.
CODING

YSTEM MANAGEMENT 5

STEM DATA RELONSTRLIETION SY

GEORGIA INSTITUTE OF TECHNOLOGY
CONTROL DATA CORPORATION

DATA COMMUNICATION SYSTEM

CDCC4 I J.H. SCHLAG I 	3/BE

FIGURE 4

OLD
EXEC.
FILE

NEW .

EXECUTABLE
FILE

GENERATOR

NEW
DOWDLOAD

FILE
III■111)

FNSTR.
TABLE

information about it necessary for use in the download file generator. The
new download file is the output of the download file generator and the input
to the data communication system illustrated in Figure 2. In this system,
there are four blocks, the first of which is labeled "packet convert" and
which accurately describes its function. For checking and error detection
purposes it is more efficient to send data in packets. The data packets are
then subject to error detection and correction and to encryption for
security as indicated by the next two blocks in Figure 2.

The need for higher BAUD rates over commercial telephone lines will increase
the probability of data transmission errors, but the use of packet protocols
will increase the probability that these errors can be detected. The
technique used for error detection will most likely be a vertical or
possibly vertical and horizontal cyclic redundancy code. Certain single and
multiple bit errors can be corrected using packet protocols and particular
coding schemes such as the Hamming code.

A number of factors will increase the need for encrypting data between the
user and the host service network. With little or no application program on
the host computer, the data transmitted will more likely be the essential
data base unfiltered by application programs at the host. The use of shared
data bases will tend to make companies more security conscious. New
regulations such as the Privacy Act will increase the responsibility of
companies to maintain secure data.

Even though proper encryption can maintain the security of the data
transmitted between the host and user,- additional steps must be provided to
keep unauthorized users from accessing or changing specific areas of the
data base. As more of the applications programs are moved to the user
system, more responsibility for data base security will fall on the
communication system.

Data packets, having been error corrected and encrypted for security, pass
to the fourth block, the communication protocol block in the system.
Definite protocols need to be established between host and system including
packet acknowledgement and retransmission. Through these protocols data is
transmitted from host to remote use. Figure 3 is mirror image of Figure 2
and represents the fact the the functions of the data communication systems
of the remote system in Figure 3 mirror those of the host system in Figure
2.

The data reconstruction system is illustrated in Figure 4. The new
download file contains the packets of data produced by the data
communication system of the remote system. This input along with the old
executable file that resides at the remote site are submitted to the new
executable file generator which, with information from the instruction
table, reconstructs the old executable to a new executable file identical to
that in Figure 1. Details of the schemes developed for the download file
generator of Figure 1 and the new executable file generator are presented
later. As was noted earlier, to make sure that all the modules described

interact properly, all are controlled by a management system. Through the
management system the host makes program changes and sends them to all the
remote users who are eligible to receive them. By the same system the
remote user advises the host when updates have been completed successfully.
When the remote signs on, the host should request that an update be made
automatically; the remote user can then respond with his desires. The
management system keeps account of which systems have been updated.

Each of the system elements and their interrelation will be areas of
changing needs related to communication protocols between the host and the
user. Each of these areas has proved to be fertile ground for researchers.
Publications with results of work in the areas have been assembled in a
library both for assessment of the current status and for future reference.
A bibliography of these publications is included as an appendix.

The issues described above relate to the broad context of the problem of
keeping the executable file on the remote terminals updated by the host.
For the initial effort a narrower focus was taken with a concentration on a
scheme for downloading the file generator and new file generation.

To date, the schemes available to keep update files available at the remote
terminals have been compacting schemes that assumed no a priori information
at the receiver and involved sending entire new files, but in as compact and
efficient manner as possible. In contrast, the new scheme that is the
subject of this report assumes that an old file exists at the remote and
needs merely to be updated. The new scheme involves examining the changes
that need to be made and sending only the information necessary to make the
changes.

New Update Scheme

The basic idea in the new update scheme that is being developed is to begin
with an old executable file that requires an update and that exists both at
the remote and the host systems. An update to the old file is made at the
host•. The objective is to transmit the update to the remote system. In the
new scheme this is done by decomposing the old file at the remote and
reconstructing it with update information to in fact make a replica of the
new executable at the remote system.

This update process will by nature mean that the instructions from the old
executable file will be located in a different position in the new
executable file. In order to implement the changes in an existing code, it
is useful to examine first the types of information fields involved in an
instruction and then the ways these fields change with changes of position.

Four Types of Information Fields

1. 	OP code fields specify the type of instruction, such as "NOV",
that is to be executed and by its very nature is position
independent.

2. A second type of position independent fields is a general class of
position independent fields, other than OP code fields (e.g.
fields that specify registers).

3. Relative position dependent fields specify information such that
if moved from one position, to another, the value of the number in
the field will be changed by the amount relative to the amount it
moved.

4. Absolute position dependent fields are fields specifying values
whose magnitude changes according to its absolute position in
memory.

Four Ways to Transfer Data

1. 	Position independent data packets involve moving groups of
instructions that are independent of position as illustrated in
Figure 5 and as follows:

a. remove n bytes of data from the old executable file starting
at the old file data pointer

b. place n bytes of data in new file starting at the new file
data pointer with no changes to the data packet

c. add n to both old and new pointers

2. 	Offset position valid data packet involves receiving a command
that identifies the type of move and the value of n, as well as
two offset values, both relative and absolute, as illustrated in
Figure 6 and as follows:

a. remove n bytes of data from the old executable file starting
at the old file data pointer

b. add current relative offset value to all relative dependent
fields

c. change all absolute fields to reflect the new code position

d. place data packet back in new executable file

e. add n to old and new data pointers

3. 	Delete Data Packet from the old executable file by supplying the
value of n and then add n to old data pointer as illustrated in
Figure 7.

■
MOVE N BYTES

WITH ND CHANGE

NEW FILE
DATA POINTER 1

■

OLD FILE
DATA POINTER

NEW EXECUTABLE FILE

ABSOLUTE POSITION
DATA PACKET

TOTAL BYTES IN PACKET = 2

INFORMATION FROM
COMMUNICATION

I
CHANNEL

1. PACKET TYPE CODE (1 BYTE)

2. NUMBER OF BYTES TO MOVE (1 BYTE)

OLD EXECUTABLE FILE

FIGURE 5

GEORGIA INSTITUTE OF TECHNOLOGY
CONTROL DATA CORPORATION

ABSOLUTE POSITION DATA PACKET

CMS I J.H. SCHLAG) 	3/05

NE W FILE
DATA POINTER

■

NEW EXECUTABLE FILE

OLD FILE .

DATA POINTER

MOVE N BY
WITH ADDED 0

ES
FFSETS

CONTROL DATA CORPORATION
OFFSET POSITION DATA PACKET

COM I J.H. SCHLAG I 	3/06

OFFSET POSIT ION
DATA PACKE T

TOTAL BYTES IN PACKET = 2

INFORMATION FROM
COMMUNICATION

CHANNEL

1. PACKET TYPE CODE (1 BYTE)

Z. NUMBER OF BYTES TO MOVE (1 BYTE

3. RELATIVE POSITION OFFSET (2 BYTES)

FIGURE

GEORGIA INSTITUTE OF TECHNOLOGY

OLD EXECUTABLE FILE

TOTAL BYTES IN PACKET = 2

INFORMATION FROM
COMMUNICATION

CHANNEL

1.PACKET TYPE CODE t 1 BYTE)

2. NUMBER OF BYTES TO DELETE (1 BYTE)

DELETE
DATA PACKE

OLD - FILE
DATA POINTER

OLD EXECUTABLE FILE NEW EXECUTABLE FILE

NE
DATA

W FILE
POINTER

7

GEORGIA INSTITUTE OF TECHNOLOGY
CONTROL DATA CORPORATION

DELETE DATA PACKET

CDCC7 	1 J.H. SCHLAG 1 	3/B6

FIGL1R

T
ADD

DATA PACKE

OF
A

--7

• ADD N BYTE!

NEW DAT

ON FROM

N
A
EL

TION

KET TYPE CODE (1 BYTE)

BER OF BYTES TO MOVE (1. BYTE)

YTES OF NEW DATA

INFORMATI
COMMUNIC

CHAN

1.PAC

2. NUM

3. N B

TOTAL BYTES OF DATA = N + 2

NEW EXECUTABLE FILE

W FILE
POINTER 1

■

NE
DATA

OLD FILE
DATA POINTER

FIGURE

GEORGIA INSTITUTE OF TECHNOLOGY
CONTROL DATA CORPORATION

ADO DATA PACKET °

DIU I J.H. SCHLAG 1 	3/B6

4. Add Data Packet involves receiving n bytes of new data from
communication channel (host) as illustrated in Figure 8 and as
follows:

a. place n bytes of new data starting at the data pointer in the
new executable file

b. add n to new file data pointer

In the worst case, by exercising data transfers types 3 & 4, the old file
will be completely replaced by a new executable file, in much the same way
as is currently done. When the changes are extensive, it may be the most
efficient way to proceed. In many other instances, when the changes are
minor, considerable savings in time and money could be realized with the new
scheme.

A Trial Scheme

Based on the information presented above a trial scheme has been devised and
is illustrated in the following example.

A sample assembly language program was selected at random (Duke University
Computer Science homework problem number 4). An additional instruction was
added to the program and it was re—assembled. The old and new code were
printed and the proposed scheme was manually applied to indicate the degree
of saving in download efficiency. The following indicates the bytes that
would be sent in the download file.

Download codes for sample program

Data 	 Number of bytes

Position independent code 	 1 byte
256 	 1 byte
Position independent code 	 1 byte
256 	 1 byte
Position independent code 	 1 byte
256 	 1 byte
Position independent code 	 1 byte
256 	 1 byte
Position independent code 	 1 byte
133 	 1 byte
Add data code 	 1 byte
1 	 1 byte
B8 	 1 byte
Position offset code 	 1 byte
Relative position offset 	 2 byte
215 	 1 byte

Total 	 17 bytes

Analysis of sample program using proposed download scheme

Total bytes in program = 1372 bytes

Types of data fields / bytes per field:

Position independent fields = 1157 bytes

Absolute position dependent fields = 215

Number of bytes required to transmit each field type:

Position independent data = 10 bytes

Added data = 3 bytes

Absolute position dependent data = 4 bytes

Total number of bytes required for transmission = 17 bytes

Ratio of direct download to proposed scheme = 1372/17= 80.7

Instruction Set Investigation

To investigate the validity of the new trial scheme, an example of a machine
language instruction is selected to check the following:

1. to see if using this format, does there exist data that cannot be
taken apart and put back together again,

2. to check on the efficiency of the scheme, that is, can you have as
few variations as possible and still be effective.

Second Six Months Effort

The objectives for the second six months of effort include the following.
The first objective was to classify a subset of the 8086 language into the
field structure proposed to the communication scheme and to build an
instruction table for that subset. A second objective was to install two
compilers on the IBM personal computer; in fact, compilers for three high-
level languages, "C", Pascal, and Fortran, were installed. The third
objective was to run several examples of inserting and deleting lines from
each of these compiler-level languages. The fourth objective was to compare
the machine language code before and after the changes to calculate the
efficiency that would result from using the proposed communication scheme.
The fifth objective was to identify the problem features of the DOS COM1
communication port. The work involved in reaching each of these objectives
is discussed below.

Instructions Classified by Field Structure

To classify a subset of the 8086 language into the field structure proposed
to the communication scheme described earlier, some example instructions
were examined in detail so that the effect of a position change on each
field in that instruction could be evaluated. Fields that are position
independent require no adjustment in the update scheme. Fields that are
either relative or absolute position dependent will require an adjustment in
the update situation. • The appropriate adjustments will be made based on
information in an instruction table. This instruction table will be based
on information gained through the analysis of position dependencies of
various fields.

The first instruction to be examined is

MOV destination,source

which transfers a byte or a word from the source operand to the destination
operand. This instruction was chosen as an example for discussion because it
has the potential for many different combinations of fields. This
instruction comprises a set of seven instructions each characterized by the
nature of the operands involved. The first of those seven involves a memory
or register operand to/from a register operand. The encoding of this
combination of operands can be described as

1 	(

i 1000101 d 1 w1 modfrezt rim I disp-lo dis -hi
f

I 	(II I 	I I 	I 	! R/I 	1,R/I

if d=1 then SRC= EA , DES T=REG ,else SRC=REG,DEST=EA, where
SRC=source,DEST=destination,REG=register,EA=effective address,and disp-1 and
disp-h are the displacement, lower and higher order bits, respectively. Note
that w=0 or 1 to indicate a register width of one or two bytes,
respectively. The fields into which the bytes of the instruction have been
separated for analysis are indicated by vertical dotted lines. The
character of the position dependencies of each field is indicated by: I =
position independent, including OPeration codes, R = relative position

dependent, and A = absolute position dependent. As indicated above, The
first three fields that comprise the first byte are position independent, as
is the second field of the second byte. The first field of the first byte
is an OP code, which is always position independent. The values of d,
indicating the direction of the move, w, indicating the width of the data to
be moved, and reg, specifying the register involved in the move, once set
for an instruction, would not change with a change in position. The mod
and r/m fields in the second byte are used in combination to indicate the
addressing mode when one of the operands is in memory, as indicated in
Table 1. Since one of a number of these combinations would be assigned for
a particular instruction, and since many of the combinations correspond to
operand effective addresses that would be relative position dependent, it
would be necessary to examine these fields for a particular instruction;
however, once an addressing mode has been set for an instruction, changing
the position of the instruction will not change the addressing mode, so the
mod and r/m fields are themselves position independent. The last two bytes,
which are optional, are used to specify the displacement of the data from
the beginning of the data stack. In the update process, if lines 'of code
are inserted that refer to data which simultaneously is inserted in the
stack, but after the data referred to by the instruction in question, then
the values in the displacement fields would not change with position.
However, when lines of code are inserted which add data in the stack above
data referenced by the instruction in question, the value of the
displacement will change by an amount corresponding to the amount of data
that was inserted. In this case, the fields containing displacement

information are considered to be relative position dependent. For these
reasons, the displacement fields could be either relative position dependent
or independent.

Using the logic described above, the other MOV instructions were analyzed.
The field characterizations are summarized below.

Immediate Operand to Memory or Register Operand:
I 	I 	 1

i 1100011 w !mod 000 ! Lm I displol disp —hi I data 	I 	data if w=1 ,
I 	, 	I 	, 	i 	1

I 	' I: 	I' 	I' 	I . 	R/I 	' 	R/I 	! 	I 	 I
i

where SRC=data, DEST=EA.

In this case all fields are position independent, except the third and
fourth bytes which indicate displacement. These fields, for the reasons
noted above, are relative position dependent or independent.

Immediate Operand to Register:

1 	
1

1 1011
I
w rez 1 data 	1 data if w=13

	

 1 	1
I 	I : 	I

SRC = data, DEST=REG.

In this case all fields are position independent.

Memory Operand to Accumulator:

1 1010000Iw I addr-low
•

addr-hi70

 R/I 	R/I

if w=0 then SRC=addr,DEST=AL
else SRC=addr+1:addr,DEST=AX.

The first two fields are position independent. Moving data in memory to the
accumulator involves only the direct addressing mode, which means that the
address is equivalent to displacement; therefore, like displacement fields,
these address fields are either relative position dependent or independent.

Accumulator to Memory Operand:
• • 	•

i 10100001'w I addr-low 1 	addr:1717,Jol
•

I 	1 	. R/I 	I 	R/I

if w=0 then SRC=AL, DEST=addr
else SRC=AX,DEST=addr+1:addr.

Like the previous instruction, the first two fields are position
independent, and the address fields are either relative position dependent
or independent.

Memory or Register Operand to Segment Register:

	

1 	:

	

1 10001110 (mod 1 0 ,reg! r/m 	disp-loI disp-hi

I 	I 	111 4 11 1 	R/I 	R/I

if reg not equal 01 then SRC=EA, DEST=REG
else undefined operation.

As usual, the OP code in the first byte is a position independent field.
The second byte is divided into four fields. The first and fourth are
independent for reasons noted above. The second field contains one bit,is
equal to 0 and is position independent. The third field in the second byte
is two bits long, specifies a segment register, and is, therefore, position
independent.

Segment Register to Memory or Register Operand:

1100011001 mod 1 Olreg 1 r/m I disp -lo I disp-hii

I 	 !1 i I LI 	1 	1111., 	11/

SRC=REG,DEST=EA

As in the instruction described above, the OP code in the first byte and
field is position independent, as is the zero bit and field in the second
byte. The field in the second byte specifying the segment register is also
position independent. The fields denoted by mod and r/m are independent.
The displacement fields that are the third and fourth bytes are relative
position dependent or independent.

Turning now to an instruction other than ones related to MOV, consider the
following:

NOP

NOP (No Operation) causes the CPU to do nothing. NOP does not affect any
flags. It is encoded as

looloom 1
I

This single byte is one field which is an OP code and is position
independent.

Based on the analysis presented above, an instruction table was prepared and
is presented as Table 2.

Installation of Compilers

To evaluate the effect that a high-level language compiler would have on the
field dependencies described above, three compilers were installed on the
IBM personal computer. The three high-level languages whose compilers were
installed are "C",PASCAL, and FORTRAN. They were installed on the IBM XT
personal computer with 640K of memory and a 10 megabyte hard disk. The
installation was complex and time consuming, but the installation
documentation was adequate. The parameters associated with each is listed
below.

Microsoft FORTRAN 77 Compiler Rev 3.30
Microsoft PASCAL Compiler Rev. 3.31
Microsoft C Compiler Rev. 4.00

Evaluation of Effect of Code Insertion and Deletion

For each of the high-level language compilers installed, a sample program
was coded and compiled , generating the associated assembly code. For the
"C" compiler, a sample program was selected from The "C" Programming
Language, by Brian W. Kernighan and Dennis M. Ritchie, page 26. A copy of
the program and associated assembly language code is included as Appendix A.
A new line of code, adding a new variable, "min", was inserted into the
original program. The program was then recompiled, generating new assembly
code. The new program and associated assembly code are included as Appendix

TABLE 1 MOD AND R/M PARAMETERS

FIRST OPERAND CHOICE DEPENDS ON ADDRESSING MODE

1. FIRST OPERAND IN MEMORY

A. INDIRECT ADDRESSING

MOD = 00 => DISP = 0
MOD = 01 => DISP = DISP•LO SIGN EXTENDED
MOD = 10 => DISP = DISP•HI, DISP-LO

R/M OPERAND EFFECTIVE ADDRESS

000 (BX) + (SI) + DISP
001 (BX) + (DI) + DISP
010 (BP) + (SI) + DISP
011 (BP) + (DI) + DISP
100 (SI) + DISP
101 (DI) + DISP
110 (BP) + DISP
111 (BX) + DISP

B. DIRECT ADDRESSING

MOD = 00
R/M = 110
OPERAND EFFECTIVE ADDRESS = DISP -HI, DISP-LO

2. FIRST OPERAND IN REGISTER

MOD = 11

R/M REGISTER
8-BIT (W=0) 16-BIT (W=1)

000 AL AX
001 CL CX
010 DL DX
011 BL BX
100 AH SP
101 CH BP
110 DH SI
111 BH DI

TABLE 2 INSTRUCTION TABLE FORMAT

General instruction Table

Starting bit of OPCODE
Ending bit of OPCODE
OPCODE value
Starting bit of d parameter
Starting bit of w parameter
Starting bit of mod parameter
Starting bit of reg parameter
Starting bit of rim parameter
Starting bit of data value
Number of data bits
Starting bit of disp value
Number of disp bits
Starting bit of address value
Number of address bits

Notes:
1. If the starting bit is zero then the parameter is not used
2. If the number of bits is indicated as a W, then the number

of bits is controlled by the W parameter

MOV instruction Table Example
Memory or Register Operand to/from Register Operand:

Starting bit of OPCODE 1
Ending bit of OPCODE 6
OPCODE value 100010
Starting bit of d parameter 7
Starting bit of w parameter 8
Starting bit of mod parameter 9
Starting bit of reg parameter 12
Starting bit of rim parameter 0
Starting bit of data value 0
Number of data bits 0
Starting bit of disp value 18
Number of disp bits
Starting bit of address value 0
Number of address bits 0

MOV instruction Table Example
Memory Operand to Accumulator

Starting bit of OPCODE 1
Ending bit of OPCODE 7
OPCODE value 101000
Starting bit of d parameter 0
Starting bit of w parameter 8
Starting bit of mod parameter 0
Starting bit of reg parameter 0

Starting bit of r/m parameter 	0
Starting bit of data value 	 0
Number of data bits 	 0
Starting bit of disp value 	 0
Number of disp bits 	 0
Starting bit of address value 	9
Number of address bits 	 16

B. A similar procedure was followed for each of the other two compilers.
The FORTRAN results are included as Appendices C and D. The PASCAL results
are included as Appendices E and F. The efficiency of the proposed download
scheme is illustrated in Table 3. In each case the file size ratio of the
direct download file to the proposed download scheme was over 100. For
example in the C program example a conventional direct download would
require 6558 bytes and the download with the proposed scheme would require
62 bytes.

TABLE 3 	COMPARISION OF RESULTS FROM PROPOSED
DOWNLOAD SCHEME

C Program Example

Total Program Size = 6558

Data Section Number of Download Download
Bytes Type Bytes

Before Insert 14 Pos. 	Indep. 2

Added Code 6 Add Data 8

After Insert 216 Rel. Dep. 2

Run Time Library 6342 Rel. Dep. 50

Total 6558 62

Ratio of direct download to proposed scheme = 105.7

FORTRAN Program Example

Total Program Size = 31054

Data Section Number of Download Download
Bytes Type Bytes

Before Insert 200 Pos. 	Indep. 2

Added Code 22 Add Data. 24

After Insert 100,i Rel. Dep. 8

Run Time Library 29828 Rel. Dep. 234

Total 31054 268

Ratio of direct download to proposed scheme = 115.8

PASCAL Program Example

Total Program Size = 37314

Data Section Number of Download Download
Bytes Type Bytes

Before Insert 36 Pos. Indep. 2

Added Code 16 Add Data 18

After Insert 561 Rel. Dep. 6

Run Time Library 36701 Rel. Dep. 288

Total 37314 314

Ratio of direct download to proposed scheme = 118.8

Protocol of the COM1 communication port on the IBM personal computer

The protocol for the IBM personal computer COM1 communication port has
a number of features that make computer-to-computer communications
difficult when operating under DOS. These features involve both the
hardware and software of the communication port. This section of the report
describes the problem features, and it documents a group of assembly
language subroutines that have been written to control the port directly
from a higher-level language.

Problem Features of the DOS COM1 Communication Port

The following hardware and software features create problems in
communicating between two computers under DOS:

1. If a character has arrived at the COM1 communication port prior to the
operating system accessing the port, the system declares the receiver-full
status to be a device error and will cause a run-time error.

2. When the communication port is initialized to receive data, the clear-to-
send line is set high, but the data terminal ready line is set low. If the
full hardware handshake lines are implemented between two COM1 communication
ports, the receiving port will inhibit the sending port and no data will be
transmitted.

3. The software termination for a DOS input on the COM1 port is a control Z
character, but the output protocol traps the transmission of a control Z on
output so that the output protocol is not compatible with the input
protocol.

4. The software protocol automatically sends both a carriage return and a
line feed at the end of a string output, but the input only requires a
carriage return to terminate the string input. This extra line feed
character sent on the output usually ends up as a character left in the
receiver register at the end of a transmission, which results in a run-time
error as described in item 1.

The following assembly language programs were written to allow a user to
access the COM1 port directly from a high-level program.

IC1LS - Reads the line status of the COM1 port

IC1MS - Reads the modem status of the COM1 port

IC1INT - Initializes the COM1 port configuration

IC1MCO - Set the value of the COM1 port modem control lines

IC1TD - Sends one character to the COM1 port

IC1TDW - Sends one character to the COM1 port after the
transmitter buffer is empty

IC1RD - Reads one character from the COM1 port with a null
indicating no character is available

ICIRDW — Reads one character from the COM1 port after a character
becomes available

The following FORTRAN subroutines were written to supplement the assembly
language routines.

C1RSTR — Read a string of characters into a character array from
the COM1 port.

C1SSTR — Send a string of characters from a character array to the
COM1 port.

