\qquad
Project Title: Parametric Investigation of Rałdome Analysis Methods

Project No: E-21-605 and B-494-004 (Co-projects) (Continuation of E-21-612/E-21-636 and B-494-000/001/002/003)
Co-Project Director: Dr. Gene K. Huddleston and Mr. Harold L. Bassett
Sponsor: Air Force Office of Scientific Research

Agreement Period: \qquad Until
9/29/80 (Grant Period)

Type Agreement: Grant No. AFOSR-77-3469, Amendment "B"

	EE	RAIL/MAD	TOTAL
Amount:	AFOSR $\$ 30,510(\mathrm{E}-21-605)$	$\$ 28,727(\mathrm{~B}-494-04)$	$\$ 59,237$
	GIT $2,197(\mathrm{E}-21-350)$	$2,368(\mathrm{E}-702-400)$	4,565
	TOTAL $\$ 32,707$		$\$ 31,095$

Reports Required: Annual Technical Report Final Technical Report

Sponsor Contact Person (s):

Technical Matters

William J. Best
Program Manager
AFOSR (NP)
Bolling AFB, DC 20332

Contractual Matters
(thru OCA)
Jeffrey P. Parsons
Buyer
AFOSR (PKZ)
Bolling AFB, DC 20332 202/767-4959
R.K. Gillispie

Contracting Officer

Defense Priority Rating:
Assigned to: $\frac{\text { Electrical Engineering and Radar \& Instrumentation }}{\text { Laboratory/MAD }}$
COPIES TO:

Project Oirector
Oivision Chief (EES)
School/Laboratory Oirector
Oean/Oirector-EES
Accounting Office
Procurement Office
Security Coordinator (OCA)
Heports Coordinator (OCA)

Library, Tochnical Reports Section EES Information Office
EES Reports \& Procedures
Project File (OCA)
Prolect Code (GTRI) |
Other_Mr, H.L. Bassett/RAIL/MAD
Dr. E.K. Reedy/RAIL

OFFICE OF CONTRACT ADMINISTRATION

SPONSORED PROJECT TERMINATION

Date: May 4, 1981
Project Title: Parametric Investigation of Radome Analysis Methods
Project No: E-21-605 and B-494-004 (Co-projects) (Continuation of $\bar{E}-21-612 / \mathrm{E}-21-636$ an B-494-000/001/002/003)
Project Director: Dr. Gene K. Huddleston and Mr. Harold L. Basset
Sponsor: Air Force Office of Scientific Research
人) Effective Termination Date: 12/31/80
Clearance of Accounting Charges: $12 / 31 / 80$
Grant/Contract Closeout Actions Remaining:
x Final Invoice and Closing Documents
X Final Fiscal Report
X Final Report of Inventions
X Govt. Property Inventory \& Related Certificate
_ Classified Material Certificate

- Other

Assigned to: \qquad
\qquad (School/Laboratory)

COPIES TO:

```
    Administrative Coordinator
    Research Property Management
    Accounting Office
    Procurement Office/EES Supply Services
    Research Security Services
    Veports Coordinator (OCA)
```

Legal Services (OCA) Library, Technical Reports

EES Research Public Relations (2) Project File (OCA) Other:

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMEER ${ }^{\text {a. GOVT ACCESSION NO. }}$	3. RECIPIENT'S CATALOG NUMBER
```4. TITLE (and Subtitlo) Parametric Investigation of Radome Analysis Methods```	5. TYPE OF REPORT \& PERIOD COVERED Annual Technical Report October 1, 1977 to Sept. 30,1978
	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s)   G. K. Huddleston, H. L. Bassett, and J. N. Newton	8. CONTRACT OR GRANT NUMBER(s) AFOSR-77-3469
9. PERFORMING ORGANIZATION NAME AND ADORESS Georgia Institute of Technoloby School of Electrical Engineering Atlanta, Georgia 30332	10. PROGRAM ELEMENT, PROJECT, TASK AREA WORK UNTT NUMBERS
11. CONTROLLING OFFICE NAME AND ADORESS   Air Force Office of Scientific Research   Directorate of Physics (Code NP-77-148)   Bolling Air Force Base, D.C. 20332	12. REPORT DATE November 30, 1978
	13. NUMBER OF PAGES 40
14. MONITORING AGENCY NAME \& ADORESS(If different from Controiling Office)	15. SECURITY CLASS. (of this report) Unclassified
	15a. OECLASSIFICATION/DOWNGRADING

16. DISTRIBUTION STATEMENT (of this Report)
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)
18. SUPPLEMENTARY NOTES
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Radome Analysis
Millimeter Wave Radomes
20. ABSTRACT (Continue on reverse side lf necessary and identify by block number)

The status is described of a research program whose objective is to determine the accuracies of various methods of radome analysis as functions of antenna size and placement, radome size and shape, and wavelength. The analytical methods used and the experimental program to establish true data are described concisely.

# PARAMETRIC INVESTIGATION 

OF

RADOME ANALYSIS METHODS
by
G. K. Huddleston, H. L. Bassett, and J. N. Newton
for
Air Force Office of Scientific Research Bolling Air Force Base, D.C. 20332
Under
Grant AFOSR-77-3469
October 1, 1977 - September 30, 1978
School of Electrical Engineering
and
Engineering Experiment Station
Georgia Institute of Technology Atlanta, Georgia 30332

## TABLE OF CONTENTS

PAGE
I. Introduction and Summary ..... 1
II. Progress to Date ..... 2
III. Presentations and Publications ..... 22
IV. Personnel and Interactions ..... 22
V. References ..... 23
APPENDIX A ..... 25
FIGURE PAGE
1 Illustration of the Fast Receiving Method of Radome Analysis ..... 8
2 Plane Wave Propagation Through An Infinite Plane Sheet ..... 93 Geometry and Dimensions of Small Radome ShowingOrientation of Small Antenna . . . . . . . . . . . . 124 Geometry and Dimensions of Medium Size RadomesHaving Fineness Ratios of l:1, l.5:l, and 2:1Showing Small, Medium, and Large Antennas13
5 Geometry and Dimensions of Large Radome ShowingOrientations of Small, Medium, and LargeAntennas14
6 Photographs of Two Rexolite Radomes Having Fineness Ratio of l:l ..... 17
7 Geometry and Dimensions of Three MonpulseAntennas for Use at 35 GHz . . . . . . . . . . . . . 18
8 Photographs of Antennas and Mounting Fixture ..... 20

## LIST OF TABLES

1 Accuracy and Computation Time for Surface Integration Method . . . . . . . . . . . . . . . . . 6
2 Radome Dimensional Data in Wavlengths ..... 15
3 Ratios of $\mathrm{D}_{\text {is }} / \mathrm{D}_{\text {ap }}$ for Selected Antennas and Radomes ..... 21

## I. Introduction and Summary

The overall objective of this research is to develop a general theory of radome analysis and to determine the accuracies of various radome analysis methods under controlled conditions of antenna size and placement, wavelength, and radome size and shape. Experimental measurements on selected antenna/radome combinations at 35 GHz will be used as true data in the assessment of accuracy.

During the first year, which this report covers, a general theory of analysis has been developed based on the Lorentz reciprocity theorem and on the Huygens-Fresnel principle. Computer-aided methods of analysis based on these principles have been formulated and programmed. Three monopulse antennas have been designed and fabricated for use in carrying out the measurements at 35 GHz . Three radomes have been designed and fabricated for use in the experimental program. A mechanical fixture has been fabricated which will allow accurate positioning of the antenna with respect to the radome and with respect to the reference system used for pattern measurements. A detailed discussion of the progress in the first year is presented in Section II below.

During the second year, the initiation efforts of the first year's work will come to fruition through concentrated experimental and analytical efforts to gather true and calculated data which will serve as the basis for realizing the overall research objective. Extensive pattern measurements will be made for nine of the fifteen antenna/radome combinations
available. These experimental efforts will be paralleled by computeraided analyses of the same combinations for comparison purposes. In addition, techniques to account for the effects of metal tips will be incorporated into the analysis methods for use during the third and final phase of the research.

In the third year, it is anticipated that measurements will be carried out on radomes to which metal tips have been added, and comparisons to theoretical predictions will be made. In addition, antenna/ radome configurations which lend themselves to exact analysis using boundary-valued approaches and variational and relaxation techniques will be investigated.

Two publications and three presentations concerning this research have resulted. They are described in Section III along with papers planned for submission to technical journals.

The professional personnel associated with the research effort are listed in Section IV.

Appendix A contains copies of the two papers presented at symposia.

## II. Progress to Date

Efforts during the first year's work have been devoted to developing the general theory of radome analysis, formulating the radome analysis methods, implementing the methods in digital computer software, designing and building three monopulse antennas, designing five suitable radomes, and designing and fabricating a test fixture for positioning the antenna/ radome combinations in the measurement environment. These efforts have
been carried out to prepare for the extensive measurements and analytical efforts planned for Phase II.

The general theory of radome analysis is based on the Lorentz reciprocity theorem [1] and the Huygens-Fresnel principle [2] as described in the papers included in Appendix A. Briefly, the reciprocity theorem serves as the basis for all receiving formulations of radome analysis; i.e., the response of the antenna inside the radome to a plane wave incident on the radome is the desired analysis objective. The Huygens-Fresnel principle serves as the basis for all rigorous transmitting formulations; i.e., the Fraunhofer fields are determined for the case when the radome-enclosed antenna is radiating by performing integrations of the tangential electric and magnetic fields over a surface which encloses the sources. Since a homogeneous medium is required by the theory in the region not containing the sources, the radome must also be enclosed by the surface. The third facet of the general theory makes use again of the reciprocity theorem for widely separated antennas to provide the unifying connection between the response of an antenna to a plane wave of specified polarization and direction of arrival and the vector far fields of the antenna.

Analytical efforts thus far have concentrated on formulating and implementing both receiving and transmitting formulations which require integration of the fields over the outer surface of the radome. Upon examination of the role of the field scattered by the radome when a plane wave is incident, it has been established that the scattered field contributes nothing to the antenna response and, therefore, can be neglected in the computations. The equivalence of the transmitting and receiving
formulations has also been rigorously established for the first time, the import of which is that intermediate calculations of the vector far field as required in the transmitting case can be avoided in many cases of practical importance.

Attention has also been directed toward sampling of the electromagnetic fields on the surface of the radome as required in the surface integrations. Two methods have been considered. In the first, the radome surface is partitioned into elemental areas by dividing the axis of symmetry ( $z_{R}$-axis) into equal linear increments; in the circumferential direction, equal angular segments are used. In the second method, equal angular increments are used in the longitudinal ( $\theta$ ) direction so that the length of the elemental area is the same regardless of location on the surface. Angular increments are also used in the circumferential ( $\phi$ ) direction and are adjusted so that at the center of the elemental area, the arc distance is approximately constant. In both methods, the field values are computed at the center of each elemental area.

The surface integration method has been implemented in computer software (Fortran IV) and is currently being tested for accuracy and speed of computation. A simple method has been devised to do this as follows. A tangent ogive radome shape having zero wall thickness represents the surface of integration. The tangential components of a source field $E_{S}, H_{S}$ arespecified over the circular region or aperture at the base of the radome. A plane wave relationship is assumed between $\underline{E}_{S}$ and $\underline{H}_{s}$, where the direction of propagation is normal to the circular region; i.e., parallel to the axis of symmetry of the radome. A plane wave having specified polarization and direction of arrival is assumed
incident on the circular aperture and, simultaneously, on the tangent ogive surface. The reaction integral [2] is proportional to the voltage received by the circular aperture antenna and is easily computed for the circular aperture to yield an exact result. The computation of the same received voltage is carried out using the computer-aided techniques for various tangent ogive surfaces.

Table I shows some salient results obtained with the computeraided surface integration method. Five radome shapes (sizes) as explained below were used. The results shown were obtained using the second method of sampling described above. Sample distances (equal in $\theta$ and $\phi$ ) of $\lambda / 6$ to $\lambda$ were used, where $\lambda$ is the free space wavelength. The total number of samples depends on the sample increment and radome size as shown in column four of the table. Comparison of the true and computed values of received voltage shows excellent agreement. Examination of the entries in the last column of Table I shows the dramatic influence of the number of samples on computation time.

It can be concluded at this point that the surface integration may be practical for small radomes but perhaps not so practical for larger radomes, assuming that a fixed sample size which yields consistently accurate results can be established. But this trend is neither unexpected nor catatrophic from a practical standpoint. It is expected that the other computational methods under investigation will yield acceptably accurate results for large radomes and will require much less computation time; in fact, the larger the radome and antenna, the more accurate will be the computed result. The question addressed by this research concerns, of course, the establishment of the ranges of validities of these various

Table I. Accuracy and Computation Time for Surface Integration Method

Radome ID				Received Voltage		
Diameter ( $\lambda$ )	Length ( $\lambda$ )	Sample   Size	Number   of   Samples	True	Computed	Computation   Time (sec)
20.49	19.93	$\lambda / 6$	35157	-1. 28355	-1. 28355	61.11
20.49	19.93	$\lambda / 3$	8718	-1. 28355	-1. 28362	13.05
20.49	19.93	$\lambda / 2$	3869	-1.28355	-1. 28373	7.00
20.49	19.93	$\lambda$	967	-1.28355	-1.28431	1.64
11.86	22.30	$\lambda / 6$	20716	-0.43011	-0.43011	31.68
11.86	22.30	$\lambda / 3$	5167	-0.43011	-0.43013	7.95
11.86	22.30	$\lambda / 2$	2262	-0.43011	-0.43017	4.05
11.86	22.30	$\lambda$	571	-0.43011	-0.43037	. 86
11.86	16.78	$\lambda / 6$	15929	-0.43011	-0.43011	24.68
11.86	16.78	$\lambda / 3$	3973	-0.43011	-0.43015	6.77
11.86	16.78	$\lambda / 2$	1769	-0.43011	-0.43021	2.59
11.86	16.78	$\lambda$	442	-0.43011	-0.43054	. 82
11.86	11.30	$\lambda / 6$	11554	-0.43011	-0.43012	19.69
11.86	11.30	$\lambda / 3$	2846	-0.43011	-0.43019	5.31
11.86	11.30	$\lambda / 2$	1265	-0.43011	-0.43031	2.31
11.86	11.30	$\lambda$	319	-0.43011	-0.43092	. 61
7.56	6.97	$\lambda / 6$	4560	-0.17480	-0.17482	7.11
7.56	6.97	$\lambda / 3$	1115	-0.17480	-0.17489	2.37
7.56	6.97	$\lambda / 2$	498	-0.17480	-0.17502	1.06
7.56	6.97	$\lambda$	127	-0.17480	-0.17567	. 25

methods.

One of the speedier radome analysis methods under investigation uses a receiving formulation as described earlier [3]. The method is illustrated in Figure 1. The plane wave $\underline{E}_{i}, \underline{H}_{i}$ is incident on the radome with direction of arrival $\hat{k}_{a}$. A ray is traced backwards from each aperture point $(x, y, o)$ in the direction $\hat{k}_{a}$ to find the intersection with the radome wall and the unit normal vector $\hat{\eta}_{R}$ at the intersection point. From $\hat{k}_{a}, \hat{\eta}_{R}$, and $E_{i}^{\prime}$, the field $E_{R}^{\prime}$ produced on the antenna aperture can be found, where the components of $E_{i}$ parallel and perpendicular to the plane of incidence are properly weighted by the complex transmission coefficients $T_{\perp}, T_{11}$ as illustrated in Figure 2.

The transmission coefficients used are those which apply to an infinite plane dielectric sheet [4]. This approximate method of transforming the fields on one side of the radome wall to the other side appears to be a common feature of all radome analysis methods except that described by Van Doeren [5]. Use of this method precludes the computation of surface (trapped) wave effects and may represent the single most significant deficiency in all of these methods.

Another computationally fast method under investigation utilizes a transmitting formulation and makes extensive use of the Fast Fourier Transform (FFT) to enhance the computational speed [6]. Briefly, the radiation from the antenna is characterized by using the plane wave spectrum (PWS) representation (a modal expansion) [7]. The antenna aperture is sampled at an array of equally spaced points in $x$ and $y$. From each point in the aperture there emanates a spectrum of plane waves, obtained very simply as the (inverse) FFT of the tangential electric


Figure 1. Illustration of the Fast Receiving
Method of Radome Analysis


Figure 2. Plane Wave Propagation Through an Infinite Plane Sheet
field in the aperture. Rays are traced to each point to find their intersections with the inside surface of the radome. The plane wave field e, $\underline{h}$ associated with each ray is weighted by the transmission coefficients $T_{\perp}, T_{11}$ as depicted in Figure 2. The modified plane wave $\underline{e}^{\prime}, \underline{h}$ is then included in the summation of all such contributions to produce modified aperture fields $\underline{E}_{S^{\prime}}^{\prime} \underline{H}_{S}^{\prime}$ at the specified point. The procedure is repeated for each aperture point, resulting in a modified aperture field which is assumed to correctly embody the effects of the radome. Further computations are then performed using the modified fields. This method is recognized to be an intuitive method of analysis based on the ideas presented earlier by Kilkoyne in his equivalent aperture approach [8]. The time to compute a single value of received voltage is independent of the size of the radome for the two methods just described. The time depends, instead, on the number of sample points used in the aperture. For the case of a square array of 256 sample points ( $16 \times 16$ ), the computation time for one value of received voltage for the fast transmitting case is approximately one minute. The fast receiving method requires 1.5 seconds. No account is made here of the core memory requirements.

Some analytical work and associated computer implementation remains to be done. An additional receiving formulation method of analysis will be implemented wherein integration over the inner surface of the radome will be done to determine if any computational advantages are realized. Antenna characterization routines which utilize theoretical representation and measured data also being implemented. Of future interest is the spherical wave expansion described by Ludwig [9] where
limited measured far-field data are used to generate coefficients in the expansion so that radiation from the antenna can be more accurately described analytically. Presently, the PWS formulation is being used to characterize radiation from the antenna. Also, the effects of reflected waves are also to be included in the analysis using the Huygens-Fresnel formulation embodied in Equations (108) and (109) of Silver [2]. Finally, a method of comparison of analysis methods is being developed which includes both computation time and memory requirements so that fair comparisons can be made.

Five radomes have been designed for fabrication and use during the experimental program. All five radomes have the tangent ogive shape. Three radomes have l:l fineness ratios (length/diameter) and have dimensions to yield a small, medium, and large radome in terms of base diameter in wavelengths. Two other radomes have the medium-size base diameter but fineness ratios of 1.5:1 and 2:1.

The geometry and dimensions of the radomes showing the orientations of the antennas to be used with them are illustrated in Figures 3, 4, and 5. The radius of the generating arc is shown in each figure as $R_{i s}$. The antenna is shown pivoted about a gimbal point to look in a direction that is $15^{\circ}$ from the axis of symmetry of the radome. The dimension of a wavelength is indicated by $\lambda$ in each figure for convenient reference. Table II presents the radome dimensions in terms of wavelengths at this frequency.

Two radomes have been fabricated using Rexolite $\left(\epsilon_{r}=2.52\right)$. A full-wavelength wall thickness for this material at 35 GHz is approximately 0.25 inch. A full-wavelength thickness has been selected to


Figure 3. Geometry and Dimensions of Small Radome Showing Orientation of Small Antenna



Figure 5. Geometry and Dimensions of Large Radome Showing Orientations of Small, Medium, and Large Antennas

Table II. Radome Dimensional Data in Wavelengths

	Inside   Diameter	Inside   Length	Outside   Diameter	Outside   Length
Small ( $\mathrm{F}=1$ )	6.08	6.08	7.56	6.97
Medium ( $\mathrm{F}=1$ )	10.38	10.38	11.86	11.30
Medium ( $\mathrm{F}=1.5$ )	10.38	15.57	11.86	16.78
Medium ( $\mathrm{F}=2.0$ )	10.38	20.76	11.86	22.30
Large ( $\mathrm{F}=1$ )	19.01	19.01	20.49	19.93

provide adequate strength and rigidity for the larger radomes and to provide consistent effects for all sizes. Rexolite has excellent electromagnetic and machining properties. Photographs of the two radomes are shown in Figure 6.

Three four-horn monopulse antennas, representing a small, medium, and large antenna, have been designed and fabricated for use alone and with the five radomes. Each antenna is connected through a circular-torectangular waveguide transition and adapter network to a monopulse comparator which forms sum, elevation difference, and azimuth difference channels as required in monopulse tracking. The waveguide transitions and adapter networks have been fabricated in the main campus machine shop. The four-horn configurations have been built and their aperture dimensions are illustrated in Figure 7. These antennas are designed to provide sum pattern beamwidths of $8^{\circ}, 15^{\circ}$, and $30^{\circ}$.

A mechanical fixture to position the radome with respect to the antenna and to position the combination in the pattern range coordinate system has also been built. Basically, a simple fixture is used which mounts on the azimuth positioner turntable and holds the antenna in a horizontal position. The antenna is mounted in a horizontal bushing so that accurate rotation of the antenna about its longitudinal axis is provided. If this axis is designated as the z-axis of the antenna, then rotation of the antenna about the $z$-axis selects a $\phi=$ constant plane in the associated spherical coordinate system. Rotation of the entire assembly about the vertical axis of the positioner turntable corresponds to movement in the $\theta$ direction of the spherical system. Vertical polarization corresponds to $E_{\theta}$, horizontal polarization corresponds to $E_{\phi}$.

(a) Small Radome

(b) Medium Radome

Figure 6. Photographs of Two Rexolite Radomes Having Fineness Ratio of 1:1


Figure 7. Geometry and Dimensions of Three Monopulse Antennas for Use at 35 GHz

The radome is positioned with respect to the antenna by a circular base plate to which the radome will be mounted. A circular hole has been accurately bored in the base plate which allows insertion onto the corresponding diameter antenna and which provides a very accurate, single angular orientation of the antenna $z$-axis with respect to the axis of symmetry of the radome. Rotation of the radome and base plate about the antenna $z$-axis provides selection of any desired plane of radome scan. Each antenna requires a different diameter base plate for each different radome with which the antenna is to be used; however, only nine such base plates are required and each base plate is very inexpensive to fabricate. Although this method of orienting the radome with respect to the antenna does not allow complete degrees of freedom, its low cost and high accuracy make it a very attractive method for this particular research program. Photographs of two antennas and the mounting fixture are shown in Figure 8.

Table III shows the specific combinations of antennas and radomes for which measured and analytical data will be obtained. Each entry in the table is the ratio of inside base diameter of the radome to the diameter of antenna aperture. Entries are made only for the nine combinations of interest. The results for the three entries of 2.33 for which $F=1$ are expected to show the effects of the size of the antenna/ radome combination in wavelengths on the accuracy of the analysis methods. Results for the other entries of 2.33 and $F=1$ will provide information on the accuracy of the methods as a function of the relative size of antenna and radome. The entries of 2.33 for medium size radomes indicate those combinations which will provide information concerning the effects of

(a) Small Antenna

(b) Large Antenna

Figure 8. Photographs of Antennas and Mounting Fixture

Table III. Ratios of $D_{i s} / D_{a p}$ for Selected Antennas and Radomes.

Radome	Antenna		
	Small	Medium	Large
Small ( $\mathrm{F}=1$ )	2.33	--	--
Medium ( $\mathrm{F}=1$ )	3.98	2.33	1.27
Medium ( $\mathrm{F}=1.5$ )	--	2.33	--
Medium ( $\mathrm{F}=2.0$ )	--	2.33	--
Large ( $\mathrm{F}=1$ )	7.28	4.27	2.33

fineness ratio on accuracy.

## III. Presentations and Publications

G. K. Huddleston, H. L. Bassett, and J. N. Newton, "Parametric Investigation of Radome Analysis Methods," presented at and published in the Proceedings of the 1978 International IEEE AP-S Symposium, pp. 199-202, May 1978; also presented at and published in the Proceedings of the Fourteenth Symposium on Electromagnetic Windows, pp. 53-55, June 1978, (Copies included in Appendix A).
G. K. Huddleston, "Radome Analysis," invited presentation to Atlanta Chapter of IEEE, AP-S/MTT Group, September 26, 1978.
G. K. Huddleston, "A General Theory of Radome Analysis," a paper planned for submission to IEEE Transactions on Antennas and Propagation, January 1979.
IV. Personnel and Interactions

The following professional personnel are actively engaged in this research program:

G. K. Huddleston	Assistant Professor	School of Electrical   Engineering
H. L. Bassett	Senior Research   Engineer	Engineering Experi-   ment Station
J. N. Newton	Research Engineer	Engineering Experi-   ment Station

Dr. Huddleston and Mr. Bassett serve as co-principal investigators. Dr. Huddleston directs the analytical efforts while Mr. Bassett directs the experimental work. Mr. Jason Rusodimos, a graduate student in the School of Electrical Engineering works with Dr. Huddleston on the computer implementation of various analysis methods.

No specific interactions have taken place with other laboratories or DOD agencies; however, tentative plans have been made with Eglin Air Force Base (Dr. Ralph Calhoun, AFATL/DLMP) for the transfer of the analytical technology developed during this research.

## V. References

1. R. E. Collin and F. J. Zucker, "Antenna Theory, Part 1," Sections 4.2 and 4.5, McGraw-Hill, New York, 1969.
2. Samuel Silver, ed., Microwave Antenna Theory and Design, Section 3-8, MCGraw-Hill, New York, 1949.
3. G. K. Huddleston and E. B. Joy, "Development of Fabrication and Processing Techniques for Laser Hardened Missile Radomes: Radome Electrical Design Analysis," Technical Report for Martin-Marietta Aerospace, April 1977.
4. J. H. Richmond, "Calculation of Transmission and Surface Wave Data for Plane Multilayer and Inhomogeneous Plane Layers," Air Force Contract No. AF 33 (615)-1081, Antenna Laboratory, Ohio State University, Columbus, Ohio, October 1963.
5. R. E. Van Doeren, "Application of the Integral Equation Method to Scattering from Dielectric Rings," Contract N62269-C-0582, Naval Air Development Center, Johnsville, PA, April 1968.
6. E. B. Joy and G. K. Huddleston, "Radome Effects on Ground Mapping Radar," Contract DAAHOl-72-C-0598, U.S. Army Missile Command, March 1973.
7. Collin and Zucker, Ch. 3.
8. N. R. Kilcoyne, "An Approximate Calculation of Radome Boresight Error," Proceedings of the USAF/Georgia Tech Symposium on Electromagnetic Windows, pp. 9l-lll, June 1968.
9. A. C. Ludwig, "Near-Field Far-Field Transformations Using Spherical Wave Expansions," IEEE Transactions, AP-19, No. 2, pp. 214-220, March 1971.

## APPENDIX A

Copies of Papers Presented
at
1978 International IEEE AP-S Symposium
and
Fourteenth Symposium on Electromagnetic Windows

## Presented at

1978 International IEEE AP-S Symposium
University of Maryland
College Park, Maryland
May 1978

G. K. Huddleston, H. L. Bassett, and J. M. Newton Georgia Institute of Technolesy<br>School of Electrical Engineering and Engineering Experiment Station Atlanta, Georgia 30332

Numerous methods of radome analysis have been developed, and some comparisons of theoretical and measured results have been made for specific radome/antenna combinations; however, no attempt has been made to define the ranges of antenna and radome parameters over which any given method of analysis yields acceptably accurate results. This paper describes some early results of an investigation recently undertaken to determine the accuracies of various radome analysis methods under controlled conditions of antenna size and placement, wavelength, and radome size and shape. 'A fundamental theory of radome analysis has been developed and is presented below. Comparisons of computed results obtained for two methods of analysis are also presented. No experimental results are available at this time, but rather extensive measurements involving antennas and radomes of various sizes are planned.

## Theory

The Lorentz reciprocity theorem [1] is a starting point for the formulation of a basic theory of radome analysis. Field equivalence principles [2] are also important in suggesting approximate methods of obtaining the fields called for in the reciprocity theorem; more importantly, such theory is needed to obtain the transmitting formulation for radome analysis.

Consider the antenna/radome combination shown in Figure 1 where the surface $S$ encloses the antenna. Let a plane wave be incident on the radome from the direction $\hat{K}_{A}$ expressed in the antenna coordinate system $(X, Y, Z)$. Then application of the reciprocity theorem results in the following expression for the voltage produced at the antenna terminals by the incident field:

$$
\begin{equation*}
v_{R}\left(\hat{K}_{A}\right)=c \iint_{S}\left(\underline{E}_{T} \times \underline{H}_{R}-\underline{E}_{R} \times \underline{H}_{T}\right) \cdot \hat{n} d a \tag{1}
\end{equation*}
$$

where $C$ is a complex constant and where
$E_{T}, \underline{H}_{T}=$ the electric and magnetic fields produced on $S$ when the antenna is transmitting (and no fields are incident on the radome from the outside)
$E_{R}, H_{R}=$ the electric and magnetic fields produced on $S$ when the plane wave is incident (and the antenna is passive or in the receive mode)
$\hat{n}=$ unit vector pointing out of the volume $V$ enclosed by $S$
da $=$ element of area on the surface $S$
The fields ( $E_{R}, H_{R}$ ) and ( $E_{T}, H_{T}$ ) are the total fields produced in each case and would correctly include incident and all scattered components. The voltage given by Equation (1) is exact and serves as a basic tenet of radome analysis theory. The surface $S$ may be any conveniently chosen closed surface. Linear, homogenous, isotropic media are assumed. Time variations of the form $e^{j \omega t}$ are understood and suppressed.

A second generalized approach to radome analysis uses a transmitting formulation which does not consider explicitly the fields produced by an incident plane wave. Instead, the tangential fields produced by the antenna on a closed surface outside the radome are used to determine the fields anywhere in the unbounded, homogeneous medium outside this surface. Equations (108) and (109) of [3] are the basic equations which apply, where the point $P$ is at a great distance from $S$ so that $E_{p}, H_{p}$ become the far zone fields ETff, $H_{T f f}$ radiated by the antenna in the presence of the radome. Selection of the surface $S$ are the parameters which, again, differentiate the various methods of radome analysis based on a transmitting formulation.

The voltage that would be received by the antenna which produces far zone fields ETff, HTff is given by [4]

$$
\begin{equation*}
v_{R}\left(\hat{k}_{A}\right)=c E_{T f f} \cdot \hat{n}_{b} \tag{2}
\end{equation*}
$$

where C is a complex constant and $\hat{n}_{\mathrm{b}}$ is a generally complex vector which describes the orientation and polarization of an infinitesimal current element located in the direction (with respect to the antenna) given by $\hat{K}_{A}$. Equation (2) provides the connection between the receiving and transmitting formulations and is the third facet of a basic theory of radome analysis.

## Application

A computationally fast method of radome analysis based on a receiving formulation results when the surface $S$ in Equation (1) is chosen to coincide with the planar aperture of the antenna whose radiating characteristics are represented using the plane wave spectrum formulation. The receiving pattern (difference channel) in the azimuth plane for a vertically polarized antenna with square aperture (corners removed) of dimensions $4.3 \lambda \times 4.3 \lambda$ is shown in Figure 2 for the case of a Pyroceram radome of wall thickness $d=.22 \lambda$. The tangent ogive radome with fineness ratio $L / D=2.25$ is gimballed so that its tip is positioned at $+12^{\circ}$ in the azimuth plane of the antenna. Execution time to generate this pattern and three others like it was 104 seconds (CDC Cyber 70).

For comparison, the pattern obtained for the same values of radome and antenna parameters when a transmitting formulation is used is shown in Figure 3. In this method, a PWS representation is used to describe the antenna, and rays representing each plane wave are used to construct an equivalent aperture which includes the effects of the radome on each plane wave in the spectrum. The execution time to generate this pattern and three others was 60 seconds on the same computing system.

Other methods of analysis which utilize integration on the surface of the radome for both receiving and transmitting formulations are currently being implemented. Computed results obtained using these methods will be presented at the symposium. The experimental procedures being used will also be described.

## Acknowledgement

This research is sponsored by the Air Force Office of Scientific Research, Air Force Systems Command, USAF, under Grant No. AFOSR-77-3469. The United States Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright notation hereon.

## References

1. R. E. Collin and F. J. Zucker, "Antenna Theory, Part 1," Section 4.2, McGraw-Hill, New York, 1969.
2. Ibid., Section 3.3.
3. S. Silver, ed., "Microwave Antenna Theory and Design," Section 3-8, McGraw-Hill, New York, 1949.
4. Collin and Zucker, op. cit., Section 4.5.


FIGURE 1. ANTENNA/RADOME GEOMETRY FOR ANALYSIS.


FIGURE 2. AZIMUTH PATTERN FOR RECEIVING FORMULATION.


FIGURE 3. AZIMUTH PATTERN FOR TRANSMITTING FORMULATION.

# PARAMETRIC INVESTIGATION OF RADOME ANALYSIS METHODS 

Presented at<br>Fourteenth Electromagnetic Window Symposium<br>Georgia Institute of Technology Atlanta, Georgia<br>June 1978<br>G. K. Huddleston, H. L. Bassett, and J. M. Newton<br>Georgia Institute of Technology<br>School of Electrical Engineering and Engineering Experiment Station Atlanta, Georgia 30332

Numerous methods of radome analysis have been developed [1-9], and some comparisons of theoretical and measured results have been made for specific radome/antenna combinations [2,5,7,8]; however, no attempt has been made to define the ranges of antenna and radome parameters over which any given method of analysis yields acceptably accurate results.

This paper describes some early results of an investigation recently undertaken to determine the accuracies of various radome analysis methods under controlled conditions of antenna size and placement, wavelength, and radome size and shape. To carry out valid comparisons of various methods, a fundamental theory of radome analysis has been developed and is presented below. All existing methods, as well as some new ones, can be formulated in terms of the basic theory. Comparisons of computed results obtained for two methods of analysis are also presented. No experimental results are available at this time, but rather extensive measurements involving antennas and radomes of various sizes are planned.

## Theory

The Lorentz reciprocity theorem [11] is a starting point for the formulation of a basic theory of radome analysis. Field equivalence principles [12] are also important in suggesting approximate methods of obtaining the fields called for in the reciprocity theorem; more importantly, such theory is needed to obtain the transmitting formulation for radome analysis.

Consider the antenna/radome combination shown in Figure 1 where the surface $S$ encloses the antenna. Let a plane wave be incident on the radome from the direction $K_{A}$ expressed in the antenna coordinate system ( $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ ). Then application of the reciprocity theorem results in the following expression for the voltage produced at the antenna terminals by the incident field:

$$
\begin{equation*}
V_{R}\left(\hat{K}_{A}\right)=C \iint_{S}\left(\underline{E}_{T} \times \underline{H}_{R}-\underline{E}_{R} \times \underline{H}_{T}\right) \cdot \hat{n} d a \tag{1}
\end{equation*}
$$

where $C$ is a complex constant and where
$\mathrm{E}_{\mathrm{T}}, \mathrm{H}_{\mathrm{T}}=$ the electric and magnetic fields produced on S when the antenna is transmitting (and no fields are incident on the radome from the outside)
$\mathrm{E}_{\mathrm{R}}, \mathrm{H}_{\mathrm{R}}=$ the electric and magnetic fields produced on S when the plane wave is incident (and the antenna is passive or in the receive mode)
$\mathrm{n}=$ unit vector pointing out of the volume $V$ enclosed by $S$
da $=$ element of area on the surface $S$

The fields ( $\underline{E}_{R}, \underline{H}_{R}$ ) and ( $\underline{E}_{T}, \underline{H}_{T}$ ) are the total fields produced in each case and would correctiy include incident and all scattered components. The voltage given by Equation (1) is exact and serves as a basic tenet of radome analysis theory. The surface $S$ may be any conveniently chosen closed surface. Linear, homogenous, isotropic media are assumed. Time variations of the form $e^{j \omega t}$ are understood and suppressed.

The selection of the surface $S$ and the approximations used to determine the fields ( $\underline{E}_{T}, \underline{H}_{T}$ ) and ( $E_{R}, \underline{H}_{R}$ ) on this surface are the parameters which differentiate the various methods of radome analysis which are based on a receiving formulation. For example, Tricoles [5] and Huddleston and Joy [10] chose a planar surface coinciding with the antenna aperture for the surface $S$, ignoring the contribution of that portion of the surface needed to completely enclose the antenna. Huddleston and Joy used ray tracing to approximate the fields ( $\underline{E}_{R}, \underline{H}_{R}$ ) on S. Tricoles used field equivalence and induction theorems to determine these fields on $S$. Huddleston and Joy used the primary transmitting fields of the antenna to approximate ( $\underline{E}_{T}, \underline{H}_{T}$ ). Tricoles used measured values of antenna response.

Other approximate methods based on the receiving formulation in Equation (1) are obvious. Consider the surface $S$ which coincides with the inner surface of the radome. The fields ( $\underline{E}_{\mathrm{T}}, \underline{H}_{\mathrm{T}}$ ) on S may be approximated using modal expansions such as the PWS [8], a spherical wave expansion [13], or from theoretical analysis [14]. These fields should correctly contain reflected components which may be approximated using plane sheet transmission coefficients and Poynting's vector. The fields ( $\underline{E}_{R}, H_{R}$ ) on $S$ may be approximated using plane sheet transmission coefficients and ray tracing. The voltage received could then be obtained by performing the surface integration over the inside surface of the radome indicated by Equation (1).

The effects of reflections may also be included in the analysis. Let ( $E_{T}^{\prime}, \underline{H}_{T}^{\prime}$ ) represent the transmitting fields on the surface $S$ which coincides with the inner radome surface. Then at a point $P$ on the inner surface, the fields at all other points contribute components due to reflections given by [15]

$$
\begin{align*}
& E p=\frac{1}{4 \pi} \iint_{S}\left[-j \omega \mu \psi\left(\hat{\mathrm{n}} \times \underline{H}_{T}^{\prime}\right)+\left(\hat{\mathrm{n}} \times \underline{E}_{\mathrm{T}}^{\prime}\right) \times \nabla \psi+\left(\hat{\mathrm{n}} \cdot \underline{E}_{\mathrm{T}}^{\prime}\right) \nabla \psi\right] \mathrm{dS}  \tag{2}\\
& \left.\underline{H} p=\frac{1}{4 \pi} \iint_{\mathrm{S}}\left[j \omega \varepsilon\left(\hat{\mathrm{n}} \times \underline{E}_{\mathrm{T}}^{\prime}\right) \psi+\left(\hat{\mathrm{n}} \times \underline{H}_{T}^{\prime}\right) \times \nabla \psi+\left(\hat{\mathrm{n}} \cdot \underline{H}_{\mathrm{T}}^{\prime}\right) \nabla^{\prime}\right)\right] \mathrm{dS} \tag{3}
\end{align*}
$$

where

$$
\begin{equation*}
\psi=\frac{e^{-j k r}}{r} \tag{4}
\end{equation*}
$$

and where $r$ is the distance from $P$ to any other point on $S$. The importance of the contributions of first and higher order reflections has not been established.

A second generalized approach to radome analysis uses a transmitting formulation which does not consider explicitly the fields produced by an incident plane wave. Instead, the tangential fields produced by the antenna on a closed surface outside the radome are used to determine the fields anywhere in the unbounded, homogenous medium outside this surface. Equations (2) and (3) are the basic equations which apply, where the point $P$ is at a great distance from $S$ so that $E_{p}, H_{p}$ become the far zone fields $E_{T f f}$, Hetff $^{\text {radiated }}$ by the antenna in the presence of the radome. Selection of the surface $S$ and the approximations used to find the fields ( $E_{T}, H_{T}$ ) on $S$ are the parameters which, again, differentiate the various methods of radome analysis based on a transmitting formulation.

The voltage that would be received by the antenna which produces far zone fields $\underline{E}_{T f f}, \underline{H}_{T f f}$ is given by [23]

$$
\begin{equation*}
\mathrm{V}_{\mathrm{R}}\left(\hat{\mathrm{~K}}_{\mathrm{A}}\right)=\mathrm{C} \underline{E}_{\mathrm{Tff}} \cdot \hat{\mathrm{n}}_{\mathrm{b}} \tag{5}
\end{equation*}
$$

where C is a complex constant and $\mathrm{n}_{\mathrm{b}}$ is a generally complex vector which describes the orientation and polarization of an infinitesimal current element located in the direction given by $\mathrm{K}_{\mathrm{A}}$. Note that the current element would produce an
incident plane wave on the radome having the same polarization as that indicated by $\hat{n}_{b}$; hence, Equation (5) provides the connection between the receiving and transmitting formulations and is a third facet of a basic theory of radome analysis.

The above equations combine to form a fundamental theory of radome analysis. All existing analysis methods, as well as some new ones, can be cast in terms of this theory. The theory provides a rigorous framework in which the approximations which may be used in any analysis method can be clearly seen and their effects on predicted results assessed. Comparisons of the various methods in terms of speed of computations and accuracy can also be made.

All radome analysis methods of practical interest entail approximations of one form or another. Consequently, the only satisfactory way to determine the accuracy of any method is by comparison with experimental data. To cover the broad range of parameters that may be encountered in practice, combinations of radomes and antennas of various sizes should be carefully selected for measurement to yield the most useful true data for assessing the accuracies of different methods of analysis.

## Application

A computationally fast method of radome analysis based on a receiving formulation [10] results when the surface $S$ in Equation (1) is chosen to coincide with the planar aperture of the antenna whose radiating characteristics are represented using the plane wave spectrum formulation [17]. The difference receiving pattern in the azimuth plane for a vertically polarized monopulse antenna with square aperture (corners removed) of dimensions $4.3 \lambda \times 4.3 \lambda$ is shown in Figure 2 for the case of a Pyroceram radome of wall thickness $d=.22 \lambda$. The tangent ogive radome with fineness ratio $L / D=2.25$ gimballed so that its tip is positioned at $+12^{\circ}$ in the azimuth plane of the antenna. Execution time to generate this pattern and three others like it was 104 seconds (CDC Cyber 70).

For comparison, the pattern obtained for the same values of radome and antenna parameters when a transmitting formulation [9] is used is shown in Figure 3. In this method, a PWS representation is used to describe the antenna, and rays representing each plane wave are used to construct an equivalent aperture which includes the effects of the radome on each plane wave in the spectrum. The execution time to generate this pattern and three others was 60 seconds on the same computing system.

Other methods of analysis which utilize integration on the surface of the radome for both receiving and transmitting formulations are currently being implemented. Computed results obtained using these methods will be presented at the symposium. The
experimental procedures being used will also be described.

## Summary

A fundamental theory of radome analysis, which embodies all existing methods as well as some new ones, is presented. Computed results using two different methods of analysis have been obtained as preliminary data. Computed results obtained using additional methods of analysis will be presented at the symposium.

## Acknowledgement

This research is sponsored by the Air Force Office of Scientific Research, Air Force Systems Command, USAF, under Grant No. AFOSR-77-3469. The United States Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright notation hereon.

## References

1. "Microwave Antenna Theory and Design," edited by Samuel Silver, McGraw-Hill Book Company, Chapter 14, 1949.
2. N. R. Kilcoyne, "An Approximate Calculation of Radome Boresight Error," Proceedings of the USAF/Georgia Institute of Technology Symposium on Electromagnetic Windows, pp. 91-111, June 1968.
3. O. Snow, "Discussion of Ellipticity Produced by Radomes and Its Effects on Crossover Point Position for Conically Scanning Antennas," U. S. Naval Air Development Center, Report E15108, 1951.
4. P. I. Pressel, "Boresight Prediction Technique," Proceedings OSU-WADC Radome Symposium, 1956.
5. G. Tricoles, "Radiation Patterns and Boresight Error of a Microwave Antenna Enclosed in an Axially Symmetric Dielectric Shell," J. Optical Soc. of America, 54, No. 9, pp. 1094-1101, September 1964.
6. M. Tavis, "A Three-Dimensional Ray Tracing Method for the Calculation of Radome Boresight Error and Antenna Pattern Distortion," Report No. TOR-0059 (56860)-2, Air Force Systems Command, May 1971.
7. D. T. Paris, "Computer-Aided Radome Analysis," IEEE Transactions, AP-18, No. 1, pp. 7-15, January 1970.
8. D. C. F. Wu and R. C. Rudduck, "Application of P1ane Wave Spectrum Representation to Radome Analysis," Proceedings of the Tenth Symposium on Electromagnetic Windows, pp. 46-49, July 1970; also Final Technical Report 2969-4 (AD 722 634), March 1971.
9. E. B. Joy and G. K. Huddleston, "Radome Effects on Ground Mapping Radar," Contract DAAH01-72-C-0598, U. S. Army Missile Command, March 1973.
10. G. K. Huddleston and E. B. Joy, "Development of Fabrication and Processing Techniques for Laser Hardened Missile Radomes: Radome Electrical Design Analysis," MMC Purchase Agreement No. 573712, Martin Marietta Aerospace, March 1977.
11. R. E. Collin and F. J. Zucker, "Antenna Theory, Part 1," Section 4.2, McGraw-Hill Book Company, New York, 1969.
12. Ibid., Section 3-3.
13. A. C. Ludwig, "Near-Field Far-Field Transformations Using Sperical Wave Expansions," IEEE Transactions, AP-19, No. 2, pp. 214-220, March 1971.
14. D. T. Paris, "Digital Computer Analysis of Aperture Antennas," IEEE Transactions, AP-16, pp. 262-264, March 1968.
15. Silver, op. cit., Section 3-8, Equations (108)-(109).
16. Collin and Zucker, op.cit., Section 4.5.
17. H. G. Booker and P. C. Clemmow, "The Concept of an Angular Spectrum of Plane Waves, etc.," Proceedings IEE, 97, Part III, p. 11-17, 1950.


FIGURE 1. ANTENNA/RADOME GEOMETRY FOR ANALYSIS.


FIGURE 2. AZIMUTH PATTERN FOR RECEIVING FORMULATION.


FIGURE 3. AZIMUTH PATTERN FOR TRANSMITTING FORMULATION.


REPORT DOCumENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMEER [2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitlo)   PARAMETRIC INVESTIGATION OF RADOME ANALYSIS METHODS: SALIENT RESULTS	5. TYPE OF REPORT \& PERIOD COVERED Final Technical Report, Vol. 1 of 4 , 30 Sept. 177-31 Dec
7. AUTHOR(s)   G. K. Huddleston, H. L. Bassett, \& J. M. Newton	8. CONTRACT OR GRANT NUMBER(s) AFOSR-77-3469
9. PERFORMING ORGANIZATION NAME AND ADDRESS   Georgia Institute of Technology      Engineering Experiment Station, Atlanta, GA 30332	10. PROGRAM ELEMENT, PROJECT, TASK AREA \& WORK UNIT NUMBERS $61102 \mathrm{~F} \quad 2301 / \mathrm{A} 6$
11. CONTROLLING OFFICE NAME AND ADDRESS   Air Force Office of Scientific Research Physics Directorate (Code NP-77-148) Bolling Air Force Base, D. C. 20332	12. REPORT DATE   February l981   13. NUMBER OF PAGES   92
T4. MONITORING AGENCY NAME A ADDRESS(if difforent from Controling Office)	15. SECURITY CLASS. (of this report) UNCLASSIFIED   15a. DECLASSIFICATION/DOWNGRADING SCHEDULE

Approved for public release; distribution unlimited.
17. DISTRIBUTION STATEMENT (Of the abstract ontered in Block 20, if different from Report)
18. SUPPLEMENTARY NOTES
19. KEY WORDS (Continue on reverse side If necessary and Identify by block number)

Radome Analysis
Electromagnetic Analysis
Boresight Error
20. ABSTRACT (ContInue on reverse side if necessary and identify by block number)

The salient results, conclusions, and recommendations are presented for a three-year program of research to assess the accuracies and ranges of validities of computer-aided methods of radome analysis.

