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PARAMETRIC INVESTIGATION OF RADOME ANALYSIS METHODS

I. Introduction and Summary

The overall objective of this research is to develop a general
theory of radome analysis and to determine the accuracies of various ra-
dome analysis methods under controlled conditions of antenna size and
placement, wavelength, and radome size and shape. Experimental measure-
ments on selected antenna/radome combinations at 35 GHz will be used as
true data in the assessment of accuracy.

bDuring the first year, which this report covers, a general theory
of analysis has been developed based on the Lorentz reciprocity theorem
and on the Huygens-Fresnel principle. Computer-aided methods of analysis
based on these principles have been formulated and programmed. Three
monopulse antennas have been designed and fabricated for use in carrying
out the measurements at 35 GHz. Three radomes have been designed and
fabricated for use in the experimental program. A mechanical fixture has
been fabricated which will allow accurate positioning of the antenna with
respect to the radome and with respect to the reference system used for
pattern measurements. A detailed discussion of the progress in the first
year is presented in Section II below.

During the second year, the initiation efforts of the first year's
work will come to fruition through concentrated experimental and analytical
efforts to gather true and calculated data which will serve as the basis
for realizing the overall research objective. Extensive pattern measure-

ments will be made for nine of the fifteen antenna/radome combinations



available. These experimental efforts will be paralleled by computer-
aided analyses of the same combinations for comparison purposes. In
addition, techniques to account for the effects of metal tips will be
incorporated into the analysis methods for use during the third and final

phase of the research.

In the third year, it is anticipated that measurements will be
carried out on radomes to which metal tips have been added, and compari-
sons to theoretical predictions will be made. In addition, antenna/
radome configurations which lend themselves to exact analysis using
boundary-valued approaches and variational and relaxation techniques will
be investigated.

Two publications and three presentations concerning this research
have resulted. They are described in Section IIT along with papers
planned for submission to technical journals.

The professional personnel associated with the research effort
are listed in Section IV.

Appendix A contains copies of the two papers presented at
symposia.

IT. Progress to Date

Efforts during the first year's work have been devoted to develop-
ing the general theory of radome analysis, formulating the radome analysis
methods, implementing the methods in digital computer software, designing
and building three monopulse antennas, designing five suitable radomes,
and designing and fabricating a test fixture for positioning the antenna/

radome combinations in the measurement environment. These efforts have



been carried out to prepare for the extensive measurements and analytical
efforts planned for Phase II.

The general theory of radome analysis is based on the Lorentz
reciprocity theorem [1] and the Huygens-Fresnel principle [2] as des-
cribed in the papers included in Appendix A. Briefly, the reciprocity
theorem serves as the basis for all receiving formulations of radome
analysis; i.e., the response of the antenna inside the radome to a plane
wave incident on the radome is the desired analysis objective. The
Huygens-Fresnel principle serves as the basis for all rigorous trans-
mitting formulations; i.e., the Fraunhofer fields are determined for the
case when the radome-enclosed antenna is radiating by performing integra-
tions of the tangential electric and magnetic fields over a surface which
encloses the sources. Since a homogeneous medium is required by the
theory in the region not containing the sources, the radome must also
be enclosed by the surface. The third facet of the general theory makes
use again of the reciprocity theorem for widely separated antennas to
provide the unifying connection between the response of an antenna to a
plane wave of specified polarization and direction of arrival and the
vector far fields of the antenna.

Rnalytical efforts thus far have concentrated on formulating and
implementing both receiving and transmitting formulations which require
integration of the fields over the outer surface of the radome. Upon ex-
amination of the role of the field scattered by the radome when a plane
wave is incident, it has been established that the scattered field contri-
butes nothing to the antenna response and, therefore, can be neglected in

the computations. The equivalence of the transmitting and receiving



formulations has also been rigorously established for the first time, the
import of which is that intermediate calculations of the vector far field
as required in the transmitting case can be avoided in many cases of
practical importance.

Attention has also been directed toward sampling of the electro-
magnetic fields on the surface of the radome as required in the surface
integrations. Two methods havé been considered. 1In the first, the
radome surface is partitioned into elemental areas by dividing the axis
of symmetry (zR—axis) into equal linear increments; in the circumferential
direction, equal angular segments are used. 1In the second method, equal
angular increments are used in the longitudinal (8) direction so that the
length of the elemental area is the same regardless of location on the
surface. Angular increments are also used in the circumferential (¢)
direction and are adjusted so that at the center of the elemental area,
the arc distance is approximately constant. In both methods, the field
values are computed at the center of each elemental area.

The surface integration method has been implemented in computer
software (Fortran IV) and is currently being tested for accuracy and
speed of computation. A simple method has been devised to do this as
follows. A tangent ogive radome shape having zero wall thickness repre-
sents the surface of integration. The tangential components of a source
field Es’ Es arespecified over the circular region or aperture at the
base of the radome. A plane wave relationship is assumed between Es and
Es' where the direction of propagation is normal to the circular region;
i.e., parallel to the axis of symmetry of the radome. A plane wave

having specified polarization and direction of arrival is assumed



incident on the circular aperture and, simultaneously, on the tangent
ogive surface. The reaction integral [2] is proportional to the voltage
received by the circular aperture antenna and is easily computed for the
circular aperture to yield an exact result. The computation of the same
received voltage is carried out using the computer-aided techniques for
various tangent ogive surfaces.

Table I shows some salient results obtained with the computer-
aided surface integration method. Five radome shapes (sizes) as explained
below were used. The results shown were obtained using the second method
of sampling described above. Sample distances (equal in 6 and ¢) of A/6
to A were used, where A is the free space wavelength. The total number
of samples depends on the sample increment and radome size as shown in
column four of the table. Comparison of the true and computed values of
received voltage shows excellent agreement. Examination of the entries
in the last column of Table I shows the dramatic influence of the number
of samples on computation time.

It can be concluded at this point that the surface integration may
be practical for small radomes but perhaps not so practical for larger
radomes, assuming that a fixed sample size which yields consistently
accurate results can be established. But this trend is neither unex-
pected nor catatrophic from a practical standpoint. It is expected that
the other computational methods under investigation will yield acceptably
accurate results for large radomes and will require much less computation
time; in fact, the larger the radome and antenna, the more accurate will
be the computed result. The question addressed by this research concerns,

of course, the establishment of the ranges of validities of these various



Table I.

Accuracy and Computation Time for

surface Integration Method

Radome ID Received Voltage
Number
Sample of Computation
Diameter (A) Length (A) Size Samples True Computed Time (sec)

20.49 19.93 A/6 35157 -1.28355 ~-1.28355 61.11
20.49 19.93 A/3 8718 ~-1.28355 -1.28362 13.05
20.49 19.93 A/2 3869 -1.28355 ~1.28373 7.00
20.49 19.93 A 967 ~1.28355 ~-1.28431 1.64
11.86 22,30 A/6 20716 -0.43011 ~-0.43011 31.68
11.86 22.30 A/3 5167 -0.43011 ~0.43013 7.95
11.86 22.30 A/2 2262 ~0.43011 -0.43017 4.05
11.86 22,30 A 571 ~0.43011 ~-0.43037 .86
11.86 16.78 A/6 15929 ~-0.43011 | -0.43011 24.68
11.86 16.78 A/3 3973 ~0.43011 -0.43015 6.77
11.86 16.78 A/2 1769 -0.43011 ~-0.43021 2.59
11.86 16.78 A 442 -0.43011 -0.43054 .82
11.86 11.30 A/6 11554 -0.43011 ~0.43012 19.69
11.86 11.30 A/3 2846 ~0.43011 ~-0.4301° 5.31
11.86 11.30 A/2 1265 ~-0.43011 -0.43031 2.31
11.86 11.30 A 319 | -0.43011 ~-0.43092 .61
7.56 6.97 A/6 4560 -0.17480 ~0.17482 7.11
7.56 6.97 A/3 1115 -0.17480 ~0.17489 2.37

7.56 6.97 A/2 498 -0.17480 -0.17502 1.06
7.56 6.97 A 127 -0.17567 .25

-0.17480




methods.

One of the speedier radome analysis methods under investigation
uses a receiving formulation as described earlier [3]. The method is
illustrated in Figure 1. The plane wave Ei’ Ei is incident on the radome
with direction of arrival ﬁa' A ray 1s traced backwards from each
aperture point (x,y,0) in the direction ﬁa to find the intersection with
the radome wall and the unit normal vector ﬁR at the intersection point.
From ﬁa’ ;R' and Ei' the field Eé produced on the antenna aperture can
be found, where the components of Ei parallel and perpendicular to the
plane of incidence are properly weighted by the complex transmission

coefficients TL' T as illustrated in Figure 2.

11
The transmission coefficients used are those which apply to an
infinite plane dielectric sheet [4]. This approximate method of trans-
forming the fields on one side of the radome wall to the other side
appears to be a common feature of all radome analysis methods except that
described by Van Doeren [5]. Use of this method precludes the computation
of surface (trapped) wave effécts and may represent the single most
significant deficiency in all of these methods.
Another computationally fast method under investigation utilizes
a transmitting formulation and makes extensive use of the Fast Fourier
Transform (FFT) to enhance the computational speed [6]. Briefly, the
radiation from the antenna is characterized by using the plane wave
spectrum (PWS) representation (a modal expansion) [7]. The antenna
aperture is sampled at an array of equally spaced points in x and y.
From each point in the aperture there emanates a spectrum of plane waves,

obtained very simply as the (inverse) FFT of the tangential electric



Figure 1. Illustration of the Fast Receiving
Method of Radome Analysis
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Figure 2. Plane Wave Propagation Through an
Infinite Plane Sheet



field in the aperture. Rays are traced to each point to find their in-
tersections with the ingide surface of the radome. The plane wave field
e, h associated with each ray is weighted by the transmission coefficients
Tl' Tll as depicted in Figure 2. The modified plane wave e', h' is then
included in the summation of all such contributions to produce modified
aperture fields gé,_gé at the specified point. The procedure is repeated
for each aperture point, resulting in a modified aperture field which is
assumed to correctly embody the effects of the radome. Further compu-
tations are then performed using the modified fields. This method is
recognized to be an intuitive method of analysis based on the ideas
presented earlier by Kilkoyne in his equivalent aperture approach [8].

The time to compute a single value of received voltage is inde-
pendent of the size of the radome for the two methods just described.

The time depends, instead, on the number of sample points used in the
aperture. For the case of a square array of 256 sample points (16 x 16),
the computation time for one value of received voltage for the fast
transmitting case is approximately one minute. The fast receiving
method requires 1.5 seconds. No account is made here of the core memory
requirements.

Some analytical work and associated computer implementation re-
mains to be done. An additional receiving formulation method of analysis
will be implemented wherein integration over the inner surface of the
radome will be done to determine if any computational advantages are
realized. Antenna characterization routines which utilize theoretical
representation and measured data also being implemented. Of future in-

terest is the spherical wave expansion described by Ludwig [9] where

10



limited measured far-field data are used to generate coefficients in the
expansion so that radiation from the antenna can be more accurately de-
scribed analytically. Presently, the PWS formulation is being used to
characterize radiation from the antenna. Also, the effects of reflected
waves are also to be included in the analysis using the Huygens-Fresnel
formulation embodied in Equations (108) and (109) of Silver [2].
Finally, a method of comparison of analysis methods is being developed
which includes both computation time and memory requirements so that
fair comparisons can be made.

Five radomes have been designed for fabrication and use during the
experimental program. Ball five radomes have the tangent ogive shape.
Three radomes have 1l:1 fineness ratios (length/diameter) and have dimen-
sions to yield a small, medium, and large radome in terms of base diameter
in wavelengths. Two other radomes have the medium-size base diameter but
fineness ratios of 1.5:1 and 2:1.

The geometry and dimensions of the radomes showing the orientations
of the antennas to be used with them are illustrated in Figures 3, 4, and
5. The radius of the generating arc is shown in each figure as Ris' The
antenna is shown pivoted about a gimbal point to look in a direction that
is 15° from the axis of symmetry of the radome. The dimension of a
wavelength is indicated by A in each figure for convenient reference.
Table II presents the radome dimensions in terms of wavelengths at this
frequency.

Two radomes have been fabricated using Rexolite (er==2.52). A
full-wavelength wall thickness for this material at 35 GHz is approxi-

mately 0.25 inch. A full-wavelength thickness has been selected to

11



-
T‘\\\

2.55D
2.05D

0 3 3 2 v by vy vy

2.05

2.35

Figure 3. Gecmetry and Dimensions of Small Radome
Showing Orientation of Small Antenna

12



Seuusjuy sbreT pue ‘umrpsy
'T:6°T ‘T:1 3o soTied Sssusuta Buraey sawoped 9zZTS umTt

‘TTews buTmoys T:z pue

—

T

\

A\

PSH 3O suoTsuswrq pue Ax3swosd - sanbrg
—
00°L
qZ's

e

L8'¢
—

0S¢

oSl

st

AYANA R

A\ VA uR m e w

A\ YAYASRA AR \\\\\\’\\

05°€

A\

-

00’y

13



AL U0 LNV LN Y 00 N N VNN vy AN vy

6.910
6410

(LR W WLV W O O O O O O W

AL Y

6.41

6.72

Figure 5.

Geometry and Dimensions of Large Radome Showing
Orientations of Small, Medium, and Large Antennas
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Table II. Radome Dimensional Data in Wavelengths

Inside Inside Outside Outside

Diameter Length Diameter Length
Small (F=1) 6.08 6.08 7.56 6.97
Medium (F=1) 10.38 10.38 ~11.86 11.30
Medium (F=1.5) 10.38 15.57 11.86 16.78
Medium (F=2.0) 10.38 20.76 11.86 22.30
Large (F=1) 19.01 19.01 20.49 19.93

15




provide adequate strength and rigidity for the larger radomes and to pro-
vide consistent effects for all sizes. Rexolite has excellent electro-
magnetic and machining properties. Photographs of the two radomes are
shown in Figure 6.