APPENDIX A

C COMPILER LISTINGS

#define MAXLINE 1000 /* maximum input line size */

main() 	/* find longest line */
{

int len; /* current line length */
int max; /* maximum length seen so far */
char line[MAXLINE]; /* current input line */
char save[MAXLINE]; /* longest line, saved */

max = 0;
while ((len = getline(line, MAXLINE)) >0)

if (len > max) {
max = len;
copy(line, save);

}

if (max > 0) 	/* there was a line */
printf("%a", save);

}

getline(s, lim) 	/* get a line into s, return length */
char s[];
int lim;
{

int c, i;

for (i'0; i<lim-1 && (c=getchar()) && c1='112'; ++i)
s[i] = c;

if (c == '\n") {
s[i] = c;
++i;

}

s[i] = '\0';
return(i);

}

copy(al, s2) 	/* copy sl to s2; assume s2 big enough */
char al[], s2[];
{

int i;

i = 0;
while ((s2[i] = al[i]) 1= 'Ur)

++i;
}

PAGE 1
04-06-87
08:10:40

Line# Source Line 	 Microsoft C Compiler Version 4.00

1
2 	#define MAXLINE 1000 /* maximum input line size */
3
4 	main() 	/* find longest line */
5
6 	 int len; /* current line length */
7 	 int max; /* maximum length seen so far */
8 	 char line[MAXLINE]; /* current input line */
9 	 char save[MAXLINE]; /* longest line, saved */

10
11 	 max = 0;
12 	 while ((len = getline(line, MAXLINE)) >0)
13 	 if (len > max) {
14 	 max: = len;
15 	 copy(line, save);
16

. 17 	 if (max > 0) 	/* there was a line */
18 	 printf(ns", save);
19

main Local Symbols

Name
	

Class 	Offset 	Register

max 	 auto 	-07d4
line 	 auto 	-07d2
save 	 auto 	-03ea
len 	 auto 	-0002

20
21 	getline(s, lim) 	/* get a line into s, return length */
22 	char et];
23 	int lim;
24
25 	 int A, i;
26
27 	 for (i=0; i<lim-1 && (c=getchar()) &6 c1='\n'; ++i)
28 	 s[i] = c;
29 	 if (c 	'fin') {
30 	 s[i] = c;
31 	 ++i;
32
33 	 s[i] = '\0';
34 	 return(i);

getline Local Symbols

Name 	 Class 	Offset 	Register

i 	 auto 	-0004
c 	 auto 	-0002
s 	 param 	0004
lim 	 param 	0006

Line#

35
36
37
38
39
40
41
42
43
44
45

PAGE 	2
04-06-87
08:10:40

Source Line 	 Microsoft C Compiler Version 4.00

copy(sl, s2) 	/* copy sl to s2; assume s2 big enough */
char 	sl[], 	s2[];

int 	i;

i 	0;
while ({s2[i] 	sl[i]) 	"10")

++i;

copy Local Symbols

Name 	 Class 	Offset 	Register

i 	 auto 	-0002
sl 	 param 	0004
s2 	 param 	000 6

Size Class Offset

*** global OObd
*** extern ***
*** global 0061
*** global 0000
*** extern ***

Global Symbols

Name
	

Type

copy 	 near function
getchar 	 near function
getline 	 near function
main 	 near function
printf 	 near function

Code size 00e7 (231)
Data size 0003 (3)
Bss size se 0000 (0)

No errors detected

APPENDIX B

C COMPILER LISTINGS
WITH INSTRUCTION ADDED

#define MAXLINE 1000 /* maximum input line size */

main() 	/* find longest
{

int len; /* current
int max; /* maximum
int min; /* --- new
char line[MAXLINE];
char save[MAXLINE];

max is 0;

line */

line length */
length seen so far */
variable added */
/* current input line */
/* longest line, saved */

min = 123; 	 /* new line added */

while ((len = getline(iine, MAXLINE)) >0)
if (len > max) {

max = len;
copy(line, save);

}

if (max > 0) 	/* there was a line */
printf("%s", save)

}

getline(a, lim) 	/* get a line into s, return length */
char s[];
int lim;
{

int c, i;

for (i0; i<lim-1 fig& (cgetchar()) && cl'\n'; ++0
s[i] = c;

if (c == '\12') {
BHA = c;
++i;

}

s[il = '\0';
return(i);

copy(sl, s2) 	/* copy sl to s2; assume s2 big enough */
char sl[], s2[];
{

int i;

i = 0;
while ((s2[i] = sl[i]) l= '\0')

++i;
}

PAGE 1
04-06-87
08:18:27

Line# Source Line 	 Microsoft C Compiler Version 4.00

#define MARLINE 1000 /* maximum input line size */

main() 	/* find longest line */
{

int len; /* current line length */
int MAX; /* maximum length seen so far */
int min; /* -- new variable added */
char line[MAXLINE]; /* current input line */
char save[MAXLINE]; /* longest line, saved */

max = 0;

min = 123; 	/* new line added */

while ((len = getline(line, MARLINE)) >0)
if (len > max) {

MAX ° len;
copy(line, save);

}

if (max > 0) 	/* there was a line */
printf(ns", save);

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

main Local Symbols

Name 	 Class 	Offset

MAX 	 auto 	—07d6
line 	 auto 	—07d4
min 	 auto 	—03ec
save 	 auto 	—03ea
len 	 auto 	—0002

Register

24
25
	

getline(s, lim) 	/* get a line into s, return length */
26
	

char s[];
27
	

int lim;
28
	

{
29
	

int c, i;
30
31
	

for (i=0; i<lim-1 fag (c=getchar()) && c1='\n'; ++i)
32
	

s[i] = c;
33
	

if (c == 'An') i
34
	

s[i] = c;
35
	

++i;

36
37 	 s[i] = '\0';
38 	 return(i);

getline Local Symbols

Name
	 Class 	Offset 	Register

PAGE 2
0 4-0 6- 87
08;18:27

Line# Source Line 	 Microsoft C Compiler Version 4.00

i 	 auto 	-0004
c 	 auto 	-0002
s 	 param 	0004
lim 	 param 	0006

39
40
41 	 copy(sl, s2) 	/* copy sl to s2; assume s2 big enough */
42 	 char sl[], s2[];
43
44 	 int i;
45
46 	 i = 0;
47 	 while ((s2[i] = snip != "\0')
48 	 ++i;
49

copy Local Symbols

Name
	

Class 	Offspt 	Register

i 	 NY. •086 • • auto 	-0002
sl 	 param 	0004
62 	 • . 	 param 	0006

Global Symbols

Name
	

Type

copy 	 near function
getchar 	 near function
getline 	 near function
main 	 near function
printf 	 near function

Size Class Offset

*** global 00c3
*** extern ***
*** global 0067
*** global 0000
*** extern ***

Code size = 00ed (237)
Data size = 0003 (3)
Bss size = 0000 (0)

No errors detected

APPEND IX C

FORTRAN COMPILER LISTINGS

C
C 	TELEPHONE NUMBER PROGRAM
C
1000 FORMAT(5X,'TELEPHONE/ADDRESS PROGRAM REV 1.0')
1001 FORMAT(5X,'ENTER NAME STRING')
1002 FORMAT(70A)
1003 FORMAT(1X,70A)
1004 FORMAT(/,5X,'TO CONTINUE TYPE C, ELSE SPACE')
1005 FORMAT(1A)
1006 FORMAT(/,5X,'SORRY I CAN NOT MATCH THAT AT ALL III')
1007 FORMAT(/,5X,'SORRY CAN NOT FIND ANY MORE NAMES TO MATCH')
C

CHARACTER*70 IN,ITL
CHARACTER*1 IC

C
WRITE(*,1000)
WRITE(*,1001)
READ(*,1002) IN

C
C 	FIND END OF LINE
C

DO 20 1=1,69
LEN = 70 - I
ICT ■ IN(LEN:LEN)
IF(ICT.NE.") GO TO 50

20 	CONTINUE
C
C 	SEARCH FOR NAME
C
50 	IFF = 0

ICF = 0
OPEN(150,FILE="\UTIL\TNUM')

100 	READ(150,1002,END=400) ITL
110 	ICT = ITL(1:1)

IF(ICT.EQ.':') GO TO 300
IF(ICT.EQ.' ') GO TO 100

C
C 	CHECK FOR PERSON MATCH
C

DO 150 I=1,LEN
IF(IN(I:I).NE.ITL(I:I)) GO TO 100

150 CONTINUE
C
C 	PERSON MATCHES
C

IFF = 1
170 	WRITE(*,1003) ITL

READ(150,1002,END-400) ITL
ICT = ITL(1:1)
IF(ICT.EQ.") GO TO 170
ICF = 0

200 	WRITE(*,1004)
READ(*,1005) IC
IF(IC.NE.'C') STOP

IF(IC.EQ.0) GO TO 110
GO TO 100

C
C 	CHECK FOR COMPANY MATCH
C
300 DO 350 I-1,LEN

J•rI+1
IF(IN(I:I).NE.ITL(J:J)) GO TO 100

350 CONTINUE
C
C 	COMPANY MATCHES
C

IFF 1
ICF 1

370 WRITE(*,1003) ITL
READ(150,1002,END=400) ITL
ICT 	ITL(1:1)
IF(ICT.NE.'#') GO TO 370
GO TO 200

C
C 	END OF FILE
C
400 	IF(IFF.EQ.0) WRITE(*,1006)

IF(IPF.EQ.1) WRITE(*,1007)
CLOSE(150)
STOP
END

APPENDIX D

FORTRAN COMPILER LISTINGS
WITH INSTRUCT ION ADDED

C
C 	TELEPHONE NUMBER PROGRAM
C
1000 FORMAT(5X,'TELEPHONE/ADDRESS PROGRAM REV 1.0')
1001 FORMAT(5X,'ENTER NAME STRING')
1002 FORMAT(70A)
1003 FORMAT(IX,70A)
1004 FORMAT(/,5X,'TO CONTINUE TYPE C, ELSE SPACE')
1005 FORMAT(1A)
1006 FORMAT(/,5X,'SORRY I CAN NOT MATCH THAT AT ALL 111')
1007 FORMAT(/,5X,'SORRY CAN NOT FIN]) ANY MORE NAMES TO MATCH')
C

CHARACTER*70 IN,ITL
CHARACTER*1 IC

C
WRITE(*,1000)
WRITE(*,1001)
READ(*,1002) IN

C
C 	FIND END OF LINE
C

DO 20 1=1,69
LEN = 70 - I
ICT = IN(LEN:LEN)
IF(ICT.NE.' ') GO TO 50

20 	CONTINUE
C
C ***
C
C 	INSTRUCTION ADDED
C
C ***
C

J = I* I
C
C 	SEARCH FOR NAME
C
50 	IFF = 0

ICF = 0
OPEN(150,FILE='\UTIL\TNUM')

100 	READ(150,1002,END=400) ITL
110 	ICT = ITL(1:1)

IF(ICT.EQ.':') GO TO 300
IF(ICT.EQ.' ') GO TO 100

C
C 	CHECK FOR PERSON MATCH
C

DO 150 I=1,LEN
IF(IN(I:I).NE.ITL(I:I)) GO TO 100

150 CONTINUE
C
C 	PERSON MATCHES
C

IFF = 1

170 WRITE(*,1003) ITL
READ(150,1002,END=400) ITL
ICT = ITL(1:1)
IF(ICT.EQ.' ') GO TO 170
ICF = 0

200 	WRITE(*,1004)
READ(*,1005) IC
IF(IC.NE.'C') STOP
IF(IC.EQ.0) GO TO 110
GO TO 100

C
C 	CHECK FOR COMPANY MATCH
C
300 DO 350 I=1,LEN

J= I+1
IF(IN(I:I).NE.ITL(J:J)) GO TO 100

350 CONTINUE
C
C 	COMPANY MATCHES
C

IFF = 1
ICF = 1

370 	WRITE(*,1003) ITL
READ(150,1002 2 END=400) ITL
ICT = ITL(1:1)
IF(ICT.NE.'#') GO TO 370
GO TO 200

C
C 	END OF FILE
C
400 	IF(IFF.EQ.0) WRITE(*,1006)

IF(IFF.EQ.1) WRITE(*,1007)
CLOSE(150)
STOP
END

APPENDIX E

PAS CAL COMPILER LISTINGS

program hmwrkl;

var
x, d : array[0..16] of real;
b, n, i, k, j : integer;
z, v : real;

begin

n := 16;
z := 0.96;

{ Instruction added }
z := 0.96;

{the array x will be filled with nodal points, the element d[i] will
contain f[x(i)])

for i := 0 to n do
begin

x[i] := -1 + (i/8);
d[i] := 1/(1 + sqr(100*x[i]));

end;

{fill the array d such that element d[i] contains f[x(i),...,x(c)])
for k ; 1 to n do

begin
b := n - k;
for i := 0 to b do
d[i] := (d[i+i] - d[i])/(x[i+k] - x[i]);

end;

{calculate Newton form with ceneters x(n)...x(1))
v := d[0];
for j := 1 to n do
v := d[j] + ((z - x[j])*v);

{print the result)
vriteln('The answer is ',v);

end.

APPENDIX F

PASCAL COMPILER LISTINGS
WITH INSTRUCTION ADDED

program hmwrkl;

var
x, d : array[0..16] of real;
b, n, i, k, j : integer;
z, v : real;

begin

n := 16;
z := 0.96;

{the array x will be filled with nodal points, the element d[i] will
contain f[x(i)]}

for i := 0 to n do
begin

x[i] := -1 + (i/8);
d[i] := 1/(1 + sqr(100*x[i•));

end;

{fill the array d such that element d[i] contains f[x(i) x(n)l)
for k := 1 to n do

begin
b := n - k;
for i := 0 to b do
d[i] := (d[i+1] - d[i])/(x[i+k] - x[i]);

end;

{calculate Newton form with ceneters z(n)...x(1))
v := d[0];
for j := 1 to n do
v := d[j] + ((z - x[j])*v);

{print the result)
writeln('The answer is ',v);

end.

Final Report

STANDARDIZED PROTOCOLS BETWEEN
MICROCOMPUTERS AND DATA SERVICE NETWORKS

By
Dr. Jay H. Schlag
Mr. Henry Owen
Mrs. Katharine L. Schlag

February, 1988

GEORGIA INSTITUTE OF TECHNOLOGY
A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA
SCHOOL OF ELECTRICAL ENGINEERING
ATLANTA, GEORGIA 30332

STANDARDIZED PROTOCOLS BETWEEN
MICROCOMPUTERS AND DATA SERVICE NETWORKS

by

Dr. Jay H. Schlag
Mr. Henry Owen
Mrs. Katharine L. Schlag

1 February 1988

TABLE OF CONTENTS

SECTION 	 PAGE

1. INTRODUCTION 	 1

2. BACKGROUND 	 2

3. ALGORITHM CONSIDERATIONS 	 3

Instruction Format Decoding 	 3

Header Identification 	 16

Code Segment Identification 	 16

Data Segment Identification 	 17

Example of Segment Identification 	 18

File-Comparison Approaches 	 22

4. ALGORITHM 	 24

Overview 	 24

Host Update Algorithm 	 26

Update File Format 	 32

Offset Packet Format 	 34

New Packet Format 	 34

Remote Update Algorithm 	 35

5. SOFTWARE DEVELOPMENT 	 37

ii

TABLE OF CONTENTS (Continued)

SECTION 	 PAGE

6. FUTURE DIRECTIONS 	 49

Header Algorithm 	 49

Data Segment Algorithm 	 49

File-compare Algorithm Efficiency 	 49

Prototype Code Demonstration 	 50

Analysis of Packet Size Versus Overhead Bytes 	 50

Examination of Methods for Error Correction and Encryption 51

APPENDIX A 	 52

APPENDIX B 	 67

iii

LIST OF FIGURES

FIGURE 	 PAGE

1. Instruction Format Types 	 7

2. Algorithm Flow Chart 	 8

3. 256 Possible TYPE Assignments Based on First Byte 	9

4. Header Fields and Their Explanations 	 10

5. Example of " .map" File 	 19

6. Example of a Header File 	 21

7. Programs Used by the Update Algorithms 	 25

8. Host Update Algorithms 	 27

9. Update File Format 	 33

10. Remote Update Algorithms 	 34

11. CDC Libraries 	 38

12. Flow Chart of RDBIN.PAS Program 	 39

13. Flow Chart of LEXEC.PAS Program 	 40

14. Flow Chart of COMPEX.PAS Program 	 41

15. Flow Chart of BPACK.PAS Program 	 42

16. List of Assembly Language Subroutines of COM1 Port Access 43

17. List of Fortran Subroutines of COM1 Port Access 	 44

iv

Standardized Protocols Between
Microcomputers and Data Service Networks

SECTION 1

INTRODUCTION

The rapid growth of computer applications coupled with the development
of inexpensive, small computer systems has drastically changed the role
of the mainframe computer service network, primarily because computer
intelligence has shifted from the main host to the user-based systems.
This shift has precipitated a need for changes in many other computer
functions such as data base management, applications programs, data
security and communication protocols. Control Data Corporation initiated
a two-year effort with Georgia Tech to address issues within the single
area of computer communication protocols in the computer service
network and the impact of modern computer networks on the protocol
requirements. Of particular interest are the areas of communication
hardware, data transmission structure, error detection, error correction,
encryption, data base security, data format exchange, and data base
management command exchange. The main thrust of this effort has been
to develop of an efficient algorithm to keep the executable files on a
remote computer updated by the host system and to investigate the
related issues.

This report is the final report on that two-year effort. An annual report
was submitted covering the work done in the first year. Included in that
report are the results of a literature search with results of recent work
in the above referenced areas of interest, both for the assessment of the
current status and for future reference;; a description of the system
elements involved in updating an executable file on the remote from the
host system; a discussion of the proposed new update scheme including an
analysis of the information fields in an instruction and methods of
transferring data; the results of trial data in each of several
compiler-level languages processed with the new update scheme and the
efficiency that would result from using the new scheme; and a discussion
of the problem features of the DOS COM1 communication port. Those
results will not be repeated here, but will be summarized where
necessary for clarity and continuity. The reader is referred to the annual
report for details.

SECTION 2

BACKGROUND

During the 1970 time frame the user in a service computer network was a
simple CRT terminal or hard-copy device with no local processing or data
storage capability. During the early 1980 period the service networks
developed a large variety of computer communication networks to
effectively handle larger volumes of more sophisticated data
transmissions. These networks effectively removed the communication
demands from the central computer but did not remove the host
application programs as the center of processing activity. With the
development of inexpensive personal and business computers, the typical
user will require local application programs and mass storage, with the
computer service network supplying access to large data bases for
portions of the processing information. A major problem in a system of
the 1990's will be to keep the executable files on a remote computer
updated by the host system in a timely and cost effective manner.
Currently when an application program is changed on the host system, the
new executable file is transmitted in toto to the remote user to replace
the old executable file. This process is both time consuming and costly.
The new update scheme compares at the host system both the old and new
executable files. Any differences in the files, including different offsets
from change in position, additional data, and information from deleted
data, are incorporated into a file, hopefully much smaller than the new
executable file, that is transmitted to the remote user. Information in
this file is then used to reconstruct the old executable file at the remote
into a new executable file that matches the one at the host system. If the
changes have been minor, there is the potential to save a great deal of
time and money.

To design an algorithm to realize this kind of update scheme, a number of
considerations must be taken into account. During the first year of this
effort Georgia Tech examined several issues and made some preliminary
estimates of the efficiencies that might be realized. The results were
promising. More specifically, Georgia Tech examined four types of
information fields that comprise machine-level instructions for the

2

impact that changes in a program would have on them, as well as four
ways to transfer data packets to properly account for that impact. During
the second year project personnel used new insights gained in the areas of
information fields and data transfer to examine the instruction formats,
header segments and data segments, and the file comparison algorithms
that might be used or modified to detect the differences between the old
and new executable files. Results from these examinations will be
presented in Section 3 below. Section 4 is devoted to a description of the
update algorithm that was designed. Section 5 is a discussion of future
directions that are recommended for the refinement and expansion of the
update approach developed during this effort.

3

SECTION 3

ALGORITHM CONSIDERATIONS

To develop an algorithm that will update an executable file using as much
of the old file as possible as the building blocks for the new file, Georgia
Tech personnel carefully examined a number of issues believed to be
critical to the initial development of the update algorithm investigated.
The results, presented below, were incorporated into the algorithm
outlined in Section 4. The detailed study of some of the remaining issues
are outside the scope of this effort, but are identified and discussed
briefly in this report as future directions for this program.

The algorithm must identify the instructions that are common between
various versions of the program. In identifying these instructions, the
algorithm must recognize identical instructions which have different
offsets in their data, displacement, or address fields. In order to search
an executable file for instructions, the header and data segments must be
removed from consideration, since these segments do not contain
instructions. The header and data segments are handled separately, with
their transmission algorithms being different from the code segment.

INSTRUCTION FORMAT DECODING

The INTEL 8086/8088 instruction set is made up of many different
instruction formats. The "iAPX 86/88, 186/188 Users' Manual", 1985,
lists the formats for each instruction type in Table 1-22. The
instructions are made up of subfields which are summarized in Table
1-21. When an instruction is relocated in a program, subfields within the
instructions change to reflect the new instruction location. By examining
the subfields in each instruction as shown in Table 1-22, the bytes in an
instruction format that may change upon relocation may be identified. The
above referenced tables are include as Appendix A of this report. A
summary of those fields which may change upon instruction relocation

includes the following bytes in the instructions:

DISP-LO 	Lower-order byte of an unsigned displacement

DISP-HI 	Higher-order byte of an unsigned displacement

IP-LO 	Lower-order byte of a new instruction pointer
value

IP-HI
	

Higher-order byte of a new instruction pointer
value

CS-LO 	Lower-order byte of a new code segment

CS-HI 	Higher-order byte of a new code segment

IP-INC8 	8-bit signed increment to instruction pointer

IP-INC-LO 	Lower-order byte of signed 16-bit instruction
pointer increment

IP-INC-HI 	Higher-order byte of signed 16-bit instruction
pointer increment

ADDR-LO 	Lower-order byte of direct address (offset) of
memory operand

ADDR-Hl 	Higher-order byte of direct address (offset) of
memory operand

DATA-LO 	Lower-order byte of data

DATA-HI 	Higher-Order byte of data

For a given instruction, it is necessary to identify the fields that may
change upon instruction relocation. By examining Table 1-22, sixteen
different cases may be identified. These sixteen different cases are

shown in Figure 1. In this figure, only those bytes which are underlined
may change upon relocation

In order to determine the format for a given instruction, several bit fields
within a given instruction must be examined. The first field is the most
significant eight bits (the first byte) of the instruction. For all
instructions which do not contain displacements, the format is now
determined. For instructions which may have displacements, the number
of displacement bytes must be determined. These are determined from the
MOD field bits which are the two most significant bits in the second byte
of an instruction. For MOD=11 there are no displacement bytes, for
MOD=10 there are two displacement bytes, and for MOD=01 there is one
displacement byte. If MOD=00 and also R\M=110 then two displacement
bytes follow. The R\M field is located in the three least significant bits
in the second byte of an instruction.

There are two special cases in which the OPCODE must be used in
conjunction with the register field to determine the instruction format.
The register field consists of of third, fourth, and fifth bits of the second
instruction byte as counted from MSB to LSB. For OPCODE Hex F6 and
REG=000, one data byte will be contained at the end of the instruction.
For OPCODE Hex F7 and REG=000, two data bytes will be contained at the
end of the instruction.

The flow chart for determining the instruction format is shown in Figure
2. The result of this format algorithm is an assigned instruction format
type for every possible instruction. It slhould be noted that the first eight
bits of all instructions are not always sufficient to determine the
instruction type. Every instruction is assigned an initial instruction type
based on the first eight bits and a table look-up scheme; then by
examining additional bits in those cases where it is necessary, the
correct instruction format assignment is always obtained. The initial
instruction format assignment is made from Figure 3. Figure 3 represents
all of the 256 possible initial assignments based upon the first eight bits
of an instruction. The table is read by referencing the position in the
table and equating this position to the corresponding first eight entries of

6

TYPE

1 BYTE 1

INSTRUCTION FORMAT

BYTE 2

2 BYTE 1 BYTE 2 	2j3EL-LO

3 BYTE 1 BYTE 2 	 DISP-HI , _DE3P-LO

4 BYTE 1 BYTE 2 	DATA-LO DATA-HI

5 BYTE 1 BTYE 2 	J21Fia-LO 	DATA-LO DATA-HI

6 BYTE 1 BYTE 2 	 DISP-HI DATA-LO

7 BYTE 1 BYTE 2 	BYTE 3

8 BYTE 1 BYTE 2 	Di ► ,L0 	BYTE 4

9 • BYTE 1 BYTE 2 	DIELEAS 	DISP-HI BYTE 5

10 BYTE 1 DATA-LO DATA-EL

11 BYTE 1 BYTE 2

12 BYTE 1 ADDR-LO E2DR-HI

13 BYTE 1

14 BYTE 1 IP-INC-LO

15 BYTE 1 IP-LO 	 CS-LO CS-HI

16 BYTE 1 le-INC8

DATA-HI

Figure 1 Instruction Format Types

7

IF REG = 000 TYPE 7
ELSE TYPE 1

IF MOD = 01 TYPE 2

IF MOD -10 TYPE 3

IF (MOD = 00 AND R/M =110)
TYPE 3

V

TYPE = 1

TYPE = 4

Li 	TYPE = 7

IF REG = 000 TYPE 4
ELSE TYPE 1

IF MOD = 01 TYPE 5

IF MOD = 10 TYPE 3

IF (MOD = 00 AND R\M = 110)
TYPE 6

IF MOD = 01 TYPE 8

IF MOD = 10 TYPE 9

IF (MOD = 00 AND R/M = 110)
TYPE 9

ASSIGN FORMAT TYPE

BASED UPON OPCODE

USING TABLE LOOK-UP

V

SPECIAL CASE OF F6

SPECIAL CASE OF F7

Figure 2 	Algorithm Flow Chart

8

INSTRUCTION
	

INSTR.
FIRST BYTE
	

TYPE

00 	 1
01 	 1
02 	 1
03 	 1
04 	 11
05 	 10
06 	 13
07 	 13
08 	 1
09 	 1
OA 	 1
OB 	 1
OC 	 11
OD 	 10
OE 	 13
OF 	 13
10 	 1
11 	 1
12 	 1
13 	 1
14 	 11
15 	 10
16 	 13

17 	 13
18 	 1
19 	 1
1A 	 1
1B 	 1
1C 	 11
1D 	 10
1E 	 13
1F 	 13
20 	 1
21 	 1
22 	 1
23 	 1
24 	 11
25 	 10
26 	 13
27 	 13
28 	 1
29 	 1
2A 	 1
2B 	 1
2C 	 11
2D 	 10
2E 	 13
2F 	 13

Figure 3. 	256 Possible TYPE Assignments Based on First Byte

9

INSTRUCTION 	INSTR.
FIRST BYTE 	TYPE

30 	 1.
31 	 1.
32
33
34 	 11
35 	 10
36 	 13
37 	 13
38
39
3A
3B 	 1
3C 	 11
3D 	 10
3E 	 13
3F 	 13
40 	 13
41 	 13
42 	 13
43 	 13
44 	 13
45 	 1.3
46
47 	 13
48 	 13
49 	 13
4A 	 13
4B 	 13
4C 	 13
4D 	 13
4E 	 13
4F 	 13
50 	 13
51 	 13
52 	 13
53 	 13
54 	 13
55 	 13
56 	 13
57 	 13
58 	 13
59 	 13
5A 	 13
5B 	 13
5C 	 13
5D 	 13
5E 	 13
5F 	 13

Figure 3. Continued

10

INSTRUCTION
FIRST BYTE

INSTR.
TYPE

60 13
61 13
62 13
63 13
64 13
65 13
66 13
67 :13
68 :L3
69 13
6A 13
6B :13
6C :13
6D 13
6E :13
6F
70 16
71 16
72 16
73 16
74 16
75 16
76 16
77 16
78 16
79 16
7A 16
7B 16
7C 16
7D 16
7E 16
7F :16
80 7
81 4
82 7
83 7
84 1
85 1
86 1
87 1
88 1
89 1
8A 1
8B 1
8C :L
8D 1
8E 1
8F :L

Figure 3. Continued

1 1

INSTRUCTION INSTR.
FIRST BYTE TYPE

90 13
91 13
92 1.3
93 13
94 13
95 13
96 .1.3
97 13
98 1.3
99 13
9A 15
9B 13
9C 13
9D 13
9E :13
9F :1.3
AO 12
Al :12
A2 :12
A3 12
A4 13
A5 13
A6 13
A7 :L3
A8 11
A9 :L0
AA 13
AB 13
AC 13
AD' 13
AE :L3
AF 13
BO 11
Bl 11
B2 11
B3 11
B4 11
B5 11
B6 11
B7 11
B8 10
B9 10
BA 10
BB 10
BC 10
BD 10
BE 10
BF 10

Figure 3. Continued

12

INSTRUCTION
FIRST BYTE

INSTR.
TYPE

CO 13
Cl 13
C2 10
C3 13
C4 1.
C5 1,
C6 7
C7 4
C8 13
C9 13
CA 10
CB 13
CC 13
CD :11
CE 13
CF 13
DO 1
D1 1
D2 1
D3 1
D4 11
D5 1.1
D6 13

D7 13
D8 11
D9 1
DA 1
DB 1
DC 1
DD 1
DE 1
DF 11
EO 16
El 16
E2 16
E3 16
E4 11.
E5 11.
E6 11
E7 11
E8 14
E9 14
EA 15
EB 11
EC 13
ED 13
EE 13
EF 13

Figure 3. Continued

13

INSTRUCTION INSTR.
FIRST BYTE TYPE

FO 13
Fl 13
F2 13
F3 13
F4 13
F5 13
F6 7
F7 4
F8 13
F9 13
FA 1,3
FB 13
FC :13
FD 13
FE 1
FF :1

Figure 3. Continued

14

an instruction. As an example the first eight entries of Figure 3 are
repeated below with the corresponding first instruction byte:

First Byte 	Type

00 1
01 1
02 1
03 1
04 11.
05 10
06 13
07 13

The table entries are determined from Table 1-23 by assuming that the
instructions contain no displacements and a type is assigned on that basis.
The table type value is then changed later in the algorithm as shown in the
flow chart (Figure 2) based upon the MOD bits. The complete table
contains an initial type assignment for each of the 256 possible cases for
the first byte of an instruction.