```
 by
```

G. K. Huddleston, H. L. Bassett, \& J. M. Newton
School of Electrical Engineering \&
Engineering Experiment Station
Georgia Institute of Technology
Atlanta, Georgia 30332
Final Technical Report, Volume I of IV
for
Air Force Office of Scientific Research (AFSC)
Physics Directorate (Code NP-77-148)
Bolling Air Force Base, D. C. 20332
under
Grant AFOSR-77-3469
30 September 1977 - 31 December 1980

## Table of Contents

Section Page
I. Introduction
II. Results.
III. Conclusions and Recommendations
Appendix A
Appendix B
Appendix C

## I. Introduction

The final technical report on this three-year radome research program consists of four volumes. This report, Volume I, presents the salient results conclusions, and recommendations of this research whose objective was to develop a general theory of radome analysis and to determine the accuracies and ranges of validity of three particular computer-aided radome analysis methods. The results are presented in appendices as copies of papers prepared for publication as summarized in the main body of this report.

Volume II documents the analytical method and Fortran computer code used to analyze the antenna/radome combinations using a fast receiving formulation based on Lorentz reciprocity and geometrical optics. Volume III documents the analytical method and additional Fortran software required for radome analysis based on the Huygens-Fresnel principle or surface integration. Volume IV documents the pattern and boresight error measurements made on eight combinations of three monopulse antennas and five tangent ogive radomes at 35 GHz .

Measured data is used as true data in assessing the accuracies of the computer codes. It is expected that the measured data obtained will be used in the future for similar purposes. It is also expected that the documented computer codes will serve as part of a technology base for use by researchers and practitioners in the radome technical community.
II. Results

Appendix A presents a paper which describes the theory of radome analysis developed during this investigation. The theory is simply an application
of the Huygens-Fresnel principle and Lorentz reciprocity to the radome problem. All methods of radome analysis appearing in the literature are embodied in this general theory. It provides the correct framework in which to think about radome analysis and to make objective comparisons between the various methods of analysis.

Appendix B presents a paper describing some antenna synthesis work that was undertaken during this research. A procedure is described whereby the aperture fields of the four-horn monopulse antenna without radome can be synthesized from measured, amplitude-only, far-field, principal plane patterns. A priori information about the geometry and excitation of the actual antenna is used to find a credible solution to an inverse source problem for which there would otherwise be no unique solution. In the absence of the radome, each analysis method accurately predicts the measured patterns.

Appendix $C$ presents comparisons of measured and computed boresight errors and radome losses for four of the eight antenna/radome combinations considered. The antennas and radomes used are briefly described. (More detailed descriptions are presented in Volume IV.) Qualitative conclusions about the accuracies of the methods can be made from the data presented; in addition, recommendations for future work are brought to light.
III. Conclusions and Recommendations

From the data presented in Appendix $C$, it is concluded that none of the computer aided radome analysis methods investigated consistently and accurately predicted the boresight errors and losses of the various antenna/ radome combinations used. For moderate size antennas and radomes (as defined in Appendix C), the fast receiving method predicts boresight errors reasonably accurately and is perhaps the fastest method available anywhere; however, for
small radomes and large radomes, the accuracy of the error predictions is not as good.

The surface integration method was not completely assessed for predictive accuracy because of unresolved problems with the code. A large part of the problem with the development of the code was the relatively long execution times required on the Cyber 70 system used. It is clear that because of the long execution times, use of the surface integration method will be restricted to the analysis of small radomes.

It is recommended that some "fine tuning" be done on the fast receiving method to improve its predictive accuracy over a larger range of antenna/radome parameters. Specifically, the ray tracing procedure should be modified to account for refractive effects and propagation of the fields along the rays. The expected improvement in accuracy, coupled with the inherent practicality of this code, make this recommended endeavor worthwhile.

It is also recommended that work be continued on the development of the surface integration method of analysis so that its predictive accuracy can be clearly established. A dedicated, small computer system (32-bit word length) is recommended for this work to avoid the anticipated high costs associated with very heavy use of a time-share system such as the Cyber 70 at Georgia Institue of Technology.

It is recommended that exact solutions of carefully selected antenna/ radome configurations be obtained for use as true data in the assessment of the accuracies of various computer-aided radome analysis methods. Configurations used must conform to those expected in the applications. The accuracies of the solutions and the solutions themselves must be impeccable. Until such time as this recommendation is carried out, measured data must continue to be used as true data.

As a parallel approach to exact solutions, it is recommended that numerical solutions be obtained on practical configurations of interest using modern numerical methods such as method of moments and integral equation formulations. The use of specialized computing structures for dedicated application to such electromagnetic radiation and scattering problems should be investigated.

Finally, it is recommended that experimental techniques be developed to help isolate deficiencies in the methods of analysis. The usual measurements of patterns and boresight errors simply do not provide the necessary information to pinpoint invalid assumptions and poor approximations in any analysis procedure. New experimental methods which make use of automated measurements and near-field/far-field transformations need to be developed.

# APPENDIX A <br> "Theory of Radome Analysis" <br> Submitted for Review for Publication <br> in <br> IEEE Transactions of the Antennas and Propagation Society 

November 1980

# G. K. Huddleston <br> School of Electrical Engineering Georgia Institute of Technology Atlanta, Georgia 30332 

## Abstract


#### Abstract

A basic theory of radome analysis is presented based on the reciprocity theorem and the Huygens-Fresnel principle. Receiving and transmitting formulations are developed. Techniques of analysis are presented to distinguish the salient features of radome analysis and to show the relationships between the theory and some existing methods of analysis. The equivalence between the receiving and transmitting cases is also established, both in general and explicitly for the fat-field case.


## I. INTRODUCTION

Radome analysis is the application of electromagnetic theory to determine the effects of protective dielectric structures on the electrical characteristics of antennas enclosed by them. Numerous methods of analysis have been developed for the prediction of radome effects; however, no unified theory has been advanced to provide a common basis of understanding of the various approaches taken and the approximations used therein. Furthermore, no comprehensive measurements have been reported which provide true data in determining the accuracies of the various methods when parameters such as antenna size, wavelength, radome size and shape are considered over the ranges that they are likely to assume in the applications.

This paper presents a theory of radome analysis which embodies known methods of analysis that have appeared in the literature. The theory is based on the reciprocity theorem [1] and the Huygens-Fresnel principle for electromagnetic fields [2,3] both of which are derivable from Maxwell's equations via the divergence theorem and the vector Green's theorem. The reciprocity theorem serves as the basis for the receiving formulation of radome analysis, and the Huygens-Fresnel principle is the basis for the transmitting formulation as seen in what follows. The equivalences of the two formulations are also established. Some approximations and techniques used in implementing the analyses are presented along with discussions which clarify the justifications for the approaches used in practice.

The development and presentation of this theory of radome analysis is motivated by an on-going parametric investigation of radome analysis methods [4]. Measured pattern data and boresight error data for three antenna sizes combined in fifteen combinations with five radomes have been obtained to serve as true data in determining the accuracies and ranges of validities of three conmon computer-aided analyses. Great care has been taken to ensure accurate modeling of the antennas such that, in the absence of a radome, each computer code accurately predicts the measured radiation patterns [5]. The theory provides the framework in which the methods can be compared, especially in regard to the approximations used, the validity of various assumptions made, and the equivalence of different computational procedures which yield, or should yield, the same result. The theory also provides the basis for developing test cases to verify the computer codes.

Development of radome analysis methods have paralleled the development of airborne radar systems whose complexities have increased over the years. Silver [6] illustrates the geometrical optics approaches taken up to 1949 and which were developed during the previous war years. Kilcoyne [7] presented a two-dimensional ray tracing method for analyzing radomes which utilized the digital computer, and is an extension of work done earlier by Snow [8] and by Pressel [9]. A more rigorous method of analysis was introduced in the same year by Van Doeren [10] using an integral equation to compute fields inside the radome caused by an incident plane wave. Tricoles [11] formulated a three-dimensional method of radome analysis based on Shelkunoff's induction and equivalence theorems. Tavis [12] describes a three-dimensional ray tracing technique to find the fields on an equivalent aperture external to an axially symmetric radome.

Paris [13] describes a three-dimensional radome analysis wherein the tangential fields on the outside surface of the radome due to the horn antenna radiating inside the radome are found. Wu and Rudduck [14] describe a three-dimensional method which uses the plane wave spectrum representation to characterize the antenna. Joy and Huddeston [15] describe a computationally fast, three-dimensional radome analysis which utilizes the plane wave spectrum (PWS) representation and exploits the Fast Fourier Transform (FFT) to speed up the computer calculations. Chesnut [16] has combined the program of $W u$ and Rudduck with the work of Paris to form a three-dimensional radome analysis method. Huddleston [17] has recently developed a three-dimensional radome analysis method which uses a general formulation based on the Lorentz reciprocity theorem. Siwiak, et al., [18] have recently applied the reaction theorem to the analysis of a tangent ogive radome at $X$-band frequencies to determine boresight error. Hayward, et al., [19] have compared the accuracies of two methods of analysis in the cases of large and small radomes to show that ray tracing does not accurately predict wavefront distortion in the case of small radomes.

## II. RECEIVING FORMULATION

The reciprocity theorem is a starting point for the formulation of a unified theory of radome analysis. The general reciprocity theorem [1] states that
$\oint_{S}\left(E_{a} \times{\underset{H}{b}}^{H_{b}} \underset{E_{b}}{H_{a}}\right) \cdot \hat{n} d a=\int_{V}\left(E_{b} \cdot{\underset{a}{a}}_{E_{a}}^{E_{a}} \cdot{\underset{J}{b}}^{H_{b}} \cdot \underline{J}_{a}^{m}+\underline{H}_{a} \cdot \underline{J}_{b}^{m}\right) \cdot d V$
where the surface $s$ encloses the volume $V$ containing two sets of electric and magnetic sources $\left(\underline{J}_{a}, \underline{J}_{a}^{m}\right),\left(\underline{J}_{b}, J_{b}^{m}\right)$ which give rise to electromagnetic fields ( $\underline{E}_{a}, \underline{H}_{a}$ ), ( $\underline{E}_{o}, \underline{H}_{b}$ ), respectively. (Time variations of the form $e^{j \omega t}$ are understood and suppressed).

Figure 1 illustrates a typical radome analysis situation where it is desired to determine the response $V_{a}$ of Antenna "a" to fields produced by Antenna "b". The closed surface $S$ in the reciprocity theorem is chosen to be $S_{0}+S_{1}$ so that the volume $V$ is the source-free region lying between Antenna "a" and the inner surface of the dielectric enclosure depicted in Figure 1. In this case, the right side of Equation (l) equates to zero (Lorentz reciprocity theorem), and the left side can be separated into two surface integrals as
where $\hat{n}$ is the unit normal to the surface and is directed positively out of the volume $V$. The fields $E_{a}, H_{a}$ are those produced on $S_{1}$ and $S_{0}$ by Antenna "a" when it is activated (transmitting) ; $E_{b}, H_{b}$ are the fields produced on $S_{1}$ and $S_{0}$ when Antenna " $b$ " is activated (and Antenna "a" is passive or receiving).

Let surface $S_{0}$ be divided into two parts: $S_{0}^{\prime}$ consisting of that portion of $S_{0}$ across the waveguiding structure connecting the generator of Antenna "a" to the radiating structure; $S_{0}$ " consisting of the remainder of $S_{0}$ and which coincides with the conducting surface of the antenna as indicated in the figure. The integral of the fields over $S_{0}{ }_{0}$ is identically zero [20] so that the left side of Equation (2) reduces to the integration over $S_{0}^{\prime}$. Now, in the many practical cases of interest, there exists a dominant mode of propagation over $S_{0}^{\prime}$ (e.g., $\mathrm{TE}_{10}$


FIGURE 1. GEOMETRY FOR RECEIVING FORMULATION USING RECIPROCITY THEOREM.
mode in rectangular waveguide) so that currents and voltages can be defined at this terminal plane so that there results

$$
\begin{equation*}
v_{a} I_{b}+V_{b} I_{a}=-\int_{S_{0}}\left(E_{a} \times{\underset{H}{b}}_{H_{b}} \times{\underset{a}{H}}_{a}\right) \cdot \hat{n} d a \tag{3}
\end{equation*}
$$

The currents and voltages are defined for the two cases of interest in Figure 2:

$$
V_{a}, I_{a}-\text { Voltage and current produced at } s_{0}^{\prime} b y \text { generator "a" }
$$ when generator " $b$ " is passive;

$V_{b}, I_{b}$ - Voltage and current produced at $S_{0}^{\prime}$ by generator " $b$ " when generator " a " is passive.

Linear impedance relationships can also be defined as indicated in Figure 2 such that (using $Y=1 / Z$ )

$$
\begin{equation*}
V_{a} I_{b}+V_{b} I_{a}=V_{a}\left(V_{b} Y_{a}\right)+V_{b}\left(V_{a} Y_{1}\right) \tag{4}
\end{equation*}
$$

Equating Equation (4) to Equation (2) and solving for the received voltage $V_{b}$ results in

$$
\begin{equation*}
V_{b}=\frac{V_{R E C}}{V_{a}\left(Y_{a}+Y_{1}\right)}=\frac{1}{V_{a}\left(Y_{a}+Y_{1}\right)} \int_{S_{1}}\left(E_{a} \times{\underset{b}{b}}^{H_{b}}{\underset{E}{E}}_{H_{a}}\right) \cdot \hat{n} d a \tag{5}
\end{equation*}
$$

where $V_{R E C}$ has been defined for convenience. This is one desired result. In most analysis situations, Antenna "a" and the dielectric enclosure comprise the antenna/radome combination. The separation of this combination and Antenna " $b$ " can be made very large so that the fields of " $b$ " are those of a transverse electromagnetic plane wave incident on the radome. In radar applications, the distant target is illuminated either

(a) Source "a" active,

(b) Source "a" passive,


Source "b" passive


Source "b" active

FIGURE 2. DEFINITIONS OF CIRCUIT PARAMETERS OF THE ANTENNAS.
by Antenna "a" or another antenna not shown in Figure 1. The reflection from the target comprises Antenna "b" in the analysis and, for large separation, arrives, again, as an incident plane wave on the radome. Note, however, that the receiving formulation embodied in Equation (5) is valid for either the near-field (small separation) or farfield (large) case. Also, superposition applies so that multiple targets or sources can be accommodated as linear combinations comprising the fields ${\underset{b}{b}},{\underset{H}{b}}$ in Equation (5).

Equation (5) is exact; however, in the evaluation of the integral, approximations to the actual fields on $S_{1}$ may be introduced so that inaccuracies in the computation of the received voltage may result. To see the effects of certain approximations, it is advantageous to make the following definitions of primary and scattered fields:

$$
\begin{align*}
& \underline{E}_{a}=\frac{E^{i}}{a o}+E_{a s}+E_{a s}^{\prime}  \tag{6}\\
& H_{a}=H_{a o}^{i}+H_{a s}+H_{a s}^{\prime} \tag{7}
\end{align*}
$$

where

$$
\begin{aligned}
& E_{a O}^{i} \frac{H}{a O}_{i}^{a} \text { - Fields on } S_{1} \text { due to Antenna "a" which contain no } \\
& \text { scattered field components; i.e., the fields that } \\
& \text { would exist on } S_{1} \text { in the absence of the dielectric. } \\
& E_{\text {as' }} H_{\text {as }} \text { - First order scattered fields on } S_{1} \text { due to Antenna "a"; } \\
& \text { i.e., fields reflected only once from material media } \\
& \text { outside } S_{1} \text { and from Antenna "b". } \\
& E_{\text {' }}^{\prime} \text { H' }^{\prime} \text { - Higher order scattered fields on } S_{1} \text { due to Antenna } \\
& \text { "a"; i.e., components caused by multiple scattering }
\end{aligned}
$$

between Antenna "a" and surrounding media, including Antenna "b".

Similar definitions can be made for Antenna "b" with respect to the surface $S_{1}$ as follows:

$$
\begin{align*}
& E_{b}=E_{b o}^{t}+E_{b s}+E_{b s}^{\prime}  \tag{8}\\
& H_{b}=H_{b o}^{t}+H_{b s}+H_{b s}^{\prime} \tag{9}
\end{align*}
$$

where $E_{b 0}^{t}$, $H_{+\infty}^{t}$ are the fields on $S_{1}$ due to Antenna " $b$ " and which contain no scattered components due to material media inside $S_{1}$, including Antenna

 order scattered fields. When these definitions are substituted into Equation (5) and the vector cross products evaluated, there results

$$
\begin{aligned}
& +\int_{S_{1}}\left(\underline{E}_{a o}^{i} \times{\underset{H}{b s}}^{H_{b s}} \times \underline{H}_{a o}^{i}\right) \cdot \hat{n} d a \\
& +\int_{S_{1}}\left(\underline{E}_{a s} \times{\left.\underset{H 0}{t}-E_{b o}^{t} \times \underline{H}_{a s}^{t}\right) \cdot \hat{n} d a}^{t}\right. \\
& +\int_{S_{1}}\left(\underline{E}_{a s} \times \underline{H}_{b s}-E_{b s} \times{\underset{a s}{ }) \cdot \hat{n} d a \quad ~}_{\text {da }}\right. \\
& \text { + Terms involving higher order scattered fields }
\end{aligned}
$$

(10)

The first integral on the right side of Equation (10) provides the primary contribution to the received voltage for those cases of interest where the dielectric is somewhat transparent to the incident fields $E_{b o}^{i} H_{b 0}^{i}$ of Antenna " $b$ ". The second and third integrals are each identically zero by virtue of the definitions of the scattered fields and the general reciprocity theorem as applied to the source-free volume $\overline{\mathrm{V}}$ consisting of the region outside $S_{1}$; i.e., since there are no sources of the defined fields in this region, the right side of Equation (1) and, hence, the second integral of Equation (10), are both zero. A similar argument holds for the third integral when the general reciprocity theorem is applied to the source-free region $V$ enclosed by $S_{1}$. The contribution of the fourth integral in Equation (10) depends on the scattering properties of Antenna "a" as well as on the reflective properties of the dielectric enclosure with respect to the incident fields $E_{-0^{\prime}}^{i} H_{a 0}^{i}$. It is difficult to assess the significance of these contributions and those of the integrals involving higher oxder scattered fields. At any rate, it is impractical in current computer-aided analyses to include scattering from the antenna inside the enclosure; hence, only the first term in Equation (10) is usually retained. The objective of practical radome analysis then centers on the determination of the fields in the integral
and on the evaluation of the integral itself.
Surfaces other than the inside surface $S_{1}$ of the dielectric of Figure 1 can also be selected for the evaluation of the received voltage
via Equation (10) or (11). For example, choose $S_{0}$ as before and choose $S_{1}$ to also coincide with the outer surface of Antenna "a", including the radiating aperture portion $S_{a p}$. Apply Lorentz reciprocity to the sourcefree volume contained between the antenna aperture and $S_{0}^{\prime}$ to yield

$$
\begin{equation*}
V_{\mathrm{REC}} \approx \int_{\mathrm{S}}\left(\underline{E}_{\mathrm{ap}}^{\mathrm{i}} \times{\underset{\mathrm{H}}{\mathrm{bo}}}_{\mathrm{t}}-\underline{E}_{\mathrm{E}}^{\mathrm{t}} \times \underline{\mathrm{H}}_{\mathrm{aO}}^{\mathrm{i}}\right) \cdot \hat{n} \mathrm{da} \tag{12}
\end{equation*}
$$

The fields ${\underset{E}{\text { ao }}}_{i}^{i} H_{\text {ao }}^{i}$ are the aperture fields of Antenna "a" when it is transmitting in the absence of the dielectric and are often known or specified for analysis purposes. The real difficulty arises in the determination of the fields $E_{b o}^{t} H_{b o}^{t}$ on the chosen surface $S_{1}$. And it is the choice of the surface $S_{1}$ and the approximations used to find the fields on it which distinguish the various methods of analysis based on the receiving formulation. More will be said concerning the determination of these fields in the next section.

Another choice of the surface of integration consists of the outer surface $S_{3}$ of the dielectric enclosure of Figure 1. First apply Equation (1) to the source-free region consisting of the dielectric itself as enclosed by its inner surface $S_{1}$ and its outer surface $S_{3}$ i i.e., $S=S_{1}+S_{3}$. Since the right side of Equation (1) is zero, and since the positive direction of $\hat{n}$ is out of $V$, it is seen from Equation (5) that

$$
\begin{equation*}
V_{R E C}=\int_{S}\left(E_{a} \times{\underset{b}{b}}_{H_{b}} \times \underset{-a}{H_{a}}\right) \cdot \hat{n} d a \tag{13}
\end{equation*}
$$

where $\hat{n}$ is the unit outward normal to the outer surface of the dielectric. It will be shown in a later section that Equation (13) is equivalent to the transmitting formulation to be discussed next.

A second generalized approach to radome analysis uses a transmitting formulation which does not explicitly consider the fields produced by the incident fields of a source outside the dielectric structure. Instead, the equivalence and uniqueness theorems of electromagnetics [21] are invoked to establish the result that the fields radiated by Antenna "a" into the unbounded, homogeneous region outside the dielectric enclosure can be found from knowledge of the tangential electric and magnetic fields on the outer surface of the dielectric. Moreover, there exists an integral formula for the actual computation of these fields. After Stratton and Chu [2], Silver [3] derives the general solution for the time-harmonic electromagnetic fields in a homogeneous medium which arise from a prescribed set of sources, including magnetic (equivalent) charges and currents. The derivation is based on Maxwell's equations (including the equations of continuity for charges and currents), a vector Green's theorem, and the free-space Green's function $\psi=e^{-j k r}$. The results, Equations (3.108) and (3.109) of Silver, are called the Huygens-Fresnel principle (also called Kirchhoff-Huygens principle) and are repeated here for convenience:

$$
\begin{align*}
& \underline{E}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=+\frac{T}{4 \pi} \int_{S}[-j \omega \mu \psi(\hat{n} x \underline{E})+\hat{(n \times E)} x \nabla \psi+\hat{(n \cdot E)} \nabla \psi] d S  \tag{14}\\
& \left.\underline{H}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\frac{T}{4 \pi} \int_{S}[j \omega \varepsilon(\hat{n} x \underline{E}) \psi+\hat{(n \times \underline{H})} x \nabla \psi+\hat{(n \cdot H}) \nabla \psi\right] d S \tag{15}
\end{align*}
$$

where $\hat{n}$ is the unit normal to $s$ which points into the source-free medium as indicated in Figure 3.


FIELD POINT ( $\left.x^{\prime}, y^{\prime}, z^{\prime}\right)$

FIGURE 3. GEOMETRY FOR HUYGENS--FRESNEL PRINCIPLE.

In the above equations, primed variables are the coordinates of the point at which the field is to be computed, and unprimed coordinates are used to designate the source coordinates lying on the surface $S$. The distance $r$ is measured from the field point $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ to the source point $(x, y, z)$ so that

$$
\begin{equation*}
r=\sqrt{\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+\left(z-z^{\prime}\right)^{2}} \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla \psi=-\left(j k+\frac{l}{r}\right) \psi \hat{r}=\left(j k+\frac{l}{r}\right) \psi \hat{r}_{1} \tag{17}
\end{equation*}
$$

where $r=-r_{1}$ is a unit vector directed along $r$ from the field point to the source point. The variable $T$ is adopted from the notation of Poggio and Miller [22] so that the fields at points on $S$ can also be included; it is given by

$$
T=\frac{1}{1-\Omega / 4 \pi}= \begin{cases}1 & \text { if } \Omega=0,\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \text { not on } S  \tag{18}\\ 2 & \text { if } \Omega=2 \pi,\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \text { on } S\end{cases}
$$

The terms $(\hat{n} \times \underline{E}),(\hat{n} \times \underline{H})$ in Equations (14) and (15) can be considered as equivalent magnetic and electric surface current densities

$$
\begin{align*}
& \underline{K}=\hat{n} \times \underline{H}  \tag{19}\\
& K_{\mathrm{II}}=-(\hat{\mathrm{n}} \times \underline{E}) \tag{20}
\end{align*}
$$

with corresponding equivalent surface charge densities

$$
\begin{align*}
& \eta=\hat{(n \cdot E)}  \tag{2l}\\
& \eta_{m}=(\hat{n} \cdot \underline{H}) \tag{22}
\end{align*}
$$

These equivalent currents and charges are the sources of the fields $\underline{E}, \underline{H}$ in the region outside the dielectric enclosure. Using the equation of continuity for surface currents and charges [23].

$$
\begin{equation*}
\nabla_{S} \cdot \underline{k}+\frac{\partial \eta}{\partial t}=0 \tag{23}
\end{equation*}
$$

the terms in Equations (14) and (15) involving normal field components may be rewritten for the time-harmonic case as

$$
\begin{align*}
& \hat{n} \cdot \underline{E}=\frac{j}{\omega \varepsilon} \nabla_{S} \cdot(\hat{n} \times \underline{H})  \tag{24}\\
& \hat{n} \cdot \underline{H}=\frac{j}{\omega \mu} \nabla_{S} \cdot(\underline{E} \times \hat{n}) \tag{25}
\end{align*}
$$

where $\nabla_{S}$. is the "surface divergence". Thus, the fields $\underline{E}$, $\underline{H}$ in $V$ are expressible entirely in terms of the tangential fields on $S$ as is in keeping with the uniqueness theorem. (Note, however, that the surface divergence involves first order partial derivatives whose numerical computation may not be desirable.)

Implicit in the application of equivalent surface charges and currents is Love's equivalence principle [24]. It is a special case of the general field equivalence principle [25] in that a null field is postuated inside the surface $S$, and the charges and currents of Equations (19)-(22)
are required on $S$ to maintain the original field $E$, $\underline{H}$ outside $S$. Hence, an application of the Huygens-Fresnel integrals using these surface currents to find the fields at a point inside $S$ would necessarily yield a null result. This observation is important when applying the HuygensFresnel integrals to find specially defined fields inside the radome as discussed below.

The integral representations in Equations (14) and (15) for the fields radiated by Antenna "a" into the homogeneous, unbounded medium outside the radome are exact for points up to and including the surface S; however, the difficulty in analysis is the accurate determination of fields E, $\underline{H}$ on S. To gain further insight into this problem, consider the geometry of Figure 4. Define primary and scattered fields of the antenna with respect to surfaces $S_{1}$ and $S_{2}$ as was done in Equations (6) and (7) of the previous section. Let the primary fields $E_{a 0}, H_{-a}$ on $S_{2}$ be known. Then the primary fields incident on surface $S_{1}$ can be found via Equations (14) and (15) above where the surface of integration is now $S_{2}$ of Figure 4; i.e.,

$$
\begin{equation*}
\mathrm{E}_{\mathrm{ao}}\left(\mathrm{~S}_{1}\right)=\frac{1}{4 \pi} \int_{\mathrm{S}_{2}} \mathrm{H}_{\mathrm{F}}\left\{\hat{\mathrm{n}}, \underline{\mathrm{E}}_{\mathrm{ao}}, \mathrm{H}_{\mathrm{ao}}\right\} \mathrm{dS} \tag{26}
\end{equation*}
$$

where the Huygens-Fresnel operator $H_{F}\{ \}$ is defined here to be the integrand of Equation (14). A similar expression holds for the magnetic
 would exist at $S_{1}$ in the absence of the dielectric.

The first-order scattered fields $\underset{\text { as' }}{ } H_{\text {as }}$ on $S_{1}$ are those caused by the boundary $S_{1}$ and the media outside $S_{1}$. A very common approximation for this complicated scattering process utilizes the results


FIGURE 4. GEOMETRY USED TO COMPUTE FIELDS ON SURFACES OF RADOME AND TO COMPUTE FAR FIELDS.
of plane wave interaction with a dielectric interface: at each point on $S_{1}$, the incident fields $\underset{a 0}{ }{ }^{\prime} \underset{a}{H}$ are approximated locally as a plane wave, and the dielectric is assumed to have the same effect as a plane dielectric panel. The normal to the dielectric surface and the direction of propagation of the incident fields define the plane of incidence and the angle of incidence. The incident electric field is resolved into components perpendicular to and parallel to the plane of incidence as illustrated in Figure 5. The flat panel reflection coefficients $R_{\perp}, R_{\|}$are then applied to the incident fields to find estimates of the first-order scattered fields; i.e.

$$
\begin{equation*}
\underline{E}_{\mathrm{as}} \approx \hat{a}_{\perp}\left(\underline{E}_{\mathrm{ao}} \cdot \hat{a}_{\perp}\right) R_{\perp}+\hat{a}_{\|}\left(\underline{E}_{\mathrm{ao}} \cdot \hat{a}_{\|}\right) \mathrm{R}_{\|} \triangleq \underline{E}_{\mathrm{ao}} \cdot R \tag{27}
\end{equation*}
$$

where the dyadic $\underset{=}{R}$ is defined.

The flat panel transmission coefficients $T_{\perp}, T_{\|}$may also be used to estimate the fields transmitted to the outside surface; i.e.,

$$
\begin{align*}
& \underline{E}_{a o}^{t} \approx \hat{a}_{\perp}\left(E_{a o} \cdot \hat{a}_{\perp}\right) T_{\perp}+\hat{a}_{\|}\left(E_{a o} \cdot \hat{a}_{\|}\right) T_{\|} \triangleq \underline{E}_{a o} \cdot \frac{T}{=}  \tag{28}\\
& \left.\left.\underline{H}_{a o}^{t}=\hat{a}_{\perp} \underline{H}_{a o} \cdot \hat{a}_{\perp}\right) T_{\|}+\hat{a}_{\|} \underline{H}_{a o} \cdot \hat{a}_{\|}\right) T_{\perp} \triangleq \hat{H}_{a o} \cdot \underline{T}^{\prime} \tag{29}
\end{align*}
$$

When $E_{a 0}^{t}, H_{a o}^{t}$ are used in Equations (14) and (15), a first-order approximation to the radiated fields outside the dielectric is obtained.

The procedure just described is that used earlier by Paris [13]
and emulated by Wu and Rudduck [14] and Chesnut [16]. The direction of propagation $\hat{k}$ of the incident field was taken to be that of the Poynting


FIGURE 5. PLANE WAVE PROPAGATION THROUGH AN infinite plane sheet.
vector or real power flow. Also, since only far-field patterns were of interest, the usual simplifying approximations were applied to Equations (14) and (15) to obtain the following far-field approximations

$$
\begin{gather*}
\underline{E}_{f f}\left(\hat{R R}_{1}\right)=\frac{-j \omega \mu}{4 \pi R} e^{-j k R} \int_{S_{3}}\left[\hat{n x H}-\left((\hat{n x H}) \cdot \hat{R}_{1}\right) \hat{R}_{1}+\frac{(\underline{E x n}) \times \hat{R}_{1}}{\eta_{0}}\right] e^{j k \underline{\rho} \cdot \hat{R}_{1}} d v  \tag{30}\\
\underline{H}_{f f}\left(\hat{R R}_{1}\right)=\frac{\hat{R}_{1} \times \underline{E}_{f f}}{\eta_{0}} \tag{31}
\end{gather*}
$$

where $\eta_{0}=\sqrt{\mu / \varepsilon}$ is the characteristic impedance of free space and where the geometry variables are defined in Figure 4. Note that the second term in the integrand of Equation (30) is the radial component of $\hat{n} x$ which is subtracted to ensure that only transverse ( $t \hat{R}_{1}$ ) components of the fields are found in the far zone. Paris used the fields given by Equations (28) and (29) in the integrand of Equation (30).

The first-order scattered fields $\underset{E_{a}}{ }{ }^{\prime} \underset{\text { Has }}{ }$ on surface $S_{1}$ also contribute to the incident fields at the surface $S_{1}$ as indicated by the dashed secondary ray in Figure 4. To formulate this contribution, consider the computation of the field $E_{a s}$ at an interior point $P$ of the


$$
\begin{equation*}
\underline{E}_{\mathrm{as}}(P)=\frac{T}{4 \pi} \int_{S_{1}} H_{F}\left\{\hat{-\hat{n}}, \underline{E}_{a s}, \underline{H}_{a s}\right\} \mathrm{ds} \tag{32}
\end{equation*}
$$

where $-\hat{n}$ is the unit inward normal to $S_{1}$ and $T=1$. On surface $S_{1}$ write Eas' $\frac{\mathrm{H}}{\mathrm{as}}$ as
where $\underset{=}{R} \underline{R}^{\prime}$ are flat panel reflection dyadics already defined, and where $E_{a s \prime}^{\prime \prime} H_{a s}^{\prime \prime}$ represent the contributions to $E_{a s} H_{a s}$ at each point on $S_{1}$ from radiation by the fields at every other point. Substitute Equations (33) and (34) into Equation (32) with $T=2$ for $P$ on $S_{1}$ to yield

$$
\begin{equation*}
\underline{E}_{\mathrm{as}}\left(\mathrm{~S}_{1}\right)=\frac{1}{2 \pi} \int_{\mathrm{S}_{1}} \mathrm{H}_{\mathrm{F}}\left\{\hat{-\mathrm{n}}, \underline{\mathrm{E}} \mathrm{ao} \cdot \underline{\mathrm{R}}+\underline{\mathrm{E}}_{\mathrm{as}}^{\prime \prime} \underline{\mathrm{H}}_{\mathrm{ao}} \cdot \underline{R}^{\prime}+\underline{H}_{\mathrm{as}}^{\prime \prime}\right\} \mathrm{dS} \tag{35}
\end{equation*}
$$

Carry out the integration on the directly reflected terms to yield

$$
\begin{equation*}
E_{a s}\left(S_{1}\right)=E_{a o} \cdot \frac{R}{=}+\frac{1}{2 \pi} \int_{S_{1}^{\prime}} H_{F}\left\{-\hat{n}, E_{a s}^{\prime \prime}, H_{a s}^{\prime \prime}\right\} d S \tag{36}
\end{equation*}
$$

where $S_{1}^{\prime}$ is surface $S_{1}$ with the point of interest excluded.
The fields $\underset{\text { " }}{\text { " }}$ " ${ }^{H}$ "as are, of course, unknown; however, a first-order approximation to $E_{\text {" }}$ as at point $P$ on $S_{1}$ is

That is, the directly reflected fields at every other point on $S_{1}$ are used to determine $E_{a s}^{"}$ at the point of interest on $S_{1}$. The fields $E$ " ${ }^{\prime \prime} H^{\prime \prime}$ as at each point on $S_{1}$ should then be added to incident fields $\underline{E}_{\mathrm{ao}}, \frac{\mathrm{H}}{\mathrm{ao}}$ to produce a second order estimate to the fields on the outside surface of the dielectric via Equations (28) and (29). Hence, an approximate, iterative procedure to compute the effects of the first-order scattered fields on the final radiated fields is formulated.

An important hypothesis for the validity of Equations (14) and (15) is that the fields $E$, $\underline{H}$ on $S$ satisfy Maxwell's equations, including the equations of continuity. If this hypothesis is not met, the fields
computed at points not on $S$ will still satisfy Maxwell's equations provided only that the equations of continuity are satisfied on $S$; e.g., if surface currents are terminated abruptly, then a line of surface charge must be explicitly included in the field expressions [26]. If the hypothesis that $E$, $H$ on $S$ satisfy Maxwell's equations is met, then the equations of continuity are automatically satisfied; moreover, the expressions in Equations (14) and (15) are valid for points on surface $S$ as well as for points outside. Now, the fields given by Equations (26), (33), (34), and (37) do satisfy Maxwell's equations; however, when the approximation in Equation (37) is substituted into Equation (33), the latter may no longer satisfy Maxwell's equations on $S_{1}$ because of the first term. Hence, a number of iterations may be required before the true values of $E$ as' $\underset{a}{H}$ on $S_{1}$ are found.

Other approaches to the determination of the first-order scattered fields $\underset{a}{ }{ }_{\mathrm{as}}, \underline{H}$ as include the integral equation formulation discussed by Poggio and Miller [22] for scattering from dielectric bodies. In this approach for the geometry of Figure 4, integral expressions are written in each region for the electric and magnetic fields in terms of the equivalent surface currents and charges via Equations (14) and (15). In Region $I$ there are added terms TE ${ }_{\text {ao }}$ TH in the integral expressions due to the incident fields. The boundary conditions at each material interface are then written using the integral expressions, resulting in a system of integral equations in the unknown surface charges and currents. In principle, the equations can be solved by the method of moments [27] or by iterative methods such as discussed above. The radiation fields in Region III could then be found directly from the solutions for the surface currents and charges on $S_{3}$ via Equations (14) and (15); however,
the contributions of the higher order scattered fields would not be included.

The techniques discussed in this section for the determination of the fields on a specified surface are directly applicable to the receiving formulation of the previous section. Most notably, in Equation (12), it is necessary to find the fields $E_{b o}^{t} H_{b o}^{t}$ of Antenna "b" on the surface $S_{\text {ap }}$ which coincides with the radiating aperture of Antenna "a". When Antenna " $b$ " is greatly removed, the fields incident on the outside of the dielectric are those of an infinite plane wave. Appropriate adaptations of Equations (28) and (29) could be used to estimate the fields $E_{-b o}^{t} H_{-\infty}^{t}$ on the inner surface of the dielectric enclosure. The Huygens-Fresnel integrals of Equations (14) and (15) could then be applied to transform these fields to the surface $\mathrm{S}_{\mathrm{ap}}$. This approach is essentially that developed by Tricoles [28]. An integral equation approach could also be used, including the one described by Van Doeren [10].

## IV. EQUIVALENCE OF FORMULATIONS

It is well known that the receiving and transmitting patterns of an antenna in free space are identical. In this section, it is theoretically demonstrated that the receiving and transmitting patterns for an antenna enclosed by a dielectric radome as in Figure 1 are also identical, and that the receiving and transmitting formulations of radome analysis lead to identical results. Establishment of the equivalence yields insight into the computational advantages of one formulation over the other and provides a means to compare numerical results obtained using the two approaches.

Consider the geometry of Figure 6 where $\hat{n}_{b}$ represents an infinitesimal electric current source of strength $I_{b}$, length $\Delta l$, and orientation $\hat{n}_{b}$ located at the point ( $x^{\prime}, y^{\prime}, z^{\prime}$ ) which is a great distance $R$ from the origin of coordinates. For definiteness, $\hat{n}_{b}$ is transverse to $\hat{R}_{1}$, which is the orientation that would normally be assigned for the measurement of the radiation pattern of Antenna "a" enclosed by the surface $S_{3}$. The fields $E$, $H$ at ( $X^{\prime}, y^{\prime}, z^{\prime}$ ) due to Antenna "a" are given by Equations (14) and (15). For clarity, let ${\underset{T}{T}},{\underset{T}{T}}^{H}$ represent the fields on $S_{3}$ produced by Antenna "a" when it is transmitting.

Let $E_{R^{\prime}}, H_{R}$ be the fields produced on $S_{3}$ by the current element $\hat{n}_{b}$. An application of the general reciprocity theorem to the unbounded region yields

$$
\begin{equation*}
\int_{S_{3}}\left(\underline{E}_{T} \times{\underset{R}{R}}^{H_{R}} \underset{E_{R}}{H_{T}}\right) \cdot \hat{n} d S=-\underline{E} \cdot \hat{n}_{b} I_{b} \Delta l \tag{38}
\end{equation*}
$$

A second application of the reciprocity theorem to Antenna "a" inside the surface $S_{3}$ as was done in the discussion leading up to Equation (13) yields the result that the complex voltage response of Antenna "a" to the fields $E_{R}, H_{R}$ incident on $S_{3}$ is proportional to the integral in Equation (38); hence,

$$
\begin{equation*}
V_{R}=I_{b} \Delta l \underline{E} \cdot \hat{n}_{b}=C \int_{S_{3}}\left(\underline{E}_{T} \times{\underset{H}{R}}^{H_{R}} \underline{E}_{R} \times{\underset{T}{T}}^{\prime}\right) \cdot \hat{n} d S \tag{39}
\end{equation*}
$$

where $C$ is a complex constant.

Equation (39) provides the connection between the receiving and transmitting formulations and, as such, represents the third facet of


FIGURE 6. GEOMETRY USED TO ESTABLISH EQUIVALENCE BETWEEN THE RECEIVING AND TRANSMITTING FORMULATIONS OF RADOME ANALYSIS.
the theory of radome analysis. Basically, it states that if $\underline{E}, \underline{H}$ are the fields of Antenna "a" at ( $x^{\prime}, Y^{\prime}, z^{\prime}$ ) as determined via the Huygens-Fresnel principle, then the voltage response of Antenna "a" (when receiving) to an elementary current source at ( $x^{\prime}, y^{\prime}, z^{\prime}$ ) is given succinctly by Equation (39) as $I_{b} \Delta l E \cdot \hat{n}_{b}$. An antenna more complicated than the elementary current source could be assumed for Antenna "b": for the far-zone case, the same results would be obtained since the radiation and reception properties of the antenna can be embodied in a complex effective vector length $\hat{h}$ which is entirely analogous to $\hat{n}_{b}$ [29]; for the nearfield case, the approach described by Paris et al. [30] would be required.

Even though Equation (39) is valid regardless of the separation and orientation of the elementary source, it is desired here to explicitly establish the second equality in that equation for the far-zone case. To this end, it is noted that the fields $E_{R^{\prime}}^{i} H_{R}^{i}$ on $S_{3}$ are those of a plane electromagnetic wave propagating in the $\hat{k}=-\hat{R}_{1}$ direction with polarization properties given by $\hat{n}_{b}$ according to

$$
\begin{align*}
& \underline{E}_{R}^{i}=j \omega \mu \frac{e^{-j k R}}{R} \hat{n}_{b} e^{j k \hat{k} \cdot \underline{p}}  \tag{40}\\
& \underline{H}_{R}^{i}=\frac{\hat{k} \times \underline{E}_{R}}{\eta_{o}}=j k \frac{e^{-j k R}}{R} e^{j k \hat{k} \cdot \underline{\rho}}\left(\hat{n}_{b} \times \hat{R}_{1}\right) \tag{41}
\end{align*}
$$

where $k=\omega \mu / \eta_{0}=2 \pi / \lambda$ and where $\underline{\rho}$ is the position vector from the origin of coordinates to the source point on $S_{3}$ as indicated in Figure 6. The constant $C$ in Equation (39) will be chosen to conform to these explicit expressions for the incident plane wave. When Equation (14) is substituted for $\underline{E}$ in $I_{b} \Delta l \underline{E} \cdot \hat{n}_{b}$, there results

$$
\begin{align*}
& V_{R}=\frac{I_{b} \Delta l}{4 \pi} \int_{S}\left[-j \omega \mu \frac{e^{-j k R}}{R} e^{j k \hat{k} \cdot \underline{\rho}} \hat{n}_{b} \cdot\left(\hat{n} \times H_{T}\right)+\hat{n}_{b} \cdot\left(\hat{n} \times E_{T}\right)\right. \\
& \left.\left.x R_{l} \frac{j k e^{-j k R}}{R} e^{j k \hat{k} \cdot \underline{\rho}}\right)+\hat{n}_{b} \cdot \nabla \psi_{f f}\left(\hat{n} \cdot E_{T}\right)\right] d S \tag{42}
\end{align*}
$$

where the following asymptotic relations have been used:

$$
\begin{align*}
& r \sim R-\underline{R}_{1} \cdot \underline{\rho}  \tag{43}\\
& \frac{e^{-j k r}}{r} \sim \frac{e^{-j k R}}{R} e^{j k \hat{k} \cdot \underline{\rho}}  \tag{44}\\
& \underline{\nabla} \psi \sim \underline{\nabla} \psi_{f f}=\hat{R}_{1} j k \frac{e^{-j k R}}{R} e^{j k \hat{k} \cdot \underline{\rho}} \tag{45}
\end{align*}
$$

Applying the vector identity $\underline{a} \cdot \underline{b} \times \underline{c}=\underline{b} \cdot \underline{c} \times \underline{a}$ to the first term in the integrand of Equation (42) yields

$$
\begin{align*}
-j \omega \mu \frac{e^{-j k R}}{R} e^{j k \hat{k} \cdot \underline{\rho}} \hat{n}_{b} \cdot\left(\hat{n} \times \underline{H}_{T}\right) & =-j \omega \mu \frac{e^{-j k R}}{R} \hat{n} \cdot \underline{H}_{T} \times \hat{n}_{b} e^{j k \hat{k} \cdot \underline{\rho}}  \tag{46}\\
& =E_{R}^{i} \times \underline{H}_{T} \cdot \hat{n} \tag{47}
\end{align*}
$$

i.e., it is equal to the negative of the second term of the integrand in Equation (39). Repeated application of the same vector identity to the second term in the integrand of Equation (42) yields

$$
\begin{align*}
\hat{n}_{b} \cdot\left(\left(\hat{n} \times E_{T}\right) \times \hat{R}_{l} \frac{j k e^{-j k R}}{R} e^{j k \hat{k} \cdot \underline{\rho}}\right) & =\hat{n} \cdot\left(E_{T} \times\left(j k \frac{e^{-j k R}}{R} e^{j k \hat{k} \cdot \underline{\rho}} \hat{R}_{l} \times \hat{n}_{b}\right)\right)  \tag{48}\\
& =-E_{T} \times H_{R}^{i} \tag{49}
\end{align*}
$$

i.e., it is equal to the negative of the first term in the integrand of Equation (39). The third term in the integrand of Equation (42) is identically zero since ${\hat{n_{b}}}_{b}$ is perpendicular to $\underline{\nabla}_{f f}$. Collecting results yields the final desired result where the complex constant $C$ is chosen to be

$$
\begin{equation*}
C=-\frac{I_{b} \Delta \ell}{4 \pi} \tag{50}
\end{equation*}
$$

to ensure equality.

A concise application of the foregoing analysis is to show that the response of Antenna "a" to the incident plane wave depends only on the incident fields $E_{R^{\prime}}^{i} H_{R}^{i}$ and not on the scattered fields $E_{R S}, H_{R S}$. Direct examination of the first equality in Equation (39), as well as examination of Equations (47) and (49), revelas that this is indeed the case. The total fields $E_{R^{\prime}},{\underset{R}{R}}^{H_{R}}$ on $S_{3}$ are given by the superposition of the incident and the scattered fields as

$$
\begin{align*}
& E_{R}=E_{R}^{i}+E_{R S}  \tag{51}\\
& H_{R}=H_{R}^{i}+H_{R S} \tag{52}
\end{align*}
$$

Substituting into the reciprocity integral of Equation (39) yields


The second integral must be identically zero because of the equivalence established explicitly above; also, it must be zero by virtue of the
reciprocity theorem itself as discussed in Section II above following Equation (10).

## V. CONCLUSIONS

The theory of radome analysis is based entirely on the reciprocity theorem and the Huygens-Fresnel (or Kirchoff-Huygens) principle, both of which are derivable from Maxwell's equations via a vector Green's theorem and the divergence theorem (Gauss' Law). All methods of radome analysis can be cast in terms of the theory presented to provide a common basis of understanding, to clarify any approximations, and to provide a basis of comparison for the procedures used and numerical results obtained. The theory presented provides the correct framework in which to think about radome analysis. Its understanding is of paramount importance to the correct development of new analysis methods which may utilize modern numerical methods such as method of moments, GTD, and hybrids of the two. The theory provides the basis for the development of even newer methods of analysis which may rely on special computer architectures or networks. Its presentation here provides a solid theoretical foundation for future thrusts in this important area.

## ACKNOWLEDGMENTS

This research was sponsored by the Air Force Office of Scientific Research under Grant AFOSR-77-3469. The United States Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright notation hereon.

## REFERENCES

1. R. F. Harrington and A. T. Villeneuve, "Reciprocal relations for gyrotropic media", IRE Trans., Vol. MMT-6, pp. 308-310, July 1958.
2. J. A. Stratton and L. J. Chu, "Diffraction theory of electromagnetic waves", Physical Review, Vol. 56, pp. 99-107, July 1939.
3. S. Silver, Microwave Antenna Theory and Design, New York: McGrawHill, 1949, pp. 80-84.
4. G. K. Huddleston, "Aperture synthesis of monopulse antenna for radome analysis using limited measured pattern data", submitted to IEEE Trans., AP, September 1980.
5. G. K. Huddleston, H. L. Bassett, and J. M. Newton, "Parametric investigation of radome analysis methods", 1978 IEEE AP-S Symposium Digest, pp. 199-201, 1978.
6. S. Silver, ibid., pp. 522-542.
7. N. R. Kilcoyne, "An approximate calculation of radome boresight error", Proc. USAF/Georgia Inst. of Tech. Symp. on Electromagnetic Windows, pp. 91-lll, June 1968.
8. O. Snow, "Discussion of ellipticity produced by radomes and its effects on crossover point position for conically scanning antennas", U. S. Naval Air Development Center, Rpt. El5108, 1951.
9. P. I. Pressel, "Boresight prediction technique", Proc. OSU-WADC Radome Symposium, 1956.
10. R. E. VanDoeren, "Application of an integral equation method to scattering from dielectric rings", Proc. of the Symposium on Electromagnetic Windows, pp. 113-127, June 1968.
11. G. Tricoles, "Radiation patterns and boresight error of a microwave antenna enclosed in an axially symmetric dielectric shall", J. Opt. Soc. of Amer., 54, No. 9, pp. 1094-1101, Sept. 1964.
12. M. Tavis, "A three-dimensional ray tracing method for the calculation of radome boresight error and antenna pattern distortion", Report No. TOR-0059 (56860) -2, Air Force Systems Command, May 1971.
13. D. T. Paris, "Computer-aided radome analysis", IEEE Trans., AP-18, No. 1, pp. 7-15, Jan. 1970.
14. D.C.F. Wu and R. C. Rudduck, "Application of plane wave spectrum representation to radome analysis", Proc. of the Tenth Symposium on Electromagnetic Windows, pp. 46-49, July 1970; also Final Report 2969-4 (AD 722 634), March 1971.
15. E. B. Joy and G. K. Huddleston, "Radome effects on ground mapping radar", Contract DAAHO1-72-C-0598, U. S. Army Missile Command, March 1973.
16. Robert Chesnut, "LAMPS radome design", Proc. of the Thirteenth Symposium on Electromagnetic Windows, pp. 73-78, Sept. 1976.
17. G. K. Huddleston and E. B. Joy, "Development of fabrication and processing techniques for laser hardened missile radomes: radome electrical design analysis", MMC Purchase Agreement No. 573712, MartinMarietta Aerospace, March 1977.
18. K. Siwiak, T. Dowling, L. R. Lewis, "The reaction approach to radome induced boresight error analysis", 1978 Inter. IEEE Symp. Digest, Antennas and Prop., pp. 203-205, May 1978.
19. R. A. Hayward, E. L. Rope, and G. P. Tricoles, "Accuracy of two methods for numerical analysis of radome electromagnetic effects", Proc. of the Fourteenth Symp. on Electromagnetic Windows, pp. 5355, June 1978.
20. R. E. Collin and F. J. Zucker, Antenna Theory, Part 1, New York: McGraw-Hill, 1961, pp. 94-98.
21. R. F. Harrington, Time-Harmonic Electromagnetic Fields, New York: McGraw-Hill, 1961, pp. 100-110.
22. A. J. Poggio and E. K. Miller, "Integral equation solutions of three-dimensional scattering problems", in Computer Techniques for Electromagnetics, R. Mittra, Ed., New York: Pergamon, 1973, Ch. 4.
23. S. Silver, ibid., p. 63.
24. A.E.H. Love, "The integration of the equations of propagation of electric waves", Philosophical Transactions of the Royal Society of London, Vol. 197-A.287, pp. 1-45, February 1901.
25. R. F. Harrington, ibid., pp. 106-1l0.
26. S. Silver, ibid., pp. 146-149.
27. R. F. Harrington, Field Computation by Moment Methods, New York: McMillan, 1968.
28. R. A. Hayward, E. L. Rope, and G. Tricoles, "Radome boresight error and its relation to wavefront distortion". Proceedings of l3th Symposium on Electromagnetic Windows, Atlanta, Georgia, pp. 87-91, September 1976.
29. Collin and Zucker, ibid., p. 105.
30. D. T. Paris, E. B. Joy, W. M. Leach, and G. P. Rodrigue, "Basic theory of probe-compensated near-field measurements", IEEE Trans., Vol. AP-26, No. 3, pp. 373-379, May 1978.

## APPENDIX B

# "Aperture Synthesis of Monopulse Antenna for Radome Analysis Using Limited Measured Pattern Data" Submitted for Review for Publication in <br> IEEE Transactions of the Antennas and Propagation Society 

September 1980

G. K. Huddleston<br>School of Electrical Engineering Georgia Institute of Technology Atlanta, Georgia 30332 404-894-2928


#### Abstract

A planar aperture synthesis procedure which predicts measured radiation pattern data accurately and which exploits known physical parameters of the actual antenna is described for use in computeraided radome analysis. The plane wave spectrum (PWS) representation, with the geometrical optics approximation, is used to characterize radiation from the array of four identical, discrete, conical horn elements that was studied. Solutions for the PWS of each element from measured array patterns over the visible region are presented, and a digital signal processing algorithm is described for extrapolating the aperture-limited PWS into the evanescent region as required to determine the near field of each element. The element near fields, having bounded support, are combined to produce a near field for the complete array. The array near field is used in a computer-aided radome analysis to demonstrate the accuracy to which the measured antenna patterns are predicted for the case of a free space radome. For completeness, comparisons of measured and computed patterns for a tangent ogive Rexolite $\left(\varepsilon_{r}=2.54\right.$ ) radome are presented.


## INTRODUCTION

Valid comparisons of the accuracies of radome analysis methods using measured radiation patterns as true data [1] require that each method under consideration be capable of predicting accurately from a suitable antenna near field the antenna patterns measured in the absence of the radome; otherwise, any differences between measured and calculated patterns with the radome in place would be as attributable to the inadequacy of the antenna model as to the radome analysis method itself.

When the measured amplitude and phase of the antenna fields are known over a complete sphere enclosing the antenna, a complete aperture synthesis method such as that described by Ludwig can be used [2]. But when, as in many cases of practical importance, the measured pattern data is limited to amplitude-only, principal plane patterns, a different approach and one which exploits all available information about the antenna being modelled must be used.

Such a method of planar aperture synthesis for the four-horn monopulse antenna of Figure 1 using measured principal plane amplitude patterns of the sum, elevation difference, and azimuth difference channels is described in what follows. The radius ( $a=.74 \lambda$ ) and element half-spacing $\left(d_{x}=d_{Y}=.95 \lambda\right)$ of each vertically ( $y$ ) polarized conical horn element ( $10^{\circ}$ flare angle) are used in the antenna model to describe radiation from it in the sinusoidal steady state (time variations of the form $e^{j \omega t}$ and suppressed). The aperture fields of each identical element in the four-horn array are


Figure 1. Geometry of Four-Horn Monopulse Antenna.
represented by their plane wave spectra [3] as determined in the principal planes from the measured patterns and the above physical parameters of the actual antenna. The two-dimensional plane wave spectra in the other radiating portions of the wavenumber $k_{x} k_{y}$-plane are determined according to a mathematical model deemed characteristic of the actual element and which utilizes principal plane spectra only; e.g., separable spectra, circularly symmetric spectra, etc. The element plane wave spectra in the non-radiating or evanescent region of the wavenumber plane are found by extrapolating the aperture-limited spectra from the visible to the invisible region using an algorithm described by Papoulis for one-dimensional band-limited functions [4]. The element plane wave spectra so found are then recombined with the array factor to produce the spectra for the complete antenna which, upon Fourier transformation, yields a near field for the antenna which accomplishes the desired result. This antenna synthesis problem is motivated by an on-going parametric investigation of radome analysis methods [1]. A general theory has been developed, based on the Huygens-Fresnel principle and Lorentz reciprocity, which embodies the various methods of radome analysis [e.g., 5-10]. Computer codes for three typical methods have been implemented. Measured pattern data and boresight error data for three antenna sizes (small, medium, and large) combined in fifteen combinations with five radomes have been obtained to serve as true data in determining the accuracies and ranges of validity of the three methods of analysis. The particular monopulse antenna configuration [11] in Figure 1 was chosen for its ruggedness, ease of fabrication, and ease of duplication in the different physical sizes. Since the perturbations in the patterns and boresight errors caused by the radome are small, it is essential to the success of the research that the actual antennas be accurately modelled in the analyses so that
valid comparisons of the methods can be made. The synthesis procedure was developed specifically for this purpose and for this antenna configuration, but it has wider application and is applicable to more general configurations. The plane wave spectrum representation of the antenna fields is well suited to the radome analysis application because of the computational efficiency which can accrue as a result of the Fourier transform relationship between the aperture fields and the plane wave spectra/far fields. And because of the asympototic relationships between the far fields and the plane wave spectra, the latter can be mathematically determined from the former, at least over the visible region corresponding to the hemisphere $z>0$. But before the desired near fields can be determined, it is necessary to assign values to the spectra corresponding to the evanescent or non-radiating modes. Failure to do so may result in a near field which, because it contains only radiating modes, may be too spread out to fit within the confines of the radome for analysis purposes.

In the synthesis procedure here, values are assigned to the evanescent modes by extrapolating the plane wave spectra from the known visible region into the evanescent region. Such extrapolation is valid only for an aperture-limited spectrum; i.e., a spectrum which is the Fourier transform (or inverse transform) of an aperture field which has bounded support. Such a spectrum is an entire function [12] of the (complex) wavenumbers $k_{x}, k_{y}$ whose value in one region of the complex $k_{x}$ and $k_{y}$ planes can, in principle, be determined by analytic continuation from a known region [13]. The algorithm described by Papoulis provides a practical, computer-aided procedure for implementing the extrapolation; it is also computationally efficient since the Fast Fourier Transform (FFT) algorithm can be exploited.

This synthesis problem is actually an inverse source problem such as that described by Schmidt-Weinmar and Baltes [14] in which prior knowledge about the source plays an important role. It is well known that such problems involve the mathematical questions of existence, uniqueness, and stability of the solution. Small errors in the experimental data, (errors and noise are inevitably present) can lead to large errors in the solution unless suitable stabilizing constraints are imposed; i.e., unless additional prior knowledge can be taken for granted or known to be fact. The procedure described here utilizes a novel combination of known and assumed data, the sum of which provides enough information to produce a stable solution to the inverse problem which fits all the prescribed known data -- but which may not be unique. The question of uniqueness and the amount of information, both prior knowledge and measured data, needed to ensure uniqueness is the subject of a current investigation. This paper presents the solution for the plane wave spectra of the antenna in terms of the measured patterns and the physical parameters of the antenna. Spectrum function's separable in rectangular and in polar coordinates are presented which permit the specification of the complete radiating spectrum from knowledge of it in only the principal planes. The extrapolation procedure in both one dimension and in two dimensions is detailed and used to effect solutions for a theoretical antenna, whose solution is known exactly for verification purposes, and for the actual antenna. Computer generated results are presented in the forms of radiation pattern comparisons and three-dimensional plots of the near fields and plane wave spectra. To demonstrate applicability and for completeness, some radome analysis results are presented.

## THEORETICAL DERIVATIONS

The synthesis procedure is carried out independently in the two principal planes to determine the plane wave spectra $A_{x e}\left(k_{x}, k_{y}\right), ~ A y^{\prime}$ and aperture fields $E_{x e}(x, y), E_{y e}$ of each identical element in the fourhorn array of Figure 1 . The general expression for the radiation field of the array may be written as a product of the element field and the array factor as

$$
\begin{array}{r}
E_{f f}\left(k_{x}, k_{y}\right)=E_{e f f}\left(k_{x}, k_{y}\right)\left[a_{1} e^{j k_{0}\left(d_{x} k_{x}+d_{y} k_{y}\right)}+a_{2} e^{j k_{0}\left(-d_{x} k_{x}+d_{y} k_{y}\right)}\right. \\
+a_{3} e^{j k_{0}\left(-d_{x} k_{x}-d_{y} k_{y}\right)}+a_{4} e^{\left.j k_{0}\left(d_{x} k_{x}-d_{y} k_{y}\right)\right]} \tag{1}
\end{array}
$$

where $k_{0}=2 \pi / \lambda, j=\sqrt{-1}$, the $a_{i}$ 's are the complex excitation coefficients of the elements numbered and spaced as shown in Figure $1, E_{e f f}$ is the radiation (electric) field of the element, and the normalized wavenumbers $k_{x}, k_{y}$ are related to spherical angles $\theta$, $\phi$ of Figure 2 by

$$
\begin{align*}
& k_{x}=\sin \theta \cos \phi  \tag{2}\\
& k_{y}=\sin \theta \sin \phi \tag{3}
\end{align*}
$$

at least for the visible region defined by $\sqrt{k_{x}{ }^{2}+k_{y}{ }^{2}} \leq 1$
The three monopulse channels of the antenna are formed by phasing the elements appropriately. In the ideal case, $\left|a_{i}\right|=1$ for $i=1-4$. For the sum ( $\Sigma$ ) channel, all elements are assigned equal phase. For the elevation difference $\left(\Delta_{E L}\right)$ channel, $a_{1}=a_{2}=-a_{3}=-a_{4}$. For the azimuth difference $\left(\Delta_{A Z}\right)$ channel, $a_{1}=a_{4}=-a_{2}=-a_{3}$. For perfect assignment of the excitation coefficients, there results


FIGURE 2. COORDINATE SYSTEM FOR ANTENNA PATTERN MEASUREMENTS ON VERTICALLY POLARIZED ANTENNA.

$$
\begin{align*}
E_{f f \Sigma} & =E_{e f f}\left(k_{x}, k_{y}\right)\left(4 \cos k_{o} d_{x} k_{x} \cos k_{o} d_{y} k_{y}\right)  \tag{4}\\
E_{f f \Delta E L} & =E_{e f f}\left(k_{x}, k_{y}\right)\left(j 4 \cos k_{o} d_{x} k_{x} \sin k_{o} d_{y} k_{y}\right)  \tag{5}\\
E_{f f \triangle A Z} & =E_{e f f}\left(k_{x}, k_{y}\right)\left(j 4 \sin k_{o} d_{x} k_{x} \cos k_{o} d_{y} k_{y}\right) \tag{6}
\end{align*}
$$

In the non-ideal case encountered in practice, the excitation coefficient values may vary somewhat from the ideal values so that the complex array factor of Equation (1) must be used in solving for the element field and plane wave spectra of measured sum and difference patterns. The radiation field of the element is related to its plane wave spectra according to [15]

$$
\begin{align*}
\underline{E}_{e f f}\left(k_{x y} k_{y}\right)= & \hat{x}\left[\left(1+k_{z}-k_{x}^{2}\right) A_{x e}-k_{x} k_{y} A_{y e}\right] \\
& +\hat{y}\left[-k_{x} k_{y} A_{x e}+\left(1+k_{z}-k_{y}^{2}\right) A_{y e}\right] \\
& +\hat{z\left[-k_{x}\left(1+k_{z}\right) A\right.} A_{x e}-\hat{k}_{y}\left(1+k_{z}\right) A_{y e}^{]} \tag{7}
\end{align*}
$$

where $k_{z}=\sqrt{1-k_{x}}{ }^{2}-k_{y}{ }^{2}$. The geometrical optics approximation $[16]$ has been assumed for the aperture fields in the conical horn element; viz.,

$$
\begin{equation*}
\underline{H}_{\mathrm{ap}}=\frac{\hat{\mathrm{z}} \times \mathrm{E}_{\mathrm{ap}}}{\eta} \tag{8}
\end{equation*}
$$

where $\hat{x}, \hat{y}, \hat{z}$ are unit vectors in the rectangular coordinate system of Figure 2 and $\eta$ is the wave impedance. In Equation (7), the radiation factor of the form $e^{-j k r} / r$ has been suppressed where $r$ is the radial
distance from the origin of antenna coordinates to the far-field measurement sphere of Figure 2.

Equation (7) may also be written in terms of the transverse spherical components as
$E_{e f f}\left(k_{x}, k_{y}\right)=\frac{\left(l+k_{z}\right)}{\sqrt{k_{x}^{2}+k_{y}^{2}}}\left[\hat{\theta}\left(k_{x} A_{x e}+k_{y} A_{y e}\right)+\hat{\phi}\left(-k_{y} A_{x e}+k_{x} A_{y e}\right)\right]$
which is a form more suitable to solution for $A_{x e}{ }^{\prime} A_{y e}$ in terms of the measured transverse components $E_{\theta}, E_{\phi}$ or the related measured quantities $V_{\theta}$, $V_{\phi}$ defined by

$$
\begin{align*}
& v_{\theta}=\left\{\begin{array}{cc}
E_{\theta}, & k_{x}>0 \\
-E_{\theta}, & k_{x}<0
\end{array}\right. \\
& v_{\phi}=\left\{\begin{array}{cc}
E_{\phi}, & k_{\mathbf{x}} \\
-E_{\phi}, & k_{\mathbf{x}} \\
-0
\end{array}\right. \tag{11}
\end{align*}
$$

For $k_{x}=0$ (E-plane), the definitions above apply when $k_{y}$ is substituted for $k_{x}$. Let $A F_{i}, i=1,2,3$, denote the array factors associated with the $\Sigma, \Delta_{E L}, \Delta_{A Z}$ channels, respectively, modelled in Equation (1). Then the solutions for the element spectra are given by

$$
\begin{align*}
& A_{x e}\left(k_{x}^{\prime} k_{y}\right)=\frac{k_{x} V_{\theta_{i}}-k_{y} V_{\phi i}}{\left(1+k_{z}\right) \sqrt{k_{x}^{2}+k_{y}^{2}} A F_{i}}  \tag{12}\\
& A_{y e}\left(k_{x}, k_{y}\right)=\frac{k_{y} v_{\theta_{i}}+k_{x} v_{\phi_{i}}}{\left(1+k_{z}\right) \sqrt{k_{x}^{2}+k_{y}^{2}} A F_{i}} \tag{13}
\end{align*}
$$

for all $k_{x}, k_{y}$ such that $0 \leq k_{z}<l$. At the pole, $k_{z}=1$ and the spectra may be found from the sum channel measured voltages as

$$
\begin{align*}
& A_{x e}(0,0)=v_{\theta 1}^{H}(0,0)=-v_{\phi 1}^{E}(0,0)  \tag{14}\\
& A_{y e}^{A}(0,0)=v_{\phi 1}^{H}(0,0)=v_{\theta 1}^{E}(0,0) \tag{15}
\end{align*}
$$

where the superscripts denote the conventional E and H planes [17]. The general expressions in Equations (12) and (13) can be specialized to these principal planes as follows:

H-Plane $\left(k_{y}=0\right):$

$$
\begin{align*}
& A_{x e}\left(k_{x}, 0\right)=\frac{V_{\theta i}^{H}\left(k_{x}\right)}{\left(1+\sqrt{1-k_{x}^{2}}\right) A F_{i}}  \tag{16}\\
& A_{y e}\left(k_{x}, 0\right)=\frac{v_{\phi i}^{H}\left(k_{x}\right)}{\left(1+\sqrt{1-k_{x}^{2}}\right) A F_{i}} \tag{17}
\end{align*}
$$

E-Plane $\left(k_{x}=0\right)$ :

$$
\begin{align*}
& A_{x e}\left(0, k_{y}\right)=\frac{-v_{\phi i}^{E}\left(k_{y}\right)}{\left(1+\sqrt{1-k_{y}^{2}}\right) A F_{i}}  \tag{18}\\
& A_{y e}\left(0, k_{y}\right)=\frac{v_{\theta i}^{E}\left(k_{y}\right)}{\left(1+\sqrt{\left.1-k y^{2}\right) A F_{i}}\right.} \tag{19}
\end{align*}
$$

When numerically evaluating Equations (16)-(19), the channel index $i$ is chosen on the basis of highest signal level. For example, the $\Sigma$ channel $(i=1)$ provides the best data for $\operatorname{small}\left|k_{x}\right|$ in the $H$-plane; however, as $\left|k_{x}\right|$ increases, the sum channel amplitude decreases toward the first null in the array factor $\mathrm{AF}_{1}$ while the $\Delta_{A Z}$ channel amplitude increases toward its peak at $k_{x} \approx \pm \sin ^{-1}\left(\left(4 d_{x} / \lambda\right)^{-1}\right)$. When alternating between the data sets, it is important to ensure that the measured difference channel data is correctly normalized with respect to the sum data as dictated by the model in Equation (1). For ideal excitation coefficients, the ratio of difference channel response to sum channel response is given in each principal plane by

H-Plane:

$$
\begin{equation*}
\frac{\Delta_{A Z}\left(k_{x}, 0\right)}{\sum\left(k_{x^{\prime}}, 0\right)}=j \tan k_{0} d_{x} k_{x} \tag{20}
\end{equation*}
$$

E-Plane:

$$
\begin{equation*}
\frac{\Delta_{E L}\left(0, k_{y}\right)}{\sum\left(0, k_{Y}\right)}=j \tan k_{0} d k_{y} \tag{21}
\end{equation*}
$$

These relationships can be used to adjust the measured data for consistent solutions of the element spectra.

The measured quantities $\mathrm{V}_{\theta i}, \mathrm{~V}_{\phi i}$ in Equations (16)-(19) are complex quantities usually measured using a phase/amplitude receiver. In those myriad cases where far-field phase data are not valid due to range imperfections, unstable microwave sources, etc., some assumption must be made in assigning phase values to the measured amplitude data at each angular direction. In this investigation, phase data were assigned as dictated by the array factor for each channel. The phase of the
element was assumed constant. The phase reconstruction problem [18] was beyond the scope of the present work.

In practice, the excitation coefficients $a_{i}$ will differ from their ideal values to produce asymmetries in the measured patterns. Values of the excitation coefficients based on the asymmetries in the sum patterns may be found, in paired combinations, as

$$
\begin{align*}
& a_{14}=\left(a_{1}+a_{4}\right)=\frac{8\left(e^{j \psi} v_{\phi 1}^{H}\left(k_{x}\right)-e^{-j \psi} v_{\phi 1}^{H}\left(-k_{x}\right)\right)}{\left(e^{j 2 \psi}-e^{-j 2 \psi}\right)\left(1+k_{z}\right) A_{y e}\left(k_{x}, 0\right)}  \tag{22}\\
& a_{23}=\left(a_{2}+a_{3}\right)=\frac{8\left(e^{j \psi} V_{\phi 1}^{H}\left(-k_{x}\right)-e^{-j \psi} V_{\phi 1}^{H}\left(k_{x}\right)\right)}{\left(e^{j 2 \psi}-e^{-j 2 \psi}\right)\left(1+k_{z}\right) A_{y e}^{\left(-k_{x}, 0\right)}}  \tag{23}\\
& a_{12}=\left(a_{1}+a_{2}\right)=\frac{8\left(e^{j \psi} v_{\theta 1}^{E}\left(k_{x}\right)-e^{-j \psi} v_{\theta 1}^{E}\left(-k_{x}\right)\right)}{\left(e^{j 2 \psi}-e^{-j 2 \psi}\right)\left(1+k_{z}\right) A_{y e}\left(0, k_{x}\right)}  \tag{24}\\
& a_{34}=\left(a_{3}+a_{4}\right)=\frac{8\left(e^{j \psi} V_{\theta 1}^{E}\left(-k_{x}\right)-e^{-j \psi} v_{\theta 1}^{E}\left(k_{x}\right)\right)}{\left(e^{j 2 \psi}-e^{-j 2 \psi}\right)\left(1+k_{z}\right) A_{y e}\left(0,-k_{x}\right)} \tag{25}
\end{align*}
$$

where

$$
\begin{align*}
& \psi=k_{o} d_{x}^{k} x=k_{o} d_{y}^{k} x  \tag{26}\\
& k_{z}=\sqrt{1-k_{x}^{2}} \tag{27}
\end{align*}
$$

and where $k_{x}=\sin \theta$ is a conveniently chosen point in the sum pattern principal planes, such as the angle corresponding to the peak of the first sidelobe. It is noted that the values of $A_{y e}$ appearing in Equations (22)-
(25) depend on the excitation coefficients; hence, an iterative procedure is indicated. The individual excitation coefficients can then be found, to within a constant, from the four above equations. For definiteness, a value of $(1+j 0)$ may be assigned to $a_{1}$. The solutions for the other coefficients follow as:

$$
\begin{align*}
& a_{2}=a_{12}-1  \tag{28}\\
& a_{3}=a_{34}-a_{14}+1  \tag{29}\\
& a_{4}=a_{14}-1 \tag{30}
\end{align*}
$$

The near fields of the element can be found from the principal plane PWS via Fourier transformation only for the special case of rectangularly separable spectra; i.e.,

$$
\begin{align*}
& A_{x e}\left(k_{x}, k_{y}\right)=p_{x}\left(k_{x}\right) q_{x}\left(k_{y}\right)  \tag{31}\\
& A_{y e}\left(k_{x}, k_{y}\right)=p_{y}\left(k_{x}\right) q_{y}\left(k_{y}\right) \tag{32}
\end{align*}
$$

In such case, the near fields are also separable and given by

$$
\begin{align*}
& c_{1} E_{\text {xenf }}(x, y)=c_{1} P_{x}(x) Q_{x}(y)=q_{x}(0) P_{x}(0) F\left\{p_{x}\left(k_{x}\right)\right\} F\left\{q_{x}\left(k_{y}\right)\right\}  \tag{33}\\
& c_{2} E_{y e n f}(x, y)=c_{2} P_{y}(x) Q_{y}(y)=q_{y}(0) p_{y}(0) F\left\{p_{y}\left(k_{x}\right)\right\} F\left\{q_{y}\left(k_{y}\right)\right\} \tag{34}
\end{align*}
$$

where $F\left\}\right.$ denotes Fourier transform and where constants $c_{1}$ and $c_{2}$ are given by

$$
\begin{align*}
& c_{1}=p_{x}(0) q_{x}(0)=\frac{v_{\theta 1}^{H}(0)}{8}  \tag{35}\\
& c_{2}=p_{y}(0) q_{y}(0)=\frac{v_{\phi 1}^{H}(0)}{8} \tag{36}
\end{align*}
$$

The Fourier transformation above implies that the spectra are known for all $k_{x}\left(k_{y}\right)$ on the real line; however, Equations (16)-(19) produce solutions only in the visible region $\left|k_{x}\right| \leq 1,\left|k_{y}\right| \leq 1$ of the principal planes. The extrapolation technique for assigning values to the spectra outside the visible region will be deferred until after the discussion imediately below concerning another type of separability for spectra and near fields which will be applied during the synthesis procedure.

The $T E{ }_{l l}$ circular waveguide mode ( y -polarized) provides a model for an element near field that is separable in cylindrical coordinates $\rho$ and $\phi$, and which depends only on knowledge of the principal plane PWS. Assume that the element near field can be written as

$$
\begin{equation*}
E_{\mathrm{nf}}(\rho, \phi)=\hat{\rho} \mathrm{f}_{\rho}(\rho) \mathrm{g}_{\rho}(\phi)+\hat{\phi} \mathrm{f}_{\phi}(\rho) \mathrm{g}_{\phi}(\phi) \tag{37}
\end{equation*}
$$

Convert to rectangular coordinates and assume, as in the case of the $\mathrm{TE}_{11}$ waveguide mode, that

$$
\begin{align*}
& g_{\rho}(\phi)=\sin \phi  \tag{38}\\
& g_{\phi}(\phi)=\cos \phi \tag{39}
\end{align*}
$$

The element (tangential) near field can then be expressed in rectangular coordinates as

$$
\begin{equation*}
{\underset{n f}{f}}^{E_{n}}(x, y)=\hat{x} \frac{f_{p}-f_{\phi}}{2} \sin 2 \phi+\hat{y}\left(\frac{f_{p}+f_{\phi}}{2}-\frac{f_{p}-f_{\phi}}{2} \cos 2 \phi\right) \tag{40}
\end{equation*}
$$

where $x=\rho \cos \phi, y=\rho \sin \phi$ as usual. Inverse Fourier transform these rectangular components to yield integrals

$$
A_{x}\left(k_{x}, k_{y}\right)=\int_{0}^{a} \frac{f_{\rho}-f}{2} \rho d \rho \int_{0}^{2 \pi} \sin 2 \phi e^{j 2 \pi \rho k_{\rho}} \cos (\phi-\xi) \quad d \phi
$$

$$
\begin{align*}
& A_{Y}\left(k_{x}, k_{y}\right)=\int_{0}^{a} \frac{f_{\rho}+f_{\phi}}{2} \rho d \rho \int_{0}^{2 \pi} e^{j 2 \pi \rho k_{\rho}} \cos (\phi-\xi) \\
& d \phi  \tag{42}\\
&-\int \frac{f_{\rho}-f}{2} \rho d \rho \int_{0}^{2 \pi} \cos 2 \phi e^{j 2 \pi \rho k_{\rho}} \cos (\phi-\xi)
\end{align*} d \phi
$$

Carry out the integrations in $\phi$ [19] to obtain

$$
\begin{align*}
& A_{x}\left(k_{x}, k_{y}\right)=-2 \pi \frac{k_{x} k^{y}}{k_{\rho}^{2}} H_{0}\left(k_{\rho}\right)  \tag{43}\\
& A_{Y}\left(k_{x}, k_{y}\right)=\pi H_{0}\left(k_{\rho}\right)+\pi \frac{k_{x}^{2}-k_{y}^{2}}{k_{\rho}^{2}} H_{2}\left(k_{\rho}\right) \tag{44}
\end{align*}
$$

where $k_{\rho}=\sqrt{k_{x}{ }^{2}+k_{Y}{ }^{2}}$ and where the Hankel transforms $H_{0}, H_{2}$ are defined by [20]

$$
\begin{align*}
& H_{0}\left(k_{\rho}\right) \triangleq \int_{0}^{a}\left(f_{\rho}+f_{\phi}\right) J_{0}\left(k_{\rho} \rho\right) \rho d \rho \\
& H_{2}\left(k_{\rho}\right) \triangleq \int_{0}^{a}\left(f_{\rho}-f_{\phi}\right) J_{2}\left(k_{\rho} \rho\right) \rho d \rho \tag{45}
\end{align*}
$$

Specialize Equations (43) and (44) to the principal planes, and solve the resulting system of equations for $\mathrm{H}_{0}, \mathrm{H}_{2}$ to yield

$$
\begin{equation*}
H_{0}\left(k_{\rho}\right)=\frac{A_{y}\left(k_{\rho}, 0\right)+A_{Y}\left(0, k_{\rho}\right)}{2 \pi} \tag{47}
\end{equation*}
$$

$$
\begin{equation*}
H_{2}\left(k_{\rho}\right)=\frac{A_{y}\left(k_{\rho}, 0\right)-A_{y}\left(0, k_{\rho}\right)}{2 \pi} \tag{48}
\end{equation*}
$$

Thus, the two-dimensional plane wave spectra $A_{x}, A_{y}$ are expressible in terms of only the principal plane spectra via Equations (43)-(48).

Since the assumed trigonometric variations of $g_{\rho}, g_{\phi}$ in Equations (38) and (39) do not produce any $x$-component of near field along $x=0$ or $y=0$, a similar analysis can be carried out for an orthogonal TE-type mode which will account for the presence of such cross-polarized components. Write the total element fields as the sum of two components

$$
\begin{equation*}
E_{e n f}=\hat{\rho}\left(E_{\rho}+E_{\rho}^{\prime}\right)+\hat{\phi}\left(E_{\phi}+E_{\phi}^{\prime}\right) \tag{49}
\end{equation*}
$$

where $E_{\rho}, E_{\phi}$ are given in Equation (37) and where

$$
\begin{align*}
& E_{\rho}^{\prime}=f_{\rho}^{\prime}(\rho) g_{\rho}^{\prime}(\phi)=f_{\rho}^{\prime} \cos \phi  \tag{50}\\
& E_{\phi}^{\prime}=f_{\phi}^{\prime}(\rho) g_{\phi}^{\prime}(\phi)=f_{\phi}^{\prime} \sin \phi \tag{51}
\end{align*}
$$

Follow through with the analysis and define Hankel transforms $G_{0}, G_{2}$ by

$$
\begin{align*}
& G_{0}\left(k_{\rho}\right)=\int_{0}^{a}\left(f_{\rho}^{\prime}-f_{\phi}^{\prime}\right) J_{0}\left(k_{\rho} \rho\right) \rho d \rho \\
& G_{2}\left(k_{\rho}\right)=\int_{0}^{a}\left(f_{\rho}^{\prime}+f_{\phi}^{\prime}\right) J_{2}\left(k_{\rho} \rho\right) \rho d \rho \tag{52}
\end{align*}
$$

Combine all results for the two orthogonal modes to yield the following expressions for the element plane wave spectra in terms of the principal plane spectra $A_{x e}^{H}\left(k_{\rho}\right), A_{x e}^{E}\left(k_{\rho}\right), A_{y e}^{H}\left(k_{\rho}\right), A_{y e}^{E}\left(k_{\rho}\right):$

$$
\begin{align*}
& \left.A_{x e}\left(k_{x}, k_{y}\right)=\frac{A_{x e^{H}+A_{x e}}^{E}}{2}+\frac{k_{x^{2}-k_{y}^{2}}^{2}}{k_{\rho}^{2}}\left(\frac{A^{H}}{2}\right)+\frac{A^{E}}{2}\right) \frac{k_{x}^{k} y}{k_{\rho}^{2}}\left(A_{y e^{E}}^{E}-A_{y e}^{H}\right)  \tag{54}\\
& A_{y e}\left(k_{x}, k_{y}\right)=\frac{A^{H} y e^{H}+y e}{2}+\frac{k^{E}{ }^{2}-k^{2}{ }^{2}}{k_{\rho}{ }^{2}}\left(\frac{A^{H} e^{-A} y e}{2}\right)+\frac{k_{x}{ }^{E} y}{k_{\rho}{ }^{2}}\left(A_{x e^{H}}-A_{x e^{E}}^{E}\right) \tag{55}
\end{align*}
$$

The above two equations constitute a reasonable model for the plane wave spectra of a circular element such as that shown in Figure 1 . The principal plane spectra in these equations are found from measured principal plane patterns via Equations (16)-(19). Note that the above equations reduce identically to the measured spectra in the principal planes. Note also that the model is based on the characteristic modes of a circular aperture geometry and, in the absence of complete measured data which could perhaps determine exactly the plane wave spectra off the principal planes, this model is more suitable for the antenna described than is the model of Equations (31)-(32) which assumes rectangular
separability. Strictly speaking, the latter would more suitable for use with a rectangular element geometry, but does find application in the extrapolation procedure described next.

## EXTRAPOLATION PROCEDURE

The extrapolation procedure is best explained in one dimension before extending it to the two-dimensional case. The objective of the procedure is to assign values to the evanescent modes in the plane wave spectrum of the element such that the known spectrum in the visible region is preserved and such that the near field of the element is restricted to a finite portion of the $x y-p l a n e$. Results are presented in this section which demonstrate the algorithm for both an ideal case and a case which uses measured data.

The flow chart in Figure 3 summarizes the extrapolation procedure for the case of plane wave spectrum $A_{x}\left(k_{x}\right)$ and its corresponding near field $E_{x}(x)=F\left\{A_{x}\left(k_{x}\right)\right\}$. The zeroeth estimate to the actual spectrum is the portion known only over radiating wavenumbers as defined by

$$
A_{x 0}\left(k_{x}\right)= \begin{cases}A_{x}\left(k_{x}\right), & \left|k_{x}\right| \leq 1  \tag{56}\\ 0 & , \text { elsewhere }\end{cases}
$$

The known length $2 a$ of the interval over which the near field is nonzero, and a lower bound $l-\varepsilon$ on the fraction of energy in the near field which must be contained in this interval for an acceptable solution, constitute the remaining elements of input data.

The first estimate $E_{x o}^{\prime}$ of the near field is found by Fourier transformation of $A_{x o}$. Due to the lack of radiating modes in the spectra, the near field will be spread out in $x$. That portion lying


FIGURE 3. FLOW CHART FOR EXTRAPOLATION ALGORITHM.
outside $|x| \leq a$ is then truncated so that $E_{x o}=E_{x o}^{\prime} p_{a}(x)$ results, where $p_{a}(x)$ is the rectangular function whose value is unity for $|x| \leq a$ and zero elsewhere. The resulting near field $E_{\text {xo }}$ is inverse Fourier transformed to produce the spectrum $A_{x l}^{\prime}\left(k_{X}\right)$ which does contain non-zero eva-
 of $A_{x l}^{\prime}$ are added to the radiating modes $A_{x o}$ to produce the first-order spectrum $A_{x l}=A_{x 0}+A^{\prime}{ }_{x l} \bar{p}_{1}\left(k_{x}\right)$ where $\bar{p}_{1}\left(k_{x}\right)$ is the complement of the rectangular function whose value is unity for $|x|>a$ and zero for $|x| \leq a$. The process is repeated until the fraction of energy in the near field $E_{x i}(x)$ on the interval $|x| \leq a$ exceeds the lower bound specified. The FFT algorithm is used to effect the Fourier transformations.

The algorithm was first tested on an ideal four-horn monopulse array (Figure 1) where a $\mathrm{TE}_{11}$ circular waveguide mode was assumed present in each element. The mode was y-polarized but then rotated by $\alpha=5^{\circ}$ counterclockwise so that a small $x$-component of radiated field would be present. The far fields of the array were computed at $2^{\circ}$ increments in the principal planes for all three channels over a dynamic range of 40 decibels. These data were used as the "measured" data $V_{\theta_{i}}$, $V_{\phi i}$ in Equations (16)-(19) to produce element spectra $A_{x e}^{H}\left(k_{x}\right), A_{y e}^{H}\left(k_{x}\right)$, $A_{x e}^{E}\left(k_{y}\right), A_{y e}^{E}\left(k_{y}\right)$ over the visible region in each plane at $2^{\circ}$ increments in polar angle $\theta$. Since the discrete Fourier transform relationship between spectrum and near field requires samples of the spectra at equal increments in wavenumber $k_{x}=\sin \theta$, a Whittaker-Shannon expansion [21] was used to Fourier interpolate the spectrum samples at equal angle; i.e.,

$$
\begin{equation*}
A(\theta)=\sum_{m=1}^{N} A\left(\theta_{m}\right) \frac{\sin \left(\pi N \frac{\theta-\theta}{2 \theta_{m a x}}\right)}{\pi N \frac{\theta_{m}}{2 \theta_{\max }}} \tag{57}
\end{equation*}
$$

where $\theta=\sin ^{-1} \mathbf{k}_{\mathrm{x}}, \mathrm{N}=$ number of angular samples (91), and $\theta_{\text {max }}=$ angle corresponding to the Nth sample (90 ) . The interpolated spectra were then operated on in turn by the extrapolation algorithm.

Some computed results are shown in Figure 4 where comparisons of the true and synthesized near fields of the element in the $x=0$ plane are presented. The true $x$ and $y$ field components are simply those of the rotated $\mathrm{TE}_{11}$ mode. After twenty-one iterations of the extrapolation algorithm, the concentration factors for the $x$ and $y$ components were $\varepsilon_{\mathrm{x}}^{\mathrm{E}}=.013$ and $\varepsilon_{\mathrm{y}}^{\mathrm{E}}=.330 \times 10^{-4}$, respectively. (In the $\mathrm{y}=0$ plane, slightly better results were obtained; i.e., $\varepsilon_{x}^{H}=.0153, \varepsilon_{y}^{H}=.982 \mathrm{x}$ $10^{-5}$ ). The half-length of the interval occupied by the element was $a=.74136 \lambda$. The algorithm was quite successful in concentrating the near field into the desired interval and in predicting the spatial variation of the near field reasonably well. The sample spacing in the near field was $\Delta y=\lambda / 8$.

The element near fields in Figure 4 were (inverse) Fourier transformed to produce the corresponding spectra at equal wavenumber over the range $\left|k_{y}\right| \leq k_{y \max }=(2 \Delta y / \lambda)^{-1}=4$. The spectra were then Fourier interpolated, to produce their values at $2^{\circ}$ increments over the range $|\theta| \leq 90^{\circ}$ according to

$$
\begin{equation*}
A\left(k_{y}\right)=\sum_{m=1}^{N} A\left(k_{y m}\right) \frac{\sin \left(\pi N \frac{k_{y}-k_{y m}}{2 k_{y \max }}\right)}{\pi N \frac{k_{y}-k_{y m}}{2 k_{y \max }}} \tag{58}
\end{equation*}
$$

The interpolated values were used in the antenna model of Equation (1) to produce the sum channel E-plane patterns shown in Figure 5. Differences between the true and synthesized primary $E_{\theta}^{E}$ components are hardly



FIGURE 4. COMPARISONS OF TRUE AND SYNTHESIZED (') NEAR FIELDS OF THEORETICAL FOUR-HORN MONOPULSE ANTENNA ELEMENT $\quad\left(a=5^{\circ}\right)$.


FIGURE 5. COMPARISONS OF TRUE AND SYNTHESIZED (') E-PLANE SUM Patterns of theoretical four-horn monopulse antenna ( $a=5^{\circ}$ ).
discernable except at very wide angles. Good agreement is obtained for the cross $E_{\phi}^{E}$ component where all amplitude levels are less than -20 dB . Similar results were obtained in the $H-p l a n e$ and for the other two channels. In conclusion, the synthesis procedure works quite well in one dimension for theoretical data having a dynamic range of 40 decibels.

The one-dimensional synthesis procedure was next tested using principal plane patterns obtained at 35 GHz for the actual antenna of Figure 1. Figure 6 shows the first and final estimates of the element near field in the $x=0$ plane. After 51 iterations of the extrapolation algorithm, the E-plane concentration factors were $\varepsilon_{X}^{E}=.069$ and $\varepsilon_{Y}^{E}=.38 x$ $10^{-3}$. (The H-plane concentration factors were $\varepsilon_{x}^{H}=.508$ and $\varepsilon_{Y}^{H}=.494 \mathrm{x}$ $10^{-2}$.) The sample spacing was $\Delta y=.025 \lambda$, yielding a maximum wavenumber $k_{y \max }=20$ for $N=256$ samples over the total interval of $6.4 \lambda$. Referring to Figure 6, it is seen that the algorithm successfully concentrated the near field into the interval $|y| \leq a=.74136 \lambda$ as desired.

Figure 7 shows comparisons of the measured patterns with those synthesized from the extrapolated element spectra as explained above for the ideal array. The agreement is quite good in the E-plane. Similar results were obtained for the $H-p l a n e$ and for the other two channels. In conclusion, the synthesis procedure works well for measured, one-dimensional data having a 40-dB dynamic range.

TWO DIMENSIONAL EXTRAPOLATION

The one dimensional results could be used through Equations (31) and (32) to generate two-dimensional spectra and near fields; however, if the $\rho \phi$-separability model is used as preferred, then the extrapolation

Legend
FIRST
FINAL


FIGURE 6. FIRST AND FINAL ESTIMATES OF APERTURE FIELD OF ACTUAL ELEMENT IN E-PLANE.


FIGURE 7. COMPARISONS OF MEASURED AND SYNTHESIZED (') E-PLANE SUM PATTERNS OF ACTUAL FOUR-HORN MONOPULSE ANTENNA.
procedure must be carried out in two dimensions.* This section presents results of two-dimensional synthesis of the element spectra and fields of the antenna in Figure 1 using measured principal plane patterns.

Figure 8 shows the element near field $\mathrm{E}_{\mathrm{ye}}(\mathrm{x}, \mathrm{y})$ and the corresponding plane wave spectrum $A_{y e}\left(k_{x}, k_{y}\right)$ obtained using the $2-D$ extrapolation algorithm. The element principal plane spectra were first determined via Equations (16)-(19) from the measured data. These results were then used in Equations (54) and (55) to generate the 2-D plane wave spectra over the visible region $k_{x}{ }^{2}+k_{y}{ }^{2} \leq 1$. The extrapolation algorithm was then applied to each 2D spectrum in turn using a 2-D Fast Fourier Transform. After eleven iteration's, the concentration factors were $\varepsilon_{x}=.065$ and $\varepsilon_{y}=.028$; i.e, for the $y$-component $E_{y e}(x, y), 98.2 \%$ of the near-field energy was concentrated in the circular element region of radius $a=.74316 \lambda$. A square array of $64 \times 64$ samples spaced at $\Delta x=\Delta y=.07031 \lambda$ and resulting in $k_{x \max }=\mathrm{k}_{\mathrm{ymax}}=7.11$ was used for each component. An exponential window was used to limit the near fields to the circular region.

The resulting element spectra were next combined via Equations (1) and (9) to produce the 2 D plane wave spectra for the three monopulse channels. Each spectra was then Fourier transformed to obtain the corresponding near fields. Some results for the sum channel are presented in Figure 9. The PWS $A_{y}^{\Sigma}\left(k_{x}, k_{y}\right)$ shown in Figure $9(a)$ has maximum wavenumbers $k_{x \max }=k_{y \max }=3.56$. Although no extrapolation was applied to the PWS containing the array factor, the actual measured spectra in the principal planes were inserted directly into the final PWS to guarantee close agreement with measured patterns as extracted from the 2-D PWS.

[^0]

FIGURE 8. PLANE WAVE SPECTRUN Ay ( $k x, k y$ ) AND NEAR FIELD Eynf ( $x, y$ ) of ELEMENT,

(a) Plene Wava Spectrum.


FIGLRE 9. PLANE WAVE SPECTRUM AND NEAR FIELD OF Y-COMPONENT OF FOUR-HORN MONOPULSE ARRAY.

Figure $9(\mathrm{~b})$ shows the $y$-component of the synthesized near field of the four-horn monopulse antenna at $64 \times 64$ samples spaced at $\Delta x=\Delta y=$ . $14045 \lambda$. The near fields of the four circular elements are clearly visible, and the vast majority of the near-field energy is concentrated in the central portion of the array.

When selected cuts were extracted from the $2-D$ phase wave spectra of the sum channel and used in Equation (9), the patterns of Figure 10 resulted. Agreement between the measured and synthesized E-plane sum patterns shown in Figure $10(\mathrm{a})$ is excellent. But perhaps more importantly, the agreement in the $\phi=45^{\circ}$ plane is also excellent as shown in Figure $10(\mathrm{~b})$-- facts which attest to the apparent correctaness of the underlying assumptions used throughout the synthesis procedure. Similar results were obtained for the other planes and other channels.

## RADOME ANALYSIS EXAMPLE

The motivation for the antenna synthesis procedure described above is to ensure the valid assessment of the accuracies of various computeraided radome analysis techniques [1], one of which is described in this section.

A computationally fast receiving formulation for radome analysis [9] is illustrated in Figure 11. The antenna near fields ${\underset{\mathrm{E}}{\mathrm{Ti}}}, \mathrm{H}_{\mathrm{Ti}}$ are represented by a uniform grid of sample points on a finite planar aperture surface $S_{a p}$ placed on or just in front of the radiating portion of the actual antenna. The near fields are assumed to be the same as those produced by the antenna when transmitting in the absence of the radome. Rays representing the incident plane wave (target return) are traced from each point in the aperture in the direction $\hat{k}$ to the radome wall. The electromagnetic field associated with each ray is weighted by the insertion

(a) E-Plane Potterns.


FIGURE 10. COMPARISONS OF MEASURED AND SYNTHESIZED \{") SUM PATTERNS OF ACTUAL ANTENNA USING 2-D EXTRAPOLATION.


Figure 11. Illustration of the Fast Receiving Method of Radome Analysis
transmission coefficients for field components parallel and perpendicular. to the plane of incidence at each point on the radome wall. The response $V_{R}$ of the antenna is obtained by summing up the contributions of the received fields $E_{R^{\prime}} \underline{H}_{R}$ as specified by Lorentz reciprocity; viz.,

$$
\begin{equation*}
V_{R i}(\hat{k})=C \int_{S_{a p}}\left(\underline{E}_{T i} \times \underline{H}_{R}-\underline{E}_{R} \times \underline{H}_{T i}\right) \cdot \hat{n} d a \tag{59}
\end{equation*}
$$

The subscript $i=1,2,3$ specifies the antenna near fields for the $\Sigma, \Delta_{E L}$, and $\Delta_{A Z}$ channels, respectively. Antenna patterns can be computed by controlling the direction of arrival and polarization of the incident plane wave. Boresight errors in the two monopulse planes can also be computed for specified antenna/radome orientations by determining the direction of arrival which produces the difference pattern nulls.

The $64 \times 64$ sample array of Figure $9(b)$ representing the near field of the antenna was actually too large to fit into the $10.38 \lambda$-diameter, 10.38 $\lambda$ length, tangent ogive, Rexolite $\left(\varepsilon_{r}=2.54\right.$, tan $\delta=.002$ ) radome used in the analysis and measurement. Also, since six such complex arrays are used in the program for the three antenna channels, core memory storage was a consideration. Consequently, only the central $49 \times 49$ sample points of the near fields were actually used in the radome computations.

Comparisons of the E-plane $\Delta_{E L}$ patterns, measured without the radome and computed using a free space radome, are shown in Figure 12 to demonstrate the adequacy of the synthesis technique and the small effects of the near-field truncation. The pattern in Figure 12 was computed as the response of the antenna to plane waves arriving from 65 directions in the $E-p l a n e$, equally spaced in $k_{y}=\sin \theta$ over the visible region $\left|k_{y}\right| \leq l$. The


FIGURE 12. COMPARISONS OF MEASURED AND COMPUTED (') E-PLANE DIFFERENCE patterns for free space radome.


FIGURE 13. COMPARISONS OF MEASURED AND COMPUTED (') E-PLANE DIFFERENCE PATTERNS FOR REXOLITE RADOME.
computed patterns were then Fourier interpolated via Equation (58) to produce sample points at $2^{\circ}$ increments over the angular range $|\theta| \leq 90^{\circ}$.

The computer-aided analysis was repeated using the Rexolite radome, and $\Delta_{E L}$ E-plane patterns were computed and interpolated as before. The results are graphed in Figure 13 and compared to the measured patterns with the actual radome in place. The radome was oriented with respect to the antenna such that the radome axis of symmetry made an angle of $15^{\circ}$ with respect to the antenna $z$-axis, and the tip of the radome was located in the $\phi=-45^{\circ}$ plane of the antenna (Figure 2). Agreement is good for the primary $\Delta_{E L \theta}^{E}$ component over the range $|\theta| \leq 36^{\circ}$; the discrepancies outside this range of angles are attributed to reflections not accounted for in the analysis. E The poor agreement between the cross-polarized $\Delta_{E L \phi}$ components in Figure 13 is attributed to deficiencies in the analysis, particularly the absence of any accounting for reflections inside the radome.

## DISCUSSION

It is important to distinguish the band-limited or aperture-limited nature of the plane wave spectra of each element at $z=0$ from the unlimited nature of the PWS of the four-horn array of elements at $z>0$. Each element has finite size; hence, it is a source whose aperture fields have bounded support. It follows that the PWS is not limited in extent in the wavenumber plane since a function and its Fourier transform cannot both have finite support [22]. The unlimited nature of the element plane wave spectra must be taken into consideration when implementing the extrapolation algorithm to minimize the effects of aliasing.

The near field of the four-horn array can be synthesized from the element near field or from its plane wave spectra. The results presented above utilized the latter method, and since no windowing function was applied to the plane wave spectra of the four-horn array, the resulting near fields are theoretically those right at the $z=0$ plane where the elements are located. It is well known that the planar near field changes as a function of $z[3] ;$ viz., the plane wave spectrum is modified by the exponential function $e^{-j k_{0} k_{z}}$ so that $E_{n f}(x, y, z)=F\left\{A\left(k_{x}, k_{y}\right) e^{j k_{o}^{k} z^{z}}\right\}$. For values of $z$ of only a few wavelengths, the effect of the exponential function is to drastically attenuate the evanescent modes of the spectra and to cause the planar near field to spread out. Thus, what was a near field having bounded support at $z=0$ becomes a Fresnel field of unlimited extent with increasing $z$; concurrently, the initial spectra having unlimited extent become limited. In the limit of very large $z$, the spectra
 of the roles of aperture-limited PWS, and wavenumber-limited near fields, is not always fully appreciated.

The synthesis procedure described above also allows for the inclusion of virtually any amount of additional measured pattern data. The additional data form added constraints on the near-field solutions finally obtained in the same way that the principal plane data have worked here.

## CONCLUSIONS AND RECOMMENDATIONS

The aperture synthesis procedure described has been demonstrated to yield excellent resuIts, both in terms of the measured versus synthesized patterns and in the reasonableness of the near fields produced. The procedure is specifically applicable to computer-aided radome analysis,
especially in regard to verification of computed results by comparison to measured pattern data.

It is recommended that additional work be carried out to determine the applicability of the method to source synthesis using complete amplitude and phase data, both near-field and far-field. Additional source geometries should be included in the source specification to ensure close conformance with physical fact. It is anticipated that the actual fields of a number of common source geometries can be determined quite accurately from measured radiation data using the general procedure described here.

## ACKNOWLEDGMENTS

This research was sponsored by the Air Force Office of Scientific Research under Grant AFOSR-77-3469. The United States Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright notation hereon.

The help of Professor R. W. Schafer in defining the extrapolation algorithm is gratefully acknowledged.

## REFERENCES

l. G. K. Huddleston, H. L. Bassett, and J. M. Newton, "Parametric Investigation of Radome Analysis Methods," in 1978 IEEE AP-S Symposium Digest, 1978, pp. 199-201.
2. A. C. Ludwig, "Radiation Pattern Synthesis for Circular Aperture Horn Antennas," IEEE Trans., AP-14, No. 4, pp. 434-440, July 1966.
3. P. C. Clemmow, The Plane Wave Spectrum Representation of Electromagnetic Fields, Pergamon Press, Oxford, 1966.
4. A. Papoulis, "A New Algorithm in Spectral Analysis and BandLimited Extrapolation," IEEE Trans., CAS-22, No. 9, pp. 12991306, September 1975.
5. G. Tricoles, "Radiation Patterns and Boresight Error of a Microwave Antenna Enclosed in an Axially Symmetric Dielectric Shell," J. Optical Soc. of America, Vol. 54, No. 9, pp. 1094-1101, September 1964.
6. D. T. Paris, "Computer-Aided Radome Analysis," IEEE Trans., AP-18, No. 1, pp. 7-15, January 1970.
7. D.C.F. Wu and R. C. Rudduck, "Application of Plane Wave Spectrum Representation to Radome Analysis," in Proc. of the Tenth Symposium on Electromagnetic Windows, July 1970, pp. 46-49.
8. E. B. Joy and G. K. Huddleston, "Radome Effects on Ground Mapping Radar," Technical Report for U. S. Army Missile Command, AD-778 203, March 1973.
9. G. K. Hucdleston, "Radome Analysis Computer Program: Ray Tracing Formulation," Technical Report for Johns Hopkins University Applied Physics Laboratory, November 1979.
10. K. Siawak, T. B. Dowling, and L. R. Lewis, "Boresight Errors Induced by Missile Radomes," IEEE Trans., AP-27, No. 6, pp, 832-841, November 1979.
11. L. G. Bulluck, G. R. Oeh, and J. J. Sparagna, "An Analysis of WideBand Microwave Monopulse Direction-Finding Techniques," IEEE Trans., AES-7, No. 1, pp. 188-202, January 1971.
12. J. Arsac, Fourier Transforms and the Theory of Distributions, PrenticeHall, Inc., Englewood Cliffs, N.J., 1966, Ch. 5.
13. D. R. Rhodes, Synthesis of Planar Antenna Sources, Oxford University Press, London, 1974.
14. H. G. Schmidt-Weinmar, "Spatial Resolution of Subwavelength Sources from Optical Far Zone Data," Chapter 4 of Inverse Source Problems in Optics, H. P. Baltes, editor, Springer-Verlag, Berlin, 1978.
15. G. K. Huddleston, "Optimum Probes for Near-Field Antenna Measurements on a Plane," Ph.D. Dissertation, Georgia Institute of Technology, Atlanta, Gerogia, 1978, Ch. 3.
16. S. Silver (ed.), Microwave Antenna Theory and Design, McGraw-Hill New York, 1949, pp. 161-162.
17. J. D. Kraus, Antennas, McGraw-Hill, New York, 1950, Ch. 15.
18. H. A. Ferwerda, "The Phase Reconstruction Problem for Wave Amplitudes and Coherence Functions," Chapter 2 of Inverse Source Problems in Optics, H. P. Baltes, editor, Springer-Verlag, Berlin, 1978.
19. S. Silver, op. cit., p. 337.
20. Ian N. Sneddon, Fourier Transforms, McGraw-Hill, New York, 1951, Ch. 2 .
21. J. W. Goodman, Fourier Optics, McGraw-Hill, New York, 1968, p. 25.
22. H. J. Landau and H. O. Pollak, "Prolate Spheroidal Wave Functions, Fourier Analysis and Uncertainty - I," BSTJ, 40, pp. 43-64, January 1961.
APPENDIX C
"Comparative Accuracies of Radome Analysis Methods"
Accepted for Publication
in
Proceedings of the Fourth International Conference on Electromagnetic Windows

Toulon, France

June 10-12, 1981

G. K. Huddleston<br>School of Electrical Engineering<br>and<br>H. L. Bassett and M. J. Hadsell<br>Engineering Experiment Station (RAIL)<br>Georgia Institute of Technology<br>Atlanta, Georgia 30332

## INTRODUCTION

This paper presents the salient results of a parametric investigation of radome analysis methods [1]. Three methods of analysis were investigated as described below. Measured boresight error data obtained at 35 GHz on eight combinations of three, four-horn monopulse antennas and five polystyrene, tangent ogive radomes are used as true data in assessing the speeds, accuracies, and ranges of validity of the three methods of analysis.

## METHODS OF ANALYSIS

Three computer-aided methods of radome analysis were investigated. The theoretical bases for all three methods are the Huygens-Fresnel principle, Lorentz reciprocity, and geometrical optics [2]. The first method, called herein the fast receiving method, uses geometrical optics (ray tracing) to find the fields incident on the aperture of a monopulse antenna enclosed by the radome due to a TEM wave incident on the radome from a specified direction $\hat{k}$ [3]. The insertion voltage transmission coefficients of flat panel theory for parallel and perpendicular polarization are used to transform the plane wave fields associated with each ray from their values at the incident point on the outside surface of the radome to their values $\underline{E}_{R}$, $\underline{H}_{R}$ at the sample point in the aperture. The voltage received by each channel ( $\Sigma, \Delta_{\text {ET }}, \Delta_{A Z}$ ) of the monopulse antenna is obtained according to the reciprociE $E$ integral

$$
\begin{equation*}
v_{R E C}(\hat{k})=\int_{S}\left(\underline{E}_{T} \times \underline{H}_{R}-\underline{E}_{R} \times \underline{H}_{T}\right) \cdot \underline{n} \text { da } \tag{1}
\end{equation*}
$$

where $\underline{E}_{T}, \underline{H}_{T}$ are the aperture fields of the antenna when transmitting, and where $\bar{S}^{T}$ is the aperture surface.

The second method of analysis, referred to herein as the fast transmitting method, uses a transmitting formulation based on the plane wave spectrum (PWS) representation of the antenna aperture fields and an equivalent aperture approach [4]. The aperture fields are represented by their samples at $\mathbb{M}$ equally spaced increments in $x$ and $y$. The two-dimensional Fourier transform of the aperture fields yield the corresponding plane wave spectra. From each sample point, there emanate $\mathbb{M N}$ plane waves.

Each plane wave is traced to an incident point on the inner surface of the radome and weighted by the insertion voltage transmission coefficients. The modified fields of each plane wave are then added together at each sample point to produce modified aperture fields which embody the effects of the radome. The voltages received by the radome-enclosed antenna are then calculated according to Equation (1), where $E_{T}, \underline{H}_{T}$ are the modified aperture fields.

The third method of analysis is referred to as the surface integration method [5]. The voltage received by the antenna enclosed by the radome is again given by Equation (1), where $S$ is now the inside surface of the radome, $E_{T}, H_{T}$ are the radiated fields of the antenna on $S$, and $E_{R}$, $\underline{H}_{R}$ are the fields of the incident plane wave on $S$ as transformed from their values on the outside surface using the insertion voltage transmission coefficients. For some directions of arrival $k$, portions of the inner radome surface are "shadowed" by other portions; the fields on the shadowed portions are approximated by ray tracing as described above for the fast receiving case. Aperture integration is used to calculate the fields of the antenna at each point on the radome surface from the specied aperture values.

All three methods were implemented in Fortran for execution on the Cyber 70 computing system at Georgia Tech. Maximum use was made of features and software common to all three codes.

## ANTENNA/RADOME DESCRIPTIONS

Three, four-horn monopulse antennas were designed and fabricated exclusively for use in this research, corresponding to small ( $\mathrm{BW}_{3 \mathrm{~dB}}=30^{\circ}$ ), medium ( $15^{\circ}$ ), and large ( $8^{\circ}$ ) sizes. The conical horn elements of each antenna were machined into a single piece of aluminum. The salient dimensions of the antennas are given in Figure 1 and Table 1. More details are given in Reference 6 . The elements were $y$-polarized.

Five, tangent ogive radomes having dimensions given in Figure 1 and Table 2 were machined from cylinders of polystyrene ( $\varepsilon_{r}=2.54$, $\tan \delta=.002$ ), corresponding to small, medium, and large radome sizes. A fineness ratio of 1.0 was used for each size; in addition, for the medium size, fineness ratios of 1.5 and 2.0 were used. All five radomes had a wall thickness of 0.25 inch, corresponding to a full wavelength in the dielectric at 35 GHz and a design angle of approximately 60 degrees.

The antenna and radome were used together in eight different combinations for measurement and analysis purposes. The intent here was to obtain true data from measurements for comparison to the predicted results over ranges of parameters which would help clarify any deficiencies in the three methods of analysis.

## RESULTS

Comparisons of measured and computed boresight error data for five antenna/radome combinations are presented in Figures 2 through 5. Boresight errors in both the elevation difference channel (BSEEL) and azimuth difference channel (BSEAZ) are shown in each graph as functions of the
radome orientation angle $\alpha$. The antenna and radome were mounted together such that the radome axis of symmetry passed through the antenna axis of symmetry at the gimbal point (Figure lb) at an angle of 15 degrees. The radome could then be rotated about the antenna axis of symmetry through the angle $\alpha$ indicated in Figure 1a, thereby placing the tip of the radome in any desired plane of scan. For example, $\alpha=0$ corresponds to the radome tip being in the azimuth plane (+xz-plane) of the monopulse antenna; $\alpha=-90^{\circ}$ places the tip in the elevation plane ( $-\mathrm{yz}-\mathrm{pl}$ lane in Figure la).

In Figures 2 through 5, $\alpha$ varies from zero to -90 degrees. For $\alpha=0$, symmetry dictates that there should be no boresight error in elevation, and the azimuth boresight error should be nonzero. For $\alpha=-90^{\circ}$, azimuth boresight error should be zero, and elevation boresight error should be nonzero. The boresight errors are defined here as the true direction to the target in the antenna coordinate system of Figure la; e.g., positive boresight error in azimuth (elevation) means that the target lies in the $+x z$ (tyz) plane.

Figure 2 compares the computed results for all three methods with the measured boresight error data. In carrying out the computations for the fast receiving case, it was found that only four points were needed in the antenna aperture, located at the center of each element, to obtain essentially the same results as were computed using a $49 \times 49$ point representation of the aperture fields [7]. The same four-point representation was also used in the other two computer codes because the enormous computation times required using the $49 \times 49$ point representation were prohibitive. Even using the four-point representation, the surface integration required such long run times that only the small radome could be adequately analyzed on the Cyber system.

Examination of Figure 2 shows that none of the three methods of analysis accurately predicts the measured boresight errors in the case of the small antenna with small radome, especially for the elevation channel. The fast receiving method tends to overestimate the error while the fast transmitting method underestimates it. The surface integration method does the best job for the azimuth error. All three methods predict the correct sign of the error for most of the range of $\alpha$ considered. Deficiencies in the methods of analysis to account for the lack of agreement with measured results cannot be isolated on the basis of the data.

Figures 3 and 4 present results for the medium antenna and medium radomes having two different fineness ratios. The fast receiving method predicts the measured errors most accurately, though not as accurately as desired. The fast transmitting method underestimates the errors. Unstable results were obtained with the surface integration method as indicated in Figure 3, indicating unresolved problems with the computer code. The two fast methods accurately predict the sign of the error, and the fast receiving method does predict accurately an increase in errors with increasing fineness ratio as expected.

Figure 5 presents the results for the medium antenna and large radome. Neither of the two fast methods predicts the elevation error very accurately. Better predicted results are obtained in the azimuth error, with the fast transmitting being more accurate than the fast receiving method.

The computation times and core storage requirements for the three methods of analysis are presented in Table 3 for comparison purposes. For the fast methods of analysis, these two parameters are independent of the radome size, but do depend on the number of points in the antenna aperture: for the fast receiving method, computation time increases directly with the number of points; for the fast transmitting method, the logarithm (base 2) of the computation time increases in the same manner.

The computation time of the surface integration method depends on both the number of points in the aperture and the number of points used to represent the fields on the radome surface. In Figure 2, four points were used for the aperture fields, and 781 points (spaced $\lambda / 3$ apart) were used on the radome surface. In Figure 3, 2291 points at $\lambda / 3$ spacing were used on the radome surface, and four points were used for the aperture fields.

- Comparisons of measured and computed values of on-axis sum channel gain loss relative to the case of no radome are shown in Table 4 for three positions of the radome tip. For the small losses encountered, no method consistently predicted the measured radome losses.


## CONCLUSIONS AND RECOMMENDATIONS

The main conclusion to be made from the data presented is that there is room for improvement in the predictive accuracies of the computer codes used with respect to the important parameters of boresight error and radome loss. This conclusion is especially true for the case of small antennas and radomes where the effects of antenna/radome interactions are not properly included. For the case of moderate sized antennas and radomes, the fast receiving method is attractive because of the fast computation time and reasonably accurate results. The surface integration code used requires additional development before any valid conclusions can be drawn about its predictive accuracy; however, it is clear that its applicability will be restricted to small radomes because of the relatively large computation times required.

It is recommended that the fast receiving method be modified so that refractive effects and ray spreading are more accurately accounted for in the ray tracing procedure. It is also recommended that the surface integration method be further developed, even to include first-order reflected fields. Additionally, it is recommended that new experimental techniques be developed which will allow the determination of radome fields close to the dielectric so that deficiencies in the analytical methods can be isolated and corrected.

## ACKNOWLEDGMENT

This research was sponsored by the Air Forec Office of Scientific Research under grant AFOSR-77-3469. The United State Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright notation hereon.

1. G. K. Huddleston, H. L. Bassett, \& J. M. Newton, "Parametric Investigation of Radome Analysis Methods", Annual Report, Grant AFOSR-773469, November 1978.
2. G. K. Huddleston, "Theory of Radome Analysis", submitted to IEEE AP-S Transactions, November 1980.
3. G. K. Huddleston, H. L. Bassett, \& J. M. Newton, "Parametric Investigation of Radome Analysis Methods: Computed-Aided Analysis Using Geometrical Optics and Lorentz Reciprocity", Final Technical Report, Vol. 2 of 4, Grant AFOSR-77-3469, February 1981.
4. E. B. Joy \& G. K. Huddleston, "Radome Effects on the Performance of Ground Mapping Radar", Final Technical Report, U. S. Army Missile Command, DAAHO1-72-C-0598, March 1972.
5. G. K. Huddleston, H. L. Bassett, \& J. M. Newton, "Parametric Investigation of Radome Analysis Methods: Computer-Aided Radome Analysis Using the Huygens-Fresnel Principle and Lorentz Reciprocity", Final Technical Report, Vol. 3 of 4, Grant AFOSR-77-3469, February 1981.
6. H. L. Bassett, J. M. Newton, et al., "Parametric Investigation of Radome Analysis Methods: Experimental Results", Final Technical Report, Vol. 4 of 4, Grant AFOSR-77-3469, February 1981.
7. G. K. Huddleston, "Aperture Synthesis of Monopulse Antenna for Radome Analysis Using Limited Measured Pattern Data', Proceedings Southeastcon '81, April 1981.

Table 1. Dimensions in Inches of Antennas. (See Figure 1(a)).

Antenna   Identification	$\mathrm{R}_{\mathrm{A}}$	Element   Diameter A	Element Half-   Spacing C	Overa11   Diameter B	
	Sma11	.1875	.310		.160

Table 2. Dimensions in Inches of Radomes. (See Figure 1(b)).
Radome Outside Outside Inside Inside Identification

Small (F=1.0)	2.55	2.35	2.05	2.05	.4375
Medium (F=1.0)	4.00	3.81	3.50	3.50	.75
Medium (F=1.5)	4.00	5.66	3.50	5.25	.75
Medium (F=2.0)	4.00	7.52	3.50	7.00	.75
Large (F=1.0)	6.91	6.72	6.41	6.41	.375

Table 3. Computation Time and Core Storage Requirements.

Computation Time*(sec.)/Core	Storage (octal)	
Fast   Receiving	Fast   Transmitting	Surface   Integration
$.24 / 67100$	$.62 / 77300$	$34.0 / 135300$
$.25 / 67100$	$.62 / 77300$	$44.0 / 135300$

*Per look angle.

Table 4. Radome Loss Comparisons.

Antenna	Radome	Loss ( dB )				
		$\begin{gathered} \text { Alpha } \\ \text { (Deg.) } \\ \hline \end{gathered}$	Measured	Fast   Revg	Fast Xmtg	Surface Integration
Small	Small	0	0.4	0.5	0.5	1.9
"	"	-45	0.7	0.5	0.4	1.7
"	"	-90	0.6	0.3	0.3	1.9
Medium	Medium ( $\mathrm{F}=1.0$ )	0	1.4	0.4	0.6	1.2
"	$" 1$	-45	1.4	0.4	0.5	1.2
"	" "	-90	0.8	0.3	0.4	1.2
Medium	Medium ( $\mathrm{F}=2.0$ )	0	0.2	0.1	0.6	-
"	" "	-45	0.5	0.1	0.4	-
"	" "	-90	0.6	0.1	0.2	-


(b) Radome Geometry

Figure 1. Antenna and Radome Geometries as Dimensioned in Tables 1 and 2.


Figure 2. Comparisons of Measured and Computed Boresight Errors for Small Antenna, Small ( $F=1.0$ ) Radome.

LEGEND
ELEVATION BSE



Figure 3. Comparisons of Measured and Computed Boresight Errors for Medium Antenna, Medium ( $F=1.0$ ) Radome.

## LEGEND



Figure 4. Comparisons of Measured and Computed Boresight Errors for Medium Antenna, Medium ( $F=2.0$ ) Radome.

ELEVATION BSE


MEASURED
FAST RECEIVING
FAST TRANSMITTING
SURFACE INTEGRATION
——_
$\longrightarrow-$
$\square-$
$-8$


Figure 5. Comparisons of Measured and Computed Boresight Errors for Medium Antenna, Large ( $F=1.0$ ) Radome.

# PARAMETRIC INVESTIGATION <br> OF <br> RADOME ANALYSIS METHODS: <br> COMPUTER-AIDED RADOME ANALYSIS USING GEOMETRICAL OPTICS AND LORENTZ RECIPROCITY 

By

G. K. Huddleston, H. L. Bassett, \& J. M. Newton

Prepared for
AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFSC) BOLLING AIR FORCE BASE, D. C. 20332
FINAL TECHNICAL REPORT, VOLUME II OF IV
GRANT AFOSR-77-3469
30 September 1977 - 31 December 1980
February 1981
GEORGIA INSTITUTE OF TECHNOLOGY
SCHOOL OF ELECTRICAL ENGINEERING \& Engineering Experiment Station
Atlanta, Georgia 30332



The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the Air Force Office of Scientific Research or the U. S. Government.

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS   BEFORE COMPLETING FORM
1. REPORT NUMEER ${ }^{\text {a }}$ 2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle)   PARAMETRIC INVESTIGATION OF RADOME ANALYSIS METHODS: COMPUTER-AIDED RADOME ANALYSIS USING GEOMETRICAL OPTICS AND LORENTZ RECIPROCITY	5. TYPE OF REPORT \& PERIOD COVERED   Final Technical Report, Vol. 2   bf 4   30 Sept. 1977-31 Dec. 1980   6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(S)   G. K. Huddleston, H. L. Bassett, \& J. M. Newton	B. CONTRACT OR GRANT NUMEER(s) AFOSR-77-3469
9. PERFORMING ORGANIZATION NAME ANO ADDRESS Georgia Institute of Technology School of Electrical Engineering \& Engineering Experiment Station Atlanta, Georgia 30332	10. PROGRAM ELEMENT, PROJECT, TASK AREA \& WORK UNIT NUMBERS $61102 \mathrm{~F} \quad 2301 / \mathrm{A} 6$
11. CONTROLLING OFFICE NAME AND ADDRESS   Air Force Office of Scientific Research   Physics Directorate (Code NP-77-148)   Bolling Air Force Base, D. C. 20332	12. REPORT DATE February 1981
	13. NUMEER OF PAGES 338
14. MONITORING AGENCY NAME \& ADDRESS(if different from Controlling Office)	15. SECURITY CLASS. (of this report) UNCLASSIFIED
	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIGUTION STATEMENT (of this Report)   Approved for public release; distribution unlimited.	
17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, if diferent from Report)	
18. SUPPLEMENTARY NOTES	
19. KEY WOROS (Continue on reverse side if necessary and identify by block number)   Radome Analysis   Electromagnetic Analysis   Lorentz Reciprocity   Geometrical Optics	
20. ABSTRACT (Continue on raverse side if necessary and identify by block number)   A Fortran computer program is described for computing the effects of a tangent ogive radome on the receiving patterns and boresight directions of a monopulse antenna. The analytical method based on ray tracing, main program, and 34 subroutines are thoroughly documented. Four test cases and their results in the form of printouts, pattern plots, and near-field graphs are presented.	

PARAMETRIC INVESTIGATION OF
RADOME ANALYSIS METHODS:
COMPUTER-AIDED RADOME ANALYSIS USING
GEOMETRICAL OPTICS AND LORENTZ RECIPROCITY
by
G. K. Huddleston, H. L. Bassett, \& J. M. NewtonSchool of Electrical Engineering \&Engineering Experiment StationGeorgia Institute of TechnologyAtlanta, Georgia 30332
Final Technical Report, Volume II of IV
for
Air Force Office of Scientific Researhc (AFSC) Physics Directorate (Code NP-77-148) Bolling Air Force Base, D. C. 20332
under
Grant AFOSR-77-3469
30 September 1977 - 31 December ..... 1980

## TABLE OF CONTENTS

PAGE
LIST OF ILLUSTRATIONS. ..... iii
LIST OF TABLES ..... vi
CHAPTER
l. Introduction and Summary ..... 1
2. PROGRAM RTFRACP ..... 9
3. SUBROUTINE HACNF ..... 57
4. SUBROUTINE ORIENT ..... 71
5. SUBROUTINE POINT. ..... 81
6. SUBROUTINE VECTOR ..... 85
7. SUBROUTINE INCPW. ..... 89
8. SUBROUTINE RECM ..... 95
9. SUBROUTINE TRACE. ..... 111
10. SUBROUTINE RXMIT. ..... 117
11. SUBROUTINE WALL ..... 129
12. SUBROUTINE AXB. ..... 135
13. SUBROUTINE CAXB ..... 137
14. SUBROUTINE RECBS. ..... 139
15. SUBROUTINE RECPTN ..... 151
16. SUBROUTINE OGIVE. ..... 157
17. SUBROUTINE OGIVEN ..... 169
18. SUBROUTINE XY ..... 173
19. SUBROUTINES BDISK, BDISKN, TDISK, TDISKN. ..... 177
20. SUBROUTINE FAR. ..... 183
CHAPTER ..... PAGE
21. SUBROUTINE AMPHS. ..... 195
22. SUBROUTINE DBPV ..... 197
23. SUBROUTINE NORMH ..... 199
24. SUBROUTINE CNPLTH AND FUNCTION PSI. ..... 205
25. SUBROUTINES PLT3DH AND PLTT ..... 213
26. SUBROUTINE FFTA ..... 221
27. SUBROUTINE MAGFFT ..... 235
28. SUBROUTINE JOYFFT ..... 239
APPENDICES
A. Test Case $l$ for RTFRACP ..... 249
B. Test Case 2 for RTFRACP ..... 253
C. Test Case 3 for RTFRACP ..... 287
D. Test Case 4 for RTFRACP ..... 291
E. Plane Wave Transmission Through Multilayered Radome Wall. ..... 323

## LIST OF ILLUSTRATIONS

2-1. Tangent Ogive Radome Geometry ..... 11
2-2. Coordinate Systems Used in Radome Analysis. ..... 13
2-3. Coordinate System for Far Field Patterns ..... 16
3-1. Approximation of Circular Aperture by Rectangular Grid of Sample Points ..... 60
3-2. Geometry of Flat Plate Antenna. ..... 63
4-1. Coordinate Systems Used in Radome Analysis. ..... 72
4-2. Coordinate Systems used in Radome Analysis. ..... 74
7-1. Coordinate System for Far Field Patterns. ..... 90
8-1. Illustration of the Fast Receiving Method of Radome Analysis. ..... 101
8-2. Plane Wave Propagation Through an Infinite Plane Sheet. ..... 102
9-1. Tangent Ogive Radome Geometry ..... 113
10-1. Plane Wave Propagation Through an Infinite Plane Sheet. ..... 121
15-1. Coordinate System for Far Field Patterns. ..... 152
16-1. Tangent Ogive Radome Geometry ..... 158
20-1. Coordinate System for Far Field Patterns ..... 187
APPENDICES
B-1. $\left|E_{x \Sigma}\right|$ or $\left|E_{Y \Sigma}\right|$ of the RHC (ICASE=1) Antenna ..... 270
B-2. Phase of $E_{x,}$ for RHC (ICASE=1) Antenna. ..... 271
B-3. Phase of $E_{Y \Sigma}$ for RHC Antenna. ..... 272
B-4. Transmitting E-Plane $\sum$ Pattern of RHC Antenna Without Radome. ..... 273
B-5. Transmitting H-Plane $\sum$ Pattern of RHC Antenna Without Radome. ..... 274
B-6. $\left|E_{x}\right|_{\triangle E L}$ or $\left|E_{Y}\right|_{\Delta E L}$ of RHC Antenna ..... 275
B-7. Phase of $E_{X \triangle E L}$ of RHC Antenna ..... 276
FIGURE ..... PAGE
B-8. Phase of $E_{Y \triangle E L}$ of RHC Antenna ..... 277
B-9. Transmitting E-Plane $\Delta_{E L}$ Pattern of RHC Antenna Without Radome ..... 278
B-10. $\left|E_{x}\right|_{\triangle A Z}$ or $\left|E_{y}\right|_{\triangle A Z}$ of RHC Antenna ..... 279
B-11. Phase of $E_{X \triangle A Z}$ of RHC Antenna. ..... 280
B-12. Phase of $E_{Y \triangle A Z}$ of RHC Antenna ..... 281
B-13. Transmitting $H-P l a n e ~ \Delta_{A Z}$ Pattern of RHC Antenna Without Radome ..... 282
B-14. Receiving E-Plane $\Sigma$ Pattern of RHC ..... 283
B-15. Receiving E-Plane $\Delta_{E L}$ Pattern of RHC Antenna with Radome $\left(0^{\circ}, 14^{\circ}\right)$ ..... 284
B-16. Receiving H-Plane $\Sigma$ Pattern of RHC Antenna With Radome at ( $0^{\circ}, 14^{\circ}$ ) ..... 285
B-17. Receiving H-Plane $\Delta$ Pattern of RHC Antenna with Radome at $\left(0^{\circ}, 14^{\circ}\right)$ ..... 286
D-1. $\left|E_{x}\right|$ of Flat Plate Antenna (ICASE=3) for Sum, Elevation Dî́fference, and Azimuth Difference Channels ..... 308
D-2. $\left|E_{Y}\right|_{\Sigma}$ of Flat Plate Antenna ..... 309
D-3. Phase of $E_{Y \Sigma}$ of Flat Plate Antenna ..... 310
D-4. Transmitting E-Plane Sum Pattern of Flat Plate Antenna ..... 311
 ..... 312
D-6. $\left|E_{Y \triangle E L}\right|$ of Flat Plate Antenna ..... 313
D-7. Phase of $E_{Y \triangle E L}$ of Flat Plate Antenna ..... 314
D-8. Transmitting E-Plane $\Delta_{E L}$ Pattern of Flat Plate Antenna ..... 315
D-9. $\left|E_{Y \triangle A Z}\right|$ of Flat Plate Antenna. ..... 316
D-10. Phase of $E_{Y \triangle A Z}$ of Flat Plate Antenna ..... 317
D-ll. Transmitting $H-P l a n e \Delta_{A Z}$ Pattern of Flat Plate Antenna ..... 318
D-12. Receiving E-Plane Sum Pattern of Flat Plate Antenna With Radome ..... 319
D-13. Receiving E-Plane $\Delta_{E L}$ Pattern of Flat Plate Antenna With Radome. . . . . . . . . . . . . . . . . . . . . . . . 320
D-14. Receiving H-Plane Sum Pattern of Flat Plate Antenna With Radome. ..... 321
D-15. Receiving $H-P l a n e \Delta_{A Z}$ Pattern of Flat Plate Antenna With Radome ..... 322

## LIST OF TABLES

3-1. Values of Non-Zero Elements in Circular Aperture (ICHAN=1, ICASE or 2) . . . . . . . . . . . . . . . . . . . . 61

3-2. Symmetrical Amplitude Distribution for Flat Plate Antenna. . 65
7-1. Rectangular Components for Four Cases of Plane Waves . . . . 92

## Chapter 1

INTRODUCTION AND SUMMARY

1-1. Introduction
This Volume II of this final technical report of four volumes documents a ray tracing radome analysis computer program written in Fortran IV for use on the Cyber 70/74 computing system at Georgia Institute of Technology and the IBM 3033 computing system at Johns Hopkins University Applied Physics Laboratory. The program was developed at Georgia Institute of Technology over the past four years; however, considerable development work in computer aided radome analysis has taken place here prior to that time [1-7].

This analysis package was used during the research carried out under this grant to analyze the antennas and radomes using the fast receiving formulation as described in Volume I. Its documentation was done in conjunction with the on-going radome technology program at JHU/ APL under the cognizance of R. C. Mallalieu (APL Contract 601053). It is intended to serve as part of a technology base for the radome technical community.

The report is organized by chapters according to the approximate order in which the subprograms are called, and each chapter describes one subprogram. Each chapter is essentially self-contained since it is meant to serve as the complete documentation on a single subroutine. References are provided at the end of each chapter. In some cases, figures are duplicated in different chapters for completeness. Each chapter is terminated with the listing of the subroutine.

Chapter 2 describes the main program. and instructions for its use. Chapters 3 through 28 describe the thirty four subroutines required for execution, including those for producing Calcomp pattern plots and threedimensional plots. Appendices A through D present computed results for four test cases for use in verifying correct operation on other systems. These results were obtained on the Cyber $70 / 74$ computing system at Georgia Tech. The remaining part of this chapter describes background of the program development and summarizes the features of the computer analysis.

This report comprises Volume II of four volumes. Volume I describes the salient results of this overall investigation to determine the accuracies and ranges of validity of various analysis methods. Volume III documents the additional software required to analyze radomes using a surface integration method. Volume IV presents the experimental results obtained and is meant to serve as a data base for other investigators seeking to verify the accuracy of their computer codes.

1-2. Background
Development of the radome analysis computer program (RACP) was initiated in 1971 in an effort to include the effects of the radome on a ground mapping radar [1]. A three-dimension geometry and vector field formulation were used. A plane wave spectrum (PWS) representation of the radiation from the antenna greatly facilitated the computations since the Fast Fourier Transform (FFT) could be used. The program was used to compute power patterns on the ground for many different cases of antenna/ missile orientations. From these data, the effects of the radome on pattern shape, power loss and VSWR were determined.

Monopulse tracking antennas were next introduced into the computer analysis to evaluate radome materials and shapes for seeker systems in the $8-18 \mathrm{GHz}$ band [2]. Tangent ogive shapes of various fineness ratios were analyzed. Monolithic and multilayer wall structures were used. Algorithms were developed to compute boresight errors from the sampled data difference patterns in two orthogonal planes. A modification of this program was also used to conduct a trade-off and development study for the Multipurpose Missile (MPM), later known as ASALM [3].

The next step in the development of RACP came in 1977 with the introduction of a conical scan tracking antenna into the analysis [4]. This antenna necessitated a reformulation of the analysis from the transmitting formulation used earlier to a receiving formulation. The big advantage offered by the latter is that the antenna response can be calculated for only one direction of arrival of the target return (plane wave). In the former, the FFT automatically computes "responses" for many directions of arrival and, hence, is computationally slower. Subsequent versions of the program have used the same receiving formulation with monopulse and other types of antenna models.

The computed results obtained with the receiving and transmitting formulations are not always the same [5]. A computed-aided analysis which utilizes the Huygens-Fresnel principle [6, 7] is generally considered to be more accurate than the two methods already mentioned, but requires considerably more computation time that may not be warranted in all cases. A research program is now underway at Georgia Tech whose objective is to establish the accuracies and ranges of validity of these three methods of radome analysis [5].

The current version of the ray tracing analysis computer program utilizes a receiving formulation based on the Lorentz reciprocity theorem [5]. A plane wave of selectable linear or circular polarization is assumed incident on the outside of the radome and is representcd by a system of parallel rays. There is one ray for each sample data point in the antenna aperture inside the radome. Each ray is traced from the point where it impinges on the outside surface to the corresponding aperture point. The electric and magnetic fields ${\underset{X}{i}},{\underset{i}{i}}^{H}$ associated with each ray are weighted by the flat panel transmission coefficients $\mathrm{T}_{1}, \mathrm{~T}_{\|}$as determined by the unit normal $\hat{n}$, the direction of propagation $\hat{k}$, and the dielectric properties of the radome wall. The weighted incident fields $E_{i}^{\prime}, H_{i}^{\prime}$ at each aperture point are then used in the following integral to obtain the complex voltage response $V_{r}$ of the antenna as

$$
\begin{equation*}
V_{r}=C \iiint_{s}\left(\underline{E}_{T} \times \underline{H}_{i}^{\prime}-\underline{E}_{i}^{\prime} \times \underline{H}_{T}\right) \cdot \hat{z} d x d y \tag{1}
\end{equation*}
$$

where $E_{T}, H_{T}$ are the aperture fields when the antenna is transmitting, $C$ is a complex constant, and $\hat{z}$ is the unit vector normal to the $x y$ (aperture) plane. For digital computer implementation, the integral in Equation (1) reduces to a double summation, and the equal-area elements $d x d y$ become $\Delta x \Delta y$ and can be absorbed into the constant $C$.

In its present form, the program accommodates only one radome shape; viz., the tangent ogive. The length, diameter and fineness ratio are, of course, all variable in the input data. Monolithic and multilayer wall configurations can be analyzed; however, only uniform wall configurations whose properties do not vary from point to point on the
wall can be handled. Provisions are made to allow for a metal tip on the radome whose effect is aperture blockage.

The geometry subroutines provide for three separate coordinate systems and the point and vector transformations among them. A reference coordinate system is provided to orient the antenna/radome combination with respect to other bodies. The coordinate systems for the antenna and the radome comprise the other two systems. Boresight error and pattern computations are carried out and expressed in the antenna coordinate system.

The primary outputs of the program are boresight error (mrad.), boresight error slope (deg./deg.), gain loss, and when selected, principal plane patterns. Outputs include both printing and plotting (Calcomp). Plotting options allow for selection of aperture fields with and without the radome. A feature is also provided to either obtain or suppress intermediate calculated results for debugging purposes.

Boresight error calculations for monopulse antennas are carried out by setting the first target return at a known direction within a few degrees of true boresight. The responses in the two difference channels and the sum channel are then computed and stored. Another set of responses for a return $180^{\circ}$ away from the first is computed next. The two sets of data are then used to construct a linear tracking model in the two orthogonal planes, and the process is repeated until a boresight null is indicated. The true direction of arrival of the plane wave at this point represents the boresight error directly.

The current subroutine used to characterize the antenna permits selection of various polarizations and two aperture distributions. A uniform, circular aperture distribution having vertical, horizontal or
circular (LHR or RHC) polarizations is one combination. The second distribution is a tapered rectangular distribution having vertical polarization as found in flat plate antennas. This basic subroutine would not be difficult to modify to accommodate other distributions, such as rectangular aperture with cosine taper.

Computation time is independent of radome size but depends on the number of samples used in the aperture. For 256 sample points ( $16 \times 16$ array), the time to compute the received voltages in the three channels is 1.5 seconds.

The program is organized as a main program and a number of supporting subroutines, all written in Fortran IV. The complete program, including plotting software, contains thirty four subroutines. The core storage required for the complete program, including all library and system I/O routines, is just over 46,000 (decimal) words. Integer, real and complex variables and arrays are utilized. Single, double and threedimensional data arrays are present. Only single precision variables and computations are required with the 60 -bit word available on the Cyber 70 at Georgia Tech.

1-4. References

1. E. B. Joy and G. K. Huddleston, "Radome Effects on Ground Mapping Radar", Contract DAAHOl-72-C-0598, U. S. Army Missile Command, March 1973.
2. E. B. Joy, G. K. Huddleston, H. L. Bassett and C. L. Gorton, "Analysis and Evaluation of Radome Materials and Configurations for Advanced rf Seekers", Contract DAAHO1-73-C-0769, December 1973.
3. E. B. Joy, G. K. Huddleston and H. L. Bassett, "Multi-Purpose Missile (MPM) High Performance Radome Trade-Off and Development Study", Martin Marietta Aerospace, April 1975.
4. G. K. Huddleston and E. B. Joy, "Development of Fabrication and Processing Techniques for Laser-Hardened Missile Radomes; Radome Electrical Design Analysis", Martin Marietta Aerospace, April 1977.
5. G. K. Huddleston, H. L. Bassett and J. M. Newton, "Parametric Investigation of Radome Analysis Methods", 1978 IEEE AP-S Symposium Digest, pp. 199-202, May 1978.
6. S. Silver, Microwave Antenna Theory and Design, New York, New York: McGraw-Hill Book Company, 1949.
7. D. T. Paris, "Computer-Aided Radome Analysis", IEEE Transactions, AP-18, no. 1, pp. 7-15, January 1970.
8. G. K. Huddleston, H. L. Bassett, \& J. M. Newton, "Parametric Investigation of Radome Analysis Methods: Salient Results", Final Technical Report, Volume I of IV, Grant AFOSR-77-3469, February 1981.
9. G. K. Huddleston, H. L. Bassett, \& J. M. Newton, "Parametric Investigation of Radome Analysis Methods: Computed-aided Radome Analyis Using the Huygens-Fresnel Principle and Lorentz Reciprocity", Final Technical Report, Volume III of IV, Grant AFOSR-77-3469, February 1981.
10. H. L. Bassett, J. M. Newton, W. Adams, J. S. Ussailis, M. J. Hadsell, and G. K. Huddleston, "Parametric Investigation of Radome Analysis Methods: Experimental Results", Final Technical Report, Volume IV of IV, Grant AFOSR-77-3469, February 1981.

## Chapter 2

## PROGRAM RTFRACP

2-1. Purpose: RTFRACP is a Fortran computer program used to analyze the effects of a tangent ogive radome on the performance of a monopulse aperture antenna. It consists of a main program and 34 subroutines. It uses complex arithmetic and requires 57121 octal words of core memory for execution on the CDC Cyber 70 system (60-bit words) at Georgia Institute of Technology. Execution time to compute boresight error on the Cyber 70 is approximately two seconds per look direction when the antenna aperture is represented by $16 \times 16=256$ sample data points. Execution time to compute transmitting and receiving patterns and aperture near fields, and to compute the necessary Calcomp commands for two- and three-dimensional plotting, is approximately 35 seconds for one look direction. The computer-aided radome analysis uses a receiving formulation based on the Lorentz reciprocity theorem as described earlier [1,2]. The voltage produced at the terminals of a linear antenna by an incident plane wave is given by

$$
\begin{equation*}
V_{R}(\hat{k})=\int\left(E_{T} \times \underline{H}_{R}-\underline{E}_{R} \times{\underset{H}{T}}^{H_{T}} \cdot \hat{n} d a\right. \tag{1}
\end{equation*}
$$

where $E_{T}, \underline{H}_{T}$ are the fields produced on the surface $S$ enclosing the antenna when the antenna is transmitting; $\underline{E}_{R}{ }^{\prime} \underline{H}_{R}$ are the incident fields produced on $S$ by the incident plane wave or perturbations thereof; $k$ is a unit vector which points from the antenna toward the direction from which the plane wave arrives; and $n$ is a unit vector normal to the surface $S$ and pointing
outward. The fields $\underline{E}_{T}{ }^{\prime}{\underset{T}{T}}$ are taken to be those produced in the planar aperture when the antenna is transmitting in the absence of the radome. The geometrical optics approximation

$$
\begin{equation*}
\hat{H}_{T}=\frac{\hat{n} \times E_{T}}{\eta} \tag{2}
\end{equation*}
$$

is used to generate the magnetic field in the aperture from the aperture illumination specified by ${\underset{E}{T}}$. Rays are traced from each sample point in the aperture in the direction $\hat{k}$ to the inner radome wall. The plane wave fields associated with each ray are weighted with the flat panel insertion voltage transmission coefficients as determined by the radome wall configuration, the angle of incidence, and the plane of incidence. The individual contributions are summed up as indicated in Equation (1).

The parameters of the tangent ogive radome are indicated in Figure 2-1. The outside base diameter $D_{O S}$ and fineness ratio $F_{o S}$ determine the outside length according to

$$
\begin{equation*}
\mathrm{F}_{\mathrm{OS}}=\mathrm{I}_{\mathrm{OS}} / \mathrm{D}_{\mathrm{OS}} \tag{3}
\end{equation*}
$$

A similar relation holds for the inside dimensions; viz.,

$$
\begin{equation*}
F_{i S}=I_{i s} / D_{i s} \tag{4}
\end{equation*}
$$

The radius of curvature of the outside wall $R_{o s}$ is given by

$$
\begin{equation*}
R_{O S}=F_{O S} D_{O S} / \sin \left(\pi-2 \operatorname{Tan}^{-1}\left(2 F_{O S}\right)\right) \tag{5}
\end{equation*}
$$



Figure 2-1. Tangent Ogive Radome Geometry.
and the dimension $B$ is given by

$$
\begin{equation*}
B=R_{O S}-D_{O S} / 2 \tag{6}
\end{equation*}
$$

The placements of a bulkhead (bottom disk) and metal tip (top disk) can be specified by $Z_{B O T}$ and $Z_{T O P}$, respectively. The thickness, dielectric constant, and loss tangent of the wall may also be specified for up to $N=5$ layers. The radome is assumed to be a body of revolution with uniform wall dimensions independent of location. The dashed cylindrical shape of a diameter $D_{d}$ in Figure $2-1$ was used earlier to simulate a laserinduced defect and is not pertinent here.

The subroutine which generates the antenna aperture fields represents two types of antennas: circular aperture with uniform illumination and any one of four polarizations (vertical, horizontal, RHC, LHC); flat plate antenna with tapered illumination and vertical polarization. For either antenna, the fields are computed for one of three selected channels: sum, azimuth difference, elevation difference. Inputs include the number of samples $N_{X}, N_{Y}$ and the aperture diameter $D_{A P} / \lambda$ in wavelengths.

The antenna/radome orientation is specified according to the parameters defined in Figure 2-2. The angle $\phi_{p}$ selects the plane of scan of the radome tip with respect to the antenna coordinate system: $\phi_{p}=0^{\circ}$ selects the azimuth plane; $\phi_{p}=90^{\circ}$ selects the elevation plane. The angle $\theta_{\mathrm{L}}$ scans the tip in the selected plane.

The program computes boresight errors in the azimuth and elevation planes of the antenna. The radome orientation is specified by $\phi_{p}$ and $\phi_{\mathrm{L}}$. The first target return (plane wave) is made to arrive from the direction


Figure 2-2. Coordinate Systems Used in Radome Analysis.

$$
\begin{equation*}
\hat{\mathrm{k}}_{1}=\hat{\mathrm{x}}_{\mathrm{A}} \sin \theta_{O S}+{\hat{y_{A}}}_{\mathrm{A}} \sin \theta_{O S}+\hat{z}_{A} \sqrt{1-2 \sin ^{2} \theta_{O S}} \tag{7}
\end{equation*}
$$

where $\theta$ os is the initial specified offset angle; e.g., $2^{\circ}$. The voltage received by each channel is computed and stored. The second return is made to arrive from

$$
\begin{equation*}
\hat{\mathrm{k}}_{2}=\hat{\mathrm{x}}_{A}\left(-\sin \theta_{O S}\right)+\hat{y}_{A}\left(-\sin \theta_{O S}\right)+{\hat{z_{A}}}_{A} \sqrt{1-2 \sin ^{2} \theta_{O S}} \tag{8}
\end{equation*}
$$

and the voltages are again computed. The data from these two points are used to construct a linear tracking model in the two planes, and a direction of arrival $k$ is predicted which will yield null indications in both planes. The process is repeated until a desired error tolerance is satisfied or a maximum number of iterations is exceeded. Upon completion, the output $\hat{k}$ indicates the direction from which the plane arrives which yields an electrical boresight indication. If $\alpha$ and $\beta$ represent the boresight error angles in the azimuth and elevation planes, respectively, then they are related to the direction $\hat{k}=\hat{x}_{A} k_{x}+\hat{y}_{A} \hat{k}_{y}+\hat{z}_{A} k_{z}$ by

$$
\begin{align*}
& \sin \alpha=\frac{k_{x}}{\sqrt{l-k_{y}^{2}}} \\
& \sin \beta=\frac{x^{y}}{\sqrt{l-k_{x}^{2}}}
\end{align*}
$$

where

$$
\begin{equation*}
\mathrm{k}_{\mathrm{z}}=\sqrt{1-\mathrm{k}_{\mathrm{x}}^{2}-\mathrm{k}_{\mathrm{y}}^{2}} \tag{11}
\end{equation*}
$$

Options are also provided whereby principal plane patterns as shown in Figure 2-3 and additional outputs around boresight can be computed and printed. These options are useful when preparing software for a new type of antenna and to ensure correct operation whenever curious results are obtained.

2-2. Usage: Line No.
DATA APIN/0./ 47
DATA ZBOTIN/0.00/ 49
DATA RADIUS/lEO/ 52
DATA THETAA, PHIA, AGAM3A/0.0,90.0,0.0/ 53

DATA NX, NY, NXE, NYE. NXY/16,16.256,1,512/ 56
DATA NREC, NS, MX, MY/32,16,16,1/ 57
$\operatorname{READ}(5,6)$ TITLE 62
READ (5,*) GRAF3D, GRAFSA, GRAF'TR, GRAFRV, SUPPRS, IPENCD 65

READ (5,*) NFINE, NPHI, NTHE, DIAOS, RA, RR, ZTOPIN, FREQ,
OSANG
67
READ (5,*) LMAX, DMRAD, IOPT, RAPMAX, VAIRM, IPOL, ICASE,
N, IPWR 76
$\operatorname{READ}(5, *) \operatorname{DIN}(I), \operatorname{ER}(I), T D(I) \quad(I=1, N) 108$
$\operatorname{READ}(5, *)$ FINR(I) (I=1,NFINE) 117
READ (5,*) PHI (I) (I=1, NPHI) 120
$\operatorname{READ}(5, *)$ THETA (I) (I=1,NTHE) 122
2-3. Arguments
a. Inputs. Units of arguments on input are distances in inches, angles in degrees, and frequency in gigahertz, unless otherwise noted. Units of arguments passed to subroutines are centimeters, radians, and

$$
\begin{aligned}
& \hat{\epsilon}=\text { elevation component } \\
& \hat{\alpha}=\text { azimuth component }
\end{aligned}
$$




$$
\begin{aligned}
& \rightarrow \theta_{\alpha}>0 \\
& \rightarrow \theta_{\epsilon}>0
\end{aligned}
$$

Figure 2. 3 Coordinate System for Far Field Patterns
gigahertz. An asterisk is used to denote those DATA arguments that do not normally need to be changed by the user.

APIN* - Height of a cylindrical base section of the tangent ogive radome. It is no longer included in the ray tracing algorithms and should not be changed from its zero value.

ZBOTIN - Distance from base of tangent ogive radome to missile bulkhead (Figure 2-l).

RADIUS* - The radius $R$ used in the far field factor $e^{-j k R} / R$ by Subroutine FAR. Do not change.

THETAA* - Angle $\theta_{a}$ between $z$-axis and the position vector $r_{a}$ to the antenna origin. This angle was used in earlier work to locate the antenna origin in the reference system using spherical coordinates ( $r_{a}, \theta_{a}, \phi_{a}$ ). Do not change. See Chapter 7 .

PHIA* - Angle $\phi_{a}$ between the projection of $z_{A}$ axis onto the $x y-p l a n e$ and the $x$-axis. Do not change.

AGAM3A* - Angle between $z_{A}$-axis and $z$-axis in Figure 2-2. Do not change.

NX,NY - Integer powers of two equal to the number of sample points in the antenna aperture; e.g., $16,32,64$, etc. Changing $N X$ and $N Y$ necessitates compatible changes in Lines 16-18.

NXE,NYE - Integer powers of two which specify the expanded number of sample points desired when computing the transmitting patterns of the antenna by inverse Fourier transforming the aperture fields.

Subroutine JOYFFT provides this capability of increased resolution in one or both dimensions. Changes in NXE, NYE necessitate compatible changes in Lines 16, 20, 22, and 23. Note that NXE*NYE $\leq N X * N Y$ and either $N X E \leq N X$ or $N Y E \leq N Y$.

NREC - Integer power of two equal to the number of points at which to compute the receiving pattern in either principal plane. The received voltage is computed at points $\theta_{i}$ equally spaced in $\sin \theta$, where $\theta$ is the angle measured from the $z_{A}$-axis as indicated in Figure 2-3, where $\sin \theta_{i}=-\mathrm{KMAX}+(I-1) * 2 * \mathrm{KMAX} /$ NREC, and where $K M A X=\sin \theta_{\max }<1.0$.

- Not used. It was originally used by Subroutine RECBS. Do not remove.

MX, MY - Integer powers of two equal to the magnification factors desired in the $k_{x}$ and $k_{y}$ (E-plane) directions, respectively, of the transmitting antenna patterns. Note that the restrictions MX*NY $\leq N X Y$ and $M Y * N Y \leq N X Y$ must be observed. The data cited above indicated increased resolutions in the NX direction of $M X=16$ and no magnification (MY=1) in the NY direction. Consequently, note that $N X E=M X * N X=256$.




	same code as used above for IOPT.
ICASE	- Integer variable which selects one of two types
	of antenna apertures for the analysis: ICASE=1
	or 2 selects a circular aperture with uniform
	illumination; ICASE=3 selects a flat plate
	antenna with programmed illumination. See
	Subroutine HACNF in Chapter 3.
N	- Integer variable equal to the number of layers
	(up to 5) in the radome wall. For cases where
	more than 5 layers are required, the dimensional
	arrays on Line 37 must be changed to $\mathrm{NN}=\mathrm{N}+1$.
IPWR	- Integer variable which selects the component
	for which to compute the transmitting power
	patterns as follows:
	1. Elevation Component
	2. Azimuth Component
	3. Total power
DIN,ER,TD	- Subscripted real variables equal to the thickness
	(in.), dielectric constant ( $\varepsilon_{r}$ ), and loss tangent
	(tan $\delta$ ) of each layer of the radome wall. $\mathrm{I}=1$
	corresponds to the first layer and is the layer
	on the exit side of the wall. Layer N is the
	first layer encountered by the incident plane
	wave. See Subroutine WALL.
FINR	- Subscripted real variable equal to NFINE fine-
	ness ratios.
PHI	- Subscripted real variable equal to NPHI angles
	(degrees) which specify the scan planes.

b. Outputs. The parameters of analysis which are computed and and outputted by the program depend on whether SUPPRS is true. In what follows, it is assumed that $\operatorname{SUPPRS=FALSE}$ so that all possible outputs are obtained. Since many of the original input parameters are printed directly, only those parameters not already explained above will be included below. Additional clarification may be found in Section 2-6.

TABLE - Logical variable which, if TRUE, causes a look-up table to be used in computing transmission coefficients. When SUPPRS=FALSE, an abbreviated table of transmission coefficients of the radome wall is printed by Subroutine WALL with variables as explained immediately below.

ANGLE - Real variable equal to the angle of incidence (degrees) of the plane wave on a plane sheet of infinite extent having the layered configuration specified for the radome wall. The entries in the table are computed at 250 equal increments in $\sin \theta_{i}$, but only every fifth result is printed.

TPERI,TPARI- Complex variables equal to the voltage insertion transmission coefficients of the sheet for the two cases of $\underline{E}_{i}$ perpendicular to the plane of incidence $\left(T_{\perp}\right)$ and $E_{i}$ parallel to the plane of incidence $\left(T_{\|}\right)$. In the printed table, the power transmission coefficients $\left|T_{\perp}\right|^{2}$ are


- Real variable equal to the radius of curvature of the outside shape of the tangent ogive radome.

BOS - Real variable equal to the distance $B$ in inches defined in Figure 2-1.

FINOS - Real variable equal to the fineness ratio of the radome as based on the outside dimensions. FINIS - Real variable equal to the fineness ratio of the radome as based on the inside dimensions. The following variables are printed when the receiving patterns are computed and printed:


ANGMAX - Real variable equal to $\sin ^{-1}$ (KMAX).
The receiving pattern is computed at NREC points and magnified using Subroutine MAGFFT to 256 points equally spaced in sin $\theta$ over the range (-KMAX, KMAX-DK). Three parameters are printed: angle in degrees, amplitude in decibels, and phase in degrees. Only every fourth point in the 256 points is printed. The receiving patterns are printed in the following order:

$$
\begin{aligned}
& \mathrm{E}-\mathrm{Pl} \text { ane }: \Sigma_{\mathrm{EL}}, \Delta_{\mathrm{EL}} \\
& \mathrm{H}-\mathrm{Pl} \text { ane: }: \Sigma_{A Z}, \Delta_{\mathrm{AZ}}
\end{aligned}
$$

Subroutine RECM maintains a count NRAY of the number of rays actually traced from points in the aperture to the radome wall. When SUPPRS=FALSE, this number will be printed. Subroutine RECBS computes the boresight error of the antenna as produced by the radome. When SUPPRS=FALSE, the following parameters are printed:

K1, K2 - Real subscripted variables containing the direction cosines ( $\mathrm{Xi}_{\mathrm{xi}}, \mathrm{k}_{\mathrm{yi}}, \mathrm{k}_{\mathrm{zi}}$ ) of the last and next to last true directions to the target. One of these variables is equal to $K$, the subscripted variable containing the direction cosines of the last target return.

AZTM,ELTM - Real variables equal to the boresight error in the H-plane and E-plane associated with the last target return ( $k_{x}, k_{y}, k_{z}$ ). Expressed in milliradians, these errors are computed according to

$$
\begin{aligned}
& \text { AZTM }=\sin ^{-1}\left(k_{X} / \sqrt{1-k_{Y}^{2}}\right) * 1000 . \\
& \text { ELTM }=\sin ^{-1}\left(k^{Y} / \sqrt{1-k_{x}^{2}}\right) * 1000 .
\end{aligned}
$$

Let $\hat{k}=\hat{x}_{A} k_{X}+\hat{y}_{A} k_{Y}+\hat{z}_{A} k_{z}$. Then AZTM is the angle between the $z_{A}$-axis and the projection of $\hat{k}$ onto the $x_{A} z_{A}$ (azimuth) plane. ELTM is the angle between the $z_{A}$-axis and the projection of $\hat{k}$ onto the $y_{A} z_{A}$ (elevation) plane.

MESAZ,MESEL- Real variables equal to the monopulse error slopes in the azimuth and elevation channels expressed in units of volts per degree, where the maximum signal received by the sum channel is considered to be one volt.

UAZ,UEL - Real subscripted variables equal to the received tracking functions $I_{\text {mag }}\{\Delta / \Sigma\}$ corresponding to the target returns Kl and K 2 above; e.g., UAZ(l) $=$ $I_{\text {mag }}\left\{\Delta_{A Z} / \Sigma_{A Z}\right\}$ for Kl.

SMAX - Real variable equal to the maximum amplitude of the received sum channel voltage.

LCTR - Integer variable equal to the number of iterations (target returns) used by Subroutine RECBS to compute boresight error.

Subroutine RECBS also computes and prints six additional monopulse outputs around the apparent boresight direction $\hat{k}_{o}$. The directions $\hat{\mathbf{k}}$ chosen lie in the plane $k_{x}=k_{y}$ and are spaced one milliradian apart over the range $\pm 3$ mrad and centered on the direction $\hat{k}_{o}$. The variables printed are as follows:

ANG -	Real variable equal to the angle in milliradians
	between $\hat{k}_{o}$ and $\hat{k}$.
VRAZ, VREL -	Real variables equal to $I_{m a g}\{\triangle / \Sigma\}$ for the target
	return from direction $\hat{k}$ for the azimuth and ele-
	vation channels, respectively.