Three four-horn monopulse antennas, representing a small, medium,
and large antenna, have been designed and fabricated for use alone and
with the five radomes. Each antenna is connected through a circular-to-
rectangular waveguide transition and adapter network to a monopulse
comparator which forms sum, elevation difference, and azimuth difference
channels as required in monopulse tracking. The waveguide transitions
and adapter networks have been fabricated in the main campus machine shop.
The four-horn configurations have been built and their aperture dimen-
sions are illustrated in Figure 7. These antennas are designed to provide
sum pattern beamwidths of 8°, 15°, and 30°.

A mechanical fixture to position the radome with respect to the
antenna and to position the combination in the pattern range coordinate
sysfem has also been built. Basically, a simple fixture is used which
mounts on the azimuth positioner turntable and holds the antenna in a
horizontal position. The antenna is mounted in a horizontal bushing so
that accurate rotation of the antenna about its longitudinal axis is pro-
vided. If this axis is designated as the z-axis of the antenna, then
rotation of the antenna about the z-axXis selects a ¢ = constant plane in
the associated spherical coordinate system. Rotation of the entire assembly
about the vertical axis of the positioner turntable corresponds to move-
ment in the 8 direction of the spherical system. Vertical polarization

corresponds to E horizontal polarization corresponds to E

8’ ¢

16



(a) Small Radome

(b) Medium Radome

Figure 6. Photographs of Two Rexolite Radomes
Having Fineness Ratio of 1:1
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Figure 7. Geometry and Dimensions of Three Monopulse
Antennas for Use at 35 GHz



The radome is positioned with respect to the antenna by a circular
base plate to which the radome will be mounted. A circular hole has been
accurately bored in the base plate which allows insertion onto the cor-
responding diameter antenna and which provides a very accurate, single
angular orientation of the antenna z-axis with respect to the axis of
symmetry of the radome. Rotation of the radome and base plate about the
antenna z-axis provides selection of any desired plane of radome scan.
Each antenna requires a different diameter base plate for each different
radome with which the antenna is to be used; however, only nine such base
plates are required and each base plate is very inexpensive to fabricate.
Although this method of orienting the radome with respect to the antenna
does not allow complete degrees of freedom, its low cost and high accuracy
make it a very attractive method for this particular research program.
Photographs of two antennas and the mounting fixture are shown in Figure
8.

Table III shows the specific combinations of antennas and radomes
for which measured and analytical data will be obtained. Each entry in
the table is the ratio of inside base diameter of the radome to the
diameter of antenna aperture. Entries are made only for the nine com-
binations of interest. The results for the three entries of 2.33 for
which F=1 are expected to show the effects of the size of the antenna/
radome combination in wavelengths on the accuracy of the analysis methods.
Results for the other entries of 2.33 and F=1 will provide information on
the accuracy of the methods as a function of the relative size of antenna
and radome. The entries of 2.33 for medium size radomes indicate those

combinations which will provide information concerning the effects of
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(b) Large Antenna

Figure 8. Photographs of Antennas and Mounting Fixture
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Table III. Ratios of Dis/Dap for Selected Antennas and Radomes.

Antenna
Radome Small Medium Large
Small (F=1) 2.33 - -
Medium (F=1) 3.98 2.33 1.27
Medium (F=1.5) - . 2.33 -
Medium (F=2.0) - 2.33 -
Large (F=1) 7.28 4.27 2.33

21



fineness ratio on accuracy.
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Presentations and Publications

G. K. Huddleston, H. L. Bassett, and J. N. Newton, "Parametric
Investigation of Radome Analysis Methods," presented at and
published in the Proceedings of the 1978 International IEEE AP-S
Symposium, pp. 199-202, May 1978; also presented at and published
in the Proceedings of the Fourteenth Symposium on Electromagnetic
Windows, pp. 53-55, June 1978, (Copies included in Appendix A).

G. K. Huddleston, "Radome Analysis," invited presentation to
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Personnel and Interactions

The following professional personnel are actively engaged in this

research program:

G. K. Huddleston Assistant Professor School of Electrical
Engineering
H. L. Bassett Senior Research Engineering Experi-
Engineer ment Station
J. N. Newton Research Engineer Engineering ExXperi-

ment Station

Dr. Huddleston and Mr. Bassett serve as co-principal investigators.

Dr. Huddleston directs the analytical efforts while Mr. Bassett directs

the experimental work. Mr. Jason Rusodimos, a graduate student in the

School of Electrical Engineering works with Dr. Huddleston on the computer

implementation of various analysis methods.

No specific interactions have taken place with other laboratories

or DOD agencies; however, tentative plans have been made with Eglin Air

Force Base (Dr. Ralph Calhoun, AFATL/DLMP) for the transfer of the

analytical technology developed during this research.
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Numerous methods of radome analysis have been developed, and some
comparisons of theoretical and measured results have been made for
specific radome/antenna combinations; however, no attempt has been
made to define the ranges of antenna and radome parameters over which any
given method of analysis yields acceptably accurate results. This paper
describes some early results of an investigation recently undertaken
to determine the accuracies of various radome analysis methods under
controlled conditions of antenna size and placement, wavelength, and
radome size and shape. A fundamental theory of radome analysis has
been developed and is presented below. Comparisons of computed results
obtained for two methods of analysis are also presented. No experimental
results are available at this time, but rather extensive measurements
involving antennas and radomes of various sizes are planned.

Theory

The Lorentz reciprocity theorem [1] is a starting point for the
formulation of a basic theory of radome analysis. Field equivalence
principles [2] are also important in suggesting approximate methods
of obtaining the fields called for in the reciprocity theorem; more

importantly, such theory is needed to obtain the transmitting formula-
tion for radome analysis.

Consider the antenna/radome combination shown in Figure 1 where the
surface S encloses the antenna. Llet a plane wave be incident on the
radome from the direction K, expressed in the antenna coordinate system
(X,Y,Z). Then application of the reciprocity theorem results in the

following expression for the voltage produced at the antenna terminals
by the incident field:

Ve (RA) = C [Js (ET x Hp - ER X ET)- nda (1)

where C is a complex constant and where
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ET’ET = the electric and magnetic fields produced on S when the
antenna is transmitting {(and no fields are incident on
the radome from the outside)

ER’ER = the electric and magnetic fields produced on S when the plane
wave is incident {and the antenna is passive or in the receive
mode)

n = unit vector pointing out of the volume V enclosed by S

da

it

element of area on the surface S

The fields (Eg,Hp) and (ET Hr) are the total fields produced in
each case and would correctly |nclude incident and all scattered com-
ponents. The voltage given by Equation (1) is exact and serves as a
basic tenet of radome analysis theory. The surface S may be any con-
veniently chosen closed surface. Linear, hqmogenous, isotropic media
are assumed. Time variations of the form eJ®t are understood and sup-
pressed.

A second generalized approach to radome analysis uses a trans-—
mitting formulation which does not consider explicitly the fields
produced by an incident plane wave. Instead, the tangential fields
produced by the antenna on a closed surface outside the radome are
used to determine the fields anywhere in the unbounded, homogeneous
medium outside this surface. Equations (108) and (109) of [3] are the
basic equations which apply, where the point P is at a great distance
from S so that E,,H, become the far zone fields ETys, £f radlated by the
antenna in the presence of the radome. Selection og Ee surface
are the parameters which, again, differentiate the various methods
of radome analysis based on a transmitting formulation.

The voltage that would be received by the antenna which produces
far zone fields Eyff, HTff is given by [4]

V(K= C Exgg - my (2)

where C is a complex constant and np is a generally complex vector
which describes the orientation and polarization of an infinitesimal
current element located in the direction (with respect to the antenna)
given by K Equation (2) provides the connection between the receiving
and transmlttlng formulations and is the third facet of a basic theory
of radome analysis.
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Application

A computationally fast method of radome analysis based on a receiving
formulation results when the surface S in Equation (1) is chosen to
coincide with the planar aperture of the antenna whose radiating character-
istics .are represented using the plane wave spectrum formulation.

The receiving pattern (difference channel) in the azimuth plane for

a vertically polarized antenna with square aperture (corners removed)

of dimensions 4.3x x L.3X is shown in Figure 2 for the case of a
Pyroceram radome of wall thickness d = .22)X. The tangent ogive radome
with fineness ratio L/D = 2.25 is gimballed so that its tip is positioned
at +12° in the azimuth plane of the antenna. Execution time to generate
this pattern and three others like it was 104 seconds (CDC Cyber 70).

For comparison, the pattern obtained for the same values of radome
and antenna parameters when a transmitting formulation is used is shown
in Figure 3. In this method, a PWS representation is used to describe
the antenna, and rays representing each plane wave are used to construct
an equivalent aperture which includes the effects of the radome on each
plane wave in the spectrum. The execution time to generate this pattern
and three others was 60 seconds on the same computing system.

Other methods of analysis which utilize integration on the surface
of the radome for both receiving and transmitting formulations are
currently being implemented. Computed results obtained using these
methods will be presented at the symposium. The experimental procedures
being used will also be described.
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Numerous methods of radome analysis have been developed [1-9],
and some comparisons of theoretical and measured results have been
made for specific radome/antenna combinations [2,5,7,8]; however,
no attempt has been made to define the ranges of antenna and
radome parameters over which any given method of analysis yields
acceptably accurate results,

This paper describes some early results of an investigation
recently undertaken to determine the accuracies of various
radome analysis methods under controlled conditions of antenna
size and placement, wavelength, and radome size and shape.

To carry out valid comparisons of various methods, a fundamental
theory of radome analysis has been developed and is presented
below. All existing methods, as well as some new ones, can

be formulated in terms of the basic theory. Comparisons of
computed results obtained for two methods of analysis are

also presented. No experimental results are available at this
time, but rather extensive measurements involving antennas and
radomes of various sizes are planned.

Theory

The Lorentz reciprocity theorem [11] is a starting point for
the formulation of a basic theory of radome analysis. Field
equivalence principles [12] are also important in suggesting
approximate methods of obtaining the fields called for in the
reciprocity theorem; more importantly, such theory is needed
to obtain the transmitting formulation for radome analysis.

Consider the antenna/radome combination shown in Figure 1
where the surface S encloses the antenna. Let a plane wave be
incident on the radome from the direction K, expressed in the
antenna coordinate system (X,Y,Z). Then application of the
reciprocity theorem results in the following expression for the
voltage produced at the antenna terminals by the incident field:
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A

Ve (f(A) = C f JS(ET x Hp - Ep x Hy) * nda 1)

where C is a complex constant and where

E ,H. = the electric and magnetic fields produced on S when the
antenna is transmitting (and no fields are incident on
the radome from the outside)

H, = the electric and magnetic fields produced on S when

the plane wave is incident (and the antenna is passive
or in the receive mode)

n = unit vector pointing out of the volume V enclosed by S

da element of area on the surface §

The fields (Eg,Hg) and (EI'ET) are the total fields produced
in each case and would correctly include incident and all scattered
components. The voltage given by Equation (1) is exact and serves
as a basic tenet of radome analysis theory. The surface S may
be any conveniently chosen closed surface. Linear, homogenous,
isotropic media are assumed. Time variations of the form el
are understood and suppressed.

The selection of the surface S and the approximations used
to determine the fields (ET’ET) and (E lER) on this surface are
the parameters which differentiate the various methods of radome
analysis which are based on a receiving formulation. For example,
Tricoles [5] and Huddleston and Joy [10] chose a planar
surface coinciding with the antenna aperture for the surface §,
ignoring the contribution of that portion of the surface needed
to completely enclose the antenna. Huddleston and Joy used
ray tracing to approximate the fields (ERxHR) on S. Tricoles
used- field equivalence and induction theorems to determine these
fields on S. Huddleston and Joy used the primary transmitting
fields of the antenna to approximate (ETth)' Tricoles used
measured values of antenna response.

Other approximate methods based on the receiving formulation
in Equation (1) are obvious. Consider the surface S which
coincides with the inner surface of the radome. The fields
(ETzET) on S may be approximated using modal expansions such
as the PWS [8], a spherical wave expansion [13], or from theoretical
analysis [14]. These fields should correctly contain reflected
components which may be approximated using plane sheet transmission
coefficients and Poynting's vector. The fields (Eg,HR) on S
may be approximated using plane sheet transmission coefficients
and ray tracing. The voltage received could then be obtained
by performing the surface integration over the inside surface of
the radome indicated by Equation (1).
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The effects of reflections may also be included in the
analysis. Let (Ei,gi) represent the transmitting fields on
the surface S which coincides with the inner radome surface.
Then at a point P on the inner surface, the fields at all
other points contribute components due to reflections given
by [15]

B m gy [] wy G B ¢ G oD < s WIS @)

Hp = 71— ” [Joc(n x EPY + (n x B x Vp + (EDW)IAS  (3)
S
where
-jkr
b= (4)

and where r is the distance from P to any other point on S. The
importance of the contributions of first and higher order reflec-
tions has not been established.

A second generalized approach to radome analysis uses a
transmitting formulation which does not consider explicitly
the fields produced by an incident plane wave. Instead, the
tangential fields produced by the antenna on a closed surface
outside the radome are used to determine the fields anywhere
in the unbounded, homogenous medium outside this surface.
Equations (2) and (3) are the basic equations which apply,
where the point P is at a great distance from S so that EyHy
become the far zone fields Eq¢f,Hysge radiated by the antenna
in the presence of the radome. Selection of the surface S
and the approximations used to find the fields (Et,Hp) on
S are the parameters which, again, differentiate the various
methods of radome analysis based on a transmitting formulation.

The voltage that would be received by the antenna which
produces far zone fields Eqge,Hyee is given by [23]

VR(KA) = C ETff . I'lb (5)

A

where. C is a complex constant and np is a generally complex
vector which describes the orientation and polarization of
an infinitesimal current element located in the direction
given by KA. Note that the current element would produce an
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incident plane wave on the radome having the same polarization
as that indicated by ny; hence, Equation (5) provides the con-
nection between the receiving and transmitting formulations and
is a third facet of a basic theory of radome analysis.

The above equations combine to form a fundamental theory
of radome analysis. All existing analysis methods, as well as
some new ones, can be cast in terms of this theory. The theory
provides a rigorous framework in which the approximations which
may be used in any analysis method can be clearly seen and their
effects on predicted results assessed. Comparisons of the various
methods in terms of speed of computations and accuracy can also
be made.