The format types contained in the table contain types which appear to be
redundant. For example, Type 1 and Type 11 appear the same. The
difference is that Types 1,4, and 7 are types that require that the MOD
field be examined to determine the number of displacement bytes that are
included in the instruction. All other types are not affected by the MOD
bits. The algorithm uses Types 1,4, and 7 to signify that the algorithm
must examine the MOD bits to make a final determination of the format of
the instruction.

Once the instruction format type is known, the number of bytes for that
instruction is known, as well as the location -of the bytes in the
instruction that may change upon instruction relocation. This information
is critical in determining which bytes to ignore during a file comparison
so as to determine when two segments of code are identical except for
instruction relocation offsets.

15

HEADER IDENTIFICATION

An executable program consists of two parts. The first part is a header
record that contains control and relocation information. The second part
is the actual load module. The header record contains information about
the size of the executable module, where it is to be loaded into memory,
and relocation offsets to be inserted into incomplete machine addresses.
The header fields and their explanation are shown in Figure 4.

The size of the header may be determined by the following procedure. In
the executable file, obtain the hex values in the ninth and tenth bytes of
the file. (Count the first hex byte as one, not zero.) The tenth byte is
most significant, the ninth byte is least significant. This hex value should
be converted to decimal and then multiplied by 16 since the header size is
given in 16-byte increments. This is the size of the header in bytes.

CODE SEGMENT IDENTIFICATION

The code segment may be located by using the " .map" output of the linker.
The beginning of the code segment in the output from the Micrsoft PASCAL
compiler is located two bytes after the header; therefore, the first code
segment's location, relative to the start of the executable file, is at a an
offset value equal to the size of the header plus two bytes. The end of the
code segment is determined from the " .map" file, which is an output from
the linker. The procedure for determining the end of the code segment is
as follows. In the " .map" file as output by the linker, find the class of
"encode" shown in the "class" column. In the column "start" is shown the
end of the code segment. This value is relative to the header size and must
be added to the header size which is determined from the header as
discussed above. After adding the header size to the code segment value,
the end of the code segment's location, relative to the beginning of the
executable file, is now known.

DATA SEGMENT IDENTIFICATION

The start of the data segment is determined from the end of the code

16

Relative
Hex Position:

00

Field:

Hex 4D5A. The Linker inserts this code to identify the
file as a valid EXE file

	

02 	 Reserved

	

04 	 Size of the file including the header, in 512-byte
increments ("pages")

	

06 	 Number of relocation table items following the formatted
portion of the header

	

08 	 Size of the header in 16-byte increments. The purpose of
this field is to help locate the start of the executable
module that follows this header

	

OA 	Reserved

	

OC 	High/low loader switch. You decide at the start of LINK
whether your program is to load for execution at a low
(the usual) or a high memory address. Hex 0000 indicates
high and hex FFFF indicates low

	

OE
	

Offset location in the executable module of the Stack
Segment

	

10 	Address that the Loader is to insert in the SP register
when transferring control to the executable module

	

12 	 Checksum value — the sum of all the words in the file
(ignoring overflows) used as a validation check for lost
data

	

14 	 The offset that the Loader is to insert in the EP
register when transferring control. to the executable
module

	

16 	 The offset location in the executable module of the Code
Segment

	

18
	

The offset of the first relocation item in this file

	

lA
	

Reserved

	

1B
	

Relocation table containing a variable number of
relocation items, as identified at offset 06

Figure 4 	Header Fields and their Explanations

17

segment. The data segment begins at the end of the code segment and
continues to the end of the executable file. This may not always be true,
but it is true for all Microsoft Pascal examples run during this effort.

EXAMPLE OF SEGMENT IDENTIFICATION

To illustrate the procedure for determining the locations of the various
segments in an executable file, the following example is provided. The
required input information is the " .map" file from the linker, and the
" .exe" file. An example " .map" file is shown in Figure 5, and an example
header portion for the same example is shown in Figure 6.

The procedure to identify the segments is as follows:

Step 1: In the " .exe" file obtain the hex values in the ninth and tenth bytes
of the file. In this example the values are 60 and 00, respectively.

Step 2; Convert this value to decimal and multiply the result by 16. In
this example, this is 96 times 16, indicating a header size of 1536 bytes.

Step 3: Determine the beginning of the code segment by adding two bytes
to the size of the header; therefore, the code segment in this example
begins at 1538 bytes into the file.

Step 4: In the " .map" file as output by the linker, find the class of
"encode" shown in the "class" column. In the column "start" is shown the
hex location of the end of the code segment. In this example, this value is
0436E hex.

Step 5: Add the header size to the value obtained in step 2. The result is
the end of the code segment and the beginning of the data segment. In this
example, this value is 1536 + 17262, which yields 18798 bytes.

The summary of the results from this example are:

Header begins at 0 and ends 15:36 bytes into the file
Code begins at 1538 and ends 18798 bytes into the file
Data begins at 18799 and ends at the end of the file

18

***** *****
*

*
Ki ,, 	*****

_ 	__ 	•
IBM PC PRINTER UTTLITy — PAGE 	1
GEORGIA INSTITUTE (IF TECHNOLUGY
GCHOOL Or ELECTRICAL ENCINEERIN

7/1/17ST
FILENAME =

Str- t 	Etc,: 	L ■7::? -1-1gth NE,:me
s, :'.'• 	00CH SIMPLE1

0..7Ji, -..4CH 01295h f. -)14A14 _1ExT
F7 L 	DE

61F(.1:H 0;34 7.,'FH 6 , 4D4H Uki:JHHO_COPE.

c:4:.07:7H 00(:?2GH EXTT_TEXT
CONUX11_(.:OL)E

ERRFrfl'. -.1 . CnOE
0,DLDSH 	 HEAO:j.O_Olfl;--

MI- SiOYCOoF
02AFT)H Of. -.40c)H PASUXU_CO 1.-)E

;.-)1ETH 	 CDDF
0061:TH MI',-.3Hr;:fr-.! CD;OE

; 	 ; 	:• 	'LI '7; ••, 1.;;;;

•••- ••• •;;:::• 1 	 ;•••.,; 	 ;

Figure 5 	Example of " .map " File

19

!EC:1H 	ECH 	 11:NLiT

04EEH
•.:LtFEE'A (:)4FEFH 	 OH
-A-1 7FOH 	 P31.7.1E

0 4 FF

If

ETifs:42;‹

Figure 5 	Example of " .map " File

(continued)

20

4D
5A
8A
01

\
/

IDENTIFIES FILE AS A VALID .EXE FILE

2C \ 002C IS SIZE OF FILE IN 512 BYTE INCREMENTS
00 / 2CH * 512 = 22528
6A \ NUMBER OF RELOCATION TABLE ITEMS FOLLOWING HEADER
01 / 016AH = 362
60 \ SIZE OF HEADER IN 16 BYTE INCREMENTS
00 7 0060H * 16 = 1536
81
00
FF
FF
19 \ OFFSET LOCATION IN .EXE MODULE OF STACK SEGMENT
05 / 	0519H
00
08
F5
08
FO
06
04 \ OFFSET LOCATION IN .EXE MODULE OF CODE SEGMENT
00 / 	0004H
IE
00
00
00

Figure-6. Example of a Header File

FILE- COMPARISON APPROACHES

In a typical situation only minor changes have been made to the update
program. In that case many, perhaps most of the instructions will be the
same except for minor differences. The minor differences include
different offsets in the data, displacements, or address fields. The
approach to compare these files must be able to recognize matching
instruction pairs that are either identical or different only in the minor
ways mentioned above and explained later and to account for these minor
changes in the transmission process so that the new file can be
reconstructed from the old with the correct modifications.

To this end a number of existing file-compare algorithms were examined
to see if existing software could be used or adapted for this application.
Notable among the papers found in the literature were: "A Fast Algorithm
for Computing Longest Common Subsequence," by James Hunt of Standford
University and Thomas G. Szymanski, Communications of ACM, Volume 20,
No. 5, May 1977; "Algorithms for the Longest Common Subsequence
Problem," by Daniel S. Hirschberg of Princeton University, Journal of the
Association for Computing Machinery, Volume 24, No. 4, October 1977,
pages 664-675; and " File Comparison Algorithms," by Tom Steppe, Dr,
Dobb's Journal of Software Tools, September 1987, pages 28-33 and
54-60. Of these three, the last proved to be most useful since it reviewed
several types of algorithms including the longest common subsequence
type referenced in the first two articles. Copies of the articles are
included as Appendix B.

Basically, file-compare algorithms look for line matches, then report
lines not included as matches as differences. The differences are usually
expressed as insertions, deletions and changes that must be made to make
the files match. Algorithms are evaluated to answer the questions: Is it
efficient? Is it robust? Can it let differences go undetected? Can it let
matches go undetected? Can it detect blocks of text that have been
moved? There are several popular algorithms. The "scan until next match"
algorithm starts at the tops of both files and matches as many lines as
possible. When a difference is detected, the next M lines are scanned until
at least N consecutive matches are found. The main advantages of this
algorithm is time efficiency and minimal memory requirements; the main
problem with this algorithm is that it is not robust over a variety of

22

situations. A second type of algorithm is called the "longest common
subsequence" algorithm. This algorithm finds the longest common, though
not necessarily consecutive, sequence of lines in the two files. This type
of algorithm often produces the best reports when comparing files that do
not involve moved blocks of code, but it can be slow. A third type, called
"extended unique matching" is based on the idea that a line that occurs
once and only once in each file must be the same line. These pairs of
"unique" lines determine the initial set of unmatched lines. Then, in each
file, the lines adjacent to each match are examined and, if identical, are
added to the set of matched lines, arid the process is repeated. Though
efficient in time and space, it is prone to detecting false differences. A
fourth type of algorithm, developed by Steppe, is called the "recursive
longest matching sequence." This method scans both files looking for the
longest sequence of consecutive lines. This block then divides the files
into top and bottom halves, each of which is then scanned. The process is
repeated until no more matches can be found. The space for this algorithm
is linear but the time is quadratic. A modification to the algorithm can
reduce the time required. All of these algo; ithms were designed to handle
text files, though many of the concepts apply to executable files as well.

An algorithm, based in part on some of these concepts, was conceived to
address the special case of the executable file. The basic idea is to do an
instruction by instruction comparison on the code sections of the old and
new files where a file may have been padded at the end with "never
match" code to make them the same size. On the first pass the largest
block of consecutive matches will be identified and the size and location
noted. The files will then be compared again with one of the files shifted
by one line, as if the file were wrapped around to form a circle with the
beginning and ending lines of each file touching. This is the reason the
files must be made the same length. The process continues until the
largest possible block of matches has been found. Note that a match is
declared even if the offsets in their data, displacements, or address fields
do not match. This block is, in effect, set aside and the whole process is
repeated with the remainders of the files, which hopefully are much
smaller. This process is continued until it is no longer feasible to
search for matches; that is, when the remaining code segments or pieces
are of a size that it is more cost effective to transmit the code in toto
than to spend the overhead to form packets, etc. to follow the scheme
outlined. The algorithm for the update scheme will incorporate the file
compare approach just described.

23

SECTION 4

ALGORITHM

Overview

There are two algorithms involved in the transmission of modified code.
The host computer algorithm and the remote computer algorithm, run on
the host and the remote computers, respectively.

The host computer algorithm requires a copy of the old host binary
executable program (the unmodified program) as well as the new host
binary executable program (the new version of the program). The host
converts both of these binary program versions to hexadecimal
representations and then compares the two programs. This comparison
identifies the code segments that are identical in both the old and the new
programs including those code segments that are different only by offset
values in the various instruction subfields. The host algorithm generates
a host update file which is decoded by the remote computer algorithm so
as to generate the necessary changes to the remote computer's old remote
binary executable file. This is accomplished in the remote computer by
first converting the old remote binary executable program into an old
remote hexadecimal executable program version. The new remote
hexadecimal executable program is generated from the old executable
program instructions, which are modified as necessary, and the
instructions which are transmitted to the remote computer in the host
update file. After the new remote hexadecimal executable program is
generated, the program is converted into the new remote binary
executable program. Figure 7 is an illustration of the files that the
algorithm uses and the resulting files that are generated by the algorithm.

24

NEW HOST
BINARY
EXECUTABLE
PROGRAM

OLD REMOTE
BINARY
EXECUTABLE
PROGRAM

OLD REMOTE
HEX
EXECUTABLE
PROGRAM

NEW REMOTE
1-6(
EXECUTABLE
PROGRAM

•

NEW REMOTE
BINARY
EXECUTABLE
PROGRAM

Host Computer

OLD HOST
BINARY
EXECUTABLE
PROGRAM

OLD HOST
HEX
EXECUTABLE
PROGRAM

HOST
UPDATE
PROGRAM

NEW HOST
HEX
EXECUTABLE
PROGRAM

Remote Computer

Figure 7 	Programs Used by the Update Algorithms

25

HOST UPDATE ALGORITHM

The host update algorithm is shown in Figure 8. The algorithm begins by
converting the binary executable files of both the old and the new
programs into hexadecimal representations. The hexadecimal
representation of the new program is then used to determine the size of
the new header.

The data section of the new executable file as determined from the new
header and the " .map" output of the compiler is then identified and is
stored in the host update file for transmission as a new packet.

In the next step of the algorithm, the old executable code segment is
compared to the new executable code segment with all of the offset fields
of each instruction nulled out. This nulling of all instruction offsets
allows for the identification of code segments that are identical except
for offsets. The offset fields that are lulled out are identified earlier in
this report in the section entitled "INSTRUCTION FORMATS".

The compare algorithm orders the matching code segments with the
largest matching code segment first ,. Each succeeding code segment is
smaller in size.

Once the matching code segments have been identified, the lines in the
new executable code which are not matches with the old code are
identified. These code segments are to be transmitted to the remote
computer as new packets.

After identifying the instructions in the new program which may be
generated from the old program that resides in the remote computer, the
process of determining the required offsets that may be added to the old
resident code is initiated. During this process the actual transmission
packets are formed. Using the matching code segment list, a pointer to
the old executable code where the largest matching code segment is
located is set to the corresponding value. These pointers will be
transmitted to the remote computer to identify where to obtain the old
code segments and where to place these offset modified instructions in
the new code.

26

CONVERT BINARY TO HEX ,

OBTAIN HEADER OF NEW
EXECUTABLE AND STORE IN
UPDATE AS A NEW PACKET

OBTAIN DATA SECTION OF NEW
EXECUTABLE AND STORE IN
UPDATE FILE AS A NEW PACKET

COMPARE OLD EXECUTABLE CODE
WITH NEW EXECUTABLE CODE,
OFFSET FIELDS ZEROED

GENERATE LIST OF MATCHING
CODE SEGMENTS ORDERED
WITH LARGEST FIRST

GENERATE LIST OF NEW LINES IN
NEW EXECUTABLE CODE

Figure 8 	Host Update Algorithm

27

USING MATCHING SEGMENT
LIST, DETERMINE OLD AND NEW
EXECUTABLE POINTERS FOR
A MATCHING CODE SEGMENT

ON A LINE BY LINE BASIS,
COMPARE OLD EXECUTABLE
CODE AND NEW EXECUTABLE
CODE SEGMENTS

141
PLACE PRESENT INSTRUCTIONS
OPCODE, INSTRUCTION TYPE,
AND OFFSET I 1 LOOKUP TABLE

STORE OPCODE,TYPE,OFcSET
IN QUEUE

V
STORE OFFSET PACKET
IN UPDATE FILE INCLUDING:
1) SIZE OF PACKET
2)OLD CODE POINTER
3)NEW CODE POINTER
4)OPCODE,INSTRUCTION

TYPE, AND OFFSETS
IN QUEUE

ND

YES

ARE ALL INSTRUCTIONS IN THIS
MATCHING SEGMENT DONE?

GET THE NEXT INSTRUCTION,
DOES THE OPCODE ALREADY ND

EXIST IN THE LOOKUP TABLE?

YES
DOES THE OFFSET DIFFER?

YES
STORE OFFSET PACKET IN
UPDATE FILE INCLUDING:
1)SIZE OF PACKET
2)OLD CODE POINTER
3) NEW CODE POINTER
4)OPCODE, INSTRUCTION TYPE,

AND OFFSETS IN QUEUE

4
UPDATE POINTERS AND CLEAR
TABLE, CLEAR QUEUE

ARE ALL MATCHING
INSTRUCTIONS DONE?

Figure 8 	Host Update Algorithm (continued)

28

USING LIST OF NEW SEGMENTS
IN NEW EXECUTABLE,DETERMINE
NEW POINTER VALUE, SET OLD
POINTER VALUE TO ZERO
TO INDICATE NEW PACKET

STORE NEW PACKET IN UPDATE
FILE INCLUDING:
1) SIZE OF PACKET
2) ZERO VALUE OLD POINTER

(ID AS NEW PACKET)
3) NEW POINTER
4) INSTRUCTIONS TO BE ADDED

ARE ALL NEW SEGMENTS DONE?

YES

STORE TERMINATION PACKET
IN UPDATE FILE
(I.E. PACKET WITH ZERO SIZE)

ND

Figure 8 Host Update Algorithm (concluded)

29

On a line by line basis, the old executable instruction is compared to the
new executable instruction. The opcodes are always the same since the
compare algorithm used in previous steps has identified the matching
segments (with the offsets nulled). The offsets are not nulled out in this
portion of the algorithm, so any offset that differs from the instruction's
old location and it's new location are identified. Each instruction that
contains an offset field may have one, two ,three, or up to four bytes of
offsets associated with it. The algorithm treats each byte independently
and determines the value of an offset byte that is added to the respective
instruction's offset byte to to obtain the new correct offset byte. The
offsets that are required because of code relocation may be either a
positive or negative offset. The algorithm always adds the offset byte
ignoring any carry out that may be generated. This approach does not
implement a signed addition, so that true addition or subtraction is
carried out (i.e. not a two's complement type addition); however, a number
can always be identified that may be added to obtain the correct final
offset value.

Once the offset value for a given instruction is determined, the
instruction's opcode, instruction format, and offset values are stored in a
dynamic lookup table. The opcode and the instruction'type identify how
many offset fields are in the instruction and where they are located. For
each different opcode and instruction type combination encountered, an
entry in the offset table is made. For each instruction which is
encountered in a given matching segment, a search in the offset table is
made. If the instruction does not already exist in the offset table, it is
added, even if all offsets in that instruction are zero. If an encountered
instruction does exist in the offset table, the offset of the present
version of the instruction must match the previous entry or else the
present instruction cannot be included in the present packet. Once all of
the instructions in a given matching code segment have been entered into
the offset table, or in the event of an instruction that cannot be included
in the present packet, the packet itself is formed and entered into the
host update file.

30

A packet which is formed in this part of the algorithm is an offset packet
which consists of the following information:

1) the size of the packet

2) the old code pointer which identifies where the old code is
located in the old executable file

3) the new code pointer which identifies where the old code will be
placed in the new executable file after the instructions are
modified as specified in the offset lookup table

4) the offset lookup table for this packet of instructions. This
included the opcode, the instruction format type, and the
offsets for each different instruction contained in the packet.

Once a packet is formed, the offset table is cleared and the process is
repeated for the next group of instructions until the groups of matching
instructions are depleted.

At this point, the packets of new instructions must be formed. The output
of the algorithm includes a list of the new code segments in the new
executable file. This list is used to determine which instructions must be
transmitted to the remote computer as new code. Using this list of new
code segments, a pointer to the location in the new executable file is set,
indicating where the new instructions will be placed. A new instruction
packet is then formed. This new instruction packet contains the
following:

1) the size of the packet

2) the old program pointer, which is set to a zero value since
the new code does not come from any part of the old program and
a zero value in the pointer allows the receiver algorithm to
identify this packet as a new instruction packet

31

3) the new program pointer which indicates where in the new
executable program the new instructions will be placed

4) the actual instructions which are to be placed in the new
executable program

After all new instruction packets have been formed, the update file has a
packet with zero size placed at the end to identify that the end of the file
has been reached.

UPDATE FILE FORMAT

The update file (as shown in Figure 9) consists of the following
information in this order:

1) The new header information which is placed in the file as new
instruction packets. This allows the new header to be
transmitted as is with no modifications.

2) The new data segment information which is placed in the file as
new instruction packets. This allows the new data segments to
be transmitted as is with no modifications.

3) The offset packets which contain the locations of usable old
instructions and the new offsets which should be used in the new
version

4) The new instruction packets which contain those new
instructions that are to be added to the new program

NEW HEADER
DATA PACKET

NEW DATA
SEGMENT PACKET

OFFSET PACKETS

NEW INSTRUCTION
PACKETS

Figure 9 	Update File Format

33

OFFSET PACKET FORMAT

The offset packets contain the size, pointers, and instruction offsets in
the following order:

1) size of packet 	 (2 bytes)

2) old pointer 	 (4 bytes)

3) new pointer 	 (4 bytes)

4) opcode, instruction type, offsets 	(variable size)

5) opcode, instruction type, offsets 	(variable size)

6) etc., until all different instructions in packet listed. Thus the size
of the packet is variable depending upon the number of entries in
the offset list

NEW PACKET FORMAT

The new packets contain the size, pointers, and instructions in the
following order:

1) size of packet 	 (2 bytes)

2) old pointer set to zero value 	 (4 bytes)

3) new pointer 	 (4 bytes)

4) complete instruction 	 (variable size)

5) complete instruction 	 (variable size)

6) etc., until all new code has been include

34

REMOTE UPDATE ALGORITHM

The remote computer algorithm accepts as input the update file which has
been embedded in it the packets which are used to generate the new code
on the remote computer. Thus, the inputs to the remote algorithm are the
old remote executable file, and the new update file. The output of the
remote algorithm is the new remote executable file. The remote
algorithm is shown in Figure 10.

The remote algorithm begins by converting the old remote executable
binary file to a hexadecimal representation. Portions of this executable
file are used to generate the new executable file.

The update file is read next to identify a packet. The packet size is read
to determine if the algorithm is completed. For a nonzero packet size, the
old pointer value is read and a pointer is set to this location in the old
remote executable file. The new pointer is read next, a pointer to indicate
where the code will be placed in the new executable file set. If the old
pointer is set to a zero value, the packet is a new instruction packet and
all of the new instructions contained in the packet should be written to
the new executable file as is.

In the event that the old pointer is equal to a zero value, the packet is an
offset packet. The instruction opcodes, instruction type, and offsets are
read in and used in a table lookup scheme to modify all instructions that
are encountered in the old executable code segment that is being written
into the new executable..

After the entire packet is written into the new executable file, the
process is repeated until all packets have been transformed into the new
code. The process ends when a zero size packet is encountered.

CONVERT REMOTE OLD
EXECUTABLE TO HEX

READ SIZE OF PACKET IN
UPDATE FILE

IS SIZE OF PACKET ZERO?

CONVERT NEW
EXECUTABLE HEX

TO BINARY

READ OLD POINTER AND
SET POINTER ON OLD FILE

READ NEW POINTER VALUE
AND SET POINTER ON NEW FILE

IS OLD POINTER EQUAL TO
ZERO?

READ IN AND LOOKUP OPCODE
AND INSTRUCTION TYPE TO
OBTAIN OFFSET

WRITE "SIZE"
NEW BYTES TO
NEW FILE

WRITE INSTRUCTION AND
NEW OFFSET TO NEW FILE

HAS "SIZE" BYTES BEEN
WRITTEN TO NEW FILE?

-I ND
I INC POINTERS

Figure 10 	Remote Update Algorithm

36

SECTION 5

SOFTWARE DEVELOPMENT

An integral part of the design and and implementation of an algorithm is
software development. Several programs were written both to implement
and to test various parts of the algorithm. These programs are listed and
described below and are illustrated in corresponding figures, Figures
1 1 -17.

1. CDC Libraries

CONVERT- converts binary integers to ASCII HEX for printing

MODTYPE - imp'sments the algorithm in Figure 2 that modifies the
instruction conversion table

BLKDISP- finds the displacement fields in an instruction and makes the
fields equal to zero

2. RDBIN.PAS

This program is a byte by byte listing of any file in decimal and
hexadecimal form. It is used as a debugging tool to look at headers and
data segments.

Inputs:
File to be listed

Outputs:
Decimal listing
Hexadecimal listing

37

CDC LIBRARY - CDC1.LIB

CONVERT

INTHEX

MODTYPE

BLKDISP

Figure 11 	CDC L.ibraries

38

EXECUTABLE
*.EXE

./IN•MIO

READ BINARY - RDBIN.PAS

DECIMAL
OUTPUT

RDBIN EXE

HEXADECIMAL
OUTPUT

Figure 12 	Flow Chart of RDBIN.PAS Program

39

INSTRUCTION
CHARACTER

OPTION:

BLANK DISPLACMENT
FIELDS

EXECUTABLE
*.EXE

WM.

INSTRUCTION
TABLE

LEXEC5.EXE
OUTPUT
USTING

LIST EXECUTABLE - LEXEC5.EXE

START OF DATA SEG. 	

Figure 13 	Flow Chart of LEXEC.PAS Program

40

INSTRUCTION
CHARACTER

OPTION:

LOG FILE

EXECUTABLE
*.EXE

COMPEX.EXE

COMPARE EXECUTABLE - COMPEX.PAS

START OF DATA SEG.
OLD/NEW

Figure 14 Flow Chart of COMPEX.PAS Program

41

BUILD PACKETS - BPACV.PAS

EXECUTABLE
*.EXE

INSTRUCTION
TABLE

■•••■•■•••■

COMPEX.EXE
DOWNLOAD

PACKETS

INSTRUCTION
CHARACTER

COMPEX
OUTPUT
TABLE

Figure 15 	Flow Chart of BPACK.PAS Program

42

COMI PORT ACCESS
ASSEMBLY LANGUAGE SUBROUTINES

IC1LS - Read Line Status

ICIMS - Read Modern Status

ICIINT - Initialize Configuration

ICIMCO - Set Modern Control Lines

IC1TD - Send One Character

ICITDW - Send One Charecter / Wait

IC1RD - Read One Character

ICIRDW - Read One Character / Wait

Figure 16 	List of Assembly Language Subroutines

of COM1 Port Access

43

COM1 PORT ACCESS
FORTRAN SUBROUTINES

C1RSTR - Read a String of Characters

CISSTR - Send a Strl ng of Characters

Figure 17 	List of FORTRAN Subroutines

of COM1 Port Access

44

3. LEXEC5.PAS

This program lists a file in instruction format and automatically finds
the beginning of the code section from data in the header. The header and
data segment are listed byte by byte in Hex form. The code section is
listed by instruction in Hex form.