```
DAZ,DEL - Amplitude and phase (degrees) of the complex
 voltages received on the }\mp@subsup{\Delta}{AZ}{}\mathrm{ and }\mp@subsup{\Delta}{EL}{}\mathrm{ channels,
 respectively, for target return k.
SLPAZ,SLPEL- Average values of the monopulse error slopes
 (volts/degree) in the azimuth and elevation
 channels, respectively, obtained by a linear
 approximation of the tracking functions based on
 their values at ANG = \pm3 mrad. For example,
SLPAZ = [VRAZ(3 mrad) - VRAZ(-3 mrad)]/(.006*57.3)
```

The main program always prints the boresight error in azimuth (BSEAZ) and elevation (BSEEL), and the values printed are identical to AZTM and ELTM defined above. Main also computes the gain of the antenna in decibels with the radome in place according to

```
GAIN = 20. * ALOG1\varnothing(SMAX/VAIRM)
```

For other than an "air radome", GAIN is negative and indicates a loss in antenna maximum gain due to radome reflections and ohmic (tand) losses. The amplitude of received sum voltage, VAIRM, is always printed as the last item prior to termination of the program.

2-4. Comments and Method
a. Method. The method of analysis has been presented in Section 2.1. Additional details of analysis are presented in the descriptions of each subroutine.
b. Supporting Subroutines. Thirty four supporting subroutines are required by RTFRACP. The purpose of each one is briefly described below.
(1) HACNF--Computes complex vector aperture electric fields of antenna for all three monopulse channels at NX x N sample points.
(2) ORIENT--Computes matrices ROTATE and TRANSLate used for coordinate transformations by Subroutines POINT and VECTOR.
(3) POINT--Transforms a point $P\left(X_{A}, Y_{A}, z_{A}\right)$ in antenna system to the same point $P\left(x_{R}, Y_{R}, z_{R}\right)$ in radome coordinate system, and vice versa.
(4) VECTOR--Transforms a vector from radome to antenna coordinate system, and vice versa.
(5) INCPW--Computes the rectangular electric field components of a plane wave incident from the direction $\hat{k}_{A}$ in antenna coordinates. The power density of the plane wave is unity.
(6) RECM--Computes the voltage received by each channel of the antenna for a plane wave PWI ( $E_{x}, E_{y}, E_{z}$ ) incident on the radome from the direction $K A\left(k_{x}, k_{y^{\prime}} k_{z}\right)$. Subroutine RECM calls the following subroutines: VECTOR, POINT, TRACE, RXMIT, CAXB.
(7) TRACE--Directs the ray tracing process and calls Subroutines OGIVE, OGIVEN, TDISK, TDISKN, BDISK, BDISKN, SQR, CBRT, and XY.
(8) RXMIT--Computes the transmitted electric fields of the plane wave traveling in direction -k and incident on a flat
dielectric wall with unit inner normal $\hat{n}$. The unit vectors $\hat{k}, \hat{n}$ are used to resolve the incident plane wave into vector components perpendicular and parallel to the plane of incidence, and to determine the angle of incidence. RXMIT calls Subroutines WALI and AMPHS. WALL--Computes the voltage insertion transmission coefficients of flat panel model of the radome wall as function of the sine of the incidence angle.

AXB--Computes real vector cross product $\underline{C}=\underline{A} X \underline{B}$. CAXB--Computes the complex vector cross product $\underline{C}=\underline{A} X \underline{B}$. RECBS--Computes boresight errors of antenna enclosed by the radome for the specified orientation, fineness ratio, etc. RECBS calls Subroutines INCPW, RECM, and AMPHS. RECPTN--Computes receiving patterns of all three channels. RECPTN calls Subroutines INCPW and RECM. OGIVE--Computes point of intersection of ray and ogive by solving a quartic equation. OGIVE calls Subroutines CBRT, SQR, and $X Y$.

CBRT--Computes cube root.
SQR--Computes square root with test for negative argument. OGIVEN--Computes the unit inward normal vector to the ogive surface at the point $P\left(X_{R}, Y_{R}, z_{R}\right)$.
$X Y--$ Used by Subroutine OGIVE to compute the $X_{R}$ and $y_{R}$ components of the point of intersection of a ray on the inner radome surface. BDISK--Computes the point of intersection of a ray and planar bottom disk representing the bulkhead inside the radome.
(21)

BDISKN--Computes unit normal vector to bulkhead $\left(\hat{n}=+\hat{z}_{R}\right)$. TDISK--Computes the point of intersection of a ray and the base of the metal tip on the radome.
TDISKN--Computes unit normal vector to metal tip $\left(\hat{n}=-\hat{z}_{R}\right)$ FAR--Computes the amplitude of the power pattern from the complex plane wave spectra $A_{x}\left(k_{x}, k_{Y}\right), A_{Y}\left(k_{x}, k_{Y}\right)$ of an antenna.

AMPHS--Converts a complex number from rectangular to polar form. This subroutine utilizes the intrinsic function ATAN2. The amplitude produced is linear (not decibels), and the phase is in degrees on the range (-180, 180). DBPV--Converts a real, two-dimensional array from linear to logarithmic values in decibels on the range 0 to -40 dB . NORMH--Normalizes a two-dimensional real array to values between 0 and 1 .

CNPLTH--Plots single dimensional far field patterns on axes patterned after standard pattern recorder paper. CNPLTH calls Subroutine PSI in addition to the usual Calcomp subroutines. PSI--Used by Subroutine CNPLTH to compute the azimuthal angle $\psi$. PLT3DH--Yields three-dimensional plots of the data in the two-dimensional real array FIELD. PLT3DH calls Subroutines PLTT, NORMH as well as the usual Calcomp subroutines. PLTT--Used by Subroutine PLT3DH to eliminate moving the pen for hidden lines.
(34) PWRTWO--Used by Subroutine JOYFFT to ensure that a given integer is a power of 2.

2-5. Program Flow
For the following, refer to the program listing in Section $2-8$ and the line numbers shown on the right-hand margin of that listing.

Line Nos.
Line 15: All variables beginning with the letter K in the main program are real.

Lines 16-32: Declare variables and array dimensions. Note equivalence statements in Lines 24-26. The dimension of IBUF in Line 29 may be computer system dependent. Note in Line 32 that only twenty fineness ratios, scan planes, and scan angles can be accommodated.

Lines 34-38: Label common is used as a convenient means to transmit variables to subroutines not directly called by MAIN. The labels are generated from the names of the subroutines which receive the variables, and each label is terminated with the letter $C$ to denote common; e.g., TDISKC denotes variables common to MAIN and Subroutine TDISK.

Lines 40-42:	Declare namelists for printing data. These   namelists are no longer used except for occasional   debugging purposes.
Lines 43-57:	Set data in DATA statements as described above
	in Section 2-3.
Lines 61-62:	Set SMAX and VMAX to unity to prevent division
	by zero.
Lines 63-64:	Read and write TITLE according to 18A4 format.
Lines 65-67:	Read input data using free-field format.
Line 68:	Compute sine of the offset angle $\theta_{\text {OS }}{ }^{\text {c }}$
Line 69:	Set TABLE=FALSE so that normalizing factor VAIRM
	can be computed (Lines 319-329) via a call to
	Subroutines RECM and RXMIT. In the latter, TABLE=
	FALSE causes $T_{\perp}, T \mid$ to be set to unity as in the
	case of no radome.
Lines 71-75:	Write input data.
Lines 76-77:	Read input data and set VAIRM needlessly.
Lines 78-104:	Comments explaining input variables.
Line 105:	Set $\mathrm{NN}=\mathrm{N}+\mathrm{l}=$ Number of wall layers plus one.
Line 106:	Initialize DINCH= total thickness of radome wall
	in inches.
Lines 107-109:	Read wall data and compute total thickness.
Line 110:	Compute DIAIN= inside base diameter of the radome
	in inches.
Lines 111-112:	Compute indices of the center element of near-field
	arrays corresponding to $\mathrm{x}_{\mathrm{A}}=y_{A}=0$.

Lines ll3-ll4: Write array dimensional data.

Lines ll5-122: Read fineness ratios, scan planes, and scan angles.
Lines 123-126: Compute wavelength in inches and centimeters. Compute $\beta=2 \pi / \lambda_{\mathrm{cm}}$.

Lines 127-128: Call RXMIT and compute table of transmission coefficients versus sine of incidence angle. The first call to RXMIT builds the table. Subsequent calls use the table if TABLE=TRUE.

Line 129: Compute DAPWL= diameter of antenna aperture in wavelengths.

Lines 130-139: Convert variables in inches to centimeters for input to subroutines. Some variables are multiply defined to avoid conflicts in labeled common; e.g., ZBOT and zl. Note that DIACM is the inside diameter of the radome in centimeters.

Lines 140-144: Convert angles from degrees to radians using $R A D=\pi / 180$.

Lines 145-151: Compute near fields of three channel monopulse antenna using Subroutine HACNF.

Lines 152-158: Set KYMAX=KXMAX, compute magnified folding wavenumbers KXM, KYM, and print results.

Lines 159-177: Initialize Calcomp plotter, if required. The commented initialization (Lines 164-174) applies to the IBM 3033 system at JHU/APL.

Note: Lines 178-258 are used to plot the near fields of the antenna and/or the transmitting principal plane power patterns.


Lines 202-215: Repeat amplitude and phase 3D plots for EYT.
Line 2l6: Assume GFAFSA=T so that principal plane patterns are plotted.

Line 219:

Line 222:

Line 223:

Line 224:

Line 226
Call Subroutine DBPV and convert the power pattern to decibels on a scale of 0 to -40 dB .

Lines 227-230: Scale the values in FFSEL to the range of 0 to 1 for plotting.

Call Subroutine CNPLTH and plot the power pattern. If $K X M<1$, the pattern is plotted over the angular range corresponding to $\sin ^{-1}(K X M)$; if $K X M \geq 1$, the angular angle is $\left(-90^{\circ}, 90^{\circ}\right)$. Subroutine CNPLTH actually plots conical cuts corresponding to $k_{x}=$ constant or $k_{y}=$ constant as specified by inputs KXC, KYC. In the call here, $K X C=K Y C=0$ so that $a$ principal pattern is produced.

Lines 232-236: Write a figure title for the plot and establish a new origin for the next plot.

Line 237: If IP=2, the E-plane patterns are finished.
Lines 238-242: Since JOYFFT changes the input arrays EXT,EYT, it is necessary to recompute them so that increased resolution can be obtained in the plane wave spectra in the H-plane.

Lines 243-258: Repeat computation and plotting for $H-p l a n e$ power patterns.

Line 260: Iterate the radome analysis for NFINE fineness ratios.
Line 261: Set FINE = outside fineness ratio.

Lines 262-266: Calculate and write $R_{O S}, B, F_{O S}, F_{I S}$ as defined in F'igure 2-1 for the radome geometry.

Line 267: Compute RDML = distance from the base of the radome to the theoretical tip on the inside of the radome.

Lines 268-272: If ZTOPIN<RDML, the radome has a metal tip, and a message is written to that effect.

Lines 273-283: Compute parameters needed by Subroutine OGIVE to describe the radome shape. $R$ and $B$ are in centimeters
and apply to the inside dimensions. AP, the height of the cylinder in centimeters, is not used. RTSQ= square of the radius of the top disk. RBSQ= square of the radius of the bottom disk (bulkhead). The other variables, BSQ, RINV, RSQ1, RP, and RP2, are precalculated here to speed later computations in OGIVE.

Line 285: Compute conversion factor DPMR for converting milliradians to degrees.

Lines 286-288: Initialize the "last" values of boresight error in azimuth (AZL) and elevation (ELL) and the "last" value THL of scan angle. These variables are used later to compute boresight error slope in degrees per degree from the present and last values of boresight error.

Lines 289-290: Write title for analysis results.
Lines 291-293: Write parameters of radome wall.

Lines 294-296: Write heading for table of boresight error and gain data.
Lines 297-301: Write this same data to logical unit 7 for subsequent storage as a disk file, if desired.

Line 309: Iterate the radome analysis for NPHI scan planes.
Lines 310-312: Compute $\phi_{r}$ in radians as required by subroutine ORIENT.
Line 313: Iterate the analysis for NTHE scan angles in each scan plane.

Lines $314-316$ : Compute $\theta_{r}$ in radians as required by subroutine ORIENT.
Line 317: Call Subroutine ORIENT and compute the rotation matrix ROTATE and translation matrix TRANSL required for coordinate transformations using Subroutines POINT and VECTOR.

Line 318:	On the first iteration, TABLE is false so that the maximum amplitude of the received voltage on the sum channel is computed without the radome.
Line 319-322:	Set the direction cosines of the incident plane
	wave so that it arrives from the $\hat{z}_{A}$ direction.
Line 323:	Call Subroutine INCPW and compute the rectangular
	components PWI of the incident plane wave having
	polarization specified by IOPT.
Lines 324-325:	Set TSUP=T and TABLE=F so that an air radome wall
	be used and so that printing by Subroutines RXMIT
	and RECM will be suppressed.
Lines 326-327:	Call Subroutine RECM and compute the complex vol-
	tages VR received on the sum, difference elevation,
	and difference azimuth channels, respectively,
	corresponding to $\mathrm{VR}(\mathrm{I}), \mathrm{I}=1,3$.
Line 328:	Compute VAIRM=\|VR(1) .
Line 329:	Set TABLE=T so that on subsequent iterations
	VAIRM will not be recomputed, and so that the table
	Of transmission coefficients will be utilized when
	RXMIT is called.
Line 330:	If $\operatorname{SUPPRS}=\mathrm{F}$, compute and print the E-plane and H -
	plane receiving power patterns of the antenna with
	the radome in place.
Lines 333-334:	Iterate in $J$ for E-plane (ICUT=1) and H-plane
	(ICUT=2) patterns.
Line 335:	Set the desired far field component.



Line 358:
Call Subroutine DBPV to convert the power pattern in MVREC to decibels.

Lines 359-360: Write correct heading for E-plane or H-plane.
Line 361: Compute the increment in $\sin \theta$ at which the power pattern has been computed and resolved.

Lines 362-368: Scale the power pattern to have values between 0 and 1. If $\operatorname{SUPPRS}=\mathrm{F}$, compute the angle $\theta=\mathrm{ANG}$ and the phase of the pattern, and print the results for every fourth angle.

Line 372: If GRAFRV=T, plot the receiving power patterns.
Lines 373-378: Call Subroutine CNPLTH and plot the receiving patterns in turn. Write an appropriate figure title following each pattern plot. Re-origin the plotter pen for subsequent plots. The result of Lines 330-383 is four principal plane patterns: E-plane sum, E-plane $\Delta_{E L}$, H-plane sum, $H-p l a n e ~ \Delta_{A Z}$.

Lines 384-386: Call Subroutine RECBS and compute the boresight errors AZT, ELT in the azimuth and elevation planes of the antenna as caused by the radome. On output, the real array $K A$ contains the direction cosines of the last target return and, hence, gives the true direction to the target at the time that the tracking functions in the azimuth and elevation planes indicated the electrical boresight direction.

Line 387: If this is the first iteration in scan angle, do not attempt to compute boresight error slope.

```
 Lines 388-389: Compute boresight error slope (degrees/degree) in
 azimuth and elevation channels.
 Lines 390-392: Set the "last" values of boresight errors and scan
 angle to the current values in preparation for
 next iteration.
 Line 393: Compute loss in maximum gain of the antenna sum
 channel due to the radome.
 Lines 349-395: Write results to logical units 6 and 7.
 Lines 399-400: Write maximum amplitude of received sum voltage
 VAIRM without radome.
 Line 401: Terminate plotting software.
 STOP
 END
```

2-6. Test Cases
Four test cases are presented in Appendices A, B, C, and D to
demonstrate correct operation of the radome analysis computer program
RTPRACP.

Appendices $A$ and $B$ present the test data and results for $a$ circularly (RHC) polarized antenna and five-layer tangent ogive radome at a frequency of 11.80285 GHz ( $\lambda=1.0$ inch). The diameter of the aperture is ll. $84 \lambda$. The outside diameter of the radome is 16.267 inches. The fineness ratio is 3.00. In Appendix A, the program is exercised without plotting, and printing is minimized. In Appendix $B$, all plotting and printing options are exercised.

Appendices $C$ and $D$ present the test data and results for a vertically polarized flat plate antenna of diameter 5.1992 . All other parameters of the analysis are the same as in Appendices $A$ and $B$. Appendix $C$ contains the
case of no plotting and minimum printing. Appendix $D$ contains the results for all plotting and printing options.

The first page in each appendix presents the test data as actually read in by the program except that line numbers have been added along the right-hand margin. The second and succeeding pages of each appendix contain the printed output as produced by the program. Line numbers have been added along the right-hand margin.

In Appendices $B$ and $D$, the plots produced by the program are presented immediately after the printed output. The plots are presented in the order that they were produced by the program. Captions have been added for clarity. In addition, axes have been provided for the threedimensional plots.

Referring to Appendix $A$, Lines $32-40$ of the output listing, it is seen that a circularly polarized antenna produces boresight errors in both planes even though the scan of the radome tip is confined to a single plane. Comparison of these results to those in Appendix $C$ (Lines 32-40) indicate that for a linearly polarized antenna, boresight errors are produced only in the plane of scan as would be expected from symmetry considerations. Further detailed consideration of the circularly polarized antenna shows that depolarization of the incident plane wave by the radome produces additive errors, and the results shown are according to expectations.

The transmitting and receiving patterns in Appendix $B$ (and D) are not in agreement contrary to expectations. The discrepancy is due to the fact that the receiving patterns have $a(1+\cos \theta)$ variation characteristic of the geometrical optics approximation used for $\mathrm{H}_{\mathrm{T}}$. on the other hand, the transmitting patterns have a $\cos \theta$ variation as characteristic of an assumption of only magnetic current sources in the aperture. The disagreement is significant only for angles away from boresight.

The total computation time required for each test case on the Cyber 70 system at Georgia Institute of Technology was as follows:

Test Case	Appendix	Time (sec.)	No. of Scan Angles
1	A	17.52	10
2	B	36.844	1
3	C	20.369	10
4	D	34.678	1

In all four cases $N X=N Y=16$, $N X E=256, M X=16$, and the incident plane wave contained only an elevation component. Variances in execution time are due to time-share nature of the computing system used.

2-7. References

1. G. K. Huddleston and E. B. Joy, "Development of Fabrication and Processing Techniques for Laser Hardened Missile Radomes: Radome Electrical Design Analysis", Martin Marietta Purchase Agreement 573712, April 1977.
2. G. K. Huddleston, H. L. Bassett, and J. M. Newton, "Parametric Investigation of Radome Analysis Methods", IEEE AP-S Symposium Digest, pp. 199-202, May 1978; also, Proc. Fourteenth Symposium on Electromagnetic Windows, pp. 21-28, June 1978.
3. E. B. Joy and G. K. Huddleston, "Radome Effects on the Performance of Ground Mapping Radar," U.S. Army Missile Command, DAAH-01-72-C0598, March 1973.

2-8. Program Listing: See following pages.
THIS FAY TÁACING FCRMULATION RADOME ANALYSIS COMPUTER PROGRAM* ..... 1
RTFRACP, USES GEOMETRICAL OPTICS ANT LORENTZ RECIPROCITY ..... 2
TO COMPUTE THE RESFONSES AND BORESIGHT ERRORS OF A MONOPULSE ..... 3
ANTENNA INSIOE $G$ TANGENT OGIVE RAGUME TO AN INCIDENT PLANE ..... 4
ELEGTR CHAGNETIC WAVE OF SPECIFIED FOLARIZATION (TARGET RETURN). ..... 5
RTFRAGP WES JEVELOFED AT GEORGIA INSTITUTE OF TECHNOLOGY, ATLANTA ..... 7
GEORGIA, FRINAFILY UNDER GRANT AFOSR-77-3469 (PHYSICS DIRECTORATE) ..... 8
ANU DOCUMENTED UNDER JHU/APL CONTRACT NO. EU1C53 (ROBERT C. ..... 9
MALLALTEJ FOR USE ON A SIGNIFICANT RADOME TECHNOLOGY PROGRAM ..... 10
FOR THE OEPAKTPENT JF THE NAVY. ..... 11THIS VERSION IS FOR EXECUTION ON CYBER $70 / 74$. WITH ONLY MINOR13
SYNTAX CHANGES, IT HAS BEEN IMPLEMENTED ON THE IBM 3033 AT JHU/APL. ..... 1415
PROGRAA PTFRACP (INPLT, OUTPUT, TAFE 5=INPUT, TAPEE=OUTPUT, TAPETI
IMFLICIT QEAL (K) ..... 17
PEAL NF $(16,16)$, NVREC $(256), K A(3)$ ..... 18
COMPLEX SUMX $(16,16)$, SUMY $(16,16), 0 E L X(16,16)$, DELY $(16,16)$ ..... 19
COMPLEX DAZX(16,1E), DAZY(16,16), EXT (16,16), EYT(16,16) ..... 20
COMPLEX VP(16), VPEC $3(32,3)$, VREC (32) ..... 21
नEAL FFS (25E, 1), FFSEL(1,256), NORM (3), P1 (3) ..... 22
COMPLEX PWT(3), FWI(3) ..... 23
COMPLEX XE (256,1), YE(256,1), XYFFT (512) ..... 24
COMPLEX XEEL $(1,256)$, YEEL $(1,256)$ ..... 25
EOUIVALENCE(XE(1,1),XEEL(1,1)) ..... 26
ERUIVALENCE (YF(i,1), YEEL(1,1)) ..... 27
E QUIVALENCE(FFS $(1,1)$, MVREC(1),FFSEL (1,1) ..... 28
LOGICAL GRAF 3 ! , GPAFSA, GRAFTR,GRAF FV, TABLE, SUPPRS, TSUP ..... 29
INTEGEK IRUF(5i2) ..... 30
REAL FCTATE(3,3), TPANSL (3), TITLE(18) ..... 31
REAL FJNR(2C), PHI(201, THETA (20) ..... 3233
C OMMON/TOISKOユTTOP, RTSQ ..... 34
CCMMON/TRACC/Z2. Z 1 ..... 35
CCMMON/EDISKC/ZAOT,RBSA ..... 36
COMMCN,TRANSC/UIN(6), ER(6), TD(6),TZ,WALTOL,N,NN,D(6), ZB,TK ..... 37
COMMON/CGIVC/PF,RSD,AP,PINV,B,FSQ1,FP2 ..... 38
C$C$
$C$
$C$
0 ..... 39
NAMELIST/GECM/OR,RA, AFIN, ZRCTIN,NX,NY,NXE,NYE,NXY,MX,MY,NXC,NYC ..... 40
NAMELIST/KCATA/KXMAX, KYMAX, KXM, KYN ..... 41
NAMELIST/NEW/LMAX, DMRAU, IOPT, RAPMAX,VAIRM ..... 42
C SOUNOARY VALUES NEEDED BY SUBF TRACE (INCHES, CONVERT TO CM BELOW) ..... 43
C $Z 1=Z R$ GOORDINATE CF BOTTOM DISK ..... 44
C $Z 2=7 R$ COORDINATE CF TGP DISK (Z1, Z2 IN CM) ..... 45
$C$ APIN IS HEIGHT OF CYLIADER IN INCHES, CONVERT TO CM BELOW ..... 46
DATA APIN/C.I ..... 47
C ZBOTIN IS ZR CCOFD OF EOTTOM DISK (BLLKHEADI IN RADOME COORD IN INCHE ..... 48
DATA 7 BOTIN/0.00/ ..... 49
C KXMAX, KYMAX ARE CUTPUTS OF NEAR FIELD SUBR ..... 50
C INITIALIZE CONSTANTS ..... 51
DATA RADIUS/1ED/ ..... 52
ПATA THETAA,PHIA,AGAM3A/0.0.90.0.0.0/ ..... 53
DATA PI/3.141E926535898/ ..... 54
C************ ..... 55
DATA NX,NY,NXE,NYE,NXY/16,1E, 25E,1,512/ ..... 56
DATA NREC,NS,MX,MY/32,16,1E.1/ ..... 57
C************ ..... 58
C ..... 59
C READ IN DESCRIFTION OF RADOME WALL ..... 60
SMAX $=1.0$ ..... 61
VMA $X=1.0$ ..... 62
REAC $(5,6)$ TITLE ..... 63
WRITE(6,6) TITLE ..... 64
REAC(5.*) GFAF3E,GRAFSA,GRAFTR,GRAFAV,SUPPRS, IPENCD ..... 65
2E0 FGRMAT(4L6) ..... 66
READ(5,*) NFINE,NPHI,NTHE, CIAOS, PA, FR,ZTOPIA,FREQ, OSANG ..... 67
SINCS=SIN(CSANG*PI/180.) ..... 68
TABLE=.FALSE. ..... 69
C TAGLE IS SET FALSE SO THAT NORMALIZING FACTOR CAN BE GOMPUTED. ..... 70
WRITE(6,265) GRAF 30,GRAFSA, GRAFTR,GRAFRV,TABLE ..... 71
265 FOKMAT (" GRAF 3n=", L2," GRAFSA=*", $2,{ }^{\prime \prime}$ GRAFTR=", L2,* GRAFRV=", L2, ..... 72
\$ " TAELE=", L2) ..... 73
WPITE(6,27E) NFINE,NPHI,NTHE,GSANE ..... 74
 ..... 75
READ (5,*) LMAX, CMRAO, IDPT,RAPMAX, VAIRM, IPOL.ICASE,N,IPWR
READ (5,*) LMAX, CMRAO, IDPT,RAPMAX, VAIRM, IPOL.ICASE,N,IPWR ..... 76 ..... 76
IF (VAIRM.LE.U.I VAIRM=1.9 77
DIACS=OUTSIDE CIAMETER CF GASE OF TANGENT OGIVE RADOME 78
C VAIR=MAXIMUM REC*C VCLTAGE W/O RADCME AT KX=0., KY=0. . 79
C NFINE=NO. OF FINENESS RATIOS 80
NPHI=NUMBER OF SCAN PLANES 81
C NTHE=NUMBER OF ANGLES IN EACH SCAN PLANE 82
C DIAIN=INSIDE $3 A S E$ OIAMETER OF RADOME IN INCHES 83
C ZTOPIN=ZR COORD (IN) OF TOP DISK (METAL TIP) 84
C FREG=FREQUENCY IN GHZ 85
C GRAF3D=. TRUE. GIVES 30 PLOTS OF INCIOENT FIELOS ON APERTURE (DELETED) 86
C GRAFRV=. TRUE゙. GIVES SA PLOTS OF RECEIVING PATTERNS (AZ \& EL) 87
C GRAFSA=. TRUE. GIVES SA PLOTS OF TRANSMITTING PATTERN WITHOUT RADOME 88
SUPPRS=. TRUE. SUPPRESSES THE PRINTING OF NUMEROUS RESULTS 69
RAPMAX=MAX FADIUS OF ANTENNA APERTURE IN INCHES. 90
IOPT SELECTS FOLARIZATION GF INCIUENT PLANE WAVE\& 91
$=1$ ELEV (VERTICAL) 92
$=2$ AZIMUUTH (HCRIZCNTAL) 93
$=3$ RHC 94
$=4$ LHC 95
IP OL SELECTS FOLARIZATION OF ANTENNA WHEN ICASE=1: 96
$=$ SAME COCE AS FOR IOPT 97
ICASE=1 OR 2 FCR CIRC APERTURE, UNIFCRM ILLUMINATION 98
$=3$ FOR FLAT PLATE WITH SPECIFIED ILLUM, VERT POL (CASE III) 99
N= NUMAER OF LAYERS IN RADOME WALL 100
OS ANG=ANGLE IN DEG IN 45 PLANE OFF BCRESIGHT OF FIRST TARGET RETURN 101
USED BY SUBR RECBS IN GETTING INITIAL OATA. 102
IP WR=1 FOR POWER IN ELEV COMP OF FAR FIELD PATTERN 103
$=2$ FOR AZINUTH CCMF,=3 FOR TOTAL POWER. 104
$\mathrm{NN}=\mathrm{N}+1$
105
OINCH=C.
106
$\begin{array}{ll}D 05 I=1, N & 107\end{array}$
READ(5,*) CIN(I),ER(I),TD(I) 108
5 DINCH=DIN(I)+DINCH 109
DIA IN=DIAOS-DINCH*2. 110
$N \times C=N \times 2+1 \quad 111$
$N Y C=N Y / 2+1 \quad 112$
WRITE(E,4) NX,NY,NXE,NYE,NXY,MX,MY 113
4 FODMAT("NX,NY,NXE,NYE,NXY,MX,HYE",7I41 114
C Read fineness ratios fof this run--based on outside oimensions ..... 115
DO $13 \mathrm{I}=1$, NFIAE ..... 116
13 REA $(5, *)$ FINF(I) ..... 117
C REAC ORIENTATIOAS FOR THIS FUN (DEGREESI ..... 118
DO $14 \mathrm{I}=1$, NPHI ..... 119
14 READ (5, *) PHI (I) ..... 120
กO $15 \mathrm{I}=1$, NTHE ..... 121
15 READ (5,*) THETA(I) ..... 122
C COMPUTE WAVELENGTH: ..... 123
WLIN=29.97925/(FREQ*2.541 ..... 124
WLCM=WLIN* 2.54 ..... 125
BETA=2.*PI/WLCM ..... 126
C INITIALIZE TABLE OF XMN COEFFICIENTS: ..... 127
CALL RXMIT (FWI,FWT,KA,NORM, P1,TABLE,SUPPRS, BETA) ..... 128
OAPWL=2.*RAFMAX/WLIN ..... 129
C CONVERT TO CENTIMETER ANO RADIANS ..... 130
Z9OT=ZBOTIN*2.54 ..... 131
$Z 1=Z B O T$ ..... 132
RSOMAX $=(2.54 *$ RAFMAX) $* * 2$ ..... 133
ZTOP=ZTOPIN*2.54 ..... 134
$7 \mathrm{B=}=7 \mathrm{TOP}$ ..... 135
Z2= ZTOP ..... 136
$R A=F A * 2.54$ ..... 137
$R R=R R * 2.54$ ..... 138
D 1ACM=DIAIN*2.54 ..... 139
PAD=PI/180.0 ..... 140
6 FCRMAT (18A4) ..... 141
THETAA=THETAA*RAD ..... 142
OHIA=PHIA*RAD ..... 143
AGAM3A=AGAM3A*PAD ..... 144
C COMPUTE FIELDS OF ANTENNA WHEN XMITTING: ..... 145
CALL HACNF (SUNX,NX,NY,1,IPOL, 1, OAFWL, DXWL, KXMAX,ICASE) ..... 146
こALL HACNF (SUNY, NX,NY,1,IPOL, 2, DAPWL, DXWL, KXMAX, ICASE) ..... 147
CALL HACNF (DELX,NX,NY,2,IPOL, 1, DAFWL, DXWL, KXMAX, ICASE) ..... 148
CALL HACNF (CELY,NX,NY,2,IPOL, 2, DAPWL, OXWL, KXMAX,ICASE) ..... 149
CALL HACNF (DAZX, NX,NY,3,IPCL,1, DAFWL, DXWL, KXMAX, ICASE) ..... 150
CALL HACNF (DAZY, NX,NY,3,IPOL, 2, CAPWL, DXWL,KXMAX,ICASE) ..... 151
$K Y M A X=K X M A X$ ..... 152

```
 KXM=KXMGX*NXE/MX/NX
 153
 KYM=KYMAX*NYE/MY/NY 154
 WRITE(6,3) KXMAX,DXWL,KXM,KYM
 3 FORMAT(" KXMAX=KYMAX='",FB.5,"* XY SPACING='". 156
 $F8.5.* WAVELENGTHS*""" KXM=",F8.5,* KYM=",F8.5) 157
C
 INITIALIZE PLCTTER SOFTWARE
 IF (GRAF3D.OR.GRIFSA.OR.GRAFTR.OR.GRAFRVI GO TO 200 160
 GO TO 205 161
 203 GONTINUE
162
C
```



```
C 165
C CALL TITLJE(*RADOME AINALYSIS CCMPUTER PROGRAM**, 166
C * ** G. HULOLESTON 16, * 16%
C * *GEOẼGIA INSTITUTE OF TECHNOLOGY* 1, 168
C GALLINITZE(MDAY 1 169
CC 170
C CALL PLGT(C.,-3.,-3) 171
 CALL PLOTS(IBUF,512,3,IFENCDJ 172
C 173
```



```
O IF MRAFIR 1, 175
IF (GRAFTR.GR.GRAFSA) GO TO 201
176
 GO TO 2C5 177
 201 FMXEL=C.
178
 FMXDAT=0.
 OO 3C IP=1,3
 00 35I=1,\LambdaX 181
 00 35 J=1,NY
 DO 35 J=1,NY 182
 IF (IP.EQ.1) EXT(I,J)=SUMX(I,J) 183
 IF (IP.EQ.1) EYT(I,J)=SUMY{I.J) 184
 IF (IP.EQ.Z) EXT(I,J)=DELX(I,J) 185
 IF (IP.EQ.2)EYT (I,J)=UELY(I,J) 186
 IF (IP.EQ.3) EXT(I,J)=OAZX(I,J) 187
 IF (IP.EG.3) EYT(I,J)=UAZY(I,J) 188
 NF(I,J)=CABS(EXT(I,J))
 35 CONTINUE
190
```

IF (.NOT.GRAFTR) GO TO 215 ..... 191
$C$ OLOT 30 NEAR FIELDS $X$-COMPONENTS ..... 192
GALL PLTBDH(6.,2.5,2.5,NF,NX,NY,. TRUE.,.FALSE. 1 ..... 193
© plot phase also ..... 194
$0040 \mathrm{I}=1$, NX ..... 195
$0040 \mathrm{~J}=1$, AY ..... 196
$N F(I, J)=c$. ..... 197
CALL AMPHS (EXT(I,J),RLF,AIF) ..... 198
$N F(I, J)=(A I F+180.1 / 363$. ..... 199
40 CONTINUE ..... 200
CALL PLT3OH(E., 2.5,2.5,NF,NX,NY,.FALSE.,.FALSE.) ..... 201
C PLOT 3D NEAR FIELDS Y-COMPONENTS ..... 202
$0045 \mathrm{I}=1, \mathrm{NX}$ ..... 203
$0045 \mathrm{~J}=1$, NY ..... 204
NF(I,J)=CABS(EYT(I,J)) ..... 205
45 CONTINUE ..... 206
CALL PLT3DH(6.,2.5,2.5,NF,NX.NY,. TRUE.,.FALSE.) ..... 207
C PLOT PHASE ALSO ..... 208
$0050 \quad \mathrm{I}=1, \mathrm{NX}$ ..... 209
DO $50 \mathrm{~J}=1, \mathrm{NY}$ ..... 210
$\operatorname{NF}(\mathrm{I}, \mathrm{J})=0$. ..... 211
CALL AMPHS(EYT(I,J),RLF,AIF) ..... 212
$\mathrm{NF}(\mathrm{I}, \mathrm{J})=(\mathrm{AIF}+180.) / 36 \mathrm{~J}$ 。 ..... 213
50 CONTINUE ..... 214
CALL PLTBOH(6., $2.5,2.5, N F, N X, N Y$, FALSE.,.fALSE.) ..... 215
IF (GRAFSA) GC TO 215 ..... 216
GO TO 30 ..... 217
215 CONTINUE ..... 218
IF (IP.EQ.3) $\in O$ TC 220 ..... 219
C CALC EL CUT OF SU* ..... 220
C note that jcyfft changes ext, Eyt. ..... 221
CALL JOYFFT(EXT,NX,NY,MY,MX,NXC,NYC, XEEL, NYE,NXE,XYFFT,NXY,3) ..... 222
CALL JCYFFT (EYT,NX, AY,MY, MX,NXC,NYC,YEEL, NYE,NXE, XYFFT, NXY,3) ..... 223
CALL FAR(FFSEL,XEEL,YEEL,NYE, NXE,FREQ,KYM,KXM,RADIUS,IPWR,FMXEL) ..... 224
C Sa plots of elevaticn results ..... 225
CALL DBPV(FFSEL,NYE,NXE,1) ..... 226
DO $216 \mathrm{I}=1, \mathrm{NYE}$ ..... 227
$0021 \in \mathrm{~J}=1$, NXE ..... 228
FFSEL(I,J) =1.0+FFSEL(I,J)/40. ..... 229
216 CONTINUE ..... 230
CALL CNPLTH(FFSEL,NXE,KXM, O.. U.) ..... 231
 ..... 232
\$WER,0.,391 ..... 233
RPWR=FLOAT (IPWR.) ..... 234
CALL NUMBER(999.,999...14,RPWR.C., 91 ..... 235
CALL PLOT (8.5,0...-3) ..... 236
IF (IP.EQ.2) GO TO 30 ..... 237
C RECOMPUTE SUMX, SUNY FOR JOYFFT: ..... 238
CALL HACNF (EXT,NX,NY,1,IPOL,1, DAPWL, DXWL,KXMAX,ICASE) ..... 239
WRITE(6,21c) IPWR ..... 240
219 FORMAT (" IPCWER OF FATTERN=", I21 ..... 241
CALL HACNF (EYT,NX,NY,1,IPOL, 2, DAPWL, DXWL, KXMAX, ICASE) ..... 242
22 G CALL JOYFFT(EXT,NX,NY,MX,MY,NXC,NYC,YE,NXE,NYE,XYFFT,NXY,3) ..... 243
CALL JOYFFT(EYT, NX,NY,MX,MY,NXC,NYC,YE,NXE,NYE,XYFFT,NXY,3) ..... 244
CALL FAR(FFS, XE, YE, NXE,NYE, FREO,KXM,KYM,RADIUS,IPWR,FMXDAZI ..... 245
C SA PLOTS OF AZIMUTH RESULTS ..... 246
CALL DBPV(FFS,NXE,NYE,1) ..... 247
$0010 \mathrm{I}=1$, $\mathrm{N} \times \mathrm{XE}, 1$ ..... 248
$0010 \mathrm{~J}=1$, NYE ..... 249
FFS (I,J)=1. G+FFS $(I, J) / 40.0$ ..... 250
10 CONTINUE ..... 251
CALL CNPLTH(FFS,NXE, KXM,0., 0.1 ..... 252
226 CALL SYMBOL(.5,E.5,.14000,37HFIGURE TRANSMITTING AZIMUTH POHER ..... 253
8.0.,371 ..... 254
CALL NUMBER(999.,999.,.14,RPWR,0.,0) ..... 255
CALL FLOT(R.5.0.,-3) ..... 256
30 CONTINUE ..... 257
205 CONTINUE ..... 258
C259
$00100 \mathrm{NG}=1$, NFINE ..... 260
FINE=FINR(NG) ..... 261
C CAL CULATE INSICE FINENESS RATIO ..... 262
RIN=FINE*DIAOS/(SIN(PI-2.*ATAN(2.*FINE))) ..... 263
8IN=RIN-DIACS/2. ..... 264
FINE=SQRT( (RIN-CINCH)**2-BIN**2)/CIAIN ..... 265
WRITE(6,20) PIN,BIN,FINR(NG1,FINE ..... 266
PQML=FINE*CIAIN+APIA ..... 267
IF (ZTOPIN.LT.DOML) WRITE(E,25) ZTOFIN ..... 268
23 FORMAT (" TANGENT ORIVE PARANETERS: "*" ROS(IN)=" ..... 269
 ..... 270
क "FINIS=", F8.5 ..... 271
25 FORNAT (/* THIS RADOME HAS A TOP DISK AT ZTOPIN=*,E12.5/1 ..... 272
C COMPUTE PARAMETERS NFEDED BY SUBR OGIVE ..... 273
R=FINE*DIACM/ (SIN(PI-2.*ATAN(2.*FINE)) ..... 274
B=R-OIACM/2. ..... 275
$A P=A D I N * 2.54$ ..... 276
RTSR=(SQRT $\left(R^{* * 2-(Z T O P-A P) * * 2)-B 1 * * 2 ~}\right.$ ..... 277
RESQ $=\left(\operatorname{SQRT}\left(\mathrm{R}^{* *} * 2-(Z B C T-A P) * * 2\right)-B\right) * * 2$ ..... 278
BSQ=コ**2 ..... 279
RINV=1./R ..... 280
RSD1=R**2 ..... 281
RC=RSQ1-BSQ ..... 282
RP2=RSO1+BSO ..... 283
C ..... 284
DFMR=180./(PI*1000.) ..... 285
$A Z L=0$. ..... 286
ELL=0. ..... 287
$T H L=0$. ..... 288
WRITE(6,2) TITLE,FIAR(NG),DIAOS,ZTOFIN,FREQ,RA,RR,DAPHL,IPOL, ..... 289
\$ICASE,IOPT ..... 290
$008 \quad[=1, N$ ..... 291
8 WRITE(6,7) I,DIN(I), ER(I),TD(I) ..... 292
7 FORMAT (2X, i3,F13.5,F10.3,F9.4) ..... 293
WRITE (6.9) ..... 294
G FORMAT (//'* OHI THETA BSEEL BSEAZ SLPEL SLPAZ GAIN*/ ..... 295
( $\because$ (DEG) (DEG) (MRAD) (MRAD) (DEG/DEG) (DEG/DEG) (OB)*//) ..... 296
WFITE(7,2) TITLE,FINR(NG), DIACS,ZTOFIN,FREQ,RA,RR,DAPWL,IPOL, ..... 297
*ICASE, IOPT ..... 298
 ..... 299
18 WRITE(7,7) I,CIN(I),ER(I),TC(I) ..... 300
WRITE (7,9) ..... 301
2 FCQMAT(1H1, EX,* RESULTS OF RADGME ANALYSIS** ..... 302
1 1लA4/"* FINENESS RATIO=".FE.2.2X. ..... 303
 ..... 304
3F7.3." GHZ "/ ..... 305
4* RA = ", F8.5," IN. RR=",F8.5," IN. ANTENNA D=",F8.4, ..... 306
5" WAVELENGTHS"*"* IPCL=", I2," ICASE=", I2," IOPT=", I2// ..... 307
6" LAYER THICKNESS(IN.) ER TAND"/l ..... 308
DO 100 IPHI $=1, \mathrm{NPHI}$ ..... 309
PHIP=OHI(IFHI) ..... 310
PHIR=PHTP+18U. ..... 311
PHIR=PHIF*RAD ..... 312
DO 100 ITHE=1,NTHE ..... 313
THETAL = THETA(ITHE) ..... 314
THETAR = 180.-THETAL ..... 315
THETAR = THETAR*RAD ..... 316
CALL ORIENT(RA, THETAA, PHIA, FR, THETAF, PHIR, AGAM3A, ROTATE,TRANSL) ..... 317
IF (TABLE) GJ TO 23 ..... 318
G COMPUTE NORMALIZING FACTOR: ..... 319
$K A(1)=$ ? ..... 320
$K \&(2)=0$. ..... 321
$\mathrm{K} A(3)=1$ 。 ..... 322
GALL INCPW(KA,OWI,ICPT) ..... 323
TSUP=. TRUE. ..... 324
TARLE=.FALSE. ..... 325
CALL RECM (FWI,KA, AX,NY,KXMAX,KYMAX,FREQ,ROTATE,TRANSL, ..... 326
©SUMX, SUMY, CELX, DELY, DAZX, DAZY,VR, TAELE, TS LP, RSQMAX) ..... 327
VAIFM=CAAS (VR(1)) ..... 328
TABLE=.TRUE. ..... 329
23 IF (.NOT.JUPPRS) GO TO 24 ..... 330
GO TO 350 ..... 331
24 CONTINUE ..... 332
DO $320 \mathrm{~J}=1,2$ ..... 333
ICUT=J ..... 334
I COMF=IOPT ..... 335
KMAX=.990 ..... 336
IF (KMAX.GT.KXMAX) KMAX=KXMAX ..... 337
TSUP = . TEिUE. ..... 338
GALL REGPTNGSUX, SUMY, DELX, DELY, DAZX, DAZY, NX,NY, ICUT, ICOMP, KMAX, ..... 339
 ..... 340
DO $325 \mathrm{MA}=1,3$ ..... 341
$I C H A N=H M$ ..... 342
IF（ICUT．EG．1）．AND．（IGHAN．EQ．3））GC TO 325 ..... 343
IF（（ICUT．EQ．2）．AND．（ICHAN．EQ． 211 GO TO 325 ..... 344
DO $26 \mathrm{I}=1$ ， AEEC ..... 345
26 VFEC（I）$=V$ REC $3(I, I C H A N)$ ..... 346
IF（NREC．GT．NXE）GO TO 31 ..... 347
CALL MAGFFT（VREC，NREC，XYFFT，NXE） ..... 348
DO $305 \mathrm{I}=1$ ，NXE ..... 349
305 MVREC（I）＝CAES（XYFFT（I））＊＊2 ..... 350
GOTO 33 ..... 351
31 DO $32 \mathrm{I}=1$ ，NREL ..... 352
32 MVREC（I）＝こAES（VREC（I））＊＊2 ..... 353
33 NXX＝MAXO（NXE，NREC） ..... 354
WRITE（6，306） ..... 355
305 FGRMAT（／＂• MIN ANC MAX VALUES OF REC＊＊G PATTERN：＊＂$/$ ） ..... 356
CALL NORMH（MVFEC，NXX，1，FALSE．） ..... 357
CALL DBPV（MVOEC，NXX，1，1） ..... 358
IF（J．EQ．1）WRITE $(6,308)$ ..... 359
IF（J．EQ．2）WRITE（6，3J9） ..... 360
$0 K=2$ ． FKMAX $^{\prime} / N X X$ ..... 361
DO $307 \mathrm{I}=1, \mathrm{NXX}, 1$ ..... 362
IF ISUPPRS：GO TOXC7 ..... 363
$A N G=A S I N(-K M A X+(I-1) * D K) * 28 \mathrm{~J} . / P I$ ..... 364
CALL AMPHS（XYFFT（I），AMP，PHS） ..... 365
IF（NREC．GE．NXE）CALL AMPHS（VREC（I），AMP，PHS） ..... 366
IF（MOD（I，4）．EQ．0）WRITE（6，310）ANG，MVREC（I），PHS ..... 367
307 MVREC（I）＝1．0＋MVREC（I）／40 ..... 368
306 FORMAT（／＊FEG＊＊G PATTERN，EL CUT．EL COMP（OBI：＊／） ..... 369
309 FOKMAT（／＂．EEC＊＊G PATTERH，AZ CUT，EL COMP（D日）：$\because / 1$ ..... 370
310 FORMAT（F9．1，5x，F日． $3,3 X, F$ ． 1 ） ..... 371
IF（．NOT． E （AAFRVI GO TO 32 C ..... 372
CALL CNPLTH（MVREC，NXX，KMAX，O．，©．） ..... 373
IF（J．FQ．1）CALL SYMBOL（．5．6． $5 . .140,43 \mathrm{HFIGURE}$ ..... 374
\＄TTERN－ELEV PLANE，0．，43） ..... 375IF（J．EQ．2）CALL SYMBOL（．5，6．5．．140．41HFIGURE RECVG POWER PA
376\＄TTERN－AZ PLANE，U．，41）
377
CALL FLOT（8．5，C．，－3） ..... 378
325 CONTINUE ..... 379
320 CONTINUE ..... 380
350 CONTINUE ..... 381
C COMPUTE BURESIGHT ERROR ..... 382
275 CONTINUE ..... 383
CALL RECBS ISUMX, SUMY, DELX, OELY, UA ZX, DAZY, NX,NY, ..... 384

* LMAX,NS, ICPT, VF, DMRAD, ROTATE, TRANSL,FREQ,KXMAX,KYMAX, ..... 385
\$ TABLE, SINOS, KA, AZT, ELT, RSQMAX, VMAX,SMAX, SUPPRSI ..... 386
IF (ITHE.EQ.1) GO TO 300 ..... 387
SLPAZ=(AZT-AZL) *OPMR/(THETAL-THL) ..... 388
SLPEL=(ELT-ELL)*OFMF/(THETAL-THL) ..... 389
$306 \quad A Z L=A Z T$ ..... 390
ELL=ELT ..... 391
THL=THETAL ..... 392
GAINM=2C.*ALOG1C(SMAX/VAIRM) ..... 393
WRITE(6,11) PHIP,THETAL,ELT, AZT,SLPEL,SLPAZ ©GAINM ..... 394
WRITE(7,11) PHIP, THETAL, ELT, AZT, SLPEL, SLPAZ, GAINM ..... 395
11 FORMAT (1X,F5.1,F6.1,F8.2,F8.2,F9.4.F1G.4,F7.1) ..... 396
C GRAF 3i OPTION HAS BEEN REMOVED. ..... 397
100 CONTINUE ..... 398
WRITE(6,105) VAIRM ..... 399
105 FORNAT (//*: RECEIVED SUM VOLTAGE. WITHOUT RADOME=**E12.5//) ..... 400
IF (GRAF 30.OR.GRAFSA.OR.GRAFTF. OR.GFAFRVI CALL PLOT (0., 0...9991 ..... 401
STOP ..... 402
END ..... 403
BLOCK DATA ..... 1
6
COMMCN/TRANSC/OIN(6), ER(6), TO (E), IZ,WALTOL,N,NN,D(6), ZB,TK ..... 2
3
C ..... 4
DATA WALTOL,TK,TZ/O..0.,0.1 ..... 5
ENS ..... 7


## Chapter 3

## SUBROUTINE HACNF'

3-1. Purpose: To compute near-field aperture distributions for two types of three-channel monopulse antennas: (1) circular aperture with uniform amplitude and phase distributions; (2) flat plate antenna with a programmed amplitude distribution and uniform phase. Four polarizations can be selected for the circular aperture. The flat plate antenna is vertically $\left(Y_{A}\right)$ polarized only.

3-2. Usage: CALL HACNF (E, NX, NY, ICHAN, IPOL, IXY, DAPWL, DXWL, KXMAX, ICASE)

3-3. Arguments

E	- Complex array of NX by NY elements which, on output, contains the values of the specified (IXY)
	rectangular component ( $x_{A}$ or $y_{A}$ ) of the electric
	field distribution over the specified (ICASE)
	antenna aperture having the specified (IPOL) pola-
	rization for the specified (ICHAN) channel of a
	three-channel monopulse antenna.
NX, NY	- Even integer number of points in a rectangular
	array at which the aperture distribution is com-
	puted in the $X_{A}$ and $y_{A}$ directions, respectively.
	The point $\mathrm{I}=\mathrm{NX} / 2+1, \mathrm{~J}=\mathrm{NY} / 2+1$ corresponds to
	$\mathrm{x}_{\mathrm{A}}=0, \mathrm{y}_{\mathrm{A}}=0$.



3-4. Comments and Method
a. The integers $N X, N Y$ must each be equal to each other and to an integer power of two; e.g., $N X=N Y=16$. In addition, when ICASE $=3$ (flat plate antenna), NX and NY must equal 16.
b. The actual shape of the circular aperture, as approximated by a rectangular array of sample points, is shown in Figure 3-1 for the case of $N X=N Y=16$. Row 1 and Column 1 of the array contain null elements. The elements inside and on the boundary of the aperture may contain non-zero values as shown in Table $3-1$ for the various cases when ICHAN=1 (sum channel). Note that specification of $D_{A P}$ in Figure 3-1 determines the sample spacings according to

$$
\begin{equation*}
\Delta x_{A}=\Delta y_{A}=\frac{D_{A p} \cos \alpha}{\left(N_{x}-2\right)}=\frac{D_{A p} \cos \alpha}{\left(N_{y}-2\right)} \tag{1}
\end{equation*}
$$

where $\alpha=\operatorname{Tan}^{-1}(2 / 7)$.
The aperture distributions for three monopulse channels are formed by phasing the elements in the four quadrants of the aperture appropriately. The sum channel distribution is formed by assigning equal phases to all elements. The azimuth difference channel is formed by multiplying all elements in Quadrants II and III of the sum distribution by minus one and by zeroing all elements along $x_{A}=0$. For the elevation difference channel, Quadrants III and IV are negated, and all elements along the line $Y_{A}=0$ are made zero for symmetry reasons.

The phasing chosen models a tracking antenna and provides outputs in two orthogonal channels from which the direction of arrival of a target return can be mathematically determined. Let $\hat{k}$ be a unit vector which points from the antenna origin toward the direction from whence the plane wave (target return) emanates; i.e.,


FIGURE 3-1. APPROXIMATION OF CIRCULAR APERTURE BY RECTANGULAR GRID OF SAMPLE POINTS.

Table 3-1. Values of Non-Zero Elements in Circular Aperture (ICHAN $=1$, ICASE=1 or 2)

IPOL	IXY	Value	Polarization Type
1	1	$(0+j 0)$	Vertical
1	2	$(1+j 0)$	"
2	1	$(1+j 0)$	Horizontal
2	2	$(0+j 0)$	"
3	1	$(1+j 1)$	RHC
3	2	$(0-j 1)$	LHC
4	1	$(1+j 0)$	"

$$
\begin{equation*}
\hat{k}=\hat{x}_{A} k_{x}+\hat{y}_{A} \hat{k}_{y}+\hat{z}_{A} \hat{k}_{z} \tag{2}
\end{equation*}
$$

Define the tracking functions for this plane wave as

$$
\begin{equation*}
E_{i}\left(k_{x^{\prime}}, k_{y}\right)=\frac{\Delta_{i}\left(k_{x^{\prime}} k_{y}\right)}{\sum\left(k_{x^{\prime}} k_{y}\right)} \tag{3}
\end{equation*}
$$

where $\Delta_{i}$ represents the output of the elevation ( $\varepsilon$ ) or azimuth ( $\alpha$ ) difference channel and $\Sigma$ represents the sum channel output. Then for small $k_{x}>0$, the phase of $f_{\alpha}$ is $+\pi / 2$; for small $k_{x}<0$, the phase of $f_{\alpha}$ is $-\pi / 2$. Similarly, for small $k_{Y}>0$, $\arg \left(f_{E}\right)=\pi / 2$; for small $k_{Y}<0$, $\arg \left(f_{E}\right)=-\pi / 2$. Hence, the change in phase by $\pi$ in either channel represents the boresight direction of the antenna, and tracking is done using the imaginary parts of the tracking functions rather than their real parts.
c. The shape and sampling grid used to model the flat plate antenna are shown in Figure 3-2. In Subroutine HACNF, the integers NX and NY must: both equal 16 , and only linear polarization $\left(y_{A}\right)$ is applicable to the flat plate antenna (ICASE=3). The phasing of the four quadrants is done as described above to model the three monopulse channels so that tracking can be simulated. Note that specification of $D_{A p}$ determines the sample spacing according to

$$
\begin{equation*}
\Delta x_{A}=\Delta y_{A}=\frac{D_{A p} \cos \alpha}{\left(\frac{N_{x}}{2}-2\right)} \tag{4}
\end{equation*}
$$



FIGURE 3-2. GEOMETRY OF FLAT PLATE ANTENNA.
where $\alpha=\operatorname{Tan}^{-1}(4 / 6)$.
The phase of each sample point in Figure 3-2 for the sum channel is made equal, but the amplitudes are tapered in the $x_{A}$ and $y_{A}$ directions as shown in Table 3-2. The amplitude distribution is separable and symmetrical so that

$$
\begin{equation*}
E_{Y A}\left(x_{A}, y_{A}\right)=g\left(x_{A}\right) h\left(y_{A}\right)=E_{Y A}\left(-x_{A}, y_{Z}\right)=E_{Y A}\left(x_{A},-y_{A}\right) \tag{5}
\end{equation*}
$$

It is noted that samples $10,12,14$, and 16 are actually specified in the program, and samples $9,11,13$, and 15 are obtained from them by averaging.

3-5. Program Flow
Line 16: Assign complex values to CFAC to use in generating vertical, horizontal, RHC, and LHC polarization according to IPOL.

Lines 17-19: Compute the angle $\alpha$ and the upper bound $\mathrm{R}_{\max }$ of the radius of the circular aperture.

Lines 20-21: Ensure that IPOL has correct values of 1, 2, 3, or 4.
Line 22: If $N X \neq N Y$, write error message and stop the program.
Line 23: Ensure that $I X Y=1$ or 2.
Line 24: If NX and NY are not even, stop the program.
Line 25: Test value of ICASE: if ICASE=3 generate fields of flat plate antenna (Lines 47-83); otherwise, generate: fields of circular aperture (Lines 26-43).

Lines 26-41: Assign complex field value to each sample point $\left(x_{A}, y_{A}, 0\right)$ in the aperture according to the values shown in Table 3-1. If $\sqrt{x_{A}^{2}+y_{A}^{2}}>R_{\text {max }}$, make the

Table 3-2. Symmetrical Amplitude Distribution for Flat Plate Antenna

Sample No.	$\mathrm{x}_{\text {A }}$	Amplitude	${ }^{\mathrm{Y}_{\text {A }}}$	Amplitude
9	0	1.0280	0	1.0280
10	$\Delta \mathrm{x}$	1.0280	$\Delta y$	1.0280
11	$2 \Delta x$	. 9120	$2 \Delta y$	. 9170
12	$3 \Delta x$	. 7959	$3 \Delta y$	. 8060
13	$4 \Delta x$	. 6077	$4 \Delta y$	. 6155
14	$5 \Delta x$	. 4194	$5 \Delta y$	. 4250
15	$6 \Delta x$	. 2097	$6 \Delta y$	. 2125
16	$7 \Delta x$	0.0	$7 \Delta y$	0.0

field value zero (Line 40). Multiply the non-zero elements by CFAC(IPOL) to generate the correct polarization (Line 38 ).

Lines 42-43: Compute sample spacing $\Delta x_{A} / \lambda$ and go to statement 60.
Lines 44-46: Error message and STOP.

Line 47-48: Flat plate antenna-- if NXfl6, write error message and STOP (Lines 109-1ll).

Line 49: Compute sample spacing $\Delta x_{A} / \lambda$.
Line 50: Ensure $N X=N Y$

Lines 51-54: Zero all elements in the aperture. If IXY=1 ( $x_{A}$-component), go to statement 60.

Lines 55-62: Assign tapered amplitude values to eight "even" elements in Quadrant III.

Lines 63-71: Compute amplitude values for the "odd" elements in Quadrant III.

Lines 72-75: Compute amplitude values for elements 3-9 along $Y_{A}=0$ line and along $x_{A}=0$ line.

Lines 76-79: Generate symmetrical amplitude values in Quadrant IV.

Lines 80-83: Generate symmetrical amplitude values in Quadrants I and II.

Line 84: Compute $k_{x m a x}$ *
Lines 85-89: Test to determine if the sum channel data generated should be phased to produce the aperture distribution for a specified difference channel (ICHAN).

Lines 90-98: Form aperture distribution for difference elevation channel by zeroing all elements along $y_{A}=0$ and negating all elements for $\mathrm{y}_{\mathrm{A}}<0$. RETURN.
Lines 99-107: Form aperture distribution for difference azimuthchannel by zeroing all elements along $\mathrm{X}_{\mathrm{A}}=0$ andnegating all elements for $\mathrm{x}_{\mathrm{A}}<0$. RETURN.
Lines 108-112: Error message for ICASE=3 and NX $\neq 16$. Comment ofDAPWL=5.047 applies to the test described in Chapter 2.END
3-6. Test Case: See discussion in Chapter 2.
3-7. References

1. D. R. Rhodes, Introduction to Monopulse, McGraw Hill, NewYork, 1959.
3-8. Program Listing: See following pages.

SUBROUTINE HACNF(E,NX,NY, ICHAN, IPCL, IXY, OAPWL, OXWL,KXMAX,ICASE) 1
C SUBF HACNF COMFUTES ELECTRIC FIELOCOMFONENTS OVER A CIRGULAR APERTURE 2
C OF RADIUS RMAX $=(N X / 2-1) / \operatorname{COS}(A T A N(2 / 7)$ ) AND RETURNS SAME IN E(NX,NY). 3
C NX MUST ERUAL NY ANC MUST BE EVEN.
ICHAN=1 FOR SUM CHANNEL IPCL=1 FOR VERT-Y POL. IXY=1 FOR X-GOMP.
$=2$ FOR $Y$-COMP.
$=3$ FOR AZ DIFF $=3$ FOR RHC POL
$=4$ FOP LHC POL


| $C$ | $=2$ FOR ELEV DIFF | $=2$ FOR HCRIZ-X PCL |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $=3$ FOR AZ DIFF FOR Y-COMP. | $=2$ |  |

$\begin{array}{r}-8 \\ \hline\end{array}$
DAPWL $=0 I A M E T E R$ OF APERTLRE IN WAVELENETHS INPUTI
OXWL $=$ SAMPLE SFAGTNG IN APERTURE (OUTPUT)
KXMAX=MAXIMUM WAVENUMBFR (OUTPUT) 11
ICASE=1 OR 2 FCR UNIFORM, CIRCULAR APERTURE (CASE I AND II) 12
$=3$ FOR FLAT-PLATE ANTENNA, VERTICAL PQL (CASE III). 13
COMPLEX E(NX,NY),CFAC(4) 14
REAL KXMAX $\quad 15$
DATA CFAC/(1.,0.1,(1.,0.),(0.,+1.),(0.,-1.)/16 16
$A N G=A T A N(2 . / 7) \quad$.
IF (ICASE.EQ. 3) ANG=ATAN(4.16.) 18
RMAX=(NX/2-1)/COS (ANG) $+.001 \quad 19$
IF (IPOL.GT.4) IPCL=4 20
IF (IPOL.LT.I) IPOL=1 21
IF (NX.NE.NY) GO TO 15 22
IF ( (IXY.LT.1).OR. (IXY.GT. 2 H IXY=2 23
IF (MOD(NX, 2).NE. G) GO TO 15 24
IF (ICASE.EQ. 3 ) GO TO 25 25 25
DO $10 \mathrm{I}=1, \mathrm{NX} \quad 26$
$X=F$ LOAT $(-(N X / 2)+I-1) \quad 27$
$0010 \mathrm{~J}=1, \mathrm{NY} \quad 28$
$Y=F L O A T(-(N Y / 2)+J-1) \quad 29$
$R=S Q R T(X * * 2+Y * * 2) \quad 30$
IF (R.GT.RMAX) GO TO 9 31
IF (IPOL.EQ.1).AND. (IXY.EQ.1)) GO TO 9 32
IF ( (IPOL.EG.2).AND. (IXY.EQ.2)) GOTO 9 , 33
$C$ IF RHC, $E Y=(1, C)$, $E X=(0,1)$ I.E., EX LEAOS EY BY 90 DEG. 34
C IF LHC, EY=(1,0), EX=(0,-1) I.E. EX LAGS EY BY 90 DEG. 35
$E(I, d)=(1, C, C) \quad 36$
IF (IPCL.LT. 3).OR. (IXY.EQ.2)) G0 TO 10 37
$E(I, J)=E(I, J) * C F A C(I P O L) \quad 38$
GO TO 10 ..... 39
$9 E(I, J)=(0 ., C$. ..... 40
10 CONTINUE ..... 41
DXWL = (DAPWL/2.)*COS (ANG)/(NX/2-1) ..... 42
GO TO 60 ..... 43
15 WRITE 6,20$)$ ..... 44
20 FORMAT (//"NX.NE.NY OR NX NOT EVEAIN SUBR HACNF"///) ..... 45
STOP ..... 46
C THE FOLLOWIAG IS FOR CASE III (ICASE=2): ..... 47
25 IF (NX.NE. 1E) GO TO 90 ..... 48
OXWL = (CAPWL/2.)*COS (ANG)/(NX/2-2) ..... 49
$N Y=N X$ ..... 50
DO $26 \mathrm{I}=1, \mathrm{NX}$ ..... 51
$0026 \mathrm{~J}=1, \mathrm{NY}$ ..... 52
$26 E(I, J)=(0,0,1)$ ..... 53
IF (IXY.EQ.1) GO TO 60 ..... 54
$E(6,4)=(.2824,0$. ..... 55
$E(8,4)=(.4250,0$. ..... 56
$E(4,6)=(.2888,0$. ..... 57
$E(6,6)=(.5218,0$. ..... 58
$E(8,6)=(.8060,0$. ..... 59
$E(4,8)=(.4194, C$. ..... 60
$E(6,8)=(.7959,0$. ..... 61
$E(8,8)=(1.028,0$. ..... 62
$0030 \mathrm{~J}=4,8,2$ ..... 63
$0030 \mathrm{I}=3,8,1$ ..... 64
IF ( (MOD (J, 2), EQ, I). AND. (MOD(I, 2).EQ. O)) GOTO 30 ..... 65
$E(I, J)=(E(I-1, J)+E(I+1, J)) / \bar{E}$ ..... 66
30 CONTINLE ..... 67
DO $35 \mathrm{I}=3,8,1$ ..... 68
$0035 \mathrm{~J}=3,8,2$ ..... 69
$E(I, J)=(E(I, J-1)+E(I, J+1)) / 2$. ..... 70
35 CONTINUE ..... 71
DO $40 \quad I=3,9$ ..... 72
40 E(I, J) $=E(I, 8)$ ..... 73
DO $45 \mathrm{~J}=3, \mathrm{G}$ ..... 74
$45 E(9, J)=E(\varepsilon, J)$ ..... 75
$005 \mathrm{C} J=3,0$ ..... 76
DO $50 \mathrm{I}=1, \mathrm{E}$ ..... 77
$E(9+I, J)=E(9-I, J)$ ..... 78
50 continue ..... 79
DO $55 \mathrm{I}=3,15$ ..... 80
DO $55 \mathrm{~J}=1,6$ ..... 81
$E(I, \underline{O}+J)=E(I, C-J)$ ..... 82
55 CONTINUE ..... 83
$60 \mathrm{KXMAX}=1 . /(2 . *[X W L)$ ..... 84
IF (ICHAN.EG.1) RETURN ..... 85
IF (IXY.EQ.1).AND. (ICASE.EG.3)) RETURN ..... 86
IF (IXY.EG.1).AND.(IPOL.EQ.1)) RETURN ..... 87
IF ((IXY.EQ.2).AND. IIPOL.EQ.2)) RETURN ..... 88
IF (ICHAN.EG.3) giO TO 75 ..... 89
C load elfvation difference channel: ..... 90
$J=N Y / 2+1$ ..... 91
DO $65 \mathrm{I}=1, \mathrm{NX}$ ..... 92
$65 E(I, J)=(0 ., C$. ..... 93
JMAX $=$ NY/2 ..... 94
$0070 \mathrm{~J}=1$, JMAX ..... 95
DO $70 \mathrm{I}=1, \mathrm{NX}$ ..... 96
70 E(I,J)=-E(I,J) ..... 97
RETURN ..... 98
C LOAD AZIMUTH DIFFERENCE CHANNEL: ..... 99
75 I =NX/2+1 ..... 100
DO $80 \mathrm{~J}=1, \mathrm{~A} Y$ ..... 101
$8 \mathrm{C} E(\mathrm{I}, \mathrm{J})=(0 ., \mathrm{C}$. ..... 102
IMA $X=N X / 2$ ..... 103
DO $85 \quad \mathrm{I}=1$. IMAX ..... 104
$0085 \mathrm{~J}=1, \mathrm{NY}$ ..... 105
35 E(I,J)=-E(I;J) ..... 106
RETURN ..... 107
C. DAPWL=5.047 FCR CASE III ..... 108
90 WRITE $(6,95)$ ..... 109
95 FORMAT (//****ERROR EXIT: NX NOT EGUAL TO 16 IN SUBR HACNF****//) ..... 110
STOP ..... 111
END ..... 112

## Chapter 4

SUBROUTINE ORIENT

> 4-1. Purpose: To compute the rotational matrix of direction cosines ROTATE and the translational matrix TRANSL required to carry out coordinate and vector transformations between antenna coordinate system ( $x_{A^{\prime}}, Y_{A^{\prime}} z_{A}$ ) and radome coordinate system $\left(x_{R^{\prime}} Y_{R^{\prime}} z_{R}\right)$. 4-2. Usage: CALL ORTENT (RA, THETA, PHIA, RR, THETAR, PHIR, AGAM3A, ROTATE, TRANSL)

4-3. Arguments
RA, - Spherical coordinates (cm, radians) of the
THETA origin of the antenna coordinate system with

PHIA respect to the reference coordinate system ( $x, y, z$ ) as indicated in Figure 4-1. Note that the origin of the reference system coincides with the gimbal point, which is located on the axis of symmetry $z_{R}$ of the radome.

RR, - Spherical coordinates (cm, radians) of the origin

THETAR, of the radome coordinate system with respect to
PHIR the reference system.
AGAM3A - Angle (radians) between the $z_{A}$ and $z$ axes.
ROTATE - Real array of $3 \times 3$ elements which contains on output the matrix of direction cosines [ $\mathrm{R}_{\mathrm{ij}}$ ] explained below.

TRANSL - Real array of three elements which contains on output the translation matrix $\mathrm{T}_{\mathrm{i}}$ as explained below.


Figure 4-1. Coordinate Systems Used in Radome Analysis.
Reference System: ( $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ )
Antenna System: $\left(X_{A}, Y_{A}, Z_{A}\right)$
Radome System: $\left(X_{R}, Y_{R}, Z_{R}\right)$

4-4. Comments and Method
a. The coordinate systems of Figure 2-2 are obtained from those shown in Figure 4-1 by setting THETAA $=0$, PHIA $=\pi / 2$, and AGAM3A $=0$. When this is done, the $z$ and $z_{A}$ axes coincide, the $x$ and $x_{A}$ axes are parallel, and the $y$ and $y_{A}$ axes are parallel. The angles $\phi_{P}$ and $\theta_{L}$ in Figure $2-2$ are related to $\theta_{r}$ and $\phi_{r}$ as

$$
\begin{equation*}
\phi_{r}=\phi_{P}+\pi \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\theta_{r}=\pi-\theta_{L} \tag{2}
\end{equation*}
$$

The unit vectors $\hat{x}_{R^{\prime}}, \hat{y}_{R^{\prime}} \hat{z}_{R}$ were chosen to coincide with the spherical coordinate unit vectors $\hat{r}_{r}, \hat{\theta}_{r}, \hat{\phi}_{r}$ associated with the point $O_{R}: \quad\left(r_{r}, \theta_{r}, \phi_{r}\right)$; hence, $\hat{X}_{R}$ always lies in the plane of scan as indicated in Figure 4-2. This observation is important if the properties of the radome wall are not symmetric with respect to rotation about the $z_{R}$-axis, such as in the case of circumferential variations in wall thickness, nonuniform heating, etc.
b. The details of the coordinate system transformations are described in Reference 1 and summarized below. The transformation of the point $P$ in antenna coordinates $\left(X_{A}, Y_{A^{\prime}} z_{A}\right)$ to radome coordinates ( $X_{R^{\prime}} Y_{R^{\prime}}$ $z_{R}$ ) is given by

$$
\left[\begin{array}{l}
x_{R}  \tag{3}\\
y_{R} \\
z_{R}
\end{array}\right]=\left[\begin{array}{l}
R_{i j} \\
r_{A} \\
y_{A} \\
z_{A}
\end{array}\right]+\left[\begin{array}{l}
T_{x} \\
T_{Y} \\
T_{Z}
\end{array}\right]
$$

The transformation of a vector

$$
\begin{equation*}
\underline{F}=\hat{x}_{A} F_{x A}+\hat{y}_{A} F_{Y A}+\hat{z}_{A} F_{z A}=\hat{x}_{R} F_{x R}+\hat{y}_{R} F_{Y R}+\hat{z}_{R} F_{z R} \tag{4}
\end{equation*}
$$

is given by

$$
\left[\begin{array}{l}
F_{x R}  \tag{5}\\
F_{y R} \\
F_{z R}
\end{array}\right]=\left[\begin{array}{l}
R_{i j}
\end{array}\right]\left[\begin{array}{l}
F_{x A} \\
F_{y A} \\
F_{z A}
\end{array}\right]
$$

In the above, $\left[R_{i j}\right]$ is the matrix of direction cosines which describes the rotation of the radome coordinate system with respect to the antenna system; $\left[T_{i}\right]$ describes the translation of the radome origin $O_{r}$ with respect to the origin $O_{a}$ of the antenna system. In fact, setting $\left(x_{A}=0\right.$, $y_{A}=0, z_{A}=0$ ) in Equation (3) shows that ( $\mathrm{T}_{\mathrm{X}}, \mathrm{T}_{\mathrm{y}}, \mathrm{T}_{\mathrm{z}}$ ) represents the location, in radome coordinates, of the antenna origin.

The matrix $\left[\mathrm{R}_{\mathrm{ij}}\right]$ can be expanded and written explicitly as

$$
\left[R_{i j}\right]=\left[\begin{array}{lll}
\cos \alpha_{1} & \cos \beta_{1} & \cos \gamma_{1}  \tag{6}\\
\cos \alpha_{2} & \cos \beta_{2} & \cos \gamma_{2} \\
\cos \alpha_{3} & \cos \beta_{3} & \cos \gamma_{3}
\end{array}\right]
$$

where

$$
\begin{align*}
& \alpha_{1}=\text { angle between } x_{A} \text { and } x_{R}=L x_{A^{\prime}} x_{R}  \tag{7a}\\
& \alpha_{2}=L x_{A^{\prime}} y_{R}  \tag{7b}\\
& \alpha_{3}=L x_{A^{\prime}} z_{R}  \tag{7c}\\
& \beta_{1}=L y_{A^{\prime}} x_{R}  \tag{7d}\\
& \beta_{2}=L y_{A^{\prime}} y_{R}  \tag{7e}\\
& \beta_{3}=L y_{A^{\prime}} z_{R}  \tag{7f}\\
& \gamma_{1}=L z_{A^{\prime}} x_{R}  \tag{7~g}\\
& \gamma_{2}=L z_{A^{\prime}} y_{R}  \tag{7h}\\
& \gamma_{3}=L z_{A^{\prime}} z_{R} \tag{7i}
\end{align*}
$$

The inverse transformations are given by

$$
\left[\begin{array}{l}
x_{A}  \tag{8}\\
y_{A} \\
z_{A}
\end{array}\right]=\left[\begin{array}{l}
R_{i j}
\end{array}\right] T\left(\left[\begin{array}{c}
x_{R} \\
y_{R} \\
z_{R}
\end{array}\right]-\left[\begin{array}{c}
T_{x} \\
T_{Y} \\
T_{z}
\end{array}\right]\right\}
$$

$$
\left[\begin{array}{l}
F_{X A}  \tag{9}\\
F_{Y A} \\
F_{z A}
\end{array}\right]=\left[R_{i j}\right]{ }^{T}\left[\begin{array}{l}
F_{x R} \\
F_{y R} \\
F_{z R}
\end{array}\right]
$$

where $\left[R_{i j}\right]^{T}$ denotes the transpose of $\left[R_{i j}\right]$; i.e., $\left[R_{i j}\right]^{T}=\left[R_{j i}\right]$ since rows and columns are interchanged. Also, since $\left[R_{i j}\right]$ is a unitary matrix, its inverse is equal to its transpose.

To facilitate the specification of a particular antenna/radome orientation, the reference coordinate system ( $\mathrm{x}, \mathrm{y}, \mathrm{z}$ ) is used. Transformations from the reference system to the antenna system are described by

$$
\left[\begin{array}{l}
x_{A}  \tag{10}\\
y_{A} \\
z_{A}
\end{array}\right]=\left[\begin{array}{l}
y_{i j}
\end{array}\right]\left[\begin{array}{l}
x-r_{a} \sin \theta_{a} \cos \phi_{a} \\
y-r_{a} \sin \theta_{a} \sin \phi_{a} \\
z-r_{a} \cos \theta_{a}
\end{array}\right]
$$

while transformations from reference system to radome system are described by

$$
\left[\begin{array}{l}
x_{R}  \tag{ll}\\
y_{R} \\
z_{R}
\end{array}\right]=\left[\begin{array}{l}
\rho_{i j}
\end{array}\right]\left[\begin{array}{l}
x-r_{r} \sin \theta_{r} \cos \phi_{r} \\
y-r_{r} \sin \theta_{r} \sin \phi_{r} \\
z-r_{r} \cos \theta_{r}
\end{array}\right]
$$

where $\left[\gamma_{i j}\right]$ and $\left[\rho_{i j}\right]$ represent the rotations of the two systems with respect to the reference system. When these two separate transformations
are combined, there results

$$
\begin{array}{ll}
{\left[\begin{array}{l}
R_{i j}
\end{array}\right]=\left[\begin{array}{l}
\rho_{i j}
\end{array}\right]} & {\left[\gamma_{i j}\right]} \\
T_{Y}  \tag{13}\\
{\left[\begin{array}{l}
T_{X} \\
T_{z}
\end{array}\right]=\left[\begin{array}{l}
\rho_{i j} \\
X_{a}-X_{r} \\
Y_{a}-Y_{r} \\
Z_{a}-Z_{r}
\end{array}\right]}
\end{array}
$$

where $X_{a}, Y_{a}$, etc., are defined in Equations (10) and (ll); e.g., $x_{a}=r_{a} \sin \theta_{a} \cos \phi_{a}$.

4-5. Program Flow: See listing below and compare directly to method described above. Note that in $G A M(I, J)$, the index $I$ represents the row number in $\left[\gamma_{i j}\right]$, and index $J$ represents the column number. 4-6. Test Case: See discussion in Chapter 2. 4-7. Reference

1. E. B. Joy and G. K. Huddleston, "Radome Effects on the Performance of Ground Mapping Radar," Technical Report, Contract DAAHOl-72-C-0598, U. S. Army Missile Command, March 1973.

4-8. Program Listing: See following pages.
SURPOUTINE GRIENT (RA. THETAA,PHIA,RR,THETAR, FHIR,AGAM3A. ..... 1

- ROTATE, YRANSL) ..... 2
ROTATE(3,3). TRANSL(3) OIMENSION ..... 3
REAL GAM $(3,3)$, RHO $(3,3)$ ..... 4
DIMENSION T(3) ..... 5
PSI = THETAA-AGAM3A ..... 6
GAM(1, 1) $=$ SIN(PHIA) ..... 7
$\operatorname{GAM}(1,2)=-\operatorname{COS}(P H I A)$ ..... 8
$\operatorname{GAM}(1,3)=0$. ..... 9
$\operatorname{GAM}(2,1)=S I N(P S I) * S I N(T H E T A A) * C O S(P H I A)+C O S(P S I) * C O S(T H E T A A)$ ..... 10
- $\quad$ COS(FHIA) ..... 11
$G A M(2,2)=S I N(F S I) * S I N(T H E T A A) * S I N(P H I A)+C O S(P S I) * C C S(T H E T A A)$ ..... 12
- *SIN(FHIA) ..... 13
GAM $(2,3)=S I A(P S I) * C C S(T H E T A A)-G O S(P S I) * S I N(T H E T A A)$ ..... 14
GAM (3,1) $=\mathrm{CCS}(P S I) * S I N(T H E T A A) * C O S(P H I A)-S I N(P S I) * C C S(T H E T A A)$ ..... 15
- $\quad$ * $\operatorname{Cos}(P H I A)$ ..... 16
GAM(3.2)=COS(PSI)*SIN(THETAA)*SIN(PHIA)-SIN(PSI)*COS(THETAA) ..... 17
- $\quad$ FSIN(PHIA) ..... 18
$\operatorname{GAM}(3,3)=\operatorname{COS}(A G A M 3 A)$ ..... 19
RHO $(1,1)=\operatorname{COS}(T H E T A R) * \operatorname{COS}(P H I R)$ ..... 20
RHO (1, 2) $=$ CCS(THETAR)*SIN(PHIR) ..... 21
RHO $(1,3)=-S I N(T H E T A F)$ ..... 22
RHO $(2,1)=S I N(P H I R)$ ..... 23
RHO $(2,2)=-\operatorname{COS}(O H I R)$ ..... 24
RHO $(2,3)=0$. ..... 25
RHO (3.1) $=-$ SIN.(THETAFI*COS (PHIR) ..... 26
RHO $(3,2)=-S I N(T H E T A R) * S I N(P H I R)$ ..... 27
R HO $(3,3)=-\operatorname{COS}(T H E T A F)$ ..... 28
$X A=F A * S I N(T H E T A A) * C O S(P H I A)$ ..... 29
$Y A=R A * S I N(T H E T A A) * S I N(P H I A)$ ..... 30
$Z A=R A * \operatorname{COS}(T H E T A A)$ ..... 31
$X R=R R^{*} S I N(T H E T A R) * C C S(P H I R)$ ..... 32
$Y R=R R^{*} S I N(T H E T A F) * S I N(P H I R)$ ..... 33
ZR=RR*COS(THETAR) ..... 34
COMPUTE THE ROTATE ARRAY BY NULTIPLYING THE RHO ARRAY ..... 35
C ANE THE TRANSPOSE OF THE GAM ARRAY. ..... 36
$002 I=1,3$ ..... 37
पU $2 j=1,3$ ..... 38
ROTATE $(I, J)=0$. ..... 39
DO $2 k=1,3$ ..... 40
POTATE $(I, J)=$ ROTATE $(I, J)+R H O(I, K) * G A M(J, K)$ ..... 41
2 CONTINUE ..... 42
COMPUTE TRANSL AREAY ..... 43
$T(1)=X A-X R$ ..... 44
$T(2)=Y A-Y P$ ..... 45
$T(3)=Z A-Z P$ ..... 46
$0010 \mathrm{I}=1,3$ ..... 47
YPANSL(I) $=0.0$ ..... 48
$0010 \mathrm{~J}=1,3$ ..... 49
TRANSL(I) = TRANSL(I) +RHO(I, J)*T(J) ..... 50
10 CONTINUE ..... 51
RETUPN ..... 52
ENO ..... 53


## Chapter 5

SUBROUTINE POINT

5-1. Purpose: To transform a point $P$ in antenna coordinates ( $X_{A}, Y_{A}, z_{A}$ ) to radome coordinates ( $X_{R}, Y_{R}, z_{R}$ ), and vice versa.

5-2. Usage: CALL POINT (P, PT, ATOR, T, PO)

5-3. Arguments

P - Real (input) array of three elements representing the Cartesian coordinates (cm) of the point to be transformed; e.g., $P(1)=x_{A^{\prime}}, P(2)=Y_{A^{\prime}}, P(3)=z_{A}$.

PT - Real (output) array of three elements representing the Cartesian coordinates (cm) in the other coordinate system; e.g., $P T(1)=X_{R^{\prime}}$ etc.

ATOR - Logical input variable which controls direction of transformation: ATOR =.TRUE. for antenna-to-radome (see Equation (4-3)); $A T O R=$.FALSE. for radome-toantenna coordinate transformation (Equation (4-8)).

T - Real (input) array of $3 \times 3$ elements representing the ROTATE array computed by Subroutine ORIENT.

PO - Real (input) array of three elements representing the TRANSL array computed by Subroutine ORIENT.

5-4. Comments and Method
a. Subroutines required: Subroutine ORIENT must be called prior
to the first call to POINT so that $T$ and PO are available.
b. For method, see Subroutine ORIENT in Chapter 4.

5-5. Program Flow: Compare listing below directly to Equations (4-3) and (4-8).

5-6. Test Case: See Chapter 2.
5-7. Reference: See Chapter 4.
5-8. Program Listing: See following page.
SUBAOUTINE FOINT(F,FT.ATOA, T.PC) ..... 12

THIS SURPOUTINE -GANSFORMS A FOINT F GIVEN IN ONE COORDINATE SYSTEM
THIS SURPCUTINE FGANSFORMS A FOINT F GIVEN IN ONE COORDINATE SYSTEM ..... 3
TO THE SAME FCIA GIVEN IN ANOTHER GOOROINATE SYSTEM. PT. ..... 4
THE TPANSFGZMATICN IS ACGOMPLISHED USING THE TRANSFORM MATRIX T ..... 5
THE LOGICAL VARIAQLE ATOP OIFEOTS WHICH TRANSFORM IS TO BE MADE ..... 6
IF ATCR IS TFUE THE TPANSFORM IS FRCM ANTENNA COORUINATES TO ..... 7
SAOCME COORDIAATES. IF ATOF IS FALSE THE OPPOSITE TRANSFORM IS MADE ..... 8
$T$ IS THE MATEIX OF LIRECTION COSINES WHICH DESCRIAE THE ROTATION ..... 9
OF THE RACOAE COORDIAATE SYSTEM WITH RESPECT TO THE ANTENNA ..... 10
LOOPOINATE SYSTEM, PG IS THE ORIGIN OF THE RADOME COORDINATE ..... 11
GYSTEM IU AVTENAA COOFDINATES ..... 12
REAL P(3), PT(3), T(3, 3$)$, FS(3), PO(3)13
LOIICAL ATCF ..... 1514
IF(ATOR) GCTC 1
17
SONVEFSION FFCM PADGME TO ANTENNA GOOFOINATES ..... 18
$P C(1)=P(1)-F O(1)$ ..... 19
$P S(2)=P(2)-F)(2)$ ..... 2120
$P S(3)=P(3)-F O(3)$
$P T(1)=T(1,1) * P S(1)+T(2,1) * P S(2)+T(3,1) * P S(3)$22
$P$ P(2) $=T(1,2) * F S(1)+T(2,2) * F S(2)+T(3,2) * F S(3)$ ..... 24
$\operatorname{PT}(3)=T(1,3) * F S(1)+T(2,3) * P S(2)+T(3,3) * \operatorname{PS}(3)$ ..... 25
RETUEN ..... 26
1 oOntinue ..... 27
CONEFEIUN FFON ANGENNA TO RADGNE COORDINATES ..... 2 B
30
$P T(1)=T(1,1) * F(1)+T(1,2) * F(2)+T(1,3) * P(3)+P C(1)$ ..... 31
$P T(2)=T(2,1) * E(1)+T(2,2) * P(2)+T(2,3) * P(3)+P O(2)$ ..... 32
PT(3) $=T(3,1) * P(1)+T(3,2) * P(2)+T(3,3) * P(3)+P O(3)$ ..... 33
R 三TUFA ..... 34
ENO ..... 35

## Chapter 6

## SUBROUTINE VECTOR

6-1. Purpose: To transform a vector $F$ in antenna coordinates to radome coordinates, and vice versa.

6-2. Usage: CALL VECTOR (V, VT, ATOR, T)
6-3. Arguments
$V$ - Real (input) array of three elements representing the rectangular components of the vector to be transformed; e.g., $V(1)=F_{x A^{\prime}}, V(2)=F_{Y_{A}}, V(3)=$ $\mathrm{F}_{z A}$.

VT - Real (output) array of three elements representing the rectangular components of the vector in the other coordinate system; e.g., $\operatorname{VT}(1)=F_{x R}$, etc.

ATOR - Logical input variable which controls the direction of the transformation: ATOR $=$.TRUE. for antenna-to-radome (Equation (4-5)); ATOR = .FALSE. for radome-to-antenna (Equation (4-9)).

T - Matrix ROTATE described in Chapter 4 as computed by Subroutine ORIENT.

6-4. Comments and Method
a. Subroutines required: Subroutine ORIENT must be called prior
to the first call to VECTOR so that $T$ will be available.
b. For method, see Subroutine ORIENT in Chapter 4.

6-5. Program Flow: Compare listing below directly to Equations (4-5) and (4-9).

6-6. Test Case: See Chapter 2.
6-7. References: See Chapter 4.
6-8. Program Listing: See following page.
SUBROUTINE VECTCRIV，VT，ATOF，TI ..... 1
This cuqfoutine tannsforms a vector v given in one cooroinate system ..... 3
TO THE SAME VEGTOR GIUFN IN ANOTHER COOROINATE SYSTEM．VT． ..... 4
THF TRANSFORMATION IS AGCOMPLISHED USING THE TRANSFGRM MATRIX I ..... 5
THE LCRICAL VA？TAELE ATOR DIOECTS WHICH TRANSFORM IS TO BE MADE ..... 6
IF ATOR IS TRUE THE TFANSFORM IS FRCM ANTENNA COORDINATES TO ..... 7
EADOME COOROINATES．IF ATOF IS FALSE THE OPPOSITE TRANSFORM IS MAJE ..... 8
T TS THE MATRIX OF LIGECTION COSINES WHICH DESGRIBE THE ROTATICN ..... 9
OF THE PADOME CCOROIANTE SYSTEM HITH RESPECT TO THE ANTENNA ..... 10
CUOFIIVATE SYSTEM． ..... 11
REAL V（3），VT（3），T（3，3） ..... 13
LCETCAL ATCR ..... 14
IF（え「へに）GC TC 1 ..... 15
CONVEPSIOA FRGM PaDOME TO ANTENNA COORDINATES ..... 7
18
$V^{\top}(1)=T(1,1) * V(1)+T(2,1) * V(2)+T(3,1) * V(3)$ ..... 19
$V-(2)=T(1,2) * V(1)+T(2,2) * V(2)+T(3,2) * V(3)$ ..... 20
$V T(3)=T(1,3) * V(1)+T(2,3) * V(2)+T(3,3) * V(3)$ ..... 21
२ETURN ..... 22
1 GONTINUE ..... 23CONVFFSION FRON ANTENNA TO QADCME COORDINATES24
25
V：（1）$=T(1,1) * V(1)+T(1,2) * V(2)+T(1,3) * V(3)$ ..... 27
$V T(2)=T(2,1) * V(1)+T(2,2) * V(2)+T(2,3) * V(3)$ ..... 28
$V T(3)=T(3,1) * V(1)+T(3,2) * V(2)+T(3,3) * V(3)$ ..... 29
RETURU ..... 30
ENO ..... 31

## Chapter 7

## SUBROUTINE INCPW

7-1. Purpose: To compute the rectangular vector components of the electric field of a plane electromagnetic wave propagating in the direction $-\hat{k}_{A}$ and incident on the $z_{A}=0$ plane of the antenna coordinate system, where $\left(x_{A}=0, y_{A}=0, z_{A}=0\right)$ is used as the phase origin.

7-2. Usage: CALL INCPW (KA, EI, IOPT)
7-3. Arguments
KA - Real input array of three elements containing the direction cosines of the direction $\hat{k}_{A}$ from whence the plane wave emanates; e.g., $K A(1)=k_{X A}{ }^{\prime}$ $K A(2)=k_{Y A}, K A(3)=k_{z A}$ where $\hat{k}_{A}=\hat{x}_{A} k_{X A}+\hat{y}_{A} k_{Y A}$ , $z_{k A}$.

EI - Complex output array of three elements containing the complex rectangular components of the electric field $\underline{E}$, normalized such that $|\underline{E}|=1$.

IOPT - Integer input variable which selects one of four polarizations (see Figure 7.1):

IOPT $=1$ Elevation component only: $\quad \underline{E}=\hat{\varepsilon}$ IOPT $=2$ Azimuth component only: $\underline{E}=\hat{\alpha}$ IOPT $=3$ Right hand circular $: ~ E=\hat{\alpha} 1+\hat{\varepsilon} e^{\left.j \frac{\pi}{2}\right) / \sqrt{2}}$ IOPT $=4$ Left hand circular $: \underline{E}=\hat{\alpha} 1+\hat{\varepsilon} e^{\left.-j \frac{\pi}{2}\right) / \sqrt{2}}$

7-4. Comments and Method
a. Circular polarization is defined with respect to the direction of propagation $-\hat{k}_{A}$ : looking in the direction of propagation, the observer



$$
\begin{aligned}
& m \theta_{\alpha}>0 \\
& m \theta_{\epsilon}>0
\end{aligned}
$$

Figure 7-1.Coordinate System for Far Field Patterns
will see the tip of the $E$ vector trace out a circle in a plane of equal phase, with the direction of rotation being clockwise for right-hand circular and counterclockwise for left-hand circular.
b. Spherical to rectangular coordinate transformations [1] are used to define the rectangular vector components $E_{x}, E_{y}, E_{z}$ in terms of the transverse spherical components $E_{\varepsilon}, E_{\alpha}$. Let $\hat{r}=\hat{k}=\hat{x} k_{x}+\hat{y} k_{y}+$ $z_{z} k_{z}$ represent the direction from whence the plane wave emanates, where $k_{x}, k_{y}, k_{z}$ are the direction cosines of $\hat{r}=\hat{k}$. Then, with reference to Figure 7-1, there results

$$
\begin{align*}
& \hat{\varepsilon}=\hat{x} \frac{-x^{k} y}{\sqrt{1-k_{y}^{2}}}+\hat{y} \sqrt{1-k_{y}^{2}}+\hat{z}-\frac{-k y_{z}}{\sqrt{1-k_{y}^{2}}}  \tag{1}\\
& \hat{\alpha}=\hat{x} \frac{k_{z}}{\sqrt{1-k_{y}^{2}}}+\hat{y}(0)+\hat{z} \frac{-k}{\sqrt{1-k_{y}^{2}}} \tag{2}
\end{align*}
$$

except at $k_{y}= \pm 1$, where these equations reduce to

$$
\begin{align*}
& \hat{\varepsilon}=-\hat{z}  \tag{3}\\
& \hat{\alpha}=\hat{x} \tag{4}
\end{align*}
$$

The expressions for the field components for the four cases of interest are summarized in Table 7-1. The corresponding magnetic field can be obtained from

$$
\begin{equation*}
\underline{H}=(\underline{E} \times \hat{k}) / \eta \tag{5}
\end{equation*}
$$

7-5. Program Flow: Compare expressions in Table 7-1 directly to the program listing below.

Table 7-1. Rectangular Components for Four Cases of Plane Waves
IOPT
$\frac{E_{X}}{-k_{x} \mathrm{k}_{\mathrm{y}} / \sqrt{1-\mathrm{k}_{\mathrm{y}}{ }^{2}}}$
${ }_{\mathrm{E}}^{\mathrm{y}}$

$\mathrm{E}_{\mathrm{Z}}$

$\begin{array}{ll}1 & -\mathrm{k}_{\mathrm{X}}^{\mathrm{k}} \mathrm{y}^{/ \sqrt{1-\mathrm{k}_{\mathrm{y}}^{2}}} \\ 2 & \mathrm{k}_{\mathrm{z}} / \sqrt{1-\mathrm{k}_{\mathrm{y}}^{2}}\end{array}$
$\sqrt{1-k^{2}}$
$-k_{y} k_{z} / \sqrt{1-k_{y}^{2}}$
2
0
$-k_{x} / \sqrt{1-k_{y}^{2}}$
$3\left(k_{z}-k_{x} k_{y} e^{\left.j \frac{\pi}{2}\right)} / \sqrt{2\left(1-k_{y}^{2}\right)}\right.$
$e^{j \frac{\pi}{2} \sqrt{1-k_{y}^{2}} / \sqrt{2}}$
$\left(-k_{x}-k_{y} k_{z} e^{\left.\left.j \frac{\pi}{2}\right) / \sqrt{2\left(1-k_{y}^{2}\right.}\right)}\right.$
$4\left(k_{z}-k_{x} k_{y} e^{\left.\left.-j \frac{\pi}{2}\right) / \sqrt{2\left(1-k_{y}^{2}\right.}\right)}\right.$
$e^{-j \frac{\pi}{2} \sqrt{1-k}{ }_{y}^{2}} / \sqrt{2}$
$\left(-k_{x}-k_{y} k_{z} e^{\left.\left.-j \frac{\pi}{2}\right) / \sqrt{2(1-k}{ }_{y}^{2}\right)}\right.$

7-6. Test Case: See Chapter 2.
7-7. References

1. D. T. Paris and F. K. Hurd, Basic Electromagnetic Theory, McGraw-Hill, New York, 1969, pp. 8-9.

7-8. Program Listing: See following pages.
SUBROUTINE INCPW(KA,EI,TOPT) ..... 1
C KA=NEGATIVE OF DIR OF PROD"N OF INCIOENT PLANE WAVE (ANT COORD) ..... 2
C EI= ELECTRIC FIELD VECTCP OF INCIDENT PLANE WAVE (OUTPUT) ..... 3
C IOPT=1 MAKES EI ELEVATICN COMPONENT ONLY ..... 4
C $=2$ MAKES EI AZIMUTH COMPONENT ONLY ..... 5
$C \quad=3$ FOR RHC FOLAFIZATION (DEFINEO WRI DIR OF PROP OF INC WAVE) ..... 6
C $\quad$ * 4 FOR LHC ..... 7
C POWER OF INCIDENT WAVE IS UNITY. ..... 8
COMPLEX CI(3),CIA ..... 9
REAL KA(3), IE,IA ..... 10
1 FCRMAT (/" ERROR IN SUBR INCPW IOPT= " + I3//) ..... 11
C COMPUTE ELEVATICN COMPONENT ONLY: ..... 12
$R=1 .-K A(3) \neq * 2$ ..... 13
IF (P.LT.O.) R=0. ..... 14
R=SQRT(R) ..... 15
$R Y=1 .-K A(2) * * 2$ ..... 16
IF (RY.CT. O.l GO TO 5 ..... 17
GO TO 40 ..... 18
5 RY=SQRT (RY) ..... 19
GO TO (10, $20,3 C, 30), I$ OPT ..... 20
C CORRECTIONS TO LOCPS $10,20,30,40$ MADE JAN 78 BY GKH. ..... 21
10 IE=1. ..... 22
EI(1)=-KA(2)*KA(1)*IE/RY ..... 23
$E I(2)=k Y * I E$ ..... 24
$E I(Z)=-K A(2) * K A(3) * I E / R Y$ ..... 25
RETURN ..... 26
C COMPUTE AZIMUTH CCMFONENT ONLY: ..... 27
20 IA=1. ..... 28
EI(1) = +KA(3) $\#$ IA/RY ..... 29
EI(2) $=\mathrm{CMPL} \times(0.0 .1$ ..... 30
EI(3)=-IA*KA(1)/RY ..... 31
RETURN ..... 32
C COMPUTE PHC ..... 33
30 IE=. 707 ..... 34
CIA $=C M P L X(0 ., 1 \cdot)^{*} I E$ ..... 35
IF (ICPT.EQ.4) CIA=CMPLX(0.,-1.)*IE ..... 36
EI(1)=(-KA(2)*KA(1)*CIA-KA(3)*IE)/RY ..... 37
EI(2)=CIA*FY ..... 38
$E I(3)=(-K A(2) * K A(3) * C I A-I E * K A(1)) / R Y$ ..... 39
RETURN ..... 40
40 GO TO $150,60,70,70)$, ICPT ..... 41
$50 \mathrm{EI}(1)=(0 ., 0$. ..... 42
$E I(2)=(0.0 .0 .1$ ..... 43
EI(3)=-KA(2) ..... 44
RETURN ..... 45
60 EI(1)=(1.,0.) ..... 46
$E I(2)=(C ., E \cdot)$ ..... 47
CI(3)=(0.,0.) ..... 48
70 IE=. 707 ..... 49
CIA=CMPLX(0.,1.)*IE ..... 50
IF (IOPT.EG.4) CIA=CMPLX(0.,-1.)*IE ..... 51
EI(1)=IE ..... 52
EI(2) =(C., O.) ..... 53
$E I(3)=-K A(2) * C I A$ ..... 54
RETURN ..... 55
END ..... 56

## Chapter 8

## SUBROUTINE RECM

8-1. Purpose: To compute the complex voltages produced at the terminals of the three channels of a radome enclosed monopulse antenna by a plane wave of specified polarization and direction of arrival.

8-2. Usage: CALL RECM (PWI, KA, NX, NY, KXMAX, KYMAX, FGHZ, ROTATE, TRANSL, SUMX, SUMY, DELX, DELY, VR, TABLE, SUPPRS, RSQMAX)

8-3. Arguments
PWI - A complex array of three elements containing $E_{x^{\prime}}$ $E_{y}, E_{z}$ of the incident plane wave. See Subroutine INCPW.

KA - A real array of three elements containing the direction cosines $k_{x A^{\prime}} k_{Y A^{\prime}} k_{z A}$ of the unit vector $\hat{k}_{A}$ which points from the antenna origin in the direction from whence the plane wave emanates.

NX,NY - The even integer number of sample points in $X_{A}$ and $y_{A}$ directions used to represent the antenna aperture fields.

KXMAX,KYMAX- Real variables which represent the normalized folding wavenumbers corresponding to the sample distances $\Delta X_{A}, \Delta y_{A}$ according to $\Delta X_{A}=\lambda /(2 * K X M A X)$, $\Delta y_{A}=\lambda /(2 * K Y M A X)$, where $\lambda$ is the free space wavelength.

FGHZ - Frequency in gigahertz of the monochromatic plane wave.