All radome analysis methods of practical interest entail
approximations of one form or another. Consequently, the only
satisfactory way to determine the accuracy of any method is by
comparison with experimental data. To cover the broad range
of parameters that may be encountered in practice, combinations
of radomes and antennas of various sizes should be carefully
selected for measurement to yield the most useful true data for
assessing the accuracies of different methods of analysis.

Application

A computationally fast method of radome analysis based on
a receiving formulation [10] results when the surface S in
Equation (1) is chosen to coincide with the planar aperture
of the antenna whose radiating characteristics are represented
using the plane wave spectrum formulation [17]. The difference
receiving pattern in the azimuth plane for a vertically
polarized monopulse antenna with square gperture (corners
removed) of dimensions 4.3X x 4,3) is shown in Figure 2
for the case of a Pyroceram radome of wall thickness d = .22X.
The tangent ogive radome with fineness ratio L/D = 2.25 gimballed
so that its tip is positioned at +12° in the azimuth plane of
the antenna. Execution time to generate this pattern and three
others like it was 104 seconds (CDC Cyber 70).

For comparison, the pattern obtained for the same values
of radome and antenna parameters when a transmitting formulation
{9] is used is shown in Figure 3. 1In this method, a PWS repre-
sentation is used to describe the antenna, and rays representing
each plane wave are used to construct an equivalent aperture
which includes the effects of the radome on each plane wave in
the spectrum. The execution time to generate this pattern and
three others was 60 seconds on the same computing system.

Other methods of analysis which utilize integration on the
surface of the radome for both receiving and transmitting formu-
lations are currently being implemented. Computed results obtained
using these methods will be presented at the symposium. The
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experimental procedures being used will also be described.

Summary

A fundamental theory of radome analysis, which embodies
all existing methods as well as some new ones, is presented.
Computed results using two different methods of analysis
have been obtained as preliminary data. Computed results
obtained using additional methods of analysis will be pre-
sented at the symposium.
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PARAMETRIC INVESTIGATION OF RADOME

ANALYSIS METHODS: SALIENT RESULTS

I. Introduction

The final technical report on this three-year radome research program
consists of four volumes. This report, Volume I, presents the salient results
conclusions, and recommendations of this research whose objective was to deve-
lop a general theory of radome analysis and to determine the accuracies and
ranges of validity of three particular computer-aided radome analysis methods.
The results are presented in appendices as coples of papers prepared for publi-
cation as summarized in the main body of this report.

Volume II documents the analytical method and Fortran computer code
used to analyze the antenna/radome combinations using a fast receiving for-
mulation based on Lorentz reciprocity and geometrical optics. Volume III docu-
ments the analytical method and additional Fortran software required for ra-
dome analysis based on the Huygens-Fresnel principle or surface integration.
Volume IV documents the pattern and boresight error measurements made on eight
combinations of three monopulse antennas and five tangent ogive radomes at
35 GHz.

Measured data is used as true data in assessing the accuracies of the
computer codes. It is expected that the measured data obtained will be used
in the future for similar purposes. It is also expected that the documented
computer codes will serve as part of a technology base for use by researchers

and practitioners in the radome technical community.

11. Results
Appendix A presents a paper which describes the theory of radome analy-

sis developed during this investigation. The theory is simply an application

1



of the Huygens-Fresnel principle and Lorentz reciprocity to the radome pro-
blem. All methods of radome analysis appearing in the literature are embodied
in this general theory. It provides the correct framework in which to think
about radome analysis and to make objective comparisons between the various
methods of analysis.

aAppendix B presents a paper describing some antenna synthesis work that
was undertaken during this research. A procedure is described whereby the
aperture fields of the four-horn monopulse antenna without radome can be
synthesized from measured, amplitude-only, far-field, principal plane patterns.
A priori information about the geometry and excitation of the actual antenna
is used to find a credible solution to an inverse source problem for which
there would otherwise be no unique solution. In the absence of the radome,
each analysis method accurately predicts the measured patterns.

appendix C presents comparisons of measured and computed boresight
errors and radome losses for four of the eight antenna/radome combinations
considered. The antennas and radomes used are briefly described. (More de-
tailed descriptions are presented in Volume IV,) Qualitative conclusions
about the accuracies of the methods' can be made from the data presented; in

addition, recommendations for future work are brought to light.

I1I. Conclusions and. Recommendations

From the data presented in Appendix C, it is concluded that none of
the computer aided radome analysis methods investigated consistently and
accurately predicted the boresight errors and losses of the various antenna/
radome combinations used. For moderate size antennas and radomes (as defined
in Appendix C), the fast receiving method predicts boresight errors reasonably

accurately and is perhaps the fastest method available anywhere; however, for



small radomes and large radomes, the accuracy of the error predictions is
not as good.

The surface integration method was not completely assessed for pre-
dictive accuracy because of unresolved problems with the code. A large part
of the problem with the development of the code was the relatively long exe-
cution times required on the Cyber 70 system used. It is clear that because
of the long execution times, use of the surface integration method will be
restricted to the analysis of small radomes.

It is recommended that some "fine tuning" be done on the fast receiving
method to improve its predictive accuracy over a larger range of antenna/ra-
dome parameters. Specifically, the ray tracing procedure should be modified
to account for refractive effects and propagation of the fields along the rays.
The expected improvement in accuracy, coupled with the inherent practicality
of this code, make this recommended endeavor worthwhile.

It is also recommended that work be continued on the development of
the surface integration method of analysis so that its predictive accuracy
can be clearly established. A dedicated, small computer system (32-bit word
length) is recommended for this work to avoid the anticipated high costs
associated with very heavy use of a time-share system such as the Cyber 70
at Georgia Institue of Technology.

It is recommended that exact solutions of carefully selected antenna/
radome configurations be obtained for use as true data in the assessment of
the accuracies of various computer-aided radome analysis methods. Configura-
tions used must conform to those expected in the applications. The accuracies
of the solutions and the solutions themselves must be impeccable. Until such
time as this recommendation is carried out, measured data must continue to be

used as true data.



As a parallel approach to exact solutions, it is recommended that
numerical solutions be obtained on practical configurations of interest
using modern numerical methods such as method of moments and integral equa-
tion formulations. The use of specialized computing structures for dedicated
application to such electromagnetic radiation and scattering problems should
be investigated.

Finally, it is recommended that experimental techniques be developed
to help isolate deficiencies in the methods of analysis. The usual measure-
ments of patterns and boresight errors simply do not provide the necessary
information to pinpoint invalid assumptions and poor approximations in any
analysis procedure. New experimental methods which make use of automated

measurements and near-field/far-field transformations need to be developed.
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THEORY OF RADOME ANALYSIS

G. K. Huddleston
School of Electrical Engineering
Georgia Institute of Technology
Atlanta, Georgia 30332

Abstract

A basic theory of radome analysis is presented based on the
reciprocity theorem and the Huygens-Fresnel principle. Receiving and
transmitting formulations are developed. Techniques of analysis are
presented to distinguish the salient features of radome analysis and to
show the relationships between the theory and some existing methods of
analysis. The equivalence between the receiving and transmitting cases
is also established, both in general and explicitly for the far-field

case.



I. INTRODUCTION

Radome analysis is the application of electromagnetic theory to
determine the effects of protective dielectric structures on the elec-
trical characteristics of antennas enclosed by them. Numerous methods
of analysis have been developed for the prediction of radome effects;
however, no unified theory has been advanced to provide a common basis
of understanding of the various approaches taken and the approximations

. used therein. Furthermore, no comprehensive measurements have been re-
ported which provide true data in determining the accuracies of the
various methods when parameters such as antenna size, wavelength, ra-
dome size and shape are considered over the ranges that they are likely
to assume in the applications.

This paper presents a theory of radome analysis which embodies
known methods of analysis that have appeared in the literature. The
theory is based on the reciprocity theorem [1] and the Huygens-Fresnel
principle for electromagnetic fields [2,3] both of which are derivable
from Maxwell's equations via the divergence theorem and the vector
Green's theorem. The reciprocity theorem serves as the basis for the
receiving formulation of radome analysis, and the Huygens-Fresnel prin-
ciple is the basis for the transmitting formulation as seen in what
follows. The equivalences of the two formulations are also established.
Some approximations and techniques used in implementing the analyses are
presented along with discussions which clarify the justifications for

the approaches used in practice.



The development and presentation of this theory of radome analy-
sis is motivated by an on-going parametric investigation of radome analy-
sis methods [4]. Measured pattern data and boresight error data for
three antenna sizes combined in fifteen combinations with five radomes
have been obtained to serve as true data in determining the accuracies
and ranges of validities of three common computer-aided analyses. Great
care has been taken to ensure accurate modeling of the antennas such that,
in the absence of a radome, each computer code accurately predicts the
measured radiation patterns [5]. The theory provides the framework in
which the methods can be compared, especially in regard to the approxi-
mations used, the validity of various assumptions made, and the equiva-
lence of different computational procedures which yield, or should yield,
the same result. The theory also provides the basis for developing test
cases to verify the computer codes.

Development of radome analysis methods have paralleled the develop-
ment of airborne radar systems whose complexities have increased over the
years. Silver [6] illustrates the geometrical optics approaches taken up
to 1949 and which were developed during the previous war years. Kilcoyne
[7] presented a two-dimensional ray tracing method for analyzing radomes
which utilized the digital computer, and is an extension of work done
earlier by Snow [8] and by Pressel [9]. A more rigorous method of analy-
sis was introduced in the same year by Van Doeren [10] using an integral
equation to compute fields inside the radome caused by an incident plane
wave. Tricoles [11] formulated a three-dimensional method of radome
analysis based on Shelkunoff's induction and eguivalence theorems. Tavis
[12] describes a three-dimensional ray tracing technique to find the

fields on an equivalent aperture external to an axially symmetric radome.



Paris [13] describes a three-dimensional radome analysis wherein the tan-
gential fields on the outside surface of the radome due to the horn an-
tenna radiating inside the radome are found. Wu and Rudduck [l14] describe
a three-dimensional method which uses the plane wave spectrum representa-
tion to characterize the antenna. Joy and Huddleston [15] describe a
computationally fast, three-dimensional radome analysis which utilizes

the plane wave spectrum (PWS) representation and exploits the Fast Fourier
Transform (FFT) to speed up the computer calculations. Chesnut [16] has
combined the program of Wu and Rudduck with the work of Paris to form a
three-dimensional radome analysis method. Huddleston [17] has recently
developed a three-dimensional radome analysis method which uses a general
formulation based on the Lorentz reciprocity theorem. Siwiak, et al.,

[18] have recently applied the reaction theorem to the analysis of a tan-
gent ogive radome at X-band frequencies to determine boresight error.
Hayward, et al., [19] have compared the accuracies of two methods of
analysis in the cases of large and small radomes to show that ray tracing
does not accurately predict wavefront distortion in the case of small

radomes.

II. RECEIVING FORMULATION

The reciprocity theorem is a starting point for the formulation
of a unified theory of radome analysis. The general reciprocity theorem

[1] states that



.
where the surface S encloses the volume V containing two sets of electric
and magnetic sources (ga, 92)' (gb, JE) which give rise to electromagnetic
fields (gﬁ, ga), (gb, gb), respectively. (Time variations of the form
ejwt are understood and suppressed).

Figure 1 illustrates a typical radome analysis situation where it
is desired to deterxrmine the response Va of Antenna "a" to fields produced
by Antenna "b". The closed surface S in the reciprocity theorem is chosen
to be SO + S1 so that the volume V is the source-free region lying between
Antenna "a" and the inner surface of the dielectric enclosure depicted in
Figqure 1. 1In this case, the right side of Equation (1) equates to zero

(Lorentz reciprocity theorem), and the left side can be separated into

two surface integrals as

- JS (Ea x Eb - Eb x Ea).n da = [S (Ea x Eb - Eb X ga)-n da (2)
0 1

where n is the unit normal to the surface and is directed positively out

of the volume V. The fields E , H are those produced on S, and S_ by
—a -a 1l 0
Antenna "a" when it is activated (transmitting); Eb' Eb are the fields

produced on Sl and SO when Antenna "b" is activated (and Antenna "a" is

passive or receiving).

Let surface SO be divided into two parts: SO consisting of that

portion of SO across the waveguiding structure connecting the generator

”
of Antenna "a" to the radiating structure; So consisting of the remainder

of SO and which coincides with the conducting surface of the antenna as

w

indicated in the figure. The integral of the fields over SO is identi-

cally zero [20] so that the left side of Equation (2) reduces to the

integration over So. Now, in the many practical cases of interest,
?

there exists a dominant mode of propagation over S0

10
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mode in rectangular waveguide) so that currents and voltages can be

defined at this terminal plane so that there results

VaIb+VbIa=—['(Eaxg‘b_a:)x%).;da (3)
sO
The currents and voltages are defined for the two cases of in-
terest in Figure 2:
Va' I - YVoltage and current produced at S; by generator "a"
when generator "b" is passive;
V., I - Voltage and current produced at s; by generator "b"
when generator "a" is passive.

Linear impedance relationships can also be defined as indicated in Figure

2 such that {using Y = 1/Z2)

Va Ib b

+V Ia =V (VY ) + v (VY) (4)
Equating Equation (4) to Equation (2) and solving for the received vol-

tage Vb results in

v 1 ~
REC
= = - -d
b TV (¥ +v) V(Y+Y)[(—aE x B - E xH)nda ()
a a1l a a’l Sl
where VREC has been defined for convenience. This is one desired result.

In most analysis situations, Antenna "a" and the dielectric enclo-
sure comprise the antenna/radome combination. The separation of this com-
bination and Antenna "b" can be made very large so that the fields of "b"
are those of a transverse electromagnetic plane wave incident on the ra-

dome. In radar applications, the distant target is illuminated either

12
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(a) Source “a’” active, Source “b” passive
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(b) Source "a” passive, Source “b” active

FIGURE 2. DEFINITIONS OF CIRCUIT PARAMETERS OF THE ANTENNAS,
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by Antenna "a" or another antenna not shown in Figure 1. The reflec-
tion from the target comprises Antenna "b" in the analysis and, for
large separation, arrives, again, as an incident plane wave on the ra-
dome. Note, however, that the receiving formulation embodied in Equa-
tion (5) is valid for either the near-field (small separation) or far-
field (large) case. Also, superposition applies so that multiple tar-
gets or sources can be accommodated as linear combinations comprising
the fields Eb' Eb in Equation (5).