Inputs:
Executable file to be listed
Instruction Table- Instructions / instruction type
Instruction Character- Number of bytes and displacement fields

of instruction types
Start of data segment- Determined for Linker Map

Outputs:
Listing of header, code and data segment

Options:
Blank displacement fields

4. COMPEX.PAS

This program, the implementation of which is illustrated in Figure 8,
compares files for matching blocks. The displacement fields are blanked
and the files are compared for largest matching blocks.

Inputs:
Old executable file
New executable file
Instruction Table
Instruction character
Start of data segment for old and new program

Outputs:
Block table of matching blocks

Options:
Generate a log file of each compare iteration for debugging

45

5. BPACK.PAS

This program builds packets for the download file. The displacement
fields are not blanked. The offsets are determined and the packets
formed. Header and Data segments are sent as new data.

Inputs:
Old executable file
New executable file
Instruction table
Instruction character
Output from COMPEX program

Outputs:
Packet ready for download

6. COM1 Port Access Programs

The protocol for the IBM personal computer COM1 communication port has
a number of features that make computer-to-computer communications
difficult when operating under DOS. These features involve both the
hardware and software of the communication port. Below are described
the problem features as well as a group of assembly language subroutines
that have been written to control the port directly from a higher-level
language.

The following hardware and software features create problems in
communicating between two computers under DOS:

1. If a character has arrived at the COM1 communication port prior to the
operating system accessing the port, the system declares the
receiver-full status to be a device error and will cause a run-time error.

2. When the communication port is initialized to receive data, the
clear-to-send line is set high, but the data terminal ready line is set low.
If the full hardware handshake lines are implemented between COM1
communication ports, the receiving port will inhibit the sending port and
no data will be transmitted.

46

3. The software termination for a DOS input on the COM1 port is a control
Z character, but the output protocol is not compatible with the input
protocol.

4. The software protocol automatically sends both a carriage return and a
line feed at the end of a string output, but the input only requires a
carriage return to terminate the string input. This extra line feed
character sent on the output usually ends up as a character left in the
receiver register at the end of a transmission, which results in a run-time
error as described in item 1.

The following assembly language programs were written to allow a user
to access the COM1 port directly from a high-level program.

IC1 LS - Reads the line status of the COM1 port

IC1 MS - Reads the modem status of the COM1 port

IC1 INT - Initializes the COM1 port configuration

IC1 MCO - Sets the value of the COM1 port modem control lines

IC1 TD - Sends one character to the COM1 port

IC1 TDW - Sends one character to the COM1 port after the transmitter
buffer is empty

IC1 RD - Reads one character from the COM1 port with a null
indicating no character is available

IC1 RDW - Reads one character from the COM1 port after a character
becomes available

The following FORTRAN subroutines were written to supplement the

47

assembly language routines:

C1 RSTR - Reads a string of characters into a character array from the
COM1 port

C1 SSTR - Sends a string of characters from a character array to the
COM1 port

SECTION 6

FUTURE DIRECTIONS

HEADER ALGORITHM

The header record contains information about the size of the executable
module, where it is to be loaded in memory, and where the address of the
stack register and relocation offsets are to be inserted into incomplete
machine addresses. The largest amount of information in the header
consists of the relocation table containing the relocation items. Each
relocation item consists of a two-byte offset value and a two-byte
segment value.

At the present the proposed algorithms do not attempt to capitalize on the
similarities between an old program header and a new program header. It
may be possible to develop an algorithm that can use the old header
relocation table to derive the new header relocation table.

DATA SEGMENT ALGORITHM

The proposed procedure for transmitting the changes from a host computer
to a remote computer does not attempt to use the old data segments in the
generation of the new data segments. At present the new data segment is
transmitted in its entirety. The new data segments should be derivable
from the old data segments in such a manner as to reduce the amount of
information required to be transmitted to generate the new executable
file data segments. An additional algorithm can be developed to handle
this portion of the files.

FILE-COMPARE ALGORITHM EFFICIENCY

There are several issues that should be addressed that have the potential
to improve the file-compare efficiency. The first issue relates to large

4 9

amount of memory required with the proposed scheme. For a file of size =
N, the present required array size is 6N. This is hard to accomplish on a
PC in PASCAL. Though there is a memory of size 640K bytes, the compiler
limits its use to 64K. Perhaps a solution to this problem can be found by
using a mainframe, another language, or maybe finding a way around the
compiler to get access to the rest of the memory. The second issue
relates to the fact that the present scheme requires a full copy of both
the old and new files, and hence a large memory. It is - true, however, that
the operation is done only once for many downloads and that the operation
can be done on a mainframe. These advantages may outweigh the
disadvantage of a large memory requirement.

Prototype Code Demonstration

A prototype code demonstration should be prepared. There are five steps
to the development of a prototype code demonstration, some of which have
been executed already. The code listing software, LEXEC5, and the
compare algorithm software, COMPEX, are complete. The packet formation
software, BPACK, has been written, but has not been debugged. The
regeneration software has been flow charted and is illustrated in Figure
10, but has not been coded or debugged. A demonstration of the program
has not been debugged. The last three tasks need to be completed before a
demonstration can be presented.

Analysis of Packet Size Versus Overhead Bytes

A certain number of overhead bytes are required in the preparation and
transmission of each packet. This number varies with the contents of a
particular packet. Clearly a packet corresponding to a large block of code
warrants the overhead bytes required for its transmission; a packet
corresponding to a very small block of code may not. An analysis needs to
be done to determine at what point it is more economical to send a block
of code in toto as opposed to sending a packet of information describing
how to modify the old code to mirror the new code.

50

Examination of Methods for Error Correction and Encryption

When large amounts of data are transmitted over commercial phone lines,
the issues of error detection and correction and data encryption are of
primary concern. Methods addressing both of these issues were identified
and briefly reviewed early in this effort. Information embedded in
overhead bytes is used to detect and correct errors using a variety of
pattern recognition techniques such as the higher-order correlation
matrix associative memory method of Shiozaki. The various techniques
identified in the literature need to be carefully evaluated for their
appropriateness to the update scheme developed under this effort.

Through efforts by The National Bureau of Standards and others, data
encryption techniques have been greatly improved over the years,
especially with the adoption of the IBM-based, DES algorithm under the
American National Standards Institute's title, " Data Encryption
Algorithm." Work, such as Cipher Block Chaining, which establishes a
chained relationship between successive blocks of ciphertext and detects
unauthorized modifications, continues to improve encryption techniques.
An investigation of these and other pattern recognition techniques
pertinent to the data security in the proposed scheme should be
investigated.

51

APPENDIX A

UM* 1-22 $08111/1111 Instruction Encoding
MTh 01111009101011

1110pmer owner. to 11nm meow,

Inwn•side is re11s11• memory

Ve114•110110 norms,

*may 1a aeduseuhre,

 died•Ndoor 011011•1011

Illoptemr, memory b sernoni rowed

Seem.. rpm.r Is regmeo memory

1 00000 d. mod 	n10 	1/.* 112111.4.01 101111104011

-, 1 	 ■ mad 0 11 0 rim 6111111114.01 =We/ del• 1 • 10•111.•1 	i
1 01111.1111 001s

—
11611.1•. 1

1010000. NO,*
..--

ON./1i

,---..,
1 0 1 0 0 011. ,000e-lo

....-----
.1110•0.1

10001110 MO. 0 	ON rim 10010►,L01 131110.•0.)

10091100 mad 	0 	111111/111 07lli104.01 • 10111.4111

010111 re5

1 1 1 1 1 1 1 1 Rod 1 1 11 rim I i0d1104,0) 	I 	110111•4011 	1
000r0g110 Ur... reposer

(0111110101 	I 	1101010•001

Sed•ir• mystic

52

1 1 I 0 0 1 0 •

0 •
AN

yTMEi

•

000

0100 0 0 0 timl■LOPtoi I CAIP-mo

UN* 1-22 110116/118 Instruction Encoding (continuo0)
MTA TSA1MHA40•141.1

ECM • lalloops:

Pow Inoinory silh meow

lawater 	asewaviater

1 0 0 0 0 1 1 wNM MO H 1 /111 l 	112111P-1.01 I f00110-Olo 	I

OVT • OuMi

Owo, fort

WartatAs pan

EAT Too10s10 Oyes to Al

LEA • Ltool EA to repute ,

 LDS • L0101 owns. to DS

LP Lost' Parlor to ES

IMP • hard AM wth Mao*

POW S. AM solo Aro

PIMP • Oval

POOP Poo hop

hi 1 1051 t•
	DATA-0

	 •

 	tool 0110 11111 ► -L (0111P-M1 1

I 	 1 	 0100 0110 111n 0104.01 11:111040)

00000000 '000 Ilg 001 PALL 01 011► •hu

100 	

I 0 0 	

000 	

MITHMTIC

A00 • AM:

noel IMINWOlve Awn norm 10 welly

smAtookomt b 1.001•10c‘1101010,1

1100.0110115 10 0GC.000.011101

ADC PI WO Wm:

910o/O100nory 000110910tor b *M•

immodsto b 10910Ier100101011

1111010011111 b 001C01,011101

IMC • 001000•0001:

Mopssorionsotery

-51

ASCII aeloOt Or add

MA • Wawa Wont tor lad

0 0 • moo roc 	MN 03050-L01 0$101,10

1 0 • 0600 0 	0 	0 	r Inn roes► •Lo) wesp.mil am
1

1 	este rt 1 AtA01

0 00 001 0. AM Ws 1t•- 1

OOOOOO 0 • moo Aso 	flog 10111104.01 freph-MU

	 • moo 0 	I 	0 Ito ICAN-1.01 EXIAMI) AM I 	AP 0 a ■ ••01

•
4.-

Pm
-

AP 0 •A I

53

MITIONITIC 1Comed-1

OM • lloOltoM:

Ilogi•e•om mod MIdelet lo What

limmillolo1114111.01118/ 1110084

1.111101111111 MUM SOCUIPNIMIst

I 11

'sieved. two rem Um 10111114.01 10011104111

1 	 • .00 1 	I 	I 115 IOW-WI tO11111-Me 11100 I 	Imegirom411 	I

Ileillie. OAS dem1

1 1 lllll •

011101mo

1111011m

001110au

0 0 0 0 0 •

0 l 	 0 1.

mod 0 1 	1 .1M (08604.01

/mod 0 1 	1 rim 10014.01

Mad mu rim 10814.0)

mom 1 1 	1 rim (016111 -L01

0 0 1 1 1 	1

0010111i

1111011m

1 1 1 1 0 1 1 •

11010100

11 lllll •

1 1 1 0 1 1 •

1 0 1 0 1 0 1

Mod 1 0 0 rim

mad 1 0 1

0 0 0 0 1 0 1 0

Mad 1 1 0 rim

mad 1 1 1 rim

000810 1 0

(0411-1.01 (041-Mt)

1001.4.0) 1011114411

10010.-L01 (C451,041)

0:141-10 1 401111-0111

104,-4.01 1001044

MeV-LW (041440

1001-010

1 	101604.10

10011440

(01001 -mo
	 1
	

WM 110 184. 1

Able 1-22 SOSS/SS instruction Encoding (continued)

Sea • 11110Mmet WOW Wm.:

NW Mowry ems mipow ie onto.

imoneOlooe ham mooMtr1 memory

immedeoto from ets•oliv1Mor

Cl • Coloome)

Ilmrstetim/M•owt 0,11 r14/841

111114044 	4811111M 1 41.00m/

MumeMMMIIMIN maw/•INO,

 6.811 ASCII aaral ley wevict

DAS 04.011•4 odium ter a•Olne1

NUL Mumps. limmgweell

OM Integer mutt." low.md)

V11 15C0 mow lot n111.010

DM Made lunmoned1

ION Mims. draw Mooed,

MO MICA equot lot times

COO Con•ert Om to IMM11

CWO Cameo .ord io dorm. more

0001 10 0 • mool roe tom 10101101 10611401

1 	 . wood
...------

111 	i 	I rim 10111104.01 10814••41) ION I 	moo M1- 1..111 	1

0 0 0 	1 1 	1 0• de. 001 11 •ntil

0 0 1 1 0 0 0

t 0 0 1 1 0 0

LOGIC

NOT in•ort

SHULL Swot IOdmWi .n1o11r1.1i 1.11

O M Swot mow.. m4

Sal Snot &WM Mete nowt

1101 Ammo tell

1 1 1 10 11 m rimm8018rim 10151-101 07010• 10

1 	1 01 	0 O•rm Mad 	1 0 4 rim 10404.01 1040461

110100.rm 410010' , 	rim 10480-L01 1083► •Mll

110100•4. .00 11 ' 	1 ' ,11 10404.01 104►410

1181001m Sod 0 0 0 rim 10111e4.01 0:11111,140

54

LOGIC Cowed. I

000 Menlo rqn1

OM %Me 00401400 Wry hoe

OCR Room wyouq• cam. oleo

Able 1.22 11011611111 tnetruction Encoding (continued)

ii 	 • •
....—w■—.w..—.■,

4100 0 0 1 me 1003P-1.0t 1011P-M0

1111110111•• m000111 	rim 10(511.0) 1051-mti

1 1 0100•• mad 011 rim 401111•1.0 05•401

MOO . A.O.

ROO /*WIWI" yew norm, le•Www

∎•••••••• to mots*. ••••••••

10•1001ale to m0..1.140010 ,

MT • Aso Ormta.a to legs we moat

alletwoo memory Ina MOM",

 1.111101110118 01115 I1w /012111•I. fr2M007

1•••••0e1e data and eccentuiste.

OS • Or.

Roo/ memory awe mower beam,

tworwalats 10 MVO*/ 10511101 7

0101 1111411110 =CU/It/151W

ZOO . Itawftwin r.

intelwety ens twofer lo wow.

nelltelet Memory

10w100W10 to 110conw110115

o 0 1 	0 0 0 0 • woe 'Sc my. (01210-LO) meelt.tat

1 	 • woo 1 	0 0 r/ in amiLLOI (0e0-1111 GM I 	Ina 0 .w.1 	1

0 0 1 	0 0 1 0 w 5115 O15 0 w. I

o 0 0 I 0 0 • g wwd Ingo 1 I m ONIII,L01 (040-.0

	 • wee 0 0 0

dew

me 10150-L01 100304411 IOW i Owe tf w.1 	1

1010100.

0 0 0 0 1 0 0 • mm two etre (0050-LOP 0

1 0 0 0 0 0 0 • moo 0 	0 	1

[

:1111,1411

I. tit, 0:140.1.01 exeltmlp dale (001501,1

0000110. YU ww• 11 VO.,

I.
0 011000w wee Mg rim 10110-L01 41000401 -

0011010. Ws 00104.01 400161-1•10 Vete I 	IOW 0 w• I

0 0 I 1 0 1 0 • WOW WI It wt. t

STROM IIMOPULATIOM

IP* moms?

SOWS. ma* brorword

CIIPII.Coffews Imeiwons

SCA1.1.1. *no wens

UM. Lead I•ribiuml b AL/

SM. Iwo 17915/•0 been AL/A

1111001;

1010010.

1 II

1010111.

101011 1.

1 0 1 1 1 II 1 •

55

1 	1 	1 	1 1 	0 0 0 11•414C-1.0 1.414-141

111 	lllll nt00 0 1 0 wn 101.114.01 (Oat 114an

lllll 	010 1140 VA.

C11410 C11-1•

• 1113 	0 	1 	1 	r 11:115.4.01 -m

COWAN. TAANI11111

CALL CO

CWIPC1 mew Isqnsan

Inensi salsa ssirmant

WOO ansarmsonsan

Wino swassspywen I

11000 011

1 1 0 0 0 0 1 0

llllllll

11001010

llllll 0 0

010•40

10-114C11

0 1 1 1 1 1 0 0 11nSOCII

lllll 0 1 0

0 1 1 1 0 1 1 0

1P4PaINI

"NMI
• —• 	

lllll 0 1 0

11151101

SO MICS

11111001 11.-1NCI

lebie 1-22 11086/111 Instruction Encoding (continued)

ANA • timmeNsorl Amp:

Moo wins sagansnt

°Mt slnm mapnasntnnen

11141,11C1 0010 140.0001

Oirset slerassanant

0011011C1 0100000104101

1 	lllll 01 11.414C-LO 1P-0•C-111 I
lllll 	011 0-114C0

■
 	^100 	1 0 0 rim 1010-1.01 11:141,041)

llllllll • -10 11.4w

0040 CS 11

 	oat 1 	0 1 'OM 1 0111114.0) 1040-1411 	!

0117 • esess Mrs CALL,

11011100 earnem

Mown ass salOns moss to ISP

Inasswiannont

tassassanom nosing 00010101010 10

it 	Jump en pow, two

.11.1.01011 *Juno en Woe/ Ns grow or eons

JUL/am. • Jinni en San ea wpm met wear

A/ MAC • Juan. en 001106/ not alms es *WM

AUJAA . Jams on 0.505 sr semi/ 1101811011•

J11141111 • Amy an panty/ wry Vow

JO. .1040, 000,110o

As Amy en Sap

NV Ali Am..0. wst •••111).M ns•

MUSK • Snap es net Sr/ peas or maw

IIMA/J41 • Amy 0111101 1616 01116101111)0.1111161

MAMA • Amql de AA Wm) Am* of IONA

alfla/JA • Sons on not Wow or semi/ slew

JINshl•O• Swap an ma saeSst 0011

MO • Jaws en 1101 oohs

1 1 11 0 1 1 0 1

0 0 1 1 0 0

llllllll

1 1 0 0 1 1 1 1

• — 	
C1A'10.767

leb1e142 11011611111instruction Encoding (continued)
eamicx. mane mows)

Omploro Your CALL

..5..103311011 	MIR

LOW s LOSS C><twos

WWI/LOOM . Lem 30313 neo/00331

LoomEtnoOAn. Low woo 144 ervieg331

.0023.1010. 33 CA we

01111601 11411000

I 	ii 	 ILINCII

i 	1166001 . 111411e:11

I 	i 	I 	 FOCI

!PUMP

15541010 150010010 	$$$$$$$ 155.1110

PMCC111010111C1311111101.

101.0 3. Gar wry
	

0

1:111C 	Caossoment carry

31C 6401 cam

• Clor ammo

ST113 SW 03.30.03

CU Gest 3.003.301

IT1 	lin 310000301

NIT 313311

WIT 311W

SIC. Emma is asla% no army

LOCK 	Sal lock 010tia

3010111111T .Owner waft

1 	1 	1 	1 	0 	1 	0 	1

	 I 0 1

llllll 	01

1 	1 	1 	6 1 0

1 	1 	1 	1 	1 	0 	1 	1

1 	1 	1 	1 	5 	1 	0 0

16011011

11 5 	 300 f tr 4011134,01 I 	(01111,-00)

11 	llllll

0 0 1 me 110

lible 1-23 Machine Instruction Decoding Guide

1ST BYTE
2ND BYTE BYTES 3, 4, 5, II ASM-86 INSTRUCTION FORMAT HEX BINARY

8
6
8

2
3
8
1
1

t

0000 0000 MOD REG R/M (DISP-L0),(DISP-HI) ADD REG8/MEM8,REG8
0000 0001 MOD REG R/M (DISP•1.0),(DISP-HI) ADD REG16/MEM16,REG16
0000 0010 MOD REG R/M (DISP•1.0),(DISP-HI) ADD REG8,REG8/MEM8
0000 0011 MOD REG R/M (DISP-L0),(DISP-HI) ADD REG16,REG16/MEM16
0000 0100 DATA-8 ADD AL,IMMED8
0000 0101 DATA-LO DATA-HI ADD AX,IMMEDI6
0000 0110 PUSH ES
0000 0111 POP ES

1ST BYTE 2ND BYTE
-

OYES 3,4,5,6

•

ASM-84 INSTRUCTION FORMAT
HEX BINARY

r
08 0000 1000 MOD REG R/M (DISP-1.0),(DISP-HI) OR REG8/MEM8,REG8
09 0000 1001 MOD REG R/M (DISP-1.0).(DISP-HI) OR REG18/MEM16,REG16
OA 0000 1010 MOD REG R/M (DISP-1.0),(DISP-HI) OR REG8,REG8/MEM8
08 0000 1011 MOD REG R/M (DISP-1.0),(DISP-HI) OR REG16,REG16/MEM16
OC 0000 1100 DATA-8 OR AL,IMMED8
00 0000 1101 DATA-LO DATA-HI OR AX,IMMED16
OE 0000 1110 PUSH CS
OF 0000 1111 (not used)
10 0001 0000 MOD REG R/M (DISP-L.0),(DISP-HI) ADC REG8/MEM8.REG8
11 0001 0001 MOD REG R/M (DISP-L.0),(DISP - Ho ADC REG16/MEM16.REG16
12 0001 0010 MOD REG R/M (DISP-L0),(DISP-HI) ADC REG8,REG8/MEM8
13 0001 0011 MOD REG R/M (DISP-L0),(DISP-HI) ADC REG18,REG16/MEM16
14 0001 0100 DATA-8 ADC AL,IMMED8
15 0001 0101 DATA-LO DATA-HI ADC AX,IMMED16
16 0001 0110 PUSH SS
17 0001 0111 POP SS
18 0001 1000 MOD REG RIM (DISP-LO),(DISP-HI) SBB REG8/MEM8,REG8
19 0001 1001 MOD REG RIM (DISP-L0),(DISP-HI) SBB REG16/MEM16,REG16
1A 0001 1010 MOD REG R/M (DISP-LO),(DISP-HI) SBB REG8.REG8/MEM8
18 0001 1011 MOD REG R/M (DISP-L0),(DISP-HI) SBB REG16,REG16/MEM16
1C 0001 1100 DATA-8 SBB AL,IMMED8
1D 0001 1101 DATA-LO DATA-H SBB AX,IMMED16
1E 0001 1110 PUSH DS
1F 0001 1111 POP DS 	-
20 0010 0000 MOD REG R/M (DISP-LO).(DISP-HI) AND REG8/MEM8,REG8
21 0010 0001 MOD REG RIM (DISP-L0),(DISP-HI) AND REG16/MEMI6,REG16
22 0010 0010 MOD REG R/M (DISP-LO),(DISP-HI) AND REG8,REG8/MEM8
23 0010 0011 MOD REG R/M (DISP-L0),(DISP-HI) AND REGI6,REG16/MEM16
24 0010 0100 DATA-8 AND AL,IMMED8
25 0010 0101 DATA-LO DATA-HI AND AX,IMMEDI6
26 0010 , 0110 ES: (segment override

prefix)
27 0010 0111 DAA
28 0010 1000 MOD REG R/M (DISP-1.0),(DISP-HI) SUB REG8/MEM8,REG8
29 0010 1001 MOD REG R/M (DISP-1.0),(DISP-HI) SUB REG16/MEM16,REG16
2A 0010 1010 MOD REG R/M (DISP-L0),(DISP-HI) SUB REG8,REG8/MEM8
28 0010 1011 MOD REG R/M (DISP-LC),(DISP-HI) SUB REG16,REG16/MEM16
2C 0010 1100 DATA-8 SUB AL,IMMED8
2D 0010 1101 DATA-LO DATA-HI SUB AX,IMMED16
2E 0010 1110 CS: (segment override

prefix)
2F 0010 1111 DAS
30 0011 0000 MOD REG R/M (DISP-LCI),(DISP-HI) XOR REG8/MEMLREG8
31 0011 0001 MOD REG R/M (DISP-L0),(DISP-HI) XOR REG16/MEM16,REG16
32 0011 0010 MOD REG R/M (DISP-LC),(DISP-HI) XOR REG8,REG8/MEM8
33 0011 0011 MOD REG R/M (DISP-L0),(DISP-HI) XOR REG16,REG18/MEM16
34 0011 0100 DATA-8 XOR AL,IMMED8
35 0011 0101 DATA-LO DATA-HI XOR AX,IMMED16
36

-

0011 0110

--

SS: (segment override
prefix)

58

'bible 1-23 Machine Instruction Decoding Guide (continued)

1ST BYTE 2ND BYTE BYTES 3,4,6,6 ABM-66 INSTRUCTION FORMAT
HEX BINARY

37 0011 	0110
— 	 '

AAA
38 0011 	1000 MOD REG RIM (DISP-LO),(DISP-HI) CMP 	REG8/MEMIEREG8
39 0011 	1001 MOD REG RIM (DISP-LO),(DISP-H1) CMP 	REG16IMEM18,REG18
3A 0011 	1010 MOD REG RIM (DISP-LO),(DISP-Hi) CMP 	REG8,REG8/MEM8
3B 0011 	1011 MOD REG RIM (DISP-LO),(DISP-HI) CMP 	REG18,REG16/MEM16
3C 0011 	1100 DATA-8 CMP 	AL,IMMED8
3D 0011 	1101 DATA-LO DATA-HI CMP 	AX,IMMED16
3E 0011 	1110 OS: 	(segment override

prefix)
3F 0011 	1111 AAS
40 0100 	0000 INC 	AX
41 0100 	0001 INC 	CX
42 0100 	0010 INC 	DX
43 0100 	0011 INC 	BX
44 0100 	0100 INC 	SP
45 0100 	0101 INC 	BP 	.
46 0100 	0110 INC 	SI
47 0100 	0111 INC 	DI
48 0100 	1000 DEC 	,_ AX
49 0100 	1001 DEC 	CX
4A 0100 	1010 DEC 	DX
48 0100 	1011 DEC 	BX
4C 0100 	1100 DEC 	SP
4D 0100 	1101 DEC 	BP
4E 0100 	1110 DEC 	SI
4F 0100 	1111 DEC 	DI
50 0101 	0000 PUSH 	AX
51 0101 	0001 PUSH 	CX
52 0101 	0010 PUSH 	DX
53 0101 	0011 PUSH 	BX
54 0101 	0100 PUSH 	SP
55 0101 	0101 PUSH 	BP
56 0101 	0110 PUSH 	SI
57 0101 	0111 PUSH 	DI
58 0101 	1000 POP 	AX
59 0101 	1001 POP 	CX
5A 0101 	1010 POP 	DX
58 0101 	1011 POP 	BX
5C 0101 	1100 POP 	SP
5D 0101 	1101 POP 	BP
5E 0101 	1110 POP 	SI
5F 0101 	1111 POP 	DI 	 •
60 0110 	0000 (not used)
81 0110 	0001 (not used)
82 0110 	0010 (not used)
83 0110 	0011 (not used)
84 0110 	0100 (not used)
65 0110 	0101 (not used)
86 0110 	0110 (not used)
67 0110 	0111 (not used)

59

'table 1-23 Machine instruction Decoding Guide (continued)

1ST BYTE 2ND BYTE BYTES 3,4,5,1 ASM-86 INSTRUCTION FORMAT
HEX BINARY

:1 11 1
 g
 g
 g gi

7
!
 r
 7:

12
ti 7! 7! 1: 7!