```
ROTATE,TRANSL- Real matrices of direction cosines and translation
 distances used to carry out coordinate transfor-
 mations of points and vectors from antenna to
 radome coordinate systems, and vice versa. See
 Subroutine ORIENT.
SUMX,SUMY - Two dimensional (NX X NY) complex arrays of the
 x and }y\mathrm{ vector components of the antenna aperture
 fields for the sum channel of a three-channel
 monopulse antenna. The element at I=NX/2+1,J=NY/
 2+1, corresponds to that at }\mp@subsup{x}{A}{}=0,\mp@subsup{y}{A}{}=0\mathrm{ in the
 aperture. The general correspondence is given by
\[
\begin{aligned}
& x_{A}=-x_{\max }+(I-1) * \Delta x_{A}=(I-M I D N X) * \Delta x_{A} \\
& y_{A}=-y_{\max }+(J-1) * \Delta y_{A}=(J-M I D N Y) * \Delta y_{A}
\end{aligned}
\]
```

```
\[
x_{\max }=\Delta x_{A}^{* N X / 2} \text { and } Y_{\max }=\Delta y_{A} * N Y / 2
\]
```

where $\quad x_{\text {max }}=\Delta x_{A}{ }^{* N X} / 2$ and $y_{\text {max }}=\Delta y_{A} * N Y / 2$.

```
```

where $\quad x_{\text {max }}=\Delta x_{A}{ }^{* N X} / 2$ and $y_{\text {max }}=\Delta y_{A} * N Y / 2$.

```

Also see Subroutine HACNF.

DELX,DELY - Antenna aperture fields for the difference elevation channel.

DAZX,DAZY - Antenna aperture fields for the difference azimuth channel.

VR - Complex array of three elements which on output contains the complex terminal voltage of the antenna for the sum, elevation difference, and azimuth difference channels, respectively.
\begin{tabular}{|c|c|}
\hline TABLE & \begin{tabular}{l}
- Logical variable required by Subroutine RXMIT: \\
if TRUE, a look-up table is used to calculate the
\end{tabular} \\
\hline & transmission coefficients of the radome wall; if \\
\hline & FALSE, these coefficients are calculated exactly \\
\hline & for each angle of incidence specified. \\
\hline SUPPRS & - Logical variable used to control the printing of \\
\hline & results from Subroutine RXMIT: if FALSE, a table \\
\hline & of power transmission and reflection coefficients \\
\hline & for equal increments in the sine of the incidence \\
\hline & angle is printed. The phases of the complex \\
\hline & voltage transmission and reflection coefficients \\
\hline & of the radome wall are also printed. \\
\hline RS@MAX & - Real variable denoting the maximum radius of the \\
\hline & antenna aperture such that any point (\(\mathrm{X}_{\mathrm{A}}{ }^{2}+\mathrm{y}_{\mathrm{A}}{ }^{2}\)) \(>\mathrm{RSQMAX}\) \\
\hline & is omitted from the ray tracing and summation pro- \\
\hline & cedure used to compute the received voltages VR. \\
\hline
\end{tabular}

8-4. Comments and Method
a. Subroutines Required: TRACE, VECTOR, POINT, RXMIT, CAXB.
b. Method: The voltage \(V_{R}\) induced at the terminals of a linear antenna by a "received" electromagnetic plane wave \(\underline{E}_{-R}\), \(\underline{H}_{R}\) is given by the Lorentz reciprocity theorem as [1]
\[
\begin{equation*}
v_{R}(\hat{k})=c \oint_{S}\left(\underline{E}_{T} \times \underline{H}_{R}-\underline{E}_{R} \times \underline{H}_{T}\right) \cdot \hat{n d a} \tag{1}
\end{equation*}
\]
where \(\hat{k}\) is the unit vector which points in the direction from whence the plane wave emanates and where \(E_{T}, H_{T}\) are the electromagnetic fields of
the antenna as produced on the closed surface \(S\) which surrounds the antenna when it is transmitting. The unit vector \(n\) is the normal to \(s\) pointing into the region not containing the antenna, and \(C\) is a complex constant.

When the closed surface \(S\) is the \({\underset{A}{A}}=0\) plane, \(\hat{n}=\hat{z}_{A^{\prime}}, d a=d x_{A} d y_{A} \approx \Delta x_{A} \Delta y_{A}\) and the integral in (1) can be approximated by
\[
\begin{equation*}
V_{R}(\hat{k})=C \Delta x_{A} \Delta y_{A} \sum_{l} \sum_{\mathrm{m}}\left(E_{T x} H_{R y}-E_{T y} H_{R x}-E_{R x} H_{T y}+E_{R y} H_{T x}\right) \tag{2}
\end{equation*}
\]
where \(\Delta x_{A^{\prime}} \Delta y_{A}\) are equal sample distances in \(X_{A}\) and \(y_{A}\) and where the rectangular vector components of the fields on the \(z_{A}=0\) plane are given generically by
\[
\begin{equation*}
E_{T}=\hat{x}_{A} E_{T x}+\hat{y}_{A} E_{T Y}+\hat{z}_{A} E_{T z} \tag{3}
\end{equation*}
\]

It is assumed that the fields \(E_{T}, H_{T}\) on \(S\) with the radome in place are unperturbed by the radome. Also, \(E_{T}\) is specified according to the aperture distribution and polarization desired as is usually done in antenna analysis. The corresponding magnetic field \({\underset{T}{T}}\), however, presents something of a vexation in that a non-Maxwellian aperture field can result if \(\mathrm{H}_{\mathrm{T}}\) is specified independently of \(\mathrm{E}_{\mathrm{T}}\) and Maxwell's equation \({\underset{T}{T}}^{H_{T}} \nabla \mathrm{XE}_{\mathrm{T}} /-j \omega \mu\). On the other hand, specification of \(\mathrm{H}_{\mathrm{T}}\) independently of \(E_{T}\) is tantamount to specifying magnetic and electric current sheets in the antenna aperture which produce two independent solutions to Maxwell's equations whose sum yields the total fields. This latter approach is
taken here when the geometrical optics approximation
\[
\begin{equation*}
\underline{H}_{T}=\frac{\hat{z}_{A} \times E_{T}}{\eta} \tag{4}
\end{equation*}
\]
is utilized, where \(\eta=\sqrt{\mu / \varepsilon} \approx 377\) ohms. Also, the magnetic field \(H_{R}\) is given by a similar formula
\[
\begin{equation*}
\hat{H}_{\mathrm{R}}=\frac{-\hat{\mathrm{k}} \times \underline{E}_{\mathrm{R}}}{\eta} \tag{5}
\end{equation*}
\]
where \(-\hat{k}\) is the direction of propagation of the incident plane wave. Combining the results of Equations (4) and (5) into (2), and designating the origin \(x_{A}=y_{A}=z_{A}=0\) as the phase reference for the complex fields, there results
\[
\begin{aligned}
V_{R}(\hat{k})=C^{\prime} & \sum_{l} \sum_{m}\left\{\left[\left(E_{T x} E_{R x}+E_{T Y} E_{R y}\right)\left(1+k_{z A}\right)-\left(k_{x A} E_{T x}+k_{Y A} E_{T Y}\right) E_{R z}\right]\right. \\
& \left.e^{j} \frac{2 \pi}{\lambda}\left(k_{x A} x_{A}+k_{Y A} y_{A}\right)\right\}(6)
\end{aligned}
\]
where
\[
\begin{gather*}
\hat{k}=\hat{x}_{A} k_{x A}+\hat{y}_{A} k_{Y A}+\hat{z}_{A} k_{z A} \tag{7}\\
k_{x A}^{2}+k_{y A}^{2}+k_{z A}^{2}=1 \tag{8}
\end{gather*}
\]
and where the exponential factor accounts for the phase of the incident wave. It is noted that \(k_{X A}, k_{y A}, k_{z A}\) are direction cosines of \(\hat{k}\); hence, \(k_{z A}=\cos \theta\), where \(\theta\) is the polar angle measured from the \(z_{A}\)-axis in the usual spherical coordinate system. The \((1+\cos \theta)\) term in Equation (6) is characteristic of the geometrical optics approximation of Equation (4) [2]. The other factors have been absorbed into complex constant \(C^{\prime}\).

The effects of the radome on the received voltage given by Equation (6) are accounted for by tracing a ray from each aperture element \(\Delta x_{A} \Delta y_{A}\) in the direction \(\hat{k}\) and weighting the field \(E_{R}\) associated with the ray by the complex insertion transmission coefficients \(T_{\perp}, T_{\|}\)of the radome wall as shown in Figure 8-1. These coefficients depend on the incidence angle \(\theta_{i}\) and the plane of incidence defined by \(\hat{k}\) and the unit inward normal \(\hat{n}_{R}\) to the radome wall at each point of incidence for each ray as illustrated in Figure 8-2. The ray tracing is carried out in the direction \(\hat{k}\), and the direction of propagation of each ray is assumed to be the same on both sides of the wall, an assumption that mandates use of the insertion transmission coefficients defined for an infinite sheet by
\[
\begin{align*}
& T_{\perp}=\frac{E_{\perp}(P)}{E_{\perp i}}(P) \tag{9}\\
& T_{\|}=\frac{E_{\|}(P)}{E_{\| i}(P)} \tag{10}
\end{align*}
\]
where the numerator in each case is the field at point \(P\) with the sheet in place and the denominator is the field at the same point with the sheet removed.

Figure 8-1. Illustration of the Fast Receiving Method of Radome Analysis

Figure 8-2. Plane Wave Propagation Through an Infinite Plane Sheet

The ray tracing is carried out in radome coordinates (\(X_{R}, y_{R}, z_{R}\)), and transformations of points and vectors from antenna coordinates \(\left(x_{A}, Y_{A}\right.\), \(z_{A}\)) to radome coordinates, and vice versa, are required. (These transformations are described in detail in Subroutines ORIENT, POINT, and VECTOR.) Let \(\left(X_{A}, Y_{A}, 0\right)\) be the point in the aperture from which the ray (line) emanates in the direction \(\hat{k}\). Convert this point and unit vector to the radome coordinate system. Find the intersection (\(\mathrm{x}_{\mathrm{RI}}, \mathrm{y}_{\mathrm{RI}}, \mathrm{z}_{\mathrm{RI}}\)) of this ray with the inner radome surface as described by \(f\left(\sqrt{x_{R}^{2}+y_{R}^{2}} z\right)=\) constant since it is a surface of revolution (Subroutines TRACE and OGIVE). Compute the unit inward normal \(\hat{n}_{R}\) to the surface
\[
\begin{equation*}
\hat{n}_{R}=-\frac{\nabla f}{|\nabla f|}=\hat{x}_{R} n_{x R}+\hat{y}_{R} n_{y R}+\hat{z}_{R} n_{z R} \tag{11}
\end{equation*}
\]
and convert it to antenna coordinates
\[
\begin{equation*}
\hat{n}_{R}=\hat{n}_{A}=\hat{x}_{A} n_{x A}+\hat{y}_{A} n_{y A}+\hat{z}_{A} n_{z A} \tag{12}
\end{equation*}
\]

Use \(\hat{n}_{A}\) and \(\hat{k}\) to determine the plane of incidence, angle of incidence, and the transmitted plane wave \(\underset{R}{E_{R}^{\prime}}, H_{R}^{\prime}\) (see Subroutine RXMIT) for this ray. Substitute into Equation (6) and sum the results to obtain the following expression for the received voltage
\[
\begin{gather*}
V_{R}(\hat{k})=C^{\prime \prime} \sum_{l} \sum_{m}\left[-\left(1+k_{z A}\right)\left(E_{R x}^{\prime} E_{T x}+E_{R y}^{\prime} E_{T Y}\right)+\left(k_{x A} E_{T x}+k_{Y A} E_{T Y}\right) E_{R z}^{\prime}\right] \\
\cdot e^{j \frac{2 \pi}{\lambda}\left(k_{x A} x_{A}+k_{Y A} y_{A}\right)} \tag{13}
\end{gather*}
\]
where a sign change and \(\eta^{-1}\) have been absorbed into C ".
Equation (13) with \(C=1\) is used in Subroutine RECM to compute the received voltage on each of the three monopulse channels. Note that the received field \(E_{R}^{\prime}, \underline{H}_{R}^{\prime}\) at each point (\(\mathrm{X}_{\mathrm{A}}, \mathrm{Y}_{\mathrm{A}}, 0\)) is the same for all three channels so that three summations can be carried simultaneously to maximize computational speed. In each summation, only the data corresponding to \(E_{T X^{\prime}} E_{T Y}\) for the sum, elevation difference, and azimuth difference channels need to be changed. Note also that Equation (13) can be rewritten as
\[
\begin{equation*}
V_{R}(\hat{k})=\sum_{1} \sum_{m}\left[E_{T x}\left(\eta H_{R y}^{\prime}-E_{R x}^{\prime}\right)-E_{T y}\left(\eta H_{R x}^{\prime}+E_{R y}^{\prime}\right)\right] e^{j} \frac{2 \pi}{\lambda}\left(k_{x A} x_{A}+k_{y A} y_{A}\right) \tag{14}
\end{equation*}
\]
where \(\cap H_{R y}^{\prime}, \eta_{R x}^{\prime}\) are given by Equation (5).
8-5. Program Flow
Line 12: Initialize the ray counter NRAY.
Lines 13-18: Compute \(\lambda(\mathrm{cm}), \mathrm{k}_{\mathrm{o}}=2 \pi / \lambda, \Delta \mathrm{x}_{\mathrm{A}^{\prime}}, \Delta \mathrm{y}_{\mathrm{A}^{\prime}}\) and the midpoint of the NX X NY data arrays corresponding to \(x_{A}=0, y_{A}=0\).

Lines 21-24: Set \(z_{A}=0=P A(3)\) and precalculate \(k_{o} k_{X A}\) and \(k_{o} k_{Y A}\). Transform \(\hat{\mathrm{k}}_{\mathrm{A}}\) to radome coordinates \(\hat{\mathrm{k}}_{\mathrm{R}}=\hat{\mathrm{x}}_{\mathrm{R}} \mathrm{k}_{\mathrm{xR}}+\hat{\mathrm{y}}_{\mathrm{R}} \mathrm{k}_{\mathrm{YR}}{ }^{+}\) \(\hat{z}_{R} k_{z R}\) in preparation for the ray tracing.

Lines 26-28: Initialize the summations VR(1), VR(2), VR(3) for the received voltages on the sum, difference elevation, and difference azimuth channels, respectively.

Lines 30-33: Iterate for each aperture point \(x_{A}=P A(1)\); precalculate \(x_{A}^{2}\) and \(k_{o} k_{x A} x_{A}\) outside the subsequent loop for \(y_{A}\).

Lines 34-40: Iterate for each aperture point \(y_{A}=P A(2)\). Compute \(x_{A}^{2}+y_{A}^{2}=R S Q:\) if point is outside RSQMAX, omit from computation.

Lines 41-47: Transform \(\left(x_{A}, y_{A}, 0\right)\) to radome coordinates and trace ray to radome inner surface to find unit inward normal \(\hat{n}_{R}\). If metal tip or bulkhead is encountered by ray, omit this ray from computation of received voltages.

Lines 48-52: Transform \(\hat{\mathrm{n}}_{\mathrm{R}}\) to antenna coordinates and compute the transmitted plane wave \(P W T=\left(E_{R x}^{\prime}, E_{R y}^{\prime}, E_{R z}^{\prime}\right)\).
Lines 53-57: Compute phase \(\left.P C=e^{j \frac{2 \pi}{\lambda}(k}{ }_{x A} x_{A}+k_{y A} y_{A}\right)^{\prime}\) and apply to \(E_{R X^{\prime}}^{\prime}, E_{Y R^{\prime}}^{\prime}, E_{R z}^{\prime}\).

Lines 58-71: Form \(\cap{\underset{R}{R}}_{\prime}^{\prime}=E_{R}^{\prime} \times k\) and use Equation (14) to add the contribution of this ray to the received voltage on each of the three channels.

Lines 72-73: Increment ray counter and continue the iteration until all aperture points have been used. Upon completion, NRAY equals the number of rays used in the summation for each received voltage.

Lines 74-75: If SUPPRS is false, write NRAY. RETURN

END

8-6. Test Case: See Chapter 2.
8-7. References
1. G. K. Huddleston, H. L. Bassett, and J. M. Newton, "Parametric Investigation of Radome Analysis Methods," 1978 IEEE APS Symposium Digest, pp. 199-201, May 1978.
2. Microwave Antenna Theory and Design, ed. by S. Silver, McGraw Hill, New York, pp. 161-162, 1949.

8-8. Program Listing: See following pages.
SUBROUTINE RECM (PNI,KA,NX,NY, KXMAX,KYMAX, FGHZ,ROTATE,TRANSL, 1
\$ SUMX, SUMY, DFLX, DELY, DAZX,OAZY, VR, TABLE,SUPPRS, RSQMAXI 2
C NOTE: HXI,HYI MAGNEYIC FIELDS HAVE NOT BEEN OIVIOEO BY ETAO. 3
REAL KXMAX, KYMAX, LAMSOA,KO, ROTATE (3, 3), TRANSL (3) 4
REAL KR(3), KA(3), NIR(3), NIA (3), PR(3), PA(3), PIR(3) 5
LOGICAL ATCR, RTOA,METAL, TABLE,SUPPRS 6
COMPLEX SUMX (NX,NY), SUMY(NX,NY), DELX (NX,NY), DELY(NX,NY) 7
COMPLEX DAZX(NX,NY), OAZY(NX,NY), VR(3) 8
COMPLEX PWI(3), PWT(3), HPWT (3), PC
DATA ATOR,FTOA/.TRUE...FALSE. 1 10
DATA TUPI/6.2831853071796/,NDO/O/ 11
1 NRA \(Y=0\) 12
LAMBDA \(=29.97925 / F G H Z\) 13
KO=TUPI/LAMEOA 14
\(D X=L A M B D A /(2 * K X M A X)\) 15
OY=LAMBDA/ (2*KYMAX) 16
MIONX=NX/2+1 17
MIONY=NY/2+1 18
C 19
C RSQMAX IS THE SQUAFE OF THE MAXIMUM RACIUS OF THE APERTURE 20
PA(3) \(=0\). 21
PHKA1=KO*KA(1) 22
PHKA2=KO*KA(2) 23
CALL VECTOR(KA,KR,ATOR,ROTATE) 2425
\(\operatorname{VR}(1)=(0.0 .0)\) 26
PR(\(\bar{c})=(0 ., 0\). 27
\(\operatorname{VR}(3)=(0.0 .0)\) 28
C ITERATE FOR EACH APERTURE FOINT 29
\(0010 \mathrm{~L}=1, \mathrm{NX}, 1\) 30
\(P A(1)=(L-M I O N X) \neq D X\) 31
3 APA=PA(1)*PA(1) 32
- \(A K A=P A(1) * P H K A 1\) 33
\(0010 \mathrm{M}=1, \mathrm{NY}, 1\) 34
\(P A(2)=(M-M I[N Y) * O Y\) 35
\(c\) 36
IF APERTURE PCIMT IS OUTSIDE CIRCULAR APERTURE, OMIT FROM CALCULATIO
IF APERTURE PCIMT IS OUTSIDE CIRCULAR APERTURE, OMIT FROM CALCULATIO
C 38
\(R S G=A P A+P A(2) * P A(2)\) 39
IF(RSQ.GT. RSQMAX) GC TO 10 40
+ CALL POINT (FA,PR,ATGR,ROTATE,TKANSL) 41
C 42
C TRACE RAY TO FIRST INTERSECTION POIAT 43
NOTE: ALL APERTURE POINTS MUST BE CONTAINED WITHIN RADONE. 44
GALL TRACE (PR,KR,PIR,NIR,METAL) 4645
IF(METAL) GC TO 10
CALL VECTOF(NIP,NIA, RTOA, ROTATE) 4847
CALL VECTOF(NIP,NIAGRTOA.ROTATE) C 49TABLE OF XMN COEFS IS FORMED ON FIRST CALL TO XMIT
51
5 CALL FXMIT (PWI, PHT,KA,NIA,PIR,TABLE,SUPPRS,KO) 52
PHASE=PAKA + PA (2) *PHKAR 53
\(P C=C E X P(C, M F L X(O .0,+A M O D(P H A S E, T U P I))\) 54
PWT (1) =PWT (1) *PC 55
PWT (2) =PWT (2) *PC 56
PWT (3) = PWT (3) FPC 57
C FORM MAGNETIC FIELD 58
CALL CAXB(FWT,KA.HPWT) 59
COMPUTE CONTRIBUTION TO RECEIVED VOLTAGE ON EACH CHANNEL: 60
VR(I) = EYT*HPWT(1)-EXT*HPWT(2) +PWT (1)*HYT 61
\$ -PWT(2)*HXT+VR(I) 62
\(V P(1)=V R(1)+\operatorname{SUM} \times(L, M) *(H P W T(2)-P W T(1))-S U M Y(L, M) *\) 63
\$ (HPWT(1)+PWT(2)) 64
\(\forall R(2)=V R(2)+D E L X(L, M) *(H P W T(2)-P W T(1))-D E L Y(L, M) *\) 65
: (HPWT (1) + PWT (2)) 66
VR(3)=VR(3)+DAZX(L,M)*(HPWT(2)-PWT(1))-DAZY(L,M)* 67
क (HPWT(1) +FWT(2)) 68
GEOMETRIC OPTICS AFPROXIMATION IS USED ABOVE IN EXPRESSIONS 69
C FOR REC"D VOLTAGES I.E.,HT=ZHAT XET IN APERTURE. 70
DIVISION BY ETAO IS NOT DONE TO SAVE COMPUTATION TIME. 71
NRAY=NRAY+1 72
10 CONTINUE 73
\(\mathrm{NCO}=1\) 74
IF (.NOT.SUFPRS) WRITE(E.16) NFAY 75
16. FURMAT(" NUMBER OF RAYS USEO IN GCMFUTING AFERTURE FIELD =** IIO) 76
\(\begin{array}{ll}\text { RETURN } & 77 \\ \text { END } & 78\end{array}\)

\section*{Chapter 9}

\section*{SUBROUTINE TRACE}

9-1. Purpose: To direct the ray tracing to find the intersection of a ray emanating from a point inside the radome and the inner radome surface. All dimensions are in centimeters. Radome coordinates are implied.

9-2. Usage: CALL TRACE (PO, K, P, N, METAL)

COMMON/TRACC/Z2, Z1

9-3. Arguments
PO - Real input array of three elements containing the point \(P O\left(x_{0}, y_{o}, z_{o}^{\prime}\right.\) from which the ray emanates.

K

P
- Real output array of three elements containing the point of intersection \(P(x, y, z)\) of the ray and the inner radome surface.

N
- Real output array containing the direction cosines of the unit inward normal vector to the radome inner surface at \(P(x, y, z)\); i.e., \(\mathrm{N}(1)=\mathrm{n}_{\mathrm{x}}, \mathrm{N}(2)=\mathrm{n}_{\mathrm{y}}, \mathrm{N}(3)=\mathrm{n}_{\mathrm{z}}\) where \(n=x n_{x}+y n_{y}+z n_{z}\)

METAL - Logical output variable which indicates any opaque surfaces encountered, such as a metal tip or bulkhead: METAL \(=\).TRUE. indicates that \(P(x, y, z)\) lies on such an opaque surface.
- Real input variable which designates the \(Z_{R}\) coordinate (cm) of the intersection of the ogive section of the radome, and the metal tip (if any); must be set in main program prior to the first call to TRACE.

Z1
- Real input variable which designates the \(z_{R}\) coordinate (cm) of the intersection of the ogive section and the bulkhead of the air frame; must be set in main program prior to the first call to TRACE.

9-4. Comments and Method
a. Subroutines required: OGIVE, TDISK, BDISK, OGIVEN, TDISKN, BDISKN
b. The inner surface of the radome is represented by three distinct surfaces as indicated in Figure 9-1: a planar bottom disk (bulkhead), a tangent ogive, and a planar top disk (base of a metal tip). The ray is traced to the ogive surface first to find a point of intersection \(P(x, y, z)\) :
(1) If \(z_{1}<z<z_{2}\), then the ogive section of the radome was struck, the unit normal is computed (OGIVEN), METAL is set to . FALSE. and the program returns.
(2) If \(z>z_{2}\), it is assumed that the ray encountered the top disk before impinging on the ogive surface (which actually extends beyond the \(z_{2}\) coordinate). The ray is then traced to find its intersection with the plane \(z=z_{2}\). If the top disk is indeed struck, then METAL is set. TRUE. and \(\hat{n}=-\hat{z}\) is returned.

Figure 9-1. Tangent Ogive Radome Geometry.
(3) If \(z<z_{1}\) from (1) above, it is assumed that the bottom disk was struck by the ray before it encountered the ogive surface. The ray is traced again to find its intersection with the plane \(z=z_{1}\). If this bottom disk is indeed struck, then METAL \(=\).TRUE. and \(\hat{\mathrm{n}}=\hat{\mathrm{z}}\) is returned.

The steps in (2) and (3) above appear to be unnecessary; however, they are included to ensure that the ray tracing procedure works correctly and to alert the user if it does not. For example, if incorrect variable values are passed to the supporting subroutines, there is a good chance that no intersection will be found with any one of the three surfaces, in which case the following error message is outputted:
"THERE IS A HOLE IN THIS RADOME"

The message is continued with the values of (\(x_{o}, Y_{o}, z_{o}\)) and (\(k_{x}, k_{y}, k_{z}\)). Incorrect values of geometry variables passed to the supporting subroutines, and attempts to trace a ray from a point exterior to the inner radome surface, will prompt the error message and alert the user of his mistake. 9-5. Program Flow: See listing below.

9-6. See Chapter 2.

9-7. References: None

9-8. Program Listing: See following pages.
```

    SURFCUTINE TRACE(PO,K,P,N,METALI 1
    TRACESA FAY FRON, 2
O SIAFOUTINE TPACE TRACES A FAY FRON ITS POINT OF ORIGIN PO(3)}
C TO ITS POINT CF INTERSECTION WITH THE RADOME WALL, P(3)
C THE RNY IS TPAVELING IN THE DIRECTICN K(3)
C
REGL PO(3),K(3),P(3),N(3)
LOGIC\DeltaL NETAL,HIT \& \& \& B
C SET SUFFACE INTERSECTION Z VALUFS IO
C.72 IS THE INTERSFRTION OF THF TOF DISK ANE THE OGIVE II
C }71\mathrm{ IS THE INTERSECTION OF THE OGIVE ANO THE BOTTOM OISK 12
SOMMCN/TCDCC/Z2,Z1 13
C 14
C OETERMIME IF RAY INTERSECTS WITH OGIVE SECTION 15
CALL OGIVE(FO,K,P,HIT) 16
IF(.NOT.HIT) %O TC ? 17
IF(F(3).LT.Z1) GCTC 2 18
IF(F(3).GT.Z2) GOTC 1 19
GO TO 10 20
C
C OETEPMTNE IF PAY INTERSECTS WITH TOP [ISK 22
1 CALL TOISK(FO,K,P,HIT) 23
IF(HIT) GO TO 11 24
GOTO 13 25
C G 1O +3 26
C DETERNINE IF EAY INTEFSEGTS WITH ROTTOM OISK 27
2 OALL RDISK(FO,K,P,HIT) 28
IF(HIT) GOTO 12 29
13WPTE(E,15G) 30
10? FOPMAT(/,?X,*THERE IS A HOLE IN THIS OADOME*') 31
WRITE(E,I`1)PC,K 32 101 FORMAT (2X,*FAY STAPTED HERE*,3G10.4."RAY TKAVELED IN THIS OIRECTIO      $N",3G:`.4/11 34
RETUQN 35
IG OALL OGIVFN(P,N) 36
METAL=,FALSE. 37
RETIIQN 38

```

11 CALL TEISKA(N) 39 \(M E T A L=T\) QUE. 40 QETI号 41
12 CALI ACISKA(N) 42 \(4 こ T L L=T P U E\). 43 QETUPN 44
FND

Chapter 10
SUBROUTINE RXMIT

10-1. Purpose: To compute the complex rectangular vector components of the electric field \({\underset{T}{T}}^{\text {transmitted through the radome wall, where }}\) it is assumed that the incident field \(\underline{E}_{i},{\underset{H}{i}}\) is locally a plane wave and that the radome wall behaves as an infinite plane dielectric sheet. The direction of propagation of the plane wave \(-\hat{k}\) and the unit inward normal \(\hat{n}\) at the point \(P_{1}(x, y, z)\) are used to determine the angle of incidence and the plane of incidence of the plane wave. All dimensions are in centimeters. Radome coordinates are implied.

10-2. Usage: CALL RXMIT (PWI, PWT, K, NORM, Pl, TABLE, SUPPRS, BETA) COMMON/TRANSC/DIN(6), ER(6), TD(6), TZ, WALTOL, N, NN, \(D(6), \mathrm{ZB}, \mathrm{TK}\)

10-3. Arguments
PWI - Complex input array containing the vector components of the incident electric field; i.e., PWI (\(\mathrm{EXi}^{\prime}, \mathrm{E}_{\mathrm{yi}}, \mathrm{E}_{z i}\)).

PWT - Complex output array containing the vector components of the transmitted electric field; i.e., PWT (\(\left.E_{x t}, E_{y t}, E_{z t}\right)\).
K - Real input array containing the direction cosines of the direction from whence the plane wave

\begin{tabular}{|c|c|}
\hline NORM & - Real input array containing the rectangular components of the unit inward normal \(\hat{n}=\hat{x} n_{x}+\hat{y} n_{y}\) \(+\hat{z} n_{z}\); i.e., \(\operatorname{NORM}\left(n_{x}, n_{y}, n_{z}\right)\). \\
\hline P1 & - Real input array containing the coordinates (\(x, y, z\)) \\
\hline & of the point on the radome inner surface where \\
\hline & the transmitted plane wave is assumed to emerge; \\
\hline & i.e., Pl(x, y, z). \\
\hline TABLE & - Logical input variable: if TRUE, a look-up table \\
\hline & is used to compute the insertion voltage trans- \\
\hline & mission coefficients \(T_{\perp}, T_{| |}\)corresponding to the \\
\hline & angle of incidence \(\theta_{i}\); if FALSE, \(T_{1}, T_{\|}\)are each \\
\hline & set to unity to simulate the absence of the radome. \\
\hline & Originally, if TABLE \(=\).FALSE., the coefficients \\
\hline & \(T_{1}, T_{\|}\)were computed at each point \(\mathrm{Pl}(\mathrm{x}, \mathrm{y}, \mathrm{z})\) by \\
\hline & a call to Subroutine WALL as in the case of the \\
\hline & wall configuration being dependent on position \\
\hline & (temperature variables, prescription tapers, etc.) \\
\hline SUPPRS & - Logical input variable: if FALSE, a table of trans- \\
\hline & mission coefficients versus \(\sin \theta_{i}\) is printed. \\
\hline & Actually, \(\left|\mathrm{T}_{\perp}\right|^{2},\left|\mathrm{~T}_{\|}\right|^{2},\left|\mathrm{R}_{\perp}\right|^{2},\left|\mathrm{R}_{\|}\right|^{2}\) and the phases \\
\hline & of \(\mathrm{T}_{\perp}, \mathrm{T}_{\|}, \mathrm{R}_{\perp}, \mathrm{R}_{\|}\)are printed. \\
\hline BETA & - Real input variable \(\beta=2 \pi / \lambda\), where \(\lambda\) is the free \\
\hline & space wavelength (cm). \\
\hline DIN, & - Real input arrays which specify the thickness in \\
\hline ER, & inches, relative dielectric constant \(\dot{\varepsilon}_{r}\), and loss \\
\hline TD, & tangent tan \(\delta\) of the N layers comprising the multi- \\
\hline D, & layer radome wall. Layer 1 is the first layer on \\
\hline
\end{tabular}

N, the exit side of the wall; layer \(N\) is the first
NN layer on the incident side. ER(NN), TD(NN) specify \(\varepsilon_{r}\), tand of the medium in which the \(N\)-layer structure is immersed (normally, free space so that \(\operatorname{ER}(\mathrm{NN})=1.0, \operatorname{TD}(\mathrm{NN})=0.0)\). The real array D contains, after the first call to RXMIT, the thickness in centimeters of each layer.

TZ, - Real variables used previously to specify longiWALTOL, tudinal and circumferential variations in wall ZB, TK thickness and in the tolerance on thickness. These variables are not active in this version of RXMIT.

10-4. Comment and Method
a. Subroutines required: WALL, AMPHS, AXB
b. The transmission of an incident plane wave through a plane dielectric sheet immersed in free space \(\left(\varepsilon_{0}=8.854 \times 10^{-12}\right.\) farads \(/ \mathrm{m}, \mu_{o}=\) \(4 \pi \times 10^{-7}\) henries \(/ \mathrm{m}\)) may be described in terms of the insertion voltage transmission coefficients
\[
\begin{align*}
& T_{\perp}=\frac{E_{t_{\perp}}\left(P^{\prime}\right)}{E_{i_{\perp}}\left(P^{\prime}\right)} \tag{1}\\
& T_{\|}=\frac{E_{t \|}\left(P^{\prime}\right)}{E_{i \|}\left(P^{\prime}\right)} \tag{2}
\end{align*}
\]
where \(E_{t \perp}, E_{t \|}\) are the transmitted fields at \(p^{\prime}\) with the sheet in place, and \(E_{i \perp}, E_{i \|}\) are the incident fields at the same point in the absence of the sheet. The point \(\mathrm{P}^{\prime}\) lies on the colinear extension of the incident ray and is located on the exit side of the sheet.

Since the transmission coefficients \(T_{\perp}, T \|\) are different, it is necessary to resolve the incident electric field \(E_{i}\) into perpendicular and parallel components; i.e., vector components which are perpendicular to and parallel to the plane of incidence (POI) defined by \(\hat{k}\) and \(\hat{n}_{R}\) as illustrated in Figure 10-1. The unit vector perpendicular to the POI is given by
\[
\begin{equation*}
\mathrm{k}=\frac{\hat{\mathrm{k}} \times \hat{\mathrm{n}}_{\mathrm{R}}}{\left|\hat{\mathrm{k}} \times \hat{\mathrm{n}}_{\mathrm{R}}\right|}=\frac{\hat{\mathrm{k}} \times \hat{\mathrm{n}}_{\mathrm{R}}}{\sin \mid{\hat{\mathrm{k}}, \hat{n}_{\mathrm{R}}}} \tag{3}
\end{equation*}
\]

A unit vector parallel to the POI is given by
\[
\begin{equation*}
\hat{\mathrm{k}}_{\|}=\hat{\mathrm{k}}_{\perp} \mathrm{x} \hat{\mathrm{k}} \tag{4}
\end{equation*}
\]

The incident electric field may be written as
\[
\begin{equation*}
\underline{E}_{i}=\hat{x} E_{x i}+\hat{y} E_{y i}+\hat{z} E_{i z}=\hat{k_{\perp}} E_{i \perp}+\hat{k_{\|}} E_{i \|} \tag{5}
\end{equation*}
\]
where
\[
\begin{align*}
& \mathrm{E}_{\mathbf{i \perp}}=\hat{k}_{\perp} \cdot \underline{E}_{-i}=k_{x \perp} E_{x i}+k_{y \perp} E_{y i}+k_{z \perp} E_{z i} \tag{6}\\
& E_{i \|}=\hat{k}_{\|} \cdot \underline{E}_{-i}=k_{x \|} E_{x i}+k_{y \|} E_{y i}+k_{z \|} E_{z i} \tag{7}
\end{align*}
\]
and where \(k_{x \perp}, k_{x \|}\), etc. are the vector components of \(\hat{k_{\perp}}, \hat{k} \|\). In terms of the coordinate system (\(x, y, z\)),

Figure 10-1. Plane Wave Propagation Through an Infinite Plane Sheet
\[
\begin{equation*}
\left.\underline{E}_{i}=\hat{x}\left(E_{x i \perp}+E_{x i \|}\right)+\hat{y}\left(E_{y i \perp}+E_{y i \|}\right)+\hat{z}_{\left(E_{z i \perp}\right.}+E_{z i \|}\right) \tag{8}
\end{equation*}
\]
where, for example
\[
\begin{equation*}
E_{x i \perp}=\hat{x} \cdot \hat{k_{\perp}} E_{i l}=k_{x \perp} E_{i \perp} \tag{9}
\end{equation*}
\]

The transmitted plane wave is then given by
\[
\begin{gather*}
\underline{E_{T}}=\hat{k_{\perp}} T_{\perp} E_{i \perp}+\hat{k_{\|}} T_{\|} E_{i \|} \tag{10}\\
E_{T}=\hat{x}\left(T_{\perp} E_{x i \perp}+T_{\|} E_{x i \|}\right)+\hat{y}\left(T_{\perp} E_{y i \perp}+T_{\|} E_{y i}\right)+\hat{z}\left(T_{\perp} E_{z i \perp}+T_{\|} E_{z i \|}\right) \tag{11}
\end{gather*}
\]

10-5. Program Flow

\section*{Lines}

\section*{Comments}

Line 9: Set NANGLE = number of entries used in the look-up tables for \(T_{\perp}, T_{\|}\)

Lines 10-12: NDO causes initialization of variables and the computation of the look-up tables on the first call to RXMIT (lines ll-59).

Lines 15-16: Convert layer thicknesses from inches to centimeters.
Lines 17-59: Compute look-up tables for \(T_{\perp}, T_{\|}\)at NANGLE points spaced equally in \(\sin \theta_{i}\) over the range \((0,1)\). If SUPPRS \(=\).FALSE., print a table of transmission coefficients (every fifth point only). If ER(l)< 1.05, set \(A I R=\).TRUE. and compute unity transmission coeffi-cients for the "air" radome (for testing).
```

    Lines 60-78: Compute sin}\mp@subsup{0}{i}{
    Lines 79-86: Interpolate in table to compute T, ', T| at sin}\mp@subsup{|}{i}{\prime
    Lines 87-100: Normalize the vector }\mp@subsup{\hat{k}}{\perp}{}
    Lines 101-112: Compute E E Ni\perp
    Lines 113-124: Compute }\mp@subsup{\textrm{E}}{\textrm{xi}|}{|
    Lines 125-129: Compute E E 
    Lines 130-136: If sin}\mp@subsup{0}{i}{}\mathrm{ is out of range of the table, write error
    message, set T}\mp@subsup{T}{\perp}{},\mp@subsup{T}{|}{|}\mathrm{ to unity, and continue.
    10-6. Test Case: See Chapter 2.
10-7. References: None
10-8. Program Listing: See following pages.

```
SUPROUTINE EXMIT(FWI,PWT,K, NORM,P1,TABLE,SUPPRS,BETA) 1
COMPLEX PWI(3), PWT(3), EZPER, EZPAR 2
COMPLEX EXPAR, EYPAR, EXPER, EYPER,TPAFI, TPERI,DOT,RPERI,RPARI 3
REAL K(3), NCRN(3), KPER(3), P1(3), AMP(4), PHS(4), KPAR(3) 4
LOGICAL TAELE,SUPPRS,AIR 5
COMPLEX TPER(250),TPAR(250),RPER,RPAR 6
CCMMCN/TRANSC/DIN(E), ER(5), TO (6), TZ,WALTOL,N,NN, D(6), ZB, TK 7
DATA PI/3.14159265/ 8
OATA NANGLE/250/ 9
DATA NDO/O/ 10
IF (NDO.EO.1) GO TO 5 11
NOO=1 12
\(A I R=. F A L S E\). 13
IF (ER(1).LT.1.05) AIR=.TRUE. 14
\(0090 \quad I=1, N N\) 15
\(90 \mathrm{D}(\mathrm{I})=\mathrm{DIN}(\mathrm{I}) * 2.54\) 16
\(P I O 2=P I / 2\). 17
FORM WALL TRANSMISSION TABLES 1819
MANGLE=NANGLE-1 20
21ANGLE=MANGLE
RAD \(=180 . / \mathrm{PI}\) 23
IF (.NOT.SUPPRS) HRITE (6,115) 24
115 FDF MAT (/** ANGLE*, 7X, "TPERI**2*, 8X,*TPARI**2*, 8X, 25
\(\$\) "RPER \(I^{* *} 2^{* *}, 8 x_{9}{ }^{* *}\) RPARI** \(2^{* *} / / 1\) 26
116 FORMAT (1X,F5.2,4(3X,F5.3.F8.1)) 27
DO \(100 \quad I=1\), MANGLE 28
SINE=(I-1)/ANGLE 29
IF (AIR) GC TO 91 30
CALL WALL (EETA,SINE, D,ER,TO,N,NN,TPER(I), TPAR(I),RPER,RPAR) 31
GO TO 92 32
91 TPER(I)=(1, 0.) 33
TPAF(I)=(1., D.) 34
\(R P E R=(0 ., 0\). 35
RPAR \(=(0.00\). 36
92 IF (MOD(I,5).NE.0) GO TO 100 37
ANG=ASINGSINETFRAO 38
CALL \(A M P H S(T P E R(I), A M P(1), P H S(1))\) 39
CALL AMPHS(TPAR (I), AMP (2),PHS (2)) 40
CALL AMPHS (RPER, AMP (3), PHS(3)) 41
CALL AMPHS(RPAR, AMP (4), PHS(4)) 42
C CONVERT TO POWER XHN COEFFICIENTS 43
\(0095 \mathrm{~L}=1,4\) 44
95 AMP (L)=AMP(L) \(\boldsymbol{*} * 2\) 45
IF (.NOT.SUPPES) WRITE(6, 1161 ANG, ((AMP (J), PHS(J)), \(J=1,4)\) 46
100 CONTINUE 47
\(\mathrm{X} C=0\) 。 48
IF (ER(1).LT.1.65) XC=1.0 49
\(\operatorname{TPER}(N A N G L E)=C M P L X(X C, C\). 50
TPAF(NANGLE) \(=C M P L X(X C, C\). 51
\(A N G=90\). 52
CALL AMPHS(TPEF (NANGLE), AMP (1), PHS(1)) 53
CALL AMPHS (TPAR (NANGLE), AMP (2), PHS(2)) 54
CALL AMPHS (RPER, AMP (3), PHS (3)) 55
CALL AMPHS (FPAR, AMP (4), PHS (4)) 56
IF (.NOT.SUPPRS) WRITE(6,116) ANG, ((AMP(J), PHS(J)),J=1,4) 57
IF (.NOT.SUPPRS) WRITE(6,105) 58
105 FORMAT (//** TABLE OF XMN COEF. IS FORMED*/// 59
5 CONTINUE 60
C 61
FINO VECTOR NORMAL TO NORM AND K 62
CALL \(A \times B(K\), NOFM, KPERI 64
C 65
C Find magnitue of kper (this is also the sine of the included angle) 66
SINE=SORT(KFEP(1)*KPER(1)+KPER(2)*KPER(2) +KPER(3)*KPER(3)) 67
IF(SINE.GT.1.0) SINE = 1.0 69
IF(TABLE) GC TO 25 70
TPERI=(1., C.) 71
TPARI=(1., ©.) 72
RPERI \(=(0.00 .1\) 73
RPARI \(=10 ., 0.1\) 74
GOTO 3 75
C USE TABLE OF TRANSMISSION COEFFICIENTS 77
C 78
25 RI=SINE*MANGLE+1.0 79
IL=RI 80
IF ((IL.GE.NANGLE).OR.(IL.LT.1) GO TO 50 81
\(I H=I L+1\) 82
\(X=R I-I L\) 83
TPERI \(=(1.0-x) * T P E R(I L)+X * T P E R(I H)\) 84
TPARI=(1.0-X)*TFAR(IL) +X*TPAR(IH) 8586
C TEST FOR NORMAL INCIDENCE 87
3 IF(SINE.LT.1E-10) GO TO 2 88 89
C 90
C UNITIZE PERPENDICULAR VECTOR 91
SEC=1/SINE 9392
\(\operatorname{KPER}(1)=K P E R(1) * S E C\) 94
\(\operatorname{KPER(2)}=\operatorname{KPER}(2) * \operatorname{SEC}\)
\(K\) KER (3) \(=\) KPER (3) *SEC 96
GOTO 1 97
\(2 \operatorname{KPER}(1)=1.0\) 98
\(\operatorname{KPER}(2)=0.0\) 99
\(\operatorname{KPER}(3)=0 . \mathrm{C}\) 100
1 CONTINUE 101
C102
FIND DOT PROCLCT OF INCIDENT ELECTRIC FIELO WITH KPER C 103
DOT \(=P W I(1) * K P E R(1)+P W I(2) * K P E R(2)+P W I(3) * K P E R(3)\) 105104
FIND PERPENDICULAR COMPONENTS OF ELEGTRC FIELD 106
C 107
EXPER=DOT*KPER(1) 109106EYPEP=DOT*KPER(2)
EYPEO=OOT*KPER(2) 110
EZPER=DOT*KPER(3) 111
C 112
FIND FARALLEL CCMFONENTS OF FLECTRIC FIELD 113114
C EXPAR=PWI(1)-EXPER 115
C EYPAR=PWI(2)-EYPEP 116
C EZPAR=PWI(3)-EZPER 117
GALL AXB (KPER,K,KPAR) 118
KPAR IS A UNIT VECTOR AS REQUIRED 119
DOT=PWI (1)*KPAR(1) +PWI (2)*KPAR(2) +PWI(3)*KPAR(3) 120
EXPAR=OOT*KPAR(1) 121
EYPAR=DOT*KPAR(2) 122
EZPAR=DOT*KPAR(3) 123
C\(C\)
\(C\)
FIND \(x\) AND \(Y\) COMPONENTS OF TRANSMITTEC FIELD124C125
PWT(1) =EXPAR*TPARI+EXPER*TPERI 127
PWT (2) =EYPAR*TPARI +EYPER*TPERI 128
PWT (3) =EZPAR*TPARI+EZPER*TPERI 129
RETURA 130
50 WRITE(6,55) SINE 131
55 FORMAT (/10X, "SINE="F10.7,* IS NOT IN THE WALL TABLE */1 132
TPERI \(=(1 ., 0.1\) 133
TPARI \(=(1.0 .0\). 134
GOTO 3 135
END 136

\section*{Chapter 11}

\section*{SUBROUTINE WALL}

11-1. Purpose: To compute the transmission and reflection coefficients of a \(N\)-layer dielectric sheet having thicknesses \(d_{n}\), dielectric constants \(\varepsilon_{r n}\), and loss tangents tan \(\delta_{n}\) for each layer when a plane wave is incident at angle \(\theta_{i}\).

11-2. Usage: CALL WALL (BETA, SINE, D, ER, TD, N, NN, TPER, TPAR, RPER, RPAR)

11-3. Arguments

BETA - Real input variable \(=2 \pi / \lambda\), where \(\lambda\) is the free space wavelength.

SINE - Real input variable \(=\sin \theta_{i}\).
D, - Real input arrays containing the thickness (cm),
ER, dielectric constant \(\varepsilon_{r}\), and loss tangent tan \(\delta\) of
TD each layer.
N - Integer input variable equal to the number of layers.

NN . \(\quad\) Integer input \(=\mathrm{N}+1\).

TPER,TPAR - Complex output variables equal to the insertion voltage transmission coefficients for the components of the incident electric field perpendicular to and parallel to the plane of incidence, respectively.

RPER,RPAR - Complex output variables equal to the reflection coefficients \(R_{\perp}, R_{\|}\).

11-4. Comment and Method
a. Layer 1 is the first layer on the exit side of the panel; layer \(N\) is the first layer on the incident side. \(T_{\perp}, T_{\|}\)have the same value for either side of the panel being the incident side; however, \(R_{\perp}, R_{\|}\)are different (in phase) for the two cases.
b. The details of the method are presented in Reference 1 and are reproduced in Appendix \(E\).

11-5. Program Flow: See Reference 1.
ll-6. Test Case: See Chapter 2.

11-7. References
1. E. B. Joy and G. K. Huddleston, "Radome Effects on the Performance of Ground Mapping Radar," Technical Report, Contract DAAHOl-72-C-0598, U. S. Army Missile Command, March 1973.
ll-8. Program Listing: See following pages.
SUEROUTINE WALL（EETA，SINE，R，ER，TO，N，NN，TPER，TPAR，RPER，RPARI 1
C SUBROUTINE WALL COMPUTES THE TRANSMISSION AND DEFLECTION 2
SOFFFICIENTS FGR AN N LAYER，PLANE CIELECTRIC PANEL FOR PLANE 3
WAVE INCIDENT AT SIME（ANGLE）FOF PERPENCICULAR ANO 4
PARALLEL POLAFIZATIONS． 5
PARAMETEFS OF THE WALL：N＝THE NUMBER OF LAYERS 6
\(N N=N+1\) REQUIREO TO DIMENSION ARRAYS 7
D＝THICKNESS OF EACH LAYER IN GENTIMETERS 8
ER＝FELATIVE DIELECTKIC CONSTANT OF EACH LAY 9
TO＝THE LOSS TANGENT FOR EACH LAYER 10
TNI，TN？ARE THE NCRMAL VOLTAGE XMN COEFFICIENTS；TPER，TPAR ARE THE 11
C INSERTICN VOLTAGE TRANSMISSION COEFFICIENTS．IT IS IMPORTANT TO 12
C NOTE THAT THE XMN COEFS ARE THE SAME FOR PLANE WAVE INCIDENT FROM 13
C EITHER SIDE OF THE STRATIFIED OIELECTRIC PANEL IMMERSED IN FREE SPAGE： 14
C HOWEVER，THE REFLECTICN COEFS ARE NOT．THAT IS，FOR COMPUTING RPER， 15
C RPAK，THE ORDEEING OF FR（NN），TC（NN）IS IMPORTANT WITH LAYER 1 BEING 16
C THE FIRST LAYEF ON THE EXIT SIDE，LAYER N BEING THE FIRST LAYER ON THE 17
C INCIOENT SIDE．LAYER NA AHO LAYER O ARE JUST FREE SPACE LAYERS 18
C JF SEMI－IAFIAITF CFFTH． 19
C E，G，R1，P2，ARE AみRAYS USEO IN THE SUBFOUTINE HAVING NN DIM＊L LIMITS 20
GOMPLEX E（E），G（F），R1（O），P2（E），GG，EE，RR1，RR2，AA1，AAR，X1，X2， 21
\(\$ \times 3, X 4, Y 1, Y 2, Y 3, Y 4, U 1, U 2, U 3, U 4, V 1, V 2, V 3, V 4, P 1, P 2, P 3, P 4, Q 1, Q 2,03, Q 4\) 22
COMPLEX TPEF，TPAR，RFER，RPAR，U，V，TN1，TN2 23
DIMENSION EF（NN），TG（NN），D（N） 24
\(E R(N N)=1.2\) 25
\(T C(N N)=3\). 26
\(0050 \mathrm{I}=1\) ，NN 27
\(57 E(I)=C M P L X(S R(I),-E P(I) * T J(I))\) 28
AB＝BETA＊J．707ン7う70707？71 29
\(c\)
calculate total thickness of hall in cm 30
C 31
OTOTAL＝0． 32 33
\(00200 \quad \mathrm{I}=1 . \mathrm{N}\)
200 OTOTAL＝OTOTAL＋D（I） 35
\(C\) S IS THF SINE OF THE ANGLE SQUAREO 36
C C IS THE cOSInE GF ThE ANGLE 37
S＝SINE＊SINE 38
 \(O=S\) QRT \((1.0-S) \quad 39\)
 \(\dot{A D}=E R(1)-S \quad 40\)
 ET=ER(1)*TC(1)
 41
 SR=SQRT (AD*ADFET*ET) 42
 \(I F(S R-A D) 76,76,77 \quad 43\)
 \(76 \quad A=\). \(\quad 44\)
 GO TO 75 45
 \(77 \Delta=A B * S Q R T(S R-A D)\)
 \(78 \quad B=A Q * S Q R T(S F+C D)\)
 \(G(1)=C A P L X(A, E)\)
 \(G G=C * P L X(O \cdot G, E E T A * C) \quad 49\)
 \(E E=1\). \(n\) (
 SUM=3. 51
 SUM \(=\) SUM + D(1)/SQFT(AD) 52
 RR1 \(=(G(1)-G G) /(G(1)+G G) \quad 53\)
 \(R R 2=(E E * G(1)-E(1) * G G) /(E E * G(1)+E(1) * G G) 54\)
 DO \(84 \mathrm{I}=1, \mathrm{~N} \quad 55\)
 \(I=I+1\)
 \(A D=E R(I I)-S \quad 57\)
56
 ET=ER(II)*TC(II) 58
 IF \((T-N) 176,177,177 \quad 59\)
176 SUM = SUM + O (III/SQRT(AO) 60
177 CONTINJE 61
 \(S R=S R R T\left(A D^{*} A D+E T^{*} E T 1 \quad 62\right.\)
 IF (SP-AD) \(70,79, \mathrm{NO} \quad 63\)
 \(79 \mathrm{~A}=\mathrm{U}\). 61
 GOTC \(\mathrm{MA}_{1} \quad 65\)
 BG \(A=4 B^{*} S Q R T(S R-A D) \quad 66\)
 \(81 \quad 3=A R * S Q R T(S F+A O) \quad 67\)
 \(G(I T)=C M P L X(A, B) \quad 68\)
 F1(I)=(G(II)-G(I))/(G(II)+G(I)) 69
 34 R2(I) =(E(I)*G(II)-E(II)*G(I))/(E(I)*G(II)+E(II)*G(I)) 70
 SUM \(=\) S*SUM 71
 \(A \Delta_{1}=1 . C-R 21 \quad 72\)
 \(A A 2=1.0-\bar{K} R 2\) 2 73
 OO \(95 \mathrm{I}=1, \mathrm{~N}\)
 \(A A 1=A A_{1} *(1.0-K 1(I)) \quad 75\)
\(85 A+2=A A 2^{*}(1 . \hat{C}-5(I))\)
76
\(\triangle A 1=1 . r \quad A A 1\) 77
\(\Delta \dot{A}\) ？\(=1.0 / \Delta \hat{c}\) 78
\(J=-G(1) * 0(1)\) 79
\(V=G(1) * D(1)\) 80
\(x_{1}=\) CEXP（U） 81
\(x 4=\) CEXP（V） 82
\(\times 2=-R R_{1} * x_{4}\) 83
\(\times 3=-K R 1^{*} \times 1\) 84
\(Y_{1}=x_{1}\) 85
\(Y_{4}=X_{4}\) 86
\(Y 2=-R P 2^{*} Y_{4}\) 87
\(Y 3=-R F 2 * r_{1}\) 88
DO \(135 \mathrm{I}=2, \mathrm{NN}\) 89
IF（I－NA）35， 0 O． 1 90
GU U1＝1． 91
U2 \(=-F_{1}(N)\) 92
U3＝－R1（N） 93
U \(4=1\) ．C 94
V1＝1． 95
V2＝－R2（N） 96
V3 \(=-22(N)\) 97
\(\vee 4=1\) ． 98
50 TO 10： 99
\(95 \mathrm{I}=\mathrm{I}-1\) 100
\(U=-G(I) * C(I)\) 101
\(\mathrm{V}=\mathrm{G}(\mathrm{I}) * \mathrm{D}\)（I） 102
U1 \(=C E X P(U)\) 103
\(U 4=C=X P(V)\) 104
リ2 \(=-F_{1}(I I) * U 4\) 105
UZ＝－F1（II）＊U1 106
\(V_{1}=U_{1}\) 107
\(V 4=U 4\) 108
\(V 2=-R_{2}(I I) * V_{4}\) 109
\(V 3=-k 2(I I) * V 1\) 110
\(1 二 \mathrm{P}_{1}=\times 1 * \cup 1+\times 2 * \cup 3\) 111
－ \(\bar{z}=\times 1 * \cup 2+\times 2 * \cup 4\) 112
\(P 3=\times 3 * \cup 1+\times 4 * \cup 3\) 113
Pム＝X 3＊U2 \(+\times 4 * 114\) 114
\(Q 1=Y 1 * V 1+Y 2^{*} V 3\) 115
\(02=V_{1}^{*} V_{2}+V_{2}^{*} V_{4}\) 116
\(Q 3=Y 3^{*} V 1+Y 4_{4}^{*} V 3\) 117
\(Q_{4}=Y 3 * V 2+Y 4^{*} V L\) 118
\(\times 1=P 1\) 119
\(\times 2=P 2\) 120
\(\times 3=\rho 3\) 121
\(X 4=P \rightarrow\) 122
\(Y_{1}=01\) 123
\(r_{2}=0\) ? 124
\(\vee 3=Q 3\) 125
\(105 \mathrm{Y} 4=0\) 126
RFFR \(=-\times 3 / \times 4\) 127
TN1,TN2 ARE NOFMAL VOLTAGE XMN CGEFFICIENTS 128
ROS \(=-Y 3 / Y 4\) 129
TNi \(=(X 1+X 2 * R P E P) * A 41\) 130
\(U=C M P L \times(3 .[,-S U M F E E A)\) 131
U=CEXP (U) 132
C TPER, TOAR HEFE ARE VCLTAGE XMN COEFFISIENTS AT EXIT POINT OF RAY. 133
\(T P E D=T N 1 * J\) 134
\(T N 2=(Y 1+Y 2 * R P A R) * A A ?\) 135
TCAP= TN2* J 136
\(C\) - ODIFY TOANSHTSSTEN CUEFFICIENTS FOR INSERTIUN 137
\(U=\mathrm{CMPLX}\) (O. ©, BETA*OTCTAL*C) 138
\(11=\) CEXD (U) 139
TPEQ=TN1*U 140
TFAC=TMZ*U 141
1 CONTTAU= 142
\(30 E\) RETURN 143
FND 144

\section*{Chapter 12}

\section*{SUBROUTINE AXB}

12-1. Purpose: To compute the real vector cross product \(\underline{C}=\underline{A} X \underline{B}\), where A, B, C are expressed in rectangular components.

12-2. Usage: \(\operatorname{CALL} \operatorname{AXB}(A, B, C)\)
12-3. Arguments
A, B - Real input arrays containing the rectangular components of \(\underline{A}=\hat{x} A_{x}+\hat{y} A_{y}+\hat{z} A_{z}\) and \(\underline{B}\); i.e., \(A\left(A_{x}, A_{y}, A_{z}\right), B\left(B_{x}, B_{y}, B_{z}\right)\).

C - Real output array containing the rectangular components of the vector \(\underline{C}=\underline{A} X \underline{B}\); i.e., \(C\left(C_{x}, C_{y}, C_{z}\right)\).

12-4. Comment and Method
a. Both input vectors must be real.
b. The computation of \(\underline{C}=\underline{A} X \underline{B}\) is elementary.

12-5. Program Flow: See listing below.
12-6. Test Case: None

12-7. References: None
12-8. Program Listing: See following page.
```

SUERCUTINE AXP(A,E,C)

O SCMPUTE VEOTOE COSS FAGOUUT CF A GROSS B, RESULTING IN C 2
DIMENSION 4 (3), E(3) D(3)
3
$C(1)=2(2) * 6(3)-4(3) * F(7)$
4
$C(2)=\hat{A}(3) * E(1)-\hat{A}(: 1) * B(3)$
5
$0(3)=A(1) * E(?)-A(2) * B(1)$
6
2ETURN
7
=ND

## Chapter 1

SUBROUTINE CAXB

13-1. Purpose: To compute the complex vector cross product $\underline{C}=\underline{A} X \underline{B}$, where $\underline{A}$ is a complex vector and $\underline{B}$ is a real vector expressed in rectangular coordinates.

13-2. Usage: CALL CAXB $(A, B, C)$
13-3. Arguments
A - Complex input array containing the rectangular components of the vector $\underline{A}=\hat{x} A_{x}+\hat{y} A_{y}+\hat{z} A_{z}$; i.e., $A\left(A_{x}, A_{y}, A_{z}\right)$.

B - Real input array $\mathrm{B}_{\mathrm{X}}\left(\mathrm{B}_{\mathrm{x}}, \mathrm{B}_{\mathrm{y}}, \mathrm{B}_{\mathrm{z}}\right)$ representing the vector $B$.

C $\quad$ Complex output array $C\left(C_{x}, C_{y}, C_{z}\right)$ representing the vector $\underline{C}=\underline{A} \times \underline{B}$.

13-4. Comment and Method: None

13-5. Program Flow: See listing below.
13-6. Test Case: None
13-7. References: None

13-8. Program Listing: See following page.

SURFCUTIN = CAXB(A,B,C)
C CAXG COVPUTES VFCTCR CGOSS PPCEUET AXB=C, WHERE A ANO C

```
ARE COMPLEX ANC E IS REAL.3
```

CO:1PLEXA(3),C(3) ..... 4
z $=厶 \mathrm{~L}$ 3(3) ..... 5
$C(1)=A(2) * D(3)-\mu(3) * 9(2)$ ..... 6
$C(2)=A(3) * E(1)-A(1) * B(3)$ ..... 7
$C(3)=A(1) *+(2)-A(2) * B(1)$ ..... 8
zeTUPN ..... 9
END ..... 10

14-1. Purpose: To compute the angle of arrival $\hat{k}$ of a plane wave on a monopulse antenna which yields an electrical boresight indication which, due to the radome, may be different from the mechanical boresight along the $z$ axis of the antenna. The antenna aperture lies in the xy plane. All dimensions are in centimeters. Antenna coordinates are implied.

14-2. Usage: CAL工 RECBS (SUMX, SUMY, DELX, DELY, DAZX, DAZY, NX, NY, IMAX, NS, IOPT, VR, DMRAD, ROTATE, TRANSL, FGHZ, KXMAX, KYMAX, TABLE, SINOS, K, AZTM, ELTM, RSQMAX, VMAX, SMAX, SUPPRS)

14-3. Arguments
SUMX, SUMY,- Complex input arrays of $N X$ by NY elements each DELX, DELY, containing the aperture distributions of the DAZX, DAZY monopulse antenna. See Subroutine HACNF.

LMAX - Integer input variable which controls the maximum number of iterations that will be done to find the electrical boresight within the tolerance specified by DMRAD.

NS - Inactive integer variable.
IOPT - Integer input variable which selects the polarization of the incident plane wave. See Subroutine INCPW.

VR - Complex array of three elements representing the received voltage on the sum, elevation difference,



14-4. Comments and Method
a. Subroutines required: AMPHS, RECM, INCPW.
b. Subroutine RECBS uses a linear tracking model to determine the direction of arrival $\hat{k}=\hat{x} k_{x}+\hat{y} k_{y}+\hat{x} k_{z}$ of a plane wave which will produce null indications in the elevation and azimuth difference channels of the monopulse antenna inside the radome. Subroutine RECM is used to compute the received voltage on each channel for the specified polarization (IOPT) and direction of arrival.

The first target return is made to arrive from the direction

$$
\begin{equation*}
\hat{k}_{1}=\hat{\mathrm{x}} \sin \theta_{o s}+\hat{\mathrm{y}} \sin \theta_{o s}+\hat{z} \sqrt{1-2 \sin ^{2} \theta_{O S}} \tag{1}
\end{equation*}
$$

to produce outputs

$$
\begin{align*}
& \mathrm{U}_{\mathrm{AZ} 1}=\operatorname{Im}\left\{\frac{\mathrm{V}_{\Delta \mathrm{AZ}}}{\mathrm{~V}_{\Sigma}}\right\}  \tag{2a}\\
& \mathrm{U}_{\mathrm{EL} 1}=\operatorname{Im}\left\{\frac{\mathrm{V}_{\Delta \mathrm{EL}}}{\mathrm{~V}_{\Sigma}}\right\} \tag{2b}
\end{align*}
$$

where $V_{\Sigma}, V_{\triangle E L}, V_{\triangle A Z}$ are the complex voltage outputs of the threechannel outputs of the three-channel antenna. The second return is made to arrive from

$$
\begin{equation*}
\hat{\mathrm{k}}_{A}=\hat{\mathrm{x}}\left(-\sin \theta_{o s}\right)+\hat{y}\left(-\sin \theta_{o s}\right)+\hat{z} \sqrt{1-2 \sin ^{2} \theta_{o s}} \tag{3}
\end{equation*}
$$

to produce outputs $\mathrm{U}_{\mathrm{AZ} 2}$, $\mathrm{U}_{\mathrm{EL} 2}$ •
Construct a linear model for each channel independently using the slope/intercept equation for a line; i.e.,

$$
\begin{align*}
& \mathrm{U}_{A Z}=\mathrm{M}_{A Z} \mathrm{k}_{\mathrm{x}}+\mathrm{b}_{A Z}  \tag{4a}\\
& \mathrm{U}_{\mathrm{EL}}=\mathrm{M}_{E L} \mathrm{k}_{\mathrm{y}}+\mathrm{b}_{\mathrm{EL}} \tag{4b}
\end{align*}
$$

where

$$
\begin{gather*}
M_{A Z}=\left(U_{A Z 1}-U_{A Z 2}\right) /\left(k_{x 1}-k_{x 2}\right)  \tag{5a}\\
M_{E L}=\left(U_{E L 1}-U_{E L 2}\right) /\left(k_{y 1}-k_{y 2}\right)  \tag{5b}\\
b_{A Z}=U_{A Z 1}-M_{A Z} k_{x 1}  \tag{6a}\\
b_{E L}=U_{E L 1}-M_{E L} k_{y l} \tag{6b}
\end{gather*}
$$

Use this model to estimate the values of $k_{x}, k_{y}$ that will make $U_{A Z}=U_{E L}$ $=0$; i.e.,

$$
\begin{align*}
& \mathrm{k}_{\mathrm{x}}=-\mathrm{b}_{\mathrm{AZ}} / \mathrm{M}_{\mathrm{AZ}}  \tag{7a}\\
& \mathrm{k}_{\mathrm{y}}=-\mathrm{b}_{\mathrm{EL}} / \mathrm{M}_{\mathrm{EL}} \tag{7b}
\end{align*}
$$

where the value of $k_{z}$ follows from

$$
\begin{equation*}
\mathrm{k}_{\mathrm{x}}^{2}+\mathrm{k}_{\mathrm{y}}^{2}+\mathrm{k}_{\mathrm{z}}^{2}=1 \tag{8}
\end{equation*}
$$

The third target return is made to arrive from this direction and the values of $U_{A Z}, U_{E L}$ are computed via Subroutine RECM. Now, according to the last linear model, a value of $U_{A Z}$ within the range

$$
\begin{equation*}
\left|U_{A Z}\right|<\left|M_{A Z} \sin \theta_{\text {tol }}+b_{A Z}\right| \tag{9}
\end{equation*}
$$

would indicate that the null has been found within the tolerance $\theta$ tol (=DMRAD) specified. If this tolerance is not satisfied for both channels, then the process is repeated until it is or until LMAX is exceeded. In continuing the iterations, $\hat{\mathrm{k}}_{2}$ becomes $\hat{\mathrm{k}}$, and the estimated point becomes $\hat{k}_{2}$.

On the last return, the direction of arrival in specified by $\hat{k}$. The angles in the azimuth and elevation planes are given in milliradians by

$$
\begin{equation*}
\operatorname{AZTM}=\sin ^{-1}\left(\frac{k_{x}}{l-k_{y}^{2}}\right) \cdot 1000 \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
\text { ELTM }=\sin ^{-1}\left(\frac{\mathrm{k}_{\mathrm{y}}}{1-\mathrm{k}_{\mathrm{x}}^{2}}\right) \cdot 1000 \tag{10b}
\end{equation*}
$$

The monopulse error slopes, $M_{A Z}, M_{E L}$, are also computed in volts/degree according to

$$
\begin{align*}
& M E S A Z=M_{A Z} / 57.3  \tag{lla}\\
& M E S E L=M_{E L} / 57.3 \tag{llb}
\end{align*}
$$

where the maximum amplitude SMAX received on the sum channel is assumed to be one volt for normalization purposes.

If $\operatorname{SUPPRS}=$.FALSE., additional outputs around the boresight
direction $\hat{k}$ are computed. The directions are specified by the angle $\theta$

$$
\begin{equation*}
\hat{\mathrm{k}}_{1}=\hat{\mathrm{x}}\left(\sin \theta+\mathrm{k}_{\mathrm{x}}\right)+\hat{y}\left(\sin \theta+\hat{k}_{y}\right)+\hat{z_{z}} \mathrm{k}_{z} \tag{12}
\end{equation*}
$$

where $\theta$ varies over the range $\pm 3$ mrad. At each direction, the monopulse outputs $U_{A Z}, U_{E L}$ are printed as well as the complex monopulse tracking functions shown in the brackets of Equations (2). It is noteworthy that the phase of the tracking function will change from $\sim-90^{\circ}$ to $\sim+90^{\circ}$ as the angle $\theta$ in Equation (12) goes from negative to positive values. This behavior is a consequence of the phasing chosen for the aperture distributions for the difference channels in Subroutine HACNF.

14-5. Program Flow Line Nos. Comments

Lines ll-15: Initialize variables. Convert DMRAD to radians and compute sine.

Lines 16-30:

Line 39:

Lines 43-44:

Lines 45-46
Lines 47-48:

Lines 49-51:

Lines 52-56:
Lines 57-92:
Update the linear tracking model by storing the last two points in each channel as $U(1), U(2) ;$ e.g.,
$U_{A Z}(1)=U_{A Z}(2)$ and $U_{A Z}(2)=U_{A Z}, K_{1}(1)=K_{2}(1)$ and $K_{2}(1)=K(1)$, etc.

At least three iterations are always used.
If $U_{A Z}, U_{E L}$ are within error bounds, exit the loop; if not, continue to iterate.

Lines 96-97: If LMAX exceeded, inform the user.
Line 98: Compute amplitude SMAX on sum channel for final target return.

Lines 99-100: Compute slopes for final return.
Lines lol-102: Compute boresight error AZTM, ELTM.