Equation (5) is exact; however, in the evaluation of the inte-
gral, approximations to the actual fields on Sl may be introduced so
that inaccuracies in the computation of the received voltage may result.
To see the effects of certain approximations, it is advantageous to make

the following definitions of primary and scattered fields:

i
E =E +E +E (6)
| =ao —as —as
H Hi '
Ha " Za0 *t Has tH g (7)
where
i . . .
E , H1 - Fields on S, due to Antenna "a" which contain no
-ao —ao 1
scattered field components; i.e., the fields that
would exist on Sl in the absence of the dielectric.
E , H - First order scattered fields on S. due to Antenna "a";
—as’ -—as 1
i.e., fields reflected only once from material media
outside Sl and from Antenna "b'.
A A
E H - Higher order scattered fields on S, due to Antenna
—as —as 1

a"; i.e., components caused by multiple scattering

14



between Antenna "a" and surrounding media, including
Antenna "b",
Similar definitions can be made for Antenna "b" with respect to

the surface Sl as follows:

= , 8
B, = Epo * Bpg * By @

B =B v Bt B (9)

where Et R Ht are the fields on S, due to Antenna "b" and which contain
—So —5o 1

no scattered components due to material media inside Sl' including Antenna

"a"., The fields E . H are first order scattered fields on S. due to
—bs —bs 1

a single scattering from Antenna "a". The flelds Eb are the higher
order scattered fields. When these definitions are substituted into Equa-

tion (5) and the vector cross products evaluated, there results

i A
+ ISl x Ebs - Ebs x an) n da
+| (& t —511; x H )en da
s -as 0 Q —as
+JS( Sx S—Ebsxgas).n da

+ Terms involving higher order scattered fields (10)

15



The first integral on the right side of Equation (10) provides
the primary contribution to the received voltage for those cases of in-
terest where the dielectric is somewhat transparent to the incident
. i i . .
fields Eb , H of Antenna "b". The second and third integrals are each
o° —Ho
identically zero by virtue of the definitions of the scattered fields and
the general reciprocity theorem as applied to the source-free volume v

consisting of the region outside § i.e., since there are no sources of

1
the defined fields in this region, the right side of Equation (1) and,
hence, the second integral of Equation (10), are both zero. A similar
argument holds for the third integral when the general reciprocity theo-
rem is applied to the source-free region V enclosed by Sl.
The contribution of the fourth integral in Equation (10) depends
on the scattering properties of Antenna "a" as well as on the reflec-
tive properties of the dielectric enclosure with respect to the incident
fields E;o' E;o . It is difficult to assess the significance of these
contributions and those of the integrals involving higher order scattered
fields. At any rate, it is impractical in current computer-aided analy-
ses to include scattering from the antenna inside the enclosure; hence,
only the first term in Equation (10) is usually retained. The objective

of practical radome analysis then centers on the determination of the

fields in the integral

i t t i ~
VREC = JS Qan x Ebo - Ebo x E-ao) n da (11
1l
and on the evaluation of the integral itself.
Surfaces other than the inside surface Sl of the dielectric of

Figure 1 can also be selected for the evaluation of the received voltage

16



vid Equation (10) or (11). For example, choose SO as before and choose
Sl to also coincide with the outer surface of Antenna "a", including the

radiating aperture portion sap' Apply Lorentz reciprocity to the source-

free volume contained between the antenna aperture and SO to yield
i t t i
~ E - H .
vﬁEC ~ I (—ao * Ebo Ebo * —ao) n da (12)

ap

. i i . c.os
The fields E._, H are the aperture fields of Antenna "a" when it is
=ao’ —ao
transmitting in the absence of the dielectric and are often known or spe-
cified for analysis purposes. The real difficulty arises in the determi-

. t . .
nation of the fields E;o, Ebo on the chosen surface S, And it is the

choice of the surface Sl and the approximations used to find the fields

on it which distinguish the various methods of analysis based on the re-
ceiving formulation. More will be said concerning the determination of
these fields in the next section.

Another choice of the surface of integration consists of the
outer surface S3 of the dielectric enclosure of Figure 1. First apply
Equation (1) to the source-free region consisting of the dielectric itself
as enclosed by its inner surface Sl and its outer surface S3; i.e.,

S = S1 + S3. Since the right side of Equation (1) is zero, and since the

A

positive direction of n is out of V, it is seen from Equation (5) that

VREC = Js (g% x Eb - Eb x gﬁ)'n da . (13)
3

A

where n is the unit outward normal to the outer surface of the dielectric.
It will be shown in a later section that Equation (13) is equivalent to

the transmitting formulation to be discussed next.
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IIT. TRANSMITTING FORMULATION

A second generalized approach to radome analysis uses a transmit-
ting formulation which does not explicitly consider the fields produced
by the incident fields of a source outside the dielectric structure.
Instead, the equivalence and uniqueness theorems of electromagnetics [21]
are invoked to establish the result that the fields radiated by Antenna
"a" into the unbounded, homogeneous region outside the dielectric en-
closure can be found from knowledge of the tangential electric and mag-
netic fields on the outer surface of the dielectric. Moreover, there
exists an integral formula for the actual computation of these fields.

After Stratton and Chu [2], Silver [3] derives the general solu-
tion for the time-harmonic electromagnetic fields in a homogeneous medium
which arise from a prescribed set of sources, including magnetic (equiva-
lent) charges and currents. The derivation is based on Maxwell's equa-
tions (including the equations of continuity for charges and currents),

a vector Green's theorem, and the free-space Green's function Y = e—jkr.
The results, Equations (3.108) and (3.109) of Silver, are called the
Huygens-Fresnel principle (also called Kirchhoff-Huygens principle) and

are repeated here for convenience:

E(x',y',z') = + o= J [-junb(n x E) + (n x E) xV¢ + (n-E)VY] ds  (14)
S
H(x',y',2') = f% f [jwe(; x E)y + (; x H) xVy + (ﬁ-g)vw] ds (15)
S

~

where n is the unit normal to S which points into the source-free medium
as indicated in Figure 3.

18
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FIGURE 3. GEOMETRY FOR HUYGENS—FRESNEL PRINCIPLE.
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In the above equations, primed variables are the coordinates of
the point at which the field is to be computed, and unprimed coordinates
are used to designate the source coordinates lying on the surface S. The
distance r is measured from the field point (x',y',z') to the source point

(x,¥,2) so that

r=/(x-x")%+ (y-y")*+ (z-2")° (16)
and
Vo = - (Jk +£)IIJ;= (jk+—l—)¢; (17)
r r 1
where r = —rl is a unit vector directed along r from the field point to

the source point. The variable T is adopted from the notation of Poggio
and Miller [22] so that the fields at points on S can also be included;

it is given by

1 1 if @=0, (x',y',2') not on S
T = —-————————_ = (18)
1-a/4n 2 if Q=2m, (x',y',z') on 8§

The terms (n x E), (n x H) in Equations (14) and (15) can be con-

sidered as equivalent magnetic and electric surface current densities

|=
]
o I
™
(=5

(19)

AN

- (n x E) (20}

20



with corresponding equivalent surface charge densities

~

n = (n.E (21)

(n + H) (22)

fon |
I

These equivalent currents and charges are the sources of the fields E, H
in the region outside the dielectric enclosure. Using the equation of

continuity for surface currents and charges [23].
an
. 4+ — =
V. * K oy 0 (23)

the terms in Equations (14) and (15) involving normal field components

may be rewritten for the time-harmonic case as

neE=-Y_ + (nxH (24)
- we S -

- . -

n e+ H=- Vg (E x n) (25)

where VS- is the "surface divergence". Thus, the fields E, H in V are
expressible entirely in terms of the tangential fields on S as is in keep-
ing with the unigueness theorem. (Note, however, that the surface diver-
gence involves first order partial derivatives whose numerical computa-
tion may not be desirable.)

Implicit in the application of equivalent surface charges and cur-
rents is Love's equivalence principle [24]. It is a special case of the
general field equivalence principle [25] in that a null field is postuated

inside the surface S, and the charges and currents of Equations (19)-(22)
_21



are required on S to maintain the original field E, g_outside S. Hence,
an application of the Huygens-Fresnel integrals using these surface cur-
rents to find the fields at a point inside S would necessarily yield a
null result. This observation is important when applying the Huygens-
Fresnel integrals to find specially defined fields inside the radome as
discussed below.

The integral representations in Equations (14) and (15) for the
fields radiated by Antenna "a” into the homogeneous, unbounded medium
outside the radome are exact for points up to and including the surface
S; however, the difficulty in analysis is the accurate determination of
fields E, Hon S. To gain further insight into this problem, consider
the geometry of Figure 4. Define primary and scattered fields of the

antenna with respect to surfaces S1 and S_. as was done in Eguations (6)

2

a X tion. . X ]
and (7) of the previous section Let the primary fields an an on 52
be known. Then the primary fields incident on surface S1 can be found

via Equations (14) and (15) above where the surface of integration is

now 52 of Figure 4; i.e.,

l ~
BaolSy) " 35 | el Eagr 8008 (26)

2
where the Huygens-Fresnel operator HF { } is defined here to be the in-
tegrand of Equation (14). A similar expression holds for the magnetic
field intensity H . By definition, the fields E__, H _ are those that
—ao —ao’ —ao

would exist at Sl in the absence of the dielectric.

The first-order scattered fields E , H on S. are those caused

—as -—as 1

by the boundary S1 and the media outside S A very common approxima-

1°

tion for this complicated scattering process utilizes the results
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SURFACES OF RADOME AND TO COMPUTE
FAR FIELDS.

23



of plane wave interaction with a dielectric interface: at each point on
Sl' the incident fields an, an are approximated locally as a plane wave,
and the dielectric is assumed to have the same effect as a plane dielec-
tric panel. The normal to the dielectric surface and the direction of
propagation of the incident fields define the plane of incidence and the
angle of incidence. The incident electric field is resolved into compo-
nents perpendicular to and parallel to the plane of incidence as illus-
trated in Fiqure 5. The flat panel reflection coefficients Rl, R” are
then applied to the incident fields to find estimates of the first-order
scattered fields; i.e.

A A A

A
. + . = .
al)Rl a a”)R” E ° 5 (27)

E =a(

E (E
—as 1 '=ao || *—ao

where the dyadic R is defined.

The flat panel transmission coefficients TL’ Tllmay also be used

to estimate the fields transmitted to the outside surface; i.e.,

¢ R R R R A
E ~a (E - T +a . = . T

Bao R 2lBqo " a) Ty A Byg t 2P T S Eyt T (28)
Ht—;(H °;)T +;(H ';)TéH « ' (29)
=ao 1 '—ao 1 1] |I'=ao "1 =ao =

t t . . \
wWhen an, an are used in Equations (14) and (15), a first-order approx

imation to the radiated fields outside the dielectric is obtained.
The procedure just described is that used earlier by Paris [13]
and emulated by Wu and Rudduck [l14] and Chesnut [16]. The direction of

propagation k of the incident field was taken to be that of the Poynting
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vector or real power flow. Also, since only far-field patterns were of
interest, the usual simplifying approximations were applied to Equations

(14) and (15) to obtain the following far-field approximations

" . . “ " ~ (Exn) xR . >

_ —Jjwy ~JkR _ . — 1. Jkp*R
EEf(RRl) TR e . [nxH ( (nxH) Rl)R1 + ————;———ie 1 dv (30)

3 o
~ R, x E
1 —ff
E{f(RRl) = — (31)
o

where no= Yp/e is the characteristic impedance of free space and where

the geometry variables are defined in Figure 4. Note that the second term

in the integrand of Equation (30) is the radial component of n x H which

~

is subtracted to ensure that only transverse (to Rl) components of the
fields are found in the far zone. Paris used the fields given by Equa-
tions (28) and (29) in the integrand of Equation (30).
The first-order scattered fields E , H on surface S, also con-
—as —as 1
tribute to the incident fields at the surface Sl as indicated by the
dashed secondary ray in Figure 4. To formulate this contribution, con-

sider the computation of the field Eas at an interior point P of the

volume enclosed by S.. Since all sources of E , H are outside S_,
1l —as —as 1l

T N
Eas(P) Toam IS HF{_n' E.s’ E-as}ds (32)
1

~

where -n is the unit inward normal to Sl and T=1. On surface Sl write

E , H as
—as —as

E (S.) =E * R+ E (33)
—as —ao = —as

= . R ”n
Ea (Sl) an B + Eas (34)



where R, R’ are flat panel reflection dyadics already defined, and where

H represent the contributions to E , H at each point on S, from
—as _ —as’ -—as

E
1

—as’

radiation by the fields at every other point. Substitute Equations (33)

and (34) into Equation (32) with T 2 for P on S1 to yield

1 ~ 1] ’ "
— - [} + .
Eas(sl) 27 [S HF{ B an R+Es B R+ E-as}ds (35)

1

Carry out the integration on the directly reflected terms to yield

HF{—n, E o §_as}ds (36)

14

1

1
R S

where Si is surface Sl with the point of interest excluded.

"
The fields Eas' Eas are, of course, unknown; however, a first-order

approximation to E at a point P on S. is
PP —as P 1

” l -~ R
B8 Moy | el By B B B 7)

That is, the directly reflected fields at every other point on Sl are used

to determine E at the point of interest on S.. The fields E , H at
—as 1 —as —as

each pointon S, should then be added to incident fields E__, H to pro-
—ao =—ao

1
duce a second order estimate to the fields on the outside surface of the
dielectric via Equations (28) and (29). Hence, an approximate, iterative
procedure to compute the effects of the first—ordgr scattered fields on
the final radiated fields is formulated.