7!

g

e
 7! g :

 11

E
l
 11 11

 11
$
1

S
$

;is

o

:
3

4

0110 	1000 (not used)
0110 	1001 (not used)
0110 	1010 (not used)
0110 	1011 (not used)
0110 	1100 (not used)
0110 	1101 (not used)
0110 	1110 (not used)
0110 	1111 (not used)
0111 	0000 IP-INC8 JO 	SHORT-LABEL
0111 	0001 IP-INC8 JNO 	SHORT-LABEL
0111 	0010 IP-INC8 JB/JNAE/ SHORT-LABEL

JC
0111 	0011 IP-INC8 JNB/JAE/ SHORT-LABEL

JNC
0111 	0100 IP-INC8 JE/J2 	SHORT-LABEL
0111 	0101 IP-INC8 JNE/JNZ SHORT-LABEL
0111 	0110 IP-INCH JBE/JNA SHORT-LABEL
0111 	0111 iP-iNcs JNBE/JA SHORT-LABEL
0111 	1000 IP-INC8 JS 	SHORT-LABEL
0111 	1001 IP-INC8 JNS 	SHORT-LABEL
0111 	1010 IP-INC8 JP/JPE 	SHORT-LABEL
0111 	1011 IP-INC8 . JNP/JPO SHORT-LABEL
0111 	1100 IP-INC8 JL/JNGE SHORT-LABEL
0111 	1101 IP-INC8 JNI../JGE SHORT-LABEL
0111 	1110 IP-INC8 JLE/JNG SHORT-LABEL
0111 	1111 IP-INC8 JNLE/JG SHORT-LABEL
1000 	0000 MOD 000 R/M (DISP-LO),(IDISP-HI),

DATA-8
ADD 	REG8/MEMILIMMED8

1000 	0000

1000 	0000

MOD 001 R/M

MOD 010 RIM

(DISP-LO),(DISP-HI),
DATA-6,

(DISP-LC),(DISP-HI),
DATA-8

OR 	REG8/MEMB,IMMED8

ADC 	REGII/MEM8.IMMED8

1000 	0000 MOD 011 R/M (DISP-L0),(DISP-HI),
DATA-8

SBB 	REG8/MEM8,IMMED8

1000 	0000 MOD100 R/M (DISP-L0),(DISP-H1),
DATA-8

AND 	REG8/MEM8,IMMED8

1000 	0000 MOD 101 R/M (DISP-L0),(DISP-HI),
DATA-8

SUB 	REG8/MEM8,IMMED8

1000 	0000 MOD 110 R/M (DISP-L0),(DISP-HI),
DATA-8

XOR 	REG8/MEM8,IMMED8

1000 	0000 MOD 111 R/M (DISP-LO),(DISP-HI),
DATA-8

CMP 	REG8/MEMS,IMMED8

1000 	0001 MOD 000 R/M (DISP-L0),(DISP-HI),
DATA-LO,DATA-HI

ADD 	REG16/MEM16,1MMED16

1000 	0001 MOD 001 RIM (DISP-LO),(DISP-HI),
DATA-LO,DATA-HI

OR 	REG18/MEM16,IMMED16

1000 	0001 MOD 010 R/M (DISP-L0),(DISP-H1),
DATA-LO, DATA-HI

ADC 	REG16/MEM16,IMMED16

1000 	0001 MOD 011 R/M (DISP-LO) (DISP-HI),
DATA-LO, DATA-HI

SBB 	REG16/MEM16,IMMED16

60

lido 1-23 Machine Instruction Decoding Guide (continued)

1ST BYTE
2ND BYTE BYTES 3,4,5,6 ASM-116 INSTRUCTION FORMAT NEX BINARY

0
 .72

 .72
 .72

 2
 2

2

2

2
2

2
2
 2
 2
2
 2

2
2

2
2
 a

s
s

ra
s

a
l

fg(5iW
o

u
n

"-"-u-

1000 0001 MOD 100 R/M (DISP-LO),(DISP-HI),
DATA-LO,DATA-HI

AND 	REG16/MEM16,IMMED16

1000 0001 MOD 101 R/M (DISP-L0),(DISP-H1),
DATA-LO,DATA-HI

SUB 	REG16/MEM16,IMMED16

1000 0001 MOD 110 R/M (DISP-LO),(DISP-HI),
DATA-LO,DATA-HI

XOR 	REG16/MEM16,1MMED16

1000 0001 MOD 111 RIM (DISP-1.0),(DISP-H1). CMP 	REG16/MEM18,IMMED16
DATA-LO,DATA-HI

1000 0010 MOD 000 R/M (DISP-1.0),(DISP-H1),
DATA-8

ADD 	REGO/ MEM8,IMMED8

1000 0010 MOD 001 RIM (not used)
1000 0010 MOD 010 R/M (DISP-L0),(DISP-H1),

DATA-8
ADC 	REG8/MEM8,IMMED8

1000 0010 MOD 011 R/M (DISP•L0),(DISP-HI),
DATA-8

SBB 	REG8/MEM8,IMMED8

1000 0010 MOD 100 R/M (not used)
1000 0010 MOD 101 R/M (DISP-LO),(DISP-HI),

DATA
SUB 	REG8/MEM8,IMMED8

-
1000 0010 mOD110 R/M (not used)
1000 0010 MOD 111 R/M (DISP-LO),(OISP-HI),

0 Airki
CMP 	REMMEM8,IMMED8

1000 0011 MOD 000 R/M (DISP•L0),(DISP-HI),
DATA-SX

ADD 	REG16IMEM16, IMMED8

1000 0011 MOD 001 R/M (not used)
1000 0011 M00010 R/M (DISP•L0), (DISP-HI),

DATA-SX
ADC 	REG16/MEM16,IMMED8

1000 0011 MOD 011 R/M (DISP-L0),(DISP-H1),
DATA-SX

SBB 	REG16/MEM16,IMMED8

1000 0011 MOD 100 R/M (not used) -
1000 0011 MOD 101 R/M (DISP•L0),(DISP-HI),

DATA-SX
SUB 	REG16IMEM16,IMMED8 '

1000 0011 MOD 110 R/M (not used)
1000 0011 MOD 111 R/M (DISP-LO),(DISP-HI),

DATA-SX
CMP 	REG16/MEM18,IMMED8

1000 010 MOD REG R/M (DISP-1.0),(DISP-H1) TEST 	REG8/MEM8,REG8
1000 010 MOD REG R/M (DISP-1.0),(DISP-HI) TEST 	REG16/MEM16,REG16
1000 011 MOD REG R/M (DISP-1.0).(DISP-HI) XCHG 	REG8,REG8/MEM8
1000 0111 MOD REG R/M (DISP-L0),(DISP-HI) XCHG 	REG16,REG16/MEM16
1000 1000 MOD REG R/M (DISP-1.0),(DISP-HI) MOV 	REG8!MEM8,REG8
1000 1001 MOD REG R/M (DISP-1.0),(DISP-HI) MOV 	REG16/MEM161REG18
1000 1010 MOD REG RIM (DISP-L0),(DISP-H1) MOV 	REG8,REG8/MEM8
1000 1011 MOO REG R/M (DISP.LO),(DISP-HI) MOV 	REG16,REG16/MEM18
1000 1100 MOD OSR R/M (DISP•1.0),(DISP-HI) MOV 	REG16/MEM16,SEGREG
1000 1100 MOD1—R/M (not used)
1000 1101 MOD REG R/M (DISP•1.0),(DISP-HI) LEA 	REG16,MEM16
1000 1110 MOO OSR R/M (DISP-1.0),(DISP-HI) MOV 	SEGREG,REG16/MEM16
1000 1110 MOD 1—R/M (not used)
1000 1111 MOD 000 R/M (DISP•1.0),(DISP-HI) POP 	REGIS/ MEM16
1000 1111 MOD 001 R/M (not used)
1000 1111 MOD 010 R/M (not used)

61

0086/8088 CPU

table 1.23 Machine Instruction Decoding Guide (continued)

1ST BYTE 2ND BYTE

--

BYTES 3,4,5,6

.

ASM-66 INSTRUCTION FORMAT
HEX BINARY

[g
 S!
 t?

 1!
 g
 1!
 E!
 w
 2
1
 g
 g
 I:

 I.:
2:

I:
It
 /t

 !s
 Z:

 IX
 X;

 r;
 r3

I
:

ti
 !s

 gg
 mg

 gg
 gs

 gs

g

s m
g I

s q
g s

ix

1000 1111 MOD 011 R/M Mot used)
1000 1111 MOD 100 R/M (not used)
1000 1111 MOD 101 RIM (not used)
1000 1111 MOD 110 RIM (not used)
1000 1111 MOD 111 R/M (not used)
1001 0000 NOP (exchange AX,AX)
1001 0001 XCHG AX,CX
1001 0010 XCHG AX,DX
1001 0011 XCHG AX,BX
1001 0100 XCHG AX,SP
1001 0101 XCHG AX,BP
1001 0110 XCHG AX,SI
1001 0111 XCHG AX,DI
1001 1000 CBW
1001 1001 CWD
1001 1010 DISP-LO DISP-HI,SEG-LO,

SE.G-H 1
CALL FAR_PROC

1001 1011 WAIT
1001 1100 PUSHF
1001 1101 POPF
1001 1110 SAHF
1001 1111 LAHF
1010 0000 ADDR-LO ADDR-I1I MOV AL,MEM8
1010 0001 ADDR-LO ADDR-HI MOV AX,MEM16
1010 0010 ADDR-LO ADDR-H1 MOV MEM8,AL
1010 0011 ADDR-LO ADDR-HI MOV MEM16,AL
1010 0100 MOVS DEST-STR8,SRC-STR8
1010 0101 MOVS DEST-STR16,SRC-STR16
1010 0110 CMPS DEST-STR8,SRC-STR8
1010 0111 CMPS DEST-STR16,SRC-STR16
1010 1000 DATA-8 • TEST AL,IMMED8
1010 1001 DATA-LO DATA-HI TEST AX,IMMED16
1010 1010 STOS DEST-STR8
1010 1011 STOS DEST-STR16
1010 1100 LODS SRC-STR8
1010 1101 LODS SRC-STR16
1010 1110 SCAS DEST-STR8
1010 1111 SCAS DEST-STR16
1011 0000 DATA-8 MOV AL,IMMED8
1011 0001 DATA-8 MOV CL,IMMED8
1011 0010 DATA-8 MOV OL,IMMED8
1011 1011 DATA-8 MOV 13L,IMMED8
1011 0100 DATA-8 MOV AH,IMMED8
1011 0101 DATA-8 MOV CH,IMMED8
1011 0110 DATA-8 MOV OH,IMMED8
1011 0111 DATA-8 MOV BH,IMMEDB
1011 1000 DATA-LO DATA-HI MOV AX,IMMED16
1011 1001 DATA-LO DATA-HI MOV CX,IMMED16
1011 1010 DATA-LO DATA-HI MOV DX,IMMED16
1011 1011 DATA-LO DATA-HI MOV BX,IMMED16

62

11086/80811 CPU

'table 1.23 Machine Instruction Decoding Guide (continued)

1ST BYTE
2ND BYTE BYTES 3,4,5,11 ASM-86 INSTRUCTION FORMAT HEX BINARY

g f 3 %
It o' 8

 Li ti 3
 3

 8
 6

8
8

8
8

6
8

8
0

c.)clo
0
0
0

0
3
8

6
/3

8
8
10

.588
8
8

8
8

8
8

a
0
0

0
0

1011 1100 DATA-LO DATA-HI MOV SP,IMMED16
1011 1101 DATA-LO DATA-HI MOV 13P ,IMMED16
1011 1110 DATA-LO DATA-HI MOV SI.IMMED16
1011 1111 DATA-LO DATA-HI MOV (31,1MMED16
1100 0000 (not used)
1100 0001 (not used)
1100 0010 DATA-LO DATA-HI RET IMMED16 (intra30Q)
1100 0011 RET (intrasegment)
1100 0100 MOD REG RIM (DISP-1-0),(DISP-)41) LES REG113,MEM16
1100 0101 MOD REG RIM (DISP-1.0),(DISP-H1) LDS REG16.MEM16
1100 0110 MOD 000 RIM (DISP-1.0),(DISP-H1),

DATA-8
MOV MEM13,IMMED8

1100 0110 MOD 001 RIM (not used) -
1100 0110 MOD 010 R/M (not used)
1100 0110 MOD 011 RIM (not used)
1100 0110 MOD 100 R/M (not used)
1100 0110 MO0101 R/M (not used)
1100 0110 MOD 110 RIM (not used)
1100 0110 MOD 111 R/M (not used)
1100 0111 MOD MO RIM (DISP-L0),(DISP-H1),

DATA-LO,DATA-HI
MOV MEM16,IMMED16

1100 0111 MOD 001 R/M (not used)
1100 0111 MOD 010 R/M (not used)
1100 0111 MOD 011 R/ M (not used)
1100 0111 MOD 100 R/M (not used)
1100 0111 MOD 101 RIM (not used)
1100 0111 MOD110 RIM (not used)
1100 0111 MOD 111 R/M (not used
1100 1000 (not used)
1100 1001 (not used)
1100 1010 DATA-LO DATA-HI RET IMMED18 (intersegment)
1100 1011 RET (intersegment)
1100 1100 INT 3
1100 1101 DATA-8 INT IMMED8
1100 1110 INTO
1100 1111 IRET
1101 0000 MOD 000 R/M (DISP-L0),(DISP-HI) ROL REGIII/MEM8,1
1101 0000 MOD 001 RIM (DISP-LOMDISP-HI) ROR REGIS/ MEM8,1
1101 0000 MOD 010 R/M (DISP-L0).(DISP-H1) RCL REG8/MEM8,1
1101 0000 MOD 011 RIM (DISP-1.0),IDISP-HI) RCR PEGS/ MEM13,1
1101 0000 MOD 100 RIM (DISP-L0),(DISP-HI) SAL/SHL REG8/MEM8,1
1101 0000 MOD 101 R/M (DISP-L0),(131SP*11) SHR REG8IMEM8,1
1101 0000 MOD 110 R/M (not used)
1101 0000 MOD 111 R/M (DISP-LO) (DISP-HI) SAR PEGS/ MEM8,1
1101 0001 MOD 000 R/M (DISP-L0),(DISP-HI) ROL REG18/MEM16,1
1101 0001 MOD 001 R/M (DISP-L0),(DISP-HI) ROR REG16/MEM16,1
1101 0001 MOD 010 RIM (DISP-LO),(DISP-HI) RCL REG16/MEM16,1
1101 0001 MOD 011 RIM (DISP-L0),(DISP-HI) RCR REG16/MEM16,1
1101 0001 MOD 100 RIM (DISP-L0),(DISP-HI) SAL/SHL REG16/MEM16,1

63

•088/11088 CPU

Sable 1-23 Machine inetruction Decoding Guide (continued)

1ST BYTE 2ND BYTE BYTES 3,4,5,6 AS14-116 INSTRUCTION FORMAT
HEX BINARY

D1 1101 	0001 MOD 101 RIM (DISP-L0),(DISP-HI) SHR 	REG16IMEM16,1
D1 1101 	0001 MOD 110 R/M (not used)
D1 1101 	0001 MOD 111 RIM (DISP-L0),(DISP-HI) SAR 	REGIS /MEM16,1
D2 1101 	0010 MOD °CO R/M (DISP-L0),(DISP-HI) ROL 	REG8/MEM8,CL
D2 1101 	0010 MOD 001 RIM (DISP-IL0),(DISP-HI) ROR 	REG8IMEM8,CL
D2 1101 	0010 MOD 010 R OA (DISP-IL0),(DISP-HI) RCL 	REG8IMEM8,CL
D2 1101 	0010 MOD 011 RIM (DISP-1.0),(DISP-HI) RCR 	REG8/MEM8,CL
D2 1101 	0010 MOD 100 R/M (DISP-1.0).(DISP-HI) SAL/SHL REG8/MEMEI,CL
D2 1101 	0010 MOD 101 R/M (DISP-1.0),(DISP-HI) SHR 	REG8/MEM8,CL
D2 1101 	0010 MOD 110 R/M (not used) 	 .
D2 1101 	0010 MOD 111 R/M (DISP-I.0),(DISP-HI) BAR 	REG8/MEM8,CL
D3 1101 	0011 MOD 000 R/M (DISP-1.0),(DISP-HI) ROL 	REG16/MEM16,CL
D3 1101 	0011 MOD 001 RIM (DISP-1.0),(DISP-HI) ROR 	REG16/MEM16,CL
D3 1101 	0011 MOD 010 R/M (DISP-1.0).(DISP-HI) RCL 	REG16/MEM16,CL
03 1101 	0011 MOD 011 R/M (DISP-1.0),(DISP-HI) RCR 	REG16/MEM16,CL
D3 1101 	0011 MOD 100 RIM (DISP-1..0),(DISP-HI) SAL/SHL REG16/MEM16,CL
D3 1101 	0011 MOD 101 R/M (DISP-L.0),(DISP-HI) SHR 	REG16/MEM16,CL
D3 1101 	0011 MOD 110 R/M (not used)
D3 1101 	001 1 MOD 111 RIM (DISP-L.0),(DISP-HI) SAR 	REG16/MEM16,CL
D4 1101 	0100 00001010 AAM
D5 1101 	0101 00001010 AAD
06 1101 	0110 (not used)
D7 1101 	0111 XLAT 	SOURCE-TABLE
D8 1101 	1000 MOD 000 R/M

1XXX MOD YYY R/M (DISP-LC)), (DISP-HI) ESC 	OPCODE,SOURCE
DF 1101 	1111 MOD 111 R/M
E0 1110 	0000 IP-INC-8 LOOPNE/ SHORT-LABEL

LOOPNZ
El 1110 	0001 IP-INC-8 LOOPE/ 	SHORT-LABEL

LOOPZ
E2 1110 	0010 IP-INC-8 LOOP 	SHORT-LABEL
E3 1110 	0011 IP-INC-8 JCXZ 	SHORT-LABEL
E4 1110 	0100 DATA-8 IN 	AL,IMMED8
E5 1110 	poi DATA-8 IN 	AX,IMMED8
E6 1110 	0110 DATA-8 - OUT 	• AL,IMMED8
E7 1110 	0111 DATA-8 OUT 	AX,IMMED8
E8 1110 	1000 IP-INC-LO IP-INC-HI CALL 	NEAR-PROC
E9 1110 	1001 IP-INC-LO IP-INC-HI JMP 	NEAR-LABEL
EA 1110 	1010 IP-LC) IP-HI,CS-LO.CS-HI .JMP 	FAR-LABEL
EB 1110 	1011 IP-INC8 JMP 	SHORT-LABEL
EC 1110 	1100 IN 	AL,DX
ED 1110 	1101 IN 	AX,DX
EE 1110 	1110 OUT 	AL,DX
EF 1110 	1111 OUT 	A,X,DX
FO 1111 	0000 LOCK 	(prefix)
F1 1111 	0001 (not used)
F2 1111 	0010 REPNE/REPNZ
F3 1111 	0011 REP/ REPE /REPZ
F4 1111 	0100 HLT
F5 1111 	0101 CMC

64

llabls 1-23 Machine Instruction Decoding Guide (continued)

1ST BYTE
2ND BYTE BYTES 3,4,5,8 ASM-U INSTRUCTION FORMAT

HEX BINARY

-
n

 m
m

m
m

m
m

m
m

m
m

m
m

m
m

m
m

m
m

m
 4

0
0

0

-
4

 Z
 Z

 "1
-71

m
m

m
m

m
 .

"

1111 0110 MOD 000 R/M (DISP-LO),(DISP-HI),
DATA-E

TEST REG8/MEM8.1MMED8

1111 0110 MOD 001 RIM (not used)
1111 0110 MOD 010 R/M (DISP-L01,(DISP411) NOT REG8/ ME M8
1111 0110 MOD 011 R/M (DISP-L0),(DISP-HI) NEG REG8/MEM8
1111 0110 MOD 100 R/M (DISP-L0),(DISP-HI) MUL REG8/MEM8
1111 0110 MOD 101 R/M (DISP-LOMDISP-HI) IMUL REG8/MEM8
1111 0110 MOD 110 RIM (DISP-L0),(DISP-HI) DIV REG8/MEM8
1111 0110 MOD 111 RIM (DISP-L0),(DISP-HE 'DIV REG8 /HEMS
1111 0111 MOD 000 R/M (DISP-L0),(DISP-H1),

DATA-LO,DATA-HI
TEST REG18/MEM18,1MMED18

1111 0111 MOD 001 RIM (not used) .

1111 0111 MOD 010 R/M (DISP-L0),(DISP-HI) NOT REGIS/MEM18
1111 0111 MOD 011 R/M (DISP-L0),(DISP-HI) NEG REG18/MEM18
1111 0111 MOD 100 R/M (DISP-L0).(DISP-HI) MUL REG18/MEM18
1111 0111 MOD 101 R/M (DISP-L0),(DISP-HI) IMUL REGIS/MEM18
1111 0111 MOD 110 R/M (DISP-1.0),(IDISP-H1) DIV REG18/MEM18
1111 0111 MOD 111 R/M (DISP-LO),(DISP-HI) IDIV REG18/MEM18
1111 1000 CLC
1111 1001 - STC
1111 1010 CLI
1111 1011 STI
1111 1100 CLD
1111 1101 STD
1111 1110 MOD 000 R/M (DISP-L0),(DISP-HE INC REG8/MEM8
1111 1110 MOD 001 R/M (DISP-LC11,(DISP-HI) DEC REG8/MEM8
1111 1110 MOD 010 R/M (not used)
1111 1110 MOD 011 R/M (not used) .
1111 1110 MOD 100 R/M (not used)
1111 1110 MOD 101 R/M (not used)
1111 1110 MOD 110R/M (not used)
1111 1110 MOD 111 RIM (not used)
1111 1111 MOD 000 R/M (DISP-LO),(DISP-HI) INC MEM18
1111 1111 MOD 001 R/M (DISP-L0).(DISP-HI) DEC MEM18
1111 1111 MOD 010 RIM (DISP-L0).(01SP-HI) CALL REG16/MEM18 (intra)
1111 1111 MOD 011 R/M (DISP-LO),(IDISP-HI) CALL MEM18 (intersegment)
1111 1111 MOD 100 R/M (DISP-LO),(DISP-HI) JMP REG18/ MEWS (intro)
1111 1111 MOD 101 RIM (DISP-LO).(DISP-HI) JMP MEW() (Intersegment)
1111 1111 MOD 110 R/M (DISP-L0),(DOSP-HI) PUSH MEM18
1111 1111 MOD 111 R/M (not used)

65

'Able 1-21 Key to Machine Instruction Encoding end Decoding

IDENTIFIER EXPLANATION

MOD Mode field; described in this chapter.

REG Register field; described in this chapter.

RIM Register/Memory field; described in this chapter.

SR Segment register code: 00-ES, 01 ■CS, 10■ SS, 11...DS.

W, S, D, V, Z Single-bit instruction fields; described in this chapter.

DATA-8 8-bit Immediate constant.

OATA-SX 8-bit immediate value that is automatically sign-extended to 16-bits
before use.

DATA-LO Low-order byte of 16-bit immediate constant.

DATA-HI High-order byte of 16-bit immediate constant.

(DISP-LO) Low-order byte of optional 8- or 16-bit unsigned displacement; MOD
Indicates if present.

(DISP-HI) High-order byte of optional 16-bit unsigned displacement; MOD
indicates if present.

IP-LO Low-order byte cf new IP value.

IP-HI High-order byte of new IP value

CS-LO Low-order byte of new CS value.

CS-HI High-order byte of new CS value.

IP-INC8 11-bit signed increment to instruction pointer.

IP-INC-LO Low-order byte of signed 16-bit instruction pointer increment.

IP-INC-HI High-order byte of signed 18-bit instruction pointer increment.

ADDR-LO Low-order byte of direct address (offset) of memory operand; EA not
calculated.

ADDR-Hi High-order byte of direct address (offset) of memory operand; EA not
calculated.

-- Bits may contain any value.

XXX First 3 bits of ESC opcode.

YYY Second 3 bits cf ESC opcode.

REG8 8-bit general register operand.

REG16 16-bit general register operand.

MEMB 6-bit memory operand (any addressing mode).

MEM16 16-bit memory operand (any addressing mode).

IMMED8 8-bit Immediate operand.

IMMED18 16-bit Immediate operand.

SEGREG Segment register operand.

DEST-STR8 Byte string addressed by DI.

UM* 1-21 Key to Machine instruction Encoding and Decoding (continued)

IDENTIFIER EXPLANATION

SRC-STR8 Byte string addressed by SI.

DEST-STR16 Word string addressed by DI.

SRC-STR18 Word string addressed by SI.

SHORT-LABEL Label within 1127 bytes of instruction.

NEAR-PROC Procedure In current code segment.

FAR-PROC Procedure in another code segment.

NEAR-LABEL Label in current code segment but farther than -126 to +127 bytes
from instruction.

FAR-LABEL Label in another code segment.

SOURCE-TABLE XLAT translation table addressed by BX.

OPCODE ESC opcode operand.

SOURCE ESC register or memory operand. 	 •

66

APPENDIX B

Algorithms for the Longest Common Subsequence Pratlem

DANIEL S. HIRSCHBERG

Princeton University, Princeton, New Jersey

iuts-ntax-r. Two algorithms are presented that solve the longest common subsequence problem. The fast
algorithm is applicable in the general case and requires O(pn + a log n) time where p is the length of the
longest common subsequence. The second algorithm requires time bounded by 0(p0n + 1 — pllog n). In the
common special case when p is close to ,n, this algorithm takes much less time than ns.

tart WORDS AND riteasEs: subsequence, common subsequence,. algorithm

CR C ►TEGOUES: 3.73, 3.79, 525, 5.39

Introduction

We start by defining conventions and terminology that will be used throughout this
paper._ _

String C = t ic: 	c, is a subsequence of string A = As ia, --- a. if there is a mapping
F: {1, 2, ... , p} 	{1, 2, ... , m} such that F(i) = k only if c, = at and F is a monotone
strictly increasing function (i.e. Ri) = u, F(j) = v, and i < j imply that u < v). C can be
formed by deleting nn-.— . p (not necessarily adjacent) symbols from A. For example,
"course" is a subsequence of "computer science."

String Cis a common subsequence of strings A and B if C is a subsequence of A and
also a subsequence of B.

String C is a longest common subsequence (abbreviated LCS) of string A and B if C is
a common subsequence of A and B of maximal length, i.e. there is no common subse-
quence of A and .B that has greater length.

Throughout this paper, we assume that A and B are strings of lengthsm and n, m s n,
that have an LCS C of (unknown) length p.

We assume that the symbols that may appear in these strings come from some alphabet
of size t. A symbol can be stored in memory by using logs bits, which we assume will fit in
one word of memory. Symbols can be compared (a s b?) in one time unit.

The number of different symbols that actually appear in string B is defined to be s
(which must be less than n and t).

The longest common subsequence problem has been solved by using a recursion
relationship on the length of the solution [7, 12, 16, 211. These are generally applicable
algorithms that take O(mn) time for any input strings of lengths m and n even though
the lower bound on time of O(mn) need not apply to all inputs [2]. We present
algorithms that, depending on the nature of the input, may not require quadratic time
to recover an LCS. The first algorithm is applicable in the general case and requires
O(pn + n log n) time. The second algorithm requires time bounded by 0((m + 1 — p)P
log n). In the common special case where p is close to m, this algorithm takes time

Copyright 0 1977, Association for Computing Machinery, Inc. General permission to republish, but not for
profit, all or part of this material is granted provided that ACM's copyright notice is given and that reference is
made to the publication, to its date of issue, and to the fact that reprinting privileges were granted by
permission of the Association for Computing Machinery.
This research was supported by a National Science Foundation graduate fellowship and by the National Science
Foundation under Grant G1-35570.
Author's present address: Department of Electrical Engineering, Rice University, Houston, TX 77001.