```
 Lines 103-104: Compute }\mp@subsup{\textrm{k}}{\textrm{z}}{}\mathrm{ for }\mp@subsup{\hat{\textrm{k}}}{1}{}\mathrm{ , and }\mp@subsup{\hat{\textrm{k}}}{2}{}\mathrm{ .
 Lines l05-108: Convert slopes to volts/degree.
 Lines l09-ll7: If SUPPRS = .FALSE, print results.
 Lines ll8-139: Compute and print additional outputs around the
 boresight direction \hat{k}.
 Lines 140-144: Compute and print the slopes of a linear tracking
 model based on the points at +3 mrad and - 3 mrad
 (hence, the division by .006 = 6 mrad).
 Line 145: RETURN
 Line 146: END
14-6. Test Case: See Chapter 2.
14-7. References: None.
```

JUZRDUTINE RECRS (SUMX,SUMY, DELX, DELY, DAZX, DAZY,NX. ..... 1
\$NY, LMAX, NS, IOPT, VR, GMRAD, ROTATE, TFANSL,FGHZ, KXMAX, KYMAX, ..... 2
F TARLE, SINCS, K, AZTM, ELTM, RSQMAX, VMAX, SMAX, SUPPRSI ..... 3
C DME AO IS THE DESIRED ACCURACY OF EOKESIGHT DATA (INPUT IN MRAD) ..... 4
COMPLEX SUMX (NX,NY), SUMY(NX,NY), OELX $N X X, N Y)$, DELY(NX,NY) ..... 5
COMPLEX DAZX(NX,NY), DAZY(NX,NY), VR(3) ..... 6
COMPLEX EINC(3) ..... 7
REAL ROTATE(3,3), TRANSL(3), KXMAX, KYMAX ..... 8
REAL K1(3), K2(3), UAZ (2), UEL (2), K(3) ..... 9
LOGICAL TAQLE,SUPPPS ..... 10
OPAD=DMPAD/1OOC. ..... 11
SORAC=SIN(CKAC) ..... 12
SINOFF=0. ..... 13
SALFA=0. ..... 14
$A M U L=1$ ..... 15
$0070 \mathrm{~J}=1,2$ ..... 16
IF (J.EQ.2) AMUL=-1. ..... 17
K2(1)=SINOS*AFUL ..... 18
K2(2)=SINOS*AMUL ..... 19
C COMPUTE UAZ, UEL AT KZ: ..... 20
K2(3) $=\operatorname{SQRT}(1,-K 2(1) * * 2-K 2(2) * * 2)$ ..... 21
CALL INCPW(K2,EINC, IOPT) ..... 22
CALL RECMYEINC,KZ,NX,NY,KXMAX,KYMAX,FGHZ, ROTATE,TRANSL, ..... 23
\$ SUMX, SUMY, DELX, OELY, OAZX, OAZY, VR, TABLE,SUPPRS, RSQMAX) ..... 24
UAZ (J) =AIMAG(VR(3)/VR(1)) ..... 25
UEL(J) =AINAG(VR(2)/VR(1)) ..... 26
70 gONTINUE ..... 27
K1(1)=SINOS ..... 28
K1(2)=SINOS ..... 29
$K 1(3)=\operatorname{SORT}(1,-K 1(1) * * 2-K 1(2) * * 2)$ ..... 30
LCTR=U ..... 31
ENSURF THAT IMITIAL ESTIMATES MEET PROPER CONOITIONS: ..... 32
IF ( (UAZ (1).LT. C.).OR. (UAZ (2).GT. G.). OR. (UEL(1).LT.J.).OR. ..... 33

* (UEL(2).GT. S.l) GO TO 101 ..... 34
$\mathrm{C}=\mathrm{K} 1(1)-\mathrm{K} 2(1)$ ..... 35
D=K1(2)-K2(2) ..... 36
SLPAZ= (UAZ (1)-UAZ(2))/C ..... 37
SLPEL=(UEL (1)-UEL(2))/0 ..... 38
00 of $I P=1, L M A X$ ..... 39
LCT $\mathrm{C}=\mathrm{LCTR}+1$ ..... 40
r. $\quad k(1)=(k 1(1)+k 2(1)) * G .5$ ..... 41
$\mathrm{C} \quad \mathrm{K}(2)=(K 1(2)+K 2(2)) * 0.5$ ..... 42
IF (ABS(C). GT.SCRAD) SLPAZ=(UAZ(1)-UAZ(2))/C ..... 43
IF (ABS(D).GT.SEPAD) SLPEL=(UEL (1)-UEL(2))/D ..... 44
$B A Z=U A Z(1)-S L F A Z * K 1(1)$ ..... 45
BEL = UEL (1) -SLPEL*K1 (2) ..... 46
ACCAZ=ABS(SLPAZ*SORAD+BAZ) ..... 47
$A C C E L=A B S(S L P E L * S \cap R A D+B E L)$ ..... 48
$K(1)=-8 A Z / S L P A Z$ ..... 49
$K(2)=-8 E L / S L P E L$ ..... 50
$K(3)=\operatorname{SQRT}(1 .-K(1) * * 2-K(2) * * 2)$ ..... 51
CALL INCPW (K, EINC,IOPT) ..... 52
CALL EECMIEINC,K,NX,NY,KXMAX, KYMAX,FGHZ,ROTATE,TRANSL, ..... 53
\$ SUMX, SUMY, CELX, OELY, CAZX, OAZY, VR, TABLE, SUPPRS, RSQMAX) ..... 54
UA=AIMAG(VF(3)/VR(1)) ..... 55
$U E=A I M A G(V P(2) / V R(1))$ ..... 56
IF (IF.GT.1) GO TO 65 ..... 57
IF (UA.GT.E.) GO TO 76 ..... 58
UFZ (2) = UA ..... 59
$K 2(1)=K(1)$ ..... 60
$J A Z=1$ ..... 61
60 7077 ..... 62
76 UAZ (1) = UA ..... 63
$K 1(1)=K(1)$ ..... 64
$J A Z=2$ ..... 65
77 IF (UE.GT.U.) GOTO 73 ..... 66
UEL (2) $=U \varepsilon$ ..... 67
K2(2)=K(2) ..... 68
$J E L=1$ ..... 69
GO TO 79 ..... 70
7 H UEL (1) = UE ..... 71
K1(2)=K(2) ..... 72
JEL =2 ..... 73
GO TO 79 ..... 74
65 IF (JAZ.EQ.2) GO TO 66 ..... 75
$U A Z(1)=U A$ ..... 76
$\mathrm{k} 1(1)=\mathrm{K}(1)$ ..... 77
$J A 7=2$ ..... 78
$50 \quad 1067$ ..... 79
66 UAT (2) = UA ..... 80
K2(1)=K(1) ..... 81
$J A Z=1$ ..... 82
67 IF (JEL.EQ.E) GO TO 68 ..... 83
UEL (1) = UE ..... 84
$k 1(2)=k(2)$ ..... 85
JFL=2 ..... 86
GO TO 79 ..... 87
68 UEL (2) $=$ UE ..... 88
K2(2)=K(2) ..... 89
JEL=1 ..... 90
$79 \mathrm{C}=\mathrm{K} 1(1)-\mathrm{K} 2(1)$ ..... 91
$0=K 1(2)-K 2(2)$ ..... 92
IF (IP.LT.3) GO TO 80 ..... 93
IF ((ABS (UA).LT.ACCAZ).AND. (ABS (UE).LT.ACCEL)) GO TO 85 ..... 94
$8 G$ CONTINUE ..... 95
WRITE(6.25) ..... 96
25 FORHAT (/* LMAX EXCEEDED BEFCEE ACCURACY CRITERION MET**//) ..... 97
85 SMAX=CABS(VF(1)) ..... 98
IF (ABS (C).ET.SORAD) SLPAZ=(UAZ(1)-UAZ(2))/C ..... 99
IF (ABS (D).ET.SDRAD) SLPEL=(UEL(1)-UEL(2))/D ..... 100
$A Z T M=A S I N(K(1) / \operatorname{SQRT}(1,-K(2) * * 2)) * 1000$. ..... 101
ELTM=ASIN(K(2)/SQRT (1.-K(1)**2))*1000. ..... 102
K1 (3) = SQRT (1.-K1 (1)**2-K1 (2)**2) ..... 103
$K 2(3)=S Q R T(1,-K 2(1) * * 2-K 2(2) * * 2)$ ..... 104
C CONVERT SLOPES TO VOLTS/OEG. WHERE THE SIGNAL RECEIVED BY SUM ..... 105
C CHANNEL IS CONSICERED TO BE ONE VOLT: ..... 106
SLPAZ=SLPA $2 / 57.3$ ..... 107
SLPEL=SLPEL/57.3 ..... 108
IF (SUPPRSI RETURIN ..... 109
WRITE(6.90) K1,K2,AZTM, FLTM,SLFAZ, SLPEL,UAZ,UEL,SMAX,LCTR ..... 110
91 FORMAT (//"• FINAL ANSWERS FOR MCNOFULSE SYSTEM: *//"* K1: ", 3E12.5/ ..... 111
 ..... 112
\$ ". MESAZ= ", E12.5." VOLTS/DEG""*" MESEL= "•E12.5." VOLTS/DEG" ..... 113
*//" UAZ: ".2E12.5/"" UEL: ", ZE12.5//" SMAX= ", E21.14, ..... 114115
WPITE(E.99) ..... 116
96 FORMAT (//" AUEITTONAL MONOPULSE OUTPUTS AROUNE 3OPESIGHT: *//) ..... 117
0099 IP $=1,7$ ..... 118
$K 1(1)=S I N((-3 .+T P-1) / 1000)+.K(1)$ ..... 119
$K 1(2)=\operatorname{SIN}(-3 .+I P-1) / 1000).+K(2)$ ..... 120
ANG $=-3 .+I F-1$ ..... 121
$K 1(3)=\operatorname{SQRT}(1,-K 1(1) * * 2-K 1(2) * * 2)$ ..... 122
CALL INCPN(K1,EINC, IOPT) ..... 123
CALL RECMIEINC,KI,NX, NY, KXMAX,KYMAX,FGHZ, ROTATE,TRANSL, ..... 124
§ SIJMX, SUMY, DELX, DELY, CAZX, CAZY, VR, TABLE,SUPPRS, PSQMAX) ..... 125
UAZ (1) =AIMAE(VE(3)/VR(1)) ..... $12 \epsilon$
UFL(1) =AIMAG(VR(2)/VR(1)) ..... 127
IF (IP.EQ.1) SLFI=UAZ (1) ..... 128
IF (IP.EQ.1) SLF?=UEL! (1) ..... 129
WRITE(6.90) ANG,UAT (1), UEL(1) ..... 130
96 FORMAT(" ANG= *,F5.1,* MRAD FRGM EOKESIGHT VRAZ= **E12.5. ..... 131
\$" VOLTS VREL $=\cdots,{ }^{* *} 12.5, \cdots$ VOLTS" $/ 1$ ..... 132
VQ(3) =VR(3)/VF(1) ..... 133
$\operatorname{VF}(2)=V R(2) / V R(1)$ ..... 134
CALL $\triangle M P H S(V R(3), 0,0)$ ..... 135
CALL AMPHS (VP(2), E,F) ..... 136
WPITE (ó,9+) C,D,E,F ..... 137
94 FORMAT(* DAZ (AMP, PHS) = ", 2E12.5." OEL (AMP,PHS) = ", 2E12.5/) ..... 138
99 CONTINUE ..... 139
SLP1=(UAZ(1)-SLP1)/(.0.5*57.3) ..... 140
SLP2 = (UZL(1)-SLF2)/(.006*57.3) ..... 141
WRITE (6,97) SLP1,SLF? ..... 142
97 FCRMAT (/"* AVEFAGE SLPAZ = *"E12.5,* VOLTS/DEG"/ ..... 143
\&" $A V E R A G E$ SLPEL $=\cdots$ " $12.5, *$ VOLTS/DEG"/" SUM=1.0 VOLT*/// ..... 144
100 RETURN ..... 145
ENO

15-1. Purpose: To compute the receiving patterns of a monopulse antenna at NREC points in a specified principal plane. A plane wave of specified polarization (ICOMP) is made to be incident on the antenna at equal increments in $\sin \theta$ over the range (-KMAX, KMAX -DK) in either the elevation plane (ICUT $=1$ ) or azimuth plane. The received voltage in each channel is computed in the presence of the radome and stored for return to the calling program.

15-2. Usage: CALL RECPTN (SUMX, SUMY, DELX, DELY, DAZX, DAZY, NX, NY, ICUT, ICOMP, KMAX, NREC, VREC, KXMAX, KYMAX, FGHZ, ROTATE, TRANSI, TABLE, SUPPRS, RSQMAX)

15-3. Arguments
SUMX, SUMY,- Complex input arrays of NX by NY elements conDELX, DELY, taining the aperture field distributions of the DAZX, DAZY, monopulse antenna. See Subroutine HACNF.

ICUT - Integer input variable which specifies the principal plane in which the pattern is computed: elevation (ICUT $=1$ ) or azimuth (ICUT $=2$ ).

ICOMP - Integer input variable which specifies the linear polarization of the incident plane wave: elevation component $\varepsilon$ only (ICOMP $=1$ ) or azimuth component $\alpha$ only (ICOMP = 2). See Figure 15-1 for further clarification.


Figure 15-1Coordinate System for Far Field Patterns


15-4. Comments and Method
Subroutines INCPW and RECM are used to compute the incident plane wave and the received voltage in each channel for each direction of arrival in the specified plane. For the elevation plane, the direction of arrival is given by

$$
\begin{equation*}
\hat{\mathrm{k}}=\hat{\mathrm{x}}(0)+\hat{\mathrm{y}} \sin \theta+\hat{z} \sqrt{1-\sin ^{2} \theta} \tag{1}
\end{equation*}
$$

where $\theta$ is the angle measured from the z-axis. For the azimuth plane

$$
\begin{equation*}
\hat{\mathrm{k}}=\hat{\mathrm{x}} \sin \theta+\hat{\mathrm{y}}(0)+\hat{z} \sqrt{1-\sin ^{2} \theta} \tag{2}
\end{equation*}
$$

The increments in angle are given by

$$
\begin{equation*}
\Delta \mathrm{k}=2 \mathrm{k}_{\max } / \mathrm{N}_{\mathrm{REC}} \tag{3}
\end{equation*}
$$

Values of $k_{\max }>1$ correspond to the invisible region and must be excluded from consideration.

15-5. Program Flow: Compare program listing below directly to the discussion above.

15-6. Test Case: See Chapter 2.
15-7. References: None
15-8. Program Listing: See following page.
SUBPDUTINE RECPTNSSUMX, SUMY, OELX, DELY, DAZX, DAZY, NX,NY, ICUT, ICOMP, ..... 1
\$ KMAX,NREC, VREC,KXMAX,KYMAX,FGHZ,ROTATE,TRANSL, ..... 2
4 TABLE, SUPFRS, PSQMAXI ..... 3
C SURF RECPTM CONFUTES THE RECEIVING VOLTAGE PATTERN OF THE ANTENNA ..... 4
C WHOSE TRANSMITTING NEAR FIELO ON ZA=0 PLANE IS EXT, EYT. ..... 5
C RAY T $A A C I N G$ IS LSED TO ACCOUNT FOR RACOME (SUBR RECMI. ..... 6
C. NREC=NUMBER OF FOINTS AT WHICH FATTERA IS COMPUTED ..... 7
C ICUT=1 FOR EL CUT, = 2 FCR AZ CUT ..... 8
$C$ ICOMP $=1$ FCR FL COMPCNENT, $=2$ FOR AZ CCMPONENT ..... 9
C KMAX<1. SPECIFIES ANGULAR LIMITS (ANALAGOUS TO KXMAXI ..... 10
COMPLEX SUMX (NX,NY), SUMY(NX,NY), DELX(NX,NY), DELY(NX,NY) ..... 11
COMPLEX CAZX(NX,NY), DAZY(NX,NY) ..... 12
GOMPLFX VREC(NPEC,3), EINC (3), VR(3) ..... 13
REAL KXMAX, KYMAX,KMAX,KA(3), ROTATE(3,3),TRANSL(3) ..... 14
LOGICAL TAELE, SUPDPS ..... 15
กATA PI/3.14159265/ ..... 16
$E T \Delta 0=120 . * F I$ ..... 17
TF (IABS(ICUT).GT.2) ICUT=2 ..... 18
$J=1$ ..... 19
IF (KMAX.GE.1.) KMAX=1.-2./NREC ..... 20
$O K=2.7 K M A X / N R E C$ ..... 21
IF (ICUT.EG.1) J=2 ..... 22
$\triangle N G M A X=A S I N(K N A X) * 180 . / P I$ ..... 23
WFITE(E,10) ICUT,ICCMP,KMAX,NREC, [K, ANGMAX ..... 24
OO $5 \mathrm{I}=1$, NRES ..... 25
$K A(I C U T)=0$. ..... 26
$K A(J)=-K M A X+(I-1) * D K$ ..... 27
$K \Delta(3)=\operatorname{SQRT}(1 .-K \Delta(J) * * 2)$ ..... 28
CALL INCPW (KA,EINC, ICOMP) ..... 29
CALL PECM(EINC,KA,NX,NY,KXMAX,KYMAX,FGHZ, ROTATE, TRANSL, ..... 30
\& SUMX, SUMY, DELX, DELY, DAZX, DAZY, VR, TABLE, SUPPRS, RSGMAX) ..... 31
$\operatorname{VFFC}(I, 1)=V F(1)$ ..... 32
$V$ FEC $(I, 2)=V K(2)$ ..... 33
VFEC (T, 3) = VF (3) ..... 34
5 CONTINUE ..... 35
W民ITE(6,12) ICUT,ICCMD,KMAX,NREC, CK,ANGMAX ..... 36
 ..... 37 ..... 38



* $\quad=12.5 / \cdots$ ANGNA $X=\cdots, F G .2 \prime^{\prime \prime}$ (IGUT=1 FOR EL GUT, $=2$ FOR AZ CUT*"39

\$ " (ICOMP=1 FON EL COMPONENT, $=2$ FOR AZIMUTHI " $/ 1$ )
D " (ICOMP=1 FON EL COMPONENT, $=2$ FOR AZIMUTH) *//) ..... 40
ENO ..... 42

## Chapter 16

SUBROUTINE OGIVE

16-1. Purpose: To solve for the intersection $\mathrm{PH}(\mathrm{x}, \mathrm{y}, \mathrm{z}$ ) of a line (ray) and a tangent ogive surface. The ray starts at point $P O\left(x_{0}, y_{0}, z_{0}\right)$ and travels in the direction $k\left(k_{x}, k_{y}, k_{z}\right)=\hat{k}=\hat{x} k_{x}+\hat{y} k_{y}+\hat{z} k_{z}$. Dimensions are in centimeters. Radome coordinates are implied.

16-2. Usage: CALL OGIVE (PO, $\mathrm{K}, \mathrm{PH}, \mathrm{HIT}$ )
COMMON/OGIVC/RP, BSQ, AP, RINV, B, RSQ1, RP2

16-3. Arguments
PO - Real input array containing the point of origin of the ray $P O\left(x_{0}, y_{0}, z_{o}\right)$.

K

- Real input array containing the direction cosines of the ray $k\left(k_{x}, k_{y}, k_{z}\right)$.

PH - Real output array containing the point of intersection $\mathrm{PH}(\mathrm{x}, \mathrm{y}, \mathrm{z})$, if HIT $=$.TRUE.

HIT - Logical output variable which indicates if an intersection solution was found (TRUE).

The following variables are common with the main program and are precalculated to speed up the ray tracing computations. Refer to Figure 16-1 of the radome geometry for the definitions of $R$ and $B$.
$R P \quad-$ Real input variable $=R^{2}-B^{2}$.
BSQ - Real input variable $=B^{2}$.
AP - Real input variable $=0$. See APIN in Section 2-4.
RINV - Real input variable $=1 / R$.
B - Real input variable. See Figure 16-1.


Figure 16-1. Tangent Ogive Radome Geometry.

$$
\begin{array}{ll}
\text { RSQ1 } & - \text { Real input variable }=R^{2} . \\
\text { RP2 } & - \text { Real input variable }=R^{2}+B^{2} .
\end{array}
$$

16-4. Comment and Method
a. The common variables must be computed in the main program prior to the first call to OGIVE.
b. Subroutines required: CBRT, $S Q R$, XY. Real function CBRT ( x ) computes cube root; $S Q R$ computes square root with test for negative argument.
c. The intersection of a ray and ogive surface requires the solution of $a$ quartic equation in the parameter $z_{p}$ as follows [1]

$$
\begin{equation*}
z_{p}^{4}+C_{4} z_{p}^{3}+C_{3} z_{p}^{2}+c_{2} z_{p}+c_{1}=0 \tag{1}
\end{equation*}
$$

where

$$
\begin{gather*}
C_{4}=\frac{2(1+U)(2 A+V)}{(1+U)^{2}}  \tag{2}\\
C_{3}=\frac{2(1+U)\left(-R_{p}+A^{2}+W\right)+(2 A+V)^{2}-4 B^{2} U}{(1+U)^{2}}  \tag{3}\\
C_{2}=\frac{2(2 A+V)\left(-R_{p}+A^{2}+W\right)-4 B^{2} V}{(1+U)^{2}}  \tag{4}\\
C_{1}=\frac{\left(-R_{p}+A^{2}+W\right)^{2}-4 B^{2} W}{(1+U)^{2}} \tag{5}
\end{gather*}
$$

and where

$$
\begin{gather*}
U=\frac{K_{1}^{2}+K_{2}^{2}}{K_{3}^{2}}  \tag{6}\\
V=\frac{2\left(K_{1} P_{1}+K_{2} P_{2}\right)}{K_{3}}  \tag{7}\\
W=P_{1}^{2}+P_{2}^{2}  \tag{8}\\
R=R^{2}-B^{2} \tag{9}
\end{gather*}
$$

The variables $R$ and $B$ are defined on Figure 16-1 and by the ogive equation

$$
\begin{equation*}
r=\sqrt{x^{2}+y^{2}}=\sqrt{R^{2}-\left(z-a_{p}\right)^{2}}-B \tag{10}
\end{equation*}
$$

where the $z$-axis is the axis of revolution for the ogive shape. The variable $a_{p}$ provides for an offset along $z$ of the coordinates for the ogive. Equations (1) through (9) result when the following equations for a ray (line) passing through the point $P O\left(x_{0}, y_{o}, z_{o}\right)$ in the direction $\hat{k}=\hat{x} k{ }_{x}+$ $\hat{y} k_{y}+\hat{z} k_{z}$ are substituted into Equation (10):

$$
\begin{equation*}
\frac{z-z_{0}}{k_{z}}=\frac{x-x_{0}}{k_{x}}=\frac{y-y_{0}}{k_{y}}=\text { constant } \tag{1l}
\end{equation*}
$$

All four roots of the quartic equation may be found from the resolvent cubic equation [2]

$$
\begin{equation*}
p^{3}-C_{3} p^{2}+\left(C_{4} C_{2}-4 C_{1}\right) p-C_{4}^{2} C_{1}+4 C_{3} C_{1}-C_{2}^{2}=0 \tag{12}
\end{equation*}
$$

This cubic equation has at least one real root $p_{0}$ given by

$$
\begin{equation*}
=\left[-\frac{T}{2}+\sqrt{\frac{T^{2}}{4}+\frac{S^{3}}{27}}\right]^{1 / 3}+\left[-\frac{T}{2}-\sqrt{\frac{T^{2}}{4}+\frac{S^{3}}{27}}\right]^{1 / 3} \tag{13}
\end{equation*}
$$

where

$$
\begin{gather*}
\mathrm{S}=\frac{1}{3}\left[3\left(\mathrm{C}_{4} \mathrm{C}_{2}-4 \mathrm{C}_{1}\right)-\mathrm{C}_{3}^{2}\right]  \tag{14}\\
\mathrm{T}=\frac{1}{27}\left[-2 \mathrm{C}_{3}^{3}+9 \mathrm{C}_{3}\left(\mathrm{C}_{4} \mathrm{C}_{2}-4 \mathrm{C}_{1}\right)+27\left(-\mathrm{C}_{4}{ }^{2} \mathrm{C}_{1}+4 \mathrm{C}_{3} \mathrm{C}_{1}-\mathrm{C}_{2}{ }^{2}\right)\right] \tag{15}
\end{gather*}
$$

Once $p_{o}$ is found, the roots of the quartic equation follow from

$$
\begin{align*}
& z_{p 1,2}=\frac{C_{3}}{4}+\frac{R_{1}}{2} \pm \frac{D}{2}  \tag{16}\\
& z_{p 3,4}=\frac{C_{3}}{4}-\frac{R_{1}}{2} \pm \frac{E}{2} \tag{17}
\end{align*}
$$

where

$$
\begin{gather*}
R_{1}=\sqrt{\frac{C_{4}^{2}}{4}-C_{3}+p_{o}}  \tag{18}\\
D=\sqrt{\frac{3 C_{4}^{2}}{4}-R_{1}^{2}-2 C_{3}+\frac{4 C_{4} C_{3}-8 C_{2}-C_{4}^{3}}{4 R_{1}}}  \tag{19}\\
E=\sqrt{\frac{3 C_{4}^{2}}{4}-R_{1}^{2}-2 C_{3}-\frac{4 C_{4} C_{3}-8 C_{2}-C_{4}^{3}}{4 R_{1}}} \tag{20}
\end{gather*}
$$

The correct root $z_{p o}$ is chosen as the one with the smallest absolute value and which has the same sign as $k_{z}$. The intersection point $P(x, y, z)$

$$
\begin{gather*}
z=z_{o}+z_{p o}  \tag{21}\\
x=\frac{k_{x}}{k_{z}} z_{p o}+x_{o}  \tag{22}\\
y=\frac{k_{y}}{k_{z}} z_{p o}+y_{o} \tag{23}
\end{gather*}
$$

The rectangular components of the unit inward normal vector at $P(x, y, z)$ are given by

$$
\begin{align*}
& n_{x}=-x \frac{B+\sqrt{x^{2}+y^{2}}}{R \sqrt{x^{2}+y^{2}}}  \tag{24}\\
& n_{y}=-y \frac{B+\sqrt{x^{2}+y^{2}}}{R \sqrt{x^{2}+y^{2}}}  \tag{25}\\
& n_{z}=-\frac{z-a p}{R} \tag{26}
\end{align*}
$$

In the the special case of $k_{z}=0$, the $z$ coordinate does not change so that

$$
\begin{equation*}
z=z_{0} \tag{27}
\end{equation*}
$$

The equations of the line in the $z=z$ plane become

$$
\begin{equation*}
x=x_{0}+k_{x} t \tag{28}
\end{equation*}
$$

$$
\begin{equation*}
y=y_{o}+k_{y} t \tag{29}
\end{equation*}
$$

where the parameter $t$ is the distance along the line from ( $x_{0}, y_{0}, z_{0}$ ) to ( $\mathrm{x}, \mathrm{y}, \mathrm{z}$ ). Substituting Equations (27) - (29) into (10) yields the following quadratic equation in $t$

$$
\begin{equation*}
t^{2}+2\left(k_{x} x_{0}+k_{y_{0}} y_{0}\right) t+\left(x_{0}^{2}+y_{o}^{2}\right)=\left(\sqrt{R^{2}-\left(z_{o}-a_{p}\right)^{2}}-B\right)^{2}=R_{s}^{2} \tag{30}
\end{equation*}
$$

The quadratic formula yields the following solutions to the above equation

$$
t_{1,2}=-\left(k_{x} x_{0}+k_{y_{0}} y_{0} \pm\left[\left(k_{x_{0}} x_{0}+k_{y_{0}}\right)^{2}-\left(x_{0}+y_{0}^{2}\right)+R_{s}^{2}\right]^{\frac{1}{2}}\right.
$$

The unit normal may be computed by Equations (24) through (26). 10-5. Program Flow: See listing below and compare directly to the above equations.

10-6. Test Case: See Chapter 2.
10-7. References

1. E. B. Joy and G. K. Huddleston, "Radome Effects on the Performance of Ground Mapping Radar," Technical Report, Contract DAAHO1-72-C-0598, U. S. Army Missile Command, March 1973.
2. Stegun, and Abromowitz, Handbook of Mathematical Functions, National Bureau of Standards, June 1964, p. 17.

10-8. Program Listing: See following pages.
SUBRUNFINE CGIV：（DO，K，PH，HIT ..... 1
PELL SRP， $4, M 1, N ?, U, V, W, A S Q, A I N V, A O, A 1, A 2, A 22, A 44, C O E F($ ..... 2
あ4） ..... 3
THIS SUOROUTINE SOLVES FOR THE INTERSECTION OF A RAY AND AN OGIVE． ..... 4
IMOUT PR－－REAL ARRAY OF COEFFICIENTS OF INSIOE POINT ..... 5
K－FEALARPAY OF OIAECTICN COSINES OF RAY ..... 6
OUTPITT PH－－GOOQINATES CF THE IATERSEGTION WITH THE RADOME ..... 7
HITー－＝．TRUE．IF THE RAY HIT THE SURFACE ..... 8
सEFL PO（3），PH（3），K（？） ..... 9
CCHPCH／UGIVC／FP，IGS，AP，FItIV，B，FSQ1，KD？ ..... 10
LOGTCAL HIT ..... 11
HIT＝．TFUE． ..... 12
UNIT OF DISTANEE IS GENTIMETEF ..... 13
THE OGIVE SHADE IS DESCRIBED BY THE EQUATION ..... 14
$\operatorname{SQFt}(x * * 2+y * * 2)=\operatorname{SQRT}(R * * ट-(Z-A P) * * Z)-\beta$ ..... 15
GIVEN A FINENESS RATIO，F，ANO A DIAMETER D．R AND $B$ ..... 16
MAY RE CALCULATED AS FOLLOWS． ..... 17
R＝F＊T）（SIA（DI－2＊ATAN（2＊F）） ..... 18
$q=0-0 / 2$ ..... 19
APE 7 COORCINATE OP THE GERERATIOA CENTER OF THE OGIVE ..... 20
COORDTAATFS． ..... 21
THE JATA NEECEC FOR THE OATA STATEMENT IS ..... 22
$R=R * * 2-B * * 2$ ..... 23
BS $0=B^{* * 2}$ ..... 24
$A P=A P$ ..... 25
RIAV $=1.0 / \mathrm{F}$ ..... 26
$\mathrm{P}=\mathrm{E}$ ..... 27
2SQ1＝R＊＊2 ..... 28
〈P $\angle=P * * 2+B^{* * 2}$ ..... 29
IF（AES（K（3））．L＋．1E－7）G0 TO 390 ..... 30
IF（ABS（K（3））．TT：1．－1E－7）GO TO 380 ..... 31
$1=P 0(?)-A P$ ..... 32
$M 1=1.0 / k(3)$ ..... 33
$M ?=K(え) * M 1$ ..... 34
$M_{1}=K(1) * M_{1}$ ..... 35
$U=41 * M 1+42 * M 2$ ..... 36
$V=2 \cdot$－$^{*}\left(M 1 * F C(1)+M 2^{*} P O(2)\right)$ ..... 37
$W=P ?(1) * P O(1)+P C(2) * P O(2)$ ..... 38
$A S Q=A * A$ ..... 39
AINV $=1.6 /(1,0+(1)(2,0+(0))$ ..... 40
CCEF $(G)=2 .[*(2 \cdot j * A+V) *(1 . E+U) * A I N V$ ..... 41
COFF $\left.(3)=(2 .)^{*}(- \text { PD }+1)^{*}\left(W-R P 2 \quad 1+W+2.0^{*} A * V+A S Q^{*}(3.0+U)\right)+V^{*} V\right) * A I N V$ ..... 42
CCEF (?) $=\left(-. A^{*} A^{*}(-F P+A S Q+W)+2.0^{*} V^{*}(A S Q+W-R P 2)\right.$ ) FAINV ..... 43
CCEF (1) $\left.=\left(W^{*}(2 .)^{*}(\triangle S Q-R P 2)+W\right)+R P *\left(R P-2.0^{*} A S Q\right)+A S Q * A S G\right) * A I N V$ ..... 44
$A 2=$ COEF (3)*G.3333333333 ..... 45
A1=CCFF (2)*COEF (4)-4.0*COEF (1) ..... 46
$A C=-\operatorname{CoFF}(E) * C C E F(2)-\operatorname{COEF}(1) * \operatorname{CCEF}(4) * \operatorname{COEF}(4)+4.0 * \operatorname{COEF}(1) * \operatorname{COEF}(3)$ ..... 47
$\Delta 2 ?=A 2 * 4 ?$48
$\mathrm{A}_{4} 4=\operatorname{COEF}(4)^{*}$ こ. 25 ..... 49
$\mathrm{Q}=\dot{\mathrm{A}} \mathrm{I}^{*} .333$ 3333333-422 ..... 50
$\mathrm{R}_{1}=\left(-\mathrm{A}_{1} * \operatorname{CoEF}(3)-3.0 * A 0\right) * 0.166$ E666667+A2*A22 ..... 51
RATS $Q=Q * * 3+E 1 * F 1$ ..... 52
IF (RAUSQ.L.. S.) GO TO 330 ..... 53
RAU $=$ SQR(RACSQ) ..... 54
$Y=C R R T\left(R_{1}+F A O\right)+C B R T\left(O_{1}-P A U\right)+A 2$ ..... 5556
IF (ABS (RSG).LT.1.CE-05) GO TC 350 ..... 57
$Q=S Q R(P S Q)$ ..... 58
IF (K(3).LT.J.) GO TO 363 ..... 59
 ..... 60
$2 \operatorname{CCEF}(3)-8.0 * \operatorname{COEF}(2)-\operatorname{COEF}(4) * * 3) /(4.0 * R)) 1 * 0.5$ ..... 61
CALL XY(PC,K,Z,PH) ..... 62
RETUPN ..... 63
$Z=0$ ( 3 )-444-(F-SOR(3.0*COEF (4)*A44-FSQ-2. 3*COEF(3)-(4.0*COEF(4)* ..... 64
 ..... 65
CALL XY(FC,K,Z,FH) ..... 66
RETUQN: ..... 67
 ..... 68
$\mathrm{V}=2 . \mathrm{G} * \mathrm{SQ}(-\mathrm{Q}) * \operatorname{COS}(\mathrm{FHI*C.3333333333)+A2}$ ..... 69
GOTO $3+2$ ..... 70
?59 [F (KI?).LT.U.Cl GO TO 37E ..... 71
T=PD(z)-444+(E-SQR(3.0*COEF(4)*A+4-2.0*COEF(3)+2.C*SQR(Y*Y- ..... 72
 ..... 73
CALL XY(PC,K,L,PH) ..... 74
$2=$ TUFN ..... 75
37) $\quad 7=P \cap(3)-A 44+(E+S Q R(3 . S * C O E F(+) * A 44-2 . C * C O E F(3)-2.0 * S Q R(Y * Y-$ ..... 76
$?$ 4.0*(CEF(11)) *2.5 ..... 77
CALL XY(PG,K,7,PH) ..... 78
マETUFA ..... 79
 ..... 80
$*(\vec{B}): * 21$ ..... 81
$2 H(1)=P C(1)$ ..... 82
$P H(2)=P C(2)$ ..... 83
دH(3) = Z ..... 84
PETURN ..... 85
$390 \quad$ RSQ2 $=5$ QRT $(R S Q 1-(P G(3)-A F) * * 2)-6$ ..... 86
$0502=0502 * * 2$ ..... 87
2LP=-(PO(1)*K(1)+PO(2)*K(2))+SQPT (FO(1)*K(1)*PO(2)*K(2))**2- ..... 88
*(PO(1)**2+FC(2)**2-RSQ2)) ..... 89
RLN=-(PG(1)*K(1)+PO(2)*K(2))-SQKT(1FO(1)*K(1)+PO(2)*K(2))**2- ..... 90
\& (PO (1)**2+FO(2)**2-RSQ2)) ..... 91
PH(3) $=$ FO(3) ..... 92
IF(RLN.LT.C.) GO TO 391 ..... 93
PH(1)=PO(1)+CLN*K(1) ..... 94
$P H(2)=P C(2)+R L N * K(2)$ ..... 95
RETUEN ..... 96
391 PH(1)=PO(1)+PLP*K(1) ..... 97
PH(2) $=P \mathrm{O}(2)+\mathrm{P}_{2}+* K(?)$ ..... 98
RETURN ..... 99
ENO ..... 100

FUNCTION :EGT (X) 1
SIGNX=1.0 2
IF (X.LT.Q.: IIGNX=-1.0 3
CBRT $=$ SITHX* $S I G N X * X) * * 0.33333333333333$ 4
RETUPN 5
ENO 6

IF (SG.LE. .1GOTO Q9 2
$S O P=S \cap R T(S C) \quad 3$
RETURN
3
3! $1 \mathrm{~m}=\mathrm{b}$.
5
RETURN
ENJ

17-1. Purpose: To compute the unit inward normal vector $\hat{n}=\hat{x} n_{x}+$ $\hat{y} n_{y}+\hat{z} n_{z}$ to the tangent ogive surface at the point $P I(x, y, z)$. Dimensions are in centimeters and radome coordinates are implied.

17-2. Usage: CALL OGIVEN (PI, N)
COMMON/OGIVC/RP, BSQ, AP, RINV, B, RSQ1, RP2
(See Chapter 16 for common variables.)
17-3. Arguments
PI - Real input array containing the point $P I(x, y, z)$ on the tangent ogive surface at which the unit normal is desired, as computed by Subroutine OGIVE.

N - Real output array containing the direction cosines ( $n_{x}, n_{y}, n_{z}$ ) of the unit inward normal vector.

17-4. Comments and Method
The tangent ogive surface is described by

$$
\begin{equation*}
f(r, z)=r-\sqrt{R^{2}-\left(z-a_{p}\right)^{2}}+B=0 \tag{1}
\end{equation*}
$$

where $r=\sqrt{x^{2}+y^{2}}$ and where $R$ and $B$ are defined in Figure 16-1. The unit inward normal to this surface is given by

$$
\begin{equation*}
\hat{n}=-\frac{\nabla f}{|\nabla f|}=-\frac{1}{|\nabla f|}\left[\hat{x} \frac{d f}{d r} \frac{d r}{d x}+\hat{y} \frac{d f}{d r} \frac{d r}{d y}+\hat{z} \frac{d f}{d z}\right] \tag{2}
\end{equation*}
$$

where $\nabla$ is the gradient operator. Equation (2) can be rewritten as

$$
\begin{equation*}
\hat{n}=\frac{-1}{|\nabla f|}\left[\hat{x} \frac{x}{r}+\hat{y} \frac{y}{r}+\hat{z} \frac{d f}{d z}\right] \tag{3}
\end{equation*}
$$

where the differentiation with respect to $r$ has been done and $d f / d r=1$ has been used. The remaining terms are given by

$$
\begin{gather*}
\frac{d f}{d z}=\frac{\left(z-a_{p}\right)}{\sqrt{R^{2}-\left(z-a_{p}\right)^{2}}}  \tag{4}\\
|\nabla f|=\sqrt{1+\frac{\left(z-a_{p}\right)^{2}}{R^{2}-\left(z-z_{p}\right)^{2}}}=\sqrt{\sqrt{R^{2}-\left(z-a_{p}\right)^{2}}} \tag{5}
\end{gather*}
$$

since $r^{2}=x^{2}+y^{2}$. The direction cosines can be written explicitly as

$$
\begin{gather*}
n_{z}=-\left(z-a_{p}\right) / R  \tag{6}\\
n_{x}=-\left(\frac{x}{r}\right) \frac{\sqrt{R^{2}-\left(z-a_{p}\right)^{2}}}{R}=-\frac{x}{r} \frac{(r+B)}{R}  \tag{7}\\
n_{y}=-\left(\frac{y}{r}\right) \frac{(r+B)}{R} \tag{8}
\end{gather*}
$$

where the relation $(r+B)=\sqrt{R^{2}-\left(z-a_{p}\right)^{2}}$ from Equation (1) has been used.
17-5. Program Flow: Compare Equations (6) - (8) directly to the listing below.

17-6. Test Case: See Chapter 2.

17-7. Reference

1. Smail, L. L., Analytic Geometry and Calculus, Appleton-Century-Crofts, Inc., New York, 1953.

17-8. Program Listing: See following page.
SIEPOLITVE CGIVEN (PI,N) ..... 1
C THES SUBROUTINE GALCLLATES ThE INWARE NORMAL TO THE OGIVE SURFACE ..... 2
C AS A PAFTICULAP PCINT. ..... 3
INFUT FI-GEAL ARRAY OF CCEFFICIENTS UF THE POINT ..... 4
OUTPUT N --PELL ARRAY OF GIRECTION COSINES OF NORMAL TO ..... 5
SUFFACE AT FCINT OF INTERSECTION ..... 6
PEAL N(?), TAN,PI(3) ..... 7
CCMMCN/OGIVC/FP, PSQ,AP,DINV, 3 ,FSO1,RD2 ..... 8
$N(3)=-(P I(3)-A P) *$ ₹INV ..... 9
$\mathrm{R}=5 \mathrm{~S} F \mathrm{P}(\mathrm{PI}(1) * F I(1)+P I(2) * F I(2))$ ..... 10
NTAN=- $(P+B) * R I N V / R$ ..... 11
$N(1)=P T(1) * N T \Delta N$ ..... 12
N(2) $=F I(2) * A T A N$ ..... 13
PETUEN ..... 14
ENO ..... 15

## Chapter 18

## SUBROUTINE XY

18-1. Purpose: To compute the $x$ and $y$ coordinates of the intersection point $P I(x, y, z)$ of a line (ray) having direction cosines $K\left(k_{x}, k_{y}, k_{z}\right)$ with a surface of revolution when $z$ is known. The line passes through the known point $P\left(x_{0}, Y_{0}, z_{o}\right)$. All dimensions are in centimeters.

18-2. Usage: CALL XY (P, K, Z, PI)
18-3. Arguments
P - Real input array containing the known point through which the ray passes; i.e., $P\left(x_{0}, y_{o}, z_{o}\right)$.

K - Real input array of the direction cosines of the ray; i.e., $K_{\left(k_{x}, k_{y}, k_{z}\right) .}$

Z - Real input variable equal to the known z coordinate of the intersection as found, for example, from Subroutine OGIVE.

PI - Real output array containing the desired point of intersection PI( $x, y, z$ ).

18-4. Comments and Method

The parametric equations for a line in space passing through the point $P\left(x_{0}, y_{o}, z_{o}\right)$ and having direction cosines $\left(k_{x}, k_{y}, k_{z}\right)$ are given by

$$
\begin{align*}
& x=x_{0}+k_{x} t  \tag{la}\\
& y=y_{0}+k_{y} t  \tag{lb}\\
& z=z_{0}+k_{z} t \tag{lc}
\end{align*}
$$

where $t$ is the distance along the line from $P\left(x_{0}, Y_{0}, z_{0}\right)$ to $P I(x, y, z)$. When one coordinate $z$ is known, $t$ follows from Equation (lc), provided $k_{z} \neq 0$.

18-5. Program Flow: Compare the listing below directly to the equation above.

18-6. Test Case: See Chapter 2.
18-7. References: None

18-8. Program Listing: See following page.
SUGPOUTINE XY(P,K,Z,PI) ..... 1
$\therefore$ ..... 2
xY GALCULATES THE $x$ aNO Y COMFONENTS OF AN INTERSECTION POINT PI ..... 3
FGR THE CASE WHEN THE POINT OF EMINATION P, THE DIRECTION OF ..... 4
OFOFAGATION $K$ ANO THE $Z$ GOOROINATE OF THE INTERSECTION POINT ..... 5
APE GIVFN ..... 6
REAL P(3),K(3),PI(3) ..... 8
PI(3)=? ..... 9
= $=$ PI(3)-P(3))/K(3) ..... 10
PI(1)=P(1)+K(1)*T ..... 11
$P I(?)=F(2)+K(2) * T$ ..... 12
RETUPN ..... 13
ENU ..... 14

SUBROUTINES BDISK, BDISKN, TDISK, TDISKN

19-1. Purpose: To compute the intersection $P I(x, y, z)$ of a line (ray) emanating from the point $P\left(x_{0}, Y_{0}, z_{o}\right)$ having direction cosines $K\left(k_{x}, k_{y}, k_{z}\right)$ with a planar disk at $z=z_{\text {bot }}$ or at $z=z_{\text {top }}$. Subroutine BDISKN is used to compute the unit inward normal $\hat{n}=\hat{z}$. Subroutine TDISKN is used to compute the normal $\hat{n}=\hat{z}$.

19-2. Usage:
CALL BDISK ( $\mathrm{P}, \mathrm{K}, \mathrm{PI}, \mathrm{HIT}$ ) CALL TDISK ( $\mathrm{P}, \mathrm{K}, \mathrm{PI}, \mathrm{HIT}$ )
COMMON/BDISKC/ZBOT, RBSQ COMMON/TDISKC/ZTOP, RTSQ
CALL BDISKN ( N ) CALL TDISKN ( N )
19-3. Arguments
$P \quad-\quad$ Real input array containing the point $P\left(x_{0}\right.$, $Y_{o}, z_{0}$ ) from which the ray emanates.
K

PI - Real input array containing the desired point of intersection $P I(x, y, z)$.

HIT - Logical output variable which is TRUE if an intersection is found.

ZBOT - Real input variable equal to the $z$ coordinate of the planar disk.

RBSQ - Real input variable equal to the square of the radius of the planar disk.

N - Real output array containing the direction cosines of the unit inward normal vector; viz., $N(0,0,1)$.

19-4. Comments and Method

From the parametric equations for the ray

$$
\begin{align*}
& x=x_{0}+k_{x} t  \tag{la}\\
& y=y_{0}+k_{y} t  \tag{lb}\\
& z=z_{0}+k_{z} t \tag{lc}
\end{align*}
$$

and the equation of the plane $z=z_{\text {bot }}$, the parameter $t$ is given by

$$
\begin{equation*}
t=\left(z_{\text {bot }}-z_{0}\right) / k_{z} \tag{2}
\end{equation*}
$$

provided $k_{z} \neq 0$. The $x$ and $y$ coordinates follow from the above equations; however, if $\left(x^{2}+y^{2}\right)>r_{b}^{2}$ (where $r_{b}$ is the radius of the disk), no intersection is found. Similar statements apply for the top disk.

19-5. Program Flow: Compare the listings below directly to the equations above.

19-6. Test Case: See Chapter 2.
19-7. References: None
19-8. Program Listing: See following pages.

```SUAFCUTINE AMISK(P,K,PI,HIT)1
```

    0
    
    BUISK CALOULATES THE FOINT OF INTERSECTION PI OF A DISK HORIZONTAL ..... 2
    C BUISK CALOULATES THE FOINT OF INTERSECTION PI OF A DISK HORIZONTAL ..... 3
G TO THE XY PLLAE WITH A RAY EMANATING FROM POINT P ANC TRAVELING ..... 4
C IN THE K DIUECTION. ..... 5
THE ERUATICN USEO FOR THE BOT CISK IS $Z=Z B O T$ FOR $(x * * 2+Y * * 2)<R S Q$ ..... 6
7 ..... 8
COMMONABCISKC/7EOT, PBSO ..... 9
REAL P(3),K(3),PI(3) ..... 10
LOGIGAL hit ..... 11
$Z T=Z B O T-F(3)$ ..... 12
IF (2T.GE.j.S GC TO 1 ..... 13
PI(3)=7807 ..... 14
$T=2 T / K(3)$ ..... 15
$P I(1)=P(1)+k(1) * T$ ..... 16
$P I(2)=P(2)+K(2) * T$ ..... 17
PITSQ=PI(1)*PI(1)+PI(2)*PI(2) ..... 18
IF(FITSQ.GT.PESQ+0.1) GO TO 1 ..... 19
HIT = . TRUE. ..... 20
RETURN ..... 21
1 HIT=.FALSE. ..... 22
PETUPN ..... 23
END ..... 24
SUBECUTIN: DIIEKN(N) ..... 1
c3

- íalculate inhare rofmal of betton disk ..... 4
RニムL N(3) ..... 5
$N\{1\}=0.0$ ..... 6

$$
N(2)=3.0
$$

    \(N(2)=+1\) - \(\quad 8\)
    pETUEA
    9
END
10

SURROUTINE TOISK（O，K，PI，HIT） 1
C
C TOISK CALCULATES THE POINT OF INTERSECTION PI DF A DISK HORIZONTAL2

C TO THE XYF＿ANF WITH A RiムY EMANATING FROM POINT P ANC TRAVELING 4
C IN THE K DIRECTION．
THE EQUMTIOA USED FQR THE TOP OISK IS Z＝ZTOP FOR（X＊＊2＋Y＊＊2）＜RSQ 7
CMMCN／TDISKOスてTOP，TSO
REML P（3），K（3），PI（3） 10
LCGICAL HIT
7T＝2TOF－D（3）
12
$\begin{array}{ll}\text { IF（ZT．Lミ．J．0）} 90 \text { ro } 1 & 13\end{array}$
$P I(3)=7$ TOP 14
$T=Z T / K(3)$
OI（2）＝P（2）＋K（2）＊T 17
$P T T S Q=P I(1) * P I(1)+P I(2) * P I(2) \quad 18$
IF FITSQ．GT．RTSG＋0．1）GC TO $1 \quad 19$
$H I T=. T P U E . \quad 20$
RETURA 21
1 HIT＝．FALSE． 22
RETURA 23
ENO
SUEROLEIN TOISKN(N) ..... 1
$\stackrel{C}{2}$
CALOULTE I:WARO BOPMAL OF TOF EISK ..... 3
F-AL (き)4
5$N(1)=\mathrm{C}$
$\mathrm{N}(2)=0.0$ ..... 7
$N(3)=-1.5$ ..... 8
=TURA ..... 9
5 NO ..... 10

20-1. Purpose: To compute the far field pattern in wavenumber coordinates ( $k_{x}, k_{y}$ ) of an antenna whose radiating characteristics are specified by the complex plane wave spectra $A_{x}\left(k_{x}, k_{y}\right), A_{y}\left(k_{x}, k_{y}\right)$. The antenna is located in a plane perpendicular to the $z$ (polar) axis.

20-2. Usage: CALL FAR (FIELD, XFIELD, YFIELD, NX, NY, FGHZ, KXMAX, KYMAX, RADIUS, IPWR, FMAX)

20-3. Arguments
FIELD - Real output array of $N X$ by $N Y$ elements containing the far field power pattern at discrete wavenumbers $\mathrm{k}_{\mathrm{x}}=\sin \theta \cos \phi, \mathrm{k}_{\mathrm{y}}=\sin \theta \sin \phi$, where $\theta$ and $\phi$ are the usual polar and azimuthal angles.

XFIELD, - Complex input arrays of $N X$ by NY elements conYFIELD taining the plane wave spectra $A_{X}, A_{Y}$ at discrete wavenumbers $\mathrm{k}_{\mathrm{x}}{ }^{\prime} \mathrm{k}_{\mathrm{y}}$.

NX, NY - Integer input variables equal to the array sizes.
FGHZ - Real input variable equal to the frequency in gigahertz.

KXMAX, KYMAX- Real input variables equal to the maximum wavenumber associated with the elements of the arrays FIELD, XFIELD, and YFIELD. The element $I=1, J=1$ in these arrays corresponds to the wavenumber coordinate (-KXMAX, -KYMAX). For any (I,J), the wavenumber coordinates are given by

$$
\begin{aligned}
& K X=\left(I-\frac{N X}{2}-1\right) * K X I N C \\
& K Y=\left(J-\frac{N Y}{2}-1\right) * K Y I N C
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathrm{KXINC}=2 * \mathrm{KXMAX} / \mathrm{NX} \\
& \mathrm{KYINC}=2 * \mathrm{KYMAX} / \mathrm{NY}
\end{aligned}
$$

RADIUS - Real input variable equal to the radius $r$ in centimeters of the sphere on which the far field pattern is computed. This variable effects only the term $e^{-j k r} / r$, and $r$ is set to unity in the calling program for normal use.

IPWR - Integer input variable which selects the vector components to be used in computing the power pattern:
$1=$ Elevation component only
$2=A z i m u t h$ component only
$3=$ Total power
$4=$ Right hand circular polarization
$5=$ Left hand circular polarization
FMAX

- Real input and output variable. On input, if FMAX $\leq 0$, the program will normalize the array FIELD from zero to one and output the normalizing factor as FMAX. If FMAX $>0$ on input, it will be used as the normalizing factor; on output it will be unchanged.

20-4. Comments and Method
Let $E_{X}(x, y, 0), E_{Y}(x, y, 0)$ be the tangential electric fields of a rectangular antenna aperture located in the $z=$ plane and centered at the origin of the coordinate system. The plane wave spectra of the aperture fields are defined by

$$
\begin{align*}
& A_{x}\left(k_{x}, k_{y}\right)=\frac{1}{(2 \pi)^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} E_{x}(x, y, 0) e^{+j\left(k_{x} x+k_{y} y\right)} d x d y  \tag{1}\\
& A_{y}\left(k_{x}, k_{y}\right)=\frac{1}{(2 \pi)^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} E_{y}(x, y, 0) e^{+j\left(k_{x} x+k_{y} y\right)} d x d y  \tag{2}\\
& A_{z}\left(k_{x}, k_{y}\right)=\frac{-x_{x}^{A} x-k y A}{k_{z}} \tag{3}
\end{align*}
$$

where

$$
\begin{equation*}
k_{x}^{2}+k_{y}^{2}+k_{z}^{2}=k^{2}=\left(\frac{2 \pi}{\lambda}\right)^{2} \tag{4}
\end{equation*}
$$

The electric field $E_{\ell}(\ell=x, y$, or $z)$ at any point $(x, y, z>0)$ is given by

$$
\begin{equation*}
E_{\ell}(x, y, z)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} A_{\ell}\left(k_{x}, k_{y}\right) e^{-j \underline{k} \cdot \underline{r}} d k_{x} d k_{y} \tag{5}
\end{equation*}
$$

where

$$
\begin{align*}
& \underline{r}=\hat{x} x+\hat{y} y+\hat{z} z  \tag{6}\\
& \underline{k}=\hat{x} k  \tag{7}\\
& x+\hat{y k} y+\hat{z k} z
\end{align*}
$$

And for the special case of large $r$, the rectangular field components $E_{\ell}$ approach their asymptotic values [1]

$$
\begin{equation*}
E_{\ell f f}\left(r, k_{x o}, k_{y o}\right) \sim j 2 \pi k \frac{e^{-j k r}}{r} \cos \theta A_{\ell}\left(k_{x o}, k_{y o}\right) \tag{8}
\end{equation*}
$$

where the stationary phase points are given by

$$
\begin{align*}
& k_{x_{0}}=k \sin \theta \cos \phi  \tag{9}\\
& k_{y_{0}}=k \sin \theta \sin \phi  \tag{10}\\
& k_{z o}=k \cos \theta \tag{11}
\end{align*}
$$

In the above equations, $\theta$ is the polar angle measured from the $z$ axis, and $\phi$ is the azimuthal angle measured from $+x$ toward $+y$ in the conventional spherical coordinate manner.

Consider the antenna measurement coordinate system in Figure 20-1. Let the wavenumbers $k_{x^{\prime}} k_{y^{\prime}} k_{z}$ be normalized by $k=2 \pi / \lambda$, so that for $k_{x}^{2}+k_{y}^{2}<1$, they represent direction cosines of the direction specified by $(\theta, \phi)$, or equivalently by $(\varepsilon, \alpha)$. In terms of these normalized wavenumbers, the unit vectors $\varepsilon, \alpha$ may be written as

$$
\begin{align*}
& \hat{\varepsilon}=\hat{x} \frac{-k_{x} x_{y}}{\sqrt{1-k_{y}^{2}}}+\hat{y} \sqrt{1-k_{y}^{2}}+\hat{z} \frac{-k_{y} z^{\prime}}{\sqrt{1-k_{y}^{2}}}  \tag{12}\\
& \hat{\alpha}=\hat{x} \frac{k_{z}}{\sqrt{1-k_{y}^{2}}}+\hat{y}(0)+\hat{z} \frac{-k}{\sqrt{1-k_{y}^{2}}} \tag{13}
\end{align*}
$$

The elevation and azimuth components of the far field $\underline{E f f}$ then follow via the vector dot product as



$$
\begin{aligned}
& \rightarrow \theta_{\alpha}>0 \\
& \rightarrow \theta_{\epsilon}>0
\end{aligned}
$$

Figure 20-1Coordinate System for Far Field Patterns

$$
\begin{align*}
& E_{E f f}=\hat{\varepsilon} \cdot \underline{E}_{f f}=j 2 k \frac{e^{-j k r}}{r} \hat{\varepsilon} \cdot\left[\hat{x} k_{z} A_{x}+\hat{y} A_{y}+\hat{z}\left(-k_{x} A_{x}-k_{y} A_{y}\right)\right]  \tag{14}\\
& E_{\alpha f f}=j 2 \pi k \frac{e^{-j k r}}{r} \hat{\alpha} \cdot \underline{E}_{f f} \tag{15}
\end{align*}
$$

(In Subroutine FAR, the factor $j 2 \pi k$ is not used, and the plane wave spectra $A_{x}, A_{y}$ are provided as computed previously using the Fast Fourier Transform.)

It is convenient to recall that the receiving and transmitting patterns of an antenna are identical, and that the receiving pattern $V_{R}(\hat{k})$ is given in terms of the far field $E_{f f}$ by [2]

$$
\begin{equation*}
V_{R}(\hat{k})=C \hat{n}_{b} \cdot E_{f f}(\hat{k}) \tag{16}
\end{equation*}
$$

where $\hat{n}_{b}$ is a infinitesimal current source (probe) located on the far-field measurement sphere, and $C$ is a complex constant which is set to unity for convenience. The elevation component of the receiving power pattern is given simply by

$$
\begin{equation*}
\left|V_{R}(\hat{k})\right|_{\varepsilon}^{2}=\left|\hat{\varepsilon} \cdot E_{f f}(\hat{k})\right|^{2}=\left|E_{\varepsilon f f}(\hat{k})\right|^{2} \tag{17}
\end{equation*}
$$

and the azimuth component by

$$
\begin{equation*}
\left|V_{R}(\hat{k})\right|_{\alpha}^{2}=\left|\hat{\alpha} \cdot E_{f f}(\hat{k})\right|^{2}=\left|E_{\alpha f f}(\hat{k})\right|^{2} \tag{18}
\end{equation*}
$$

The total power pattern is given by

$$
\begin{equation*}
\left|V_{R}(\hat{k})\right|_{T}^{2}=\left|E_{\alpha f f}\right|^{2}+\left|E_{E f f}\right|^{2}=\left|E_{X f f}\right|^{2}+\left|E_{\mathrm{Yff}}\right|^{2}+\left|E_{z f f}\right|^{2} \tag{19}
\end{equation*}
$$

and is the receiving pattern when the probe is polarization matched at every point to the test antenna.

In the case of circularly polarized fields, the probe $\hat{n}_{b}$ can be expressed as

$$
\begin{align*}
& \text { RHC }: \hat{n}_{b}=\frac{\hat{\varepsilon}+\hat{\alpha} e^{-j \frac{\pi}{2}}}{\sqrt{2}}  \tag{20}\\
& \text { LHC }: \hat{n}_{b}=\frac{\hat{\varepsilon} e^{-j \frac{\pi}{2}}+\hat{\alpha}}{\sqrt{2}} \tag{21}
\end{align*}
$$

The receiving patterns in the two cases are then given by

$$
\begin{equation*}
\left|V_{R}\right|_{\mathcal{H C}}^{2}=\left|\hat{n}_{b} \cdot E_{f f}\right|^{2} \tag{22}
\end{equation*}
$$

where the appropriate $\hat{n}_{b}$ is used.
Subroutine FAR implements the above equations and computes the power patterns for an aperture in an infinite ground plane; i.e., the use of only $A_{x}$ and $A_{y}$ is tantamount to the assumption that ${\underset{E}{t a n}}$ outside the finite aperture area is zero. For the extended case of a finite aperture in free space, the tangential magnetic field $\underline{H}_{\tan }$ also contributes to the radiated field, and the far fields are given by Equations (3-46) - (3-49) of Reference 3. In fact, it is only by including the effects of $\underset{\text { tan }}{H}$ that the transmitting and receiving formulations for the finite aperture can be shown to be equivalent [4].

The current version of Subroutine FAR listed below could be easily modified to include the additional terms. If the geometrical optics approximation for the aperture fields is made; viz.,

$$
\begin{equation*}
\underline{H}_{\tan }=\frac{\hat{z} \times \underline{E}_{\tan }}{\eta} \tag{23}
\end{equation*}
$$

then the far-field expressions become

$$
\begin{align*}
\underline{E}_{\mathrm{ff}}\left(\mathrm{k}_{\mathrm{x}^{\prime}} \mathrm{k}_{\mathrm{y}}\right)= & \hat{x}\left[\left(\mathrm{k}_{z}+1-\mathrm{k}_{\mathrm{x}}^{2}\right) A_{x}-k_{x} k_{y} A_{y}\right] \\
& +\hat{y}\left[-k_{x} k_{y} A_{x}+\left(k_{z}+1-k_{y}^{2}\right) A_{y}\right] \\
& +\hat{z}\left[-k_{x}\left(1+k_{z}\right) A_{x}-k_{y}\left(1+k_{z}\right) A_{y}\right] \tag{24}
\end{align*}
$$

These modifications would involve changes only to Lines 70 - 72 of Subroutine FAR.

20-5. Program Flow: Compare listing below directly to Equations (1) (22) above.

20-6. Test Case: See Chapter 2.

20-7. References

1. P. C. Clemmow, The Plane Wave Spectrum Representation of Electromagnetic Fields, Pergamon Press, Oxford, 1966.
2. G. K. Huddleston, H. L. Bassett, and J. M. Newton, "Parametric Investigation of Radome Analysis Methods", 1978 IEEE/AP-S Symposium Digest, pp. 199-202, May 1978, and in Proc. of the Fourteenth Symposium on Electromagnetic Windows, pp. 21-28, June 1978.
3. G. K. Huddleston, "Optimum Probes for Near-Field Measurements on a Plane", Ph.D. Dissertation, Georgia Institute of Technology, Atlanta, Georgia, August 1978.
4. G. K. Huddleston, "Equivalence of Transmitting and Receiving Formulations in Radome Analysis", in preparation.

20-8. Program Listing: See following pages.
SUGOQUTINE FAF(FIELC,XFIELD,YFIELC,NX,NY,FGHZ,KXMAX,KYMAX, ..... 1
क FAEIUS,IFWR,FMAXI ..... 2
FIELD IS A TWO OIMENSIONAL REAL ARPAY (NX,NY). ON OUTPUT ..... 4
IT CCNTAINS THE FAN FIELC POWER PATTERN OF A COMPLEX ..... 5
VECTCP PLANE WAVE SPECTPLM. ..... 6
XFIELC ANC YFTELD ARE TWO DINENSIONAL COMPLEX ARRAYS WHICH ..... 7
ZONTAIN PESPECTIVELY THE $X$ AND Y COMPONENTS OF A ..... 8
ZCMPLEX PLANE WAVE SPEGTFUM ..... 9
KXMAX ENE KYMGX ARE RESPECTIVELY THE MAXIMUM ABSOLUTE ..... 10
VALUES OF KX AND KY hA VENUMRERS FOR WHICH THE FAR FIELO ..... 11
IJ C.ALCULATEU. KXMAX AND KYMAX ARE NORMALIZED SUCH THAT ..... 12
$K X=1$. Z ANO $K Y=1.0$ COFKESFONO TO THE VISIBLE ..... 13
PEGICN CF WAVENUMBER SPACE. ..... 14
FMAX IS AN INPLT-OUTPUT VARIABLE. IF FMAX IS LESS THAN OR ..... 15
EGUAL TO ZEPO ON INPUT, THE FIELD ARRAY IS NORMALIZED ..... 16
FFCM ZFRO TO ONE AND FMAX IS THE NOPMALIZING FACTOR. ..... 17
IF FMAX IS GREATER TH\&N ZERO ON INFUT IT REMAINS ..... 18
UNUHANGED AND IS USED AS THE NORMALIZING FACTOR. ..... 19
IFWR EETEPMINES WHICH POWER COMPONFNT WILL BE USED IN THE ..... 20
FAR EIELO CALCULATIONS. IPWR=1 FOR ELEVATION COMPONENTS, ..... 21
IFWP=2 FCR AZIMUTH COMFONENTS, AND IPWR=3 FOR TOTAL POWER ..... 22
IFWR $=4$ FGR RIGHT-HANO CIFCULAR POLARIZATION COMPONENTS ..... 23
IFWR=5 FOR LEFT-HAND CIPCULAR POLARIZATION COMPONENTS ..... 24
RADIUS SPECIFIES THE FAOIUS CF THE FAR FIELO SPHERE IN ..... 25
GENTIMETEOS ..... 26
PEAL FIFLU(NX, NY) ..... 8
२EAL K,KX,KY,KZ,KXIAC,KYINC,KXMAX,KYMAX ..... 29
COMPLEX XFIELC(NX,NY),YFIELD(NX,NY),O,C,EZ, EX,EY ..... 30
COMPLEX HTHETE, HPHI,HX,HY,HZ ..... 31
$I M=1+N X / 2$ ..... 32
$J M=1+N Y / 2$ ..... 33
S2? = SQRT(2.) ..... 34
HTHETA=CMPLX(1.,3.)/SR2 ..... 35
HPHI=CMPLX(E., 1.)/SR2 ..... 36
IF (TPWR.EG.5) HPHI=-HPHI ..... 37
IFIIPNP.GE.1. ANO. IOWR.LF.5) GU TO 101 ..... 38

```
 WRITE(0,1JC)39
```

1：F FOMAT（1H1，3X，＂VALUE ASSIGNED TO THE ARGUMENT IPWR IN SUBROUTINE ..... 40
41

```
-Fj- IS NOT ALLOWEO. IFWR=3 ASSUMED.*)
```

IFWQ＝？ ..... 42
15 sontinue ..... 43
PI＝3．1415925535898 ..... 44
K＝2＊PI＊FGHZ／29．37925 ..... 45
$0=(0.5,1 . j)$ ..... 46
$1 \times 2=1 \times / 2$ ..... 47
$N \ngtr 2=N Y / Z$ ..... 48
$K X I N C=C .0$ ..... 49
$K Y I N O=C .0$ ..... 50
IF（NXZ．EQ．G1 GO TO 1 ..... 51
＜$X I N C=K X M A X / N X 2$ ..... 52
1 IF（NYZ．EQ．0）GO TO 2 ..... 53
KYINC＝KYMAX／NYZ ..... 54
2 continue． ..... 55EALCULATE THE POWFF PATTERN GN A SPHERE．5657

```
R＝RADIUS
```58
```

59

```रミニAMOD（K＊\＆，2．C＊OI）
```

$\Gamma=Q * K *(E X P(-Q * R E) / R$ 60
61

```\(006 \mathrm{I}=1, \mathrm{~N} X, 1\)
```

62

```\(006 J=1, N \vee, 1\)
```

$K X=(I-N X 2-1.0) * K X I N C$ 64
$K Y=(J-N Y 2-1 \cdot J) * K Y I N$－ 65
$K Z=1,0-K X * * 2-K Y * * 2$ 66
IF（KZ．LE．J．I）GO TO 5 67
$K Z=$ SOFT（KZ） 68
$0=$ SORT（1．－Ky＊＊2） 69
 70
EX＝こ＊KZ＊ EFICLO （I，J 71
FY＝©＊KZ＊VFIELC（I，J） 72
$X F I E L D(I ; J)=E X$ 73
YFTFLD（I，J）＝EY 74
IF（IFWR．EE．1）FIELD $(I, J)=$ CAES $(-E X * K Y * K X / O+E Y * D-E Z * K Z * K Y / D) * * 2$ 75
IF（IPWO．EO．2）FEELO（I，J）＝CAES（－EX＊KZ／D－EZ＊KX／D）＊＊2 76
IF(IPWR.EQ.3) FIELD(I,J)=CABS(EX)**2+CABS(EY)**2+CABS(EZ)**2 77
IF (IPWD.GE.I.AND.IPAR.LE.3) 60 TO 5 78
IF (I.EQ.IF.ANO.J.EO.JM) GO TO 7 79
₹ AL = SQFT ($K X * * 2+K Y * * 21$ 80
$H X=(H T H E T A * K X * K Z-H P H I * K V I / O A O$ 81
HY=(HTHETA*KY*KZ+HDHT*KX)/RAD 82
HT=-HTHETA*FAC 83
万O TO 10 84
$7 \mathrm{HX}=\mathrm{HTHETA}$ 85
$H Y=H P H I$ 86
$H 7=$ CMPLX(j., 3.$)$ 87
10 (..... 88
GO 106 89
5 FIELП(1, J)=\{.? 90
6 CONTさNUE 91
92
NORMALITE THE POWER PATTEFN. 93
IF(FMAX.GT. ©. ©) GO TOG 94
O) $\Omega I=1, N X$ 96
OO \& $J=1$, NY 97
Q=FIELD(I, J) 98
IF(R.GT.FMAX) FMAX=R 99

- CONTINUE 100
9 CONTINUE 101
$3911[=1, N X$ 102
$0011 \mathrm{~J}=1$, NY 103
FIELC(I,J)=FIELC(I,J)/FNAX 104
11 CONTTNUE 105
RETURH 106ᄃND107

Chapter 21

SUBROUTINE AMPHS

21-1. Purpose: To convert a complex number $c=x+j y$ from
rectangular to polar form $c=|c| e^{j \phi}$.
21-2. Usage: CALL AMPHS (C, AMP, PHS)
21-3. Arguments
C - Complex input variable containing the rectangular
components of the complex number to be converted;
i.e., $C=\operatorname{CMPLX}(X, Y)$.
AMP - Real output variable equal to $\sqrt{x^{2}+y^{2}}$.
PHS - Real output variable equal to the phase angle ϕ
in degrees.
21-4. Comment
The intrinsic Fortran function ATAN2 is used to compute PHS.
21-5. Program Flow: See listing below.
21-6. Test Case: None
21-7. References: None
21-8. Program Listing: See following page.
SUPRCUTINE AMFHS1E,AMP,PHSI 1
COMPL-X 03
O~-A PI/3.1+15025ら1 3
4
$x=1 \mathrm{Ca}$ (0 5
$x=r^{2}+\Delta \mathrm{A}(\mathrm{U})$
$x=r^{2}+\Delta \mathrm{A}(\mathrm{U})$ 6
IF (ABS (x).LT.1E-1A) GOTO 2 7
PHS=ATINZ(Y, XIF1R:./PI 8
RETURA 9
$0 \mathrm{H}=0$. 10
IF (Y.LT.J.) PHS=-90. 11
IF (AMP.LT.15-18) PHS=-18.. 12
RETURN13
ENO 14

Chapter 22

SUBROUTINE DBPV

22-8. Program Listing: See following page.

SUBROUTINE NORMH

23-1. Purpose: To normalize a two-dimensional real array of field values so that all values in the array lie between zero and unity.

23-2. Usage: CAIJ NORMH (FIELD, IMAX, JMAX, LDB)

23-3. Arguments
FIELD - Real array of IMAX by JMAX elements. On input, it contains the field values expressed as nonnegative real linear amplitude or as amplitude in decibels. On output, the linear amplitudes are replaced by their scaled values $\operatorname{FIELD}(I, J) /$ FMAX, where FMAX is the maximum amplitude value in the array; the logarithmic amplitude values are replaced by (FIELD $(I, J)+40.) / 40$., where -40 decibels is assumed to be the lower bound on the original data.

IMAX, JMAX - The number of elements in FIELD.

LDB - A logical variable set TRUE if the values in FIELD are in decibels.

23-4. Comments and Method

A function $f(x, y)$ of two variables having minimum value $f_{\text {min }}$ and maximum value $f_{\max }$ may be normalized to $0 \leq f_{n}(x, y) \leq l$ according to

$$
\begin{equation*}
f_{n}(x, y)=\frac{f(x, y)-f_{\min }}{f_{\max }-f_{\min }} \tag{1}
\end{equation*}
$$

provided that the denominator is not zero. In this procedure, the $f_{n}=0$ corresponds to $f=f_{\text {min }}$, and $f_{n}=l$ corresponds to $f=f_{\text {max }}$.

When $f(x, y)$ represents a linear (vice logarithmic) variable, it is desirable to force $f_{\min }$ to be zero if the minimum value of f is actually greater than zero. In this special case, f_{n} becomes

$$
\begin{equation*}
f_{n}(x, y)=\frac{f(x, y)}{f_{\max }} \tag{2}
\end{equation*}
$$

Equation (2) is also used to treat the special case of $f_{\max }-f_{\min } \approx 0$; however if $\left|f_{\max }\right|<l, f_{\max }$ is set equal to $\pm 1 .$, where the sign used is that of $f_{\text {max }}$. This refinement has the effect of producing a constant function whose value lies between zero and unity; without it, f_{n} would be simply set to unity or division by zero may result.

When $f(x, y)$ represents a logarithmic variable, such as the amplitude in decibels of an electromagnetic field, all of the foregoing discussion applies; however, a minimum value $f_{\text {min }}$ must be imposed. If $f_{\min }<-40, f_{\min }$ is set equal to -80 (decibels); otherwise, a -40 decibel level is assumed. A value of $f_{\max }$ equal to zero decibel is also assumed.

23-5. Program Flow

Lines 9-16: Find minimum MN and maximum MX values of data in FIELD; form their difference $D R=M X-M N$.

Line 17: If array values are in decibels, go to 50.
Line 18: If all values in the array are the same, go to 25 and scale the data to lie between zero and unity (Lines 28-37).
Lines 19-27: If all linear amplitude values in FIELD are notidentical, scale the data according to $\operatorname{FIELD}(I, J)=$(FIELD(I,J) - Min. Value)/(Maximum Value - MinimumValue).
Line 38: If values in FIELD are in decibels, and the minimumvalue is less than $-41 d B$, then assume a -80dB lowerbound, go to 60 (Lines 47-52), and scale the dataaccording to (FIELD (I,J) + 80.)/80.
Lines 39-46: Scale the data according to a -40 dB lower bound; i.e.,(FIELD(I,J) +40.$) / 40$.
Lines 53-54: Write MN and MX.
23-6. Test Case: See Chapter 2.
23-7. References: None.
23-8. Program Listing: See following pages.
SURROUTINE NORMH(FIELD, IMAX,JMAX, LDA) 1
C MOOIFIED BY GKH 4/7B TO CAUSE PROPER NORMALIZATION OF BOTH3
C LINEAR AND DJ ARHAYS.4NORMALITE FIELE SO THAT ALL VALUES ARE BETWEEN ZERO AND ONE.5
REAL MN, MX, FIELD (IMAX, JMAX) 7
Lce
9
$M X=F \operatorname{IELO}(1,1)$ 9
10
$0020 \quad I=1, I M A X$ 11
$0020 \quad J=1, J M A X$ 12
$M N=A M I N 1(M N, F I E L D(I, J))$ 13
$M X=A M A X I(M X, F \operatorname{IELD}(I, J))$ 14
20 CONTINUE 15
$O R=M X-M N$ 16
IF (LDB) GO TC 50 17
IF (DP.LT.1E-18) GO TO 25 18
$T M N=A N$ 19
IF (MN.GT. O.) TMN=0. 20
$T O R=O R$ 21
IF (MN.GT.O.) TCR=MX 22
DO $21 \quad I=1, I M A X$ 23
DO $21 \mathrm{~J}=1, \mathrm{JMAX}$ 24
FIELD(I,J) = (FIELD(I,J)-TMN)/TDK 25
21 CONTINUE 26
GO TO 35 27
C case where all values are the same: 28
25 TMX=MX 29
IF ($\triangle B S(M X) \cdot L T \cdot 1.0) \quad T M X=S I G N(1 ., M X)$ 30
$0030 \mathrm{I}=1$, IMAX 31
$0030 \mathrm{~J}=1$, JMAX 32
FIELD(I, J)=FIELC(I, u)/TMX 33
C FIELD IS FILLED WITH SAME VALUES SCALED BETHEEN ZERO AND UNITY. 34
IF (FIELD(I,J).LT.0.) FIELD(I,J)=0. 35
30 CONTINUE 36
GO TO 35 37
50 IF (MN.LT.-41.) GO TO 60 38

C ASSUME U TO-4C. SCALE: 39
$0055 \mathrm{I}=1$, INAX 40
$0055 \mathrm{~J}=1, \mathrm{JMAX} \quad 41$
FIELD(I,J)=(FIELO(I,J)+40.)/40.
42
IF (FIELD(I,J).LT.O.) FIELD(I,J)=0. 43
IF (FIELO(I,J).GT.1.) FIELO(I.J)=1. 44
55 CONTINUE $\quad 45$
GO TO 35 46
50 DO 65 I=1, IMAY 47
$0065 \mathrm{~J}=1, \mathrm{JMAX} \quad 48$
FIELD(I,J)=(FIELO(I,J +80.1/80.
49
IF (FIELD(I,J).LT.D.) FIELO(I,J)=0. 50
IF (FIELO(I,J).GT.1.1 FIELO(I,J)=1. 51
65 CONTINUE 52
35 WRITET6,40) MN,MX 53
46 FORMAT (//"* SUBFOUTINE NORM: MIN = **E10.3,* MAX=*,E10.3//1 54 RETURN 55
ENO

Chapter 2

SUBROUTINE CNPLTH AND FUNCTION PSI

24-1. Purpose: To plot (Calcomp) single dimensional far field patterns at constant wavenumber $\mathrm{k}_{\text {fix }}$.

24-2. Usage: CALL CNPLTH (FIELD, N, KMAX, KCNTR, KFIX)

$$
\operatorname{PSI}=\operatorname{ATAN} 2 \quad\left(\mathrm{~K} / \sqrt{1 .-\mathrm{K}^{2}-\mathrm{K}_{\mathrm{fix}}^{2}}\right)
$$

24-3. Arguments
FIELD - Real input array of N elements containing the field values in decibels but normalized so that -40 dB corresponds to 0 and 0 dB corresponds to unity on the normalized scale.

N - Integer input variable which specifies the number of elements in FIELD.

KMAX - Real input variable equal to the half width of the wavenumber range corresponding to the array elements 1 through N of the array FIELD; i.e., the increment in wavenumber corresponding to the distance between the Ith and (I+1) st element is $2 \mathrm{KMAX} / \mathrm{N}$.

KCNTR - Real input variable equal to the wavenumber coordinate of the $(N / 2+1)$ st element of the array FIELD. FIELD(1) has wavenumber coordinate KCNTR - KMAX.

KFIX - Real input variable equal to the fixed value of the other wavenumber coordinate. For example, if k_{x} varies, then $\mathrm{k}_{\mathrm{y}}=\mathrm{KFIX}$. 205

24-4. Comment and Method
Let $F\left(k_{x}, k_{y}\right)$ represent the far-field power pattern of an antenna where k_{X} and k_{Y} are normalized wavenumbers as defined in Chapter 20. A pattern cut at constant wavenumber is a conical cut about the real axis; e.g., a $k_{x}=$ constant cut is a conical cut about the x axis of the coordinate system.

For principal plane cuts, $k_{x}=0$ yields an E-plane pattern as defined in Figure $2-3 ; k_{y}=0$ yields an $H-p l a n e$ pattern. For principal plane cuts, $\mathrm{KCNTR}=0$ and $\mathrm{KFIX}=0$.

The plotting commands are set up to produce a 4 " X " " rectangular pattern plot on a standard pattern scale. The plot is positioned on the paper to give margins of $2^{\prime \prime}$ on the left, $l^{\prime \prime}$ on the right, and 2.25" from the bottom and, hence, is suitable for direct use as a figure in a technical report.

24-5. Program Flow: See listing below.
24-6. Test Case: See Chapter 2 and pattern plots in Appendices B and D.
24-7. References: None
24-8. Program Listing: See following pages.

SURPOUTINE CNPLTH(FIELO,N,KMAX,KCNTR,KFIX) 1
MODIFIED BY GKH $4 / 28 / 78$ TO GIVE 4×8 SA PLOTS WITH MARGINS 2 OF $2^{\circ \circ}$ FROM LEFT, 2.25 FROM BTM, AND $1^{\circ \circ}$ ON RIGHT.

THIS SUBROUTINE FLOTS SINGLE OIMENSIONAL FAR FILED PATTERNS 5
THE PLOTS ARE CCNSTANT WAVENUMBER PLOTS WHICH CORRESPOND 6
TO CONICAL FAF FIELC PATTEFNS
FIELO(N) IS A CNE DIMENSIONAL FAR FIELO POWER PATTERN
NORMALITEO FROM ZERO (CORRESPONGING TO-40 DB) TO ONE 9
(CORRESPONDING TO 0 DB) 10
KMAX IS THE HALF WIOTH GF THE WAVENUMBER REGION OF FIELO 11
KCNTR IS THE CENTER WAVENUMEER COCROINATE OF THE INPUT FIELO 12
FIELD(1) HAS A WAVENUMBER COOROINATE KCNTR-KMAX 13
FIELD(N/2+1) HAS WAVENUMBER COORDINATE KCNTR 14
KFIX IS THE FIXEO VALUE OF THE OTHER WAVENUMBER COORDINATE 15

PSIMIN=PSI (KCNTR-KMAX,KFIX) 18
PSIMAX=PSI (KCNTR+KMAX-2*KMAX/N,KFIX) 19
PSIMID=PSI (KCNTR,KFIX) 20
DELPSI=2*AMAX1(FSIMID-PSIMIN,PSIMAX-PSIMIO) 21
ISCALE=36G 22
IF(DELPSI.LE. 601 ISCALE=60 23
IF(OELPSI.LE.10) ISCALE=10 24
C INITIALIZE FACTOR TO UNITY AND DRAW LEFT MARGIN FOR GUIDE LATER. 25
CALL FACTOR(1.) 26
CALL PLOT $0 ., 0.0,-3$) 27
CALL PLOT(O.,8.5,2) 28
CALL PLOT (O.,O.,3) 29
C SET LOGIGAL CRIGIN OF SA PLOT: 30
CALL PLOT(2.,2.25,-3) 31
C PLOT AT . 4 SCALE FACTOF OF FULL SIZE SA PLOT (10 $\times 20$): 32
GALL FACTOF(.4) 33

CALL FLOT (0.0,0,75,3)
CALL PLOT(0.0,1C.E25,2) 37
CALL PLOT(20.0.10.625,2) 38
CALL PLOT (20. C, .75,2) 39
EALL FLOT(0.0.075.2) 40
c 41
C PLOT HORIZCNTAL DECTBEL SCALES 42
$Y=0.75+2.46875$ 43
DO 1 I $=2,4,1$ 44
$D E=40.000061-(I-1) * 10.0$ 45
CALL PLOT (0.0, Y, 3) 46
CALL PLOT $55.0, Y, 21$ 47
CALL NUMBEF (5.0633,Y-0.C7,C.14,03,0.0,-1) 48
CALL PLOT (5. $3333, Y, 3$) 49
CALL PLOT(15.3333.Y,2) 50
CALL NUMBER(15.3833,Y-0.07,0.14,DE,0.6,-1) 51
CALL PLOT(15.E666,Y,3) 52
CALL PLOT (20.0,Y,2) 53
$1 \quad Y=Y+2.46875$ 5455
PLOT HORIZCNTAL ANGLE TICK MAEKS C 56
$x=0.6666657$ 57
DO $2 \mathrm{I}=1,2 \mathrm{c}, 1$ 58
GALL PLOT $(X, 0.75,3)$ 59
CALL PLOT(X,0.85,2) 60
$2 x=x+0.66666667$ 61
C 62
C PLOT HORIZCNTAL ANGLE SCALE 63
DO $3 \mathrm{I}=1,9,1$ 64
$\triangle N G=\operatorname{IARS}(5-I) * I S C A L E / 10,0+0.0001$ 65
$0 X=0.18$ 66
IF (ANG.LT. 100.0$) 0 \mathrm{X}=0.11$ 67
TF (ANE.LT. 1G. O) $D X=0.04$ 68
$X=I * 2 \cdot 0-0 X$ 69
$r=0.90$ 70
CALL NUMBEF $(X, Y, 0.14, A N G, 0.0,-1)$ 71
3 CONT INUE 72
DIGRESS TO PLCT INTERIOR VERTICLE DEGIBLE SGALES AND LABLES
$006 \mathrm{I}=1,2,1 \quad 77$
$Y=0.75$ 78
CALL PLOT $(X, Y, 3) \quad 79$
CALL PLOT(X,10. 125,2$) \quad 80$
CALL SYMBOL $(X-0 X * 0.14+0.07,3.85 .0 .14,27 H R E L A T I V E$ POWER ONE HAY $1 D$
\$B).90.U.27) 82
$005 \mathrm{~J}=1.4,1 \quad 83$
(nロッ
$08=10-2 * L+0.0001 \quad 85$
屋
CALL PLOT $(X, Y, 3) \quad 87$
CALL PLOT(X+OX* $0.07, Y, 2) 88$
CALL NUMBEF $(X+D X \neq 0.16666-0.04 . Y-0.07,0.14,08,0.0,-1) \quad 89$
CONTINUE 90
$5 \quad Y=Y+9.875 / 29.0 \quad 91$
$\begin{array}{ll}Y=Y+9.875 / 20 \cdot 0 & 91 \\ X=14.6667 & 92\end{array}$
$0 X=-D X$
C
C PLOT CONE ANGLE ANO CENTER OF ROTATION ANGLE
94
CONE $=A C O S(K F I X) * 190 / 3.14159265358$ C8 96
CALL SYMBOL $(6.5,0.54,0.14,13$ HCONE ANGLE $=0.0,13197$
CALL NUMBER19C9.,999. 0.14, CONF,0.0.11 98
CALL SYMBOL $1999.999 .0 .14,29 H \quad$ CENTER ROTATION ANGLE $=0.0$ 0. 99
\$29) 100
CALL NUMGER (999..999., 0.14.PSIMID.0.0.1) 101
20, 102
$\begin{array}{ll}C & \text { PLOT PATTEFN }\end{array}$
IPEN=3 104
$0010 \mathrm{I}=1, \mathrm{~N}, 1$
105
$K=K C N T R+(I-N / 2 \cdot-1) * K M A X * 2 / N$
$A=P S I(K, K F I X)-P S I M I D \quad 107$
$X=10.0+2$ C.O*A/ISCALE
$Y=10.0+2 \% .0$ ariscal
109
$Y=F I E L D(I)$
$I F(Y, L T .0 .0) \quad Y=0.0$
110
\rightarrow
IF(Y.GT.1.0) $Y=1.0 \quad 111$
$Y=Y \neq 9.375+0.75 \quad 112$
$\begin{array}{ll}\text { IF (X.LT. O. G)X=0.E } & 113 \\ I F(X . G T .27 \cdot G) X=20.0 & 114\end{array}$
$\begin{array}{ll}\text { IF (X.LT. O. G)X=0.E } & 113 \\ I F(X . G T .27 \cdot G) X=20.0 & 114\end{array}$
IF (x.GT.2才.0) $x=20.0$
114
CALL FLOT $(X, Y, I F E N) \quad 115$
I PEN=2
10 CONTINUE 117
C RESTORE FACTOR AND CONCLUDE PLOT AT 日TM RT CORNER OF PAGE: 118
SALL FACTOF(1.?) 119
CALL PLOT(9.,-2.25.-3)
120
RETURN $\quad 121$
END
122
FUNCTION PSI (K,KFIX) 1
REAL K,KFIX,KZ 2
KZ=1.-K**2-KFIX**2 3
$I F$ (KZ.LE.G.) KZ=C. 4
5
$K Z=S Q R T(K Z)$ 5
PSI=ATAN2 $(K, K Z) * 180.13 .141592653$
PSI=ATAN2 $(K, K Z) * 180.13 .141592653$7
peTURN 8

25-1. Purpose: To plot (Calcomp) the two-dimensional array FIELD (I, J). 25-2. Usage: CALL PLT3DH (XSIZE, YSIZE, HEIGHT, FIELD, IMAX, JMAX, NMZ, LDB'

25-3. Arguments
XSIZE, - Real input variables in inches defined on Figure 1. YSIZE, HEIGHT FIELD, - Real input array of IMAX by JMAX elements conIMAX, taining the values to be plotted. These values JMAX must be normalized to the range $(0,1)$ before plotting.

NMZ - Logical input variable. If NMZ = .TRUE., the array FIELD will be normalized with respect to its own maximum value; if NMZ = .FALSE., no normalization will be done.

LDB - Logical input variable required by Subroutine NORMH (Chapter 23).

25-4. Comments

In Figure 25-1, the axes and labels shown are not produced by the subroutine; these axes are presented to demonstrate the perspective of the plot and to identify its dimensions. Report size plots will be produced suitable for one $81 / 2^{\prime \prime} \mathrm{X}$ ll" page when $\operatorname{FACTOR}=1.0$ and

Figure 25-1. Dimensions of Three-Dimensional Plot.

$$
\begin{aligned}
\text { XSIZE } & =6.0^{\prime \prime} \\
\text { YSIZE } & =2.5^{\prime \prime} \\
\text { HEIGHT } & =2.5^{\prime \prime}
\end{aligned}
$$

Margins in this case will be $1.5^{\prime \prime}$ on the left, $l^{\prime \prime}$ on the right, and $4.25^{\prime \prime}$ from the bottom of the plot paper. Margin lines are provided on the plot paper to outline the $81 / 2^{\prime \prime} \mathrm{X} 11$ " page. Also, the plot itself can be carefully cut from the plot paper and cemented onto a set of axes as has evidently been done in Appendices B and D.

25-5. Program Flow: See listing below.
25-6. Test Case: See Chapter 2 and Appendices B and D.
25-7. References: None.

25-8. Program Listing: See following pages.
C MODIFIFE BY GKH 4/28/7Я TO GIVE REPORT SIZE PLOTS WHEN 4
C XSIZE=6.0, YSIZE=2.5, HEIGHT=2.5. I.E., LEFT MARGIN OF 5
1.5*. RIGHT OF 1* AND 4.25* FRCM BTM MARGIN. 6
7
XSIZE IS THE MAXIMUM LENGTH OF THE PLOT IN INCHES. 8
YSIZE IS THE MAXIMUM WIOTH OF A ZERO PLOT IN INCHES. 9
THE SLM CF $1 / 2$ INCH + YSIZE + HEIGHT MUST BE LESS THAN 10
OF EGUAL TO THE PAPER WIDTH. 11
FIELO (IMAX, JMAX) IS THE TWO-DIMENSIONAL REAL ARRAY TO 12
BE PLOTTED. IF FIELD IS NOT NORMALIZED ON INPUT, NMZ 13
MUST BE TRUE. 14
NMZ(NCRMALIZE) IS A LOGICAL INPUT VARIABLE. IF ITS VALUE 15
IS . TRUE. THE VALUES IN FIELD WILL BE REPLACED WITH 16
THEIR NOPMALIZED(ZERO TO ONE) COMPONENTS. 17
REAL FIELD(IMAX, JMAX), HIO (128) 19
LOGICAL NAZ, LOA 20
REAL LASTX,LASTY,LASTH, LASTHM 21
IF(NMZ) CALL NCRMH (FIELD, IMAX, MAX,LDB) 22
$X P A G E=0.0$ 23
YPAGE=0.0 24
LASTHM $=0.0$ 25
$N I J=I M A X+J M A X$ 26
$R I=I M A X-1.0$ 27
$R J=J M A X-1.0$ 28
C INITIALIZE FACTOR TO UNITY, ORAW LEFT MARGIN, AND SET LOGICAL OFIGINA 29
CALL FACTOF(1.0) 30
CALL PLOT (0.,0.0, 03) 31
CALL PLOT (C., 11.,2) 32
CALL PLOT $10 ., 5 ., 3)$ 33
CALL PLOT(1.5,3.75.-3) 34
DO 1 I=1,NIJ 35
$1 \mathrm{HID}(\mathrm{I})=-0.5$ 36
DO $7 \mathrm{~J}=1$, JMAX 37
$\Delta J=J=1.0$ 38
$007 \mathrm{I}=1$, IMAX 39
$A I=I-1.0$ 40
LASTX=XPAGE 41
XPAGE=(AJ+AI)*XSIZE)(RI+RJ) 42
LASTY=YPAGE 43
YPAGE=(AJ*RI/RJ-AI*RJ/RI+RJ)*YSIZE/(RJ*RI) + HEIGHT*FIELD(I,J) 44
LASTH $=$ LASTHM 45
LASTHM $=$ HID (I + J) 46
IF(YPAGE-HIC(I+J)) 5,5,2 47
2 IF(I.NE.1) GO TO 3 48
CALL PLTT(XPAGE,YPAGE,3) 49
I PEN=2 50
GO TO 4 51
3 CALL PLTT(XPAGE,YPAGE,IPEN) 52
I PEN=? 53
4 HID (I+J)=YFAGE 54
GOTO 7 55
5 IF(I.EQ.1) IPEN=3 56
IFRIPEN.EQ.3I GO TO 6 57
X1N=LASTX*HIO (I+J)-LASTH*XPAGE-LASTX* YPAGE+XPAGE*LASTY 58
X1D $=$ HIO (I+J)-LASTH-YPAGE+LASTY 59
$\times 1=\times 1 \mathrm{~N} / \times 10$ 60
YI = (X1* (HIO (I +J)-LASTH) +LASTH*XPAGE-LASTX*HID(I+J))/(XPAGE-LASTX) 61
CALL PLTT(X1,Y1,2) 62
I PEN=3 63
5 CALL PLTT(XPAGE,YPAGE,IPEN) 64
7 CONTINUE 65
DO \& $I=1, N I J$ 66
$8 \mathrm{HTO}(\mathrm{I})=-0.5$ 67
0016 II=1,IMAX,1 68
$I=I M A X-I I+1$ 69
A $I=I-1$ 70
$001 \in J=1$, JMAX 71
$A J=J-1$ 72
LASTX=XPATSE 73
XPAGE=(AJ+AI)*XSIZE/(RI+RJ) 74
LASTY=YPAGE 75
YPAGE=(AJ*RI/RJ-AI*FJ/RI+RJ)*YSTZE/(RJ+RI)+HEIGHT*FIELO(I,J) 76
LASTHELASTHM 77
LASTHM=HID(I+J) 78
IF (YPAGE-HID(I+J)) $13,14,9$ 79
9 IF(J.NE.1) GO TO 10 80
CALL PLTT (XFAGE, YPAGE,3) 81
I PEN=2 82
GO TO 12 83
10 IF (IPEN.EQ. $\overline{1})$ GO TO 11 84
$X 1 N=L A S T X * Y P A G E-L A S T Y * X P A G E-L A S T X * H I O(I+J)+X P A G E * H I O(I+J-1)$ 85
$X 10=Y P A G E-L A S T Y-H I D(I+J)+H I O(I+J-1)$ 86
$X 1=X 1 N / X 10$ 87
$Y 1=\left(X 1^{*}(Y P A G E-L A S T Y)+L A S T Y^{*} X P A G E=L A S T X^{*} Y P A G E\right) /(X P A G E-L A S T X)$ 88
CALL PLTT(X1,Y1,3) 89
I PEN $=2$ 90
11 CALL PLTT(XPAGE,YPAGE, IPEN) 91
12 HID(I+J)=YFAGE 92
G1) TO 16 93
13 IPEN=3 94
GOTO 15 95
14 IF (J.EQ.1) IPEN=3 96
15 CALL PLTT(XPAGE,YPAGE,IPEN) 97
16 GONTINUE 98
C CONGLUOE PLOT AT RT BTM CORNER OF REFORT PAGE: 99
CALL PLOT\{XSIZE+1.,-3.75,-31 100
RETURN 101
ENO 102

SUBROUTINE FLTT (X,Y,IPEN) SUBROUTINE PLTT ELIMINATES MOVING PEN FOR HIDOEN LINES.

XLAST $=X N$YLAST $=$ YN6
ILAST $=\mathrm{IN}$ 7
$X N=X$ 8
$Y N=Y$ 9
IN=IPEN 10
IFIIPEN.EQ. $2 . A N D . I L A S T . E Q .2) ~ C A L L ~ P L O T(X, Y, I P E N)$ 11
IF(IPEN.EQ.2.AND.ILAST.EQ.3) CALL PLOT(XLAST, YLAST,ILASTI 12
IFIIPEN.EQ.2.AND.ILAST.EQ.3) CALL PLOT(X,Y,IPEN) 13
IF (IPEN.NE.2.AND.IPEN.NE.3) CALL FLCT $X, Y, I P E N$ I 14
RETURN 15
END 16

26-1. Purpose: To compute the Discrete Fourier Transform (DFT) or its inverse of a sequence of complex numbers consisting of 2^{N} elements, where N is an integer. The Cooley-Tukey algorithm is used to perform computations in place to speed up the computations and to return the transformed values in the input array.

26-2. Usage: CAL工 FFTA (FIELD, NEXP, IBMISN)

26-3. Arguments

26-4. Comments and Method
a. Subroutine FFTA is machine-dependent in that the bit reversed number, IFLIP, must be generated using Fortran instructions which are peculiar to a particular machine. Also, the word length must be taken into account. Lines $38-42$ of the attached program listing are used to effect the desired operation for the CDC Cyber 70 (60-bit word, numbered

0 through 59 from right to left with Bit 0 being the least significant):
IFLIP $=0$
DO 4 II=l, IEXP, l
J=60 - II
IFLIP $=2 * I F L I P+A N D(S H I F T(I, l+J), 1 B)$

4 CONTINUE
The SHIFT(I,l+J) operation shifts the bits of the integer I to the left by l+J bit positions. The AND operation strips off the right most bit of the shifted result. E.G., when $I I=1$, the right most bit of I (Bit 0) is extracted from I by the AND (SHIFT) operation. The current value of IFLIP is then shifted one bit to the left by the $2 * I F L I P$ operation. The two results are then added together. A total of NEXP bits are extracted, starting with Bit 0 , followed by Bits 1, 2,...(NEXP-1).

The net result of these operations is to take the NEXP-bit binary representation of the array element number I, reverse the order of the bits, and right justify the result. Array elements in FIELD numbered I and IFLIP are then interchanged if I>IFLIP. The first and last elements of FIELD always remain in place. The array elements are rearranged in this manner so that they will be ordered after transforming [l].
b. To explain the ordering of the data in the complex array FIELD, it is convenient to consider the specific example of using FFMA to compute the Fourier transform $G(f)$ of a time function $g(t)$ as defined by

$$
\begin{equation*}
G(f)=\int_{-T_{\max }}^{T} g(t) e^{-j 2 \pi f t} d t \tag{1}
\end{equation*}
$$

and as approximated by

$$
\begin{equation*}
G(f)=\Sigma g\left(t_{i}\right) e^{-j 2 f t_{i} \Delta t} \tag{2}
\end{equation*}
$$

where t_{i} are the equally spaced points along the t axis when g is sampled over the interval $-T_{\max } \leq t \leq T_{\max }$.

There are $N=2^{\mathrm{NEXP}}$ samples in the input array FIELD(I) corresponding to $I=1, N$. The first sample ($I=1$) corresponds to $g\left(-T_{\max }\right)$. The last sample $(I=N)$ corresponds to $g\left(T_{\max }-\Delta t\right)$. The $I=(N / 2+1)$ th sample corresponds to $g(0)$; i.e., the value of g at $t=0$. The DFT assumes periodicity of the sampled data so that the value at $t=T_{\max }$ is identical to that at $t=-T_{\max }$. The sample spacing is

$$
\begin{equation*}
\Delta t=2 \mathrm{~T}_{\max } / \mathrm{N} \tag{3}
\end{equation*}
$$

and corresponds to a folding frequency $f_{\max }$ of

$$
\begin{equation*}
f_{\text {max }}=1 / 2 \Delta t \tag{4}
\end{equation*}
$$

On output, the array FIEID contains the frequency components $G(f)$ at N equally spaced frequencies Δf over the band $-f_{\text {max }} \leq f \leq f_{\text {max }}$ where $I=1$ corresponds to $f=-f_{\max } I=(N / 2+1)$ to $f=0$, and $I=N$ to $f=f_{\max }-\Delta f$, where

$$
\begin{equation*}
\Delta f=2 \mathrm{f}_{\max } / \mathrm{N} \tag{5}
\end{equation*}
$$

and where

$$
\begin{equation*}
T_{\max }=\frac{1}{2 \Delta f} \tag{6}
\end{equation*}
$$

Also, by the inversion integral [2],

$$
\begin{equation*}
g(t)=\int_{-f_{\max }}^{f_{\max }} G(f) e^{+j 2 \pi f t} d f \approx \Delta f \Sigma G\left(f_{p}\right) e^{j 2 \pi f_{p} t} \tag{7}
\end{equation*}
$$

This version of Subroutine FFTA is written so that division by N is done when the Fourier transform (kernel $=e^{-j 2 \pi f t}$) is computed. When the expression in Equation (3) for Δt is used in (2), there results

$$
\begin{equation*}
G\left(f_{p}\right)=2 T_{\max } \frac{1}{N} \sum_{i} g\left(t_{i}\right) e^{-j 2 \pi f_{p} t_{i}} \tag{8}
\end{equation*}
$$

Transposing $2 \mathrm{~T}_{\max }$ and using Equation (6) yields

$$
\begin{equation*}
\Delta f G\left(f_{p}\right)=\frac{1}{N} \sum_{i} g\left(t_{i}\right) e^{-j 2 \pi f_{p} t_{i}} \tag{9}
\end{equation*}
$$

where the righthand side is the definition of the Discrete Fourier Transform as computed by FFTA. Inversely,

$$
\begin{equation*}
g\left(t_{i}\right)=\sum_{p} \Delta f G\left(f_{p}\right) e^{+j 2 \pi f_{p} t_{i}} \tag{10}
\end{equation*}
$$

which is the Inverse DFT as computed by FFTA.

Conversely, if the original data in the input array FIELD are samples of a frequency spectrum $G(f)$, a similar analysis shows that $F F T A$ computes $\Delta t g\left(t_{i}\right)$ as the inverse transform (IBMISN=3); i.e., the time function is modified in amplitude by Δt. of course, when the forward transform (IBMISNキ3) is performed on this result, the original sampled data $G\left(f_{i}\right)$ are obtained in FIELD on output.

From the above considerations, the following conclusions can be drawn concerning the use of FFTA to compute the Fourier transform $G(f)$ of a windowed time function $g(t)$:

$$
\begin{gather*}
G\left(f_{p}\right)=2 T_{\max } \cdot \operatorname{FFTA}\left\{g\left(t_{i}\right)\right\} \tag{11}\\
g\left(t_{i}\right)=\frac{1}{2 T_{\max }} \cdot \operatorname{IFFTA}\left\{G\left(f_{p}\right)\right\}=\operatorname{IFFTA}\left\{\Delta f^{G}\left(f_{p}\right)\right\} \tag{12}
\end{gather*}
$$

As an example, let $g(t)$ be the rectangular pulse function which has constant amplitude v_{o} for $|t| \leq t_{0}$ and which is windowed in the larger time interval $|t| \leq T_{\max }$. The Fourier transform $G(f)$ is given by [3]

$$
\begin{equation*}
G(f)=2 t_{0} V_{0} \frac{\sin 2 \pi f t_{0}}{2 \pi f t_{0}} \tag{13}
\end{equation*}
$$

Let $g(t)$ be sampled at $N=2^{N E X P}$ points over the interval $|t| \leq T_{\text {max }}$, and let these sampled points be placed in the array FIELD. Then the spectrum $G(f)$ will be closely approximated at discrete frequencies f_{p} by

$$
G\left(f_{p}\right) \approx 2 T_{\text {max }} * F I E L D(I)
$$

where

$$
f_{p}=-f_{\max }+(I-1) * \Delta f
$$

and where FIELD is the output of FFTA according to CALL FFTA (FIELD, N, 0). Proper consideration should be given to the sampling of the time function so that the DFT produces a good estimate of the actual integral transform. For example, if $t_{0}=T_{\text {max }}$ and all samples are constant, then the DFT will produce a single nonzero frequency component at $f=0$ (corresponding to the $(N / 2+1)$ th element of FIELD); i.e., a delta function. Such a result follows from the facts that the Fourier transform of a constant $g(t)=V_{0}$ is $G(f)=V_{O} \delta(f)$ and that the DFI assumes a periodicity of the sequence of samples provided to it.

Consider the other extreme. Let the pulse $g(t)$ be represented by only one sample at $t=0$ in the window $|t| \leq T_{\text {max }}$. The Fourier transform of $g(t)=V_{o} \delta(t)$ is $G(f)=V_{o}$, a constant.

It is clear from the above considerations that the time function must be properly windowed and properly sampled to produce a good estimate of its transform via the DFT. Simply stated, the time function should be sampled at a rate Δt which is twice the highest frequency contained in the function as interpreted by the DFT.

26-5. Program Flow

Lines 22-24: Compute $N=2^{N E X P}$ and set the sign ISN of the exponent in the Fourier kernel.

Lines 26-29: Compute IEXP=NEXP from N. This is a redundant computation made when the original FFT subroutine was modified to conform to the call to a library version on another computer system.

Lines 30-35: Rearrange the order of the input data so that samples for $t \geq 0$ are placed in the lower half of the array, and those for $t<0$ are placed in the upper half. For a frequency function, the data are rearranged so that the first $N / 2$ points give the components for non-negative frequencies ($I=1$ corresponds to $f=0$), and the last $N / 2$ points contain the data for the negative frequencies.

Lines 36-49: Rearrange the data in FIELD so that it will be ordered after transforming as described for Lines 30-35 above.

Lines 50-73: Perform the summation using the Cooley-Tukey algorithm [1].

Lines 74-79: If forward transform is being done, divide all values in FIELD by N.

Lines 80-85: Rearrange the output data in FIELD so that it conforms to that used on input; i.e., $f_{i}=f_{\max }+(I-1) \Delta f$ or $t_{i}=-T_{\max }+(I-I) \Delta t$ as appropriate.

26-6. Test Case

A rectangular pulse function with amplitude $\mathrm{V}_{0}=100$ was chosen for $g(t)$ with $t_{0}=.10$ second $T_{\max }=1.60$ seconds, and $N=2048=2^{11}$. The resulting
sample increment Δt and folding frequency $f_{\max }$ were 0.116 second 320.0 Hertz, respectively. The comparison of the central nine points of the computed and true frequency spectra were as follows (CDC Cyber 70):

	True G(f)			Compu	(f)
I	$\underline{\mathrm{f}} \mathrm{(Hz)}$	Amp.	Phase (${ }^{\circ}$)	Amp.	Phase(${ }^{\circ}$)
1021	-1. 250	18.006	0.00	18.006	0.35
1022	-0.938	18.863	0.00	18.863	0.26
1023	-0.625	19.490	0.00	19.490	0.18
1024	-0.313	19.872	0.00	19.872	0.09
1025	0.000	20.000	0.00	20.000	0.00
1026	0.313	19.872	0.00	19.872	-0.09
1027	0.625	19.490	0.00	19.490	-0.26
1028	0.938	18.863	0.00	18.863	-. 035

26-7. References

1. Cochran, W. T., et al, "What is the Fast Fourier Transform?", Proc, IEEE, 55, pp. 1664-1674.
2. Papoulis, A., The Fourier Integral and Its Application, McGrawHill, New York, Ch. 2, 1962.
3. Stein and Jones, Modern Communication Principles, McGraw-Hill, New York, pp. 10-ll, 1967.