An important hypothesis for the validity of Equations (14) and

(15) is that the fields E, H on S satisfy Maxwell's equations, including

the equations of continuity. If this hypothesis is not met, the fields
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computed at points not on S will still satisfy Maxwell's equations pro-
vided only that the equations of continuity are satisfied on S; e.g., if
surface currents are terminated abruptly, then a line of surface charge
must be explicitly included in the field expressions [26]. If the hy-
pothesis that E, H on S satisfy Maxwell's equations is met, then the equa-
tions of continuity are automatically satisfied; moreover, the expressions
in Equations (14) and (15) are valid for points on surface S as well as for
Points outside. Now, the fields given by Equations (26), (33), (34), and
(37) do satisfy Maxwell's equations; however, when the approximation in
Equation (37) is substituted into Equation (33), the latter may no longer
satisfy Maxwell's equations on sl because of the first term. Hence, a
number of iterations may be required before the true values of Eas' H

—as

on S1 are found.

Other approaches to the determination of the first-order scattered
fields Eas' Eas include the integral equation formulation discussed by
Poggio and Miller [22] for scattering from dielectric bodies. In this
approach for the geometry of Figure 4, integral expressions are written
in each region for the electric and magnetic fields in terms of the equi-
valent surface currents and charges via Equations (14) and (15). 1In
Region I there are added terms Tan' Tgao in the integral expressions due
to the incident fields. The boundary conditions at each material inter-
face are then written using the integral expressions, resulting in a
system of integral equations in the unknown surface charges and currents.
In principle, the equations can be solved by the method of moments [27]
or by iterative methods such as discussed above. The radiation fields

in Region IIT could then be found directly from the solutions for the

surface currents and charges on S

3 via Equations (14) and (15); however,
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the contributions of the higher order scattered fields would not be
included.

The techniques discussed in this section for the determination of
the fields on a specified surface are directly applicable to the receiving
formulation of the previous section. Most notably, in Egquation (12), it
is necessary to find the fields E;o' HtO of Antenna "b" on the surface

=

Sap which coincides with the radiating aperture of Antenna "a". When
Antenna "b" is greatly removed, the fields incident on the outside of the
dielectric are those of an infinite plane wave. Appropriate adaptations
of Equations (28) and (29) could be used to estimate the fields Et v g;
—bo o
on the inner surface of the dielectric enclosure. The Huygens-Fresnel
integrals of Equations (14) and (15) could then be applied to transform
these fields to the surface Sap' This approach is essentially that deve-

loped by Tricoles [28]. An integral equation approach could also be used,

including the one described by Van Doeren [10].

IV. EQUIVALENCE OF FORMULATIONS

It is well known that the receiving and transmitting patterns of
an antenna in free space are identical. In this section, it is theoreti-
cally demonstrated that the receiving and transmitting patterns for an
antennaénclosedby a dielectric radome as in Figure 1 are also identical,
and that the receiving and transmitting formulations of radome analysis
lead to identical results. Establishment of the equivalence yields in-
sight into the computational advantages of one formulation over the other
and provides a means to compare numerical results obtained using the two

approaches.
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A

Consider the geometry of Figure 6 where n_ represents an infinite-

b

simal electric current source of strength I length A%, and orientation

b'

nb located at the point (x',y',2z') which is a great distance R from the

origin of coordinates. For definiteness, nb is transverse to Rl, which
is the orientation that would normally be assigned for the measurement

of the radiation pattern of Antenna "a" enclosed by the surface S The

3°
fields E, H at (x',y',2') due to Antenna "a" are given by Equations (14)
and (15). For clarity, let ET' ET represent the fields on S3 produced
by Antenna "a" when it is transmitting.

Let ER' ER be the fields produced on S3 by the current element

A

nb.

region yields

An application of the general reciprocity theorem to the unbounded

- . = el Ld 8
JS (E_ x ER x ET) n 4as E * nI AR (38)

A second application of the reciprocity theorem to Antenna "a" inside
the surface S3 as was done in the discussion leading up to Equation (13)
yields the result that the complex voltage response of Antenna "a" to
the fields ER' ER incident on S3 is proportional to the integral in
Equation (38); hence,

V. =1 A2E °*n = - .
E C J (E_ x Hy x H) n ds (39)
S
where C is a complex constant.

Equation (39) provides the connection between the receivihg and

transmitting formulations and, as such, represents the third facet of
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FIGURE 6. GEOMETRY USED TO ESTABLISH EQUIVALENCE
BETWEEN THE RECEIVING AND TRANSMITTING
FORMULATIONS OF RADOME ANALYSIS.
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the theory of radome analysis. Basically, it states that if E, H are the
fields of Antenna "a" at (x',y',2') as determined via the Huygens-Fresnel
principle, then the voltage response of Antenna "a" (when receiving) to

an elementary current source at (x',y',z') is given succinctly by Equa-

tion (39) as Ib AL E nb. An antenna more complicated than the elemen-
tary current source could be assumed for Antenna "b": for the far-zone
case, the same results would be obtained since the radiation and recep-

tion properties of the antenna can be embodied in a complex effective

~ ~

vector length h which is entirely analogous to nb [29];: for the near-

field case, the approach described by Paris et al. [30] would be required.
Even though Equation (39) is valid regardless of the separation

and orientation of the elementary source, it is desired here to explicit-

ly establish the second equality in that equation for the far-zone case.

. . . . i j
To this end, it is noted that the fields ER' g; on S3 are those of a

~ ~

plane electromagnetic wave propagating in the k = -Rl direction with po-

~

larization properties given by n, according to

b

. -jkR . s

i e Jkkep
Ex = Jwi B nb e (40)

k X E _ij . ~ ~
i =R . Jkk -
= = 3k - = 41
R (ny, % B)) (41)
o

where k = wpy/n = 21/A and where p is the position vector from the origin
o v

of coordinates to the source point on S., as indicated in Figure 6. The

3
constant C in Equation (39) will be chosen to conform to these explicit

expressions for the incident plane wave. When Equation (14) is substi-

tuted for E in Ib AL E - n s there results
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e L . L
VR T Tan JS [Fjow =F—e" = n - (nx H) + nb'((n x Ep)

(42)
. —ij . ~ ~ ~
ke = Jkkep . .
X Rl R e )+ n, V¢ff(n ET)]dS
where the following asymptotic relations have been used:
~ R - R he 43
r 3 P (43)
o Jkxr - IkR e (44)
r R
“ -jkR .. 0
- _ .. e Jkk-g
vy prf lek R ° (45)

Applying the vector identity a * bx¢c =Db * ¢ x a to the first

term in the integrand of Equation (42) yields

-jkR ., ° ~ ~ ~jkR . n .
- e jkkep . s Jkk-e
Jwy ——E;—-e ny (n x ET) Jwiu R n ET X e (46)
e (47)
=R © =r

i.e., it is equal to the negative of the second term of the integrand in
Equation (39). Repeated application of the same vector identity to the
second term in the integrand of Equation (42) yieids

-jJkR . “. ~ -jkR .. °

jkkep ° -
R e - Rl X nbﬂ (48)

(49)



i.e., it is equal to the negative of the first term in the integrand
of Equation (39). The third term in the integrand of Equation (42) is
identically zero since ;b is perpendicular to waf. Collecting results
yields the final desired result where the complex constant C is chosen
to be
Ib AL
4

C = = (50)

to ensure equality.

A concise application of the foregoing analysis is to show that
the response of Antenna "a" to the incident plane wave depends only on
the incident fields g;, E; and not on the scattered fields ERS' ERS'
Direct examination of the first equality in Egquation (39), as well as
examination of Equations (47) and (49), revelas that this is .indeed the
case. The total fields ER’ gﬁ on S3 are given by the superposition of

the incident and the scattered fields as

1
= + 51
E, = Ep + Egg (51)
H =H- +H (52)
-R ~R —RS

Substituting into the reciprocity integral of Egquation (39) yields
i ~ ~
= - . - . d
Vv C JS (ET X HR ER x ET) n ds + C J (ET x H E X ET) n ds(53)

The second integral must be identically zero because of the equivalence

established explicitly above; also, it must be zero by virtue of the
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reciprocity theorem itself as discussed in Section II above following

Equation (10).

V. CONCLUSIONS

The theory of radome analysis is based entirely on the recipro-
city theorem and the Huygens-Fresnel (or Kirchoff-Huygens) principle,
both of which are derivablé from Maxwell's equations via a vector Green's
theorem and the divergence theorem (Gauss' Law). All methods of radome
analysis can be cast in terms of the theory presented to provide a common
basis of understanding, to clarify any approximations, and to provide a
basis of comparison for the procedures used and numerical results obtained.

The theory presented provides the correct framework in which to
think about radome analysis. Its understanding is of paramount impor-
tance to the correct development of new analysis methods which may util-
ize modern numerical methods such as method of moments, GTD, and hybrids
of the two. The theory provides the basis for the development of even
newer methods of analysis which may rely on spécial computer architec-
tures or networks. Its presentation here provides a solid theoretical

foundation for future thrusts in this important area.
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Abstract

A planar aperture synthesis procedure which predicts measured

radiation pattern data accurately and which exploits known physical

parameters of the actual antenna is described for use
aided radome analysis. The plane wave spectrum (PWS)
with the geometrical optics approximation, is used to

radiation from the array of four identical, discrete,

in computer-
representation,
characterize

conical horn

elements that was studied. Solutions for the PWS of each element

from measured array patterns over the visible region are presented,

and a digital signal processing algorithm is described for extrapo-

lating the aperture-limited PWS into the evanescent region as re-

quired to determine the near field of each element.

The element

near fields, having bounded support, are combined to produce a near

field for the complete array. The array near field is used in a

computer-aided radome analysis to demonstrate the accuracy to which

the measured antenna patterns are predicted for the case of a free

space radome. For completeness, comparisons of measured and computed

patterns for a tangent ogive Rexolite (er = 2.54) radome are presented.
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INTRODUCTION

valid comparisons of the accuracies of radome analysis methods
using measured radiation patterns as true data [l] require that each
method under consideration be capable of predicting accurately from a
suitable antenna near field the antenna patterns measured in the ab-
sence of the radome; otherwise, any differences between measured and
calculated patterns with the radome in place would be as attributable
to the inadequacy of the antenna model as to the radome analysis
method itself.

When the measured amplitude and phase of the antenna fields
are known over a complete 5phere enclosing the antenna, a complete
aperture synthesis method such as that described by Ludwig can be
used [2]. But when, as in many cases of practical importance, the
measured pattern data is limited to amplitude-only, principal plane
patterns, a different approach and one which exploits all available
information about the antenna being modelled must be used.

such a method of planar aperture synthesis for the four-horn
monopulse antenna of Figure 1 using measured principal plane ampli-
tude patterns of the sum, elevation difference, and azimuth differ-
ence channels is described in what follows. The radius (a = .74})
and element half-spacing (dx = dy = ,95)) of each vertically (y)
polarized conical horn element (10° flare angle) are used in the

antenna model to describe radiation from it in the sinuscoidal steady

jut

state (time variations of the form e and suppressed). The aper-

ture fields of each identical element in the four-horn array are
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Figure 1. Geometry of Four—Horn Monopulse Antenna.
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represented by their plane wave spectra [3] as determined in the prin-
cipal planes from the measured patterns and the above physical para-
meters of the actual antenna. The two-dimensional plane wave spectra
in the other radiating portions of the wavenumber kxky—plane are deter-
mined according to a mathematical model deemed characteristic of the
actual element and which utilizes principal plane spectra only; e.g.,
separable spectra, circularly symmetric spectra, etc. The element plane
wave spectra in the non-radiating or evanescent region of the wavenumber
plane are found by extrapolating the aperture-limited spectra from the
visible to the invisible region using an algorithm described by Papoulis
for one-dimensional band-limited functions [4]. The element plane wave
spectra so found are then recombined with the array factor to produce
the spectra for the complete antenna which, upon Fourier transformation,
yields a near field for the antenna which accomplishes the desired result.
This antenna synthesis problem is motivated by an on-going parame-
tric investigation of radome analysis methods [1]. A general theory has
been developed, based on the Huygens-Fresnel principle and Lorentz reci-
procity, which embodies the various methods of radome analysis [e.g., 5-10].
Computer codes for three typical methods have been implemented. Measured
pattern data and boresight error data for three antenna sizes (small,
medium, and large) combined in fifteen combinations with five radomes have
been obtained to serve as true data in determining the accuracies and
ranges of validity of the three methods of analysis. The particular mono-
pulse antenna configuration [11] in Figure 1 was chosen for its ruggedness,
ease of fabrication, and ease of duplication in the different physical
sizes. Since the perturbatiors in the patterns and boresight errors caused
by the radome are small, it is essential to the success of the research

that the actual antennas be accurately modelled in the analyses so that
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valid comparisons of the methods can be made. The synthesis procedure was
developed specifically for this purpose and for this antenna configuration,
but it has wider application and is applicable to more general configurations.

The plane wave spectrum representation of the antenna fields is well
suited to the radome analysis application because of the computational effi-
ciency which can accrue as a result of the Fourier transform relationship
between the aperture fields and the plane wave spectra/far fields. And
because of the asympototic relationships between the far fields and the
plane wave spectra, the latter can be mathematically determined from the
former, at least over the visible region corresponding to the hemisphere
z>0. But before the desired near fields can be determined, it is neces-
sary to assign values to the spectra corresponding to the evanescent or
non-radiating modes. Failure to do so may result in a near field which,
because it contains only radiating modes, may be too spread out to fit
within the confines of the radome for analysis purposes.

In the synthesis procedure here, values are assigned to the eva-
nescent modes by extrapolating the plane wave spectra from the known
visible region into the evanescent region. Such extrapolation is valid
only for an aperture-limited spectrum; i.e., a spectrum which is the
Fourier transform (or inverse transform) of an aperture field which has
bounded support. Such a spectrum is an entire function [12] of the
(complex) wavenumbers kx'ky whose value in one region of the complex
kx and ky planes can, in principle, be determined by analytic contin—
uation from a known region [13]. The algorithm described by Papoulis
provides a practical, computer-aided procedure for implementing the
extrapolation; it is also computationally efficient since the Fast

Fourier Transform (FFT) algorithm can be exploited.
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This synthesis problem is actually an inverse source problem such
as that described by Schmidt-Weinmar and Baltes [14] in which prior know-
ledge about the source plays an important role. It is well known that
such problems involve the mathematical questions of existence, uniqueness,
and stability of the solution. Small errors in the experimental data,
(errors and noise are inevitably present) can lead to large errors in the
solution unless suitable stabilizing constraints are imposed; i.e., un-
less additional prior knowledge can be taken for granted or known to be
fact. The procedure described here utilizes a novel combination of known
and assumed data, the sum of which provides enough information to produce
a stable solution to the inverse problem which fits all the prescribed
known data -- but which may not be unique. The gquestion of uniqueness
and the amount of information, both prior knowledge and measured data,
needed to ensure uniqueness is the subject of a current investigation.