Journal c4 Ms Aroma= for Campsame Machimary. Vol. 24. No. 4. Ocasibu 1977. pp. 464475.

67

Algorithms for the Longest Common Subsequence Problem 	 665

much less than n 2. We conclude with references to other algorithms for the LCS
In 	that may be of Mtereat:.: 	 iz pi- 	. r

• -3 ; lt -VIT 	:b 	. 	 ; 	 Jfira -
pn Algorithm

We present in this section algorithm ALGD, which will find an LCS in time 0(pn +
n log n) where p is the length of the LCS. Thus this algorithm may be preferred for
applications where the expected length of an LCS is small relative to the lengths of the
input strings. - •• . - , , ' • -

Some preliminary definitions are as follows: -- 	• 	- 	;
We represent the concatenation of strings X and Y by XIIY• 	-
A ,1 represents the string a,a2 	al (elements 1 through i of string A). Similarly, the

prefix of length j of string B is represented by B.
We define L(i, j) to be the length of the LCS of prefixes of lengths i andj of strings A

and B, i.e. the length of the LCS of it u and Bu . 	. , ;
1) represents the positions of a, and 14, the ith element of string A and the jth

element of string B. We refer to i (j) as the i-value (j-value) of (1, D. 1 -
We define {(O, 0)} to be the set of 0-candidates, and we define (1, j) to be a k-

candidate (for k a 1) if a, = b, and there exist i' and j' such that Pl.< i, j' -<.j, and
(i', j') is a (k 1)-candidate. We say that (i', j') generates (i ; j)- 7;.

Define a.= b 0 = S where S is some symbol that does not appear in strings A or B. -
- LEMMA 1. For k a 1, (i, j) is a k-candidate iff L(i, j) a k and a, = b k. Thus there is a
common subsequence of length k of A u and B u. - -

PROOF. By induction on k. (i,j) is a 1-candidate iff a, = bj (by definition), in which
case L(i, j) necessarily is at least 1. Thus the lemma is true for 1.—Assume it is true
for k — 1. Consider k. If (i, j) is a k-candidate then there exist i' < i and j' < j such
that (i',j') is a (k — 1)-candidate. By assumption, there is a common subsequence D' =
d,d 2 (12_, of A ,,• and Bu.. Since al .= b j ((i, 1) is a k-candidate), D -=-Dfla, is a
common subsequence of length k of A u and B. Thus L(i, 1) a k. - - 	- • 	-

Conversely, if L(i, j) k and a, = b4 , then there exist i' < i and j' < j such that a i. =
by and L(i', j') = L(i, j) — 1 a 1. 0%17 is a (k — 1)-candidate (by inductive
hypothesis) and thus (i, j) is a k-candidate.

The length of an LCS is p, the maximum value of k such that there exists a k-
candidate. As we shall see, to recover an LCS, it suffices to maintain the sequence of a 0-
candidate, 1-candidate, , (p — 1)-candidate, and a p-candidate such that in this
sequence each i-candidate can generate the (i + 1)-candidate for 0 s i < p.

Rule. Let s = x2) and y = (yi, YO be two k-candidates. If s i z y, and x2 yi,
then we say that y rules out i (r . is a superfluous k-candidate) since any (k + 1)-
candidate that could be generated by x can also be generated by y. Thus, from the set
of k-candidates, we need consider only those that are minimal under the usual vector
ordering. Note that if x and y are minimal elements then x i < y, iff x2 > y2 .

LEMMA 2. Let the set of k-candidates be-{(i„ J r)} (r = 1, 2,_...). We can rule out
candidates so that (after renumbering) i, < i 2 < and j, > 12 > "*.

PROOF. Any two k-candidates (i, j) 	j') - satisfy one of the following (without
loss of generality, i s i'):

(1) i < i',•j s j'.
(2) i <

•

j > j'.
(3) i 	j'. 	--
(4) i 	

• >

	 -

In cases (1) and (3) (i', j') can be ruled out; in case (4) (i, j) can be ruled out; and case (2)
satisfies the statement of the lemma. Thus' any set of k-candidates which cannot be
reduced by further application of the rule will satisfy the condition stated in the
lemma..7 ❑ 	 t' 7Q 	 Si&

The set of k-candidates, reduced by application of the plc 	.to 'satisfy _the
statement of Lemma nare the minimal elements of the het of k-casididates.(since..no

68

d

b

b

A

l I @ 2 2 2 2

I Q 2 2 2 2 2

1 2 	2 	2 	2 	2 	2

1 0 2 2 	3 3 3

2 2 2 3 3 3 (i) 4

0 Q

I

66e ." - 	 praet wet rirrnii.wia2 :1,- .7777tt.") try 	 - DANI1L t. IRIRSCHBERG
• • 	 • •

element can rule' out a minimal element) and will be called the set of minimal k-
candidates. By Lemma 2, there is at most one minimal k-candidate for each i-value.

We note that if (i, j) is a minimal k-candidate then -L(i, j) = k and (i, j) is the k-
candidate with i-value i having smallest j-value j such that L(i, j) = k.

LEMMA 3. For k z 1, (i, j) is a minimal k-candidate iff j is the minimum value such
that b i = a, and low < j < high, where high is the minimum j-value 'of all k-candidates
whose i-value is less than i (no upper limit if there are no such k-candidates) and low is the
minimum j-value of all (k - 1)-candidates whose i-value is less than i.
• PROOF. Assume that (i, j) is a minimal k-candidate._If j a high then there is a k-
candidate (i', j') such that i' < o and j' = high -s j. (i, j) would be ruled out by !f', j')
and thus would not be minimal. -

If j s low, then there is no (k 1)-candidate that dui generate (i, j). (i, j) would not
be a k-candidate.

bi a, is required by the definition of k-candidate and low < j < high has just been
shown. If j and j' both satisfy These constraints, j < j', then (i, j') is ruled out by (i, j).
Thus, fora particular i, j must be the minimum j-value of all k-candidates satisfying
these constraints. - -

The if of the lemma has thus been shown. . 	_ - 	—
The converse is easily shown: If (i, j) is not a k-candidate, then either a, # b l or there is

no (k - 1)-candidate that can generate (i, j). That is, the j-value of all (k - 1)-candidates
with i-value less than i is greater than or equal to j. This is equivalent to j s low.

If (i, j) is a k-candidate but is not minimal, say (i''6 j') rules out (i, j), then s i and j' s
j. If < i, then clearly j < high is violated. Otherwise,.i' = i. In this case j' > low since
(i', j') must be generated from a (k - 1)-candidate and br = a l since (i', j) is a k-
candidate. Also j' <j < high. Thus j' satisfies all the constraints and j is not the minimum
value that does so, a contradiction. - 0

We present algorithm ALGD„ which, using the results of Lemma 3, obtains an LCS
C of length p of input strings A and B in time O(pn + n log n).

The algorithm is based on-am efficient representation of the L matrix. Since L is
nondecreasing in both arguments, we may draw contours in its matrix as shown in the
following example:

B

c bac bd ob

The entire matrix is specified by its contours. The contours are described by sets of
minimal k-candidates. The contour between L-values of k - 1 and k is defined by the set
of minimal k-candidates whose elements are positioned at the convex corners of the
contour.. - r- • .-- •

To keep track of the minimal k-candidates, we use the matrix D. DR, i] is the j-value
of the unique minimal k-candidate having i-value of i or 0 if there is no such minimal k-
candidate. Thus D[k, i] describes the contours by giving the number of the first column
of row i that is in region k (if that number is different from D[k, i - 1]). -

69

Algorithms for the Longest Common Subsequence Problem 	 667

lowcheck is the smallest i-value of a (k — 1)-candidate. FLAG has value lift there are
any k-candidates. •

NB [B] is the number of times symbol B occurs in string B. PB[O, 1], 	,
PB [8 ,NB[8]],is the ordered list, smallest first, of positions in B in which symbol 8 occurs.

If t, the size of the symbol alphabet, is not large compared to n, then we may index an
array by the bit representation of a symbol. Otherwise, if t mr• n, then we construct a
balanced binary search tree which provides a mapping from symbols that appear in string
B to the integers 1 through s (there are s different symbols that appear in B). Whenever
string element a., appears as an array subscript (as in Mad), it should be understood that
we are indexing N by the integer s, which has been obtained (during initialization for
ALGD) from traversing the search tree just described. If a, does not appear in B, then
the integers, is zero. An equivalent assumption is followed for subscript b i in step 1.
ALGD(k, n, A, B, C, p)

1. N B(8] 4- 0 for 8 - 1, 	,
P/3[8, 0] 4- 0 for = 1, 	, s
PB[0, 0] 4- 0; .P/3[0, 1] 4- 0
for j •-• 1 step 1 until n do
begin 	 • - -

N AU NB[b,] + 1
NB(81]] 4- j

end
2. D(0, t(]4- 0for i- 0,..., m

Jewelled(.- 0
3. for k 4- 1 step 1 do

begin
4. N(8] 4- N B[6] for 8 = 1, 	,

N[0] 4- 1
FLAG 4- 0
low 4- D(k 1, lowcheck] —
high 4-n + 1

5. foe i lowcheck + 1 step 1 sOtil m do
begin

6. wide PBta,, 	- 1] > low do Ma t] •- Ma t] - 1
7. tf high > 	Ma t]] > low

then begin
high 	Mai]]
D(k, i] 	high
If FLAG w 0 then {lowcheck i; FLAG 4- 1}

end 	 - -
else D(k, i] 4- 0

8. If D[k - 1, i] > 0 then low 4- D[k - 1, i] 	 .-
11e41 loop of step 5

9. ff FLAG •. 0 then go to step 10
end loop of step 3

10. p k - 1
k 4- p
for i 4- + 1 Nap - 1 sad 0 do.

D[ic, i] > 0 does
begin

al

k 4- k - 1
end

loop of step 3 evaluates the set of minimal k-candidates for k = 1, 2, The loop
of step 5 evaluates the set of minimal k-candidates, smallest i-value first, and fills in the
D array accordingly (in the example given previously this is left-to-right) while scanning
the chains of occurrences of a given character in B with largest j- -value first (right-to-left).
For each i, i can be the i-value of a minimal k-candidate if there is a j satisfying the
constraints of Lemma 3. This is tested by determining the minimum j-value of symbol a,
that is greater than low. If that value is less than high, then (i, j) is a minimal k- candidate.

*". 	 ye n 	 .o. ,r 	 -

70

Algorithms for the Longest Common Subsequence Problem 	 669

Steps 7 and 8 are done in constant time. Total time is 0(pm). Step 9 is done in
constant time. Total time is 0(p). Step 10 is done in time 0(m). Total execution time is
thus as stated above. ❑ ' - • -• • "u-! 1 .'

Note that for p a 0(log 	ALGD requires time 0(pn). 	" 	ss'`",
/ 	 • 	 •

pe log n Algorithm

We now consider a special case that often occurs in applications such as determining
the discrepancies between two files, one of which was obtained by making minor
alterations to the other (and we wish to recover those alterations). We assume that
there is an LCS of length at least m — e (for some given e). "

If C is an LCS of A and B, there will be at most e elements of A that do not appear in
C. The position of each such element will be called a skipped position. Thus there are at
most e skipped positions. We define e to be e + 1.

If (i, j) is a minimal k-candidate that can be an element in an LCS (that is, a, = bi is the
kth element of an LCS), then ksisk+e (otherwise more than e positions in A would
be skipped). We shall call such cindidatei feasible k-candidates. Let h = i — k. Then 0 s
h s e and h is the number of positions in A that have been skipped thus far (through
aft .,4)• By Lemma 2, there is at most one feasible k-candidate with i-value of i.

Let the feasible k-candidate pairs (i-value and j-value) be held in arrays F and G, e.g.
(h + k, j) would be described by F[h] h + k, G[h] = j. If there is no feasible k-
candidate with i-value h + k, let F[h] = Fth — 1], G[h] = G[h — 1], and define F[-1]
= 0, G[-1] = n + I By this construction and by Lemma 2, F is a nondecreasing
sequence and G is a nonincreasing sequence.

Define NEXTB(8, j) to be the minimum r > j such that-b,. O. If there is no such r,

then NEXTB(0, j) is defined to be n + 1.
LEMMA 6. If (i, j) is a feasible k-candidate, then j = NEXTB(a„ G[h]), where h = i —

k and where G[h] is the value associated with the set of feasible (k — 1)-candidates.
PROOF. Let (i, j) be a feasible k-candidate. By definition of k-candidate, there must

exist i' < i and j' < j such that (i', j') is a feasible (k — 1)-candidate. By Lemma
3, j is the minimum (over possible j') of NEXTB(a„ j'). But f < j' implies that
NEXTB(e, s NEXTB(0, j'). Therefore j = NEXTB(a„ min possible j'). Since j-
values of minimal k-candidates decrease as their i-values increase, the minimum
possible j' is the j-value of the feasible (k — 1)-candidate whose i-value is as large as
possible but less than i = h + k, i.e. not more than h + (k — 1). G[h] is precisely that
j-value. So we conclude that j = NEXTB(a„ G[h]). ❑

In order to be able to recover an LCS, we shall keep track (for each feasible k-
candidate) of which h positions in A have been skipped. A straightforward method,
keeping values of F[h] for all ii and k, requires space of 0(pc). We shall use a data
structure that requires only 0(e2 •+ n) space without changing the order of magnitude of
time requirements.

Let there be an array KEEP whose elements are triples such that

KEEP[r] = (aa[x], nskip[x], pt [x]).

P is an array of size e such that, after the set of feasible k-candidates has been
determined, x = P[h] will be the index of the element of KEEP that has information
enabling recovery of a common subsequence that has a nk1 = b ah] as its kth element. F[h]
= k, and thus precisely h of the elements a„ , a m] will not appear in the common
subsequence. To recover the common subsequence, it is sufficient to recover these h
skipped positions. If x = 0, then no positions were skipped, and if x < 0, then there is no
common subsequence to be recovered. --

The method of recovery is as follows: 	 • 	_ -
If x is zero, there are no more skipped positions to be recovered. ., 	, 	.

• Otherwise, aa[x] is the largest index of a skipped position in string A. nskip[x] is the
number of consecutive positions ending in aa[x], all of which are skipped positions.

• " 	 •

71

670 - 	 Im7ve... 	 r:Nhary%,‘D 	zW4121. S. aMSCRIEIG

If all of the skipped A-positions have been recovered, then pt[x] is zero.
Otherwise, pt[x] is the index of KEEP that has information enabling recovery of the

skipped A-positions having indices smaller than aa[x] —,,nskip[x] + 1.
Example. If positions 2, 5, 6, 7, 9, 10 in string A correspond to a common

subsequence of length 6 (of A i, 10), then h = 4 and KEEP[P[4]] will enable recovery of
positions 1, 3, 4, 8: aa[P[4]] = 8, nskip[P[4]] = 1, pt[P[4]] = y lanother index of
KEEP). aa[y] = 4, nskip[y] = 2 (positions 3 and 4 have been skipped), pt[y] =
z. aa[z] = 1, nskip[z] .• pt[z] = 0 (all skipped positions have been recovered).

Reference counts are kept for each element of KEEP..Spaces in the KEEP array are
maintained by garbage: collection functions GETSPACE which provides an available
space and PUTSPACE which places a newly available space (i.e. one whose reference
count drops to zero) on the garbage linked list. See -110] for implementation techniques.

We now present ALGE, which uses Lemma 6 in order to solve the LCS problem in
time Co(pe log rs):
ALOE (m, n, A, B, C, p,

1. F[h], G[h] 	0 for h 	0, 	, e

	

P[0] 	0; P[h] 	—1 for h = 1,..., c
2. for k .4— 1 step 1 while there were candidates found in the last pass do

begin
3. imar 0

	

jmin 	+ 1
4. for h 	0 step 1 lentil a do

n
5. h + k

j NEXTB(a„ cah])
If j x /min

6. then begin
F[h].— &nay

jrnin
NEWP[h].— —I

end
7. else begin

nskip 	(i — 1) — F[h]
If nskip 44, 0
then NEWP[h] ,4— P[h]
else begin

NEWP[h] GETSPACE
KEEP[NEWP[li]l 	— 1, nskip, P[h — nskip])

end
8. ifftiLT •-• i

jnsin 	j

nit]
G[h].— j

end
9. end loop of step 4

10. If no k-candidates were found then goto sTep 13

	

for i 	0 step 1 until a do
begin

11. REMOVE(P[i])
P[i] NEWP[i]

ead loop of step 10
12. tad loop of step 2
13. x 4.- min h such that P[h] x 0, —1 if none such

p 44— k — 1
If x < 0 OR p < m — e then {print "NO"; foto step 15}

14. RECOVER
15. END of ALGE

SUBROUTINE RECOVER

1. SKIP[x + 1] 0
lartmasch Fix]
' r x-]

Algorithms fur the Longest Common Subsequence Problem 	 671

2. while y # do
- begin

count 4— tukip[y]
position 4— au[y]

3. while count :> 0 do
begin

SKIP[x] 4— position

Jr 4— — 1
position 4— position — 1
count 4— Count — 1

end loop of step 3 .
r 4—AA

.. sad loop of step 2
4. z 4— 1

k 4- 1
foci 4— 1 step 1 as lasonotch do

i SKIP[z] then 1 	+1
vise begin

ea
k k + 1

5. END OF RECOVER

The loop of step 2 evaluates sets of feasible k-candidates for k = 1, 2, The loop
of step 4 evaluates whether there is a feasible k-candidate having precisely h skipped
positions, for h = 0, 1, , e, by using Lemma 6 to determine the j-value for a
particular i-value and then checking, by using Lemma 2, Rhether (i, j) is minimal. imax
is the maximum i-value of feasible k-candidates generated thus far (i.e. with i-values
Tess than the current value of i); jmin is the corresponding j-value (which is the
minimum j-value of feasible kraandidates generated thus far). If (i, j) is a-feasible k-
candidate, then it is stored in the 17 and G arrays and information will be stored in-P[h],
enabling recovery of any additional skipped positions that occur between i and F[h] as
well as the skipped positions occurring before F[h] ((F[h], G[h]) is a (k — 1)-candidate
that can generate (i, j)). The h skipped positions corresponding to (F[h], G[h]) are
recoverable by accessing KEEP[P[h]]. In general there may be more than one feasible .
k-candidate that will be generated by (F[h], G[h]). Thus we must not destroy P[h] until
all required references to KEEI[?[h]] are made. For this reason, new values for the P
array are stored in the NEWP_ array. When we no longer need the old values of P (after
the inner loop of steps 4-9), we can then replace them with the new values, being
careful to decrement reference counts of KEEP elements that were pointed to -by the
old P array.

Function REMOVE(x) decrements the reference count of KEEP[x] (unless x s 0, in
which case nothing is done), and, if KEEP[x] now has reference count zero, then a call
will be made to REMOVE(pt[x]) after KEEP[x] has been put on the garbage linked list
by using PUTSPACE.

Implementation of NEXTB

The following should be done before using ALOE:
1. Sort the symbols in A and then construct a balanced binary search tree of symbols that appear in string A .

Det.there be is such symbols (zr
2. fork 4-1 step 1 wadi sr de LASTIk]
3. fori 4— 1 step 1 wadi e de

begin
End out that b, fk

LAST[k]
LAST[k] 4— i
if j f 0 then NEXT(/' i • •
else FIRST[k] 4—i .

end loop of step 3

73

-

•

:tr.:611'1 -1,1rii4tVeaktaZ homin— 	;Vs. DAN EL C. linSCRBERG

4. start 4 — 1 	 • 	I
for k4-1 seep I Ends: do . • .

- begin 	-
. 	Place the positions j of B auch that b, = 8, into N[start] through N(start + tut — 1] where It occurs nn

times in string B. The first position in B at which ek 'occurs is at FIRST[k]. If Ok clews at *anion j, then
the next occurrence of Okimil will be at position NEXT[) unless LAST[k] j. in which case there are no
more occurrences of e m B.
S[k] 4— start
start •— start + nn

end

We can find out that a f-,P• Ok in time O(log s). N[S[11:Sik + 1] — 1] holds the block
of positions/ with bj 8k- This block of cells can-be searched by using binary search of
a linearly ordered array [11, Sec. 6.2.1]. NEXT(a,, j) can thus be executed in - time
O(log n). - - — •• • -

Ifs is very small, then the following alternate way of computing NEXTB(0,j) may be
preferred: Instead of constructing a compressed array in step 4, construct a NEXTB
matrix while in step 3. For each-i, set NEXTB[k, t] forj s t < i. This wtll result in
time and space complexity (of the setup) of 0(sn). The function NEXTB(8, j) can be
evaluated by determining that e = Bt in time O(log S) and by doing a simple table look-
up. •

ALGE retains k-candidates, as did ALGD, except for those candidates that cannot
lead to a sufficiently long common subsequence because too many A-positions have
already been skipped. The (A: + 1)-candidates that can be generated by the dropped k-

candidates also skip too many A-positions. - - - - • • • •
LEMMA 7. ALGE retains all feasible k-candidates. 	 '
PROOF. By induction on k. It is trivially true for k = 0 (the F and G 'arrays are

initialized to zero in step 1). Assume that the set of feasible (k — 1)-candidates has been
evaluated and stolid - in arrays F and G. ALGE generates the sat of feasible k-
candidates in order of increasing i-value. F[h] is to hold i =h + k if i is an i-value of a
feasible k-candidate; otherwise F[h] is to hold the maximum i' < i such Mat i' is a
feasible k-candidate. G[h] is.to hold the corresponding j-value. imax and jmis hold the
last-generated feasible k-candidate, which, by Lemma 2, has the maximum &value and
minimum j-value generated thus far. Step 3 initializes them to correctly indicate that no
k-candidates have yet been generated. Step 5 evaluates the j-value fora given potential
k-candidate by using Lemma 6. l[fj a jmin then, even though the necessary condition for
feasibility has been met, (i, j) is not minimal since it would be ruled out by (imar, jmin).
In this case step 6 sets F[h] and G[h] to imax and jmin. Ifj < jmin, then (i, j) is minimal
since it cannot be ruled out b:y any previously generated k-candidate (j < jffin) and it
cannot be ruled out by any future generated k-candidate (all future i' > i). In this case
step 8 sets F[h] and G1111 and also updates imax and jmin. ..0 r = : 7 -.-

THEOREM 3. ALGE correctly computes the LCS of strings A and B if the ICS is of
length at least m e.

PROOF. By . Lemma 7, ALGE correctly keeps minimal k-candidates. Thus, if there
is a common subsequence of length p a m — e, then there is a minimal p-candidate
which will be feasible. The data structure of ALGE keeps track, for each feasible k-_
candidate (i, j), of the h = i ,k positions in string A that have been skipped in the
common subsequence of length is of A„ and B". P[h] points to the element ol KEEP,
that contains the necessary information. P is updated in step 7 when a feuible k-
candidate" is generated. If any additional positions are skipped (between the k-candidate
(i, j) and the (k — 1)-candidate j') that generated (i, j)), then that information is
recorded in an element of KEEP as well as a pointer, enabling recovery of tie h —
nskip previously skipped A-positions (of (i', j')). Subroutine RECOVER recovers the
skipped positions of a feasible p-candidate by reversing the process in which they were
stored and then computes the L,CS by deleting the skipped positions from string 4. 0

THEOREM 4. For e s 0(nu2), ALGE requires space linear in n. -

74

Algorithms for the Longest Common Subsequence Problem 	 673

. PROOF. The KEEP array requires 0(e2) space: The common subsequence implied by
k-candidate (h + k, j) has h skipped A-positions, h s e, and thus can use at most h spaces
in the KEEP array. The total number of spaces referred to by all feasible k-candidates is
thus at most e(e + 1)12. Adding to that the (exactly) e references to get the set of feasible
(k + 1)-candidates gives a total of no more than (e 2 + e)/2. Each element of array KEEP
requires four words (aa, nskip„ pt, and a reference counter). ,-.•

The arrays and space that they use are as follows: F[e], G[e], C[p), P[e], NEWP[e],
KEEP[2e 2 + 	F7RST[ss], NEXT[n], LAST[ss), SKIP[e), S[ss], N[n]. 	-

The NEXTB function requires at most 2n locations to store the various balanced
binary search trees. 	-

Thus a total of at most 2€3 + 7e + 4n + p + 3ss locations is used. For e s 0(nm), space
requirements are linear in n. ❑

THEOREM 5. ALGE requires tune O(pe log n).
- PROOF. Preprocessing for the NEXTB function requires time 0(n log m). Step 1

takes time 0(e). Step 2 executes steps 3-12 p times. Step 3 takes constant time for a
. total time of 0(p). Step 4 executes steps 5-9 at most e times. Step 5 takes time 0(log n)
for a total time of 0(pe log n). Steps 6-9 take constant time for a total time of 0(pe).
Steps 10-12, excluding time spent in function REMOVE, take time 0(e) for a total time
of 0(pe). -

Subroutine RECOVER recovers at most e skipped positions (taking time 0(e)) and
then deletes them from string A (taking time 0(m)) for a tot '11 time of 0(m).

The number of references (to array KEEP) removed is at most the number of
references inserted. There are at most pe references inserted (one per execution of step
7), and the amount of time (per reference removal) spent in function REMOVE is
constant. Therefore the total time spent in function REMOVE is O(pe).

Therefore the total time of execution of ALGE is 0(pelog n). ❑

It is noted that step 5, requiring 0(log n) time, is the bottleneck, causing total time
requirements of O(pe log n). P._yan Emde Boas's recent algorithm for priority queues
[19] appears capable of solving the position-finding problem in time 0 (log log n). If so, _
this would reduce the time bound of this problem to O(pe log log n). 	-

ALGE assumes that e is known. If e is not known, then set e 4"- 2 and proceed
through the algorithm. If that value of e is insufficient (i.e. there is no common
subsequence of length m - e), then doubts the guess for e and continue iteratively until
a common subsequence is found. .

Total time spent will be (letting k be the multiplicative coefficient of the time
requirement)

_ --
2pk log n + 4pk log n + • + epk log n,

which is less than 2pek log n. Since e < 2(m + 1 - p), we can recover an LCS in time
O(p(m + 1 - p)log n). 	' -

Other Algorithms 	"

The only known algorithm for the LCS problem with worst-case behavior less than
quadratic is due to Paterson [14]. The algorithm has complexity 0(n 2log log n/log n). It
uses a "Four Russians" approach (see [3] or [1, pp. 244-247]). Essentially, instead of
matrix L (where j] is the length of an LCS of A u and B u) being calculated one

-element at a time (see [7]), the matrix is broken up into boxes of some appropriate size
k. The high sides of a box (the 2k - 1 elements of L on the edges of the box with
largeit-indices) are computed from L-values known for boxes adjacent to it on the low
side and from the relevant symbols of A and B by using a look-up table which was
precomputed. .

The algorithm assumes a fixed alphabet size although modifications to the algorithm
may be able to get around that condition.