26-8. Program Listing: See following pages. The second listing, Subroutine FFT, is for use on the IBM 3033 at JHU/APL. It employs the subroutine FFTA available on that system library. Use of this subroutine requires the calls in Subroutines JOYFFT and MAGFFT to be changed from CALL FFTA to CALI FFT.
SUBROUTINE FFTA(FIELD,NEXP, IBMISN) 1
MOOIFIEO TO SIMULATE FFTA ON IBM 3033 AT APL/JHU 2
OIVISICN BY N IS DONE HHEN ISN $=-1$ (GKH 102076 3
COC CONVERSION DONE 1 JUNE 1976 4
 658

* This subpoutine calculates the fast fourier transform or
THE INVERSE FAST FOURIER TRANSFCRM OF AN INPUT COMPLEX9
ARFAY FIELD AND RETURNS THE RESULT IN THE SAME ARRAY 10
* N MUST BE AN INTEGER POWER OF TWO 11 12ISN IS AN IATEGER WHICH MAY BE EITHER ONE OR MINUS ONE13IF ISN IS - 1 THE FAST FOURIER TRANSFORM IS CALCULATED15
IF ISA IS +1 THE INVERSE FOURIER TRANSFORM IS CALCULATED 16
* 1718
19
COMPLEX FIELO(512) 20
COMPLEX T F
COMPLEX T,F 21
$N=2 * * N E X P$ 22
I $S N=-1$ 23
IF (IBMISN.EQ.3) ISN=+1 24
PI2=6.2831853071796 25
IEXP=0 26
1 IEXP=IEXP + 1 27
$M=2^{* *}$ IEXP 28
IF (N-M) 13,2,1 29
$2 \mathrm{~N}_{2}=\mathrm{N} / 2$ 30
$003 \mathrm{I}=1, \mathrm{~N} 2,1$ 31
$K=I+N 2$ 32
T=FIELO(I) 33
FIELO(I)=FIELC(K) 34
3 FIELC(K)=T 35
N1=N-2 36
$005 \mathrm{I}=1, \mathrm{~N} 1,1$ 37
IFLIP=0 38
$004 \mathrm{II}=1, \mathrm{IEXF}, 1$ 39
$\mathrm{J}=60-\mathrm{I} I$ 40
IFLIP=2*IFLIP+AND (SHIFT $(I, 1+J), 1 B)$ 41
4 CONTINUE 42
IFII.LE.IFLIP: GO TO 5 43
I $1=1+1$ 44
$I 2=I F L I P+1$ 45
$T=F I E L O(I 2)$ 46
FIELD(I2)=FIELD(I1) 47
FIELD(II)=T 48
5 CONTINUE 49
DO $6 \mathrm{I}=1, \mathrm{IEXP}, 1$ 50
NEL $=2^{* *}$ I 51
NEL $2=$ NEL $/ 2$ 52
NSET $=$ N/NEL 53
SI=SIN(PI2/NEL) 54
CI=COS (PI2/NEL) 55
$0086 \mathrm{~J}=1$, NSET, 1 56
INCR=(J-1) *NEL 57
SO=0.0 58
$\mathrm{CO}=1.0$ 59
$0096 \mathrm{II}=1, \mathrm{~N}=\mathrm{L} 2,1$ 60
$J 1=I I+I N C R$ 61
J2= J1+NEL2 62
r=FIELD(J1) 63
$F=F I E L O(J 2) * C M P L X(C O, I S N * S O)$ 64
FIELC(J1) $=T+F$ 65
FIELC(J2)=T-F 66
$S N=S O^{*} C I+C C^{*} S I$ 67
$\mathrm{SS}=\mathrm{CO}{ }^{*} \mathrm{CI}-5 \mathrm{CO}^{*} \mathrm{SI}$ 68
CO=CS 69
SO=SN 70
96 CONTINUE 71
86 CONTINUE 72
6 CONTINUE 73
IF(ISN.GT.O) GO TO 8 74
C DIVISICN BY N IS DONE FOR FORWARD TRANSFORM (GKH 10-20-76) 75
$007 \mathrm{I}=1$:N. 1 76

FIELOCII=FIELC(I)/N $\quad 77$
7 CONTINUE 78
8 CONTINUE 79
DO $9 \mathrm{I}=1, N 2,1 \quad 80$
$K=I+N 2$
$T=F I E L D(I) \quad 82$
FIELC(I)=FIELC(K) 83
FIELD(K)=T 84
9 GONTINUE 85
10 CONTINUE 86
RETURN 87
ENO
88

SUQROUTINE FFT(FIELO,NEXP,IBMISN) 1
C MODIFIED TO UIILIZE FFTA ON IBM 3033 AT APL/JHU $3 Y$ GKH FEB 60. 2

C
C THIS SUBROUTINE CALCULATES THE FAST FOURIER TRANSFORA OR 4 *

* ARRAY FIELD AND RETURNS THE RESULT IN THE SAME ARRAY * * 7
- IBMISN (INTEGER) CONIROLS THE DIRECTION OF THE TRANSFORM: -
$=1$ FOR FORWARD (NEGATIVE EXPONENTIAL) TRANSFORM 9
$=3$ FJR INVERSE TRANSFORM 10
* SEE JHU/APL SCIENTIFIC SUGR LIBRARY ROUTINE NO. 6.04.051 FOR 11
* OTHER VALUES OF IBMISN IN SUBR FFTA USED HEREIN. 12

ORDERING OF DATA: 13

* ON INPUT AND OUTPUT. I=1 CORRESPONDS TO MOST NEGATIVE 14
* ABSCISSA, I=N/2+1 IO ORIGIN. I=N TO MOST POSITIVE ABSCISSA. 15

C 17
COMPLEX FIELD(1) 18
$30 M P L \equiv X \quad$ T,F 19
$\begin{array}{ll}\mathrm{V}=2 \text { * } & \text { NEXP } 20\end{array}$
DATA PI2/6.2831853071796/ 21
$2 \mathrm{~N} 2=\mathrm{N} / 2 \mathrm{2}$
C ORDER THE DATA FOR FFTA I. E., NONNEGATIVE ABSCISSAE CORRESPOND 23
C TO I=1 TO N/2, NEGATIVE ABSCISSAE TO I=N/2+1 TO N. 24
$303 I=1, N 2,1 \quad 25$
$K=I+N 2 \quad 26$
$T=F I E L D(I) \quad 27$
FIELD(I)=FIELO(K) 28
3 FIELD $(K)=T \quad 29$
YFFTA $=N E X P+1 \quad 30$
CALL FFTA(FIELD,MFFTA, IBMISN) 31
C REORDER THE DATA FOR OUTPUT. 32
$009 \mathrm{I}=1, \mathrm{~N} 2,1 \quad 33$
$K=I+N 2$ 2
$T=F I E L D(T) \quad 35$
FIELD(I)=FIELD(K) 36
FIELD(K)=T 37
\exists CONTINUE 38

Chapter 27

SUBROUTINE MAGFF"I

27-1. Purpose: To increase the resolution of a complex array of data points using Fourier interpolation and the Fast Fourier Transform. The number of points in each array must be an integer power of two.

27-2. Usage: CALL MAGFFT (A, NA, B, NB)
27-3. Arguments

$$
\begin{array}{ll}
A, N A & \text { Complex input array of } N A=2^{M}<N B \text { data points. } \\
B, N B & - \text { Complex output array of } N B=2^{N} \text { data points. }
\end{array}
$$

27-4. Comment and Method
a. Subroutines required: FFTA, PWRIWO
b. By Shannon's sampling theorem, a band-limited function is represented by its samples, and it can be reconstructed at any point from them. The computation of the value of the function at a point other than a sample point is called Fourier interpolation. Such interpolation can be used to increase the resolution of a function.

The Fast Fourier Transform (FFT) can be used to facilitate Fourier interpolation. Briefly, the original function $A\left(k_{x}\right)$, known at NA points on the range $\left(-K_{M^{\prime}}+K_{M}\right)$, is transformed to yield $E(x)=F\left\{A\left(k_{x}\right)\right\}$ at NA sample points. These NA values of $E(x)$ are then placed in the center of an array containing $N B=2^{N}>N A=2^{M}$ points to form the function $E^{\prime}(x)$. This function is then inverse transformed to produce $A\left(k_{x}\right)$ at NB points over the same range $\left(-K_{M^{\prime}}+K_{M}\right)$. (Actually, the range is $\left(-K_{M},+K_{M}-\right.$ Δk) since the $F F T$ considers the sampled function to be periodic outside the known range so that the $(N B+1)$ st point would be the same as the first point in the array.)

27-5. Program Flow: See listing below.
27-6. Test Case: See Chapter 2.
27-7. References: See Chapter 26.
27-8. Program Listing: See following page.
SUGROUTINE MAGFFT (A,NA, B, NB) 1
COMPLEX A(NA), Q (NP) 2
IF (NB.LE.NA) GC TO 1 3
GO TC 2 4
1 WRITE 6,3$)$ 5
3 FORMAT $/{ }^{*}$ NE IS LESS THAN OF EQUAL TO NA IN MAGFFT * $/ 1$ 6
RETURN 7
2 Continue 8
$N A C=N A / 2+1$ 9
$N B C=N B / 2+1$ 10
N=NEC-NAC 11
DO $5 \mathrm{I}=1, \mathrm{NE}$ 12
$B(I)=(0 ., S$. 13
5 CONTINUE 14
CALL PWRTWC(NA, INA) 15
CALL FFTA(A,INA, 3) 16
DO $10 \mathrm{I}=1$, NA 17
$J=N+I$ 18
$B(J)=A(I)$ 19
10 CONTINUE 20
CALL PWRTWC(NE,INE) 21
CALL FFTA(E,INB,1) 22
RETURN 23
END 24

Chapter 2
 28

SUBROUTINE JOYFFT

28-1. Purpose: To compute the two-dimensional Fast Fourier Transform of a complex array of NXI by NYI points and to provide magnification of a specified portion of the transformed data.

28-2. Usage: CALL JOYFFT (INPUT, NXI, NYI, MX, MY, NXC, NYC, OUTPUT, NXO, NYO, XYFFT, NXY, ISN)

28-3. Arguments
INPUT, - Complex input array of NXI by NYI points.
NXI, NYI
MX, MY - Integer input variables, equal to an integer power of two, which specify the magnification in the I and J directions, respectively.

NXC, NYC - Integer input variables which specify the center coordinate $I=N X C, J=N Y C$ of the sector to be magnified.

OUTPUT, - Complex output array of NXO by NYO points conNXO, NYO taining the transformed points of the magnified sector.

XYFFT, - Complex working array of NXY points.

NXY

ISN - Integer input variable which specifies the direction of the FFT: ISN = 3 for inverse $F F T$; ISN $=1$ for FFT. See Chapter 26.

28-4. Comment
a. Subroutines required: FFTA, PWRTWO.
b. All integer input variables must be integer powers of 2 and must satisfy the following restrictions:
(1) $\quad \mathrm{NXO} * \mathrm{NYO} \leq N X I * N Y I$
(2) $\quad \mathrm{NXO} \leq N X I$ or $\mathrm{NYO} \leq N Y I$
(3) $M X * N X I \leq N X Y$ and $M Y * N Y I \leq N X Y$
28-5. Program Flow: See listing below.
28-6. Test Case: See Chapter 2.
28-7. References: None
28-8. Program Listing: See following pages.
SUBROUTINE JOYFFTIIAPUT,NXI,NYI,MX,MY,NXC,NYC,OUTPUT, NXO, NYO, 1
\&XYFFT,NXY,ISNI 2
COMPLEX INFUT(NXI,NYI), OUTPUT(NXO, NYOI, XYFFT(NXY) 3
$\begin{array}{lllll}\text { SUGROUTINE JOYFFT CALCULATES THE TWO DIMENSIONAL COMPLEX FAST } & \mathbf{7} \\ \text { FOURIER TRANSFORM FOR ISN=+1 OR THE INVERSE FAST FOURIER }\end{array}$
TRANSFORM FCR ISN=+3, OUTPUT (NXC,NYOI, OR A TWO DIMENSIONAL 9
COMPLEX AFRAY, INFUT(NXI, NYI) 10
JOYFFT ALSO PERMITS CALCULATION OF A MAGNIFIED SECTOR OF THE 11
FFT AS FOLLOWS. MX IS THE MAGNIFICATION FACTOR FOR THE X 12
DIMENSION AND MY IS THE MAGAIFICATION FACTOR FOR THE Y 13
OIMENSION. THE CENER COOFOINATE OF THE MAGNIFIED SECTOR, 14
(NXC,NYC) IS SPECIFIED WITH KEFERENCE TO THE UNMAGNIFED FFT 15
16
THE XYFFT(NXY) ARRAY IS A CCMPLEX TEMPORARY STORAGE ARRAY USED 17
TO PERFGFM THE MAGNIFIED X ANE Y SINGLE DIMENSION FFTS 18
TOLLOWING 19
FCLLOWING AFE RESTRICTIONS ON THE INPUT AND OUTPUT PARAMETERS 20
" < " BELOW MEANS LESS THAN OR EQUAL TO 21
$N X O * N Y O<N X I * N Y I \quad 22$
NXO<NXI OR NYO<NYI 23
$M X * N X I<N X Y$ AND MY*NYI<NXY 24
NYI $=2^{* *}$ (ANY NON-NEGATIVE INTEGER) 25
NXI $=2^{* *}$ (ANY NON-NEGATIVE INTEGER) 26
NXO $=2 * *(A N Y$ NON-NEGATIVE INTEGER) 27
NYO $=2 * *(A N Y$ NON $-N E G A T I V E$ INTEGER) 28
$M X=2 * *(A N Y$ NON-NEGATIVE INTEGER) 29
$M Y=2^{*}$ (AAY NON-NEGATIVE INTEGER) 30
MAGNIFICATICN IS NOT PERMITTED FOR INPUT DIMENSIONS OF ONE 32
THE OUTPUT SECTOR MUST BE CONTAINED IN THE MAGNIFIEO FFT 34
$N \times C / 2<M X * M I N(N X C-1, N X I+1-N X C) \quad 35$
ANC 36
$\begin{array}{ll}\text { NYO/2<MY*MIA(NYC-1,NYI+1-NYC) } & 37 \\ & 38\end{array}$

C THE INPUT ANO OUTPUT ARRAY MAY EE EQUIVALENGED USING THE 39
C * FOLLONING EQUIVALENCE STATEMENT IN THE MAIN PROGRAM 40

* EGUTVALENCE (INPUT $(1,1)$, OUTPUT $(1,1))$ 41
 42
C 43
NXO*NYO<NXI*NYI 44
IF (NXI*NYI.GE.NXOFNYO) GO TO 2 45
C WRITE $(6,1)$ 46
1 FORMAT (5X."THE SIZE OF THE OUTPUT ARRAY EXCEEDS THE SIZE OF THE IN 47
\$PUT ARRAY*) 48
49C NXI,NYI,NXO,NYO,MX,MY EACH MUST EQUAL TWO RAISED TO SOME NON
50NEGATIVE INTEGER POWER
2 GALL PWRTWC(NXI, INXI) 51
CALL PWRTWO (NYI, INYI) 53
CALL PWRTWO (NXO, INXC) 54
CALL PWRTWC (NYO, INYC) 55
GALL PWFTWO (MX, IMXI 56
CALL PWRTWC(MY, IMY) 57
C 58
IF(NXC.LE.NXI.OR.NYC.LE.NYI) GOTO 220 59WRITE(E,210)
210 FORNAT (5X,"THE SIZE OF THE FIRST FFT EXCEEDS THE SIZE OF THE INPU 61
\$T A $\operatorname{FRA} Y^{* \prime}$ 62
RETURA 63
C 64
C $M X * N X I<N X Y$ AND $M Y * N Y I<N X Y$ 65
$225 N X=N X I * M X$ 66
IF(NXY.GE.NX) GO TO 4 67
WRITE (6,3) $N X Y$ 68
3 FORMATII15," JHIS DIMENSICA IS INSUFFICIENT TO CARRY OUT THE MAGN 69
\$IFICATION IN $x^{* *}$) 70
RETUQN 71
4 NY=NYI*MY 72
IF(NXY.GE.NY) GO TO 6 73
WPITE $(6,5)$ NXY 74
5 FORMAT (I15," THIS DIMENSIOA IS IASUFFICIENT TO CARRY OUT THE MAGN 75
\$IFICATION IN V^{*})
RETURN 77
C (78
6 IF (NXO/Z.LE.MXFMINO(NXC-1,NXI+1-NXC)) GOTO8 79
WRITE(6,7) 80
7 FCRMAT $5 \times$, "IHE CUTPUT SEGTOR DESIREC IS NOT CONTAINEO WITHIN THE C 81
\$ALCULATED FFT* ${ }^{* \prime \prime} 8$
RETURN 83
82
C
8 IF(NYO/2.LE.MY*MINO (NYC-1.NYI+1-NYC): GO TO $9 \quad 85$
84
WRITE(6,7) 86
QETURN 87
C 88
C DETERMINE THE ORDER IN WHICH X AND Y FFTS WILL BE CALCULATED 88
C DETERMINE THE ORDER IN WHICH X AND Y FFTS WILL BE GALCULATED
9 IF (NYO.GT.NXO) GO TO 21
C 91
C PERFORM SINGLE DIMENSION FFTS FOR Y THEN $X \quad 92$
6 C 93
C LOAD Y VALUES IA XYFFT ARRAY 94
NYS=NYI-NYO 95
IF(NYI.EQ.1) GO TO 1596
$N Z=(N Y-N Y I) / 2 \quad 97$
NXYS $=(N Y C-1) * M Y-N Y O / 2 \quad 98$
$0014 \mathrm{I}=1, \mathrm{NXI}, 1$ 99
IF (NZ.EQ. O) GO TO 11 100
$0010 \mathrm{~J}=1, \mathrm{NZ}, 1 \quad 101$
XYFFT(J)=(0.0,0.0) 102
$\begin{array}{ll}X Y F F T(J+N Z+N Y I)=(0.0,0.0) & 103\end{array}$
10 CONTINUE 104
$\begin{array}{ll}10 \text { CONTINUE } & 104 \\ 110012 J=1, H Y I, 1 & 105\end{array}$
XYFFT(J+NZ)=INPUT(I,J) 106
12 CONTINUE 107
6 108
C PEQFOFM SINGLE CIMENSION FFT FOR Y 109
CALL PWRTWC(NY,INY) 110
GALL FFTA(XYFFT, INY,ISN) 111
$\begin{array}{lll}C \\ C & E X T F A C T \\ \text { CUTPUT SECTOR OF INTEREST ANO STORE IN INPUT ARRAY } & 112 \\ 113\end{array}$
$\begin{array}{ll}C \\ C & E X T A C T \\ \text { CUTPUT SECTOR OF INTEREST ANO STORE IN INPUT ARRAY } & 112 \\ 113\end{array}$
$\begin{array}{ll}70 \\ 13 \mathrm{~J}=1, N Y O .1 & 114\end{array}$
INPUT(I, J+NYS)=XYFFT(J+NXYS) 115
13 CONTINUE 116
14 GONTINUE 117
C 118
C PEPFORM NYO MAGNIFIED FFTS IN X AND STORE SELECTED SECTORS OF FFTS 119
IN OUTPUT ARPAY 120
$15 N Z=(N X-N X I) / ?$ 121
NXYS=(NXC-1)*NX-NXO/2 122
$0023 \mathrm{~J}=1$, NYO,1 123C
LOAD X VALUES IN XYFFT ARRAY 125124
IF(NZ.EQ.E) GC TO 17
DO 16 I=1,NZ, 1 127
XYFFT (I) $=(0.0,0.0)$ 128
$X Y F F T(I+N Z+N X I)=(U . C, C . G)$ 129
16 CONTINUE 130
17 DO $18 \quad I=1, N X I, 1$ 131
XYFFT (I+NZ) = INPUT (I,J+NYS) 132
18 CONTINUE 133
C 134
C PERFORM SINGLE CIMENSION FFTS IA X 135
CALL PWFTWO (NX, INX) 136
CALL FFTA (XYFFT, INX,ISN) 137
138cC EXTFACT DUTPLT SECTOR OF INTEREST AND STORE IN OUTPUT ARRAY
139$0019 \mathrm{I}=1, \mathrm{NXO}, 1$O(TPUT (I, J) $=X Y F F T(I+N X Y S)$140
19 cONTINUE141
20 continue 143142
PETUPN
C 145
C PERFORM SINGLE CIMENSION FFTS FOR X THEN Y 146
21 NXS $=N \times I-N \times C$ 147
IF(NXI.EG.1) GO TO 27 148
$N Z=(N X-N X I) / 2$ 149
$N X Y S=(N X C-1)^{* N X-N X O / 2}$ 150
C LOAD X VALUES IN XYFFT ARFAY 152
DO $26 \mathrm{~J}=1$, NYI, 1 153
IF (NZ.EQ.O1 GO TO 23 154
DO $22 \mathrm{I}=1, \mathrm{~A} 7,1$ 155
$\begin{array}{ll}X Y F F T(I)=(0.0,0.0) & 156\end{array}$
$\begin{array}{ll}X Y F F T(I+N Z+N X I)=(U . G, 0 . C) & 157\end{array}$
22 CONTINUE
158
23 DO $24 I=1, N X I, 1 \quad 159$
$\begin{array}{ll}X Y F F T(I+N Z)=I N P U T(I, J) & 160\end{array}$
24 CONTINUE
161
C PERFCRM SINGLE DIMENSIUN FFT IN $X \quad 163$
CALL PWRTWO(NX, INX)
CALL FFTA(XYFFT, INX, ISN)
164
164
165
C EXTRACT OUTPUT SECTOR OF INTEREST AND STORE IN INPUT ARFAY 167
DO $25 I=1, N \times 0,1 \quad 168$
INPUT(I+NXS,J)=XYFFT(I+NXYS) 169
25 CONTINUE
170
26 SONTINUE
171
C
C
C
C
IN OUTPUT ARRAY
173
FIX MAGNIFIED FFTS IN Y AND STORE SELECTEO SEGTOR OF FFT
174
$27 N Z=(N Y-N Y I) / 2$
175
NXYS=(NYC-1)*MY-NYO/2 176
DO $32 I=1, N \times 0,1 \quad 177$
6
G LOAD Y VALUES IN XYFFT ARRAY $\quad 179$
$\begin{array}{ll}\text { IF (NZ.EQ.O) GO TO } 29 & 180\end{array}$
$0028 \mathrm{~J}=1, \mathrm{MZ}, 1$
181
XYFFT(J) $=(0.0,0.0) \quad 182$
XYFFT(J)=(0.0.0.0) 182
$X Y F F T(J+N Z+N Y I)=(O .0, O \cdot E) \quad 183$
28 CONTINUE
(184
$290030 \mathrm{~J}=1, \mathrm{NYI,1} \quad 185$
$X Y F F T(J+N Z)=I N P U T(I+N X S, J) \quad 186$
30 CONTINUE
187

0

PERFORM SIAGLE OIMENSION FFT IN Y 188
C PERFORM SIAGLE OIMENSION FFT IN Y 189
CALL PWPTWC(NY,INY) 190
GALL FFTA(XYFFT, INY,ISNI 191
C 192
C EXTRACT OUTPUT SECTOR OF INTEREST AND STORE IN OUTPUT ARRAY 193
DO $31 \mathrm{~J}=1$, NYO.1 194
OUTPUT(I,J)=XYFFT(J+NXYS) 195
31 continue 196
32 continue 197
RETURN 198
END 199
SUBEOUTINE FWRTWO(N,I) 1
$I=0$ 2
$1 \quad M=2 * * I$3
IF (N-M) 3,5,2 4
$2 I=I+1$5
GOTO 13 WRITE (6,4) N4 FORMAT (I15,* THIS INTEGER DOES NOT EQUAL TWO RAISEO TO A NON NEGA7
\$TIVE INTEGER*) 9
RETURN 10
ENO 11

APPENDIX A

Test Case 1 for RTFRACP

TEST DATA TH TEST IBMRACP WITHOUT PLOTS (CASE I,FO,QHC,N=5)

$F, F, F, F, T, 00$
$1,2,5,16.257,3.35,15.657,48.8020001,11.80285,2 . \quad 3$
$5, .3,1,5,592,1522,3,1,5,1$
$.01525,6.00, .009$ 5
$.17187,2.42, .005$ 6
$.01525 .6 .05 \cdot .009$
$.17180 .2 .40 . .605$ 8
$\begin{array}{lr}.11525,6.05,-069 & 9 \\ 3.03 & 10\end{array}$
3.03

11
90.

12
3.

13
14. 14
16.
18. 15
20. 17
test data to test ibmracf without plots (case i,fo,RhC,N=5) 1
GRAF $30=F$ GPAFSA $=F$ GRAFTR= F GRAFRV $=F$ TABLE $=F$ 2
NFINE $=1 \mathrm{NPHI}=2$ NTHETA $=5$ OSANG= 2.00 4
NX,NY,NXE,NYE,NXY,MX,AY: 16 16 256 16 $1612 \quad 16 \quad 1$KXMAX $=$ KYMAX $=.65094$ XY SPACING $=.76812$ WAVELENGTHS
6
KXM $=.65094 \mathrm{KYM}=.04063$ 8
TANGENT OGIVE PARANETERS: ROS(IN) $=150.46975$ BOS (IN) $=142.33625$ 9
FINOS $=3.000$ FINIS $=3.07245$
RINOS $=3.000$ FINIS $=3.07245$ 10
1 RESULTS OF RADOME ANALYSIS 11
TEST DATA TO TEST IBMRACP WITHOUT PLOTS (CASE I,FO,RHC,N=5) 12
FINENESS RATIO= 3.00 DIAMETER=16.26700 IN. LENGTH=48.80200 IN. 13
FREQUENC $Y=11.303 \mathrm{GHZ}$ 14
$2 A=7.74700$ IN. RF=39.76878 IN. ANTENNA $D=11.1840$ WAVELENGTHS 15
$I P Q=3$ ICASE $=1 \quad$ IOPT $=1$ 16
LAVER THICKNESSIIN.) ER TAND 18
19
1

.01525	6.000	.0090
.17180	2.400	.0050

$\begin{array}{lll}1 & .01525 & 6.000\end{array}$. 0050 2021
$.01525 \quad 6.000$.0090 22
C.000
C.000 .0050
$.61525 \quad 6.090$.0390 23
4
5 24
$\begin{array}{clllll}\text { PHI THETA BSEEL BSEAZ SLPEL SLPAZ } & \text { GAIN } \\ \text { (DEG) (DEG) (MRAD) (MRAD) (OEG/DEG) (DEG/DEG) (DB) }\end{array}$ 26
28

0.0	0.0	-.00	.00	0.0000	0.0000	-2.1	31
0.0	14.0	4.45	-4.82	.0182	-.0197	-1.2	32
0.0	16.0	4.39	-4.23	-.0018	.0168	-1.2	33
0.0	18.0	4.27	-3.71	-.0033	.0148	-1.2	34
0.0	20.0	4.15	-3.27	-.0036	.3128	-1.2	35
90.0	0.0	.00	.00	-.0036	.0128	-2.1	36
90.0	14.0	2.97	6.61	.0122	.0270	-1.3	37
90.0	16.0	2.02	6.38	-.0273	-.0067	-1.2	38

$\begin{array}{lllllll}90.0 & 18.0 & 1.44 & 6.06 & -.0167 & -.0091 & -1.1\end{array}$
$-.0094-1.0$ 3941
RECEIVED SUM VOLTAGE WITHOUT RAOOME = . $35400 \mathrm{E}+03$ 43

APPENDIX B

Test Case 2 for RTFRACP

TEST DATA TO TEST IRMRACP WITH PLOTS (CASE I,FO, RHC,N=5) 1
F,T,T,T,F,DO 2
1,1,1,16.267,3.05.15.657,48.8020001,11.80285.2. 3
$5,3,1,5.592,1522,3,1,5,1$ 4
.01525 .6 .03 .009 5
$.17180 .2 .40 . .005$ 6
.01525 .6 .00 .009 7
.17180 .2 .43 .005 8
.01525,6.00,.009 9
3.00 10
0. 11
14. 12
16. 13 14
18.
18.
20 。 15

PHI THETA BSEEL BSEAZ SLPEL SLPAZ GAIN 117
(OEG) (OEG) (MPAD) (MFAO) (DEG/DEG) (DEG/DEG) (DB) 118
121
RECEIVING PATTEFN COMPUTED FOR: 122
ICUT= 1 123
ICOMP $=1$ 124
KMAX $=\quad .651$ 125
NREC= 32 126
$D K=.48684 E-01$ 127
HiVGHAX=40.E1 128
(ICUT=1 FOR EL CUT, $=2$ FCR AZ CUT 129
(ICOMP=1 FOR El COMPONENT, $=2$ FOK AZIMUTH) 130
131132REGEIVINE PATTEKA COMPUTED FOR:134
ICUT $=1$ 135
$\operatorname{ICOMP}=1$ 136
K MAX $=$.E51 137
NREC= 32 138
$0 K=.40534 E-01$ 139
$\triangle N G M A X=40.61$ 140
(ICUT=1 FOR EL CUT, $=2$ FCR AZ CUT 141
(ICOMP=1 FOR EL COMDONENT, = ? FOF AZIMUTH) 142
MIN AND MAX VALUES OF REG"G PATTERN:146

REC*G PL	EL CUT	EL COMP	(CP):	153 154
				155
-39.5	-39.E21	2.8		156
-38.\%	-37.725	28.1		157
- 36.5	-35.889	43.8		158
-35.1	- 34.174	48.7		159
-33.7	-37.001	48.1		160
-32.3	-42.90	0.7		161
-30.9	- 36.564	-129.0		162
-29.5	-31.E33	-134.5		163
-28.2	-31.087	-140.6		164
-26.9	-33.941	-150.6		165
-25.6	-40.000	172.7		166
-24.3	-39.726	64.3		167
-23.1	-36.315	45.1		168
-21.A	-40.006	34.8		169
-20.5	-40.000	-143.9		170
-19.3	-31.439	-150.9		171
-18.1	-27.703	-155.2		172
- 16.9	-29.545	-158.3		173
-15.6	-40.30C	-163.7		174
-14.4	-28.379	19.6		175
-13.2	- 22.832	19.5		176
-12.0	-22.511	21.4		177
-10.8	-29.557	34.4		178
-9.7	-25.875	-177.6		179
-3.5	-17.361	-167.1		180
-7.3	-15. 087	-162.4		181
-6.1	-17.091	-155.1		182
-5.6	-26.575	-16.2		183
-3.8	-16.558	14.1		184
-2.0	-4.E15	19.3		185
-1.5	-1.523	22.3		186
-. 3	-. 154	25.5		187
. 9	-. 175	28.9		188
2.4	-1.523	32.9		189
3.2	-4.353	38.6		190

REC* G PA	El CUT	COMP	(CB)	229
				230
-39.5	-40.006	-17.5		231
-38.0	-35.63?	-10.4		232
-36.5	-36.319	-1.6		233
-35.1	-4C.000	28.2		234
-33.7	-40.000	95.4		235
- 32.3	-38.291	103.4		236
-30.9	-40.530	54.5		237
-23.6	- 31.965	-16.0		238
-28.2	-25.42E	- 31.2		239
-26.9	- 22.047	-37.8		240
-25.6	-22.687	-42.1		241
-24.3	-23.852	-44.7		242
-23.1	-22.151	-44.8		243
-21.4	-23.656	-41.1		244
-28.5	-23.525	-37.4		245
-19.3	- 21.546	-40.4		246
-18.1	-17.659	-46.9		247
-16.9	-14.780	-52.2		248
-15.6	-13.039	-55.1		249
-14.4	-12.69C	-55.0		250
-13.2	-13.951	-50.9		251
-12.0	-16.570	-39.9		252
-10.8	-19.217	-23.4		253
-9.7	-19.664	-26.9		254
-8.5	-14.123	-50.7		255
-7.3	-8.073	-51.9		256
-6.1	-3.695	-64.7		257
-5. 0	-1.134	-64.2		258
-3.8	-. OC5	-61.9		259
-2.6	-.66	-57.8		260
-1.5	-3.545	-49.6		261
-. 3	-10.383	-20.5		262
. 9	-9.741	76.4		263
2.5	-3.4C3	102.3		264
3.2	-. 784	111.1		265
4.4	-. 190	116.8		266

5.5 267
268
-3.20 126.77.3
\cdot 269
-1. 4.470270
10.3 133.3 271270
11.4 272
12.0 -14.702 273
13. - 274
15.?

$$
1485
$$ 275

10.2

$$
129.2
$$ 276

$17.5-14.648$ 277$18.7 \quad-17.376 \quad 137.2$
$19.9-20.548 \quad 138.5$ 279278
$21.2 \quad-22.648 \quad 135.9$ 28023.7281$-20.057$282
283$-26.40$138.6284
28.9285
$\begin{array}{lll}28.9 & -26.658 & 149.2 \\ 30.2 & -35.698 & 106.2\end{array}$

$$
286
$$

$$
287
$$

$$
\begin{array}{lll}
31.6 & -46.000 & -99.7 \\
32.6 & -40.000 & -77.8
\end{array}
$$

$$
288
$$

$$
\begin{aligned}
& 288 \\
& 289
\end{aligned}
$$

$$
34.4 \quad-40.000 \quad-152.0
$$

$$
\begin{aligned}
& 15<0 \\
& 160.7
\end{aligned}
$$

$$
155.7
$$$\begin{array}{lll}37.2 & -34.461 & 155.7 \\ 3.7 & -36.684 & 157.7\end{array}$157.7

291$38.7-3 E . E 34 \quad 157.7$292
$40.2-40.000 \quad 168.2$ 294
295293
RECEIVING PATTERN COMPUTED FOR: 296
ICUT $=$? 297
ICOMP= 1 298
KMAX= . 651 299
NEEC= 32 300
$\begin{array}{ll}D K= & 40634-C 1\end{array} 301$

ANGMAX $=40 . E 1$ 302
IICUT=1 FOR EL CUT, $=2$ FCR AZ CUT 303
(ICOMP=1 FCF EL COMPONENT, $=2$ FOR AZIMUTH) 304
RECEIVING PATTEEN CONPUTEO FOR: 308
ICUT $=2$ 309
ICOMP = 1 310
$K M A X=\quad .651$ 311
NPEC= 32 312
[iK = . . С684E-31 313
Ning $A X=40.61$ 314
IICUT=1 FOR EL CUT, =2 FCR AZ CUT 315
(ICOMP=1 FOF EL COMPONENT, $=2$ FOR AZIMLTH) 316
MIN AND MAX VALUES OF REC*G PATTERN: 320
SUBROUTINE NORM: MIN= .571E-G3 MAX= . $146 E+04$ 324
PEC"G PATTEPN, AZ CUT,EL COMP (OB): 328
$-39.5 \quad-4 i .300$ 31.5 329
$-38.6 \quad-36.745 \quad 49.9$ 331
$-36.5 \quad-33.491 \quad 59.4$ 332
$-35.1 \quad-32.71$ 62.9 333
$-33.7 \quad-39.657 \quad 64.0$ 334
$-32.3 \quad-40.000 \quad-127.1$ 335
$-36.9 \quad-34.787 \quad-122.0$ 336$-29.1-21.082$337
$-29.2 \quad-31.415 \quad-122.9$ 338
-26.9 -36.733 - 131.5 339
$-25.6 \quad-40.000 \quad 120.7$ 340
$-24.3 \quad-37.454 \quad 77.6$ 342$-23.1 \quad-39.335 \quad 75.8$

	-21.8	-40.000	-160.1	343
	-23.5	-32.176	-132.3	344
	-19.3	-24.247	-128.6	345
	-13.1	-28.970	-120.6	346
	-16.9	-38.666	-122.6	347
	-15.6	-32.04E	47.8	348
	-14.4	-24.c38	47.3	349
	-13.2	-23.864	46.3	350
	-12.0	-29.037	48.4	351
	-13.8	- 21.981	-147.4	352
	-9.7	-20.749	-140.9	353
	-8.5	-17.851	-140.1	354
	-7.3	-25.216	-138.3	355
	-5.1	-31.1+4	4.8	356
	-5.6	-12.63	28.5	357
	-3.8	-6.112	28.9	358
	-2.6	-2.513	28.3	359
	- -5	-. 605	27.3	360
$\stackrel{\sim}{\sim}$	-. 3	C.500	26.5	361
	. 9	-. 617	25.9	362
	2.0	-2.57E	26.0	363
	3.2	-E. 224	27.7	364
	4.4	-12.452	35.5	365
	5.5	- 22.048	87.6	366
	6.7	-18.855	158.2	367
	7.9	-15.8.15	171.5	368
	9.1	-17.121	179.9	369
	10.3	-21.503	-165.5	370
	11.4	-28.414	-125.7	371
	12.6	-30.506	-58.8	372
	13.4	-30. 374	-17.0	373
	15.0	- 31.544	23.4	374
	$16 . ?$	- 33.25 ¢	72.8	375
	17.5	- 33.539	135.4	376
	12.7	- 32.031	-178.3	377
	19.9	-33.585	-148.9	378
	21.2	- 39.613	-113.4	379
	22.4	-40.30	-84.6	380

	-20.5	-21.372	-4.4	419
	-19.3	-18. 337	-43.3	420
	-18.1	-14.097	-42.5	421
	-16.7	-13.059	-42.9	422
	-15.5	-12.335	-44.1	423
	-14.4	-13.677	-45.6	424
	-13.2	-15.083	-47.8	425
	-12.0	-17.250	-51.6	426
	-10.8	-16.774	-55.0	427
	-9.7	-12.809	-55.3	428
	-3.5	-8.035	-55.0	429
	-7.3	-4.123	-55.5	430
	-5.1	-1.473	-56.4	431
	-5.0	-. 147	-57.4	432
	-3.8	-. 227	-58.3	433
	-2.5	-2.054	-58.8	434
	-1.5	-7.005	-57.4	435
	-. 3	- 26.585	22.1	436
N	. 9	-7.698	158.3	437
σ	2.6	-2.131	115.2	438
	3.2	-. 356	110.4	439
	4.4	-. 283	110.5	440
	5.5	-1.437	111.3	441
	6.7	-3.632	114.1	442
	7.9	-6. EP^{8}	121.3	443
	9.1	-9.961	134.4	444
	10.3	-12.522	146.9	445
	11.4	-14.364	145.5	446
	12.6	-15.844	128.4	447
	13.9	-14.188	113.0	448
	15.0	-13.406	108.0	449
	15.2	-13.404	108.8	450
	17.5	-14.140	111.6	451
	18.7	-15.562	116.0	452
	19.9	-17.667	121.9	453
	21.2	-26.314	124.7	454
	22.4	-22.486	115.0	455
	23.7	-22.146	101.8	456

25.0		-20.919	103.5				457
26.3		- 25.656	113.3				458
27.6		-21.995	120.8				459
28.9		-25.783	121.1				460
30.2		- 32.923	113.7				461
31.6		-40.000	-64.9				462
33.7		-37.120	-77.1				463
34.4		-40.000	-82.0				464
35.8		-40.000	145.0				465
37.2		-37.488	140.8				466
38.7		-38.234	153.0 -				467
40.2		-40.600	171.1				468
NUMBER OF	PAYS	USED IN	COMPUTING	APEKTURE	FIELD =	177	469
NUMBER OF	RAYS	USEC IN	CCMPUTING	APERTURE	FIELO $=$	177	470
NUMBER OF	RAYS	USED IN	CCMPUTING	A PERT URE	FIELD =	177	471
NUMBER OF	EAYS	USED IN	CCMPUTING	APERTURE	FIELD $=$	177	472
NUMBER OF	fay	USED IN	COMPUTING	APEFTLRE	FIELD $=$	177	473

FINAL ANSWERS FCR MONOPULSE SYSTEM: 475
$\square 477$
K1: -.49509E-02.44512E-02 .99998E400 478
K2: -.481565-02 .460 31E-02 .99998E+00 479
$\begin{array}{ll}A Z T M=-.48156 E+C 1 ~ M R A D & 481\end{array}$
$E L T M=.44513 E+C 1$ MRAD 482
1ESAT= .2770JE+Q0 VCLTS/DEG 484
MESEL $=.28484 E+00$ VOLTS/DEG 485
UAZ: -. 21485E-02 .16E5EE-04 487
UEL: .4834EE-05 •24790E-C2 488

490
491
492
493
494

Figure B-1. $\left|E_{X \Sigma}\right|$ or $\left|E_{y \Sigma}\right|$ of the RHC (ICASE=1) Antenna.

Figure B-2. Phase of E_{xL} for RHC (ICASE=1) Antenna.

Figure B-3. Phase of $\mathrm{E}_{\mathrm{Y} \Sigma}$ for RHC Antenna.

Figure B-4. Transmitting E-Plane Σ Pattern of RHC Antenna Without Radome.

Figure B-5. Transmitting H-Plane Σ Pattern of RHC Antenna Without Radome.

Figure $B-6 .\left|E_{x}\right|_{\Delta E L}$ or $\left.\left.\right|_{Y}\right|_{\Delta E L}$ of RHC Antenna.

Figure B-7. Phase of $E_{x \Delta E L}$ of RHC Antenna.

Figure B-8. Phase of $\mathrm{E}_{\mathrm{y} \Delta \mathrm{EL}}$ of RHC Antenna.

Figure B-9. Transmitting E-Plane $\Delta_{E L}$ Pattern of RHC Antenna without Radome.

Figure $\mathrm{B}-10$. $\left|E_{x}\right|_{\triangle A Z}$ or $\left|E_{y}\right|_{\triangle A Z}$ of RHC Antenna.

Figure B-11. Phase of $E_{x \Delta A Z}$ of RHC Antenna.

Figure $B-12$. Phase of $E_{y \Delta A Z}$ of RHC Antenna.

Figure B-13. Transmitting $H-P l a n e \Delta_{A Z}$ Pattern of RHC Antenna Without Radome.

Figure B-14. Receiving E-Plane Σ Pattern of RHC Antenna With Radome at ($0^{\circ}, 14^{\circ}$).

Figure B-15. Receiving E-Plane $\Delta_{E L}$ Pattern of RHC Antenna With Radome at ($0^{\circ}, 14^{\circ}$).

Figure B-16. Receiving H-Plane Σ Pattern of RHC Antenna With Radome at ($0^{\circ}, 14^{\circ}$).

Figure $B-17$. Receiving $H-P l a n e \Delta_{A Z}$ Pattern of RHC Antenna With Radome at $\left(0^{\circ}, 14^{\circ}\right)$.

APPENDIX C

Test Case 3 for RTFRACP

TEST OATA TO TEST IBMRACP WITHOUT PLOTS (CASE 3,FO,LINEAR,N=5) 1
F, F, F, F, T, O $?$
$1,2,5,16.267,3.65,15.657,48.8023001,11.80285 .2$. 3
5,.3,1,2.5996,1522..1,3.5,14
$.51525 .6 .30, .009$ 5
$.17180 .2 .40 . .605$ 6
$.01525,6.30, .009$ 7
$.17180,2.40 .005$ 8

- 61525,6.10..009 9
3.00 10

0. 11
9[. 12
0 13
1. 14
2. 15
3. 15
4. 17
TEST JATA TO TEST IBMRACP WITHOUT PLOTS (CASE 3,FO,LINEAR,N=5) 1
GPAF $30=F$ TRAFSA $=F$ GRAFTR=F GRAFRV $=F$ TABLE=F 2
NFINE= 1 NPHI $=2$ NTHETA $=5$ OSANG $=$ 2.00
$N X, N Y, N X E, N Y E, N X Y, M X, M Y: 16 \quad 15256 \quad 1512161$ 0$K X M A X=K Y M A X=1.38696$ YY SPACING $=.36050$ WAVELENGTHS$K X M=1.38696 \quad K Y M=.03669$8
TANGENT OGIVE PARAMETERS: ROS (IN) $=150.46975$ BOS(IN) $=142.33625$ 9
FINOS $=3.00 \mathrm{CE}$ FINIS $=3.57245$ 10
1 RESULTS OF RADOME ANALYSIS 11
TEST DATA TO TEST IBMRACP WITHOUT PLOTS (CASE 3,FO,LINEAR,N=51 12
FINENESS RATIO $=3.03$ OIAMETER $=16.26700$ IN. LENGTH=48.80200 IN. 13
FREQUENCY= 11.8 E 3 GHZ 14
QA= 7.74707 IN. $R R=39.76873$ IN. ANTENNA $D=5.1992$ WAVELENGTHS 15
$I P O L=1 \quad$ ICASE $=3 \quad$ IOPT $=1$ 10
LAYER THICKNESS(IN.) ER TAND 17

1		.01525	6.000	.0090			20
2		. 17183	2.400	.0050			21
3		. 11525	6.000	. 0090			22
4		.17180	2.400	. 0050			23
5		. 01525	6.000	. 0090			24
$\begin{gathered} \text { PHI } \\ (D E G) \end{gathered}$	$\begin{aligned} & \text { THETA } \\ & (D E G) \end{aligned}$	BSEEL (MRAD)	$\begin{aligned} & \text { BSEAZ } \\ & \text { (MRAD) } \end{aligned}$	$\begin{aligned} & \text { SLPEL } \\ & \text { (DEG/DEG) } \end{aligned}$	$\begin{aligned} & \text { SLPAZ } \\ & \text { (DEG/DEG) } \end{aligned}$	$\begin{aligned} & \text { GAIN } \\ & \text { (0B) } \end{aligned}$	27 28
0.0	0.0	. 00	-. 00	0.0000	0.0000	-1.6	31
- 0	14.3	. 03	-5.37	.2000	-. 0220	-1. 5	32
].3	1E.?	. 00	-4.77	-. 0300	. 0170	-1.6	33
0.0	19.3	. 00	-4.27	-. 0000	- 1143	-1.5	34
0.0	21.0	. 00	-3.84	-. 0000	- 123	-1.5	35
9.1.	3.0	. 00	-. 00	-. 0000	. C123	-1.5	36
90.0	$14 . ?$	-2.27	-. 02	-. 0093	-. 0000	-. 3	37
90.	1E.]	-2.19	-. 32	. 0026	.0000	-. 3	39

9j. $18.0 \quad-2.05 \quad-.0 \% \quad .3037 \quad .0000$
$90.20 .7-1.90 \quad-.00 \quad .0043 \quad .0000$ $0000-.2$ 39$+2$

APPENDIX D

Test Case 4 for RTFRACP

TEST DATA TO TEST IBMRACP WITH PLOTS (CASE 3,FO,LINEAR,N=51 1
F,T,T,T,F,00 2
$1,1,1,16.267,3,05,15,657,48,8020001,11,8 \mathrm{C} 285,2$. 3
$5, .3,1,2,5996,1522 ., 1,3,5,1$ 4
$.01525,6.00, .009$ 5
$.17180,2.40, .005$ ϵ
.01525 .6 .00 .03097
$.17189,2.40 .005$ 8
$.01525,6.03 .0009$ 9
3.00 10
0. 11
14. 12
16. 13
19. 14
20. 15

35.33	.773	-113.7	.901	-108.2	. 200	-138.9	. 072	46.6	39
36.75	.770	-115.0	.907	-108.9	. 203	-138.2	. 057	47.9	4
38.20	.767	-116.4	. 913	-109.7	.206	-137.5	. 051	49.2	41
39.68	.763	-117.9	. 918	-110.6	. 209	-136.7	. 055	50.6	42
41.20	.759	-119.5	. 924	-111.5	. 213	-136.0	.049	52.0	43
42.74	.755	-121.2	. 933	-112.5	.216	-135.2	. 043	53.5	44
44.33	.751	-123.1	. 936	-113.6	. 220	-134.4	.037	55.0	45
45.96	.747	-125.1	- 941	-114.8	. 224	-133.7	. 031	56.6	46
47.04	.742	-127.3	. 945	-116.1	. 228	-132.9	. 026	58.3	47
49.38	.737	-129.7	. 951	-117.5	. 233	-132.2	. 021	60.1	$+9$
51.18	. 731	-132.3	. 956	-119.1	. 237	-131.4	. 016	61.9	49
53.05	. 725	-135.1	. 963	-129.8	. 243	-130.8	. 012	63.8	50
55.01	. 718	-138.3	. 953	-122.8	. 249	-130.1	.009	65.8	51
57.07	.710	-141.9	. 966	-125.0	. 256	-129.6	.006	67.9	52
59.25	.700	-145.9	. 969	-127.5	. 265	-129.2	.003	70.3	53
61.58	. 688	-150.4	. 970	-130.4	. 275	-128.9	. 002	73.4	54
64.11	. 572	-155.8	. 971	-133.8	.290	-128.9	.001	78.5	55
66.88	. 549	-162.2	. 971	-137.8	. 310	-129.3	.000	101.1	56
70.01	. 516	-170.3	. 973	-142.7	. 341	-137.5	.000	-128.0	57
73.71	. 558	178.8	. 967	-149.1	. 395	-133.0	.001	-116.9	58
78.50	. 436	161.4	. 959	-158.3	- 514	-139.4	.001	-117.0	59
90.08	0.000	-180.0	0.003	-180.0	. 894	-156.6	. 072	-124.4	50
TABLE OF XMN COEF. IS FORMED									53
$\begin{aligned} & K X M A X=K Y M A X=1.38696 \quad \text { XY SPACING }=.36050 \text { WAVELENGT } \\ & K X M=1.38596 \text { KYM= .03669 } \end{aligned}$									56 57
SUBROUTINE NORM: MIN= 3.									70
SUBROUTINE NORM: M			0.		. $103 E+01$				75

IPOWER OF PATTERN=1 78
79OWER OF PATTERN=
39
SUBROUTINE NORM: MIN= 3. MAX= 3. 81
8384
SUBPOUTINE NOKM: MIN= 0. MAX= .103E+01 35 86378989
31
SUBFOUTINE NORM: MIN= 0. MAX $=3$. 91
92
3394
SUBROUTINE NOFM: MIN= 3. MAX= .103E+01 36
SUROUTINE NOPM\& MINE 97
TANGENT OGIVE PARAMETERS: ROS(IN) $=150.46975$ BOS(IN) $=142.33625$ 9938
FINOS $=3.000$ FINIS $=3.07245$ 100
1 RESULTS OF RADOME ANALYSIS 101
TEST DATA TO TEST IBMRACP WITH PLOTS (CASE 3,FG,LINEAR,N=51 102
FINENESS RATIO $=3.0 \mathrm{C}$ DIAMETER=16.26700 IN. LENGTH=48.80200 IN. 103104
104 $P A=7.74700$ IN. RR=39.76878 IN. ANTENNA $D=5.1992$ WAVELENGTHS 175
$I P O L=1$ ICASE $=3$ IOPT $=1$ 106 137
LAYER THIGKNESS(IN.I ER TAND
LAYER THIGKNESS(IN.I ER TAND 109
$\begin{array}{llll}1 & .01525 & 6.000 & .0090\end{array}$ 139

1	.17180	2.400	.0050
3	.1750	110	
3	6.000	112	

$3.01525 \quad 6.000 \quad .0090$111
$4 \quad .17180 \quad 2.400 \quad .0050$ 113
$5 \quad .01525 \quad 6.000 \quad .0090$ 114
PHI THETA BSEEL BSEAZ SLPEL SLPAZ GAIN 117
(DEG) (DEG) (MRAD) (MRAD) (DEG/DEG) (DEG/DEG) (DB) 118
119
120
REGEIVING PATTERN COMPUTED FOR; 122
ICUT $=1$ 123
ICOMP $=1$ 12 124
KMAX $=$.995 $\quad 125$
NRFC= 32 125
JK= .62250E-u1 $\quad 127$
$A N G M A X=34.87 \quad 128$
IICUT=1 FOQ EL CUT, $=2$ FCR AZ SUT 129
(ICOMP $=1$ FOR EL GOMPONENT, $=2$ FOR AZIMUTH) 130
131
No
132
IVING PATTERN COMPUTED FOR:
ICUT $=1$ 135
ICOMP = 1 135
KMAX = .99E $\quad 137$
(138
DK= .62252E-01 139
ANGMAX $=84.87$ 14 $\quad 14$
(ICUT=1 FOP EL CUT, $=2$ FOR AZ SUT
(ICOMP=1 FJR EL COMPONENT, $=2$ FOR AZIMUTH)
141
MIN ANO MAX VALUES OF REC'G PATTERN: 145
$1+7$
140
SUBROUTINE NOPM: MIN= .151E-04 MAX= $.228 E+03 \quad 150$
149
131
152

131

0.7	-2.816	32.0	133
8.5	-4.546	35.2	19

10.3	-4.546

18.3 -6.766 193
42.7 2.1

$$
-9.599
$$

42.7 194
47.1 195$15.8-18.294 \quad 52$.196
$17.7 \quad-26.211$ 62.5 197
$19.5-40.000$ 157.6 198
$21.5 \quad-32.357$ -138.2 199
$23.4-27.878$ 200
$25.3-28.82$ -125.2 251
$27.3-32.344$ -121.5 202
$29.4 \quad-40.000$ -116.2 233
53.5 214
$33.5-37.178$ 61.7 275
$35.7 \quad-35.213$ 64.8 206
$37.9 \quad-35.968$ 57.0 217
$40.2-39.335$ 68.9 208
42.6 4. 000 72.9 209
$45.1 \quad-40.000$ -113.2 210
$47.7-40.000$ -108.6 211
$50.4=-i+0.000$ -106.0 212
-104.3 213
$53.3-40.00$
-102.9 214
$59.7-40.00$ -95.8 215
$63.5-40.000$ 72.8 216
$57.8 \quad-40.000 \quad 77.0$ 217
$73.2 \quad-40.000 \quad 79.7$ 218
$81.2-40.000 \quad 80.6$ 219
MIN AND MAX VALUES OF REC"G PATTERN: 221220
222
223 224

SUBROUTINE NORM: MIN= .644E-26 MAX= .102E+0.3

SUBROUTINE NORM: MIN= .644E-26 MAX= .102E+0.3 225
226227

8.5	-.514	122.5
10.3	-.052	125.5

$14.0-.402 \quad 270$
15.8 -1.068 134.7271
$17.7 \quad-2.066 \quad 272$
$19.5-3.344 \quad 140.2 \quad 273$
$21.5 \quad 14.474274$
$23.4-6.279 \quad 144.5$ 275
$\begin{array}{lll}25.3 & -7.843 & 146.5\end{array} 276$
$27.3-148.4 \quad 277$
$29.4-10.422 \quad 149.8 \quad 278$
$31.4-11.094 \quad 151.0 \quad 279$
$\begin{array}{lll}33.5 & -11.627 & 152.6\end{array}$
$35.7 \quad-12.187 \quad 154.5$
$154.5 \quad 291$
$37.9-12.308 \quad 155.9 \quad 282$
$40.2-12.496 \quad 293$
$42.6-13.120 \quad 153.6 \quad 284$
$45.1-14.167 \quad 160.4 \quad 285$
$4.7 \quad 15.081 \quad 286$
$50.4-15.851 \quad 162.2$ 297
$53.3-17.315 \quad 163.6 \quad 288$
$56.4-19.516 \quad 165.5 \quad 239$
$59.7-20.441 \quad 166.1 \quad 290$
$63.5-19.637 \quad 166.2$ 231
57.8 $-20.764 \quad 167.4 \quad 232$
$73.2-30.741 \quad 170.9 \quad 293$
$81.2-26.071 \quad-11.3 \quad 294$
KEUEIVING PATTERN COMPUTED FOR: 296
ICUT $=2$
ICOMP $=1$ 298
KMAX = -996 299
$\begin{array}{ll}\text { NREC }=32 & 305\end{array}$
$0 K=.62253 E-01 \quad 301$
ANGMAX $=34.87 \quad 302$
(ICUT=1 FOP EL CUT, $=2$ FOR AZ CUT $3!3$
(ICOMP=1 FOR EL COMPONENT, =2 FOR AZIMUTH) 3こ4
feceiving pattern computeo for: 308
ICUT $=2$ 309
ICOMP $=1$ 310
KMAX $=.996$ 311
NREC= 32 312
$D K=.62250 E-01$ 313
ANGMAX $=84.87$ 314
IICUT=1 FOR EL CUT, = 2 FOR AZ CUT 315
(ICOMP=1 FOR EL COMPONENT, $=2$ FOR AZIMUTH) 316317318319
MIN AND MAX VALUES OF REC'G PATTERN: 329
321322
SUBRJUTINE NORM: MIN= .303E-03 MAX= .229E+03 324
REC*G PATTERN. AZ CUT,EL COMP (DB): 328
329
$-76.6 \quad-40.000 \quad 127.4$ 330
$-70.3 \quad-40.000 \quad 94.2$ 331
$-65.6-40.000$ 56.9 332
$\begin{array}{lll}-61.6 & -40.000 \quad 23.4\end{array}$ 333
$-58.0 \quad-40.000 \quad-116.4$ 334
$-54.8 \quad-39.928 \quad-105.7$ 335
$-51.8 \quad-40.00$ -87.3 336
$-49.0 \quad-40.000 \quad-97.8$ 337
$-45.4 \quad-40.000 \quad-113.9$ 338
$-43.8 \quad-43.000 \quad-135.2$ 339
$\begin{array}{lll}-41.4 & -39.043 & 67.2\end{array}$ 340
$\begin{array}{lll}-39.1 & -35.989 & 70.6\end{array}$ 341
$\begin{array}{lll}-36.8 & -36.603 & 73.5\end{array}$ 342

	-34.6	-35.967	70.0	343
	-32.5	-35.664	67.1	344
	-32.4	-40.000	78.0	345
	-28.3	-34.943	-116.5	340
	-25.3	-30.795	-118.5	347
	-24.4	-36.255	-122.5	348
	-22.4	-30.934	-123.4	349
	-22.5	-38.339	-114.9	350
	-18.6	-29.339	5 B .2	351
	-16.7	-19.348	51.3	352
	-14.9	-14.037	48.1	353
	-13.0	-16. 218	44.8	35.
	-11.2	-7.115	42.8	355
	-9.4	-4.693	40.8	356
	-7.6	-2.928	37.9	357
	-5.8	-1.640	34.7	358
	-4.0	-. 704	32.2	359
	-2.2	-. 145	29.9	360
$\stackrel{\sim}{\sim}$	-. 4	-. 002	26.9	351
	1.3	-. 234	23.4	362
	3.1	-. 815	20.9	353
	4.9	-1.797	19.5	364
	6.7	-3.237	17.0	365
	8.5	-5.219	13.3	366
	10.3	-8.013	13.9	357
	12.1	-11.552	27.5	358
	14.0	-14.019	48.4	359
	15.8	-16.014	48.5	37.
	17.7	-18.720	25.1	371
	19.5	-23.462	-. 4	372
	21.5	-39.094	-110.6	373
	23.4	-26.638	-170.7	374
	25.3	-28.957	-161.4	375
	27.3	-36.279	-119.9	376
	29.4	-40.000	-119.0	377
	31.4	-40.000	134.8	378
	33.5	-38.563	48.8	379
	35.7	-32.843	25.7	380

$37.9 \quad-34.848 \quad 36.1$ 381
$40.2 \quad-40.000 \quad 78.6$ 392
$\begin{array}{lll}42.6 & -40.000 & 82.8\end{array}$ 393
45.1 -40.000 -33.7 394
47.7 -40.000 -110.6 335
53. $-37.358-138.4$ 386
$53.3-39.200$ -126. 8 397
$56.4 \quad-40.000$ -78.0 388
59.7 -40.000 -73.0 3.9
$53.5-42.000$ 163.6 390
$67.8 \quad-45.000$ 89.6 391
$73.2-40.000$ 51.7 392
81.2 -40.300 64.1 393394
MIN AND MAX VALUES OF REC*G PATTERN: 395396
397398
SUBROUTINE NOEM: MIN = .684E-02 MAX= .987E+02 399400
431402
REC"G PATTERN, AZ CUT,EL SOMP (DB): 403
-76.5 -20.835

$$
-9.9
$$

$$
435
$$-21.287-70.3

$$
-9.5
$$$-65.6 \quad-22.002$

$$
-11.6
$$

$$
400
$$$-61.6$

$$
-11.0
$$

$$
\begin{aligned}
& 407 \\
& 438
\end{aligned}
$$

$-58.0 \quad-18.74$

$$
-58.0 \quad-18.7
$$

$$
-9.7
$$

$$
409
$$

$$
-54
$$

$$
-17.7
$$

 -17.77
 $$
-11.2
$$

$$
410
$$

 \(-16.81\)
 $$
-13.7
$$

 -15.41
 \(-14.172\)-14.0411
 412-13.9

$$
-13.40
$$

413

$$
\begin{array}{ll}
-43.8 & -13.41 \\
-41.4 & -12.87
\end{array}
$$$-15$

414415

$$
-39.1 \quad-12.41
$$416

$$
\begin{array}{ll}
-36.8 & -12.09 \\
-34.6 & -11.87
\end{array}
$$

417
-34. -11.870$-18.0$$-13.0$417
418

40.2

 \(-12.745\)

 135.1

 458
 \(42.6 \quad-13.325 \quad 138.6\)
 \(\begin{array}{lll}42.6 & -14.361 & 142.5 \\ 45.1 & -15.188 & 145.1\end{array}\)
 47.7
 \(47.7 \quad-15.188 \quad 145.1\)
 463
 \(\begin{array}{lll}50.4 & -15.839 & 146.9\end{array} \quad 461\)
 \(53.3-17.275 \quad 150.2\)
 \(56.4 \quad-19.513 \quad 154.5\)
 \(59.7 \quad-20.371 \quad 156.7\)
 \(63.5-19.466 \quad 158.0 \quad 465\)
 \(67.8 \quad-20.596 \quad 161.3 \quad 465\)
 \(\begin{array}{lll}73.2 & -30.702 & 163.1\end{array}\)
 \(81.2 \quad-25.865 \quad-14.0 \quad 468\)
 NUMGER OF RAYS USED IN COMPUTING APERTURE FIELD = 169
NUMBER OF RAYS USED IN COMPUTING APERTURE FIELO = 169
NUMBER OF ZAYS USED IN COMPUTING AFERTURE FIELD = 169
NUMBER OF RAYS USED IN COMPUTING APERTURE FIELD = 169
NUMBER OF RAYS USED IN COMPUTING APERTURE FIELD $=169$

461
452
463
464
465
465
457
468
459
470
471
472
473
474
475
FINAL ANSWERS FOR MONOPULSE SYSTEM: 476

K2: $-.53657 \mathrm{E}-02 \quad .14448 \mathrm{E}-07 \quad .99999 \mathrm{E}+00 \quad 479$
$A Z T M=-.53657 E+C 1$ MRAD 431
ELTM $=.14449 E-04$ MRAD 432
MESAZ $=93465 E-31$ VOLTSTDEG 483
MESEL $=.10196 E+00$ VOLTS/DEG 435
UAZ: $-.11735 E-03 \quad .45944 E-07 \quad 437$
UEL: -. 20898E- $33 \quad .84448 E-97 \quad 488$
SMAX $=1209620585064 E+93 \quad$ CTR $=3 \quad 489$
490
491
432
433
434

AVERAGE SLPAZ= .93500E-E1 VOLTS/DEG 534533
AVERAGE SLPEL= . $14201 E+00$ VOLTS/DEG 535
SUM $=1.0$ VOLT 530
538
$3.314 .7 \quad .00 \quad-5.37 \quad 0.0000 \quad 0.0000 \quad-1.6$ 539$5+0$
REOEIVEO SUM VOLTAGE WITHOUT RADOME = .14615E+33 541 $5+2$543544

Figure D-1. $\left|E_{x}\right|$ of Flat Plate Antenna (ICASE=3) for Sum, Elevation Difference, and Azimuth Difference Channels.

Figure $D-2 .\left|E_{Y}\right|_{\Sigma}$ of Flat Plate Antenna.

Figure D-3. Phase of $\mathrm{E}_{\mathrm{Y} \Sigma}$ of Flat Plate Antenna.

Figure D-4. Transmitting E-Plane Sum Pattern of Flat Plate Antenna.

Figure D-5. Transmitting H-Plane Sum Pattern of Flat Plate Antenna.

Figure D-6. $\left|E_{Y \Delta E L}\right|$ of Flat Plate Antenna.

Figure D-7. Phase of $\mathrm{E}_{\mathrm{Y} \triangle \mathrm{EL}}$ of Flat Plate Antenna.

Figure D-8. Transmitting E-Plane $\Delta_{E L}$ Pattern of Flat Plate Antenna.

Figure D-9. $\left|E_{Y \triangle A Z}\right|$ of Flat Plate Antemna.

Figure D-10. Phase of $E_{Y \Delta A Z}$ of Flat Plate Antenna.

Figure D-ll. Transmitting H-Plane $\Delta_{A Z}$ Pattern of Flat Plate Antenna.
-321

Figure D-12. Receiving E-Plane Sum Pattern of Flat Plate Antenna With Radome.
PARAMETRIC INVESTIGATION OF RADOME ANALYSIS METHODS:

COMPUTER-AIDED RADOME ANALYSIS USING THE HUYGENS-FRESNEL PRINCIPLE AND LORENTZ RECIPROCITY

By
G. K. Huddleston, H. L. Bassett, \& J. M. Newton

Prepared for
AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFSC)
BOLLING AIR FORCE BASE, D. C. 20332

FINAL TECHNICAL REPORT, VOLUME III OF IV
GRANT AFOSR-77-3469
30 September 1977-31 December 1980
February 1981

The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the Air Force Office of Scientific Research or the U.S. Government,

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) PARAMETRIC INVESTIGATION OF RADOME ANALYSIS METHODS: COMPUTER-AIDED RADOME ANALYSIS USING THE HUYGENS-FRESNEL PRINCIPLE AND LORENTZ RECIPROCITY	5. TYPE OF REPORT \& PERIOD COVERED Final Technical Report, Vol. 3 of 4 30 September 1977-31 Dec. 1980 6. PERFORMING OZG. REPORT NUMEER
7. AUTHOR(s) G. K. Huddleston, H. L. Bassett, \& J. M. Newton	8. CONTRACT OR GRANT NUMBER(s) AFOSR-77-3469
9. PERFORMING ORGANIZATION NAME AND AODRESS Georgia Institute of Technology School of Electrical Engineering \& Enqineering Experiment Station Atlanta, Georgia 30332	10. PROGRAM ELEMENT, PROJECT, TASK AREA \& WORK UNIT NUMBERS $61102 \mathrm{~F} \quad 2301 / \mathrm{A} 6$
11. CONTROLLING OFFICE NAME AND ADDRESS Air Force Office of Scientific Research	12. REPORT DATE February 1981
Physics Directorate (Code NP-77-148) Bolling Air Force Base, D. C. 20332	13. NUMBER OF PAGES 133
14. MONITORING AGENCY NAME \& ADDRESS(if different from Controlling office)	15. SECURITY CLASS. (of this report) UNCLASSIFIED
	15a. DECLASSIFICATION/DOWNGRADING
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimi	ited.
17. DISTRIBUTION STATEMENT fof the abstract entered in Block 20, if different tro	om Report)
18. SUPPLEMENTARY NOTES	
19. KEY WORDS (Continue on reverse side if necessary and Identlify by block number) Radome Analysis Huygens-Principle Lorentz Reciprocity Surface Integration	
20. ABSTRACT (Continue on reverse side if necessary amd Identify by block number) A Fortran computer program is described for con gent ogive radome on the receiving patterns and bo pulse antenna. A receiving formulation with the i being the surface of integration is used. Apertur pute the near fields of the antenna. The main pro are well documented.	computing the effects of a tanresight directions of a monoinside surface of the radome integration is used to comgram and seven subroutines

PARAMETRIC INVESTIGATION OF
RADOME ANALYSIS METHODS:
COMPUTED-AIDED RADOME ANALYSIS USING
THE HUYGENS-FRESNEL PRINCIPLE ANDLORENTZ RECIPROCITY
by
G. K. Huddleston, H. L. Bassett, \& J. M. Newton School of Electrical Engineering \&
Engineering Experiment Station Georgia Institute of Technology
Final Technical Report, Volume III of IV
for
Air Force Office of Scientific Research (AFSC)Physics Directorate (Code NP-77-148)Bolling Air Force Base, D. C. 20332
underGrant AFOSR-77-3469
30 September 1977 - 31 December 1980
February 1981

TABLE OF CONTENTS

PAGE
CHAPTER 1
Introduction and Summary. 1
CHAPTER 2
PROGRAM SIIRACP 7
CHAPTER 3
SUBROUTINE RECM 55
CHAPTER 4
SUBROUTINE TRECNF 75
CHAPTER 5
SUBROUTINE APINT 91
CHAPTER 6
SUBROUTINE DIPOIES 95
CHAPTER 7
SUBROUTINE WALL 123
CHAPTER 8
SUBROUTINE CAXCB 124
FIGURE PAGE
1-1. Theoretical Basis of Radome Analysis 3
1-2. Illustration of Radome Analysis Method Using Inside Radome Surface as Surface of Integration in Reciprocity Integral 5
2-1. Tangent Ogive Radome Geometry. 9
2-2. Coordinate Systems Used in Radome Analysis 11
2-3. Coordinate System for Far Field Patterns 14
3-1. Radome Geometry for Defining Elemental Surface Area in θ Direction 60
3-2. Definition of Elemental Surface Area in ϕ Direction. 62
4-1. Approximation of Circular Aperture by Rectangular Grid of Sample Points 78
4-2. Geometry of Flat Plate Antenna 80
6-1. Geometry of Rectangular Aperture Antenna Approximated by Elementary Dipoles. 97

LIST OF TABIES

TABLE PAGE
2-1. Input Data for SIIRACP 41
4-1. Values of Non-Zero Elements in Circular Aperture (ICHAN=1, ICASE=1 or 2) 81
4-2. Symmetrical Amplitude Distribution for Flat Plate Antenna. 83
6-1. Elementary Dipole Fields of Z-Directed Currents. 99
6-2. Rectangular Field Components of Elementary Dipoles 102
6-3. Fields of Elementary x-Directed and y-Directed Dipoles 104
6-4. Fields Computed by Subroutine DIPOLES Along z-Axis for 4" x 4" Uniform Aperture ($\lambda=1.18^{\prime \prime}$) 108
6-5. Fields Computed by Subroutine DIPOLES Along x-Axis at $z=8$ inches 112
6-6. Fields Computed by Subroutine DIPOLES Along x-Axis at $z=24$ inches 115
6-7. Fields Computed by Subroutine DIPOLES Along x-Axis at $z=48$ inches 119

Chapter 1

INTRODUCTION AND SUMMARY

1-1. Introduction
This Volume III of this final technical report of four volumes documents a surface integration radome analysis computer program written in Fortran IV for use on the Cyber $70 / 74$ computing system at Georgia Institute of Technology and the IBM 3033 computing system at Johns Hopkins University Applied Physics Laboratory. The program was developed at Georgia Institute of Technology over the past three years under grant AFOSR-77-3469 and documented herein under the cognizance of R. C. Mallaleiu (APL Contract 60153).

The analysis package described was used during the research to analyze the antennas and radomes as described in Volumes I and IV. Its documentation was done in conjunction with an on-going radome technology program at JHU/APL. It is intended to serve as part of a technology base for the radome technical community.

This report is organized by chapters, where each chapter describes the main program or one subprogram not already described in Reference 1 (Ray Tracing Formulation). The main program (Chapter 2) described herein differs only slightly from that in Reference l. Only six new subroutines are required for the surface integration formulation as described in Chapters 3-8. References cited in each chapter are listed therein. Each chapter is terminated with the program listing.

This software us currently being used in a parametric investigation of radome analysis methods, and additional information concerning its speed and accuracy is presented in Volume I [2].
l-2. Description of the Analysis
The basis of analysis is illustrated in Figure l-1. The inner surface of the radome s_{1} is chosen as one surface of integration in the Lorentz reciprocity integral (upper left in figure). A surface S_{2} enclosing the antenna and extending into its interior, as illustrated, comprises the second surface. Together, $S_{1}+S_{2}$ enclose the source-free Volume V indicated; hence, the Lorentz surface integral is identically zero and the integral over S_{1} equals the negative of the integral over S_{2}.

Consider the surface S_{2} more closely. The surface integral over S_{2} is zero except over that part of S_{2} which is placed across the waveguiding structure that connects the Source "a" to the radiating (flared) part of the antenna. Call this surface S_{2}^{\prime}. If there can be defined a single dominant mode in the waveguide when Source "a" is activated, then voltage and current V_{a}, I_{a} can be defined at this terminal plane [4]. When Source " b " is activated, voltage and current V_{b}, I_{b} at S_{2}^{\prime} can also be defined; in fact, V_{b} is the "received voltage". The received current I_{b} is related to V_{b} by a linear impedance relationship

$$
\begin{equation*}
V_{b}=I_{b} Z_{a} \tag{1}
\end{equation*}
$$

where Z_{a} is the impedance seen at s_{2}^{\prime} looking toward Source "a" (sinusoidal steady state assumed; time variations of the form $e^{j \omega t}$ understood and suppressed). Also, I_{a} and V_{a} are related by

$$
\begin{equation*}
V_{a}=I_{a} Z_{1} \tag{2}
\end{equation*}
$$

$\underline{E}(x, y, z)=1 / 4 \pi \int_{s}[-j \omega \mu \psi(\hat{n} \times \underline{H})+(\hat{n} \times \underline{E}) \times \nabla \psi+(\hat{n} . \underline{E}) \nabla \psi] d S$
$\underline{H}(x, y, z)=1 / 4 \pi \int_{S}[j \omega \in(\hat{n} \times \underline{E}) \psi+(\hat{n} \times \underline{H}) \times \nabla \psi+(\hat{n} \cdot \underline{H}) \nabla \psi] d S$
figure 1-1. theoretical basis of radome analysis.
where Z_{1} is the impedance seen at S_{2}^{\prime} looking to the right in Figure l-l. Combining these results yields the desired expression for the received voltage V_{b}; viz.,

$$
\begin{equation*}
V_{b}=V_{R E C}=\frac{Z_{1} z_{a}}{V_{a}\left(Z_{1}+Z_{a}\right)} \int_{S_{1}}\left(E_{a} \times \underline{H}_{b}-E_{b} \times \underline{H}_{a}\right) \cdot \hat{n} d a \tag{3}
\end{equation*}
$$

Note that the unit normal is directed positively outward from volume v as dictated by Gauss' theorem.

When Source "b" in Figure l-1 is removed a great distance from the antenna/radome structure, the fields of "b" approach those of an electromagnetic plane wave (target return). The practical analysis approach then takes the form shown in Figure l-2. The inner radome surface is divided into a number of contiguous elemental areas ΔA, each of which is represented by a sample point P^{\prime} at its center. The fields $E_{T} H_{T}$ at P^{\prime} are assumed to be those present there in the absence of the radome and are found by aperture integration, the theoretical basis of which is the HuygensFresnel principle [5] as stated by the lower integrals in Figure 1-1. The fields $E_{R}{ }^{\prime} H_{R}$ at P^{\prime} are found by applying the normal voltage transmission coefficients [6] to the plane wave incident on the outside at point P. The received voltage is found by summing all the contributions as indicated in Equation (3).

The method of analysis indicated by Equation (3) is exact; however, certain approximations are necessarily introduced in its implementation. The fields $E_{T}{ }^{\prime}{\underset{H}{T}}$ should correctly include reflections from the inner radome surface. The use of the flat panel transmission coefficients to transform the incident plane wave at P to P^{\prime} is an approximate method based on the theory of geometrical optics (zero wavelength) and whose

FIGURE 1-2. ILLUSTRATION OF RADOME ANALYSIS METHOD USING inside radome surface as surface of integration IN RECIPROCITY INTEGRAL.
accuracy depends upon the radius of curvature of the radome wall. The accuracy of the method also depends on the size of the samples used to represent the radiating aperture as well as the radome surface. The computational speed of the analysis most certainly depends on the number of these samples.
l-3. References

1. G. K. Huddleston, H. L. Bassett, \& J. M. Newton, "Parametric Investigation of Radome Analysis Methods: Computer-aided Radome Analysis Using Geometrical Optics and Lorentz Reciprocity", Final Technical Report, Volume II of IV, Grant AFOSR-77-3469, February 1981.
2. G. K. Huddleston, H. L. Bassett, J. M. Newton, "Parametric Investigation of Radome Analysis Methods: Salient Results", Final Technical Report, Volume I of IV, Grant AFOSR-77-3469, February 1981.
3. R. E. Collin and F. J. Zucker, Antenna Theory, Part l, Section 4.2, McGraw-Hill, New York, 1969.
4. S. Silver, Microwave Antenna Theory and Design, Ch. 2, Mc-GrawHill, New York, 1949.
5. Ibid, Ch. 3.
6. J. H. Richmond, "Calculation of Transmission and Surface Wave Data for Plane Multilayers and Inhomogeneous Plane Layers", Air Force Contract AF 33 (615)-1081, The Antenna Laboratory, Ohio State University, Columbus, Ohio, October 1963.

Chapter 2

PROGRAM SIIRACP

2-1. Purpose: SIIRACP is a Fortran computer program used to analyze the effects of a tangent ogive radome on the performance of a monopulse aperture antenna. It consists of a main program and 28 subroutines, 22 of which are identical to those used in Program RTFRACP [1]. It uses complex arithmetic and requires 66600 octal words of core memory for execution on the CDC Cyber 70 system (60-bit words) at Georgia Institute of Technology. Execution time to compute boresight error on the Cyber 70 is approximately 255 seconds per look direction when the small antenna aperture is represented by $7 \times 7=$ 49 sample data points and the radome is represented by 826 sample points; i.e., approximately 1.26 millisecond per aperture sample point per radome sample point. The computer-aided radome analysis uses a receiving formulation based on the Lorentz reciprocity theorem as described earlier [1,2]. The voltage produced at the terminals of a linear antenna by an incident plane wave is given by

$$
\begin{equation*}
V_{R}(\hat{k})=\iint_{S}\left(\underline{E}_{T} \times \underline{H}_{R}-\underline{E}_{R} \times \underline{H}_{T}\right) \cdot \hat{n} d a \tag{1}
\end{equation*}
$$

where E_{T}, H_{T} are the fields produced on the surface S enclosing the antenna when the antenna is transmitting; $E_{R^{\prime}} \underline{H}_{R}$ are the incident fields produced on S by the incident plane wave or perturbations thereof; \hat{k} is a unit vector which points from the antenna toward the direction from which the plane
wave arrives; and \hat{n} is a unit vector normal to the surface S and pointing into the source-free region. *The fields ${\underset{T}{T}}^{\prime}{\underset{T}{T}}^{H}$ are taken to be those produced by the planar aperture on surface s when the antenna is transmitting in the absence of the radome. The geometrical optics approximation

$$
\begin{equation*}
\underline{H}_{\mathrm{T}}+\frac{\hat{\mathrm{n}} \times \mathrm{E}_{\mathrm{T}}}{\eta} \tag{2}
\end{equation*}
$$

is used to generate the magnetic field in the aperture from the aperture illumination specified by E_{T}.

The surface s is taken to be the inner surface of the radome. At each sample point P^{\prime} on this surface, the plane wave fields $E_{R}{ }^{\prime} \underline{H}_{R}$ incident from the outside are weighted with the flat panel normal voltage transmission coefficients as determined by the radome wall configuration, the angle of incidence, and the plane of incidence. The fields E_{T}, H_{T} att P^{\prime} are found by aperture integration. The individual contributions are summed up as indicated in Equation (1) and was illustrated in Figure 1-2.

The parameters of the tangent ogive radome are indicated in Figure 2-1. The outside base diameter $D_{o s}$ and fineness ratio $F_{o s}$ determine the outside length according to

$$
\begin{equation*}
\mathrm{F}_{\mathrm{OS}}=\mathrm{L}_{\mathrm{OS}} / \mathrm{D}_{\mathrm{OS}} \tag{3}
\end{equation*}
$$

A similar relation holds for the inside dimensions; viz.,

$$
\begin{equation*}
F_{i s}=L_{i s} / D_{i s} \tag{4}
\end{equation*}
$$

[^1]

Figure 2-1. Tangent Ogive Radome Geometry.

The radius of curvature of the outside wall $R_{\text {os }}$ is given by

$$
\begin{equation*}
\mathrm{R}_{\mathrm{OS}}=\mathrm{F}_{\mathrm{OS}} \mathrm{D}_{\mathrm{OS}} / \sin \left(\pi-2 \operatorname{Tan}^{-1}\left(2 \mathrm{~F}_{\mathrm{OS}}\right)\right) \tag{5}
\end{equation*}
$$

and the dimension B is given by

$$
\begin{equation*}
\mathrm{B}=\mathrm{R}_{\mathrm{OS}}-\mathrm{D}_{\mathrm{OS}} / 2 \tag{6}
\end{equation*}
$$

The placements of a bulkhead (bottom disk) and metal tip (top disk) can be specified by $Z_{B O T}$ and $Z_{T O P}$, respectively. The thickness, dielectric constant, and loss tangent of the wall may also be specified for up to $\mathrm{N}=5$ layers. The radome is assumed to be a body of revolution with uniform wall dimensions independent of location. The dashed cylindrical shape of a diameter D_{d} in Figure $2-1$ was used earlier to simulate a laserinduced defect and is not pertinent here.

The subroutine which generates the antenna aperture fields represents three types of antennas: circular or square aperture with tapered (cos x) illumination and any one of four polarizations (vertical, horizontal, RHC, LHC); flat plate antenna with tapered illumination and vertical polarization. For either antenna, the fields are computed for one of three selected channels: sum, azimuth difference, elevation difference. Inputs include the number of samples N_{X}, N_{Y} and the aperture diameter $D_{A P} / \lambda$ in wavelengths. The antenna/radome orientation is specified according to the parameters defined in Figure 2-2. The angle ϕ_{p} selects the plane of scan of the radome tip with respect to the antenna coordinate system: $\phi_{\mathrm{p}}=0^{\circ}$ selects the azimuth plane; $\phi_{p}=90^{\circ}$ selects the elevation plane. The angle θ_{L} scans the tip in the selected plane.

Figure 2-2. Coordinate Systems Used in Radome Analysis.

The program computes boresight errors in the azimuth and elevation planes of the antenna. The radome orientation is specified by ϕ_{p} and ϕ_{L}. The first target return (plane wave) is made to arrive from the direction

$$
\begin{equation*}
\hat{k}_{1}=\hat{x}_{A} \sin \theta_{O S}+\hat{y}_{A} \sin \theta_{O S}+\hat{z}_{A} \sqrt{1-2 \sin ^{2} \theta} \tag{7}
\end{equation*}
$$

where $\theta_{\text {os }}$ is the initial specified offset angle; e.g., 2°. The voltage received by each channel is computed and stored. The second return is made to arrive from

$$
\begin{equation*}
\hat{k}_{2}=\hat{x}_{A}\left(-\sin \theta_{O S}\right)+\hat{y}_{A}\left(-\sin \theta_{O S}\right)+\hat{z}_{A} \sqrt{1-2 \sin ^{2} \theta_{O S}} \tag{8}
\end{equation*}
$$

and the voltages are again computed. The data from these two points are used to construct a linear tracking model in the two planes, and a direction of arrival k is predicted which will yield null indications in both planes. The process is repeated until a desired error tolerance is satisfied or a maximum number of iterations is exceeded. Upon completion, the output \hat{k} indicates the direction from which the plane arrives which yields an electrical boresight indication. If α and β represent the boresight error angles in the azimuth and elevation planes, respectively, then they are related to the direction $\hat{k}=\hat{x}_{A} k_{X}+\hat{y}_{A} k_{Y}+\hat{z}_{A} k_{z}$ by

$$
\begin{equation*}
\sin \alpha=\frac{\mathrm{k}_{\mathrm{x}}}{\sqrt{1-\mathrm{k}_{\mathrm{y}}{ }^{2}}} \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\sin \beta=\frac{\mathrm{k}_{\mathrm{y}}}{\sqrt{1-\mathrm{k}_{\mathrm{x}}^{2}}} \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{k}_{\mathrm{z}}=\sqrt{1-\mathrm{k}_{\mathrm{x}}{ }^{2}-\mathrm{k}_{\mathrm{y}}{ }^{2}} \tag{11}
\end{equation*}
$$

Options are also provided whereby principal plane patterns as shown in Figure 2-3 and additional outputs around boresight can be computed and printed. These options are useful when preparing software for a new type of antenna and to ensure correct operation whenever curious results are obtained.

2-2. Usage:
Line No.
DATA APIN/O./ 47
DATA ZBOTIN/0.00/ 49
DATA RADIUS/1EO/ 52

DATA THETAA, PHIA, AGAM3A/0.0,90.0,0.0/ 53
DATA NX, NY, NYE, NXY/4,4,1,512/ 56
DATA MY/1/,NREC/61 57

READ $(5,6)$ TITIE 63

READ (5,*) GRAF3D, GRAFSA, GRAFTR, GRAFRV, SUPPRS, IPENCD,

SQUARE
65

READ (5,*) NFINE, NPHI, NTHE, DIAOS, RAIN, RRIN, ZTOPIN, FREQ,

OSANG67

READ (5,*) LMAX, DMRAD, IOPT, RAPMAX, VAIRM, IPOL, ICASE,
N, IPWR, KMAX, NXE 76
READ (5,*) DSTHIN, DSPHIN, NTHMIN, NPHIMIN 79
$\operatorname{READ}(5, *) \operatorname{DIN}(I), \operatorname{ER}(\mathrm{I}), \operatorname{TD}(\mathrm{I}) \quad(\mathrm{I}=1, \mathrm{~N}) \quad 115$
$\operatorname{READ}(5, *) \operatorname{FINR}(I) \quad$ (I=1,NFINE) 124
$\operatorname{READ}(5, *) \operatorname{PHI}(I) \quad(\mathrm{I}=1, \mathrm{NPHI}) 127$
$\operatorname{READ}(5, *)$ THETA (I) ($\mathrm{I}=1, \mathrm{NTHE}$) 129

$$
\begin{aligned}
& \rightarrow \theta_{\alpha}>0 \\
& \rightarrow \theta_{\epsilon}>0
\end{aligned}
$$

Figure 2.3 Coordinate System for Far Field Patterns

2-3. Arguments
a. Inputs. Units of arguments on input are distances in inches, angles in degrees, and frequency in gigahertz, unless otherwise noted. Units of arguments passed to subroutines are centimeters, radians, and gigahertz. An asterisk is used to denote those DATA arguments that do not normally need to be changed by the user.

above indicates increased resolutions in the NX direction of $M X=16$ and no magnification ($M Y=1$) in the NY direction. Consequently, note that $N X E=M X * N X=256$.

GRAFTR - A logical variable which controls the plotting of the amplitude and phase of the antenna aperture fields in the following order: $E_{X \Sigma^{\prime}}, E_{Y \Sigma^{\prime}}, E_{X \triangle E L^{\prime}}, E_{Y \triangle E L^{\prime}} E_{X \triangle A Z^{\prime}}, E_{Y \triangle A Z}$.

- A logical variable which controls the plotting of the receiving patterns of the antenna with radome in the same order as specified under GRAFSA above.

RAIN	- Real variable equal to the distance (in.) from the gimbal point to the antenna aperture.
RRIN	- Real variable equal to the distance (in.) from the
	gimbal point to the base of the radome.
ZTOPIN	- Real variable equal to the distance (in.) from
	the base of the radome to the face of a metal tip
	on the radome.
FREQ	- Real variable equal to the frequency of operation
	in gigahertz.
OSANG	- Real variable equal to the offset angle in degrees
	at which the first target return is to arrive on
	the antenna; e.g., OSANG=3.0.
LMAX	- Integer variable equal to the maximum number of
	iterations allowed by Subroutine RECBS in com-
	puting boresight error; e.g., LMAX=5.
DMRAD	- Real variable equal to the tolerance in milliradians
	allowed on computing boresight error; e.g., $\mathrm{DMRAD}=0.1$.
IOPT	- Integer variable which selects the polarization
	of the incident plane wave as follows:
	1. Linear, elevation component
	2. Linear, azimuth component
	3. Right hand circular
	4. Left hand circular
RAPMAX	- Real variable equal to the maximum radius (in.)
	of the antenna aperture.
VAIRM	- Real variable equal to the maximum amplitude of
	sum channel received voltage without radome. Any

real value can be entered for this variable since a subsequent program modification (Lines 345-362) causes VAIRM to be computed automatically.

IPOL

ICASE

N DSPHIN

IPWR - Integer variable which selects the component for which to compute the transmitting power patterns as follows:

1. Elevation Components
2. Azimuth Component
3. Total power

KMAX - Real variable equal to the sine of the maximum angle at which receiving patterns are to be computed.

NXE - Integer variable used by JOYFFT as explained above.
DSTHIN, - Real variables equal to the distance between adja-

- Integer variable which selects the polarization of the antenna when $I C A S E=1$ according to the same code as used above for IOPT.
- Integer variable which selects the type of antenna aperture for the analysis: ICASE=1 or 2 selects a circular or square aperture with tapered illumination; ICASE $=3$ selects a flat plate antenna with programmed illumination. See Subroutine TRECNF in Chapter 4.
- Integer variable equal to the number of layers (up to 5) in the radome wall. For cases where more than 5 layers are required, the dimensional arrays on Line 37 must be changed to $\mathrm{NN}=\mathrm{N}+1$. cent sample points on the radome surface in the

of transmission coefficients of the radome wall is printed by Subroutine wad with variables as explained immediately below.

ANGLE

- Real variable equal to the angle of incidence (degrees) of the plane wave on a plane sheet of infinite extent having the layered configuration specified for the radome wall. The entries in the table are computed at 250 equal increments in $\sin \theta_{i}$, but only every fifth result is printed. TPERI,TPARI - Complex variables equal to the normal voltage transmission coefficients of the sheet for the two cases of E_{i} perpendicular to the plane of incidence (T_{\perp}) and E_{i} parallel to the plane of incidence $\left(T_{\|}\right)$. In the printed table, the power transmission coefficients $\left|T_{\perp}\right|^{2}$ are $\left|T_{\|}\right|^{2}$ are printed; adjacent to each, the phases of T_{\perp} and $T_{\|}$are also printed.

RPERI,RPARI - Complex variables equal to the reflection coefficients $R_{\perp}, R_{\|}$of the plane dielectric sheet. Actually, $\left|R_{\perp}\right|^{2}$ and $\left|R_{\|}\right|^{2}$ are printed, accompanied by the phases of R_{\perp} and $R_{\|}$

KXMAX - Real variable equal to the folding wavenumber associated with sampling the aperture fields according to $\operatorname{KXMAX}=1 . /(2(\Delta x / \lambda)$, where x is the distance between samples.

DXWL - Real variable equal to $\Delta x / \lambda$.
KXM,KYM - Real variables equal to the folding wavenumbers of the principal plane patterns after magnification
for increased resolution. KXM=KYMAX*NXE/(MX*NX) and applies to the H-plane. KYM=KYMAX*NYE/(MY*NY) and applies to the E-plane. Usually, the expanded dimension NXE and magnigication factor $M X$ are selected so that $K X M=K X M A X$. Also, NYE and MY are usually selected so that KYM<<KYMAX.

MIN,MAX - Real variables equal to the minimum and maximum values of the amplitude of the complex arrays containing the aperture fields are processed by subroutine NORMH in preparation for 3 p plotting by Subroutine PLT3DH.

ROS - Real variable equal to the radius of curvature of the outside shape of the tangent ogive radome.

BOS - Real variable equal to the distance B in inches defined in Figure 2-1.

FINOS - Real variable equal to the fineness ratio of the radome as based on the outside dimensions.

FINIS - Real variable equal to the fineness ratio of the radome as based on the inside dimensions.

The following variables are printed when the receiving patterns are computed and printed:

ICUT - Integer variable which defines the E-plane (ICUT=1) or H -plane (ICUT=2) pattern. See Figure 2-3.

ICOMP - Integer variable which defines the field component of the plane wave incident on the receiving antenna: ICOMP=1 for elevation component; ICOMP=2 for azimuth component.

The receiving pattern is computed at NREC points and magnified using Subroutine MAGFFT to 256 points equally spaced in $\sin \theta$ over the range (-KMAX, KMAX-DK). Three parameters are printed: angle in degrees, amplitude in decibels, and phase in degrees. Only every fourth point in the 256 points is printed. The receiving patterns are printed in the following order:

E-Plane: $\Sigma_{E L}, \Delta_{E L}$
H-Plane: $\Sigma_{A Z}, \Delta_{A Z}$
Subroutine RECBS computes the boresight error of the antenna as produced by the radome. When SUPPRS=FALSE, the following parameters are printed:

K1, K2 - Real subscripted variables containing the direction cosines ($\mathrm{kXi}_{\mathrm{Xi}}, \mathrm{k}_{\mathrm{yi}}, \mathrm{k}_{\mathrm{zi}}$) of the last and next to last true directions to the target. One of these variables is equal to K, the subscripted variable containing the direction cosines of the last target return.

AZTM,EITM - Real variables equal to the boresight error in the H-plane and E-plane associated with the last target return ($\mathrm{k}_{\mathrm{x}}, \mathrm{k}_{\mathrm{y}^{\prime}} \mathrm{k}_{\mathbf{z}}$). Expressed in milliradians, these errors are computed according to
$\operatorname{AZTM}=\sin ^{-1}\left(k_{x} / \sqrt{1-k_{y}^{2}}\right) * 1000$.

ELTM $=\sin ^{-1}\left(k_{y} / \sqrt{1-k_{x}^{2}}\right) * 1000$.

Let $\hat{k}=\hat{x}_{A} k_{x}+\hat{y}_{A} k_{y}+\hat{z}_{A} k_{z}$. Then AZTM is the angle between the z_{A}-axis and the projection of \hat{k} onto the $X_{A} Z_{A}$ (azimuth) plane. ELTM is the angle between the z_{A}-axis and the projection of k onto the $y_{A} z_{A}$ (elevation) plane.

MESAZ, MESEL - Real variables equal to the monopulse error slopes in the azimuth and elevation channels expressed in units of volts per degree, where the maximum signal received by the sum channel is considered to be one volt.

UAZ,UEL - Real subscripted variables equal to the received tracking functions $I_{\text {mag }}\{\Delta / \Sigma\}$ corresponding to the target returns K 1 and K 2 above; e.g., UAZ(1) $=$ $I_{\text {mag }}\left\{\Delta_{A Z} / \Sigma_{A Z}\right\}$ for $K 1$.

SMAX - Real variable equal to the maximum amplitude of the received sum channel voltage.

LCTR - Integer variable equal to the number of iterations (target returns) used by Subroutine RECBS to compute boresight error.

Subroutine RECBS also computes and prints six additional monopulse outputs around the apparent boresight direction \hat{k}_{o}. The directions \hat{k} chosen lie in the plane $k_{X}=k_{Y}$ and are spaced one milliradian apart over the range ± 3 mrad and centered on the direction \hat{k}_{o}. The variables printed are as follows:

The main program always prints the boresight error in azimuth (BSEAZ) and elevation (BSEEL), and the values printed are identical to AZTM and

ELTM defined above. Main also computes the gain of the antenna in decibels with the radome in place according to

```
GAIN = 20. * ALOG1\emptyset(SMAX/VAIRM)
```

For other than an "air radome", GAIN is negative and indicates a loss in antenna maximum gain due to radome reflections and ohmic (tan δ) losses. The amplitude of received sum voltage, VAIRM, is always printed as the last item prior to termination of the program.

2-4. Comments and Method
a. Method. The method of analysis has been presented in Section
2.1. Additional details of analysis are presented in the descriptions of each subroutine, especially Subroutine RECM.
b. Supporting Subroutines. Twenty eight supporting subroutines are required by SIIRACP, 22 of which are identical to those used by RTFRACP. The purpose of each one is briefly described below. Those subroutines peculiar to SIIRACP and explained in Chapters 3-8 are denoted by asterisks below.
*(1) TRECNF--Computes complex vector aperture electric fields of antenna for all three monopulse channels at NX NY sample points.
(2) ORIENT--Computes matrices ROTATE and TRANSLate used for coordinate transformations by Subroutines POINT and VECTOR.
(3) POINT--Transforms a point $P\left(x_{A}, Y_{A}, z_{A}\right)$ in antenna system to the same point $P\left(X_{R}, Y_{R^{\prime}} z_{R}\right)$ in radome coordinate system, and vice versa.
(4) VECTOR--Transforms a vector from radome to antenna coordinate system, and vice versa.
(5) INCPW--Computes the rectangular electric field components of a plane wave incident from the direction \hat{k}_{A} in antenna coordinates. The power density of the plane wave is unity.
*(6) RECM--Computes the voltage received by each channel of the antenna for a plane wave $\operatorname{EINC}\left(E_{x}, E_{Y}, E_{z}\right)$ incident on the radome from the direction $K A\left(k_{x}, k_{y}, k_{z}\right)$.
(7) OGIVEN--Computes the unit inward normal to the tangent ogive radome surface at a specified point.
(8) RXMIT--Computes the transmitted electric fields of the plane wave traveling in direction -k and incident on a flat dielectric wall with unit inner normal n. The unit vectors k, n are used to resolve the incident plane wave into vector components perpendicular and parallel to the plane of incidence, and to determine the angle of incidence.
*(9) WALL-Computes the normal voltage transmission coefficients of flat panel model of the radome wall as function of the sine of the incidence angle.
(10) AXB--Computes real vector cross product $\underline{C}=\underline{A} X \underline{B}$.
(11) CAXB--Computes the complex vector cross product $\underline{C}=\underline{A} X \underline{B}$, where \underline{A} is complex and \underline{B} is real.
(12) RECBS-Computes boresight errors of antenna enclosed by the radome for the specified orientation, fineness ratio, etc.
(13) RECPTN--Computes receiving patterns of all three channels.
*(14) APINT--Computes the fields of specified planar aperture fields using equivalent currents.
*(15) DIPOLES--Computes the fields of electric and magnetic dipoles located on a planar surface as required by Subroutine APINT.
*(16) CAXCB--Computes the complex vector product $\underline{C}=\underline{A} \times \underline{B}$, where \underline{A} and \underline{B} are complex.

FAR-Computes the amplitude of the power pattern from the complex plane wave spectra $A_{x}\left(k_{x}, k_{y}\right), A_{y}\left(k_{x}, k_{y}\right)$ of an antenna.