This paper presents the solution for the plane wave spectra of
the antenna in terms of the measured patterns and the physical para-
meters of the antenna. Spectrum functions separable in rectangular and
in polar coordinates are presented which permit the specification of the
complete radiating spectrum from knowledge of it in only the principal
planes. The extrapolation procedure in both one dimension and in two
dimensions.is detailed and used to effect solutions for a theoretical
antenna, whose solution is known exactly for verification purposes,
and for the actual antenna. Computer generated results are presented
in the forms of radiation pattern comparisons and three-dimensional
plots of the near fields and plane wave spectra. To demonstrate appli-
cability and for completeness, some radome analysis results are‘pre-

sented.
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THEORETICAL DERIVATIONS
The synthesis procedure is carried out independently in the two
principal planes to determine the plane wave spectra Axe(kx,ky), Aye'
and aperture fields Exe(x,y), Eye of each identical element in the four-
horn array of Figure 1. The general expression for the radiation field
of the array may be written as a product of the element field and the
array factor as
jk (dxkx +dk) jko(-dxkx + dyky)

= ° Y
Eeff(kx,ky)[al e +a_ e

j -d k - j d -dk
Jko( d_ x dXx ) Jko( xkx y y)] (1)

+ a_ e + a, e
3 4

where ko=2ﬂ/k, j=v-1, the ai's are the complex excitation coefficients
of the elements numbered and spaced as shown in Figure 1, Eeff is the

radiation (electric) field of the element, and the normalized wavenumbers

kx' ky are related to spherical angles 6, ¢ of Figure 2 by

o
il

sin® cosé¢ (2)

o
"

sin® sin¢ , (3)

at least -for the visible region defined by Vixz+ky2 L

The three monopulse channels of the antenna are formed by phasing
the elements appropriately. In the ideal case, |ai|=1 for 1=1-4. For
the sum (Z) channel, all elements are assigned egual phase. For the ele-
vation difference (AEL) channel, al=a2=—a =—a4. For the azimuth differ-

3

ence (AAZ) channel, al=a4=—a2=-a3. For perfect assignment of the exci-

tation coefficients, there results
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= x 4 d d k
E{fz Eeff(kx' y)( cos ko xkx cos ko v y) (4)
EffAEL = Eeff(kx,ky)(j 4 cos ko dxkx sin kO dyky) (5)
= k ] j k d k
E:EfAAZ Eeff(kx' y)(J 4 sin ko dx X cos ko y y) (6}

In the non-ideal case encountered in practice, the excitation coeffi-
cient values may vary somewhat from the ideal wvalues so that the com-
plex array factor of Equation (1) must be used in solving for the ele-
ment field and plane wave spectra of measured sum and difference patterns.
The radiation field of the element is related to its plane wave
spectra according to [15]
2

E k) = +k - -
E gk y) x[(1+k -k ) & k

k a ]
xe Xy ye

+ yl-k k A + (l+k -k 2y a ]
Xy xe z 'y ye

+ ;[-k (1+k )2a -k (14k ) A 1] (7)
X zZ  Xe b% Z ve

2 . . .
where kz= 1-kx -kyz. The geometrical optics approximation [16] has been

assumed for the aperture fields in the conical horn element; viz.,

zZ X Ea
H = ______E . (8)
—ap n

~ ~ ~

where x, y, z are unit vectors in the rectangular coordinate system of
Figure 2 and n is the wave impedance. In Equation (7), the radiation

-jk . .
factor of the form e 3 r/r has been suppressed where r is the radial

48



distance from the origin of antenna coordinates to the far-field mea-
surement sphere of Figure 2.
Equation (7) may also be written in terms of the transverse

spherical components as

(1+k ) R R
E k ,k ) = —=——u +k p + ¢(- + k
—eff( <’ y) S—— [6(kx Axe y ye) ¢ ( ky Axe x Aye)] (9)
+k
X 'y

which is a form more suitable to solution for Axe’Aye in terms of the mea-

sured transverse components E_, E, or the related measured quantities V

8’ "¢ 8’

V¢ defined by

Ve - 0 X
B, . k<0
E , k 0

v, = ¢ X (11)
E, + Kk O

For kx=0 (E-plane), the definitions above apply when ky is substituted
for kx. Let AFi' i=1,2,3, denote the array factors associated with the
z, AEL' AAZ channels, respectively, modelled in Equation (1). Then the

solutions for the element spectra are given by

kaBi -k V¢i
A _(k k) Y (12)
Y (1+k ) vk 2+k 2 aF,
z X Yy i
K, Vo; * K, Vgs
A (k ,k) = (13)

ye X ¥y (1 + kz)ka2+ky2AFi
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for all kx'ky such that 0k <1. At the pole, kz=l and the spectra may be
A

found from the sum channel measured voltages as

_ __E
A__(0,0) = Vgl(0,0) = V1 (0/0) (14)
E
A (0,0 = Vﬁl(0,0) = Vg, (0,0) (15)

where the superscripts denote the conventional E and H planes [17]. The
general expressions in Equations (12) and (13) can be specialized to these

principal planes as follows:

H-Plane (k =0):
Y

VHi(kx)

6
T (1+Y1-k 2)AF.
' X 1

Axe(kx'o) (16)

Vi (k)
x

A (k_,0) = 2 (17)
ye x (1+/1—kx2)AFi

E-Plane (k =0):
x

-Vii(ky)

A (0,k)
Y

xe (18)
(l+¢l—ky2)AFi

E
Vei(ky)

A (0,k) (19)
ye Y

(l+Vl—ky2)AFi
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When numerically evaluating Equations (16)-(19), the channel in-
dex i is chosen on the basis of highest signal level. For example, the
Lz channel (i=1) provides the best data for small |kx| in the H-plane;
however, as |kx[ increases, the sum channel amplitude decreases toward
the first null in the array factor AFl while the AAZ channel amplitude
increases toward its peak at kx & isin_l((4dx/k)_l). When alternating
between the data sets, it is important to ensure that the measured dif-
ference channel data is correctly normalized with respect to the sum
data as dictated by the model in Equation (1). For ideal excitation co-

efficients, the ratio of difference channel response to sum channel re-

sponse is given in each principal plane by

H~-Plane:
A (k ,0)
AZ X ,
N S d
I (k.0 > tan k d k. (20)
E~-Plane:
Bg (0% )
== Y. - jtank_ dk (21)
z (O,ky) o VY

These relationships can be used to adjust the measured data for consis-
tent solutions of the element spectra.

The measured quantities V V,. in Equations (16)-(19) are com-

i’ i

plex quantities usually measured using a phase/amplitude receiver. 1In
those myriad cases where far-field phase data are not valid due to

range imperfections, unstable microwave sources, etc., some assumption
must be made in assigning phase values to the measured amplitude data at

each angular direction. 1In this investigation, phase data were'assigned

as dictated by the array factor for each channel. The phase of the
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element was assumed constant. The phase reconstruction problem [18] was
beyond the scope of the present work.

In practice, the excitation coefficients ai will differ from their
ideal values to produce asymmetries in the measured patterns. Values of
the excitation coefficients based on the asymmetries in the sum patterns

may be found, in paired combinations, as

8(elV Vlil(kx" - eV v‘il(—kx))
a = (a, +a,) = : ; (22)
14 L4 @ _ e 1 bk ya (x L,0)
z' Tye T x
s(ejq’ VHl(—k y - e 3V le(k ))
a23 = (a2 + a3) = = ) _.zx 9. X (23)
@V~ e™3%% 1 1 xy)a  (k ,0)
z ye' Tx
8e’V vF. k) - eV vE ()
a,=(a +a)=—— 21X 0l x (24)
@ - %% (1 + x)a (0,k)
z' “ye x
g(el? v‘zl(—k y = e Y vgl(k ))
agy = (agtay) =—5 -'2x = (25)
3 - T3 (1 4+ x)a (0,k)
z' ye X
where
v =kdk =kdk (26)
o X X oy x
k, = /1 - k2 (27)

and where kx=sin6 is a conveniently chosen point in the sum pattern prin-
cipal planes, such as the angle corresponding to the peak of the first

. sidelobe. It is noted that the values of Aye appearing in Equations (22)-
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(25) depend on the excitation coefficients; hence, an iterative procedure
is indicated. The individual excitation coefficients can then be found,
to within a constant, from the four above equations. For definiteness,

a value of (1+j0) may be assigned to a- The solutions for the other

coefficients follow as:
a, =a, . -1 (28)
a_ =a,, =~-a  +1 (29)
a = a -1 (30)
The near fields of the element can be found from the principal

Plane PWS via Fourier transformation only for the special case of rec-

tangularly separable spectra; i.e.,

Px(kx) qx(ky) (31)

A (k ,k)
Xe XY

A (k ,k k k 32
ye( x y) py( <) qy( y) (32)

In such case, the near fields are also separable and given by

S Erane X¥) T 01 P () 0 () = q (0) p (0) Flp, (k)} Flaq ()} (33)
®2Bens 1Y) = €5 B (X Q (v) = q (0) p (0) Flp (k) Flq (k )} (34)

where F{ } denotes Fourier transform and where constants cl and c2 are

given by
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_ _ 1
¢, =P (0) q (0) = —=¢ (35)
V' (0)
= _ 91
c, = B, (0) q (0 = | (36)

The Fourier transformation above implies that the spectra are known for
all kx (ky) on the real line; however, Equations (16)-(19) produce solu-
tions only in the visible region |kx| <1, lky| < 1 of the principal planes.
The extrapolation technique for assigning values to the spectra outside
the visible region will be deferred until after the discussion immediately
below concerning another type of separability for spectra and near fields
which will be applied during the synthesis procedure.

The TEll circular waveguide mode (y-polarized) provides a model
for an element near field that is separable in cylindrical coordinates p

and ¢, and which depends only on knowledge of the principal plane PWS.

Assume that the element near field can be written as

’ = £
_E_n (p,9) p fp(p) gp(tb) + ¢

£ (¢) (37)

(P g

¢ ¢

Convert to rectangular coordinates and assume, as in the case of the TE

11

waveguide mode, that
, gp(cb) = sing (38)
g¢(¢) = cos¢ ‘ (39)
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The element (tangential) near field can then be expressed in rectangular

coordinates as

. f -f . f+f. f -f
E_(x,y) = x —95—3 sin2¢ +y (% - 0 ¢ oo (40)

where x=pcos¢, y=psin¢ as usual. Inverse Fourier transform these rec-

tangular components to yield integrals

a 27
£ -f N (4-E)
A(k,k)=J’—updszin2¢eJ Pk, cos(e-t) 4, (41)
X Xy J 2
0 0
a 27
f +f
p o j2mpk cos(¢-£&)
k) =
Ay(kx. y) J 5 pdp J e P d¢ (42)
0 0
27
£ _f¢ )21p kK cos(¢-£)
- [ p2 pdp J cos2¢ eJ P p d¢
0
Carry out the integrations in ¢ [19] to obtain
kxk
k) = -
A, (k k) 2m —k—j} Hy (k) (43)
kx2_k 2
A(k ,k)=n1H(k)+1 = H (k 44
L y) O( p) . 2 5 p) (44)
P

where kp= v/kx2+ky2 and where the Hankel transforms HO' H2 are defined

by [20]
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a

Ho(kp) é J (fp+f¢) Jo(kpp) pdp (45)
0

a
H2(kp) A J (£,-£4) J2(kpp) pdp (46)
0

Specialize Equations (43) and (44) to the principal planes, and solve the

to yield

resulting system of equations for HO, H2

A (k_,0) +2a (0,k)
Y 0 Yy P

o7 (47)

Ho(kp)

A (k ,0) - A (0,k
y( 0’9 y( p)

27 (48)

H2(kp)

Thus, the two-dimensional plane wave spectra AX,AY are expressible in
terms of only the principal plane spectra via Equations (43)-(48).

Since the assumed trigonometric variations of gp,g¢ in Equations
(38) and (39) do not produce any x-component of near field along x=0 or
y=0, a similar analysis can be carried out for an orthogonal TE-type mode
which will account for the presence of such cross-polarized components.

Write the total element fields as the sum of two components

Eenf =p (Ep+Eé) + ¢ (E¢+E$) (49)

where Ep, E, are given in Equation (37) and where

¢

m
T =
L]

fp(p) gp(¢) fp cos¢ (50)

"
|

= f! 1
) ¢(p) 9¢(¢)
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Follow through with the analysis and define Hankel transforms GO' G2 by

(f

Go(kp) 5-f$) Jo(kpp) pdp (52)

Gz(kp) (f5+f$) Jz(kpp) pdp (53)

OQ-—— p O+ P

Combine all results for the two orthogonal modes to yield the following

expressions for the element plane wave spectra in terms of the principal

H E H E
1 k ' :
plane spectra Axe( p), Axe(kp), Aye(kp), Aye(kp)

X
k = + -
Bl x'ky) 2 k 2 \ 2 tx 2 (Aye Aye) (54)

Aye(kx,ky) (55)

The above two equations constitute a reasonable model for the plane
wave spectra of a circular element such as that shown in Figure 1. The
principal plane spectra in these equations are found from measured prin-
cipal plane patterns via Equations (16)-(19). Note that the above egqua-
tions reduce identically to the measured spectra in the principal planes.
Note also that the model is based on the characteristic modes of a cir-
cular aperture geometry and, in the absence of complete measured data
which could perhaps determine exactly the plane wave spectra off the
principal planes, this model is more suitable for the antenna described

than is the model of Equations (31)-(32) which assumes rectangular
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separability. Strictly speaking, the latter would more suitable for use
with a rectangular element geometry, but does find application in the

extrapolation procedure described next.