•

75

-

674 • 	 DANUIL S. 113RSCHBERG

There are 2k + 1 elements of L adjacent to a box on the low side. Two adjacent L-
elements can differby either zero or one. There are thus 2 2k possibilities in this respect.
The A- and B-values range over an alphabet of size s for each of 2k elements, yielding a
multiplicative factordS2k, and the totalmumber of boxes to be precomputed is therefore
22k11+1.8 $ 8) . Each sudk . box can be precomputed in time 0(k 2) for a total precomputing
time of 0(k 222k"*"2)).

There are (n/k)2 boxes to be looked up, each of which will require 0(k log k) time to
be read, for a total time of 0(nllog kik), 	 -

The total execution time will therefore -be 0(k 222-ku+'0k I) + n/log k/k). If we let k = log
n/2(1 + log s), we see that the total execution time will be 0(n 2log log n/log n).

Restrictions on the LCS Problem

Szymanski [17] shows that if we consider the LCS problem with the restriction that no
symbol appears more than once iaithin either input string, then this problem can be
solved in time 0(n log n).

In addition if one of the input strings is the string of integers 1 — n , this problem is
equivalent to finding the longest ascending subsequence in a string of distinct integers. If
we assume that a comparison between integers can be done in unit time, this problem can
be solved in time 0(s log log n) by using the techniques of van Emde Boas [.1 8].

Acallowlistaismyr. I -would like to thank the (anonymous) referees for their many
helpful suggestions which have led to a material improvement in the readability of this
paper. •

REFERENCES

(Note. References [4-4, 8, 9, 13, 15, 20, 22, 23] are not cited in the text.)

1. Am, A.V., Homier, J.E., AND Utt..teAte, J.D. The Design and Analysis of Computer Algorithms.
Addison-Wesley, Reding, Mass.. 1974..

2. Aso, A.V.,,t,Hts.screeic, 	ULLMAN, J.D. Bounds on the complexity of the longest common _
subsequence problem. J. ACM 23,1 (Jan. 1976), 1-12. 	 --

3. AstAzAaov, V.L., loot, E.A., Mmma, M.A., AND FULADZEV, I.A. On economic construction of ..
the transitive closure of a directed graph. Dokl. Akad. Nauk SSSR 194 (1970), -487-488 (in Russian).
Eaglish trawl. in Sone: Math. Dok1.11 „ 5 (1970), 1209-1210.

4. CHVATAL, V., KEN/MEI, D.A., AND Knrrn, D.E. Selected combinatorial research problems. STAN-
CS-72-292, Stanford U., Stanford, Calif., 1972, p. 26.

5. CAVATAL, V., AND Skiesorx, D. Longest common subsequences of two random sequences. STAN-CS-
75-477, Stanford U.. Stanford, Calif., Ian. 1975.

6. HTLSCHBERG, D.S. On finding maximal common subsequences. 111-156, Comptr. Sci. Lab., Princeton
U., Princeton, NJ., Aug. 1974. - 	• 	- 	• 	-

7. HIRSCHBERG, D.S. A linear space algorithm for computing maximal common subsequences. Comm
ACM 18, 6 (June 1975), 341-343.

8. HDISCHBERG, D.S. The longest common subsequence problem. Ph.D. Th., Princeton U., Princeton. .;
NJ., Aug. 1975.

9. Huhu, J.W., Aso Svrwesr4, T.G. A - fast algorithm for computing longest commonsubseq uences•
Comm. ACM 20, 5 (May 1977), 350-533;

10. Kte.trni, D.E. The Art of Computer .Programming, Vol. 1: Fundamental Algorithms. Addison-WesleY; t
•' Reading, Mass., sec. ed., 1973. - 	• - 	 • .11 e

11. Kyerni, D. E. The Art of Computer hogramming, Vol. 3: Sorting and Seib:chin. Addison-Wesley.,
ItTading; Mass., 1973.

T .1 12. Lowardecz, R., AND WAGNER, R.A. An extension of the string-to-string correction problem. J. ACM

22, 2 (April 1975), 177-183.
13. Nest:muck)+, S.B., AND WUNSCH, C.1D. A general method applicable to the search for similarities
.- the amino acid sequence of two proteins. J. Mol. Biology 48 (1970). 443-453.

14. PArsasoN, M.S. Unpublished manuscript. U. of Warwick, Coventry, England, 1974.
15. SANXOFF, D. Matching sequences under deletion/insertion constraints. Prot. Nat. Acad. Sci. USA 69,1„.:

(Jan. 1974), 4-6.
16. Seusas, P.H. An algorithm for the distance Letween two finite sequences. J. Combinatorial Theory , .

Ser. A,16 (1974), 253-258. "' y

• - .

76

• 	- "" 7 	Ceouusan Sub. rec ute Prc 	- 	 -

caar of be r•au 	.• • T n 	 Cooreptr. S.
, 	. /an. 1975

: `.. log n. 	 n 	 k 74-

r• 	• U : 	• NI f.
•••• 	'e: 	t. 	 z.t 	if ti A'

	

itnri 	,

•rope

.1 The --

A 	34,und,

A 	 utir
U. c: 	":;)o:s

f, •

Erman

77

Programming
	

G. Manacher, S.L. Graham
Techniques
	

Editors

A Fast Algorithm for
Computing Longest
Common
Subsequences
James W. Hunt
Stanford University
Thomas G. Szymanski
Princeton University

Previously published algorithms for finding the
longest common subsequence of two sequences of length
a have had a best-case running time of 0(n 2). An
algorithm for this problem is presented which has a
running time of 0((i + n) log 13), where r is the total
number of ordered pairs of positions at which the two
sequences match. Thus in the worst case the algorithm
has a running time of 0(n 2 log n). However, for those
applications where most positions of one sequence
match relatively few positions in the other sequence,
a running time of 0(n log n) can be expected.

Key Words and Phrases: Longest common
subsequence, efficient algorithms

CR Categories: 3.73, 3.63, 5.25

Copyright C 1977, Association for Computing Machinery. Inc-
General permission to republish, but not for profit, all or pail of
this material is granted provided that ACM's copyright notice is
given and that reference is made to the publication, to its date of
issue, and to the fact that reprinting privileges were granted by per-
mission of the Association for Computing Machinery.

The work of the first author was partially supported by Bell
Laboratories' Cooperative Research Fellowship Program. The work
of the second author was partially supported by NSF Grans
GI-35570 and DCR74-21939.

Author's addresses: J.W. Hunt, Department of Electrical
Engineering, Stanford University, Stanford CA 94305; T.G.
Szymanski. Dept. of Electrical Engineering and Computer Science.
Princeton University, ,'Brackett Hall, Engineering Quadrang le '
Princeton, Ni 98540.

Communications 	 May 1977
of 	 Volume 20
the ACM 	 Number 3

78

Many algorithms [1, 4, 6] for finding the longest
on subsequence of two sequences of length n

ve appeared in the literature. These algorithms all
ve a worst-case (as well as a best-case) running time
D(n2).'
A more relevant parameter for this problem is r, the

number of matching pairs of positions within the
uences in question. We shall present an 0((r+n)
n) algorithm for the longest common subsequence

blew. In the worst case this is of course 0(n" log n).
ver, for a large number of applications, we can

r to be close to n. In these situations our al-
Ihm will exhibit an 0(n log n) behavior. Typical of
h applications are the following:

) Finding the. longest ascending subsequence of a
permutation of the integers from 1 to n [3].

) Finding a maximum cardinality linearly ordered
subset of some finite collection of vectors in 2-space
[7].

) Finding the edit distance between two files in
which the individual lines of the files are con-
sidered to be atomic. The longest common subse-
quence of these files, considered as sequences,
represents that common "core" which does not
have to be changed if we desire to edit one file
into the other.

in the general case our algorithm will not take
longer than the algorithms of [1, 4, 6], whereas in

y common applications, our algorithm will per-
substantially better.

Let A be a finite sequence of elements chosen from
e alphabet. We denote the length of A by 1 A I-

] is the ith element of A and A[ij] denotes the se-
A[i], A[i-1- 1], • • , A[j]..

If U and V are finite sequences, then U is said to be a
equence of V if there exists a monotonically in-

g sequence of integers rl , rs , • • , r1u1 such that
V[ri] for 1 < i < I U I. U is a common subse-

e of A and B if U is a subsequence of both A and
longest common subsequence is a common subse-

of greatest possible length.
Throughout this paper A and B will be used to

the sequences in question. For ease of presents-
we shall assume both sequences have the same

which will be denoted by n. The number of
is in the set 1(i, j) such that A [i] = will

denoted by r.

y Results

1 key data structure needed by our algorithm is
array of "threshhold values" TiA defined by Ti.k

smallest j such that A[1:i] and B[1 j] contain a
on subsequence of length k. For example, given

A abcbdda, B badbabd we have Tka

I, T5,1 or 3, Ts ,' 	6, 2"5.4 st 7, Tk , k N. undefined.
Each 2",,k may thus be considered as a pointer

which tells us how much of the B sequence is needed to
produce a common subsequence of length k with the
first i elements of A.

Note that each row of the T array is strictly in-
creasing; that Is,

LEMMA 1. If T,, 1 , Ti . : , • , T,,, are defined, then
Ti,1 < T.,2 < • • • <

PROOF. Consider the common subsequence of
length k contained in A[1:i] and B[1:T,, k]. Clearly
B[T,, k] is the last member of this common subsequence
or else T,,k would not be minimal. Therefore A [1 :i] and
B[1:T,, k — 1] contain a common subsequence of
length k — 1, that is, < T,4 — 1. ❑

This linear ordering is of paramount importance in
the efficient implementation of our algorithm.

Suppose that we have computed T i ,k for all values
of k and wish to compute 2" 1.4.1.k for all values of k.
We first show Ts+1.k must lie in a specific range of values.

LEMMA 2. T.,1_1 < 7%.4.1,k < Ts.k.

PROOF. If A[11] and B[1:T,, k] have a common sub-
sequence of length k, then certainly 4[1:i-1-1] and
B[1:T,,k] do also. Thus Ti+1.k < t,k •

By definition, A [1 :i 1] and B[1:7",+1,k] have a
common subsequence of length k. Deleting the last
element from each of these sequences can remove at
most one element from this common subsequence.
thus A [1:i] and B[1:1-.4. 1 ,k— 1] have a common subse-
quence of length k — 1. Accordingly T,„k_1 < Ts.41,k — 1
and 	< Ti4.1.k • 	 ❑

The following rule suffices to compute T..4.1.k from
Ti A—, and T, A .

LEMMA 3.

smallest j such that A[i+1] = B[i]
and T,.k_ 1 < j < rid<

T i.k if no such j exists.

PROOF.
Case 1. No such j exists. By the minimally of

any common subsequence of the sequences
A[1:i-1- 1] and B[1:T.. 1 ,k] must have B[T.+1.k] as its
last element. Moreover, by Lemma 2 and the premise
of this case, B[T,.+. 1 ,,k] does not match A[14- 1]. There-
for the same common subsequence of length k is also
contained in A[1:i] and B[1:2-..4.1.k]. Thus T, k < THa.k
and by Lemma 2, T„k must equal T 1+1 ,1 .

Case 2. There exists a minimal j for which A[1+1]
= BUJ and < j < Ti.k . Certainly A[1 :1+ 1) and
B[1]] contain a common subsequence of length k,
namely the length k —1 common subsequence of

An unpublished result of Michael Paterson shows how to
construct an 0(nsiloa n) algorithm for the longest common sub-
sequence problem for sequences over a finite alphabet, and an
0((ns log log n)/log a) algorithm for sequences over an infinite
ordered alphabet. All results of this paper apply to the case of the
infinite ordered alphabet.

tin

Communications
	 May 1977

of
	

Volume 20
the ACM
	

Number 5

79

A[1:i] and B[T„s_s] with the pair A[i+1], BUJ "tacked"
onto the end. Thus Ti+ijg 5 j.

Assume temporarily that T i.I.14 < j. Since Lemma
2 guarantees that T, A_.1 < Ti+iji we can conclude that
the last element of the length k common subsequence
of A[1:1+1] and B[1:T.41 .kl does not match A[i+1].
Thus AL 1:i] and B[1:Ti4.1,s] also contain a common
subsequence of length k which implies that 7• ,.s
Ti+Lig . By Lemma 2 then, Tiji 	. However,
by the above assumption and the premise of this case,
Ti+LA < j 5 	implying that T $ 	T 	• This
contradiction leads us to conclude that the original
assumption of T *41 ek < j is incorrect and hence we
must have T.4.1,k = f.

We can now present an O(nt log n) algorithm for
determining the length of the longest common subse-
quence. Subsequent refinements will enable us to not
only improve the running time to 0((r + n) log n) but
also recover the actual longest common subsequence.

Algorithm 1

element array A[1 n], B[1.4
integer array THRESH[0:n];
integer i, j, k;

THRESH10] := 0;
for : 1 Mep 1 until n do

THRETHIn := n + 1;
fort:— 1 step 1 undl n do

for : s step — 1 until 1 do
ff 	= DU] thee

belga
find k such that THRESHIk —1] < j < THRESH[k];
THRESH[k] := j;

aid;
print largest k such that THRESH[k] n + 1;

The correctness of the algorithm follows from
consideration of the invariant relation "THRESH[k]

T s—i.k for all k" which holds at the start of each
iteration on i, and the invariant relation "THRESH[k]

T,,k for all k" which holds at the end of each itera-
tion on i.

Since the THRESH array is monotonically in-
creasing (Lemma 1) we can utilize a binary search to
implement the "find" operation in time O(Iog n).
Thus Algorithm 1 may be implemented to run in
O(nt log n) time.

Finally, notice that the direction of the loop on j
is crucial. Suppose that for some value of i, A [1] matches
several different B elements in a given "threshold"
interval, say BUI L • • • , BU.] with THRESH[k--1] =

< jt < • • • < j„, < T THRESH[k].
From Lemma 3, we see that T,,k = ji and that
THRESH[k] should be updated to this value. Since
the inner loop of Algorithm 1 considers values, of j in
decreasing order, each of the values j,, , • • • , jt
will cause THRESH[k] to take on successively smaller
values until it is set equal to the desired value of j i .
If instead the loop on j ran upwards from 1 to n, then
not only would THRESH[k] be set to js , but
THRESH[k+ 11 would be set to j s , THRES.H[k+2]

would be set to js and so forth. Since these latter as-
signments are unwarranted, we see that the loop on j
must run downwards.

The Algorithm

A small amount of preprocessing will vastly im-
prove the performance of Algorithm 1. The main
source of inefficiency in this algorithm is the inner
loop on j in which we repeatedly search for elements
of the B sequence which match A[i]. Linked list te:h-
niques obviate the need for this search.

For each position i we need a list of corresponding
j positions such that A[i] B[j]. These lists must be
kept in decreasing order in j. All positions of the A
sequence which contain the same element may be
set up to use the same physical list of matching "s;
for the sequences A = abcbdda, B = badbabd the de-
sired lists are
MATCHLIST[1] = (5, 2)
MATCHLIST[2] = (6, 4, 1)
MATCHLIST[3] ()
MATCHLIST[4] = MATCHLIST[2]
MATCHLIST[5] = (7, 3)
MATCHLIST[6] = MATCHL1ST[5]
MATCHLIST[7] = MATCHLIST[1].

We can now display ous final algorithm.
Algorithm 2

element array Allgt], B[1 n];
integer array THRESH[0:n1;
list array MATCHLIST[1:n1;
pointer array LINKI1 Al;
painter PTR;
comment Step 1: build linked lists;
for i : 1 step 1 Daft) n do

set MATCHLIST[i] := (fi , j 2 , • ,1,) such that
> > • • • > j, and A[i] = BIM for 1 q p;

comment Step 2: initialize the THRESH array;
THRESH[0] := 0;
for i : 1 step 1 oath n do

THRESH[i] n + 1;
LINK[0] := null;
consent Step 3: compute successive THRESH values;
for : 1 step 1 Dahl n do

for j on MATCHLISTIii do
begin

find k such that THRESH[k-1] < j < THRESH[k];
if) < THRESH[k] then

begin
THRESHR1 j;
LINK[k] 	new/node (I, j, LINK[k —11);

mid;
end;

comment Step 4: recover longest common subsequence in reverse
order;

k :- largest k such that THRESH[k] rE it + 1;
PTR := LINIK1k1;
while PTR sE null do

begin
print (1, j) pair pointed to by PTR;
advance PTR;

end;

352
	

Cammunications
	

May 1977
of
	

Volume 20
80 	the ACM
	

Number 5

The subroutine newnode invoked in step 3 is a
subroutine which creates a list node whose fields con-
tain the values of the arguments to newnode. These
arguments are, respectively, an index of a position in
the A sequence, an index of a position in the B se-
quence, and a pointer to some other list node. The
value returned by newnode is a pointer to the list
node just created.

THEOREM 1. Algorithm 2 finds and prints a longest
common subsequence of the sequences A and Bin time
0((r n) log n) and space 0(r + n).

PROOF. Step 1 can be implemented by sorting each
sequence while keeping track of each element's original
position. We may then merge the sorted sequences
creating the MATCHLISTs as we go. This step takes
a total of 0(n log n) time and 0(n) space.

Step 2 clearly takes 0(n) time.
The two outer loops of step 3 should be considered

as a single loop over all pairs (i, j) such that il[i] =
B[j] taken in order of decreasing j within increasing i.
In other words, the outer loops of step 3 induce ex-
actly r executions of the innermost statements of
step 3. Since these innermost statements involve one
binary search plus a few operations which require
constant time, we conclude that the time requirement
for step 3 is 0(n r log n).

In this step we also implement a simple back-
tracking device that will allow us to recover the longest
common subsequence. We record each (i, j) pair which
causes an element of the THRESH array to change
value. Thus whenever THRESH[k] is defined„LINK[k]
points to the head of a list of (i, j) pairs describing a
common subsequence of length k. Since at most one
list node is created per search, Step 3 will require the
allocation of at most 0(r) list nodes.

In step 4 we recover the actual longest common sub-
sequence. Clearly this takes at most 0(n) time. ❑

We note that certain input sequences such as
A = "aabaabaab ." and B = "ababab ." cause
Algorithm 2 to use 0(r) space even if list nodes are
reclaimed whenever they become inaccessible. See
[4] for an algorithm which never uses more than 0(n)
space nor less than 0(ns) time.

A Final Note

The key operations in the implementation of our
algorithm are the operations of inserting, deleting, and
testing membership of elements in a set where all ele-
ments are restricted to the first n integers. Peter van
Emde Boas has shown that each such operation can
be performed in 0(log log n) time [2]. His data stuc-
ture requires 0(n log log n) time for initialization.
Although the necessary algorithms are quite complex,
we can use them to present the following theoretical
result.

THWREM 2. (a) Algorithm 2 can be implemented
to have a running time of 0(r log log n it log it) over an
infinite alphabet. (b) Algorithm 2 can be implemented
to have a running time of 0((n r) log log it) over a
fixed finite alphabet. (c) The longest ascending subse-
quence of a permutation of the first n integers may be
found in 0(n log log n) time.

PROOF. The problem of part (c) is, of course,
equivalent to finding the longest common subse-
quence of the given permutation and the sequence
1, 2, • • • , rt. Al) three parts of the theorem use basically
the same algorithm although the implementation of
some of the steps varies slightly. We shall present a
common analysis.

In all three cases we require 0(n log log n) time to
initialize van Emde Boas's data structures. Step 1 en-
tails a sorting procedure to set up the MATCHLISTs.
For the infinite alphabet case, this sort can be done in
0(n log n) time. In the other two cases, we can use a
distribution sort to create the MATCHLISTs in 0(n)
time. Step 2 takes 0(n) time, step 3 takes 0(n r
log log n) time and step 4 takes 0(n) time. Finally,
for the permutation case note that each integer
appears exactly once in each sequence and thus we have
ran. 	 ❑

Acknowledgments. The authors are indebted to M.
Douglas Mcllroy who first suggested this problem to
us. Harold Stone suggested a variant of the problem
(described and solved in [5]) which led to the develop-
ment of the present algorithm. Alfred V. Aho s ad
Jeffrey D. Ullman provided us with several enlighten-
ing conversations including the particular example
given following Theorem 1 which shows that our al-
gorithm can require as much as 0(r) space. Peter van
Emde Boas made several helpful comments on an
early draft of this paper.

Received May 1975; revised January 1976

References
1. Chvatal, V., Kismet, D.A., and Knuth, D.E. Selected
combinatorial research problems. STAN-CS-72-292, Dep.
Comptr. Sci., Stanford U., Stanford, Calif., June 1972.
2. van Emde Boas, P. Preserving order in a forest in less than
logarithmic time. 16th Annual Symp. on Foundations Comptr.
Sci., Oct. 1975, pp. 75-84.
3. Fredman, M.L. On computing the length of longest increasing
subsequences. Dixrete Mathematics 11, 1 (Jan. 1975), 29-35.
4. Hirschberg, D.S. A linear space algorithm for computing
maximal common subsequences. Cavan. ACM 18, 6 (June 1975),
341-343.
5. Szymanski, T.G. A special case of the maximal common
subsequence problem. TR-170, Dep. Electrical Eng., Princeton U.,
Princeton, NJ., Jan. 1975.
6. Wagner, R.A. and Fischer, M.J. The string-to-string corrector
problem. ACM 21, 1 (Jan. 1975), 168-173.
7. Yao, A.C. and Yao, F.F. On computing the rank function For
a set of vectors. UlUCDCS-R-75-699, Dep. Comm:. Sci., U. of
Illinois at Urbana-Champaign, Urbana, M., Feb. 1975.

383

83.
Communications
of
the ACM

May 1977
Volume 20
Number 5

ARTICLES

File Comparison
Algorithms

s everal popular algorithms ex-
ist for comparing two files.
All of these actually look first

for matches rather than differences.
After the matching process has been
completed, the remainders of the
files that are not included in the
matches are then reported as differ-
ences, (See Figure 1, page 29.)

The algorithms differ greatly in
their conceptualization of the prob-
lem, however. In this article, I exam-
ine several algorithms for comparing
text files—specifically, source code
files—using a line as the basic unit of
comparison. The ideas and algo-
rithms I present here, however, can
be extended to other types of files
and other units of comparison as
well. I also present a new algorithm
with some interesting properties.

Evaluating The Algorithms
Any file comparison algorithm
should be evaluated according to sev-
eral criteria:

• Is it efficient? Time efficiency
(speed) and space efficiency (memo-
ry usage) are both practical consider-
ations. Usually they are related to the
lengths of the files being compared.
• Is it robust? No algorithm is flawless.
For any given file comparison algo-
rithm, it is always possible to concoct
devious situations in which its per-
formance appears less than perfect.
The algorithm should, however, be
able to produce reasonable differ-
ence reports for a variety of test
cases.
• Can it let differences go undetected?
No algorithm should allow a file! dif-
ference to go undetected.

Torn Steppe, P.O. Box 2887, Ann Ar-
bor, Ml 48106. Torn designs and devel-
ops software written exclusively in C.

by Tom Steppe

Determining which
_files are more equal

than others

• Can it let matches go undetected? If
an algorithm can overlook matching
lines, it will report these lines as dif-
ferences when they are not. If the
file comparikin is being performed
to produce a delta file, this usually is
not a major problem, even though
each undetected match does increase
the size of the delta file unnecessari-
ly. If the differences are to be in-
spected visually, however, a report
of false differences can be a serious
drawback.

Say, for example, that you do not
have a file comparison utility and so
you have to compare two files by
eye. This process is certainly tedious
and prone to error, especially if some
of the differences are subtle. If you
now use a file comparison utility that
is known to report false differences,
you have to inspect the output by eye
and decide which reported differ-
ences are true differences. The utili-
ty has not really done the job for you,
it has only made your "by eye" in-
spection a smaller job that is still
prone to error.
• Can it detect blocks of text that have
been moved? Typically, if a block of
text has been moved, it simply shows
up in the report of differences as a
large deletion of text at one location
and a large insertion of text at anoth-
er. Unfortunately, no differences
within the moved block are
highlighted.

When a file comparison is used to
create a delta file, the ability to detect

moved blocks of text is probably de-
sirable because it can lead to smaller
delta files. But, when a file compari-
son is performed so that the differ-
ences can be inspected visually, the
ability to detect moved blocks is not
always as handy as it might seem to
be. Trying to report the moved
blocks is often difficult and can lead
to complicated reports of the differ-
ences, especially when a large block
of text is moved, a piece of that block
is moved to another location, a piece
of that piece is moved to stil' another
location, and so on. Also, the differ-
ence report can sometimes be over-
burdened by uninteresting reports of
small blocks (one-line and two-line
blocks of text) being moved all over
the place.

Only one algorithm discussed here
can inherently detect moved blocks
of text. The other algorithms, howev-
er, can be extended to do so, as fol-
lows. After applying the algorithm,
replace each matching line in each
file with a line that is guaranteed
never to match. This leaves only the
differences, which could contain
moved blocks of text. Next, reapp'y
the algorithm to the transformed
files. Any match that is found in this
pass will represent a moved block of
text (see Figure 2, page 29). Continue
this process iteratively until no new
matches can be found. Of course, the
cost of this iterative behavior is long-
er execution time.

These criteria help to provide a
useful basis for surveying popular
file comparison algorithms.

Popular Algorithms
for Finding Matches

Scan Until Next Match
The "scan until next matching se-

82
28 	 Dr. Dobb's Journal, September 1937

First iteration:
	

Second iteration:
(Previous matches
are blanked out.)

	

file1 	file2

	

A 	A
B B

X
D Y
E

	

F 	F

C

filet 	fde2

A 	A
B BB
C 	C

- D
E F

Difference report:
4(#00001 $0# ##. # # # # ## # # # #### ## ## *file 1
• 2 B
	 changed to

• 2 BB
######00001 ######################file2

######00001######################file1
• 4 D

deleted
######00001 ######################file2

######00001######################file1
inserted

5 F
######00001 ######################file2

Figure 1: File comparison algorithms actually look first for line matches anc
then report fines that are not included in the matches as di fferences. The differ
ences are usually expressed as the changes, insertions, and deletions that can be
applied to one file to make it identical to the other.

Figure 2: Moved blocks of text can be found by applying a standard line-
matching algorithm to the files and then reapplying the algorithm iteratively tc
the remainders of both files.

quence" algorithm is probably the
oldest method of file comparison.
This algorithm starts at the tops of
both files and matches as many lines
as possible. When a difference is de-
tected, the next M lines are scanned
until at least N consecutive matching
lines are found. If a sequence of N or
more consecutive matching lines is
found, the process begins again after
the matching sequence. If such a se-
quence is not found, the process be-
gins again M lines further down in
the files. This process is repeated un-
til the ends of the files are reached.

The values of M and N can be ad-
justed to affect the algorithm's per-
formance. The value -of M is used' to
control efficiency by restricting the
number of lines that will be exam-
ined while searching for a sequence
of matching lines. When an improp-
er sequence of matching lines is dis-
covered, the algorithm can be reap-
plied using a new value for N that is
larger than the length of the improp-
er sequence. In this way, the algo-
rithm will overlook the undesirable
sequence because it contains fewer
than N matching lines, but as is al-
ways the case, the algorithm will also
overlook any legitimate matching se-
quences that contain fewer than N
lines (see Figure 3, page 30). Unfortu-
nately, these matching lines are then
reported as differences. All too often,
this algorithm produces bad reports
in common situations.