NORMH--Normalizes a two-dimensional real array to values between 0 and 1 .

CNPLTH--Plots single dimensional far field patterns on axes patterned after standard pattern recorder paper. CNPLTH calls Subroutine PSI in addition to the usual Calcomp subroutines.
(22) PSI--Used by Subroutine CNPLTH to compute the azimuthal angle ψ.
(23) PLT3DH--Yields three-dimensional plots of the data in the two-dimensional real array FIELD. PLT3DH calls Subroutines PLTT, NORMH as well as the usual Calcomp subroutines.
(24) PLTT-Used by Subroutine PLT3DH to eliminate moving the pen for hidden lines.
(25) FFTA--Computes the Fast Fourier Transform of a onedimensional complex array having 2**IEXP elements. Proper operation is machine dependent.

MAGFFT--Provides increased resolution of a sampled function using FFT and Discrete Fourier Transform techniques. JOYFFT--Provides increased resolution of selected portions of a two-dimensional Fourier transform. JOYFFT calls Subroutines FFTA and PWRTWO.

PWRTWO--Used by Subroutine JOYFFT to ensure that a given integer is a power of 2.

2-5. Program Flow
For the following, refer to the program listing in Section 2-8 and the line numbers shown on the right-hand margin of that listing.

Line Nos.

15

16-31 Declare variables and array dimensions. Note equivalence statements in Lines 23-25. The dimension of IBUF in Line 28 may be computer system dependent. Note in Line 31 that only twenty fineness ratios, scan planes, and scan angles can be accommodated. Label common is used as a convenient means to transmit variables to subroutines not directly called by MAIN. The labels are generated from the names of the subroutines which receive the variables, and each label is terminated with the letter C to denote common; e.g., RECIC denotes variables common to MAIN and Subroutine RECM.

Declare namelists for printing data. These namelists are no longer used except for occasional debugging purposes.

Set data in DATA statements as described above in Section 2-3.

Set SMAX and VMAX to unity to prevent division by zero.
Read and write TITLE according to 18A4 format.
Read input data using free-field format.

Compute sine of the offset angle $\theta_{\text {os }}$ "
Set TABLE=FALSE so that normalizing factor VAIRM can be computed via a call to Subroutines RECM and RXMIT. In the latter, TABLE=FALSE causes $T_{\perp}, T_{\|}$to be set unity as in the case of no radome.

Write input data.
Read input data and set VAIRM needlessly,

Comments explaining input variables.
Set $N N=N+1=$ Number of wall layers plus one.
Initialize $\mathrm{DINCH}=$ total thickness of radome wall
in inches.

Read wall data and compute total thickness.
Compute DIAIN $=$ inside base diameter of the radome in inches.

Write array dimensional data.
122-129 Read fineness ratios, scan planes, and scan angles.

130-133	Compute wavelength in inches and centimeters.
	Compute $\beta=2 \pi / \lambda_{\text {cm }}$.
134	Compute DAPWL= diameter of antenna aperture in
	wavelengths.
135-148	Convert variables in inches to centimeters for input
	to subroutines. Some variables are multiply defined
	to avoid conflicts in labeled common; e.g., ZBOT and
	Z1. Note that DIACM is the inside diameter of the
	radome in centimeters.
149-153	Convert angles from degrees to radians using $\mathrm{RAD}=\pi / 180$.
154-160	Compute near fields of three channel monopulse antenna
	using Subroutine TRECNF.
161-168	Set KYMAX=KXMAX, compute magnified folding wavenumbers
	KXM, KYM, and print results.
169-187	Initialize Calcomp plotter, if required. The commented
	initialization (Lines 175-185) applies to the IBM 3033
	system at JHU/APL.
Note:	Lines 188-268 are used to plot the near fields of the
	antenna andor the transmitting principal plane power
	patterns.
189-190	Initialize the maximum values FMXEL, FMXDAZ of the E-
	and H-plane patterns so that when used initially as
	inputs to Subroutine FAR, the resulting pattern will
	be normalized with respect to its own maximum and FMXEL
	and FMXDAZ will be set equal to these respective maxima.
	On subsequent calls to FAR, the resulting patterns will
	be normalized with respect to FMXEL and FMXDAZ. Hence,

the relative gain of the difference and sum patterns will be correctly displayed in the graphs. Iterate for each of three monopulse antenna channels. Equate complex arrays EXT, EYT to the selected near field and compute the amplitude NF of EXT. Assume transmitting near fields are to be plotted ($G R A F T R=T$).

Call Subroutine PLT3DH to plot the amplitude of EXT. The inputs XSIZE=6., YSIZE=2.5, HEIGHT=2.5 yield a 3D plot that will fit on a $8^{\frac{1}{2} "} \times 1 l^{\prime \prime}$ report page. The inputs NF, NX, NY specify the real array to be plotted and its dimensions. The input NMZ=.TRUE. directs the subroutine to normalize NF so that its values be between 0 and 1. The input LDB=.FALSE indicates that the array NF contains linear values rather than logarithmic values (decibels). Compute and plot phase of EXT on a scale of -180 degrees to +180 degrees. Note that Line 210 ensures that the real array NF contains these phase values scaled to the required 0 to 1 range. Repeat amplitude and phase 3D plots for EYT. Assume GRAFSA=T so that principal plane patterns are plotted.

If IP=3, go to Line 254 and plot H-plane patterns; otherwise, plot E-plane patterns.

Call Subroutine JOYFFT to calculate the inverse Fourier transform of the x_{A}-component of near field EXT to
produce the plane wave spectrum XEEL from which the radiation field can be computed. In the process of computing the transform, provide increased resolution from NX x NY points to NYE x NXE points through point (NXC,NYC) in the array EXT. In the k_{x} direction, the plane wave spectrum is magnified by MY; it is magnified by $M X$ in the $k y$ direction. The array FFTXY is a working array.

Repeat for EYT to produce the plane wave spectrum YEEL for the Y_{A}-component of field. Call Subroutine FAR to calculate the E-plane elevation (IPWR=3) power pattern FFSEL of the near field at equal samples in $\sin \theta$ over the range ($-\mathrm{KXM}, \mathrm{KXM}-\Delta \mathrm{K}$). If FMXEL<0 (and it is for $I P=1$), normalize FFSEL with respect to its own maximum.

Call Subroutine DBPV and convert the power pattern to decibels on a scale of 0 to -40 dB .

Scale the values in FFSEL to the range of 0 to 1 for plotting.

Call Subroutine CNPLTH and plot the power pattern. If $K X M<l$, the pattern is plotted over the angular range corresponding to $\sin ^{-1}(\mathrm{KXM})$; if $\mathrm{KXM}^{2} \geq 1$, the angular range is $\left(-90^{\circ}, 90^{\circ}\right)$. Subroutine CNPLTH actually plots conical cuts corresponding to $k_{x}=$ constant or $k_{y}=$ constant as specified by inputs $K X C$, KYC. In the call here, $K X Y=K Y C=0$ so that a principal pattern is produced.

243-247	Write a figure title for the plot and establish a new origin for the next plot.
248	If $\mathrm{IP}=2$, the E-plane patterns are finished.
249-253	Since JOYFFT changes the input arrays EXT,EYT it is
	necessary to recompute them so that increased re-
	solution can be obtained in the plane wave spectra in
	the H-plane.
254-269	Repeat computation and plotting for H-plane power
	patterns.
271	Iterate the radome analysis for NFINE fineness ratios.
272	Set FINE = outside fineness ratio.
273-277	Calculate and write $\mathrm{R}_{\mathrm{OS}}, \mathrm{B}, \mathrm{F}_{\mathrm{OS}}, \mathrm{F}_{\text {IS }}$ as defined in
	Figure 2-1 for the radome geometry.
278	Compute $\mathrm{RDML}=$ distance from the base of the radome
	to the theoretical tip on the inside of the radome.
279-283	If Z TOPIN<RDML, the radome has a metal tip, and a
	message is written to that effect.
284-309	Compute parameters needed by Subroutine OGIVE to
	describe the radome shape. R and B are in centimeters
	and apply to the inside dimensions. AP, the height
	of the cylinder in centimeters, is not used. RTSQ $=$
	square of the radius of the top disk. RBSQ= square
	of the radius of the bottom disk (bulkhead). The
	other variables, BSQ, RINV, RSQ1, RP, and RP2, are
	precalculated here to speed later computations in
	OGIVE.

310	Compute conversion factor DPMR for converting milliradians to degrees.
311-314	Initialize the "last" values of boresight error in
	azimuth (AZL) and elevation (ELL) and the "last"
	value THL of scan angle. These variables are used
	later to compute boresight error slope in degrees
	per degree from the present and last values of bore-
	sight error.
315-316	Write title for analysis results.
317-319	Write parameters of radome wall.
320-322	Write heading for table of boresight error and gain
	data.
323-334	Write this same data to logical unit 7 for subsequent
	storage as a disk file, if desired.
335	Iterate the radome analysis for NPHI scan planes.
336-338	Compute ϕ_{r} in radians as required by Subroutine ORIENT.
339	Iterate the analysis for NTHE scan angles in each
	scan plane.
340-342	Compute θ_{r} in radians as required by Subroutine ORIENT.
343	Call Subroutine ORIENT and compute the rotation matrix
	ROTATE and translation matrix TRANSL required for coor-
	dinate transformations using Subroutines POINT and
	VECTOR.
344	On the first iteration, TABLE is false so that the
	maximum amplitude of the received voltage on the sum
	channel is computed without the radome.

345-347	Set the direction cosines of the incident plane wave so that it arrives from the z_{A} direction.	
348	Call Subroutine INCPW and compute the rectangular	
	components PWI of the incident plane wave having	
	polarization specified by IOPT.	
349-354	Set $T S U P=T$ and $T A B L E=F$ so that an air radome wall be	
	used and so that printing by Subroutine RXMIT and RECM	
	will be suppressed.	
355-356	Call Subroutine RECM and compute the complex voltages	
	VR received on the sum, difference elevation, and	
	difference azimuth channels, respectively, correspond-	
	ing to $\operatorname{VR}(\mathrm{I}), \mathrm{I}=1,3$.	
360	Compute VAIRM=\|VR(1)	.
362	Set TABLE=T so that on subsequent iterations VAIRM	
	will not be recomputed, and so that the table of	
	transmission coefficients will be utilized when RXMIT	
	is called.	
363	If $\mathrm{SUPPRS}=\mathrm{F}$, compute and print the E-plane and H-	
	plane receiving power patterns of the antenna with	
	the radome in place.	
366	Iterate in J for E-plane (ICUT=1) and H-plane (ICUT=2)	
	patterns.	
368	Set the desired far field component.	
369	Set the temporary logical variable $T S U P=T$ so that	
	printing will be suppressed.	

370-371	Call Subroutine RECPTN and compute the complex received voltages on each of three channels at NREC
	points over the range (-KMAX, KMAX - DK).
372-375	Increase the resolution and print results for all
	three channels. Do not print results that are known
	to be identically zero.
376-377	Transfer the received voltage into a one-dimensional
	array VREC.
378	If $\mathrm{NREC} \times \mathrm{NXE}$, there is no need to increase the resolu-
	tion.
379	Call Subroutine MAGFFT to increase the resolution of
	VREC from NREC points to NXE points. The result is
	contained in complex array XYFFT on output.
380-384	Compute linear power pattern.
385	Select NXX $=$ larger of NXE and NREC.
386	Write heading for printed results from Subroutine NORMH.
388	Call Subroutine NORMH to normalize the NXX values in
	real array MVREC to be between zero and one. The
	input argument LDB=.FALSE. since the values are not
	in decibels.
389	Call Subroutine DBPV to convert the power pattern
	in MVREC to decibels.
390-391	Write correct heading for E-plane or H-plane.
392	Compute the increment in sine at which power pattern
	has been computed and resolved.
393-404	Scale the power pattern to have values between 0 and
	1. If $\operatorname{SUPPRS}=\mathrm{F}$, compute the angle $\theta=$ ANG and the phase

of the pattern, and print the results for every fourth angle.

If $G R A F R V=T$, plot the receiving power patterns.
Call Subroutine CNPLTH and plot the receiving patterns in turn. Write an appropriate figure title following each pattern plot. Re-origin the plotter pen for subsequent plots. The result of Lines $330-383$ is four principal plane patterns: E-plane sum, E-plane $\Delta_{E L}{ }^{\prime}$ H-plane sum, $H-p l a n e ~ \Delta_{A Z}$.

Call Subroutine RECBS and compute the boresight errors AZT, ELT in the azimuth and elevation planes of the antenna as caused by the radome. On output, the real array $K A$ contains the direction cosines of the last target return and, hence, gives the true direction to the target at the time that the tracking functions in the azimuth and elevation planes indicated the electrical boresight direction. If this is the first iteration in scan angle, do not attempt to compute boresight error slope. Compute boresight error slope (degrees/degree) in azimuth and elevation channels.

Set the "last" values of boresight errors and scan angle to the current values in preparation for next iteration.

Compute loss in maximum gain of the antenna sum channel due to the radome.
Write results to logical units 6 and 7.
434-435 Write maximum amplitude of received sum voltage
VAIRM without radome.
436
Terminate plotting software.
STOP
END

2-6. Test Case
A test case has been delivered to JHU/APL under separate cover. Typical input data are shown in Table 2-1.

2-7. References

1. G. K. Huddleston and E. B. Joy, "Development of Fabrication and Processing Techniques for Laser Hardened Missile Radomes: Radome Electrical Design Analysis", Martin Marietta Purchase Agreement 573712, April 1977.
2. G. K. Huddleston, H. L. Bassett, and J. M. Newton, "Parametric Investigation of Radome Analysis Methods", IEEE AP-S Symposium Digest, pp. 199-202, May 1978; also, Proc. Fourteenth Symposium on Electromagnetic Windows, pp. 21-28, June 1978.
3. E. B. Joy and G. K. Huddleston, "Radome Effects on the Performance of Ground Mapping Radar," U.S. Army Missile Command, DAAH-01-72-C-0598, March 1973.

2-8. Program Listing: See following pages.
TEST SIIRACP FEB AC
$F, F, F, F, F, 00, T$
$1,1,1,1.1241, .01, .01,1.70,35 ., 3 . \quad 3$
5..5.1,.159.1.0.1,1,1,1,.5,43
$.11241, .11241,8,8 \quad 5$
.001 .1 .00 .0 .000 6
1.505
0 .
0 . 9
C THIS RADOME ANALYSIS COMPUTER PROGRAM, SIIRACP, WAS PREPARED FOR 1
C JOHNS HOPKINS APL BY G.K. HUDDLESTON, JANUARY 1980, UNDER THE 2
C COGNIZANCE OF ROBERT C. MALLALIEU. 3
C SUBR TRECNF COMPUTES NEAR FIELDS SUITABLE FOR THIS SURFACE 4
C INTEGRATION (INNER RADOME SURFACE) ANALYSIS APPROACH. 5
C COMPUTED RESULTS ARE ALSO WRITTEN TO TAPE7 FOR LATER USE. 6
C 7
C 8
C 9
C IMPLEMENTATION AT APL/JHU 2/11/80 FOR IBM 3033 10
C 11
C 12
C *** LIBRARIES LSIIRAC AND MISCFFT ARE REQUIRED FOR EXECUTION 13
PROGRAM SIIRACP (INPUT, OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT,TAPE7) 14
IMPLICIT REAL(K) 15
REAL NF (4, 4), MVREC(256), KA (3) 16
$\operatorname{COMPLEX} \operatorname{SUMX}(4,4), \operatorname{SUMY}(4,4), \operatorname{DELX}(4,4), \operatorname{DELY}(4,4)$ 17
$\operatorname{COMPLEX~DAZX}(4,4), \operatorname{DAZY}(4,4), \operatorname{EXT}(4,4), \operatorname{EYT}(4,4)$ 18
COMPLEX VR(16), VREC3(6,3),VREC(32) 19
REAL FFS $(256,1), \operatorname{FFSEL}(1,256)$ 20
COMPLEX XE $(256,1), \operatorname{YE}(256,1), \operatorname{XYFFT}(512), \operatorname{PWI}(3)$ 21
COMPLEX XEEL $(1,256)$, YEEL $(1,256)$ 22
$\operatorname{EQUIVALENCE}(\operatorname{XE}(1,1), \operatorname{XEEL}(1,1))$ 23
EQUIVALENCE(YE (1, 1), YEEL(1,1)) 24
EQUIVALENCE(FFS (1,1), MVREC(1), $\operatorname{FFSEL}(1,1))$ 25
C 26
LOGICAL GRAF3D, GRAFSA, GRAFTR,GRAFRV,TABLE, SUPPRS,TSUP, SQUARE 27
INTEGER IBUF(512) 28
C 29
REAL ROTATE (3,3), TRANSL(3),TITLE (18) 30
REAL FINR (20), PHI (20), THETA (20) 31
COMMON/RECIC/DSTH, DSPHI,NTHMIN, NPHIMIN, AREA,NPOINTS, ROS, RIS, 32
\$ZBOTCM,ZTOPCM, BCM, RR 33
COMMON/TDISKC/ZTOP,RTSQ 34
COMMON/TRACC/Z2,Z1 35
COMMON/BDISKC/ZBOT , RBSQ 36
COMMON/TRANSC/DIN (6) , ER (6) ,TD (6) ,TZ, WALTOL, N, NN, D (6) , ZB, TK 37
COMMON/OGIVC/RP, BSQ, AP, RINV, B, RSQ1, RP2 38
C 39
NAMELIST/GEOM/RR , RA , APIN, ZBOTIN , NX, NY , NXE , NYE , NXY , MX , MY , NXC , NYC 40
NAMELIST/KDATA/KXMAX,KYMAX,KXM,KYM 41
NAMELIST/NEW/LMAX, DMRAD, IOPT, RAPMAX,VAIRM 42
C BOUNDARY VALUES NEEDED BY SUBR TRACE (INCHES, CONVERT TO CM BELOW) 43
C $\mathrm{Z1}=\mathrm{ZR}$ COORDINATE OF BOTTOM DISK 44
C $22=2 R$ COORDINATE OF TOP DISK (Z1,Z2 IN CM) 45
C APIN IS HEIGHT OF CYLINDER IN INCHES, CONVERT TO CM BELOW 46
DATA APIN/O./ 47
C ZBOTIN IS ZR COORD OF BOTTOM DISK (BULKHEAD) IN RADOME COORD IN INCHE 48
DATA ZBOTIN/O.00/ 49
C KXMAX,KYMAX ARE OUTPUTS OF NEAR FIELD SUBR 50
C INITIALIZE CONSTANTS 51
DATA RADIUS/1EO/ 52
DATA THETAA, PHIA, AGAM3A/0.0,90.0,0.0/ 53
DATA PI/3.1415926535898/ 54
C************ 55
DATA NX,NY,NYE,NXY/4.4.1.512/ 56
DATA MY/1/,NREC/6/ 57
C************ 58
C 59
C READ IN DESCRIPTION OF RADOME WALL 60
$S M A X=1.0$ 61
VMAX $=1.0$ 62
$\operatorname{READ}(5,6)$ TITLE 63
WRITE $(6,6)$ TITLE 64
READ (5,*) GRAF3D, GRAFSA, GRAFTR, GRAFRV, SUPPRS, IPENCD, SQUARE 65
260 FORMAT (4L6) 66
READ (5, *) NFINE, NPHI, NTHE, DIAOS, RAIN, RRIN, ZTOPIN, FREQ, OSANG 67
SINOS=SIN (OSANG*PI/180.) 68
TABLE=. FALSE. 69
C TABLE IS SET FALSE SO THAT NORMALIZING FACTOR CAN BE COMPUTED. 70
WRITE $(6,265)$ GRAF $3 \mathrm{D}, \mathrm{GRAFSA}, \mathrm{GRAFTR}, \mathrm{GRAFRV}, \mathrm{TABLE}$ 71
265 FORMAT(" GRAF3D=",L2," GRAFSA=",L2," GRAFTR=",L2," GRAFRV=",L2, 72
\$ " TABLE=",L2) 73
WRITE (6,270) NFINE,NPHI,NTHE,OSANG 74
270 FORMAT(/" NFINE=", I5," NPHI=", I3," NTHETA=", I3," OSANG= ",F5.2/) 75
READ (5,*) LMAX, DMRAD, IOPT, RAPMAX, VAIRM, IPOL, ICASE, N, IPWR,KMAX, NXE 76
MX=NXE/NX 77
IF (MX.LT.1) MX=1 78
READ(5,*) DSTHIN, DSPHIN,NTHMIN,NPHIMIN 79
IF (VAIRM.LE.O.) VAIRM=1.0 80
C DIAOS=OUTSIDE DIAMETER OF BASE OF TANGENT OGIVE RADOME 81
C VAIR=MAXIMUM REC"D VOLTAGE W/O RADOME AT KX=O.,KY=0. 82
C NFINE=NO. OF FINENESS RATIOS 83
C NPHI=NUMBER OF SCAN PLANES 84
C NTHE =NUMBER OF ANGLES IN EACH SCAN PLANE 85
C DIAIN=INSIDE BASE DIAMETER OF RADOME IN INCHES 86
C ZTOPIN=ZR COORD (IN) OF TOP DISK (METAL TIP) 87
C FREQ=FREQUENCY IN GHZ 88
C GRAF3D=.TRUE. GIVES 3D PLOTS OF INCIDENT FIELDS ON APERTURE (DELETED) 89
C GRAFRV=.TRUE. GIVES SA PLOTS OF RECEIVING PATTERNS (AZ \& EL) 90
C GRAFSA=.TRUE. GIVES SA PLOTS OF TRANSMITTING PATTERN WITHOUT RADOME 91
C SUPPRS $=$. TRUE. SUPPRESSES THE PRINTING OF NUMEROUS RESULTS 92
C RAPMAX=MAX RADIUS OF ANTENNA APERTURE IN INCHES. 93
C IOPT SELECTS POLARIZATION OF INCIDENT PLANE WAVE: 94
C $=1$ ELEV (VERTICAL) 95
C $\quad=2$ AZIMUUTH (HORIZONTAL) 96
C $=3$ RHC 97
$=4$ LHC 98
C IPOL SELECTS POLARIZATION OF ANTENNA WHEN ICASE=1: 99
C \quad = SAME CODE AS FOR IOPT 100
C ICASE $=1$ OR 2 FOR CIRC APERTURE, UNIFORM ILLUMINATION 101
$=3$ FOR FLAT PLATE WITH SPECIFIED ILLUM, VERT POL (CASE III) 102
C $\mathrm{N}=$ =Number of layers in radome wall 103
C OSANG=ANGLE IN DEG IN 45 PLANE OFF BORESIGHT OF FIRST TARGET RETURN 104
C USED BY SUBR RECBS IN GETTING INITIAL DATA. 105
C IPWR=1 FOR POWER IN ELEV COMP OF FAR FIELD PATTERN 106
$=2$ FOR AZIMUTH COMP,=3 FOR TOTAL POWER. 107
C DSTHIN=SAMPLE DISTANCE (IN.) ON RADOME SURFACE IN THETA DIRECTION 108
C DSPHIN = -DITTO- PHI DIRECTION 109
C NTHMIN=MINIMUM NUMBER OF SAMPLES IN THETA DIRECTION 110
C NPHIMIN= -DITTO- PHI DIRECTION 111
$\mathrm{NN}=\mathrm{N}+1$ 112
DINCH=0. 113
DO $5 \mathrm{I}=1$, N 114
$\operatorname{READ}(5, *) \operatorname{DIN}(I), \operatorname{ER}(I), T D(I)$ 115
5 DINCH=DIN(I)+DINCH 116
DIAIN=DIAOS-DINCH*2. 117
NXC $=\mathrm{NX} / 2+1$ 118
NYC=NY/2+1 119
WRITE (6,4) NX, NY, NXE , NYE, NXY, MX, MY 120
4 FORMAT(" NX,NY,NXE,NYE,NXY,MX,MY:",7I4) 121
C READ FINENESS RATIOS FOR THIS RUN--BASED ON OUTSIDE DIMENSIONS 122
DO $13 \mathrm{I}=1$, NFINE 123
$13 \operatorname{READ}(5, *)$ FINR(I) 124
C READ ORIENTATIONS FOR THIS RUN (DEGREES) 125
DO $14 \mathrm{I}=1$, NPHI 126
$14 \operatorname{READ}(5, *) \operatorname{PHI}(I)$ 127
DO $15 \mathrm{I}=1$, NTHE 128
$15 \operatorname{READ}(5, *)$ THETA(I) 129
C COMPUTE WAVELENGTH: 130
WLIN $=29.97925 /($ FREQ*2.54) 131
WLCM=WLIN*2.54 132
BETA=2.*PI/WLCM 133
DAPWL=2.*RAPMAX/WLIN 134
C CONVERT TO CENTIMETER AND RADIANS 135
ZBOT $=$ ZBOTIN*2.54 136
Z1=ZBOT 137
RSQMAX $=(2.54 *$ RAPMAX)**2 138
DIACM=DIAIN*2.54 139
ZTOP=ZTOPIN*2.54 140
ZB=ZTOP 141
Z2=ZTOP 142
ZTOPCM=ZTOP 143
ZBOTCM=ZBOT 144
RA=RAIN*2.54 145
RR=RRIN*2.54 146
DSTH=DSTHIN*2.54 147
DSPHI=DSPHIN*2.54 148
RAD $=$ PI/ 180.0 149
6 FORMAT(18A4) 150
THETAA = THETAA*RAD 151
PHIA = PHIA*RAD 152
AGAM3A $=$ AGAM 3 A* RAD 153
C COMPUTE FIELDS OF ANTENNA WHEN XMITTING: 154
CALL TRECNF (SUMX, NX,NY, 1, IPOL, 1,DAPWL, DXWL, KXMAX,ICASE, SQUARE) 155
CALL TRECNF (SUMY, NX,NY,1,IPOL,2,DAPWL,DXWL,KXMAX,ICASE,SQUARE) 156
CALL TRECNF (DELX,NX,NY,2,IPOL,1,DAPWL,DXWL,KXMAX,ICASE,SQUARE) 157
CALL TRECNF (DELY, NX,NY,2,IPOL,2,DAPWL, DXWL, KXMAX,ICASE, SQUARE) 158
CALL TRECNF (DAZX,NX,NY,3,IPOL,1,DAPWL,DXWL,KXMAX,ICASE,SQUARE) 159
CALL TRECNF (DAZY,NX,NY,3,IPOL,2,DAPWL,DXWL,KXMAX,ICASE,SQUARE) 160
KYMAX=KXMAX 161
KXM=KXMAX*NXE/MX/NX 162
KYM=KYMAX*NYE/MY/NY 163
DYWL=DXWL 164
WRITE $(6,3)$ KXMAX, DXWL, KXM, KYM, DSTHIN, DSPHIN, NTHMIN, NPHIMIN 165
3 FORMAT(" KXMAX=KYMAX=",F8.5," DXWL=DYWL=",E12.5," WAVELENGTHS"/ 166
\$" KXM=",F8.5," KYM=",F8.5//" DSTHIN=",E12.5," DSPHIN=", 167
\$E12.5," NTHMIN=",I3," NPHIMIN=",I3//) 168
C 169
C INITIALIZE PLOTTER SOFTWARE 170
IF (GRAF3D.OR.GRAFSA.OR.GRAFTR.OR.GRAFRV) GO TO 200 171
GO TO 205 172
200 CONTINUE 173
C 174
C-_-_--_-_-_-_-_-_ CALCOMP INITIALIZATION 175
C 176
C CALL TITL36("RADOME ANALYSIS COMPUTER PROGRAM". 177
C * " G.K. HUDDLESTON 178
C * " GEORGIA INSTITUTE OF TECHNOLOGY") 179
C CALL INIT36(MDAY) 180
CC 181
C CALL PLOT $(0,,-3,-3)$ 182
CALL PLOTS(IBUF,512,3,IPENCD) 183
C 184
c 185
C 186
IF (GRAFTR.OR.GRAFSA) GO TO 201 187
GO TO 205 188
201 FMXEL=0. 189
$F M X D A Z=0$. 190
DO 30 IP $=1,3$ 191
DO $35 I=1$,NX 192
DO $35 \mathrm{~J}=1, \mathrm{NY}$ 193
IF (IP.EQ.1) EXT(I,J)=SUMX(I,J) 194
IF (IP.EQ.1) EYT (I,J)=SUMY(I,J) 195
$\operatorname{IF}(I P, E Q .2) \operatorname{EXT}(I, J)=\operatorname{DELX}(I, J)$ 196
IF (IP.EQ.2)EYT(I,J) =DELY(I,J) 197
IF (IP.EQ.3) EXT(I,J)=DAZX (I,J) 198
IF (IP.EQ.3) EYT (I,J)=DAZY(I,J) 199
$\mathrm{NF}(I, J)=\operatorname{CABS}(E X T(I, J))$ 200
35 CONTINUE 201
IF (.NOT.GRAFTR) GO TO 215 202
C PLOT 3D NEAR FIELDS X-COMPONENTS 203
CALL PLT3DH (6.,2.5,2.5,NF,NX,NY,.TRUE. , FALSE.) 204
C PLOT PHASE ALSO 205
DO $40 \mathrm{I}=1$, NX 206
DO $40 \mathrm{~J}=1, \mathrm{NY}$ 207
$\mathrm{NF}(\mathrm{I}, \mathrm{J})=0$. 208
CALL AMPHS(EXT(I,J),RLF,AIF) 209
$\mathrm{NF}(\mathrm{I}, \mathrm{J})=($ AIF +180.$) / 360$. 210
40 CONTINUE 211
CALL PLT3DH(6.,2.5,2.5,NF,NX,NY,.,FALSE.,. FALSE.) 212
C PLOT 3D NEAR FIELDS Y-COMPONENTS 213
DO $45 \mathrm{I}=1$, NX 214
DO $45 \mathrm{~J}=1, \mathrm{NY}$ 215
$\mathrm{NF}(\mathrm{I}, \mathrm{J})=\operatorname{CABS}(E Y T(\mathrm{I}, \mathrm{J}))$ 216
45 CONTINUE 217
CALL PLT3DH(6.,2.5,2.5,NF,NX,NY,.TRUE.,. FALSE.) 218
C PLOT PHASE ALSO 219
DO $50 \mathrm{I}=1$, NX 220
DO $50 \mathrm{~J}=1$, NY 221
$\mathrm{NF}(\mathrm{I}, \mathrm{J})=0$. 222
CALL AMPHS (EYT(I, J), RLF ,AIF) 223
$\mathrm{NF}(\mathrm{I}, \mathrm{J})=(\mathrm{AIF}+180) /$.360 224
50 CONTINUE 225
CALL PLT3DH(6.,2.5,2.5,NF,NX,NY,. FALSE.,.FALSE.) 226
IF (GRAFSA) GO TO 215 227
GO TO 30 228
215 CONTINUE 229
IF (IP.EQ. 3) GO TO 220 230
C CALC EL CUT OF SUM 231
C NOTE THAT JOYFFT CHANGES EXT, EYT. 232
CALL JOYFFT (EXT, NX, NY, MY, MX, NXC, NYC, XEEL, NYE, NXE, XYFFT, NXY, 3) 233
CALL JOYFFT(EYT,NX,NY,MY,MX,NXC,NYC,YEEL,NYE,NXE,XYFFT,NXY, 3) 234
CALL FAR (FFSEL,XEEL,YEEL, NYE,NXE,FREQ,KYM,KXM, RADIUS,IPWR,FMXEL) 235
C SA PLOTS OF ELEVATION RESULTS 236
CALL DBPV (FFSEL,NYE,NXE,1) 237
DO $216 \mathrm{I}=1$, NYE 238
DO $216 \mathrm{~J}=1$,NXE 239
$\operatorname{FFSEL}(I, J)=1.0+\operatorname{FFSEL}(I, J) / 40$. 240
216 CONTINUE 241
CALL CNPLTH(FFSEL,NXE,KXM,0.,0.) 242
CALL SYMBOL (.5,6.5,.140000,39HFIGURE TRANSMITTING ELEVATION PO 243
\$WER,0., 39) 244
RPWR=FLOAT (IPWR) 245
CALL NUMBER (999., 999.,. 14, RPWR,0.,0) 246
CALL PLOT (8.5,0.,-3) 247
IF (IP.EQ.2) GO TO 30 248
C RECOMPUTE SUMX,SUMY FOR JOYFFT: 249
CALL TRECNF (EXT,NX,NY,1,IPOL,1,DAPWL,DXWL,KXMAX,ICASE,SQUARE) 250
WRITE $(6,219)$ IPWR 251
219 FORMAT(" IPOWER OF PATTERN=", I2) 252
CALL TRECNF (EYT,NX,NY, 1, IPOL, 2, DAPWL, DXWL, KXMAX, ICASE, SQUARE) 253
220 CALL JOYFFT (EXT, NX, NY, MX, MY, NXC, NYC, YE, NXE, NYE, XYFFT, NXY, 3) 254
CALL JOYFFT(EYT,NX,NY, MX, MY, NXC, NYC, YE, NXE, NYE, XYFFT, NXY, 3) 255
CALL FAR (FFS, XE, YE, NXE,NYE,FREQ,KXM,KYM, RADIUS, IPWR,FMXDAZ) 256
C SA PLOTS OF AZIMUTH RESULTS 257
CALL DBPV (FFS,NXE,NYE,1) 258
DO $10 \mathrm{I}=1$, NXE, 1 259
DO $10 \mathrm{~J}=1$, NYE 260
$\operatorname{FFS}(\mathrm{I}, \mathrm{J})=1.0+\mathrm{FFS}(\mathrm{I}, \mathrm{J}) / 40.0$ 261
10 CONTINUE 262
CALL CNPLTH (FFS, NXE,KXM,0.,0.) 263
226 CALL SYMBOL(.5,6.5,.14000,37HFIGURE TRANSMITTING AZIMUTH POWER 264
\$,0.,37) 265
CALL NUMBER(999.,999.,.14, RPWR,0.,0) 266
CALL PLOT (8.5,0., -3) 267
30 CONTINUE 268
205 CONTINUE 269
C 270
DO 100 NG=1, NFINE 271
FINE=FINR (NG) 272
C CALCULATE INSIDE FINENESS RATIO 273
RIN=FINE*DIAOS / (SIN (PI-2.*ATAN (2.*FINE))) 274
ROS=RIN*2.54 275
BIN $=$ RIN-DIAOS/2. 276
FINE=SQRT ((RIN-DINCH)**2-BIN**2)/DIAIN 277
RDML=FINE*DIAIN+APIN 278
IF (ZTOPIN.LT.RDML) WRITE $(6,25)$ ZTOPIN 279
20 FORMAT(" TANGENT OGIVE PARAMETERS: "," ROS(IN)=" 280
\$,F9.5," BOS(IN)=",F9.5,/26X," FINOS=",F5.3, 281
\$ "FINIS=", F8.5," RINV=", E12.5) 282
25 FORMAT (/" THIS RADOME HAS A TOP DISK AT ZTOPIN= ", E12.5/) 283
C COMPUTE PARAMETERS NEEDED BY SUBR OGIVE 284
R=FINE*DIACM/(SIN(PI-2.*ATAN(2.*FINE))) 285
RIS $=$ R 286
TLIS=DIA IN *FINE 287
IF (ZTOPIN.GT.TLIS) ZTOPIN=TLIS 288
ZTOP=ZTOPIN*2.54 289
ZB=ZTOP 290
Z2=ZTOP 291
ZTOPCM=ZTOP 292
IF (ZTOPCM.GT.RIS) ZTOPCM=RIS 293
$\mathrm{B}=\mathrm{R}-\mathrm{DIACM} / 2$. 294
$B C M=B$ 295
AP=APIN*2.54 296
RTSQ=R**2-(ZTOP-AP)**2 297
IF (RTSQ.LT.0.) RTSQ=0. 298
RTSQ $=(S Q R T(R T S Q)-B) * * 2$ 299
RBSQ $=R^{* * 2-(Z B O T-A P) * * 2 ~}$ 300
IF (RBSQ.LT.O.) RBSQ=0. 301
RBSQ $=(S Q R T(R B S Q)-B) * 2$ 302
BSQ=B**2 303
RINV = $1 . / R$ 304
RSQ1=R**2 305
RP=RSQ1-BSQ 306
RP2=RSQ1+BSQ 307
WRITE (6,20) RIN,BIN,FINR(NG),FINE,RINV 308
C 309
DPMR=180./(PI*1000.) 310
$\mathrm{AZL}=0$. 311
ELL=0. 312
THL=0. 313
TLOS=DIAOS*FINR(NG) 314
WRITE (6, 2) TITLE, FINR(NG), DIAOS, TLOS, FREQ, RAIN, RRIN, DAPWL, IPOL, 315
\$ICASE, IOPT 316
DO $8 \mathrm{I}=1, \mathrm{~N}$ 317
8 WRITE(6,7) I,DIN(I),ER(I),TD(I) 318
7 FORMAT(2X,I3,F13.5,F10.3.F9.4) 319
WRITE $(6,9)$ 320
9 FORMAT(//" PHI THETA BSEEL BSEAZ SLPEL SLPAZ GAIN"/ 321
\$ " (DEG) (DEG) (MRAD) (MRAD) (DEG/DEG) (DEG/DEG) (DB)"//) 322
WRITE (7,2) TITLE, FINR(NG),DIAOS, ZTOPIN,FREQ,RAIN, RRIN, DAPWL, IPOL, 323
\$ICASE, IOPT 324
DO $18 \mathrm{I}=1, \mathrm{~N}$ 325
$18 \operatorname{WRITE}(7,7) \mathrm{I}, \operatorname{DIN}(\mathrm{I}), \mathrm{ER}(\mathrm{I}), T \mathrm{D}(\mathrm{I})$ 326
WRITE $(7,9)$ 327
2 FORMAT(1H1,5X," RESULTS OF RADOME ANALYSIS USING INSIDE SURFACE IN 328
1TEGRATION"/18A4/" FINENESS RATIO=", F8.5,2X, 329
2"DIAMETER=",F8.5," IN. LENGTH=",F8.5," IN."/" FREQUENCY=", 330
3F8.5," GHZ "/ 331
4" RA=",F8.5," IN. RR=",F8.5," IN. ANTENNA D=",F8.4, 332
5" WAVELENGTHS"/" IPOL=",I2," ICASE=",I2," IOPT=",I2// 333
6" LAYER THICKNESS(IN.) ER TAND"/) 334
DO 100 IPHI=1,NPHI 335
PHIP=PHI (IPHI) 336
PHIR $=$ PHIP +180 337
PHIR=PHIR*RAD 338
DO 100 ITHE=1,NTHE 339
THETAL =THETA (ITHE) 340
THETAR $=180$. - THETAL 341
THETAR $=$ THETAR*RAD 342
CALL ORIENT(RA, THETAA, PHIA, RR, THETAR, PHIR, AGAM3A, ROTATE, TRANSL) 343
IF (TABLE) GO TO 23 344
C COMPUTE NORMALIZING FACTOR: 345
$K A(1)=0$. 346
$K A(2)=0$. 347
$K A(3)=1$. 348
CALL INCPW(KA,PWI,IOPT) 349
TSUP=SUPPRS 350
TABLE=.FALSE. 351
ZTEMP=ZTOPCM 352
ZTOPCM=DIACM*FINE 353
IF (ZTOPCM.GT.RIS) ZTOPCM=RIS 354
CALL RECM (PWI,KA, NX,NY,KXMAX,KYMAX, FREQ, ROTATE, TRANSL, 355
\$SUMX, SUMY, DELX, DELY, DAZX, DAZY, VR, TABLE, TSUP, RSQMAX) 356
C SET ZTOPCM BACK TO THE INPUTTED VALUE. 357
IF (ZTOPCM.LT. ZTEMP) ZTEMP=ZTOPCM 358
ZTOPCM=ZTEMP 359
VAIRM=CABS (VR(1)) 360
WRITE $(6,105)$ VAIRM 361
TABLE =. TRUE. 362
23 IF (.NOT.SUPPRS) GO TO 24 363
GO TO 350 364
24 CONTINUE 365
DO $320 \mathrm{~J}=1,2$ 366
ICUT=J 367
ICOMP=IOPT 368
TSUP = . TRUE. 369
CALL RECPTN(SUMX, SUMY, DELX, DELY, DAZX, DAZY, NX, NY, ICUT, ICOMP, KMAX, 370
\$NREC, VREC 3, KXMAX, KYMAX, FREQ, ROTATE, TRANSL, TABLE, TSUP, RSQMAX) 371
DO 325 MM=1,3 372
ICHAN =MM 373
IF ((ICUT.EQ.1).AND.(ICHAN.EQ.3)) GO TO 325 374
IF ((ICUT.EQ.2).AND.(ICHAN.EQ.2)) GO TO 325 375
DO $26 \mathrm{I}=1$, NREC 376
$26 \operatorname{VREC}(I)=\operatorname{VREC} 3(I, I C H A N)$ 377
IF (NREC.GE.NXE) GO TO 31 378
CALL MAGFFT(VREC,NREC,XYFFT,NXE) 379
DO $305 \mathrm{I}=1$, NXE 380
$305 \operatorname{MVREC}(\mathrm{I})=\operatorname{CABS}(\operatorname{XYFFT}(\mathrm{I})) * * 2$ 381
GO TO 33 382
31 DO $32 \mathrm{I}=1$, NREC 383
$32 \operatorname{MVREC}(I)=\operatorname{CABS}(\operatorname{VREC}(I)) * * 2$ 384
33 NXX=MAXO (NXE,NREC) 385
WRITE $(6,306)$ 386
306 FORMAT(/" MIN AND MAX VALUES OF REC""G PATTERN: "/) 387
CALL NORMH(MVREC,NXX,1,.FALSE.) 388
CALL DBPV(MVREC,NXX,1,1) 389
IF (J.EQ.1) WRITE $(6,308)$ 390
IF (J.EQ.2) WRITE $(6,309)$ 391
DK=2.*KMAX/NXX 392
IMOD $=4$ 393
IF (NREC.GE.NXE) IMOD=1 394
DO $307 \mathrm{I}=1, \mathrm{NXX}, 1$ 395
IF (SUPPRS) GO T0307 396
ANG $=$ ASIN $(-K M A X+(I-1) * D K) * 180 . / P I$ 397
CALL AMPHS (XYFFT(I), AMP, PHS) 398
IF (NREC.GE.NXE) CALL AMPHS(VREC(I),AMP, PHS) 399
IF (MOD (I, IMOD).EQ.0) WRITE (6,310) ANG, MVREC(I), PHS 400
$307 \operatorname{MVREC}(\mathrm{I})=1.0+\operatorname{MVREC}(\mathrm{I}) / 40$. 401
308 FORMAT(/" REC""G PATTERN, EL CUT, EL COMP (DB): "/) 402
309 FORMAT(/" REC""G PATTERN, AZ CUT,EL COMP (DB): "/) 403
310 FORMAT(F9.1,5X,F8.3,3X,F6.1) 404
IF (.NOT.GRAFRV) GO TO 325 405
CALL CNPLTH(MVREC, NXX, KMAX,0.,0.) 406
IF (J.EQ.1) CALL SYMBOL(.5,6.5,.140,43HFIGURE RECVG POWER PA 407
\$TTERN-ELEV PLANE,0.,43) 408
IF (J.EQ.2) CALL SYMBOL(.5.6.5,.140,41HFIGURE RECVG POWER PA 409\$TTERN-AZ PLANE,0.,41)410
CALL PLOT $(8.5,0 .,-3)$ 411
325 CONTINUE 412
320 CONTINUE 413
350 CONTINUE 414
C COMPUTE BORESIGHT ERROR 415
275 CONTINUE 416
CALL RECBS(SUMX, SUMY, DELX, DELY, DAZX, DAZY, NX, NY, 417
\$ LMAX, NS, IOPT, VR, DMRAD, ROTATE, TRANSL, FREQ, KXMAX, KYMAX, 418
\$ TABLE,SINOS,KA,AZT,ELT, RSQMAX, VMAX, SMAX, SUPPRS) 419
IF (ITHE.EQ. 1) GO TO 300 420
SLPAZ $=(A Z T-A Z L) * D P M R /(T H E T A L-T H L)$ 421
SLPEL $=(E L T-E L L) * D P M R /(T H E T A L-T H L)$ 422
300 AZL=AZT 423
ELL=ELT 424
THL=THETAL 425
GAINM =SMAX/VA IRM 426
IF (GAINM.LT. 1E-2) GAINM=1E-2 427
GAINM=20.*ALOG10(GAINM) 428
WRITE $(6,11)$ PHIP, THETAL, ELT, AZT, SLPEL, SLPAZ, GAINM 429
WRITE (7, 11) PHIP, THETAL, ELT, AZT, SLPEL, SLPAZ, GAINM 430
11 FORMAT(1X,F5.1,F6.1,F8.2,F8.2,F9.4,F10.4,F7.1) 431
C GRAF3D OPTION HAS BEEN REMOVED. 432
100 CONTINUE 433
WRITE $(6,105)$ VAIRM 434
105 FORMAT(//" RECEIVED SUM VOLTAGE WITHOUT RADOME=",E12.5//) 435
IF (GRAF 3D.OR.GRAFSA.OR.GRAFTR.OR.GRAFRV) CALL PLOT (0.,0.,999) 436
STOP 437
END 438
BLOCK DATA 1
C 2
COMMON/TRANSC/DIN (6) ,ER(6),TD(6),TZ,WALTOL, N,NN, D(6), ZB,TK 3
C 4
DATA WALTOL,TK,TZ/O.,0.,0.1 5
C 6
END 7

Chapter 3

SUBROUTINE RECM

3-1. Purpose: To compute the complex voltages produced at the texminals of the three channels of a radome enclosed monopulse antenna by a plane wave of specified polarization and direction of arrival.

3-2. Usage: CALL RECM (EINC, KA, NX, NY, KXMAX, FREQ, ROTATE, TRANSL, SUMX, SUMY, DELX, DELY, DAZX, DAZY, VREC, TABLE, SUPPRS, RSQMAX) COMMON/RECIC/DSTH, DSPHI, NTHMIN, NPHIMIN, AREA, NPOINTS, ROS, RIS, ZBOTCM, ZTOPCM, BCM, RR

3-3. Arguments

where

$$
\mathrm{x}_{\max }=\Delta \mathrm{x}_{\mathrm{A}} * \mathrm{NX} / 2 \text { and } \mathrm{Y}_{\max }=\Delta \mathrm{y}_{\mathrm{A}} * \mathrm{NY} / 2
$$

Also see Subroutine TRECNF.
DELX, DELY - Antenna aperture fields for the difference elevation channel.

DAZX, DAZY - Antenna aperture fields for the difference azimuth channel.

VREC - Complex array of three elements which on output contains the complex terminal voltage of the antenna

3-4. Comments and Method
a. Subroutines Required: APINT, VECTOR, POINT, RXMIT, CAXB, OGIVEN, CAXCB .
b. Method: The voltage V_{R} induced at the terminals of a linear antenna by a "received" electromagnetic plane wave E_{R}, H_{R} is given by the Lorentz reciprocity theorem as [1]

$$
\begin{equation*}
V_{R}\left(\hat{k}_{A}\right)=C \oint_{S}\left(\underline{E}_{T} \times \underline{H}_{R}-\underline{E}_{R} \times \underline{H}_{T}\right) \cdot \hat{n d a} \tag{1}
\end{equation*}
$$

where \hat{k}_{A} is the unit vector which points in the direction from whence the plane wave emanates and where E_{T}, H_{T} are the electromagnetic fields of the antenna as produced on the closed surface S which surrounds the antenna when it is transmitting. The unit vector \hat{n} is the normal to s pointing into the region not containing any sources, and C is a complex constant.

When the inside surface of the radome is chosen as (closed) surface of integration, the source-free volume is that inside the radome, excluding the space occupied by the antenna; hence, \hat{n} is equal to the unit inward
normal $\mathrm{n}_{\text {is }}$ to the inside radome surface. The surface can be divided into elemental areas $\Delta A_{1 m}$, and the received voltage can be approximated by

$$
\begin{equation*}
V_{R}\left(\hat{k}_{A}\right)=C \sum_{l} \sum_{m}\left(\underline{E}_{T} \times \underline{H}_{R}-\underline{E}_{R} \times \underline{H}_{T}\right) \cdot \hat{n}_{i s} \Delta A_{l m} \tag{2}
\end{equation*}
$$

where the fields are evaluated at the same points $\mathrm{P}_{1 \mathrm{~m}}$ on the radome surface. The elemental areas $\Delta A_{l m}$ differ, in general, from point to point, and must be included under the summation.

It is assumed that the fields $\mathrm{E}_{\mathrm{T}}, \mathrm{H}_{\mathrm{T}}$ on S with the radome in place are the same as those that would exist in the absence of the radome. They are computed at points P^{\prime} from their specified aperture values $\underset{\mathrm{E}}{\mathrm{E}}{ }^{\prime} \underset{\mathrm{H}}{\mathrm{H}}$ via the Huygens-Fresnel principle as explained in Chapters 5 and 6 . The received fields ${\underset{-}{R^{\prime}}}^{\prime}{\underset{-}{R}}$ at P^{\prime} are computed by applying the flat panel normal transmission coefficients $T_{n \perp}, T_{n \|}$ to the incident plane wave E_{i}, $\underline{H}_{i}=$ $E_{i} \times \hat{k}_{A} / \eta$ at the point P on the outside surface of the radome that is colinear with the inside point P^{\prime} with respect to the unit normal \hat{n} is. (See Figure 1-2).

The tangent ogive radome surface is divided into elemental (traper zoidal) areas by sections made in the longitudinal (θ) and circumferential (ϕ) directions. In both cases, desired sampling intervals $\Delta S_{\theta}, \Delta S_{\phi}$ (e.g., $\lambda / 3$) are specified as input data. For the θ direction of Figure 3-1, the number of samples N_{θ} is given by

$$
\begin{equation*}
N_{\theta}=\operatorname{MAX}\left\{\frac{R\left(\theta_{T O P}-\theta_{B O T}\right)}{\Delta S_{\theta}}, N_{\theta M I N}\right\} \tag{3}
\end{equation*}
$$

where R is the generating radius of the ogive surface

FIGURE 3-1. RADOME GEOMETRY FOR DEFINING ELEMENTAL SURFACE AREA IN θ DIRECTION.

$$
\begin{equation*}
R=L / \sin \left(\pi-2 \operatorname{Tan}^{-1}(2 L / D)\right) \tag{4}
\end{equation*}
$$

and where the other variables are defined in Figure 3-1. (A minimum acceptable number of samples $\mathbb{N}_{\theta M I N}$ is also specified). The angular limits are given by

$$
\begin{align*}
& \theta_{\mathrm{BOT}}=\sin ^{-1}\left(Z_{\mathrm{BOT}} / \mathrm{R}\right) \tag{5}\\
& \theta_{\mathrm{TOP}}=\sin ^{-1}\left(Z_{\mathrm{TOP}} / \mathrm{R}\right) \tag{6}
\end{align*}
$$

Since N_{θ} is an integer, the sample interval ΔS_{θ} must be recomputed as

$$
\begin{equation*}
\Delta S_{\theta}^{\prime}=R\left(\theta_{T O P}-\theta_{B O T}\right) / N_{\theta}=R \Delta \theta \tag{7}
\end{equation*}
$$

For iteration in I, a sample point at the center of an elemental area on the radome surface is specified by

$$
\begin{equation*}
\theta=\theta_{\mathrm{BOT}}+\Delta \theta / 2+(I-1) * \Delta \theta \tag{8}
\end{equation*}
$$

and the corresponding Z_{R} coordinate is given by

$$
\begin{equation*}
Z_{R}=R \sin \theta \tag{9}
\end{equation*}
$$

The elemental areas are formed in the circumferential (ϕ) direction as indicated in Figure 3-2. Using ΔS_{ϕ} as input data, the number of samples N_{ϕ} in the ϕ direction is given by

(a) DEFINITIONS IN ϕ-DIRECTION

(b) TYPICAL ELEMENTAL VOLUME

FIGURE 3-2 DEFINITION OF ELEMENTAL SURFACE AREA IN ϕ DIRECTION.

$$
\begin{equation*}
N_{\phi}=\operatorname{MAX}\left\{\frac{2 \pi \rho}{\Delta S_{\phi}}, N_{\phi M I N}\right\} \tag{10}
\end{equation*}
$$

where ρ is defined in Figure $3-1$ and is given by

$$
\begin{equation*}
\rho=\sqrt{R^{2}-Z_{R}^{2}}-B \tag{11}
\end{equation*}
$$

Since N_{ϕ} is an integer, the sampling distance in ϕ must be recomputed as

$$
\begin{equation*}
\Delta S_{\phi}^{\prime}=2 \pi \rho / N_{\phi} \tag{12}
\end{equation*}
$$

The sample point at the center of an elemental area is specified in ϕ by (for iteration J)

$$
\begin{equation*}
\phi=\phi_{0}+(J-1) \Delta \phi \tag{13}
\end{equation*}
$$

where $\Delta \phi=2 \pi / N_{\phi}$ and where ϕ_{0} is a specified initial point in ϕ. The area ΔA of a surface element specified by (θ, ϕ) is given by

$$
\begin{equation*}
\Delta A=R(\Delta Z-B \Delta \theta) \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta z=z_{2}-z_{1}=R\left[\sin \left(\theta+\frac{\Delta \theta}{2}\right)-\sin \left(\theta-\frac{\Delta \theta}{2}\right)\right] \tag{15}
\end{equation*}
$$

It is deemed advantageous to set ϕ_{0} above in Equation (13) to some midpoint of the illuminated surface of the radome. This is done by transforming the unit vector $\hat{\mathrm{k}}_{\mathrm{A}}$ to radome coordinates; i.e.,

$$
\begin{equation*}
\hat{k}_{A}=x_{A} k_{x A}+\hat{y}_{A} k_{y A}+\hat{z}_{A} k_{z A}=\hat{x}_{R} k_{x R}+\hat{y}_{R} k_{y R}+\hat{z}_{R} k_{z R} \tag{16}
\end{equation*}
$$

The angle ϕ_{o} follows as

$$
\begin{equation*}
\phi_{0}=\cos ^{-1}\left(\frac{k_{x R}}{\sqrt{k_{x R}{ }^{2}+k_{y R}{ }^{2}}}\right) \tag{17}
\end{equation*}
$$

The computations in ϕ proceed first in the counterclockwise (CCW) direction and then in the clockwise (CW) direction as indicated in Figure 3-2(a). For the CCW direction, the coordinates of the sample point are given by ($J=1, N_{\phi} / 2+1$)

$$
\begin{align*}
& \mathrm{x}_{\mathrm{R}}=\rho \cos \left(\phi_{0}+(J-1) \Delta \phi\right) \tag{18}\\
& \mathrm{y}_{\mathrm{R}}=\rho \sin \left(\phi_{\mathrm{O}}+(J-1) \Delta \phi\right) \tag{19}
\end{align*}
$$

For the CW direction, there results

$$
\begin{align*}
& x_{R}=\rho \cos \left(\phi_{O}-J \Delta \phi\right) \tag{20}\\
& y_{R}=\rho \sin \left(\phi_{O}-J \Delta \phi\right) \tag{21}
\end{align*}
$$

where J is incremented from unity to $N_{\phi} / 2$. (The z_{R} coordinate is given by Equation (9).)

For each elemental area specified, two tests may be performed to determine if the contribution of the fields on that surface element should be included in the received voltage. The first test consists of ensuring that the sample point $\left(X_{R}, Y_{R}, z_{R}\right)$ lies forward of the aperture plane of the antenna; i.e., that $z_{A} \geq 0$. The second test (which may be disabled as deemed appropriate) determines if the surface element is directly illuminated by the incident plane wave. The test is performed by computing the angle of incidence θ according to

$$
\begin{equation*}
\cos \theta=\mathrm{n}_{\mathrm{is}} \cdot \hat{k}_{\mathrm{A}} \tag{22}
\end{equation*}
$$

If $\cos \theta<0$, the point is illuminated and should certainly be included in the summation indicated in Equation (2); if $\cos \theta \geq 0$, the point lies in the shadow region, and, under certain circumstances, may be omitted from the computation to save time. The effect of this omission is not completely understood in all cases.

3-5. Program Flow (Refer to Program Listing below)

Iine Number (s)	Comments
1-39	Declare variables, initialize constants.
40-52	Initialize Subroutines DIPOLES and APINT; compute
	and write fields E_{T}, \underline{H}_{T} at point ($0,0,2 D^{2} / \lambda$) for
	reference.
53-55	Initialize Subroutine RXMIT.
56-67	Compute $\theta_{\text {TOP }}, \theta_{\text {BOT }}, \mathrm{N}_{\theta}, \Delta S_{\theta}^{\prime}, \Delta \theta$.
68-76	Compute ϕ_{0} and initialize surmation of $\mathrm{V}_{\mathrm{REC}}$.
77-85	Iterate in θ on radome surface.

86-90	Compute $z_{\text {ROS }}, z_{\text {RIS }}, \rho_{O S}, \rho_{\text {IS }}$ and ensure that
	surface element does not lie forward of metal
	tip or aft of bulkhead.
91-97	Compute N_{ϕ} and $\Delta S^{\prime}{ }_{\phi}$.
98-104	Compute $\mathrm{N}_{\phi C C W}{ }^{\prime} \mathrm{N}_{\phi C W^{\prime}}$, and $\Delta \phi$.
105-106	Compute $\triangle Z$ and $\triangle A$.
107-119	Iterate in ϕ : CCW first, CW second.
120-125	Compute inside coordinates $\mathrm{x}_{\text {RIS }}{ }^{\prime} \mathrm{Y}_{\text {RIS }}{ }^{\text {. }}$
126-135	Compute unit inward normal $\mathrm{n}_{\text {IS }}$ and apply
	illumination test (disabled).
136-141	Convert coordinates of sample point on surface to
	antenna coordinates to ensure $z_{A} \geq 0$.
142-152	Compute phase of incident plane wave at outside
	point ($\mathrm{X}_{\text {ROS }}, Y_{\text {ROS }}, z_{\text {ROS }}$) with respect to the an-
	tenna origin. Adjust phase of the specified inci-
	dent plane wave and store temporarily as $\underline{-r R}_{\mathrm{RP}}$.
153-156	Compute antenna coordinates of inside point in
	wavelengths.
157-163	Compute transmitted plane wave $E_{R^{\prime}}^{\prime} \underline{H}_{R}^{\prime}$ at inside
	point.
164-171	Use aperture integration to compute the trans-
	mitted fields ${\underset{\mathrm{E}}{\mathrm{Ti}}},{\underset{\mathrm{H}}{\mathrm{Ti}}}$ of the antenna at the inside
	point for each channel of the monopulse antenna.
172-176	Disabled statements pertaining to surface integra-
	tion using the outside radome surface.
177-179	Form the vector cross products $\underline{S}_{1}={\underset{-}{T}} \times \underline{H}_{\mathrm{H}^{\prime}}^{\prime} \underline{S}_{2}=$

180-182 Add contribution to received voltage $V_{R i}$.
183-184 Incement AREA.
185-186 Increment NCUS = number of points omitted.
187-189 Increment NPOINTS.
190-197 If SUPPRS=.FALSE., compute and write total sur-face area, received voltages, number of pointsused, and number of points omitted.
3-6. Test Case: None
3-7. References

1. G. K. Huddleston, H. L. Bassett, and J. M. Newton, "ParametricInvestigation of Radome Analysis Methods", 1978 IEEE AP-S Sym-posium Digest, pp. 199-201, May 1978.
3-8. Program Listing (See following pages)
SUBROUTINE RECM(EINC,KA,NX,NY,KXMAX,KYMAX, FREQ, ROTATE, TRANSL, 1
\$ SUMX, SUMY, DELX, DELY, DAZX, DAZY, VREC, TABLE, SUPPRS, RSQMAX) 2
C SUBR RECM COMPUTES THE RECEIVED VOLTAGE OF AN ANTENNA INSIDE A TANGENT C OGIVE RADOME AS PRODUCED BY A PLANE WAVE INCIDENT FROM THE DIRECTION 4
C SPECIFIED BY KA. THE INSIDE SURFACE OF THE RADOME IS USED AS THE SURFACE
C OF INTEGRATION IN THE RECIPROCITY INTEGRAL, AND THE NORMAL TRANSMISSIONC COEFFICIENT IS USED TO TRANSFER THE INCIDENT PLANE WAVE FROM THE POINTC P ON THE OUTSIDE SURFACE TO THE POINT P^{\prime} ON THE INSIDE SURFACE, WHERE8
C P AND P^{\prime} ARE COLINEAR WITH THE NORMAL TO EITHER SURFACE. 9
C THE CALL TO THIS SUBR IS IDENTICAL TO THE CALL TO SUBR RECM 10
C USED IN THE RAY TRACING FORMULATION HOWEVER, ADDITIONAL VARIABLES 11
C ARE NEEDED BY THIS SUBR AND ARE PASSED FROM MAIN PROGRAM VIA LABEL 12
C COMMON/RECIC/ AS SHOWN BELOW. 13
COMPLEX ET(3), HT(3), ERP (3) , HRP (3) 14
COMPLEX S1(3), S2(3), U, C, EINC(3),VREC(3) 15
COMPLEX SUMX(NX,NY), SUMY(NX,NY), DELX(NX,NY), DELY(NX,NY), 16
\$ DAZX (NX, NY), DAZY(NX,NY) 17
REAL KXMAX, KYMAX, ROTATE (3,3), TRANSL (3), LAMBDA, NISA (3) 18
REAL PIR(3),NIS (3), KR(3),KA(3),PT(3),PISR (3), PO (3), PTWL(3) 19
LOGICAL TABLE,ATOR,RTOA,SUPPRS, INIT 20
COMMON/RECIC/DSTH, DSPHI, NTHMIN,NPHIMIN, AREA, NPOINTS, ROS, RIS, 21
\$ZBOTCM, ZTOPCM, BCM, RR 22
NAMELIST/ATDR/DSTH, BETA, DKX, DKY, DKXY, THTOP, THBOT, STH, NTH 23
DATA ATOR/.TRUE./,RTOA/.FALSE./ 24
DATA PI/3.14159265/ 25
DATA ZERO/1E-6/ 26
DATA TUPI/6.28318530/ 27
DATA ETA/376.9911185/,NDO/0/ 28
DATA NISA/0.,0.,-1./,PT/0.,0.,0./ 29
AREA $=0$. 30
$B=B C M$ 31
NPOINTS=0 32
NCUS $=0$ 33
DKX=2.*KXMAX/NX 34
DKY=2.*KYMAX/NY 35
NXMID $=$ NX $/ 2+1$ 36
NYMID $=$ NY/2+1 37
DXWL $=.5 / \mathrm{KXMAX}$ 38
DYWL $=.5 / \mathrm{KYMAX}$ 39
IF (NDO.GT.0) GO TO 4 40
C INITIALIZE CONSTANTS IN SUBR DIPOLES: 41
LAMBDA $=29.97925 /$ FREQ 42
BETA=2.*PI/LAMBDA 43
INIT=.TRUE. 44
$\operatorname{PTWL}(1)=0$. 45
$\operatorname{PTWL}(2)=0$. 46
PTWL(3) $=2 . * 4 . * R S Q M A X / L A M B D A$ 47
CALL APINT (PTWL, SUMX, SUMY,NX,NY,NXMID,NYMID,DXWL, DYWL, ET, HT, INIT) 48
WRITE (6,3) PTWL(3),ET,HT 49
3 FORMAT(" SUBR DIPOLES INITIALIZED BY SUBR RECI"/ 50
\$" AT Z=2*D**2/WL= ".E12.5." ET= ".6E12.5/ 51
\$30X." HT= ",6E12.5/) 52
RTD=180./PI 53
CALL RXMIT(HRP,ERP,KA,NISA, PT,TABLE,SUPPRS, BETA) 54
4 CONTINUE 55
DKXY=DKX*DKY 56
THTOP=ASIN (ZTOPCM/RIS) 57
THBOT=ASIN (ZBOTCM/RIS) 58
STH=RIS* (THTOP-THBOT) 59
NTHP=STH/DSTH 60
IF (NTHP.GE.NTHMIN) GO TO 10 61
NTH=NTHMIN 62
GO TO 15 63
10 NTH=NTHP 64
15 DSTHP=STH/NTH 65
DTH=(THTOP-THBOT)/NTH 66
IF (.NOT.SUPPRS) WRITE(6,ATDR) 67
C DETERMINE ANGLE PHIO OF CENTER OF ILLUMINATED AREA ON RADOME: 68
CALL VECTOR (KA,KR,ATOR,ROTATE) 69
RAD $=K R(1) * * 2+K R(2) * 2$ 70
IF (RAD.GT. ZERO) GO TO 16 71
PHIO=0. 72
GO TO 31 73
$16 \mathrm{PHI} 0=\mathrm{ACOS}(\mathrm{KR}(1) / \mathrm{SQRT}(\mathrm{RAD}))$ 74
31 DO $32 \mathrm{I}=1.3$ 75
$32 \operatorname{VREC}(I)=(0 ., 0$. 76
C SELECT CIRCLE ON SURFACE OF RADOME AT CONSTANT THETA 77
C AND ITERATE IN I 78
TH=THBOT-DTH/2. 79
IF ((NDO.EQ. O).AND. (.NOT.SUPPRS)) WRITE $(6,33)$ 80
33 FORMAT (3X,"THDEG", 4X,"PHIDEG", 12X,"PT",23X,"NIR"/) 81
DO $20 \mathrm{I}=1$, NTH 82
$\mathrm{TH}=\mathrm{TH}+\mathrm{DTH}$ 83
THD $=$ TH*RTD 84
SINTH=SIN (TH) 85
PIR (3) $=$ ROS*SINTH 86
RHOOS=SQRT (ROS**2-PIR(3)**2)-B 87
PISR (3) =RIS*SINTH 88
IF ((PISR(3).GT.ZTOPCM).OR.(PISR(3).LT.ZBOTCM)) GO TO 20 89
RHOIS=SQRT (RIS**2-PISR (3)**2)-B 90
NPHIP=TUPI*RHOIS/DSPHI 91
IF (NPHIP.GE.NPHIMIN) GO TO 40 92
NPHI $=$ NPHIMIN 93
GO TO 50 94
40 NPHI =NPHIP 95
C DIVIDE THE INNER SURFACE INTO NPHI EQUAL PARTS 96
50 DSPHIP=TUPI*RHOIS/NPHI 97
NPHI2=NPHI/2 98
NPHICW=NPHI2 99
NPHICCW=NPHI2 100
IF (2.*NPHICCW.LT.NPHI) GO TO 55 101
GO TO 60 102
55 NPHICCW =N PHICW+1 103
60 DPHI=TUPI/NPHI 104
$\mathrm{DZ}=\mathrm{RIS*}$ (SIN(TH+DTH/2.)-SIN(TH-DTH/2.)) 105
$D A=R I S *\left(D Z-B^{*} D T H\right) * D P H I$ 106
110 DO $61 \mathrm{~J} 1=1,2$ 107
JMAX=NPHICCW 108
IF(J1.EQ.2) JMAX=NPHICW 109
C SELECT A POINT ON INNER SURFACE OF RADOME AT CONSTANT PHI 110
C AND ITERATE IN J, FIRST CCW, THEN CLOCKWISE. 111
PHI =PHIO-DPHI 112
IF (J1.EQ.2) $\mathrm{PHI}=\mathrm{PHIO}$ 113
120 DO $62 \mathrm{~J}=1$, JMAX 114
IF (J1.EQ.2) GO TO 41 115
$\mathrm{PHI}=\mathrm{PHI}+\mathrm{DPHI}$ 116
GO TO 42 117
$41 \mathrm{PHI}=\mathrm{PHI}-\mathrm{DPHI}$ 118
42 CONTINUE 119
PHID=PHI*RTD 120
$\mathrm{CPHI}=\mathrm{COS}$ (PHI) 121
SPHI=SIN (PHI) 122
PISR (1) $=$ RHOIS* ${ }^{\text {CPHI }}$ 123
PISR (2) =RHOIS*SPHI 124
C THE POINT OF INTEREST ON INSIDE SURFACE HAS RADOME COORD PISR (XR,YR,ZR).
C CALL OGIVEN TO FIND INNER UNIT NORMAL NIS TO RADOME SURFACE 126
CALL OGIVEN(PISR,NIS) 127
IF ((NDO.EQ.0).AND. (.NOT.SUPPRS)) WRITE (6,56) THD, PHID,PISR,NIS 128
56 FORMAT (2 (2X,F7.2), 6E10.3) 129
C TEST NOW IF THIS POINT IS ILLUMINATED BY PLANE WAVE 130
C CUS $=\mathrm{NIS}(1){ }^{*} \mathrm{KR}(1)+\mathrm{NIS}(2){ }^{*} \mathrm{KR}(2)+\mathrm{NIS}(3){ }^{*} \mathrm{KR}$ (3) 131
C IF CUS IS GREATER THAN ZERO,AREA IS NOT ILLUMINATED 132
C IF (CUS.GT.0.) GO TO 59 133
C IF (CUS.LT.0.) GO TO 65 134
C GO TO 59 135
C CONVERT INSIDE POINT PISR(XR,YR,ZR) TO ANTENNA COORD PT (XA,YA,ZA): 136
65 CALL POINT (PISR,PT,RTOA,ROTATE,TRANSL) 137
C TEST TO INSURE THAT POINT XR,YR,ZR IS ILLUMINATED 138
C BY THE ANTENNA INSIDE THE RADOME 139
C IF ZA>O., POINT IS ILLUMINATED 140
IF (PT(3).LT.O.) GO TO 59 141
C COMPUTE PHASE OF INCIDENT PLANE WAVE AT OUTSIDE POINT: 142
PIR (1) =RHOOS*CPHI 143
PIR (2) $=$ RHOOS*SPHI 144
CALL POINT(PIR,PO,RTOA,ROTATE,TRANSL) 145
PHS =AMOD (BETA* (KA (1)*PO(1)+KA(2)*PO(2)+KA(3)*PO(3)),TUPI) 146
$\mathrm{U}=\mathrm{CMPLX}(0 ., \mathrm{PHS})$ 147
$\mathrm{C}=\mathrm{CEXP}(\mathrm{U})$ 148
C ADJUST PHASE OF INCIDENT ELECTRIC FIELD AT OUTSIDE POINT AND STORE AS HRP:
$\operatorname{HRP}(1)=\operatorname{EINC}(1) * C$ 150
$\operatorname{HRP}(2)=\operatorname{EINC}(2) * C$ 151
$\operatorname{HRP}(3)=E \operatorname{INC}(3) * C$ 152
C COMPUTE ANTENNA FIELDS AT INSIDE POINT PISR: 153
PTWL (1) = PT (1)/LAMBDA 154
PTWL(2) $=$ PT (2) /LAMBDA 155
PTWL (3) $=$ PT (3)/LAMBDA 156
C TRANSMIT INCIDENT PLANE WAVE THRU WALL USING NORMAL XMN COEFS: 157
CALL VECTOR (NIS,NISA,RTOA, ROTATE) 158
IF ((NDO.EQ.0).AND. (.NOT.SUPPRS)) WRITE (6,57) THD,PHID, PT,NISA 159
57 FORMAT (2 (2X,F7.2),6E10.3/) 160
CALL RXMIT (HRP, ERP,KA,NISA, PT, TABLE,SUPPRS, BETA) 161
C COMPUTE CORRESPONDING MAGNETIC FIELD*ETA: 162
CALL CAXB (ERP, KA, HRP) 163
DO 58 ICH=1,3 164
IF (ICH.EQ.1) 165
\$CALL APINT (PTWL, SUMX,SUMY,NX,NY,NXMID,NYMID,DXWL, DYWL, ET,HT,INIT) 166
IF (ICH.EQ.2) 167
\$CALL APINT (PTWL, DELX,DELY,NX,NY,NXMID,NYMID,DXWL,DYWL,ET,HT,INIT) 168
IF (ICH.EQ.3) 169
\$CALL APINT (PTWL, DAZX,DAZY,NX,NY,NXMID,NYMID,DXWL,DYWL,ET,HT,INIT) 170
C SUBR APINT COMPUTES HT*ETA. 171
C *************************** 172
C THE NEXT TWO STATEMENTS ARE FOR OUTSIDE SURFACE CASE. 173
C CALL POYNTIN (E,H,S) 174
C CALL RXMIT (ETR,HTR,STR,NIS,PISP,TABLE,BETA,ETRP,HTRP) 175
C *************************** 176
C FORM CONTRIBUTION TO RECEIVED VOLTAGE 177
CALL CAXCB(ET,HRP,S1) 178
CALL CAXCB(ERP,HT,S2) 179
$\operatorname{VREC}(I C H)=\operatorname{VREC}(I C H)-((S 1(1)-S 2(1)) * N I S(1)+(S 1(2)-S 2(2)) * N I S(2)+$ 180
\$ (S1(3)-S2(3))*NIS(3))*DA 181
58 CONTINUE 182
AREA $=A$ REA $+D A$ 183
GO TO 62 184
59 NCUS $=$ NCUS +1 185
62 CONTINUE 186
NPOINTS=NPOINTS+JMAX 187
61 CONTINUE 188
20 CONTINUE 189
NDO $=1$ 190
IF (SUPPRS) RETURN 191
PERCNT $=100 . *(1 .-F L O A T(N C U S) / F L O A T(N P O I N T S)) ~$ 192
WRITE $(6,25)$ AREA, VREC, NPOINTS, PERCNT, NCUS 193
25 FORMAT(//" SUBR RECI: AREA=", E12.5/" VREC=",6E12.5/" NPOINTS=", 194
\&I5," PERCENT=",F5.1," NCUS=",I6//) 195
RETURN 196
END 197

Chapter 4

SUBROUTINE TRECNF

4-1. Purpose: To compute near-field aperture distributions for four types of three-channel monopulse antennas: (l) circular aperture with tapered amplitude and uniform phase distributions; (2) flat plate antenna with a programmed amplitude distribution and uniform phase; (3) square aperture with cos x amplitude and uniform phase; (4) single element. Four polarizations can be selected for the circular and square apertures. The flat plate antenna is vertically $\left(\hat{y}_{A}\right)$ polarized only.

4-2. Usage: CAL工 TRECNF (E, NX, NY, ICHAN, IPOL, IXY, DAPWL, DXWL, KXMAX, ICASE, SQUARE)

4-3. Arguments
E - Complex array of NX by NY elements which, on output, contains the values of the specified (IXY) rectangular component (X_{A} or Y_{A}) of the electric field distribution over the specified (ICASE) antenna aperture having the specified (IPOL) polarization for the specified (ICHAN) channel of a three-channel monopulse antenna.

NX,NY - Even integer number of points in a rectangular array at which the aperture distribution is computed in the X_{A} and y_{A} directions, respectively. The point $I=N X / 2+1, J=N Y / 2+1$ corresponds to $x_{A}=0, y_{A}=0$. For the single element case, $N X=N Y=2$.

ICHAN - Integer control variable with values 1, 2, or 3 which selects the sum, elevation difference, or azimuth difference channel, respectively.

IPOL

DAPWL - Diameter, in wavelengths, of the antenna aperture.
DXWL - Spacing, in wavelengths, between samples in aperture in x_{A} and y_{A} directions (output).

KXMAX

ICASE

SQUARE

- Integer control variable which selects the antenna polarization as follows:

1 - Vertical (Y_{A}) polarization
2 - Horizontal (x_{A}) "
3 - Right-hand circular "
4 - Left-hand circular $:$

- Integer control variable having values 1 or 2 to select the X_{A} or Y_{A} component of aperture electric field.
- Maximum value of normalized wavenumber corresponding to KXMAX $=1 . /(2 . * D X W L)$ (output).
- Integer control variable having values 1 or 2 to specify a circular aperture antenna with uniform amplitude and phase. If ICASE=3, a flat plate antenna having a programmed amplitude distribution (see Table 4-2) with vertical polarization is selected.
- Logical input variable; if TRUE, square aperture is used.

4-4. Comments and Method
a. The integers NX,NY must each be equal to each other and even; e.g., $N X=N Y=16$. In addition, when ICASE=3 (flat plate antenna), NX and NY must equal 16. If $N X=N Y=2$, the fields of a single element at $x_{A}=y_{A}=0$ are specified. If $N X=N Y=32$, only the central 15×15 elements are non-zero.
b. The actual shape of the circular aperture, as approximated by a rectangular array of sample points, is shown in Figure 4-1 for the case of $N X=N Y=16$. Row 1 and Column 1 of the array contain null elements. The elements inside and on the boundary of the aperture may contain non-zero values as shown in Table 4-1 for the various cases when ICHAN=1 (sum channel). Note that specification of $D_{A P}$ in Figure $4-1$ determines the sample spacings according to

$$
\begin{equation*}
\Delta x_{A}=\Delta y_{A}=\frac{D_{A p} \cos \alpha}{\left(N_{x}-2\right)}=\frac{D_{A p} \cos \alpha}{\left(N_{y}-2\right)} \tag{1}
\end{equation*}
$$

where $\alpha=\operatorname{Tan}^{-1}(2 / 7)$.
The aperture distributions for three monopulse channels are formed by phasing the elements in the four quadrants of the aperture appropriately. The sum channel distribution is formed by assigning equal phases to all elements. The azimuth difference channel is formed by multiplying all elements in Quadrants II and III of the sum distribution by minus one and by zeroing all elements along $x_{A}=0$. For the elevation difference channel, Quadrants III and IV are negated, and all elements along the line $y_{A}=0$ are made zero for symmetry reasons.

The phasing chosen models a tracking antenna and provides outputs in two orthogonal channels from which the direction of arrival of a target return can be mathematically determined. Let \hat{k} be a unit vector which

FIGURE 4-1. APPROXIMATION OF CIRCULAR APERTURE BY RECTANGULAR GRID OF SAMPLE POINTS.
points from the antenna origin toward the direction from whence the plane wave (target return) emanates; i.e.,

$$
\begin{equation*}
\hat{k}=\hat{x}_{A} k_{x}+\hat{y}_{A} k_{Y}+\hat{z}_{A} k_{z} \tag{2}
\end{equation*}
$$

Define the tracking functions for this plane wave as

$$
\begin{equation*}
f_{i}\left(k_{x}, k_{y}\right)=\frac{\Delta_{i}\left(k_{x}^{\prime \prime} k_{y}\right)}{\sum\left(k_{x}, k_{y}\right)} \tag{3}
\end{equation*}
$$

where Δ_{i} represents the output of the elevation (ε) or azimuth (α) difference channel and Σ represents the sum channel output. Then for small $k_{x}>0$, the phase of f_{α} is $+\pi / 2$; for small $k_{x}<0$, the phase of f_{α} is $-\pi / 2$. Similarly, for small $k_{y}>0$, $\arg \left(f_{\varepsilon}\right)=\pi / 2$; for small $k_{y}<0$, arg $\left(f_{\varepsilon}\right)=-\pi / 2$. Hence, the change in phase by π in either channel represents the boresight direction of the antenna, and tracking is done using the imaginary parts of the tracking functions rather than their real parts.
c. The shape and sampling grid used to model the flat plate antenna are shown in Figure 4-2. In Subroutine TRECNF, the integers NX and NY must both equal 16 , and only linear polarization (\hat{y}_{A}) is applicable to the flat plate antenna (ICASE=3). The phasing of the four quadrants is done as described above to model the three monopulse channels so that tracking can be simulated. Note that specification of $D_{A p}$ determines the sample spacing according to

$$
\begin{equation*}
\Delta x_{A}=\Delta y_{A}=\frac{D_{A p} \cos \alpha}{\left(\frac{N_{x}}{2}-2\right)} \tag{4}
\end{equation*}
$$

where $\alpha=\operatorname{Tan}^{-1}(4 / 6)$.

FIGURE 4-2. GEOMETRY OF FLAT PLATE ANTENNA.

Table 4-l. Values of Non-Zero Elements in Circular Aperture (ICHAN=1, ICASE=1 or 2)

IPOL	IXY	Value	Polarization Type
1	1	$(0+j 0)$	Vertical
1	2	$(1+j 0)$	"
2	1	$(1+j 0)$	Horizontal
2	2	$(0+j 0)$	"
3	1	$(1+j 1)$	RHC
3	2	$(0-j 1)$	"
4	1	$(1+j 0)$	LHC

The phase of each sample point in Figure 4-2 for the sum channel is made equal, but the amplitudes are tapered in the x_{A} and y_{A} directions as shown in Table 4-2. The amplitude distribution is separable and symmetrical so that

$$
\begin{equation*}
E_{y A}\left(x_{A}, y_{A}\right)=g\left(x_{A}\right) h\left(y_{A}\right)=E_{y A}\left(-x_{A}, y_{A}\right)=E_{y A}\left(x_{A},-y_{A}\right) \tag{5}
\end{equation*}
$$

It is noted that samples $10,12,14$, and 16 are actually specified in the program, and samples 9, 11, 13, and 15 are obtained from them by averaging.
d. The square aperture is formed by setting to zero Row 1 and Column 1 of the array of Figure $4-1$ for symmetry reasons. The values of field at the other points in the aperture are computed to yield a cos x amplitude taper in the X_{A} direction and a uniform amplitude in y_{A}; i.e.,

$$
\begin{equation*}
E(x, y)=\cos \frac{\pi x}{2 x_{\max }} \tag{5}
\end{equation*}
$$

where $x_{\text {max }}$ corresponds to the sample at $I=N X$.
3-5. Program Flow
Line Nos.
Comments
Assign complex values to CFAC to use in generating vertical, horizontal, RHC, and IHC polarization according to $I P O L$.

20-22 Compute the angle α and the upper bound $R_{\text {max }}$ of the radius of the circular aperture.

23-24 Ensure that IPOL has correct values of 1, 2, 3, or 4.

Table 4-2. Symmetrical Amplitude Distribution for Flat Plate Antenna

Sample No.	x_{A}	$\frac{\text { Amplitude }}{}$	y_{A}	Amplitude
9	0	1.0280	0	1.0280
10	Δx	1.0280	Δy	1.0280
11	$2 \Delta x$.9120	$2 \Delta y$.9170
12	$3 \Delta x$.7959	$3 \Delta y$.8060
13	$4 \Delta x$.6077	$4 \Delta y$.6155
14	$5 \Delta x$.2097	$5 \Delta y$.4250
15	$6 \Delta x$	0.0	$6 \Delta y$.2125
16	$7 \Delta x$		$7 \Delta y$	0.0

If $N X \neq N Y$ and SQUARE=FALSE, write error message and stop the program.

Compute indices of midpoint ± 7.
Ensure that $I X Y=1$ or 2. If NX and NY are not even, stop the program. Test value of ICASE: if ICASE=3 generate fields of flat plate antenna (Lines 64-105); otherwise, generate fields of circular or square aperture (Lines 34-60).

Assign complex field value to each sample point $\left(X_{A}, y_{A}, 0\right)$ in the circular aperture according to the values shown in Table $4-1$. If $\sqrt{x_{A}{ }^{2}+y_{A}{ }^{2}}>$ $\mathrm{R}_{\text {max }}$ make the field value zero. Multiply the non-zero elements by CFAC(IPOL) to generate the correct polarization. For the square aperture, zero Column 1 and Row 1 , and insert $\cos x$ taper (Line 37).

Compute sample spacing $\Delta x_{A} / \lambda$ and go to statement 60.

Error message and STOP. Flat plate antenna-- if NXㅋ16, write error message and STOP (Lines 131-133).

Compute sample spacing $\Delta x_{A} / \lambda$.
Ensure NX=NY
Zero all elements in the aperture. If IXY=1 (x_{A}-component), to to statement 60 .

73-80 Assign tapered amplitude values to eight "even" elements in Quadrant III.

81-89 Compute amplitude values for the "odd" elements in Quadrant III.

90-93 Compute amplitude values for elements 3-9 along $y_{A}=0$ line and along $X_{A}=0$ line.

94-97 Generate symmetrical amplitude values in Quadrant IV.

98-105 Generate symmetrical amplitude values in Quadrants I and II.

106 Compute $\mathrm{k}_{\mathrm{xmax}}$ and $\mathrm{d}_{\mathrm{x}} / \lambda$.
107-111 Test to determine if the sum channel data generated should be phased to produce the aperture distribution for a specified difference channel (ICHAN). Form aperture distribution for difference elevation channel by zeroing all elements along $y_{A}=0$ and negating all elements for $\mathrm{Y}_{\mathrm{A}}<0$. RETURN. Form aperture distribution for difference azimuth channel by zeroing all elements along $x_{A}=0$ and negating all elements $\mathbf{x}_{\mathrm{A}}<0$. RETURN.

130-134 Error message for ICASE=3 and $N X \neq 16$. END

4-6. Test Case: None.
4-7. References

1. D. R. Rhodes, Introduction to Monopulse, McGraw Hill, New York, 1959.

4-8. Program Listing: See following pages.
SUBROUTINE TRECNF (E,NX,NY, ICHAN, IPOL, IXY, DAPWL, DXWL, KXMAX,ICASE, 1
\&SQUARE) 2
C *** MODIFIED JAN 80 FOR SQUARE APERTURE AND FOR SINGLE ELEMENT*** 3
C SUBR TRECNF COMPUTES ELECTRIC FIELDCOMPONENTS OVER A CIRCULAR APERTURE 4
C OF RADIUS RMAX $=(N X / 2-1) / \operatorname{COS}(\operatorname{ATAN}(2 / 7))$ AND RETURNS SAME IN E (NX,NY). 5
C NX MUST EQUAL NY AND MUST BE EVEN. 6
C ICHAN=1 FOR SUM CHANNEL IPOL=1 FOR VERT-Y POL. IXY=1 FOR X-COMP. 7
$C \quad=2$ FOR ELEV DIFF $=2$ FOR HORIZ-X POL $=2$ FOR Y-COMP. 8
C $=3$ FOR AZ DIFF $=3$ FOR RHC POL 9
C = $=4$ FOR LHC POL 10
C DAPWL=DIAMETER OF APERTURE IN WAVELENGTHS (INPUT) 11
C DXWL=SAMPLE SPACING IN APERTURE (OUTPUT) 12
C KXMAX=MAXIMUM WAVENUMBER (OUTPUT) 13
C ICASE=1 OR 2 FOR UNIFORM, CIRCULAR APERTURE (ADA M.'S CASE I AND II) 14
C $\quad=3$ FOR FLAT-PLATE ANTENNA, VERTICAL POL (CASE III). 15
COMPLEX E(NX,NY), CFAC(4) 16
REAL KXMAX 17
LOGICAL SQUARE 18
DATA CFAC/(1.,0.),(1.,0.),(0.,+1.),(0.,-1.)/ 19
ANG=ATAN(2./7.) 20
IF (ICASE.EQ.3) ANG=ATAN(4./6.) 21
RMAX $=(N X / 2-1) / \operatorname{COS}($ ANG $)+.001$ 22
IF (IPOL.GT.4) IPOL=4 23
IF (IPOL.LT.1) IPOL=1 24
IF ((.NOT.SQUARE).AND.(NX.NE.NY)) GO TO 15 25
NXMM7 $=$ NX $/ 2+1-7$ 26
NXMP7 $=\mathrm{NX} / 2+1+7$ 27
NYMM7 $=$ NY/2 $\mathbf{~} 1-7$ 28
NYMP7 $=$ NY $/ 2+1+7$ 29
C FOR NX,NY=32, ONLY THE CENTRAL 15 X 15 ELEMENTS ARE NONZERO. 30
IF ((IXY.LT.1).OR. (IXY.GT.2)) IXY=2 31
IF (MOD (NX,2).NE.0) GO TO 15 32
IF (ICASE.EQ.3) GO TO 25 33
TUXMX=FLOAT(NX) 34
DO $10 \mathrm{I}=1$, NX 35
$\mathrm{X}=\mathrm{FLOAT}(-(\mathrm{NX} / 2)+\mathrm{I}-1)$ 36
$\cos X=\operatorname{Cos}(3.14159265 * X / T U X M X)$ 37
DO $10 \mathrm{~J}=1, \mathrm{NY}$ 38
IF ((I.EQ.1).OR.(J.EQ.1)) GO TO 9 39
IF (NX.EQ.16) GO TO 1 40
IF ((I.LT.NXMM7).OR.(I.GT.NXMP7).OR.(J.LT.NYMM7).OR.(J.GT.NYMP7)) 41
\$GO TO 9 42
1 IF (SQUARE) GO TO 8 43
$Y=\operatorname{FLOAT}(-(N Y / 2)+J-1)$ 44
$\mathrm{R}=\mathrm{SQRT}(\mathrm{X} * * 2+Y * * 2)$ 45
IF (R.GT. RMAX) GO TO 9 46
8 IF ((IPOL.EQ.1).AND.(IXY.EQ.1)) GO TO 9 47
IF ((IPOL.EQ.2).AND.(IXY.EQ.2)) GO TO 9 48
C IF RHC, $E Y=(1,0)$, $E X=(0,1)$ I.E., EX LEADS EY BY 90 DEG. 49
C IF LHC, $\mathrm{EY}=(1,0)$, $\mathrm{EX}=(0,-1)$ I.E., EX LAGS EY BY 90 DEG. 50
$E(I, J)=\operatorname{CMPLX}(\operatorname{COSX}, 0$. 51
IF ((IPOL.LT.3).OR.(IXY.EQ.2)) GO TO 10 52
$E(I, J)=E(I, J) * C F A C(I P O L)$ 53
GO TO 10 54
$9 E(I, J)=(0 ., 0$. 55
10 CONTINUE 56
IF (NX.EQ.2) GO TO 56 57
DXWL=(DAPWL/2.)*COS(ANG)/(NX/2-1) 58
IF (SQUARE) DXWL=(DAPWL/SQRT(2.))/(NX-2) 59
GO TO 60 60
15 WRITE $(6,20)$ 61
20 FORMAT(//" NX.NE.NY OR NX NOT EVENIN SUBR TRECNF"//) 62
STOP 63
C THE FOLLOWING IS FOR ADA M.'S CASE III (ICASE=2): 64
25 IF (NX.NE.16) GO TO 90 65
DXWL=(DAPWL/2.)*COS(ANG)/(NX/2-2) 66
IF(SQUARE) DXWL=(DAPWL/SQRT(2.))/(NX-2) 67
$\mathrm{NY}=\mathrm{NX}$ 68
DO $26 \mathrm{I}=1, \mathrm{NX}$ 69
DO $26 \mathrm{~J}=1$, NY 70
$26 \mathrm{E}(\mathrm{I}, \mathrm{J})=(0 ., 0$. 71
IF (IXY.EQ.1) GO TO 60 72
$E(6,4)=(.2824,0$. 73
$E(8,4)=(.4250,0$. 74
$E(4,6)=(.2888,0$. 75
$E(6,6)=(.5218,0$. 76
$E(8,6)=(.8060,0$. 77
$E(4,8)=(.4194,0$. 78
$E(6,8)=(.7959,0$. 79
$E(8,8)=(1.028,0$. 80
DO $30 \mathrm{~J}=4,8,2$ 81
DO $30 \mathrm{I}=3,8,1$ 82
IF ((MOD(J,2).EQ.0).AND.(MOD(I,2).EQ.0)) GOTO 30 83
$E(I, J)=(E(I-1, J)+E(I+1, J)) / 2$. 84
30 CONTINUE 85
DO $35 \mathrm{I}=3,8,1$ 86
DO $35 \mathrm{~J}=3,8,2$ 87
$E(I, J)=(E(I, J-1)+E(I, J+1)) / 2$. 88
35 CONTINUE 89
DO $40 \quad I=3,9$ 90
$40 \mathrm{E}(\mathrm{I}, \mathrm{J})=\mathrm{E}(\mathrm{I}, 8)$ 91
DO $45 \mathrm{~J}=3,9$ 92
$45 \mathrm{E}(9, \mathrm{~J})=\mathrm{E}(8, \mathrm{~J})$ 93
DO $50 \mathrm{~J}=3,9$ 94
DO $50 \mathrm{I}=1,6$ 95
$\mathrm{E}(9+\mathrm{I}, \mathrm{J})=\mathrm{E}(9-\mathrm{I}, \mathrm{J})$ 96
50 CONTINUE 97
DO $55 I=3,15$ 98
DO $55 \mathrm{~J}=1,6$ 99
$E(I, 9+J)=E(I, 9-J)$ 100
55 CONTINUE 101
GO TO 60 102
56 DXWL=DAPWL/SQRT(2.) 103
KXMAX=.5/DXWL 104
RETURN 105
60 KXMAX=1./(2.*DXWL) 106
IF (ICHAN.EQ.1) RETURN 107
IF ((IXY.EQ.1).AND.(ICASE.EQ.3)) RETURN 108
IF ((IXY.EQ.1).AND. (IPOL.EQ.1)) RETURN 109
IF ((IXY.EQ.2).AND.(IPOL.EQ.2)) RETURN 110
IF (ICHAN.EQ.3) GO TO 75 111
C LOAD ELEVATION DIFFERENCE CHANNEL: 112
$\mathrm{J}=\mathrm{NY} / 2+1$ 113
DO $65 \mathrm{I}=1$, NX 114
$65 \mathrm{E}(\mathrm{I}, \mathrm{J})=(0 ., 0$. 115
JMAX=NY/2 116
DO $70 \mathrm{~J}=1, \mathrm{JMAX}$ 117
DO $70 \quad I=1, N X$ 118
$70 \mathrm{E}(\mathrm{I}, \mathrm{J})=-\mathrm{E}(\mathrm{I}, \mathrm{J})$ 119
RETURN 120
C LOAD AZIMUTH DIFFERENCE CHANNEL: 121
$75 \mathrm{I}=\mathrm{NX} / 2+1$ 122
DO $80 \mathrm{~J}=1, \mathrm{NY}$ 123
$80 \mathrm{E}(\mathrm{I}, \mathrm{J})=(0 ., 0$. 124
IMAX $=N X / 2$ 125
DO $85 \mathrm{I}=1$, IMAX 126
DO $85 \mathrm{~J}=1$, NY 127
$85 E(I, J)=-E(I, J)$ 128
RETURN 129
C DAPWL=5.047 FOR ADA M.'S CASE III 130
90 WRITE $(6,95)$ 131
95 FORMAT (//"***ERROR EXIT! NX NOT EQUAL TO 16 IN SUBR TRECNF****//) 132
STOP 133
END 134

Chapter 5

SUBROUTINE APINT

5-1. Purpose: To compute the electromagnetic fields E, \underline{H} of a rectangular aperture in the $z=0$ plane at a point $P(x, y, z>0)$, where the amplitude and phase of the aperture electric fields $E_{\text {xap' }} E_{\text {yap }}$ are specified at N_{x} by N_{y} discrete points spaced d_{X} / λ and d_{Y} / λ apart. The aperture magnetic fields $H_{\text {xap' }} H_{y a p}$ are derived from $E_{a p}$ via the geometrical optics approximation.

5-2. Usage: CALL APINT (PFWL, EX, EY, NX, NY, MIDX, MIDY, DXWL, DYWL, E, H, INIT)

5-3. Arguments
PFWL - Real input array of three elements which specifies the Cartesian coordinates in wavelengths of the point $P(x / \lambda, y / \lambda, z / \lambda)$ at where the fields are to be computed; i.e., PFWL(1) $=x / \lambda$, etc.

EX,EY - Complex input arrays of NX by NY elements each which specify the aperture electric field.

NX,NY - Integer input variables equal to the number of sample points in the aperture in the x and y directions, respectively. NX and NY must be even.

MIDX, - Integer input variables equal to the indices in the MIDY arrays EX, EY corresponding to $x=y=0$; i.e., MIDX= $\mathrm{NX} / 2+1, \quad \mathrm{MIDY}=\mathrm{NY} / 2+1$.

DXWL, - Real input variables equal to the sample spacings DYWL in wavelengths in the x and y directions, respectively.

```
E,H - Complex output arrays of three elements each equal
    to the rectangular vector components of the elec-
    tric and magnetic fields at P; i.e., E(l)=E w, etc.
    - Logical input variable which controls initializa-
    tion of Subroutine DIPOLES.
```

5-4. Comments and Method

The fields at $P(x, y, z)$ due to the sampled aperture fields are computed by superposing the individual fields of equivalent electric and magnetic dipoles located at each sample point as explained in Section 6-4. 5-5. Program Flow

1-12 Declare variables, initialize constants.
13-14 Compute initial source point, minus d_{x} / λ. Set z-coordinate of source points to zero.

15-18 Initialize summations of the fields E,H.
19-23 Compute first source point $P_{x}(x, y, 0)$.
24-27 Compute electric J_{x}^{e}, J_{y}^{e} and magnetic $J_{x}^{m} J_{y}^{m}$ currents according to $\underline{J}^{e}=\hat{z} \times \underline{H}_{a p}$ and $\underline{J}^{m}=E_{a p} \times \hat{z}$.
Call Subroutine DIPOLES to compute the fields of the electric and magnetic dipoles $\underline{J}^{e}, \underline{J}^{m}$ located at the specified source point.