EXTRAPOLATION PROCEDURE

The extrapolation procedure is best explained in one dimension
before extending it to the two-dimensional case. The objective of the
procedure is to assign values to the evanescent modes in the plane wave
spectrum of the element such that the known spectrum in the visible re-
gion is preserved and such that the near field of the element is re-
stricted to a finite portion of the xy-plane. Results are presented in
this section which demonstrate the algorithm for both an ideal case and
a case which uses measured data.

The flow chart in Figure 3 summarizes the extrapolation procedure
for the case of plane wave spectrum Ax(kx) and its corresponding near
field Ex(x)=F{Ax(kx)}. The zeroeth estimate to the actual spectrum is
the portion known only over radiating wavenumbers as defined by

B (k) ]kx|5 1
Axo(kx) = (56)
0 s elsewhere
The known length 2a of the interval over which the near field is non-
zero, and a lower bound l-¢ on the fraction of energy in the near field
which must be contained in this interval for an acceptable solution,
constitute the remaining elements of input data.

The first estimate E;o of the near field is found by Fourier

transformation of Axo' Due to the lack of radiating modes in the

spectra, the near field will be spread out in x. That portion lying
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ETOL, LENGTH

SET
SWITCH

ﬂ
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FORM INPUT DATA

Y

COMPUTE % ENERGY
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LENGTH
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NO

TRUNCATE DATA
OUTSIDE APERTURE

Y

INVERSE FOURIER
XFM TO OBTAIN
AXH"(k )i

Y

REPLACE AXH”, WITH
AXH, OVER (-1., +1)

FIGURE 3.

RETURN

AXH; = AXH,
(INITIAL ESTIMATE)

F{AxH(k,),} = EXNF(x)
t ;th ESTIMATE

EXNF(x); = EXNF'(x) - T L

A.XH"i =F - exnr, |

AXH; = AXH, + AXH", . LT

FLOW CHART FOR EXTRAPOLATION ALGORITHM.
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outside lesa is then truncated so that Ex =E;o pa(x) results, where

(o}
pa(x) is the rectangular function whose value is unity for lxISa and

zexro elsewhere. The resulting near field Exo is inverse Fourier trans-
formed to produce the spectrum A;l(kx) which does contain non-zero eva-
nescent modes due to the bounded support of Exo' The evanescent modes

of A; are added to the radiating modes Axo to produce the first-order

1
spectrum Ax =A_+A' Ei(kx) where Ei(kx) is the complement of the

1 "xo x1
rectangular function whose value is unity for |x|>a and zero for |x]5a.
The process is repeated until the fraction of energy in the near field
Exi(x) on the interval 1x|$a exceeds the lower bound specified. The
FFT algorithm is used to effect the Fourier transformations.
The algorithm was first tested on an ideal four-horn monopulse

array (Figure 1) where a TE circular waveguide mode was assumed pre-

11
sent in each element. The mode was y=-polarized but then rotated by
0=5° counterclockwise so that a small x-component of radiated field
would be present. The far fields of the array were computed at 2° in-

crements in the principal planes for all three channels over a dynamic

range of 40 decibels. These data were used as the "measured" data Vei'

V¢i in Equations (16)-(19) to produce element spectra Axe(kx), Aye(kx),

AE (k ), AE (k. ) over the visible region in each plane at 2° increments
Xe Yy ye y

in polar angle €. Since the discrete Fourier transform relationship

between spectrum and near field requires samples of the spectra at equal

increments in wavenumber kx=sin9, a Whittaker-Shannon expansion [21]

was used to Fourier interpolate the spectrum samples at equal angle; i.e.,

6-86
N sin (7N -Z-'—é—m-)
A(8) = ) A8 ) o (57)
m=1 ™ m
26
max
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where B=sin_l kx, N = number of angular samples (91), and emax = angle
- corresponding to the Nth sample (90°). The interpolated spectra were
then operated on in turn by the extrapolation algorithm.

Some computed results are shown in Fiqure 4 where comparisons of
the true and synthesized near fields of the element in the x=0 plane are
presented. The true x and y field components are simply those of the
rotated TE11 mode. After twenty-one iterations of the extrapolation
algorithm, the concentration factors for the x and y components were
ai = ,013 and 35 = ,330 x 10-4, respectively. (In the y=0 plane,
slightly better results were obtained; i.e., ai = ,0153, az = .982 x
10—5). The half-length of the interval occupied by the element was
a=.74136A. The algorithm was quite successful in concentrating the near
field into the desired interval and in predicting the spatial variation
of the near field reasonably well. The sample spacing in the near field
was Ay=1/8.

The element near fields in Fiqure 4 were (inverse) Fourier trans-
formed to produce the corresponding spectra at egqual wavenumber over the
range |ky|Skymax=(2 Ay/A)—l=4. The spectra were then Fourier interpo-

lated, to produce their values at 2° increments over the range |e|s9o°

according to

N
A(k) = ) Alk_) ynex (58)

The interpolated values were used in the antenna model of Egquation (1)
to produce the sum channel E-plane patterns shown in Figure 5. Differ-

. s E
ences between the true and synthesized primary E

A components are hardly
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discernable except at very wide angles. Good agreement is obtained for
the cross Ei component where all amplitude levels are less than -20 dB.
Similar results were obtained in the H-plane and for the other two chan-
nels. In conclusion, the synthesis procedure works quite well in one
dimension for theoretical data having a dynamic range of 40 decibels.

The one-dimensional synthesis procedure was next tested using
principal plane patterns obtained at 35 GHz for the actual antenna of
Figure 1. Figure 6 shows the first and final estimates of the element
near field in the x=0 plane. After 51 iterations of the extrapolation
algorithm, the E-plane concentration factors were si=.069 and s§=.38x
10-3. (The H-plane concentration factors were sz=.508 and sz=.494 X
10_2.) The sample spacing was Ay=.025), yielding a maximum wavenumber
kymax=20 for N=256 samples over the total in;erval of 6.4). Referring
to Fiqure 6, it is seen that the algorithm successfully concentrated
the near field into the interval |y|<a=.74136) as desired.

Figure 7 shows comparisons of the measured patterns with those
synthesized from the extrapolated element spectra as explained above
for the ideal array. The agreement is quite good in the E-plane.
Similar results were obtained for the H-plane and for the other two

channels. In conclusion, the synthesis procedure works well for mea-

sured, one-dimensional data having a 40-dB dynamic range.

TWO DIMENSIONAL EXTRAPOLATION
The one dimensional results could be used through Equations (31)
and (32) to generate two-dimensional spectra and near fields; however,

if the p¢-separability model is used as preferred, then the extrapolation
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procedure must be carried out in two dimensions.* This section presents
results of two-dimensional synthesis of the element spectra and fields
of the antenna in Figure 1 using measured principal plane patterns.

Figure 8 shows the element near field Eye(x,y) and the correspond-
ing plane wave spectrum Aye(kx,ky) obtained using the 2-D extrapolation
algorithm. The element principal plane spectra were first determined via
Equations (16)-(19) from the measured data. These results were then used
in Equations (54) and (55) to generate the 2-D plane wave Spectra over
the visible region kx2+ky2$l. The extrapolation algorithm was then
applied to each 2D spectrum in turn using a 2-D Fast Fourier Transform.
After eleven iterations, the concentration factors were ex=.065 and
€y=.028; i.e,, for the y-component Eye(x,y), 98.2% of the near-field
energy was concentrated in the circular element region of radius a=.74316AX.
A square array of 64 x 64 samples spaced at Ax=Ay=.07031) and resulting
in kxmax=kymax=7'll was used for_each component. An exponential window
was used to limit the near fields to £he circular region.

The resulting element spectra were next combined via Equations (1)
and (9) to produce the 2D plane wave spectra for the three monopulse chan-
nels. Each spectra was then Fourier transformed to obtain the correspond-
ing near fields. Some results for the sum channel are presented in
Figure 9. The PWS Ai(kx,ky) shown in Figure 9(a) has maximum wavenumbers

xmax=kymax=3'56' Although no extrapolation was applied to the PWS con-
taining the array factor, the actual measured spectra in the principal

planes were inserted directly into the final PWS to guarantee close agree-

ment with measured patterns as extracted from the 2-D PWS.

*One-dimensional extrapolation could possibly be used by utilizing the
Hankel transform in place of the Fourier transform.
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(b} Near Field.

FIGURE 9, PLANE WAVE SPECTRUM AND NEAR FIELD OF Y—COMPONENT OF
FOUR—HORN MONOPULSE ARRAY.
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Figure 9(b) shows the y-component of the synthesized near field
of the four-horn monopulse antenna at 64 X 64 samples spaced at Ax=Ay=
.14045X. The near fields of the four circular elements are clearly
visible, and the vast majority of the near-field energy is concentrated
in the central portion of the array.

When selected cuts were extracted from the 2-D phase wave spectra
of the sum channel and used in Equation (9), the patterns of Figure 10
resulted. Agreement between the measured and synthesized E-plane sum
patterns shown in Figure 1l0(a) is excellent. But perhaps more impor-
tantly, the agreement in the ¢=45° plane is also excellent as shown in
Figure 10(b) -- facts which attest to the apparent correctaness of the
underlying assumptions used throughout the synthesis procedure. Similar

results were obtained for the other planes and other channels.

RADOME ANALYSIS EXAMPIE

The motivation for the antenna synthesis procedure described above
is to ensure the wvalid assessment of the accuracies of various computer-
aided radome analysis techniques [1l], one of which is described in this
section.

A computationally fast receiving formulation for radome analysis
[9] is illustrated in Figure 11l. The antenna near fields ETi' ETi are
represented by a uniform grid of sample points on a finite planar aper-
ture surface Sap pPlaced on or just in front of the radiating portion of
the actual antenna. The near fields arxre assumed to be the same as those
produced by the antenna when transmitting in the absence of the radome.
Rays representing the incident plane wave (target return) are traced from

each point in the aperture in the direction k to the radome wall. The

electromagnetic field associated with each ray is weighted by the insertien
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Figure 11. 1Hustration of the Fast Receiving
Method of Radome Analysis
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transmission coefficients for field components parallel and perpendicular
to the plane of incidence at each point on the radome wall. The response
VR of the antenna is obtained by summing up the contributions of the re-

ceived fields ER' ER as specified by Lorentz reciprocity; viz.,

(k) = - ) .
VRl( ) C f (ETi X ER ER X ng) n da (59)
S
ap
The subscript i=1,2,3 specifies the antenna near fields for the I, AEL' and

AAZ channels, respectively. Antenna patterns can be computed by control-
ling thé direction of arrival and polarization of the incident plane wave.
Boresight errors in the two monopulse planes can also be computed for
specified antenna/radome orientations by determining the direction of arri-
val which produces the difference pattern nulls.

The 64 x 64 sample array of Figure 9(b) representing the near field
of the antenna was actually too large to fit into the 10.38A-diameter,
10.382A length, tangent ogive, Rexolite (er=2.54, tan §=.002) radome used
in the analysis and measurement. Also, since six such complex arrays are
used in the program for the three antenna channels, core memory storage was
a consideration. Consequently, only the central 49 x 49 sample points of
the near fields were actually used in the radome computations.

Comparisons of the E-plane AEL patterns, measured without the ra-
dome and computed using a free space radome, are shown in Figure 12 to
demonstrate the adequacy of the synthesis technique and the small effects
of the near-field truncation. The pattern in Figure 12 was computed as

the response of the antenna to plane waves arriving from 65 directions in

the E-plane, equally spaced in ky=sin6 over the visible region lkylsl. The
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computed patterns were then Fourier interpolated via Equation (58) to pro-
duce sample points at 2° increments over the angular range [O|:90°.

The computer-aided analysis was repeated using the Rexolite radome,
and AEL E-plane patterns were computed and interpolated as before. The re-
sults are graphed in Figure 13 and compared to the measured patterns with
the actual radome in place. The radome was oriented with respect to the
antenna such that the radome axis of symmetry made an angle of 15° with
respect to the antenna z-axis, and the tip of the radome was located in the
¢$=—-45° plane of the antenna (Figure 2). Agreement is good for the primary
AE component over the range |6|f36°; the discrepancies outside this range

EL®O

of angles are attributed to reflections not accounted for in the analysis.
E

The poor agreement between the cross-polarized AEL components in Figure 13

¢

is attributed to deficiencies in the analysis, particularly the absence of

any accounting for reflections inside the radome.

DISCUSSION

It is important to distinguish the band-limited or aperture-limited
nature of the plane wave spectra of each element at z=0 from the unlimited
nature of the PWS of the four-horn array of elements at z>0. Each element
has finite size; hence, it is a source whose aperture fields have bounded
support. It follows that the PWS is not limited in extent in the wavenum-
ber plane since a function and its Fourier transform cannot both have finite
support [22]. The unlimited nature of the element plane wave spectra must
be taken into consideration when implementing the'extrapolation algorithm

to minimize the effects of aliasing.
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The near field of the four-horn array can be synthesized from the
element near field or from its plane wave spectra. The results presented
above utilized the latter method, and since no windowing function was
applied to the plane wave spectra of the four-horn array, the resulting
near fields are theoretically those right at the z=0 plane where the ele-
ments are located. It is well known that the planar near field changes
as a function of z[3]; viz., the plane wave spectrum is modified by the

-jk k z jk k z
exponential function e © 2 so that Enf(x,y,z)=F{A(kx,ky)e 2y,
For values of z of only a few wavelengths, the effect of the exponential
function is to drastically attenuate the evanescent modes of the spectra
and to cause the planar near field to spread out. Thus, what was a near
field having bounded support at z=0 becomes a Fresnel field of unlimited
extent with increasing z; concurrently, the initial spectra having un-
limited extent become limited. In the limit of very large z, the spectra
have bounded support on the region vi;zi—i;?é 1. This interchangeability
of the roles of aperture-limited PWS, and wavenumber-limited near fields,
is not always fully appreciated.