Although this algorithm is often
highly time efficient, requires mini-
mal memory, and frequently pro-
duces good difference reports, it does
not take long to become frustrated
with its shortcomings and inherent
problems and begin looking for a bet-
ter solution.

Longest Common Subsequence
Think of a file as representing a se-
quence of lines. A subsequence of
those lines is defined simply as any
sequence of lines that results from
removing zero or more lines from
the original sequence— for example,
the longest subsequence of any se-
quence of lines is the sequence itself,
with zero lines removed. Also, a se-
quence of zero lines would be a sub-
sequence of any sequence because it
could be created by removing all the
lines from any sequence.

The "longest common subse-

quence" approach to file comparison
takes the two files to be compared
and finds the longest sequence of
lines that is a subsequence of each of
the files' lines—the longest common
subsequence (see Figure 4, page 30).
The details of the algorithm are not
discussed here, but sources of such
discussions are included in the bibli-
ography. The Unix diff command is
based on this algorithm.

This algorithm provides a simple,
compact formalization of the file
comparison problem and produces
reasonable difference reports in a va•
riety of test cases. The reports are
quite acceptable whether the com-
parison is being used for visual in-
spection of the differences or for cre-
ating a delta file. In fact, among all
the algorithms discussed here, it is
probably safe to say that this one con-

83

A

B

C

A
B
C
E
F

\LK

N-4

Nei 	filet

FLE COMPARISONS
(continued from page 29)

sistently produces the best reports
when comparing files that do not in-
volve blocks of text that have been
moved.

Sometimes the quality of the re-
ports can be overshadowed by issues
of time and space efficiency. This is
not always true, but situations that
include a poor combination of large
files and limited computer resources
can lead to less than desirable per-
formance by this algorithm. A basic
implementation of the algorithm re-
quires linear space and quadratic
time. In some cases, the quadratic
time can prove to be unacceptable. In
summary, the "longest common sub-
sequence" algorithm produces excel-
lent reports, but it can be slow.

Extended Unique Line Matching
The "extended unique line match-
ing" algorithm is based on the idea
that a line that occurs once and only
once in each file must be the same
line. These pairs of "unique" lines
determine the initial set of matched

Figure 3: The "scan until next
matching sequence" algorithm often
produces bad reports in common situ ?

 &ions. When Is I... 3, the algorithm set-
tles for matches of three lines, never
realizing that a match of eight lines is
possible. When N-4, it discovers the
match of eight lines but does not de-
tect the remaining match of three lines
(A, B, C).

lines. (Imaginary lines at the tops and
the bottoms of the files are also add-
ed to the set of matched lines.) Then,
in each file, the lines adjacent to each
match are examined and, if identical,
are added to the set of matched lines.
This process is repeated until no new
matches can be found.

This algorithm has strong intuitive
appeal. It is efficient, being linear in
both time and space. Also, it is the
only popular algorithm that inher-
ently detects blocks of text that have
been moved (even if some differ-
ences exist within the blocks). Moved
blocks can be detected because the
search for pairs of unique lines is in
no way sequential and, therefore,
can result in matches that indicate
that a block of text has been moved.
Note that the algorithm can find a
moved block of text only if it contains
a unique line match within it.

A significant problem with this al-
gorithm is that it is prone to allowing
some matches to go undetected. This
occurs when matching lines are not
neatly flanked by either unique line
matches or the adjacent matches that
have grown outward from unique
line matches (see Figure 5, below).

This algorithm is fast and can fre-
quently detect moved blocks of text,
but a sacrifice is often made in the
quality of the difference report.
Probably its best application is in the
generation of delta files when speed
is the primary concern.

A New Algorithm
The 'recursive longest matching se-
quence" algorithm uses a simple yet
effective approach to the problem.

Figure 4: The "longest common se-
quence" algorithm finds the longest
(not necessarily consecutive) se-
quence of lines that is contained in
both files.

This method first scans both files
from beginning to end, looking for
the longest sequence of consecutive
matching lines. That sequence is
then thought of as dividing each of
the two files into an upper section
and a lower section. Then, the algo-
rithm proceeds by scanning both up-
per sections looking for the longest
sequence of consecutive matching
lines and, similarly, both lower sec-
tions for the same. These matching
sequences then divide their respec-
tive sections, and the process contin-
ues recursively until no more match-
es can be found.

This method of file comparison is
easy to understand and produces ac-
ceptable difference reports across a
spectrum of test cases. It uses linear
space but quadratic time. Because
time efficiency can be a problem in
some situations, a simple modifica-
tion of the algorithm is needec.. An
explanation of the modification re-
quires an understanding of the meth-
od used to locate the longest se-
quence of matching lines between
sections of two files.

First of all, once the longest se-
quence is known, it can be identified
by a pair of starting lines—one line
from each file that specifies where
the sequence begins in that file. So,
when searching for the longest se-
quence, candidate .pairs of starting
lines are examined successively (in
some intelligent order that starts at
the beginnings of both file sections),

and information is continually main-
tained about the length and location
of the longest sequence of matching
lines that has been discovered so far.

filer 	file2

A 	A

A 	A

A 	A

B B
B B
B B

Figure 5: The "extended unique line
matching" algorithm is prone to de-
tecting false di fferences. In this case,
no matches are found (because there
are no unique line matches) and all
lines are reported as differences.

84
30 	 Dr. Dobb's Journal, September 1987

No long-enough value:
	

Long-enough value-2:

file1
	

filet 	 file1 	 file2

IA 	A I
SG.

A 	A
B
	

B

A
	

A
B
	

B

C
	

C

A
	

A

2nd sequence

1st sequence

4th sequence

A
B

A
B

C

1st sequence

3rd sequence

3rd sequence

A 1 2nd sequence

A 4th sequence

Figure C: With the "recursive longest matching sequence" algorithm, the use

of a long-.:Hough value often finds exactly the same sequences of matching lines
although the discoveries may occur in a different order.

FLE COMPARISONS
(continued from page 30)

When the ends of the file sections are
reached, the longest sequence is
known and information about the se-
quence is reported.

The modification to this algorithm
allows the searching to stop if a se-
quence of N matching lines is found,
realizing that it might not be the lon-
gest sequence that would be discov-
ered if the searching were allowed to
continue to the ends of the sections.

This allows the searching to end pre-
maturely (before the longest se-
quence has been assured) and can
save considerable time. N is cal led
the "long-enough" value. The effects
of the long-enough value can be ex-
amined by choosing some test pairs
of files and comparing the behavior
of the algorithm when a long-
enough value is used and when one
is not used. Quite often, the use of a
reasonable long-enough value will
find exactly the same sequences of
matching lines (although the discov-
eries may occur in a different order),
thus producing an identical report of
the differences but with a significant
improvement in speed (see Figure 6,
page 32). In fact, the use of a reason-
able long-enough value allows this
algorithm to perform in essentially
linear time for typical rases, over-
coming the previous worry of time
efficiency.

The long-enough value is a param-
eter that you can specify. To deter-
mine a good value for your purposes,
first guess at the length of the longest

Delta Files and User Reports

A file comparison utility is a versatile
tool for a range of situations. It is use-
ful to partition these situations into
two distinct cases.

In the most common case, a file
comparison is performed so that the
differences between two versions of
a text file can be inspected visually.
The differences are usually ex-
pressed as the changes, insertions,
and deletions that can be applied to
one file to make it identical to the
other file. In this case, the primary
job of the comparison is to produce a
concise and readable report of the
differences.

In the course of editing, a file com-
parison can be used in this way to
highlight the differences between a
previous version of a file and the cur-
rent version. Valid modifications can
be verified, and spurious edits can be
detected. As another example, if a
new version of a program is pro-
duced, a partial test of its integrity
could include a file comparison of its
output with the output from a previ-
ous version of the program that is
known to be correct. If the two out-

puts compare favorably, the new
program passes this integrity test. If
they do not compare favorably, an-
other :file comparison can be used in
the debugging process to highlight
the changes between a version of a
source code file that is known to
work and the version that does not
work.

In the second case, a file compari-
son is performed to generate a delta
file—a file that contains a report of
the differences between the two
files. If the file comparison is thought
of as comparing an old file with a
new file, a backward delta file is de-
signed so that it contains all the infor-
mation necessary to recreate the old
file, given the new file. A forward
delta file is designed to be able to re-
create the new file, given the old file.
In either case, one of the original files
can be eliminated without loss of in-
formation. If the delta file is smaller
than the file it allows to be eliminat-
ed, this will result in a savings of disk
space. The primary job of a file com-
parison in this case is to produce a
compact delta file.

This use of a file comparison utility
is particularly common in version
control systems that maintain multi-
ple historical versions of source code
files. Only the current version of a
source code file is saved, whereas a
backward delta file is saved for each
historical version. Any historical ver-
sion can be recreated by applying
the appropriate delta files to the cur-
rent version of the file. The savings
in disk space can be tremendous. (Al-
ternatively, some version control sys-
tems save the first version of the file
and the subsequent forward delta
files.)

This usage is also common in tele-
communications applications where
a file at one or more remote sites has
to be updated from a host. A forward
delta file is created on the host by
comparing the new file with the old
file (a copy of the file that exists at the
remote site). If the delta file is small, it
is often more efficient to transmit the
forward delta file and apply it to the
old file than it is to transmit the new
file in its entirety.

32
	 85 	 Dr. Dobb's Journal, September 1987

can easily be created by processing
each line in the file, calculating its
hash code value, and adding its line
number to the proper linked list.
Now, while searching for the longest
sequence of :matching lines by exam-
ining pairs of starting line numbers,
the number' of candidate pairs can be
greatly reduced. For any given line
in one file, only those lines in the
other file that have the same hash
code value (as can be easily deter-
mined from the file's hash code ta-
ble) need to be considered.

A basic C implementation of the
"recursive longest matching se-
quence" algorithm is shown in List-
ing One, page 54. Its simplicity, com-
bined with a long-enough value
modification and some clever use of
hash codes, makes it a viable solution
to the file comparison problem. It is
suitable for' both delta creation and
visual inspection purposes.

Availability
All the source code for articles in this
issue is available on a single disk. To
order, send $14.95 to Dr. Dobb's Jour-
nal, 501 Galveston Dr., Redwood City,
CA 94063, or call (415) 366-3600, ext.

216. Please specify issue number and
format (MS-DOS, Macintosh, Kaypro).

You can also purchase a full-fea-
tured executable version of this algo-
rithm from Stepping Stone Software,
P.O. Box 2887, Ann Arbor, MI 48106

for $30. The available format is MS-
DOS 5V'.-inch DSDD.

Bibliography
Heckel, Paul. "A Technique for Isolat-
ing Differences Between Files." Com-
munications of the ACM, vol. 21, no. 4

(April 1978): 264-268.
Hirschberg, D. S. "A Linear Space Al-
gorithm for Computing Maximal
Common Subsequences." Communi-
cations of the ACM, vol. 18, no. 6 (June
1975): 341-343.
Wagner, Robert A.; and Fischer, Mi-
chael J. "The String-to-String Correc-
tion Problem.' Journal of the Associa-
tion for Computing Machinery, vol.
21, no. 1 (January 1974): 168-173.

DDJ

(Listing begins on page 54.)

Vote for your favorite feature/article.
Circle Reader Service No. 2.

FiLE COMPARISONS
(continued from page 32)

sequence of lines you can imagine
appearing more than once in a typi-
cal file. The long-enough c.value
should be at least one larger than
your guess. This will help the algo-
rithm to avoid matching the wrong
instance when a sequence of lines
appears multiple times in a file. 1f a
particular choice of long-enough val-
ue produces unsatisfactory differ-
ence reports, the algorithm can al-
ways be applied again with a larger
value. When comparing C source
code, I typically choose a generous
value of 25, and I rarely have to re-
run the comparison.

.The "recursive longest matching
sequence" algorithm is particularly
well suited to take advantage of some
common hash code technology as a
means of improving time perform-
ance even more. In applications that
involve repetitive string compari-
sons, it is often useful to calculate
hash codes initially for all the strings.
Then, the hash codes are compared
instead of the strings themselves. The
comparison of two hash code values
is much quicker than is the compari-
son of two strings. If the hash codes
are not equal, the strings cannot pos-
sibly be the same and need not be
compared. If the hash codes are
equal, only then must the strings be
compared to prove or disprove their
equality.

The performance benefits are
even more dramatic when hash
codes are used with the "recursive
longest matching sequence" algo-
rithm. When searching for the lon-
gest sequence of matching lines,
strings do not have to be compared
every time a pair of matching hash
codes is found. Instead, strings only
have to be compared once a se-
quence of matching hash codes is
found that is longer than the longest
sequence yet found.

The time efficiency can be im-
proved even further if a hash code
table is maintained for each file. The
table should consist of an array that
contains as many elements as there
are possible hash code values. Each
element of the array should consist
of a linked list of line numbers for
lines whose hash code values are
equal to the array index. This table

86

-1 -; FILE. COMPARISONS
Listing One (Text begins on page 28.)

/*
** Copyright (c) 1987, Tom Steppe. All rights reserved.
**

** This module compares two arrays of lines (representing
** files) and reports the sequences of consecutive matching
** lines between them using the "recursive longest matching
** sequence" algorithm. This is useful for implementing a
** file comparison utility.
*
** Compiler: Microsoft (R) C Compiler Version 4.00
*/

(include <stdio.h>
(include <ctype.h>
(include <string.h>
(include cmalloc.h>

/* Boolean type and values. */
typedef int 	BOOLEAN;
(define TRUE 	1
(define FALSE 0

/* Minimum macro. */
(define min(x, y) 	Mx/ <- (y)) ? (x) 	(y))

/* Value to indicate identical strings with strcmp. */
(define ALIKE 0

/* Result of hashing function for a line of text. */
typedef unsigned int HASH;

/* Mask for number of bits in hash code. (12 bits). */
(define MASK 	(unsigned int) OxOFFF

/* Number of possible hash codes. */
#define HASHSIZ 	(MASK + 1)

/* Information about an entry in a hash table. */
typedef struct tblentry
{

	

int frst; 	/* First line # with this hash code. */
int 	last; 	/* Last line I with this hash code. */

) TSLENTRY;

/* Information about a line of text. */
typedef struct lineinf

	

HASH hash; 	/* Hash code value. */
int 	nxtln; 	/* Next line with same hash (or 0). */

) LINEINF;

/* Information about a file. */
typedef struct fileinf

char 	**txt; 	/* Array of lines of text. */
LINEINF 	*line; 	/* Array of line info structs. */
TBLENTRY *hashtbl; 	/* Hash table. */

1 FILEINF;

/* Function declarations. */
BOOLEAN filcmp 	(char **, int, char **, int, int);

	

' BOOLEAN get_inf 	(char **, int, FILEINF *);
HASH 	calc_hash 	(char *);
void 	fnd_seq 	(FILEINF *, int, int,

FILEINF *, int, int, int);
BOOLEAN chk_hashes (LINEINF *, LINEINF *, int);
int 	crit_matChes (char **, char **, int);
void 	rpt_seq 	(int, int, int);

** compare compares two arrays of lines and reports the
** sequences of consecutive matching lines. The zeroth

54
	 87 	

Dr. Dobb's Journal, September 1987

88

1, n2, lngval); fnd_seq (ifl, 1, nl, 4f2,

return (rtn);

/ 1r

memset

else

((char *) f->hashtbl, '\0', size);

** element of each array is unused so that the index into
** the array is identical to the associated line number.
**
** RETURNS: TRUE if comparison succeeded.
** 	 FALSE if not enough memory.

BOOLEAN compare (al, nl, a2, n2, lngval)

char 	**al; 	/* (I) Array of lines of text in #1.
int 	nl; 	/* (I) Number of lines in al.

(Does not count 0th element.)
char "a2; 	/* (I) Array of lines of text in #2.
int 	n2; 	/* (I) Number of lines in a2.

(Does not count 0th element.)
int 	lngval; 	/* (I) "Long enough" value. */

FILEINF fl; 	/* File information for 11. */
FILEINF f2; 	/* File information for #2. */
BOOLEAN rtn; 	/* Return value. */

/* Gather information for each file, then compare. */
if (rtn

(get_inf (al, nl, 4f1) 46 get_inf (a2, n2, if2)))

•** get_inf calculates hash codes and builds a hash table.
Ir.

** RETURNS: TRUE if get_inf succeeded.
FALSE if not enough memory.
	 ..*+ 	

static BOOLEAN get_inf (a, n, f)

char 	**a; 	/* (I) Array of lines of text. */
int 	n; 	/* (I) Number of lines in a. */
FILEINF 	*f; 	/* (0) File information. */

unsigned int size; 	/* Size of hash table. */
register int 	i; 	/* Counter. */
TELENTRY 	*entry; 	/* Entry in hash table. */

/* Assign the array of text. */
f->txt 	a;

/* Allocate and initialize a hash table. */
size HASHSIZ * sizeof (TBLENTRY);
if (f->hashtbl 	(TBLENTRY *) malloc (size))

return (FALSE);

/* If there are any lines: */
if (n > 0)

/* Allocate an array of line structures. */
if (f->line = (LINEINF *)

malloc ((n + 1) * sizeof (LINEINF *)))

/* Loop through the lines. */
for (1 	1; i <- n; i++)

(continued on next page)

* /

./

FILE COMPARISONS
Listing One (Listing continued, text begins on page 28.

/* Calculate the hash code value. */
f->line[i].hash - talc hash (f->txt[i]);

/* Locate the entry in the hash table. */
entry - f->hashtbl + f->line[i].hash;

/* Update the linked list of lines with */
/* the same hash code. 	 */
f->line(entry->last].nxtln - i;
f->line[i].nxtln - 0;

/* Update the first and last line */
/* information in the hash table. */
if (entry->frst == 0)

entry->frst - i;

entry->last - i;

else

return (FALSE);
1

1
else

f->line - NULL;

return (TRUE);

	 *a k

** talc hash calculates a. hash code for a line of text.

** RETURNS: a hash code value.

static HASH talc hash (buf)

char 	*buf; 	/* (I) Line of text. */

register unsigned int chksum; 	/* Checksum. */
char 	 *s; 	/* ?ointer. */
HASH 	 hash; 	/* Hash code value. */

/* Build up a checksum of the characters in the text. */
for (chksum - 0, s - buf; *s; chksum 	*s++)

/* Combine the 7-bit checksum and as much of the */
/* length as is possible. 	 */
hash - ((chksum fi Ox7F) I ((s - buf) << 7)) fi MASK;

return (hash);

** Given starting and ending line numbers, fnd_seq finds a
** "good sequence" of limes within those ranges. fnd_seq
** then recursively finds "good sequences" in the sections
** of lines above the "good sequence" and below it.

static void fnd_seq (fl, begl, endl, f2, beg2, end2, lngval)

FILEINF *fl; /* (I) File information for #1. */
int begl; /* (I) First line # to compare in 11. */

int endl; /* (I) Last line # to compare in #1. */

66
	 89 	

Dr. Dobb's Journal, September 19,t•7

FILEINF 	*f2; 	/* (I) File information for f2. */
int 	beg2; 	/* II) First line I to compare in f2. */
int 	end2; 	/* II) Last line I to compare in f2. */
int 	lngval; 	/* II) "Long enough" value. */

LINEINF 	*linel; 	/* Line information ptr in fl. */
LINEINF 	*linel; 	/* Line information ptr in #2. */
register int limit; 	/* Looping limit. */
int 	 lnl; 	/* Line number in fl. */
int 	 1n2; 	/* Line number in f2. */
register int ln; 	/* Working line number. */
BOOLEAN 	go; 	/* Continue to loop? */
int 	 most; 	/* Longest possible seq. */
int 	 most].; 	/* Longest possible due to fl. */
int 	 most2; 	/* Longest possible due to #2. */
int 	 cnt; 	/* Length of longest seq. */
int 	 oldcnt 	/* Length of prey longest seq. */
int 	 n; 	/* Length of cur longest seq. */
int 	 ml; 	/* Line of longest seq. in fl. */
int 	 m2; 	/* Line of longest seq. in #2. */

/* Initialize. */
go 	= TRUE;
linel = fl->line;
line2 - f2->line;

/* Initialize longest sequence information. */
cnt 	= 0; 	 /* Length of longest seq. */
ml 	begl - 1; 	/* Line i of longest seq. in #1. */
m2 	= beg2 - 1; 	/* Line 11 of longest seq. in #2. */
oldcnt = 0; 	 /* Length of prey longest seq. */

/* Calculate maximum possible number of consecutive */
/* lines that can match (based on line I ranges). */
mostl = endl - begl + 1;
most2 = end2 - beg2 + 1;

/* Scan lines looking for a "good sequence".
** Compare lines in the following order of line numbers:
**
** 	 (1, 1)
** 	(1. 2). (2, 1), 12, 2)
** (1, 3), (2, 3), (3, 1), (3, 2), (3, 3)
** etc.
*/

for (lnl = begl, 1n2 = beg2; TRUE; 1n1++, 1n2++)

if (1n2 <= end2 - cnt)
/* There are enough lines left in #2 such that it */
/* is possible to find a longer sequence. 	*/

/* Determine the limit - in *1 that both 	*/

/* enforces the order scheme and still makes */
/* it possible to find a longer sequence. */
limit - min (lnl - 1, endl --cnt);

/* Calculate first potential match in fl. */
for (ln - fl->hashtbl[line2[1n2].hash].frst;

in 14 ln < begl; ln = linel[ln].nxtln)

/* Loop through the lines in fl. */
for (; In cc ln <= limit; ln = linel(ln].nxtln) 	.

if (linel[ln].hash == line2[1n2].hash it
linel[ln + cnt].hash --

line2[ln2 + cnt].hash ii
!(ln - ml == 1n2 - m2 c&
ln < ml + cnt && ml != beg]. - 1))

/ 5 A candidate for a longer sequence has */

(continued on next page)

90

ALE COMPARISONS
Listing One (listing continued, text begins on page 28.1

/* been located. The current lines
/* match, the current lines + cnt match, */
/* and this sequence is not a subset of */
/* the longest sequence so Ear. 	 */

/* Calculate most possible matches. */
most - min (endl - ln + 1, most2);

/* First compare hash codes. If the */
/* number of matches exceeds the 	5/

/* longest sequence so far, then 	5/

/* compare the actual text. 	 */
if (chk_hashes (linel + ln,

line2 + 1n2, cnt) ii
In - cnt_matches (fl->txt + ln,

f2->txt + 1n2, most)) > cnt)
/* This is the longest seq. so far. */

/* Update longest sequence info. */
oldcnt - cnt;
cnt 	- n;
ml 	= ln;
m2 	- 1n2;

/* If it's long enough, end the */
/* search. */
if (cnt >- lngval)
{

break;

/* Update limit, using new count. */
limit = min (lnl - 1, endl - cnt);

/* If it's long enough, end the search. */
if (cnt >- lngval)

break;

most2--;

else

go - FALSE; 	/* This file is exhausted. */

/* Repeat the process for the other file. */
if (lnl <- endl - cnt)

limit - min (1n2, end2 - cnt);

for (ln - f2->hashtbl[linel(1n1).hash].frst;
ln tt In < beg2; ln = line2[1n].nxtln)

for (; In 44 ln <- limit; ln - line2(1n).nxtln)

if (linel(1n1].hash -- line2[1n].hash &&
linel[Inl + cnt].hash ==

line2[1n+ cnt].hash &&
!(lnl-ml--ln-m2 tt
lnl < ma + cnt t4 m2 != beg2 - 1))

most - min (end2 - In + 1, mostly;

if (chk_hashes (linel + lnl,
line2 + in, cnt) tt

91
58 	 Dr. Dobb's Journal, September 1987

(n - cnt_matches (fl ->txt + lnl,
f2->txt + ln, most)) > cnt)

oldcnt - cnt;
cnt 	= n;
ml 	lnl;
m2 	■ ln;

if (cnt >■ lngval)
4

break;

limit min (1n2, end2 - cnt);

)

if (cnt >- lngval)

break;

mostl--;
)
else if (!go)

break; 	/* This file is exhausted, also. */
)

)

/* If the longest sequence is shorter than the "long
/* enough" value, the "long enough" value can be
/* adjusted for the rest of the comparison process.
if (cnt < lngval)

lngval = cnt;
)

if (cnt >■ 1)
/* Longest sequence exceeds minimum necessary size. */

if (ml 	begl sfi m2 != beg2 66 oldcnt > 0)
/* There is still something worth comparing */
/* previous to the sequence. 	 */

/* Use knowledge of the previous longest seq.
fnd_seq (fl, begl, ml - 1,

f2, beg2, m2 - 1, oldcnt);
}

/* Report the sequence. */
rpt_seq (111, m2, cnt);

if (ml + cnt - 1 !- endl Gi m2 + cnt - 1 !- end2)
/* There is still something worth comparing */
/* subsequent to the sequence. 	 */

fnd_seq (fl, ml + cnt, endl,
f2, m2 + cnt, end2, lngval);

)

)

}

** chk_hashes determines whether this sequence of matching
** hash codes is longer than cnt. It knows that the first
** pair of hash codes is guaranteed to match.
**

** RETURNS: TRUE if this sequence is longer than cnt.
** 	 FALSE if this sequence is not longer than cnt 	

It k 	

(continued on next page)

9 2
OP , 	• 	. - .1

char
char
register

"s1;
**s2;

int most;

/* (I) Starting line in file #1. */
/* (I) Starting line in file #2. */
/* (I) Most matching lines possible. */

FILE COMPARISONS
Listing One (Listing continued, tee(begins on page 28.)

static BOOLEAN chk hashes (linel, line2, cnt)

LINEINF
	

*linel;
	

/* (I) Line information for #1. */
LINEINF
	

*line2;
	

/* (I) Line information for #2. */
register int cnt;
	

/* (I) Count to try to exceed. */

register int n; /* Count of consecutive matches. */

for (n 	1; n < cnt
((++1inel)->hash (++1ine2)->hash); n++)

return (n > cnt);

/ 	
** cnt_matches counts the number
** lines of text.
* *

of consecutive matching

** RETURNS: number of consecutive matching lines.

*

static int cnt_matches (sl, s2, most)

register int n; /* Count of consecutive matches. */

/* Count the consecutive matches. */
for (n 	0; n < most ii strcmp (*s1++, *s2++) 	ALIKE;

n++)

return (n);

** rpt_seq reports a matching
	 * 	

sequence of lines.

(ml, m2, cnt)

Location of matching sequence in #1. */
Location of matching sequence in #2. */
Number of lines in matching sequence. */

static void rpt_seq

int
	

ml;
	

/* (I)
int
	m2; 	/* (I)

int
	

cnt;
	

/* (I)

fprintf (stdout,
"Matched t5d lines: (t5d - t5d) and (t5d - t5d)\n",
cnt, ml, ml + cnt - 1, m2, m2 + cnt - 1);

End Listing

93
so 	 Dr. Dobbs Journal, September 1987

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167