Add contribution of each rectangular component to the field at $P(x, y, z)$.

Repeat for all source points.
5-6. Test Case: See Chapter 6.
5-7. References: See Chapter 6.
5-8. Program Listing: See following page.
SUBROUTINE APINT (PFWL, EX, EY,NX,NY,MIDX,MIDY,DXWL, DYWL, E,H,INIT) 1
C SUBR APINT COMPUTES FRESNEL FIELDS OF RECTANGULAR APERTURE WITH 2
C APERTURE FIELDS GIVEN BY EX,EY(H FIELDS ARE DERIVED USING G.O. APPROX.)
C FIELDS E,H ARE COMPUTED AT THE POINT PFWL. 4
COMPLEX E(3),H(3), EX(NX,NY), EY(NX,NY),JE(2), JM(2), ES(3), HS (3) 5
C JE,JM ARE ELECTRIC AND MAGNETIC SURFACE CURRENT DENSITIES FOUND FROM 6
C EAPXZHAT AND ZHAT X HAP. 7
LOGICAL INIT 8
REAL PSWL(3),PFWL(3) 9
DATA ETA/376.9911185/ 10
C NX,NY MUST BE EVEN SO THAT OMITTING ROW 1 AND COL 1 YIELDS SYM APERTURE C INIT=.TRUE. TO INITIALIZE CONSTANTS IN SUBR DIPOLES 12
$\operatorname{PSWL}(1)=(1-M I D X) * D X W L$ 13
$\operatorname{PSWL}(3)=0$. 14
DO $1 \mathrm{~L}=1,3$ 15
$E(L)=(0 ., 0$. 16
$H(L)=(0 ., 0$. 17
1 CONTINUE 18
DO $10 I=2$, NX 19
PSWL (1) = PSWL(1) + DXWL 20
PSWL(2) $=(1-$ MIDY $)$ *DYWL 21
DO $10 \mathrm{~J}=2$, NY 22
PSWL(2) $=$ PSWL(2)+DYWL 23
$\mathrm{JE}(1)=-E X(I, J) / E T A$ 24
$J M(1)=E Y(I, J)$ 25
$J E(2)=-E Y(I, J) / E T A$ 26
$J M(2)=-E X(I, J)$ 27
CALL DIPOLES(JE,JM,PSWL, PFWL,DXWL,DYWL,ES,HS,INIT) 28
DO $5 \mathrm{~L}=1,3$ 29
$\mathrm{E}(\mathrm{L})=\mathrm{E}(\mathrm{L})+\mathrm{ES}(\mathrm{L})$ 30
$H(L)=H(L)+H S(L)$ 31
5 CONTINUE 32
10 CONTINUE 33
RETURN 34
END 35

Chapter 6

SUBROUTINE DIPOLES

6-1. Purpose: To compute the electromagnetic fields $E=x E_{x}+Y_{Y}+$ $\hat{z} E_{z}$ and $\underline{H}=\hat{x} H_{x}+\hat{y} H_{Y}+\hat{z} H_{z}$ at point $P_{f}(x / \lambda, y / \lambda, z / \lambda)$ as produced by electric $\underline{J}^{e}=\hat{2} \times \underline{H}$ and magnetic $\underline{J}^{m}=\underline{E} \times \hat{z}$ surface currents flowing on the planar rectangular surface of dimensions $\Delta x / \lambda$, $\Delta y / \lambda$ located at source point $P_{s}\left(x_{\prime}^{\prime} / \lambda, y^{\prime} / \lambda, z^{\prime} / \lambda\right)$ and oriented in the $z=z^{\prime}$ plane. All dimensions are in wavelengths.

6-2. Usage: CALL DIPOLES (JE, JM, PSWL, PFWL, DXWL, DYWL, E, H, INIT)

6-3. Arguments
JE, - Complex input arrays of two elements each conJM taining the x and y components of the electric and magnetic surface current densities at the center of the planar element as found from $E \times \hat{z}$ and $\hat{z} \times \underline{H}$, respectively, where \hat{z} is the unit normal to the element and E, \underline{H} are the fields at the center of the element. PSWL, - Real input arrays of three elements each which PFWL contain the coordinates $P_{S}\left(x^{\prime} / \lambda, y^{\prime} / \lambda, z^{\prime} / \lambda\right)$, $P_{f}(x / \lambda, y / \lambda, z / \lambda)$ of the center of the source element and the point at which the field is to be computed, respectively. DXWL, - Real input variables equal to the dimensions $\Delta x / \lambda$, DYWL $\quad \Delta y / \lambda$ of the rectangular source element.

E, $H \quad$	Complex output arrays of three elements each
	containing the fields $E, \eta \underline{H}$ at the point P_{f},
	Note that $\eta \underline{H}$ is computed rather than \underline{H} above
	(to save time).
INIT $\quad-\quad$ Logical input variable which controls initiali-	
	zation of various constants for repetitive calls
	to the subroutine: if TRUE, the constants are
	computed; if FALSE, the constants are not com-
	puted, and their last computed values are used.

6-4. Comments and Method
a. Comment. The source and field points cannot be any closer together than $r=.01 \lambda$. This restriction is necessary to prevent division by zero due to the r^{-1} variation of the dipole fields as explained below. Actually, field points should be removed to the order of $r=\sqrt{(\Delta x / \lambda)^{2}+(\Delta y / \lambda)^{2}}$ for validity of the discretized approximation to the physical model.
b. Method. The subroutine computation is motivated by the problem of computing the fields of a rectangular antenna aperture located in the $z=z^{\prime}$ plane as illustrated in Figure 1 . Let the electric and magnetic fields $E_{a p},{\underset{a p}{ }}_{H}$ be specified at discrete points ($\left.X_{m}, Y_{n}, 0\right)$. Then, at each point, the equivalent surface current densities \underline{J}^{e} and \underline{J}^{m} are given by [1]

$$
\begin{align*}
& \underline{J}^{\mathrm{e}}=\hat{\mathrm{z}} \times \underline{H}_{\mathrm{ap}}=\hat{\mathrm{x}}\left(-\mathrm{H}_{\mathrm{yap}}\right)+\hat{y} H_{\mathrm{xap}}=\hat{\mathrm{x}} J_{\mathrm{x}}^{\mathrm{e}}+\hat{\mathrm{y}} J_{\mathrm{y}}^{\mathrm{e}} \tag{1}\\
& \underline{J}^{\mathrm{m}}=\underline{E}_{\mathrm{ap}} \mathrm{x} \hat{z}=\hat{\hat{x}} E_{y a p}+\hat{y}\left(-E_{x a p}\right)=\hat{x} J_{\mathrm{x}}^{\mathrm{m}}+\hat{y} J_{y}^{m} \tag{2}
\end{align*}
$$

Figure 6-1. Geometry of Rectangular Aperture Antenna Approximated by Elementary Dipoles.

The surface current densities so defined can be discretized for each element $\Delta x \Delta y$ as follows. Consider the current density J_{y}^{e}. The total current entering the lower boundary and leaving the upper boundary of the element is $J_{Y}^{e} \Delta x$ and can be regarded as an elementary dipole concentrated at the center of the element. The dipole moment is

$$
\begin{equation*}
p_{0}=q \ell=\frac{J_{y}^{e} \Delta x}{j \omega} \Delta y \tag{3}
\end{equation*}
$$

where q is the charge and ℓ is the separation [2], and where the following relation for the sinusoidal steady state has been used:

$$
\begin{equation*}
q=\int I d t=\frac{I}{j \omega} \tag{4}
\end{equation*}
$$

Similar relations hold for the other component of \underline{J}^{e} and, by duality, for J^{m} as will be summarized below.

The next step in the development is to obtain expressions for the dipole fields of \underline{J}^{e} and \underline{J}^{m}. To facilitate this step, first consider the fields radiated by electric and magnetic dipoles oriented along the z_{o} axis as shown in Table 1 [2]. Note that these expressions require r_{0} in wavelengths, and that Δx and Δy refer to the element size in the original aperture.

Matters are simplified if the spherical coordinate components of Table 1 are transformed to their corresponding rectangular components according to [3]

$$
\begin{align*}
& A_{X O}=\left(A_{r O}^{-} \cos \theta_{0}\right) \sin \theta_{0} \cos \phi_{0}+\left(A_{\theta_{0}}^{-} \sin \theta_{0}\right) \cos \theta_{0} \cos \phi_{0} \tag{5a}\\
& A_{y o}=\left(A_{r o}^{-} \cos \theta_{0}\right) \sin \theta_{0} \sin \phi_{0}+\left(A_{\theta_{0}}^{-} \sin \theta_{0}\right) \cos \theta_{0} \sin \phi_{0} \tag{5b}\\
& A_{z O}=\left(A_{\text {ro }}^{-} \cos \theta_{0}\right) \cos \theta_{0}-\left(A_{\theta_{0}}^{-} \sin \theta_{0}\right) \sin \theta_{0} \tag{5c}\\
& C_{x o}=-\left(C_{\phi 0}^{-} \sin \theta_{0}\right) \sin \phi_{o} \tag{5d}\\
& C_{y o}=\left(C_{\phi o}^{-} \sin \theta_{0}\right) \cos \phi_{o} \tag{5e}\\
& C_{\text {zo }}=0 \tag{5f}
\end{align*}
$$

In the above, the trigonometric function in parentheses comes from the field expressions in Table 1; hence, the "minus" superscript indicates the field expression from Table 1 without the orientation factor $\cos \theta_{0}$ or $\sin \theta_{0^{\prime}}$ weighting e_{o} or h_{o}, and without the current $J_{z 0}^{m}$ or $J_{z o}^{e}$ Define direction cosines $\mathrm{k}_{\text {xo }}, \mathrm{k}_{\text {yo }}, \mathrm{k}_{\mathrm{zo}}$ related to $\theta_{\mathrm{o}}, \phi_{\mathrm{o}}$ according to

$$
\begin{align*}
& \mathrm{k}_{\mathrm{xO}_{0}}=\sin \theta_{0} \cos \phi_{0} \tag{6a}\\
& \mathrm{k}_{\mathrm{y}_{0}}=\sin \theta_{\mathrm{o}} \sin \phi_{0} \tag{6b}\\
& \mathrm{k}_{\mathrm{z}_{0}}=\cos \theta_{0} \tag{6c}
\end{align*}
$$

Then Equations (5) can be rewritten succinctly as

$$
\begin{align*}
& A_{x o}=\left(A_{r o}^{-}+A_{\theta_{0}}^{-}\right) k_{x o} k_{z o} \tag{7a}\\
& A_{y o}=\left(A_{r o}^{-}+A_{\theta_{0}}^{-}\right) k_{y o} k_{z o} \tag{7b}\\
& A_{z o}=\left(A_{r o}^{-}+A_{\theta_{0}}^{-}\right) k_{z o}^{2}-A_{\theta_{0}}^{-} \tag{7c}\\
& C_{x o}=-C_{\phi o}^{-} k_{y o} \tag{7d}\\
& C_{y o}=C_{\phi o}^{-} k_{x o} \tag{7e}
\end{align*}
$$

$$
\begin{equation*}
C_{z o}=0 \tag{7f}
\end{equation*}
$$

Similar expressions for cases of x-directed and y-directed dipoles may be derived from those given above merely redefining the axes in Table 1. When this is done, the generalized expressions shown in Table 2 result for all three cases.

When both electric and magnetic currents are present (x-directed and y-directed components) the expressions for \underline{E} and \underline{H} are obtained by adding the contributions due to each current as given in Table 2. Note that $A_{r}^{-}, A_{\theta}^{-}$, and A_{r}^{-}are identical for both types and directions of currents so that the expressions for the field components may be written, for example, as follows:

$$
\begin{align*}
E_{x}= & e_{o}\left\{J_{x}^{e}\left[\left(A_{r}^{-}+A_{\theta}^{-}\right) k_{x}^{2}-A_{\theta}^{-}\right]+J_{y}^{e} k_{x} k_{y}\left(A_{r}^{-}+A_{\theta}^{-}\right)\right\} \\
& -h_{o} j \pi n J_{y}^{m} k_{z} C_{\phi}^{-} \tag{8a}
\end{align*}
$$

Table 6-2. Rectangular Field Components of Elementary Dipoles

$$
\begin{align*}
n H_{x}= & \eta h_{o}
\end{align*}\left\{J_{x}^{m}\left[\left(A_{r}^{-}+A_{\theta}^{-}\right) k_{x}^{2}-\overline{A_{\theta}^{-}}\right]+J_{y}^{m} k_{x} k_{y}\left(A_{r}^{-}+A_{\theta}^{-}\right)\right\},
$$

Similar expressions may be obtained for the other rectangular components of E and \underline{H} as given in Table 6-3 and by Lines 56-57 and 62-65 of the program listing.

6-6. Program Flow

Lines

 Comment15
18-29

30-33

34
35-37

38-40
41-45

46-49

50-51

If INIT=.TRUE., compute constants in Lines 18-29.
Compute $(2 \pi)^{2}, j, e_{o}, h_{o}, j 2 \pi, j \pi, h_{o e}=-h_{o} n, e_{o h}=e_{o} / \eta$.
Lines 26-27 have been added to cause $\eta \underline{H}$ to be computed instead of \underline{H} to save time in Subroutine RECM (See Chapter 3).

Compute r in wavelengths; i.e., the distance from the source point to the field point.

If $r<.01 \lambda$, write error message and stop (Lines 67-69).
Compute direction $\operatorname{cosines} \mathrm{k}_{\mathrm{x}}, \mathrm{k}_{\mathrm{v}}, \mathrm{k}_{\mathrm{z}}$.
Compute exponential phase factor $e^{-j 2 \pi r}$.
Compute $A_{r O}^{-}, A_{\theta_{0}}^{-}, C_{\phi_{0}}^{-},\left(A_{r O}^{-}+A_{\theta O}^{-}\right)$, and
$c_{\theta}=\left(A_{r o}^{-}+A_{\theta_{0}}^{-}\right) k_{x}^{2}-A_{\theta_{0}}^{-}$
These commented lines contain only $1 / x$ terms and can
be used to replace lines 41-45.
Precalculate $\left(A_{r o}^{-}+\bar{A}_{\theta_{0}}^{-}\right) k_{x} k_{y}$ and $C_{\phi O}^{-} k_{z}$ to facilitate computation of E_{x} and H_{x}.

Table 6-3. Fields of Elementary x-Directed and y-Directed Dipoles

$$
\begin{aligned}
& \underline{E}=\underline{E}^{\mathrm{e}}+\underline{E}^{\mathrm{m}} \\
& \underline{H}=\underline{H}^{\mathrm{e}}+\underline{H}^{\mathrm{m}} \\
& E_{x}=e_{o}\left[J_{x}^{e}\left(A_{r \theta}^{-} k_{x}^{2}-A_{\theta}^{-}\right)+J_{y}^{e}\left(k_{x} k_{y} A_{r \theta}^{-}\right)\right]-h_{o} j \pi \eta J_{y}^{m} k_{z} c_{\phi}^{-} \\
& E_{y}=e_{o}\left[J_{x}^{e}\left(k_{x} k_{y} A_{r \theta}^{-}\right)+J_{y}^{e}\left(A_{r \theta}^{-} k_{y}^{2}-A_{\theta}^{-}\right)\right]+h_{o} j \pi n J_{x}^{m} k_{z} c_{\phi}^{-} \\
& E_{z}=e_{o}\left[J_{x}^{e}\left(k_{x} k_{z} A_{r \theta}^{-}\right)+J_{y}^{e}\left(k_{y} k_{z} A_{r \theta}^{-}\right)\right]+h_{0} j \pi n c_{\phi}^{-}\left(-J_{x}^{m} k_{y}+J_{y}^{m} k_{x}\right) \\
& H_{x}=e_{o} \frac{j \pi}{\eta} J_{y}^{e} k_{z} c_{\phi}^{-}+h_{o}\left[J_{x}^{m}\left(A_{r \theta}^{-} k_{x}^{2}-A_{\theta}^{-}\right)+J_{y}^{m} k_{x} k_{y} A_{r \theta}^{-}\right] \\
& H_{y}=-e_{o} \frac{j \pi}{n} J_{x}^{e} k_{z} c_{\phi}^{-}+h_{o}\left[J_{x}^{m}\left(k_{x} k_{y} A_{r \theta}^{-}\right)+J_{y}^{m}\left(A_{r \theta}^{-} k_{y}^{2}-A_{\theta}^{-}\right)\right] \\
& H_{z}=e_{o} \frac{j \pi}{n} c_{\phi}^{-}\left(k_{y} J_{x}^{e}-k_{x} J_{y}^{e}\right)+h_{o}\left[J_{x}^{m}\left(k_{x} k_{z} A_{r \theta}^{-}\right)+J_{y}^{m}\left(k_{y} k_{z} A_{r \theta}^{-}\right)\right] \\
& \text {Where: } \quad e_{0}=\frac{\left(\frac{\Delta A}{2}\right) n}{j(2 \pi)^{2}} \quad h_{0}=\frac{\left(\frac{\Delta A}{2}\right)}{j(2 \pi)^{2} \eta}
\end{aligned}
$$

52-53	Compute E_{x} and H_{x} due to the x -directed and y -
	directed electric and magnetic currents: $\mathcal{J}_{\mathbf{x}}^{e}=J E(1)$,
	$J_{Y}^{\mathrm{e}}=J E(2), J_{\mathrm{x}}^{\mathrm{m}}=J M(1), J_{\mathrm{Y}}^{\mathrm{m}}=J M(2)$
54	Precalculate $\left(A_{r O}^{-}+A_{\theta_{0}}^{-}\right) k_{Y}^{2}-A_{\theta O}^{-}$.
55	See lines 46-49 above.
56-57	Compute E_{Y} and H_{Y} -
58-61	Precalculate common variables for $\mathrm{E}_{\mathrm{z}}, \mathrm{H}_{z}$.
62-65	Compute E_{z} and H_{z}.
	RETURN
67-69	Error message and halt.
	END

6-6. Test Case
Selected test cases shown in Figure 2-15 of Reference 1 were executed. The square, $4^{\prime \prime} \times 4^{\prime \prime}$, uniform aperture ($\lambda=1.18^{\prime \prime}$) was sampled at $M=15, N=15$ points in the x and y directions, respectively. Cases were done for $E_{a p}=\hat{y}(1),{\underset{a p}{ }}_{H_{a p}}=0$, and for $E_{a p}=\hat{Y}(1), H_{a p}=-\hat{x}(1 / \eta)$. In the latter case, the amplitudes obtained were twice as large (as expected). Although exact comparison to the graphical results in Figure 2-15 was not possible, agreement was obtained so far as could be determined. Some benchmarks as computed by Subroutine DIPOLES are shown in Tables 4 through 6.

6-7. References

1. C. H. Walter, Traveling Wave Antennas, McGraw-Hill, New York, 1965, Ch. 2.
2. S. Silver, Microwave Antenna Theory and Design, McGraw-Hill, New York, 1949, Ch. 3.
3. D. T. Paris and F. K. Hurd, Basic Electromagnetic Theory, McGraw-Hill, New York, 1969, Ch. 1.

6-8. Program Listing. See following pages.
SUBROUTINE DIPOLES(JE,JM,PSWL, PFWL,DXWL,DYWL, E,H,INIT) 1
C *** MODIFIED 1-23-80 TO INCLUDE ONLY 1/R TERMS **** NULLIFIED 1-24-80**
C SUBR DIPOLES COMPUTES THE RECTANGULAR COMPONENTS OF THE FIELDS E,H OF 3
C ELECTRIC AND MAGNETIC DIPOLES LOCATED AT PSWL(X', Y', Z') 4
C AND ORIENTED IN THE X' AND Y' DIRECTIONS. THE FIELDS ARE COMPUTED AT 5
C THE POINT PFWL(X,Y,Z). ALL DIMENSIONS ARE IN WAVELENGTHS. MKS SYSTEM C IS USED. FREE SPACE (ETA=377 OHMS) IS ASSUMED. 7
COMPLEX JE(2), JM(2), E(3), H(3), JAY, HO, EO, CPHS, JPI, JAY2PI 8
COMPLEX ARO, ATO, CPO, ARTO,CT, ARTOK, CPOK, EOH, HOE 9
REAL PSWL(3), PFWL(3),KX,KY,KZ 10
LOGICAL INIT 11
C DXWL,DYWL=X' AND Y' DIMENSIONS OF THE RECTANGULAR ELEMENT OVER WHICH 12
C CURRENT DENSITIES JE AND JM FLOW TO MAKE THE DIPOLES. 13
DATA TUPI/6.283185301/,ETA/376.9911185/ 14
IF (INIT) GO TO 1 15
GO TO 2 16
C COMPUTE EO,HO (SEE DERIVATION DATED 7-23-79): 17
1 TUPI2=TUPI**2 18
JAY=(0., 1.) 19
E0=DXWL*DYWL*ETA/(JAY*TUPI2) 20
HO=DXWL*DYWL/(JAY*TUPI2*ETA) 21
JA Y2PI =JAY*TUPI 22
JPI=JAY*TUPI/2. 23
HOE=-HO*ETA 24
EOH=EO/ETA 25
HO=HO*ETA 26
$\mathrm{EOH}=\mathrm{EOH} * E T A$ 27
C THE ABOVE TWO LINES CAUSE ETA*H TO BE COMPUTED FOR USE IN RECI. 28
INIT=.FALSE 29
2 X=PFWL(1)-PSWL(1) 30
$Y=P F W L(2)-P S W L(2)$ 31
Z=PFWL (3)-PSWL(3) 32
R=SQRT(X*X+Y*Y+Z*Z) 33
IF (R.LT..O1) GO TO 90 34
$K X=X / R$ 35
$K Y=Y / R$ 36
$K Z=2 / R$ 37
PHS=AMOD (TUPI*R,TUPI) 38
CPHS $=$ CMPLX (0., -PHS $)$ 39
CPHS=CEXP (CPHS) 40
ARO=CPHS* (1./R**3+JAY2PI/R**2) 41
ATO $=$. 5* $^{*}$ (ARO-CPHS*TUPI2/R) 42
$\mathrm{CPO}=\mathrm{JPI}{ }^{*} \mathrm{ARO}^{*}$ R 43
ARTO $=A R O+A T O$ 44
CT=ARO*KX*2-ATO* (1. -KX**2) 45
C ATO $=-.5^{*}{ }^{*}$ CPHS $^{*}$ TUPI2/R 46
C \quad CPO $=$ JPI ${ }^{*}$ CPHS*JAY2PI/R 47
C \quad ARTO=ATO 48
C CT=-ATO* (1.-KX*KX) 49
ARTOK=ARTO*KX*KY 50
CPOK $=$ CPO*KZ 51
$\mathrm{E}(1)=\mathrm{EO*}(\mathrm{JE}(1) * \mathrm{CT}+\mathrm{JE}(2)$ *ARTOK) $+\mathrm{JM}(2)$ \#HOE *CPOK 52
$\mathrm{H}(1)=\mathrm{HO}$ (JM(1)*CT+JM(2)*ARTOK) +EOH *JE (2)*CPOK 53
CT=ARO*KY**2-ATO* (1.-KY**2) 54
C CT=-ATO* (1.-KY*KY) 55
$E(2)=E O *(J E(1) * A R T O K+J E(2) * C T)-J M(1) * H O E * C P O K$ 56
$\mathrm{H}(2)=\mathrm{HO}$ * (JM (1)*ARTOK+JM(2)*CT)-JE (1)*EOH*CPOK 57
ARTOK=ARTO*KY*KZ 58
ARTO=ARTO"KX*KZ 59
CPOK=CPO*KY 60
CPO=CPO*KX 61
$E(3)=E O *(J E(1) * A R T O+J E(2) * A R T O K)+H O E *(J M(1) * C P O K$ 62
\$-JM(2)*CPO) 63
$\mathrm{H}(3)=\mathrm{HO}{ }^{*}(\mathrm{JM}(1) * \mathrm{ARTO}+\mathrm{JM}(2) * \mathrm{ARTOK})+\mathrm{EOH} *(\mathrm{JE}(1) * \mathrm{CPOK}$ 64
\$-JE (2)*CPO) 65
RETURN 66
$90 \operatorname{WRITE}(6,91)$ 67
91 FORMAT (" \#\#\# R.LT.. 01 WAVELENGTH IN SUBR DIPOLES--STOP****") 68
STOP 69
END 70

		1	-1.6	77.1	-43.	- 18	-4i. 0	53.6		1	39
14	7.24	6.64	40.0	-18 1.6	-1.	f 168.9	-42.is	147.1			40
		8	-1.8	-11.1	-4J	-18).	-45.0	-32.2	1	1	41
15	A. 13	6.87	-4; 0	-180.	-2.	C Pr.t	-40. 0	58.0			42
		1	-2.0	-99.4	-40.	-18i.	-4.0.0	-121.4	1	1	43
16	8.43	7.14	-40.0	-190.c	-2.	$2-7.8$	-40.0	-25.3			44
		(-2.2	172.2	-40.	c-18i.	-40.0	149.3	'	,	45
17	8.72	7.39	-40.0	-180.0	-2.	$4-96.3$	-40.0	-113.5			46
		1	-? 4	83.7	-40	- 18 l . 5	-40.3	59.3	1	1	47
18	9.02	7.54	-43.0	-180.?	-2.	$\bigcirc 175.1$	-40.0	159.8			49
		(-2.6	-4.9	-40.	0-18.0	-40.0	-26.4	1	1	49
19	9.31	7.8®0	-40.3	$-18 \mathrm{~J} .0$	-2.	6 86.4	-40.C	70.0			50
		1	-2.8	-93.6	-40	-18]. [-43.0	-10R.5)	1	51
20	9.61	8.14	-40.0	-180.0	-3.	C - 2.4	-45.3	-16.4			52
		1	-3.0	177.7	-40.	$0-180.0$	-40.0	161.1))	53
21	9.93	8.39	-4, 0.0	-180.0	-3.	$2-91.2$	-40.0	-105.2			54
		1	-3.2	88.9	-40.	L-180.6	-40.0	71.3	1	1	55
22	10.20	2. 64	-40.0	$-18 \mathrm{cc}$	-3.	4179.9	-40.0	164.6			56
		1	-3.4	-. C	-43.	$0-180.0$	-40.0	-18.9))	57
23	10.49	R. 89	-40.0	-180.4	-3.	691.0	-40.0	71.1			58
		1	-3.6	-89.0	-40.	C - 1Rt.	-40.0	-136.5	1	1	59
24	10.79	9.14	-42.3	- 18 C . C	-3.	B 2.0	-40.0	-17.4			60
		(-T. R	-178.	-40.	$0-180.0$	-43.0	166.8		1	61
25	11.09	9.39	-4i. 0	-180.	-4.	C - 47.0	-40.0	-104.3			52
		1	-4.0	93.0	-43.	-180.6	-40.0	76.7	1	1	63
26	11.38	9.64	-40.0	-180.0	-4.	1-17E. 1	-4C.	16月.ค			64
		1	-4.1	3.9	-40.	- 180.0	-40.0	-13.8		,	65
27	11.67	9.89	-40.0	-196.	-4.	$3 \quad 94.8$	-40.0	76.7			66
		1	-4. 3	-35.2	-40.	$C=180.0$	-40.0	-104.2		1	67
28	12.97	19.14	-49.0	-180.	-4.	5 5.6	-40.3	-R. 1			6 ¢
		(-4.5	- 174.4	-40.	C-196.0	-40.0	168.6		,	69
29	12.26	1:.39	-40.0	-18.3.	-4.	$7-A 3.6$	-40.0	-97.5			70
		1	-4.7	96.4	-4J.	$0-18 \mathrm{u} .0$	-40.0	RC. 5	1	1	71
30	12.56	10.64	-40.0	-180.	-4.	9-17?.9	- +4.0	172.5			72
		1	-4.4	7.1	-4.	-107.0	-4j. ${ }^{\text {j }}$	-7.5		1	73
31	12.85	15.87	-43.0	-180.	-5.	r 97.8	-47.0	84.9			74
		1	-5.9	-32.1	-4i.	$0-180.0$	-40.0	-96.9		1	75
32	13.15	11.14	-40.3	-180.0	-5.	28.5	-40.0	-5.4			76

Table 6-5. Fields Computed by Subroutine DIPOIES Along x-Axis at $z=8$ inches.

Table 6-6. Fields Computed by Subroutine DIPOLES Along x-Axis at $z=24$ inches.

		1	－14．3	り0．4	－4j．	－164．d	－33．7	－144．0		39
14	3．144	3．25	－40．${ }^{\text {c }}$	－ 14.5	－1＋．t	－ 13 E． 7	－40．0	－145．0		40
		1	－14．7	43.8	－43．	C－18 〕．	－30．7	－157．9	1	41
15	4.13	3.5%	－40．0	－10う．	－15．	5－15c． 2	－44．0	－150．i		42
		1	－15．6	34.4	－ 40.	6－180．	－ 31.0	－172．3	1	43
16	4.43	3.75	－4：． 3	－141．	－$\ddagger 5$ ．	$4-16.4$	－4i． 0	－171．0		44
		3.75	－1E． 5	1E． 1	－45．	0－180．	－ 31.3	172.3	1	45
17	4.72	L．も．	－4C．0	－160．	－17．4	4－179．9	－ 4.0	165.3		46
		1	－17．5	1．	－40．	l－1ヵ0．u	－31． 6	155.9	1	47
13	5.42	4.25	－4［．］	－1Rũ．$[$	－18．	5164.3	－40．3	167.9		48
		4．25	－1A．0	－14．7	－4v．	－$-1 \times 0 . j$	－32．5	139.6	1	49
19	5.31	－	－4． 0	$-180 .[$	－19．	7 147．	－40．0	139.4		5 C
		1	－14．9	－31．	－40．	－-130.0	－35．3	120.3	）	51
25	5．61	4.75	－40．7	－150．i	－21．	1131.1	－40．9	134.8		52
		－ 1	－21．3	－47．5	－40	4－1N0．0	－34．4	101.1	1	53
21	5．9\％	5.34	－40．0	$-18 \mathrm{~J} . \mathrm{c}$	－22．	7114.2	－4i． 3	101.9		54
	5．9．	1 1	－22．8	－04．1	－ 40.	－140．J	－35．8	81.0	）	55
22	0.20	5.25	－ 4 i 0.0	－150．6	－ 24.	497.9	－4C． 1	97.9		56
		1	－24．5	－80．2	－ 40.	－18u．j	－37．5	OU． 3	1	57
23	6.49	9．3	－45．0	－14U．	－25．	482.9	－45．0	81.7		58
		－．	－20．4	－94．9	－ 4 J ．	$0-100.0$	－34．8	39.2	1	59
24	6.79	5.75	-40.3	－180．0	－28．	$4 \quad 70.6$	－40．C	80.5		60
		1	－28．3	-107.2	－40	－185．	－4icij	18.5	1	61
25	7．cy	0.00	－40．0	－1＋3．6	－30．	352.5	－4t．0	57.1		62
	7.4	1	－35．1	-115.9	－40．	$4-193.0$	－4t．0）	1.4	1	63
$2 \dot{0}$	7.36	6． 25	－40．6	－1＊J．	－ 31.	4 b 4.4	－413． 3	57.5		64
		1	－31．1	－121．5	－4．	C－180．0	－4． 3.0	16.2	1	65
27	7.07	5.50	－4C．${ }^{\text {c }}$	－183．0	－31．	253.4	－40．0	90.0		66
		6．	－31．0	－127．9	－40．	$0-180.3$	－40．0	86.2	1	67
28	$7 \cdot 47$	6.75	－4C．0	$-18 \mathrm{C} .5$	－30．	242.3	－40．0	17.7		68
		1	－35．2	$-1.39 .2$	－40．	C－14C．E	－45．0	72.6	1	69
24	8.26	7． 5	－40．0	－183． 5	－ 28.	926.0	－4i． 0	1.7		70
		1	－29．1	－156．	－40．	C－180．0	－4J． 0	48.4	）	71
30	8.56	7． 25	－40．0	－180．0	－27．	$0 \quad 4.3$	－ $4 \mathrm{C} . \mathrm{C}$	5．1		72
		7.25	－28．1	-177.3	－40．	C－ 18 u .0	－39．2	21.0	1	73
31	8.85	7.50	-4.00	－180．C	－ 26.	－－2C．2	－40．0	－33．3		74
		1	－27．2	158.3	－40．	$0-180.0$	－37．4	－8．1	1	75
32	9.15	7.75	－40．0	－180．	－26．	$1-47.4$	－40．0	－6C．1		76

$$
\begin{array}{lllll}
1-32.0 & 27.9-40.0-106 .:-30.6-63.11 & 115
\end{array}
$$

Table 6-7. Fields Computed by Subroutine DIPOLES Along x-Axis at $z=48$ inches.

			1	$-4 t \cdot 8$	－21．4	－－J．	－14う．j	－39．5	148.8	）	39
14	3．44	3．25		－4． 6	－18：	－17．［	151．2	－4．00	148.0		40
			1	－17．	－20．7	－43．	－14し．」	－39．0	142.0	1	41
15	4.13	3.50		－40．	－135．5	－17．2	143.9	－4is．4	139.6		4 ？
			1	－17．2	－36．1	-45.2	－1ヶu．u	－30．5	134.6	）	43
10	4.43	3.75		－こ	－J［［ J	－ 17.4	136.0	－4u．${ }^{\text {d }}$	136．9		44
			1	－17．4	－43．3	－4C．6	－ $16 \mathrm{j} . \mathrm{j}$	－36．1	126．E	1	45
17	4.72	4.6		－40．5	－150．	－17．t	127.0	－4：．0	120.4		$4 E$
			1	－ 57.0	－52．3	－43．6	－183．0	－37．0	118.1	1	47
13	5.42	4.25		－49．5	－143．	－17．6	118.6	－ 40.0	112.4		48
			1	－17．9	－61．z	－4．． 5	－184．j	－37．5	109.1	1	49
13	5.31	4.51		－4．3．j	－18j．	－13．1	1：9．1	－42．0	135.2		50
			1	$-1^{2} \cdot 1$	－7u．a	－43．t	－18゙．	－37．2	99.5	）	51
2	5．ら1	4.75		－45．0	－190．L	－14．3	94.1	－4．03	97.2		52
			1	－14．4	－8L． 4	－4J．0	－180．	－37．［	39.4	1	53
21	5.90	5．0．		－41．${ }^{\text {d }}$	－18d．l	－18．6	88.6	－40．0	80.5		54
			1	－1A．0	－91．3	－40．6	－180． C	－36．9	78.8	1	55
22	5.20	5.25		4 C －i	－180．	－18．9	77.5	－40．ú	70.7		56
			1	－18．9	－102．3	－40．1	－18ic．	－36． 7	67.0	）	57
23	6.49	5.56		－40．	－18j．	－17．2	65.9	-43.0	63.3		58
			1	-19.3	－113．9	－40．	－18C．	－36．7	55.9	）	59
24	6.79	5.75		－4i．${ }^{3}$	－18！．i	－19．5	53．8	－4E． 6	51.6		60
			1	－19．6	－120．c	－43．i	－186．	－35．6	43.6	）	01
25	7．38	©．JE		－42．	－18i．i	－17．9	41.1	－40．C	37.7		62
			（	－19．9	－138．7	－4．3．6	－16C．0	－36．6	34.8	）	63
20	7.38	6.25		－4i． 2	－18心．	－2j． 2	28．0	－4i．${ }^{\text {d }}$	22.5		64
			1	－20．3	－151．8	－40．0	－16：． C	－35．E	17.5	1	65
27	7.67	c． 50		－40．3	－180．6	－20．6	14.3	－40．0	9.4		66
			1	－2⿺． 7	－165．4	－40．0	－18さ．	－36．7	3.6	1	67
28	7.97	c． 75		－40． 5	－ $580 . \mathrm{i}$	－21．0	． 1	－ 40.0	1.1		68
			1	－21．1	－179．t	-4.0	－18j． 6	－ 36.8	－10．7	1	69
29	3． 26	7．is		－40．3	－180．0	－21．5	－14．6	－40．3	－20．0		70
			1	－22．6	165.7	－40．6	-182.	－36．9	－25．7	1	71
30	8． 56	7.25		－40．0	－ 1814.0	－21．9	－29．8	－43．0	－31．4		72
			1	－22．：	$150 . E$	－45． 5	－18t．	－ 37.0	－41．1	）	73
31	＊． 85	7．50		－42．0	－184．${ }^{\text {－}}$	－22．4	－45．5	－4i．0	-42.8		74
			1	－22．5	134.9	－4J．i	－180．J	－37．2	－57． C	1	75
32	9.15	7.75		－45．0	$-10 \mathrm{~J} .6$	－22．y	－01．0	－40．4	－00．4		76

			（－23．3	119．9	－43．	C－184．0	－37．5	－73．5	$)$	1	77
33	9.44	8.05	－40．？	－180．0	－23．	$4-79.3$	－4． .1	－79．6			78
			（－23．5	102．2	－40	0－180．0	－37．8	－90．5	1	1	79
34	9.74	8.25	－4？．0	－1R0．0	－24．	－ 95.4	－40．0	－9R．8			30
			$1-24.2$	8 E .1	－40	0－189．0	－ 38.1	－10R．0	1	1	81
35	10.73	8.51	－47．0	－185．C	－24．	6－113．0	－40．0	－118．			92
			1－24．8	67.5	－40．	－－180．c	－3R． 5	－126．0		1	83
36	10.33	8.75	－40．0	－18心．0	－25．	3－131．1	－40．3	－130．3			84
			1－25．4	49.5	－40	C－180．？	－38．9	－144．5		）	25
37	10.62	9.05	－6．7．0	－18j．0	－25．	9－149．5	－40．0	－157．7			R6
			（－2t． 1	31.1	－40	－180．0	－39．3	-163.5		1	$R 7$
30	10.92	9.25	－41．0	－180．j	－25．	7－168．4	－40．0	－173．3			R8
			（－2．6．9	12.3	－4J	j－185． 3	－ 39.8	176.9		1	89
39	11.21	9.57	－4． 0	－ 19 9．0	－27．	5172.3	－4C．2	158.1			90
			（－27．7	－6．9	－40	－ 180.0	－40．0	156.0	1	1	91
40	11.51	9.75	－40．0	－180．0	－28．	3152.5	－40．0	145.7			92
			1－29．5	－25．5	－47	－ 18 y ．	－40． 7	136.4	1	1	93
41	11．80	15.05	－40． 5	－182．0	－29．	2132.7	－40．0	123.4			94
			（－29．4	－46．4	－44	－180．0	－40．0	115.5		1	95
42	12.10	10.25	－40．0	－180．0	－ 30.	2112.4	－40．0	119.5			96
			（－3？．4	－65．5	－40．	－189．0	－40．？	94.0	1	1	97
43	12.39	10.50	－40．0	－183．c	－？ 1.	392.0	－40．8	90.1			78
			（－31．5	－ 35.7	－40．	－183．	－4i． 7	72.1	1	1	99
44	12.69	10.75	－40．0	－190．c	－32．	41.6	－40．0	63.9			100
			1－32．6	－107．	－40	－ 18 C .2	－40．0	49．9	1	1	1 C 1
45	12．98	11．E：	－40． C	－189．0	－ 33.	751.2	－40．0	37.3			102
			（－33．9	－127．2	－40	－195．0	－4i．3	27.1	1	1	103
46	13.29	11.25	－40．0	－12］．	－ 35.	231.3	－45．0	9.5			104
			1－35．4	－145．9	－40．	C－1f C ． 0	－40．0	4.1	J	1	105
47	13.57	11.53	－45．0	－18 0.0	－ 35.	6 12．3	－40．0	4.1			106
			1－36．9	－165．7	－4C	C－1RC．	－4C．0	－19．1		1	107
48	13.87	11.75	-4.2	－192．	－ 39.	$6-5.1$	－40．0	－8．2			108
			1－39．5	177.1	－40．	－ 180.3	－40．0	－42．2		1	109
49	14.16	12．35	－4う．5	－182．0	－40．	C－19．5	－40．0	－3．5			110
			1－4． 6	162.7	－40．	C－180．0	－40．0	－64．5		1	111
50	14.46	12.25	－45．	－1ヵ0．	－40	C－20．5	－40．5	－190．3			112
			（－40．	152.2	－40．	-189	－40．5	－93．1		1	113
51	14.75	12．5］	－40．0	－1R0．5	－40．	C－34．i	－40．0	－95．0			114

	－4．0：142．6	－1		－7P．N	1	115
5215.0512 .75	－4C．3－18」．？	－＋0．6－34．3	－4：．	－－7．0		116
	－4．． 137.5	－45．C－100．${ }^{\text {cos }}$	－4こ．	－． 2	1	117
5315.3413 .60	－40．j－153．0	－40．L－48．6	－4．00	－37．9		118
	－40．：：24．4		－4i．d	－11．8	，	119
5415.6413 .25	－40．6－18．．6	－4v．L－03．7	－4\％． 3	－190．0		120
	－46．－ 114.1	－45．L－180．0．	－4．$\cdot 5$	－34．8	，	121
5515.9313 .56	－45．0－183．6	－39．C－83．3	－4C．0	－90．0		122
	－37．3 94．7	－4io．i－18．．．	－4．6．	－óc． 7	1	123
5015.2313 .75	－4．0．9－100．i	－37．0－16．E．	－42．0	－90．0		124
	（－38．1 72.2	－40．6－136．	－49．13	－87．9	）	125
$5710.521+.05$	－6i．c－14j．c	－36．7－13c．7	－4， 3	－156．3		126
	$\begin{array}{ll} -37 . i & 47.7 \end{array}$	$-42 . \mathrm{C}-182 . \mathrm{C}$	－4－． 0	－116．1	1	127
$5315.4 \geq 1+25$	－41．0－180．！	－35．7－157．6	－4i．i	－159．9		12 A
	－36．1 21.6	－40．4－180．6	－43．3	$-1+5.0$	1	129
5917.11 14．5．	－40．0－18J．c	－34．9 175．6	－4i． 0	-170.7		130
	（－35．4－5．7	－40．6－180．0	－40．3	－174．4	）	131
6i 17．41 14．75	－45．5－180．i	－ 34.2 147．1	－43．0	143.5		132
	（－34．7－33．9	－40．i－136．0	－45．0	155.5	1	133
6117.7315 .0 \％	－42．0－ $180 . \mathrm{i}$	－33．E 117．9	－4i．0	110.6		134
	（－34．1－03．1	－4J．0－180．0	－40．0	125.0	1	135
6214.0215 .25	－4i．0－180．c	$-33.1 \quad 07.9$	－4． 0	92.0		136
	$-33.6-92.9$	$-45.0-1850$	－4． 0	93.9	1	137
$0318.2915 .5 i$	－4r．0－ 1 AS．	－32．5 57．3	－4i．0 0	61.3		138
	（－33．2－123．5	－4j．6－1850．	－4i．0	62.4	1	139
6418.591 上．73	－4．0－180．0	－ 32.3 2t．0	－4． 0	14.3		140
	（－32．d－ 15.0 ． 6	－40．6－101．3	－4i．J	3 C .4	1	141
	－4v．e－15： 6	－ $31.6-5.6$	－40．5	－2．2		142
	－ 32.5 173．6	－4i．a－18：．	－4i．u	－2．1	1	143
6617.1910 .25	$-40.0-19=0$	－ $\mathrm{Z}_{1} .6-3 \mathrm{r} .2$	－45．0is	－37．5		144
	$(-32.2 \quad 141.3$	$-4] . i-18 \mathrm{~L} .$	－4．0．c	－35．1	1	$1+5$
6719.47 15．5：	－4C．0－ 18 BL	－ 21.4 －71．1	-4.0	－73．5		146
69 ：9．77 10．75		$-4 J .6-15 \% .0$ -31.2	－4．0．	－68．5	1	147 148
	－31．4 7j．2		－39．7	－102．3		149

Chapter 7

SUBROUTINE WALL

7-1. Purpose: To compute the normal transmission (T_{\perp}, T_{j}) and reflection coefficients of a N-layer dielectric sheet having thicknesses d_{n}, dielectric constants $\varepsilon_{r n}$, and loss tangents tan ${ }_{n}$ for each layer when a plane wave is incident at angle θ_{i}.

7-2. Usage: CALL WALL (BETA, SINE, D, ER, TD, N, NN, TN1, TN2, RPER, RPAR)

7-3. Arguments

BETA	- Real input variable $=2 \pi / \lambda$, where λ is the free space wavelength.	
SINE	- Real input variable $=\sin \theta_{i}$.	
D,	- Real input arrays containing the thickness (cm),	
ER,	- dielectric constant $\varepsilon_{r^{\prime}}$ and loss tangent tan δ of	
TD	each layer.	
N	- Integer input variable equal to the number of	
	layers.	
NN	- Integer input $=\mathrm{N}+1$.	
TN1, TN2	- Complex output variables equal to the normal	
	voltage transmission coefficients for the components	
	of the incident electric field perpendicular to and	
	parallel to the plane of incidence, respectively.	
RPER, RPAR	- Complex output variables equal to the reflection	
	coefficients $R_{\perp}, R_{\\|}$.	

7-4. Comment and Method

a. Layer 1 is the first layer on the exit side of the panel; layer N is the first layer on the incident side. $T_{\perp}, T_{\|}$have the same value for either side of the panel being the incident side; however, $R_{\perp}, R_{\|}$are different (in phase) for the two cases.
b. The details of the method are presented in Appendix E of Reference 1.

7-5. Program Flow: See Reference 1.

7-6. Test Case: None.

7-7. References

1. G. K. Huddleston, "Radome Analysis Computer Program: Ray Tracing Formulation", Technical Report for JHU/APL, Contract No. 601053, November 1979.

7-8. Program Listing: See following pages.
SUBROUTINE WALL(BETA,SINE,D, ER,TD,N,NN,TN1,TN2, RPER,RPAR) 1
C SUBROUTINE WALL COMPUTES THE TRANSMISSION AND REFLECTION 2
C COEFFICIENTS FOR AN N LAYER, PLANE DIELECTRIC PANEL FOR PLANE 3
C WAVE INCIDENT AT SINE(ANGLE) FOR PERPENDICULAR AND 4
C PARALLEL POLARIZATIONS. 5
C PARAMETERS OF THE WALL: $\mathrm{N}=\mathrm{THE}$ NUMBER OF LAYERS 6
NN $=\mathrm{N}+1$ REQUIRED TO DIMENSION ARRAYS 7
D= THICKNESS OF EACH LAYER IN CENTIMETERS 8
ER= RELATIVE DIELECTRIC CONSTANT OF EACH LAY 9
TD $=$ THE LOSS TANGENT FOR EACH LAYER 10
C TN1,TN2 ARE THE NORMAL VOLTAGE XMN COEFFICIENTS; TPER,TPAR ARE THE 11
C INSERTION VOLTAGE TRANSMISSION COEFFICIENTS. IT IS IMPORTANT TO 12
C NOTE THAT THE XMN COEFS are the same for plane wave incident from 13
C EITHER SIDE OF THE STRATIFIED DIELECTRIC PanEl Immersed in free space; 14
C HOWEVER, THE REFLECTION COEFS ARE NOT. THAT IS, FOR COMPUTING RPER, 15
C RPAR, THE ORDERING OF ER(NN),TD(NN) IS IMPORTANT WITH LAYER 1 BEING 16
C THE FIRST LAYER ON THE EXIT SIDE, LAYER N BEING THE FIRST LAYER ON THE 17
C INCIDENT SIDE. LAYER NN AND LAYER 0 ARE JUST FREE SPACE LAYERS 18
C OF SEMI-INFINITE DEPTH. 19
C E,G,R1,R2, ARE ARRAYS USED IN THE SUBROUTINE HAVING NN DIM"L LIMITS 20
COMPLEX E(6),G(6),R1(6),R2(6),GG,EE,RR1,RR2, AA1, AA $2, X 1, X 2$, 21
\$X3,X4,Y1,Y2,Y3,Y4,U1,U2,U3,U4,V1,V2,V3,V4,P1,P2,P3,P4,Q1,Q2,Q3, Q4 22
COMPLEX TPER,TPAR, RPER, RPAR,U,V,TN1,TN2 23
DIMENSION ER(NN),TD(NN),D(N) 24
$\operatorname{ER}(N N)=1.0$ 25
$T D(N N)=0$. 26
DO $50 \mathrm{I}=1$, NN 27
$50 \mathrm{E}(\mathrm{I})=\operatorname{CMPLX}(\mathrm{ER}(\mathrm{I}),-\operatorname{ER}(\mathrm{I}) * T D(\mathrm{I}))$ 28
$\mathrm{AB}=\mathrm{BETA}^{*} 0.70707070707071$ 29
C 30
C CALCULATE TOTAL THICKNESS OF WALL IN CM 31
C 32
DTOTAL=0.0 33
DO $200 \mathrm{I}=1$, N 34
200 DTOTAL=DTOTAL+D(I) 35
C S IS THE SINE OF THE angle SQuared 36
C C IS THE COSINE OF THE ANGLE 37
S=SINE*SINE 38
$\mathrm{C}=\mathrm{SQRT}(1.0-\mathrm{S})$ 39
$A D=E R(1)-S$ 40
ET=ER(1)*TD(1) 41
SR=SQRT (AD*AD+ET*ET) 42
IF (SR-AD) 76,76,77 43
$76 \mathrm{~A}=0$. 44
GO TO 78 45
$77 \mathrm{~A}=\mathrm{AB}{ }^{*} \mathrm{SQRT}^{(S R-A D)}$ 46
$78 \mathrm{~B}=\mathrm{AB} \mathrm{B}^{*} \mathrm{SQRT}(\mathrm{SR}+\mathrm{AD})$ 47
$G(1)=\operatorname{CMPLX}(A, B)$ 48
$\mathrm{GG}=\mathrm{CMPLX}\left(0.0, \mathrm{BETA}^{*} \mathrm{C}\right)$ 49
$\mathrm{EE}=1.0$ 50
SUM=0. 51
SUM=SUM+D (1)/SQRT (AD) 52
RR1=(G(1)-GG)/(G(1)+GG) 53
RR2=(EE*G(1)-E(1)*GG)/(EE*G(1)+E(1)*GG) 54
DO $84 \mathrm{I}=1, \mathrm{~N}$ 55
II $=\mathrm{I}+1$ 56
$\mathrm{AD}=\mathrm{ER}$ (II) -S 57
ET=ER(II)*TD(II) 58
IF (I-N) 176, 177,177 59
176 SUM=SUM+D (II)/SQRT(AD) 60
177 CONTINUE 61
SR=SQRT (AD*AD+ET*ET) 62
IF (SR-AD) 79,79.80 63
$79 \mathrm{~A}=0$. 64
GO TO 81 65
$80 \mathrm{~A}=\mathrm{AB} \mathrm{B}^{*} \mathrm{SQRT}^{(S R-A D)}$ 66
$81 \mathrm{~B}=\mathrm{AB}{ }^{*} \mathrm{SQRT}^{2}(\mathrm{SR}+\mathrm{AD})$ 67
$G(I I)=C M P L X(A, B)$ 68
R1 (I) $=(G(I I)-G(I)) /(G(I I)+G(I))$ 69
84 R2(I) $=\left(E(I){ }^{*} G(I I)-E(I I) * G(I)\right) /(E(I) * G(I I)+E(I I) * G(I))$ 70
SUM=S*SUM 71
AA $1=1.0-$ RR1 72
$A A 2=1.0-R R 2$ 73
DO $85 \mathrm{I}=1, \mathrm{~N}$ 74
AA $1=A A^{*}$ (1.0-R1 (I)) 75
85 AA2=AA2*(1.0-R2(I)) 76
$\mathrm{AA} 1=1.0 / \mathrm{AA} 1$ 77
$A A 2=1.0 / \mathrm{AA} 2$ 78
$\mathrm{U}=-\mathrm{G}(1) * \mathrm{D}(1)$ 79
$V=G(1) * D(1)$ 80
$\mathrm{X} 1=\operatorname{CEXP}(\mathrm{U})$ 81
$\mathrm{X} 4=\operatorname{CEXP}(\mathrm{V})$ 82
$\mathrm{X} 2=-\mathrm{RR} 1 * \mathrm{X}_{4}$ 83
X3 $=-$ RR 1 * X_{1} 84
Y $1=\mathrm{X} 1$ 85
Y4 $=$ X4 86
$\mathrm{Y} 2=-\mathrm{RR} 2 * \mathrm{Y} 4$ 87
$\mathrm{Y} 3=-\mathrm{RR} 2 * \mathrm{Y} 1$ 88
DO $105 \mathrm{I}=2, \mathrm{NN}$ 89
IF(I-NN) 95,90,1 90
$90 \mathrm{U} 1=1.0$ 91
$\mathrm{U} 2=-\mathrm{R} 1(\mathrm{~N})$ 92
$\mathrm{U} 3=-\mathrm{R} 1$ (N) 93
$04=1.0$ 94
$\mathrm{V} 1=1.0$ 95
$\mathrm{V} 2=-\mathrm{R} 2(\mathrm{~N})$ 96
$\mathrm{V} 3=-\mathrm{R} 2(\mathrm{~N})$ 97
V4 $=1.0$ 98
GO TO 100 99
95 II=I-1 100
$\mathrm{U}=-\mathrm{G}(\mathrm{I}) * \mathrm{D}(\mathrm{I})$ 101
$\mathrm{V}=\mathrm{G}(\mathrm{I}) * \mathrm{D}(\mathrm{I})$ 102
$\mathrm{U} 1=\operatorname{CEXP}(\mathrm{U})$ 103
$U 4=\operatorname{CEXP}(V)$ 104
U2 $=-\mathrm{R} 1$ (II) * U 4 105
U3 $=-\mathrm{R} 1$ (II)*U1 106
V1=U1 107
V4 $=\mathrm{U} 4$ 108
V2=-R2(II)*V4 109
V3=-R2(II)*V1 110
100 P1=X1*U1+X2*U3 111
P2=X1*U2+X2*U4 112
P3=X3* $U 1+X 4^{*} U 3$ 113
$\mathrm{P} 4=\mathrm{X} 3^{*} \mathrm{U} 2+\mathrm{X} 4 * \mathrm{U} 4$ 114
Q1=Y1*V1+Y2*V3 115
Q2=Y1*V2+Y2*V4 116
Q3=Y3*V1+Y4*V3 117
Q4=Y3*V2+Y4*V4 118
$\mathrm{X} 1=\mathrm{P} 1$ 119
X2=P2 120
X3=P3 121
$X 4=P 4$ 122
$\mathrm{Y} 1=\mathrm{Q} 1$ 123
Y2=Q2 124
Y3=Q3 125
$105 \mathrm{Y} 4=\mathrm{Q} 4$ 126
RPER $=-X 3 / X 4$ 127
C TN1,TN2 ARE NORMAL VOLTAGE XMN COEFFICIENTS. 128
$R P A R=-Y 3 / Y 4$ 129
TN1 $=(\mathrm{X} 1+\mathrm{X} 2 * \mathrm{RPER}) *$ AA 1 130
$\mathrm{U}=\mathrm{CMPLX}(0.0,-S U M * B E T A)$ 131
$\mathrm{U}=\mathrm{CEXP}(\mathrm{U})$ 132
C TPER,TPAR HERE ARE VOLTAGE XMN COEFFICIENTS AT EXIT POINT OF RAY. 133
TPER=TN1*U 134
TN2=(Y1+Y2*RPAR)*AA2 135
TPAR=TN2*U 136
C MODIFY TRANSMISSION COEFFICIENTS FOR INSERTION 137
$\mathrm{U}=\mathrm{CMPLX}\left(0.0, \mathrm{BETA}{ }^{*} \mathrm{DTOTAL}{ }^{*} \mathrm{C}\right)$ 138
U=CEXP (U) 139
TPER =TN1*U 140
TPAR=TN2*U 141
1 CONTINUE 142
300 RETURN 143
END 144

Chapter 8
 SUBROUTINE CAXCB

8-1. Purpose: To compute the complex vector cross product $\underline{C}=\underline{A} \times \underline{B}$, where \underline{A} and \underline{B} are a complex vectors expressed in rectangular coordinates.

8-2. Usage: CALL CAXCB ($\mathrm{A}, \mathrm{B}, \mathrm{C}$)
8-3. Arguments
A - Complex input array containing the rectangular components of the vector $\underline{A}=\hat{x} A_{x}+\hat{y} A_{y}+\hat{z} A_{z}$; i.e., $A\left(A_{x}, A_{y}, A_{z}\right)$.

B - Complex input array $B\left(B_{x}, B_{y}, B_{z}\right)$ representing the vector B.

C $\quad-\quad$ Complex output array $C\left(C_{x}, C_{y}, C_{z}\right)$ representing the vector $\underline{C}=\underline{A} \times \underline{B}$.

8-4. Comment and Method: None

8-5. Program Flow: See listing below.
8-6. Test Case: None.

8-7. References: None.
8-8. Program Listing: See following page.
SUBROUTINE CAXCB(A,B,C) 1
COMPLEX A(3),B(3),C(3) 2
C SUBR CAXCB COMPUTES THE VECTOR CROSS PRODUCT C=AXB OF 3
C TWO COMPLEX VECTORS A AND B 4
$C(1)=A(2) * B(3)-A(3) * B(2)$ 5
$C(2)=A(3) * B(1)-A(1) * B(3)$ 6
$C(3)=A(1) * B(2)-A(2) * B(1)$ 7
RETURN 8
END 9

PARAMETRIC INVESTIGATION OF RADOME ANALYSIS METHODS:

EXPERIMENTAL RESULTS

By
H. L. Bassett, J. M. Newton, W. Adams, J. S. Ussailis,
M. J. Hadsell, \& G. K. Huddleston

Prepared for
AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFSC) BOLLING AIR FORCE BASE, D. C. 20332

FINAL TECHNICAL REPORT, VOLUME IV OF IV GRANT AFOSR-77-3469
30 September 1977 - 31 December 1980

February 1981
GEORGIA INSTITUTE OF TECHNOLOGY
Engineering Experiment Station \&
SCHOOL OF ELECTRICAL ENGINEERING
ATLANTA, GEORGIA 30332

The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the Air Force Office of Scientific Research or the U. S. Government.

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered).

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER ${ }^{\text {a }}$ 2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtille) PARAMETRIC INVESTIGATION OF RADOME ANALYSIS METHODS: EXPERIMENTAL RESULTS	5. TYPE OF REPORT \& PERIOD COVERED Final Technical Report, Vol. 4 of $4 /$ September 1977-Dec. 1980 6. PERFORMING OFG. REPORT NUMBER
7. AUTHOR(s) H. L. Bassett, J. M. Newton, W. Adams, J. S. Ussailis, M. J. Hadsell, and G. K. Huddleston	8. CONTRACT OR GRANT NUMEER(s) AFOSR-77-3469
9. PERFORMING ORGANIZATION NAME AND ADORESS Georgia Institute of Technology Engineering Experiment Station \& School of EE Atlanta, Georgia 30332	10. PROGRAM ELEMENT, PROJECT, TASK AREA \& WORK UNIT NUMBERS $61102 \mathrm{~F} \text { 2301/A6 }$
11. CONTROLLING OFFICE NAME AND ADDRESS Air Force Office of Scientific Research (AFSC) Physics Directorate (Code NP-77-148) Bolling AFB, D.C. 20332	12. REPORT DATE February 1981 13. NUMBER OF PAGES 189
14. MONITORING AGENCY NAME A ADDRESS(if different from Controling Office)	15. SECURITY CLASS. (of this report) UNCLASSIFIED 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIEUTION STATEMENT (of this Report) Approved for public release; distribution unlimite	
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from	R Repart)

19. KEY WORDS (Continue on reverso side if necessary and Identify by block number)

Radome Measurements
Antenna Measurements Millimeter Wave Radome
Radome Analysis
20. ABSTRACT (Continue on reverse side If necessary and identify by block number)

This Volume 4 of four volumes presents 140 measured far-field patterns and boresight error data for eight combinations of three monopulse antennas and five tangent ogive Rexolite radomes at 35 GHz . The antennas and radomes, all of different sizes, were selected to provide a range of parameters as found in the applications. The measured data serve as true data in the parametric investigation of radome analysis methods to determine the accuracies and ranges of validity of selected methods of analysis.
H. L. Bassett, J. M. Newton*, W. Adams*,J. S. Ussaillis, \& M. J. HadsellEngineering Experiment StationElectromagnetics Laboratory* andRadar and Instrumentation LaboratoryGeorgia Institute of Technology
$\&$
G. K. HuddlestonSchool of Electrical EngineeringGeorgia Institute of TechnologyAtlanta, Georgia 30332
Final Technical Report, Volume IV of IV
for
Air Force Office of Scientific Research (AFSC)Physics Directorate (Code NP-77-148)Bolling Air Force Base, D. C. 20332
under
Grant AFOSR-77-3469
30 September 1977-31 December 1980
February 1981

TABLE OF CONTENTS

PageCHAPTER I
Introduction 1
CHAPTER II
Antennas 2
CHAPTER III
Radomes and Mounting Hardware 6
CHAPTER IV
Pattern Measurements 12
CHAPTER V
Boresight Error Measurements. 18FIGUREPage
1 Schematic Drawing of Four-Horn Monopulse Antenna Array. . 4
2 Photograph of Front View of Large, Medium and Small
Antennas. 5
Photograph of Medium Antenna Showing Tuning Screws inWaveguide Feeds7
4
Photograph of Input and Output Ports of MonopulseComparator.8
567 Photograph of the Five Radomes, Three Baseplates, ThreeAdapter Inserts, and Two Extension Rings Used in theExperimental Work13
8 Radome Positioning Procedure: Large Array and Large $\mathrm{F}=1$Radome Shown. 14Coordinate System Used for Antenna Pattern Measurements

LIST OF TABLES

1 Ratios of Radome Inside Diameter to Antenna Aperture Diameter for Antenna/Radome Combinations Measured. 3
Monopulse Array Dimensions 3
Radome Dimensions in Inches 11
4 Measured Loss in Gain (decibels) For Eight Antenna/Radome Combinations . 22

Introduction
This technical report documents the pattern and boresight error measurements made on eight combinations of three monopulse antennas and five tangent ogive radomes at 35 GHz in support of the parametric investigation of radome analysis methods carried out under grant AFOSR-77-3469. The measurements program was carried out by personnel in the Electromagnetics Laboratory and the Radar and Instrumentation Laboratory of the Engineering Experiment Station at Georgia Institute of Technology during the period October 1977 through December 1980.

This report is Volume IV of four volumes which comprise the final technical report for this research grant. Volume I presents an overview of this research and salient results. Volume II documents the analytical method and Fortran computer code used to analyze the various antenna/radome combinations using a fast receiving formulation based on Lorentz reciprocity and geometrical optics. Volume III documents the analytical method and additional Fortran software required for radome analysis based on the Huygens-Fresnel principle (surface integration).

The overall objective of this research is to develop a general theory of radome analysis and to determine the accuracies of three compu-ter-aided radome analysis methods under controlled conditions of antenna size and placement, wavelength and radome size and shape. The measured data presented here is used as true data in the assessments of the accuracies of those methods. It is expected that this measured data will be
used in the future by other investigators for the same purposes. It is for this reason, and the fact that no similar data base currently exists, that these measured data are so tediously documented.

Three antennas, representing small, medium, and large in terms of radiating aperture size, were combined with five tangent ogive radomes to provide a range of antenna/radome parameters that is likely to be encountered in the applications and for which the accuracies of likely computer codes are to be determined. The parameters of the radomes include both size (small, medium, large) and fineness ratio; i.e., ratio of radome length to diameter. The tangent ogive shape was chosen because of its ease of fabrication, analytical tractability, and widespread use in the applications. The eight combinations of antennas and radomes measured are summarized by the entries in Table 1.

The physical characteristics of the antennas and radomes used are presented below. The measurement procedures and coordinate systems are also described. The measured pattern data and boresight error data are presented in Appendices A through K. Principal plane patterns and diagonal plane patterns of the sum, elevation difference, and azimuth difference channels of the three antennas alone are presented in Appendices A, B, and C. Measured principal plane patterns of the antennas with radomes are presented in Appendices D through K for the eight combinations used. Each of these eight appendices is concluded with measured boresight error data.
II. Antennas

The antennas are four-element monopulse arrays as shown in Figures 1 and 2. Their dimensions in wavelengths (λ) at 35 GHz and in inches are given in Table 2. Each element is a conical horn with a circular to

Table l. Ratios of Radome Inside Diameter to Antenna Aperture Diameter for Antenna/Radome Combinations Measured.

Antenna

Radome	Small	Medium	Large
Small $(F=1.0)$	2.33	--	-
Medium $(F=1.0)$	3.98	2.33	--
Medium $(F=1.5)$	-	2.33	--
Medium $(F=2.0)$	--	2.33	-
Large $(F=1.0)$	7.28	4.27	2.33

Table 2. Monopulse Array Dimensions.

Dimension	Small Array		Medium Array		Large Array	
(See Figure 1)	λ	inches	λ	inches	λ	inches
A	0.919	0.310	1.839	0.620	3.633	1.225
B	2.589	0.875	4.567	1.540	9.015	3.040
C	2.108	. 160	1.054	. 320	2.604	0.878
D	1.275	0.430	5.456	1.840	6.153	2.075

Figure 1. Schematic Drawing of Four-Horn Monopulse Antenna Array

Figure 2. Photograph of Front View of Large, Medium and Small Antennas
rectangular waveguide transition at the throat. All four elements are machined into a single piece of aluminum for stability and to facilitate pattern measurements with and without the various radomes. The three arrays produce measured sum pattern beam widths of 28° (small array), 15° (medium), and 8° (large) as shown in Appendices A through C.

Signals received by the horn elements are fed into a monopulse comparator via four rectangular waveguide sections. The signal paths to this point are not of exactly equal length; hence, low-loss dielectric screws were introduced into the waveguide sections to adjust the phase delay in each signal path to a single constant. That constant was determined by the relative phase of the longest signal path at the comparator input port. An example of a waveguide section tuned in this way is shown in Figure 3.

The monopulse comparator is a single unit of several waveguide couplers. Signals received at the four input ports are combined to produce a sum, azimuth difference, and elevation difference channels. Input and output port views of the comparator are shown in Figure 4.

The complete antenna assembly for the small horn is presented in Figure 5. The elevation difference channel is shown connected to a harmonic mixer. The remaining channels are terminated in matching impedances.
III. Radomes and Mounting Hardware

Five radomes of tangent ogive shape were fabricated for use
with the three antennas. Three radomes have fineness ratios of $1: 1$ and three different base diameters designated as small, medium and large. The remaining two radomes have medium base diameters with fineness ratios of $1.5: 1$ and 2.0:1. Figure 6 and Table 3 present the radome dimensions in freespace wavelengths (λ) and in inches (").

Figure 3. Photograph of Medium Antenna Showing Tuning Screws
in Waveguide Feeds.

Input Port

Output Port

Figure 4. Photograph of Input and Output Ports of Monopulse Comparator.

Figure 5. Photograph of Complete Antenna Assembly Using Small Array

Figure 6. Inlustration of Dimensions of Tangent Ogive Radomes

Table 3. Radome Dimensions in Inches.

	Small	Medium	Medium	Medium	Large
	$\mathrm{F}=1.0$	$\mathrm{F}=1.0$	$F=1.5$	$\mathrm{F}=2.0$	$\mathrm{F}=1.0$
A	0.1875	0.250	0.250	0.250	0.375
B	2.110	3.440	5.250	6.940	6.318
C	2.370	3.825	5.663	7.540	6.875
D	2.550	4.015	3.993	4.000	6.910
E	2.050	3.510	3.497	3.500	6.410

The radomes were machined from cylinders of Rexolite ${ }^{\circledR}\left(\varepsilon_{r}=2.54\right)$. The wall thickness for all radomes was chosen to be on the order of one wavelength in Rexolite at 35 GHz . This thickness provided adequate strength and rigidity in the larger radomes and consistent effects for all sizes.

The radomes were mounted to specially machined baseplates as shown in Figure 7. The baseplates were then affixed to selected extension tubes for mounting the radome over the selected antenna. A cylindrical hole was machined in each extension tube to fix the angle between the radome axis and the antenna axis to precisely 15°, and to accurately position the antenna inside the radome.

Additional mounting hardware was fabricated to allow the radome with base plate assembly to be rotated about the axis of the antenna as shown in Figure 8. This hardware allowed for accurate positioning of the tip of the radome with respect to the principal planes of the antenna to facilitate boresight error measurements. Provision was also made to rotate the antenna/radome combination by any specified angle so that great circle pattern cuts could be made using a single azimuth positioner rotating about a vertical axis.
IV. Pattern Measurements

The far field range facilitates the measurement of microwave antennas with far field regions forty feet or less distant. For this program, a mounting pedestal was built to allow orientation of the antenna under test. The receiving (test) pedestal is supported by a Scientific Atlanta horizontal positioner unit, which can be positioned down range by rolling on four wheels along a level horizontal track. The transmitting pedestal allows adjustment of the height and polarization of the

Figure 7. Photograph of the Five Radomes, Three Baseplates, Three Adapter Inserts, and Two
Extension Rings Used in the Experimental Work.

Radome Locked in Vertical Position

Rotation of Antenna with Radome Locked in Vertical Fosition

Rotation of Radome/Antenna Assembly to Desired Polarization

Flgure 8. Radome Positioning Proceedure: Large Array and Large $F=1$ Radome Shown
transmitting antenna (in this case, a 35 GHz horn). Signals received by the antenna under test are heterodyned by the phase/amplitude receiver (SA 1753) as the antenna under test (AUT) is rotated about the vertical axis. From the received signal amplitudes, a 1 kHz AM signal is produced as the imput to the pattern recorder (SA 1522-40). The recorder produces a $10^{\prime \prime} \times 20^{\prime \prime}$ rectangular plot of relative power one way versus the angular position of the antenna. The angular movement of the recorder is directly linked to the test antenna positioner through a syn-chro-transmitter-receiver feedback loop. No phase measurements were attempted because of instabilities in the Klystron source and because of the mechanical stability difficulties inherent at 35 GHz on an outdoor range.

To understand the pattern measurement procedure, consider the initial position of the four-horn array (AUT) on the receiving pedestal to be such that it is vertically polarized with respect to the horizontal surface of the earth. The horizontal plane containing the axis of symmetry of the antenna (z-axis) is the H-plane and corresponds to the $\phi=0^{\circ}$ and $\phi=180^{\circ}$ planes of the spherical coordinate system shown in Figure 9(a). H-plane measurements were made by rotating the azimuth positioner in the clockwise direction (Observer \#l looking down on it), starting from a position such that the antenna would be to the left of Observer \#2 standing upright behind the receiving pedestal and looking toward the transmitting antenna at the other end of the range. When the transmitting antenna is aligned rotationally about its axis to be vertically polarized, the so called parallel polarization component V_{ϕ}^{H} in Figure $9(a)$ is recorded. By rotating only the transmitting antenna by 90° clockwise (Observer \#2) to yield horizontal polarization, the cross polarization component V_{ϕ}^{H} in Figure $9(a)$ was measured.

(a) Antenna Coordinate System

(b) Relationships to Recorded Pattern Measurements.

FIGURE 9. Coordinate System Used for Antenna Pattern Measurements.

The recorded pattern angle $\theta_{\text {meas }}$ for the H-plane patterns measured during this program is exactly the negative of the polar angle θ defined in Figure $9(\mathrm{a})$. This statement is true for all pattern measurements, except the E-plane patterns, and the relationships between the patterns presented in Appendices A through K and the antenna coordinate system are summarized in Figure $9(\mathrm{~b})$. These relationships are of critical importance to ensure that accurate comparisons to computed patterns are made, especially when the radome is present.

The E-plane of the AUT is the vertical plane which contains the antenna axis of symmetry; i.e., the $y z-p l a n e$ of the antenna coordinate system shown in Figure 9(a). Pattern measurements in the E-plane were made by first rotating both the AUI and transmitting antenna 90° clockwise (Observer \#2 behind AUT) . Pattern recordings of the parallel component V_{θ}^{E} of Figure $9(a)$ were then made as described above for the $H-$ plane. By rotating the transmitting antenna 90° (Observer \#2), the cross component V_{ϕ}^{E} of Figure $9(a)$ was measured. The relationships between the recorded patterns and the antenna coordinate system are summarized in Figure $9(\mathrm{~b})$.

Diagonal plane pattern measurements were made on the antennas alone for modeling purposes. The planes are defined by $\phi=45^{\circ}$ and $\phi=-45^{\circ}$ in the antenna coordinate system of Figure $9(a)$. The relationships to the recorded patterns are shown in Figure 9 (b).

The receiver used had only a single channel, and pattern measurements on each channel ($\Sigma, \Delta_{E L}, \Delta_{A Z}$) of each antenna were done one channel at a time. The harmonic mixer was installed on the desired port of the monopulse comparator. The other ports were terminated in matched waveguide loads. The mixer and loads were interchanged until all the channels were measured.

All pattern measurements with the radomes in place were done in the same manner as with the antennas alone. The radome under test was always mounted so that its axis of symmetry made an angle of 15° with the axis of symmetry of the antenna; furthermore, the radome was rotated by angle α so that the tip was located in the $\phi=-45^{\circ}$ plane of the antenna coordinate system of Figure $9(\mathrm{a})$. This position was selected to produce measurable boresight errors and pattern asymmetries in both principal planes. Boresight error measurements were later made as a function of this angle α as explained in the next section.

Measured pattern data for the antennas alone are presented in Appendices A, B, and C. Patterns with the radomes are presented in Appendices D through K. Note that for these latter patterns, the pattern of the antenna alone is shown as a dashed line for reference purposes. Although some effort was made to show the relative gain and boresight data correctly on these patterns, the boresight error graphs presented at the end of each appendix and the measured relative gain data presented below should be consulted as the final, correct data.

V. Boresight Error Measurements

When a radome is placed over the monopulse antenna, an error in the boresight of the antenna on the order of a few tens of milliradians may result. Electrical boresight is indicated when the antenna is positioned in the central nulls of the two orthogonal monopulse channels $\left(\Delta_{E L}, \Delta_{A Z}\right)$. This position of the antenna without radome is the true boresight of the antenna.

Boresight error caused by the radome is defined here as being the actual angular position of the target (transmitting antenna) in the coordinate system of Figure 9 (a) when electrical boresight is indicated in
the difference channels. For example, a positive boresight error in azimuth (elevation) would place the target in the $\phi=0$ plane ($\phi=90^{\circ}$ plane) of Figure 9(a). Equal, positive boresight errors in both azimuth and elevation sould place the target in the $\phi=45^{\circ}$ plane. Negative boresight errors may also occur.

Boresight error measurements were made during this investigation using a precision milling machine rotary table as a turntable mount for the receiving monopulse antenna and radome. Error measurements were made in the elevation and azimuth channels separately. Boresight errors in azimuth were measured by first positioning the monopulse array and transmitting antenna on the far-field range to yield vertical polarization. The turntable was carefully rotated until electrical boresight in the $\Delta_{A Z}$ channel was indicated. The radome was then placed over the antenna and positioned in the angle α. The turntable was carefully adjusted to indicated electrical boresight in the $\Delta_{A Z}$ channel. The boresight error was then read directly from the vernier scale of the turntable. Boresight errors in the elevation channel $\left(\Delta_{E L}\right)$ were done similarly by rotating both antennas 90° clockwise (Observer \#l) about their common axis of. symmetry and repeating the above procedure.

The indication of electrical boresight was obtained using a Hewlett-Packard 415 VSWR meter, crystal detector, and l-kHz amplitude modulation on the 35 GHz signal being transmitted. The detector was installed on the difference channel port of interest and connected to the VSWR meter. The difference channel null position was determined by measuring equal amplitudes on either side of the null as the turntable was rotated about the null position, and then taking the average of the two angular readings on the turntable vernier scale. This method was adopted
after it was discovered that such measurements using the azimuth positioner, heterodyne receiver, and pattern recorder yielded erratic results due to positioner inaccuracies.

As mentioned above, the radome mounting hardware was machined so that the radome axis of symmetry (z_{R}-axis) made an angle of 15° with the monopulse array axis of symmetry (z-axis). Also, the radome with baseplate could be rotated about the z-axis of the antenna such that the radome tip could be positioned to lie in any $\phi=\alpha$ plane of Figure 9 (b). Boresight error measurements were made as a function of this angle α. For example, when $\alpha=0$, the radome tip lies in the $\phi=0$ plane of the antenna, causing boresight error in azimuth but none in elevation due to symmetry. When $\alpha=90^{\circ}$, no boresight error in the $\Delta_{A Z}$ channel would be expected (due to symmetry), but errors in $\Delta_{E L}$ would be expected. For any other value of α, errors would be expected in both channels.

The measured boresight errors for the eight antenna/radome combinations shown in Table 1 are presented as the last figure of each of Appendices D through K. Each figure presents boresight error graphs in azimuth and in elevation. For each graph the abscissa is the angle α, and the ordinate is boresight error in degrees. Measurements were made in 15° increments in α over the complete range of zero to 360°. Ideally, the boresight errors are antisymmetric in α with a "period" of 180 degrees; hence, the measured data over two periods provide an indication of repeatability and consistency.

A radome also causes a loss in on-axis gain of the sum channel of the monopulse antenna. The gain loss was measured simply by monitoring the sum channel signal before and after the radome was installed. The monopulse antenna and transmitting antenna were aligned for maximum
received signal in the sum channel. Gain loss was measured at the four angular positions α of the radome as presented in Table 4.

Table 4. Measured Loss in Gain (decibels) For Eight Antenna/Radome Combinations

Antenna	Radome	$\underline{\alpha}=0^{\circ}$	Gain Loss (dB)	
			$\alpha=-45^{\circ}$	$\alpha=-90^{\circ}$
Small	Small ($F=1.0$)	0.4	0.7	0.6
"	Medium ($\mathrm{F}=1.0$)	1.3	1.7	1.5
"	Large ($\mathrm{F}=1.0$)	1.4	1.8	1.4
Medium	Medium ($\mathrm{F}=1.0$)	1.4	1.4	0.8
"	Medium ($\mathrm{F}=1.5$)	1.0	1.0	1.0
"	Medium ($\mathrm{F}=2.0$)	0.2	0.5	0.6
"	Large ($F=1.0$)	1.8	1.4	1.4
Large	Large ($\mathrm{F}=1.0$)	1.7	1.6	1.3

APPENDIX A

Antenna Patterns of Small Array Without Radome

Figure A-1. Pattern of Small Array: H-Plane, Sum, ϕ-Component, No Rádome.

Figure A-2. Pattern of Small Array: H-Plane, Sum, θ-Component, No Radome.

Figure A-3. Pattern of Small Array: E-Plane, Sum, θ-Component, No Radome.

Figure A-4. Pattern of Small Array: E-Plane, Sum, ϕ-Component, No Radome.

Figure A-5. Pattern of Small Array: H-Plane, Azimuth Difference, ϕ-Component, No Radome.

Figure A-6. Pattern of Small Array: H-Plane, Azimuth Difference, θ-Component, No Radome.

Figure A-7. Pattern of Small Array: E-Plane, Azimuth Difference, θ-Component, No Radome.

Figure A-8. Pattern of Small Array: E-Plane, Azimuth Difference, ϕ-Component, No Radome.

Figure A-9. Pattern of Small Array: E-Plane, Elevation Difference, θ-Component, No Radome.

Figure A-10. Pattern of Small Array: E-Plane, Elevation Difference, ϕ-Component, No Radome.

Figure A-11. Pattern of Small Array: H-Plane, Elevation Difference, ϕ-Component, No Radome.

Figure A-12. Pattern of Small Array, H-Plane, Elevation Difference, θ-Component, No Radome.

Figure B-6. Pattern of Medium Array: H-Plane, Azimuth Difference, ϕ-Component, No Radome

Figure B-7. Pattern of Medium Array: E-Plane, Azimuth Difference, θ-Component, No Radome

Figure B-8. Pattern of Medium Array: E-Plane, Azimuth Difference, ϕ-Component, No Radome

Figure B-9. Pattern of Small Array: E-Plane, Elevation Difference, θ-Component, No Radome

Figure B-10. Pattern of Medium Array: Elevation Difference, ϕ-Component, No Radome

Figure B-11. Pattern of Medium Array: H-Plane, Elevation Difference, ϕ Component, No Radome

Figure B-12. Pattern of Medium Array: H-Plane, Elevation Difference, θ-Component, Nö Radome

Figure B-13. Pattern of Medium Array: $\phi=45^{\circ}$ Plane, Sum, θ-Component, No Radome

Figure B-14. Pattern of Medium Array: $\phi=45^{\circ}$ Plane, Sum, ϕ-Component; No Radome

Figure B-15. Pattern of Medium Array: $\phi=-45^{\circ}$ Plane, Sum, θ-Component, No Radome

Figure B-16. Pattern of Medium Array: $\phi=-45^{\circ}$ Plane, Sum, ϕ-Component, No Radome

APPENDIX C
 Antenna Patterns of Large Array Without Radome

Figure C-1. Pattern of Large Array: H-Plane Sum, ϕ-Component, No Radome

Figure C-2. Pattern of Large Array: H-Plane Sum, 日-Component, No Radome

Figure C-3. Pattern of Large Array: E-Plane, Sum, ©-Component, No Radome

Figure C-4. Pattern of Large Array: E-Plane, Sum, θ-Component, No Radome

Figure C-5. Pattern of Large Array: H-Plane, Azimuth Differene, ϕ-Component, No Radome

Figure C-6. Pattern of Large Array: H-Plane, Azimuth Difference, ϕ-Component, Na Radome

Figure C-7. Pattern of Large Array: E-Plane, Azimuth Difference, θ-Component, No. Radome

Figure C-8. Pattern of Large Array: E-Plane, Azimuth Difference, ϕ-Component, No Radome

Figure C-9. Pattern of Large Array: E-Plane, Elevation Difference, θ-Component, No Radome

Figure C-10. Pattern of Large Array: E-Plane, Elevation Difference, ϕ-Component, Nô Radome

Figure C-11. Pattern of Large Array: H-Plane, Elevation Differnnce, ϕ-Component, No Radome

Figure C-12. Pattern of Large Array: H-Plane, Elevation Difference, θ-Component, No Radome

Figure C-13. Pattern of Large Array: $\phi=45^{\circ}$ Plane, Sum, θ-Component, No Radome

Figure C-14. Pattern of Large Array: $\phi=45^{\circ}$ Plane, Sum, ϕ-Component, No Radome

Figure C-15. Pattern of Large Array: $\phi=-45^{\circ}$ Plane, Sum, θ-Component, No Radome

Figure C-16. Pattern of Large Array: $\phi=-45^{\circ}$ Plane, Sum, ϕ-Component, No Radome

APPENDIX D
 Antenna Patterns of Small Array with Small ($\mathrm{F}=1$) Radome

Figure D-2. Pattern of Small Array: H-P1ane, Sum, θ-Component, Small Radome

Figure D-3. Pattern of Small Array: E-Plane, Sum, θ-Component, Small Radome.

Figure D-4. Pattern of Small Array: E-Plane, Sum, ϕ-Component, Small Radome.

Figure D-5. Pattern of Small Array: H-Plane, Azimuth Difference, ϕ-Component, Small Radome.

Figure D-6. Pattern of Small Array: H-Plane, Azimuth Difference, θ-Component, Small Radome.

Figure D-7. Pattern of Small Array: E-Plane, Azimuth Difference, θ-Component, Small Radome.

Figure D-8. Pattern of Small Array: E-Plane, Azimuth Difference, ϕ-Component, Small Radome.

Figure D-9. Pattern of Small Array: E-Plane, Elevation Difference, θ-Component, Small Radome.

Figure D-10. Pattern of Small Array: E-Plane, Elevation Difference, ϕ-Component, Small Radome.

Figure D-11. Pattern of Small Array: H-Plane, Elevation Difference, ϕ-Component, Small Radome.

Figure D-12. Pattern of Small Array: H-Plane, Elevation Difference, θ-Component, Small Radome.

RADOME ORIENTATION ANGLE

FIGURE D-13. BORESIGHT ERRORS OF SMALL ARRAY AND SMALL ($\mathrm{F}=1$) RADOME.

APPENDIX E
 Antenna Patterns of Small Array with Medium ($F=1$) Radome

Figure E-1. Pattern of Small Array: H-Plane, Sum, ϕ-Component, Medium ($F=1$) Radome

Figure E-2. Pattern of Small Array: H-Plane, Sum, θ-Component, Medium ($F=1$) Radome

Figure E-3. Pattern of Small Array: E-Plane, Sum, θ-Component, Medium (F=1) Radome

Figure E-4. Pattern of Small Array: E-Plane, Azimuth Hifference, ϕ-Component, Medium (F=1) Radome

Figure E-5. Pattern of Small Array: H-Plane, Azimuth Difference, ϕ-Component, Medium (F=1) Radome

Figure E-6. Pattern of Small Array: H-Plane, Azimuth Difference, θ-Component, Medium (F=1) Radome

Figure E-7. Pattern of Small Array: E-Plane, Azimuth Difference, $0-$ iomponent, Medium ($F=1$) Radome

Figure E-8. Pattern of Small Array: E-Plane, Elev. Difference, ϕ-Component, Medium (Fal) Radome

Figure E-9. Pattern of Small Array: E-Plane, Elev. Difference, θ-Component, Medium ($\mathrm{F}=1$) Radome

Figure E-10. Pattern of Small Array: E-Plane, Elev. Difference, ϕ-Component, Medium ($F=1$) Radome

Figure E-11. Pattern of Small Array: H-Plane, Elev. Difference, ϕ-Component, Medium (F=1) Radome

Figure E-12. Pattern of Small Array: H-Plane, Elev. Difference, 日-Component, Medium (F=1) Radome

FIGURE E-13. BORESIGHT ERRORS OF SMALL ARRAY AND MEDIUM (F=1) RADOME.

APPENDIX F

Antenna Patterns of Small Array with Large ($F=1$) Radome

Figure F-1. Pattern of Small Array: H-Plane, Sum, ϕ-Component, Large ($\mathrm{F}=1$) Radome

Figure F-2. Pattern of Small Array: H-Plane, Sum, θ-Component, Large ($F=1$) Radome

Figure E-3. Pattern of Small Array: E-Plane, Sum, θ-Component, Large ($F=1$) Radome

Figure F-4. Pattern of Small Array: E-Plane, Sum, ϕ-Component, Large (F=1) Radome

Figure F-5. Pattern of Small Array: H-Plane, Azimuth Diff., ϕ-Component, Large (F=1) Radome

Figure F-6. Pattern of Small Array: H-Plane, Azimuth Diff., θ-Component, Large ($F=1$) Radome

Figure F-7. Pattern of Small Array: E-Plane, Azimuth Diff., θ-Component, Large (Fxl) Radome

Figure F-8. Pattern of Small Array: E-Plane, Azimuth Diff., ϕ-Component, Large (F=1) Radome

Figure $F-9$. Pattern of Small Array: E-Plane, Elev. Difference, θ-Component, Large ($F=1$), Radome

Figure $\mathrm{F}-10$. Pattern of Small Array: E-Plane, Elev. Difference, ϕ-Component, Large ($F=1$) Radome

Figure F-11. Pattern of Small Array: H-Plane, Elevation Diff., ϕ-Component, Large (F=1) Radome

Figure F-12. Pattern of Small Array: H-Plane, Elev. Difference, ϕ-Component, Large (F=1) Radome

FIGURE F-13. BORESIGHT ERRORS OF SMALL ARRAY AND LARGE RADOME.

APPENDIX G

Antenna Patterns of Medium Array with Medium ($F=1$) Radome

Figure G-1. Pattern of Medium Array: H-Plane, Sum, ϕ-Component, Medium (Eni) Radome

Figure G-2. Pattern of Medium Array: H-Plane, Sum, ϕ-Component, Medium (F=1) Radome

Figure G-3. Pattern of Medium Array: E-Plane, Sum, θ-Component, Medium (F=1) Radome

Figure G-4. Pattern of Medium Array: E-Plane Sum, ϕ-Component, Medium (F=1) Radome

Figure G-5. Pattern of Medium Array: H-Plane, Azimuth Difference, ϕ-Component, Medium (F=1) Radome

Figure G-6. Pattern of Medium Array: H-Planc, Azimuth Difference, θ-Component; Medium (F=1) Radome

Figure G-7. Pattern of Medium Array: E-Planc, Azimuth Difference, θ-Component, Medium (Fil) Radame

Figure G-8. Pattern of Medium Array: E-Plane, Azimuth Difference, ϕ-Component, Medium (F=1) Radome

Figure G-9. Pattern of Medium Array: E-Plane, Elevation Difference, θ-Component, Medium (F=1) Radome

Figure G-10. Pattern of Medium Array: E-Plane, Elevation Difference, ϕ-Component, Medium ($F=1$) Radome

Figure G-11. Pattern of Medium Array: H-Plane, Elevation Difference, ϕ-Component, Medium (F=1) Radome

Figure G-12. Pattern of Medium Array: H-Plane, Elevation Difference, θ-Component, Medium (F=1) Radome

AZIMUTH DIFFERENCE BORESIGHT ERROR

FIGURE G-13. BORESIGHT ERRORS OF MEDIUM ARRAY AND MEDIUM (F=1) RADOME.

APPENDIX H
 Antenna Patterns of Medium Array with Medium ($F=1.5$) Radome

Figure H-1. Pattern of Medium Array: H-Plane, Sum, ϕ-Component, Medium ($\mathrm{F}=1.5$) Radome

Figure H-2. Pattern of Medium Array: H-Plane, Sum, θ-Component, Medium ($\mathrm{F}=1.5$) Radome

Figure H-3. Pattern of Medium Array: E-Plane, Sum, θ-Component, Medium (Fxl.5) Radome

Figure H-4. Pattern of Medium Array: E-Plane, Sum, ϕ-Component, Medium ($\mathrm{F}=1$, 5) Radome

Figure H-5. Pattern of Medium Array: H-Plane, Azimuth Diff., ϕ-Component, Medium (F.1.5) Radome

Figure H-6. Pattern of Medium Array: H-Plane, Azimuth Diff., θ-Component, Medium ($F=1.5$) Radome

Figure H-7. Pattern of Medium Array: E-Plane, Azimuth Diff., θ-Component, Medium (F $=1.5$) Radome

Figure H-8. Pattern of Medium Array: E-Plane, Azimuth Diff., ϕ-Component, Medium ($F=1.5$) Radome

Figure H-9. Pattern of Medium Array: E-Plane, Elevation Diff., θ-Component, Medium ($\mathrm{F}=1.5$) Radome

Figure H-10. Pattern of Medium Array: E-Plane, Elevation Diff., ϕ-Component, Medium (F=1) Radome

Figure H-11. Pattern of Medium Array: H-Plane, Elevation Diff., ϕ-Component, Medium (F=1.5) Radome

Figure H-12. Pattern of Medium Array: H-Plane, Elevation Diff., 日-Component, Medium ($\mathrm{F}=1.5$) Radome

RADOME ORIENTATION ANGLE

FIGURE H-13. BORESIGHT ERRORS OF MEDIUM ARRAY AND MEDIUM ($F=1.5$) RADOME.

APPENDIX I

Antenna Patterns of Medium Array with Medium ($\mathrm{F}=2$) Radome

Figure I-1. Pattern of Medium Array: H-Plane, Sum, ϕ-Component, Medium ($\mathrm{F}=2.0$) Radome

Figure I-2. Pattern of Medium Array: H-Plane, Sum, θ-Component, Medium (F=2.0) Radome

Figure I-3. Pattern of Medium Array: E-Plane, Sum, θ-Component, Medium ($\mathrm{F}=2.0$) Radome

Figure I-4. Pattern of Medium Array: E-Plane, Sum, ϕ-Component, Medium (F=2.0) Radome

Figure I-5. Pattern of Medium Array: H-Plane, Azimuth Diff., ϕ-Component, Medium ($F=2.0$) Radome

Figure I-6. Pattern of Medium Array: H-Plane, Azimuth Diff., θ-Component, Medium ($F=2.0$) Radome

Figure I-7. Pattern of Medium Array: E-Plane, Azimuth Diff., θ-Component, Medium (F=2.0) Radome

Figure I-8. Pattern of Medium Array: E-Plane, Azimuth Diff., ϕ-Component, Medium ($\mathrm{F}=2.0$) Radome

Figure I-9. Pattern of Medium Array: E-Plane, Elevation Diff., θ-Component, Medium ($F=2.0$) Radome

Figure I-10. Pattern of Medium Array: E-Plane, Elevation Diff., ϕ-Component, Medium (F=2.0) Radome

Figure I-11. Pattern of Medium Array: H-Plane, Elevation Diff., ϕ-Component, Medium ($F=2.0$) Radome

Figure I-12. Pattern of Medium Array: H-Plane, Elevation Diff., θ-Component, Medium ($\mathrm{F}=2.0$) Radome

AZIMUTH DIFFERENCE BORESIGHT ERROR

FIGURE I-13. BORESIGHT ERRORS OF MEDIUM ARRAY AND MEDIUM (F=2) RADOME.

APPENDIX J
 Antenna Patterns of Medium Array with Large ($\mathrm{F}=1$) Radome

Figure J-1. Pattern of Medium Array: H-Plane, Sum, ϕ-Component, Large (F=1) Radome

Figure J-2. Pattern of Medium Array: H-Plane, Sum, θ-Component, Large (F=1) Radone

Figure J-3. Pattern of Medium Array: E-Plane, Sum, θ-Component, Large ($\mathrm{F}=1$) Radome

Figure J-4. Pattern of Medium Array: E-Plane, Sum, ϕ-Component, Large ($F=1$) Radome

Figure J-5. Pattern of Medium Array: H-Plane, Azimuth Diff., ϕ-Component, Large (F=1) Radome

Figure J-6. Pattern of Medum Array: H-Plane, Azimuth Diff., θ-Component, Large ($F=1$) Radome

Figure J-7. Pattern of Medium Array: E-Plane, Azimuth Diff., θ-Component, Large (F=1) Radome

Figure J-8. Pattern of Medium Array: E-Plane, Azimuth Diff., ϕ-Component, Large ($\mathrm{F}=1$) Radome

Figure J-9. Pattern of Medium Array: E-Plane, θ-Component, Large ($F=1$) Radome

Figure J-10. Pattern of Medium Array: E-Plane, Elevation Diff., ϕ-Component, Large ($F=1$) Radome

Figure J-li. Pattern of Medium Array: -Plane, Elevation Diff., ϕ-Component, Large ($F=1$) Radome

Figure J-12. Pattern of Medium Array: H-Plane, Elevation Diff., θ-Component, Large ($F=1$) Radome

ELEVATION DIFFERENCE BORESIGHT ERROR

RADOME ORIENTATION ANGLE

FIGURE J-13. BORESIGHT ERRORS OF MEDIUM ARRAY AND LARGE ($\mathrm{F}=1$) RADOME.

APPENDIX K

Antenna Patterns of Large Array with Large ($F=1$) Radome

Figure K-1. Pattern of Large Array: H-Plane, Sum, ϕ-Component, Large Radome

Figure K-2. Pattern of Large Array: H-Plane, Sum, θ-Component, Large Radome

Figure K-3. Pattern of Large Array: E-Plane, Sum, θ-Component, Large Radome

Figure K-4. Pattern of Large Array: E-Plane, Sum, ϕ-Component, Large Radome

Figure K-5. Pattern of Large Array: H-Plane, Azimuth Diff., ϕ-Component, Large Radome

Figure K-6. Pattern of Large Array: H-Plane, Azimuth Diff., θ-Component, Large Radome

Figure K-7. Pattern of Large Array: E-Plane, Azimuth Diff., θ-Component, Large Radome

Figure K-8. Pattern of Large Array: E-Plane, Azimuth Diff., ϕ-Component, Large Radome

Figure K-9. Pattern of Large Array: E-Plane, Elevation Diff., θ-Component, Large Radome

Figure K-10. Pattern of Large Array: E-Plane, Elevation Diff., ϕ-Component, Large Radome

Figure K-11. Pattern of Large Array: H-Plane, Elevation Diff., ϕ-Component, Large Radome

Figure K-12. Pattern of Large Array: H-Plane, Elevation Diff., θ-Component, Large Radome

FIGURE K-13. BORESIGHT ERRORS OF LARGE ARRAY AND LARGE (F=1) RADOME.

[^0]: *One-dimensional extrapolation could possibly be used by utilizing the Hankel transform in place of the Fourier transform.

[^1]: *By choosing $\hat{\mathrm{n}}$ this way, the minus sign in Figure (1-1) is removed.