The synthesis procedure described above alsc allows for the inclu-
sion of virtually any amount of additional measured pattern data. The
additional data form added constraints on the near-field solutions finally

obtained in the same way that the principal plane data have worked here.

CONCLUSIONS AND RECOMMENDATIONS
The aperture synthesis procedure described has been demonstrated to
yield excellent results, both in terms of the measured versus synthesized
patterns and in the reasonableness of the near fields produced. The pro-

cedure is specifically applicable to computer-aided radome analysis,
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especially in regard to verification of computed results by comparison
to measured patterm data.

It is recommended that additional work be carried out to determine
the applicability of the method to source synthesis using complete ampli-
tude and phase data, both near-field and far-field. Additional source
geometries should be included in the source specification to ensure close
conformance with physical fact. It is anticipated that the actual fields
of a number of common source geometries can be determined quite accurately

from measured radiation data using the general procedure described here.
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COMPARATIVE ACCURACIES OF RADOME ANALYSIS METHODS
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INTRODUCTION

This paper presents the salient results of a parametric investiga-
tion of radome analysis methods [1]. Three methods of analysis were in-
vestigated as described below. Measured boresight error data obtained at
35 GHz on eight combinations of three, four-horn monopulse antennas and
five polystyrene, tangent ogive radomes are used as true data in assessing
the speeds, accuracies, and ranges of validity of the three methods of
analysis.

METHODS OF ANALYSIS

Three computer-aided methods of radome analysis were investigated.
The theoretical bases for all three methods are the Huygens-Fresnel
principle, Lorentz reciprocity, and geometrical optics [2]. The first
method, called herein the fast receiving method, uses geometrical optics
(ray tracing) to find the fields incident on the aperture of a monopulse
antenna enclosed by the radome due to a TEM wave incident on the radome
from a specified direction k [3]. The insertion voltage transmission co-
efficients of flat panel theory for parallel and perpendicular polariza-
tion are used to transform the plane wave fields associated with each ray
from their values at the incident point on the outside surface of the ra-
dome to their values Ep, Hp at the sample point in the aperture. The

voltage received by each channel (£, & 1 A Z) of the monopulse antenna
is obtained according to the reciproci%y in%egral
Vgec(®) = Js (Ep X By - Eg XHp)+n da (1

where ET’ H_ are the aperture fields of the antenna when transmitting, and
where S ié—ghe aperture surface.

The second method of analysis, referred to herein as the fast
transmitting method, uses a transmitting formulation based on the plane
wave spectrum (PWS) representation of the antenna aperture fields and an
equivalent aperture approach [4]. The aperture fields are represented by
their samples at MN equally spaced increments in x and y. The two-dimen-
sional Fourier transform of the aperture fields yield the corresponding
plane wave spectra. From each sample point, there emanate MN plane waves.
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Each plane wave is traced to an incident point on the inner surface of

the radome and weighted by the insertion voltage transmission coefficients.
The modified fields of each plane wave are then added together at each
sample point to produce modified aperture fields which embody the effects
of the radome. The voltages received by the radome-enclosed antenna are
then calculated according to Equation (1), where ET’ H_ are the modified
aperture fields.

The third method of analysis is referred to as the surface integra-
tion method [5]. The voltage received by the antenna enclosed by the ra-
dome is again given by Equation (1), where S is now the inside surface of
the radome, ET’ Hy are the radiated fields of the antenna on S, and E
Hp are the fields of the incident plane wave on S as transformed from
the1r values on the outside surface using the inserfion voltage transmis-
sion coefficients. For some directions of arrival k, portions of the in-
ner radome surface are "shadowed" by other portions; the fields on the
shadowed portions are approximated by ray tracing as described above for
the fast receiving case. Aperture integration is used to calculate the
fields of the antenna at each point on the radome surface from the specied
aperture values.

All three methods were implemented in Fortran for execution on the
Cyber 70 computing system at Georgia Tech. Maximum use was made of fea-
tures and software common to all three codes.

ANTENNA/RADOME DESCRIPTIONS

Three, four-horn monopulse antennas were designed and fabricated
exclusively for use in this research, corresponding to small (BW dB=30°),
medium (15°), and large (8°) sizes. The conical horn elements of each an-
tenna were machined into a single piece of aluminum. The salient dimen-
sions of the antennas are given in Figure 1 and Table 1. More details
are given in Reference 6. The elements were y-polarized.

Five, tangent ogive radomes having dimensions given in Figure 1 and

Table 2 were machined from cylinders of polystyrene (e_=2.54, tang§=.002),
. . X T ;

corresponding to small, medium, and large radome sizes. A fineness ratio
of 1.0 was used for each size; in addition, for the medium size, fineness
ratios of 1.5 and 2.0 were used. All five radomes had a wall thickness
of 0.25 inch, corresponding to a full wavelength in the dielectric at 35
GHz and a design angle of approximately 60 degrees.

The antenna and radome were used together in eight different com-
binations for measurement and analysis purposes. The intent here was to
obtain true data from measurements for comparison to the predicted results
over ranges of parameters which would help clarify any deficiencies in the
three methods of analysis.

RESULTS
Comparisons of measured and computed boresight error data for five
antenna/radome combinations are presented in Figures 2 through 5. Bore-

sight errors in both the elevation difference channel (BSEEL) and azimuth
difference channel (BSEAZ) are shown in each graph as functions of the
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radome orientation angle a. The antenna and radome were mounted together
such that the radome axis of symmetry passed through the antenna axis of
symmetry at the gimbal point (Figure 1b) at an angle of 15 degrees. The
radome could then be rotated about the antenna axis of symmetry through
the angle a indicated in Figure la, thereby placing the tip of the radome
in any desired plane of scan. For example, a=0 corresponds to the radome
tip being in the azimuth plane (4xz-plane) of the monopulse antenna;
a=-90° places the tip in the elevation plane (-yz-plane in Figure 1la).

In Figures 2 through 5, o varies from zero to -90 degrees. For
a=0, symmetry dictates that there should be no boresight error in eleva-
tion, and the azimuth boresight error should be nonzero. For a=-90°,
azimuth boresight error should be zero, and elevation boresight error
should be nonzero. The boresight errors are defined here as the true di-
rection to the target in the antenna coordinate system of Figure la; e.g.,
positive boresight error in azimuth (elevation) means that the target lies
in the +xz (+yz) plane.

Figure 2 compares the computed results for all three methods with
the measured boresight error data. In carrying out the computations for
the fast receiving case, it was found that only four points were needed
in the antenna aperture, located at the center of each element, to obtain
essentially the same results as were computed using a 49 X 49 point repre-
sentation of the aperture fields [7]. The same four-point representation
was also used in the other two computer codes because the enormous compu-
tation times required using the 49 X 49 point representation were prohi-
bitive. Even using the four-point representation, the surface integra-
tion required such long run times that only the small radome could be
adequately analyzed on the Cyber system.

Examination of Figure 2 shows that none of the three methods of
analysis accurately predicts the measured boresight errors in the case of
the small antenna with small radome, especially for the elevation channel.
The fast receiving method tends to overestimate the error while the fast
transmitting method underestimates it. The surface integration method
does the best job for the azimuth error. All three methods predict the
correct sign of the error for most of the range of o considered. Defi-
ciencies in the methods of analysis to account for the lack of agreement
with measured results cannot be isolated on the basis of the data.

Figures 3 and 4 present results for the medium antenna and medium
radomes having two different fineness ratios. The fast receiving method
predicts the measured errors most accurately, though not as accurately as
desired. The fast transmitting method underestimates the errors. Un-
stable results were obtained with the surface integration method as indi-~
cated in Figure 3, indicating unresolved problems with the computer code.
The two fast methods accurately predict the sign of the error, and the
fast receiving method does predict accurately an increase in errors with
increasing fineness ratio as expected.

Figure 5 presents the results for the medium antenna and large ra-
dome. Neither of the two fast methods predicts the elevation error very
accurately. Better predicted results are obtained in the azimuth error,
with the fast transmitting being more accurate than the fast receiving
method.
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The computation times and core storage requirements for the three
methods of analysis are presented in Table 3 for comparison purposes. For
the fast methods of analysis, these two parameters are independent of the
radome size, but do depend on the number of points in the antenna aper-
ture: for the fast receiving method, computation time increases directly
with the number of points; for the fast transmitting method, the logarithm
(base 2) of the computation time increases in the same manner.

The computation time of the surface integration method depends on
both the number of points in the aperture and the number of points used
to represent the fields on the radome surface. In Figure 2, four points
were used for the aperture fields, and 781 points (spaced A/3 apart) were
used on the radome surface. In Figure 3, 2291 points at A/3 spacing were
used on the radome surface, and four points were used for the aperture
fields.

Comparisons of measured and computed values of on-axis sum channel
gain loss relative to the case of no radome are shown in Table 4 for three
positions of the radome tip. For the small losses encountered, no method
consistently predicted the measured radome losses.

CONCLUSIONS AND RECOMMENDATIONS

The main conclusion to be made from the data presented is that
there is room for improvement in the predictive accuracies of the compu-
ter codes used with respect to the important parameters of boresight er-
ror and radome loss. This conclusion is especially true for the case of
small antennas and radomes where the effects of antenna/radome interac-
tions are not properly included. For the case of moderate sized antennas
and radomes, the fast receiving method is attractive because of the fast
computation time and reasonably accurate results. The surface integra-
tion code used requires additional development before any valid conclu-
sions can be drawn about its predictive accuracy; however, it is clear
that its applicability will be restricted to small radomes because of the
relatively large computation times required.

It is recommended that the fast receiving method be modified so
that refractive effects and ray spreading are more accurately accounted
for in the ray tracing procedure. It is also recommended that the sur-
face integration method be further developed, even to include first-order
reflected fields. Additionally, it is recommended that new expérimental
techniques be developed which will allow the determination of radome
fields close to the dielectric so that deficiencies in the amalytical
methods can be isolated and corrected.
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Table 1. Dimensions in Inches of Antennas. (See Figure 1(a)).

Antenna R Element Element Half-  Overall
Identification _A Diameter A _Spacing C Diameter B
Small .1875 .310 | .160 .875
Medium .250 .620 .320 1.540
Large .375 1.225 .878 3.040

Table 2. Dimensions in Inches of Radomes. (See Figure 1(b)).

Radome Outside  Outside Inside Inside
Identification Diameter D Length C Diameter E Length B EB
Small (F=1.0) 2.55 2.35 2.05 2,05 .4375
Medium (F=1.0) 4.00 3.81 3.50 3.50 .75
Medium (F=1.5) 4.00 5.66 3.50 5.25 .75
Medium (F=2.0) 4.00 7.52 3.50 7.00 .75
Large (F=1.0) 6.91 6.72 6.41 6.41 .375
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Table 3. Computation Time and Core Storage Requirements.

Computation Time*(sec.)/Core Storage (octal)

Fast Fast Surface
Case Receiving Transmitting Integration
Small Antenna, Small Radome .24/67100 .62/77300 34.0/135300
Medium Antenna, Medium (F=1.0) .25/67100 .62/77300 44.0/135300
*Per look angle.
Table 4. Radome Loss Comparisons.
Loss (dB)
Alpha Fast Fast Surface
Antenna Radome (Deg.) Measured Revg Xmtg Integration
Small Small ' 0 0.4 0.5 0.5 1.9
" " 45 0.7 0.5 0.4 1.7
" " ~90 0.6 0.3 0.3 1.9
Medium Medium (F=1.0) 0 1.4 0.4 0.6 1.2
" " " =45 1.4 0.4 0.5 1.2
" " " -90 0.8 0.3 0.4 1.2
Medium Medium (F=2.0) 0 0.2 0.1 0.6 -
" " " -45 0.5 0.1 0.4 -
" " " -90 0.6 0.1 0.2 -
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Tip of Radome

(a) Antenna Geometry Showing Radome Orientation
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Figure 1. Antenna and Radome Geometries as Dimensioned
in Tables 1 and 2.
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Figure 2. Comparisons of Measured and Computed Boresight Errors
for Small Antenna, Small (F = 1.0) Radome.
90



BORESIGHT ERROR (MRAD.)

LEGEND

ELEVATION BSE AZIMUTH BSE
MEASURED

—— FAST RECEIVING —

- FAST TRANSMITTING —C0—

’__ SURFACE INTEGRATION —“O—

20

15 .
i

BSEEL
. A\ i
0 - 7-
-5 .
—-10 4 L
—15 -

BSEAZ
I
| 1 1 Y H

0 —15 -35 -45 —60 -75 —90

RADOME ORIENTATION ANGLE (DEG.)

Figure 3. Comparisons of Measured and Computed Boresight Errors

for Medium Antenna, Medium (F = 1.0} Radome.
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Figure 4. Comparisons of Measured and Computed Boresight Errors
for Medium Antenna, Medium (F = 2.0) Radome.
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Chapter 1

INTRODUCTION AND SUMMARY

1-1. Introduction

This Volume II of this final technical report of four volumes
documents a ray tracing radome analysis computer program written
in Fortran IV for use on the Cyber 70/74 computing system at Georgia
Institute of Technology and the IBM 3033 computing system at Johns
Hopkins University Applied Physics Laboratory. The program was developed
at Georgia Institute of Technology over the past four years; however,
considerable development work in computer aided radome analysis has taken
place here.prior to that time [1-7].

This analysis package was used during the research carried out
under this grant to analyze the antennas and radomes using the fast re-
ceiving formulation as described in Volume I. 1Its documentation wés
done in conjunction with the on-going radome technology program at JHU/
APL under the cognizance of R. C. Mallalieu (APL Contract 601053). It
is intended to serve as part of a technology base for the radome tech-
nical community.

The report is organized by chapters according to the approximate
order in which the subprograms are called, and each chaéter describes
one subprogram. Each chapter is essentially self-contained since it is
meant to sexrve as the complete documentation on a single subroutine.
References are provided at the end of each chapter. In some cases,
figures are duplicated in different chapters for completeness. Eéch

chapter is terminated with the listing of the subroutine.



Chapter 2 describes the main program and instructions for its use.
Chapters 3 through 28 describe the thirty four subroutines required for
execution, including those for producing Calcomp pattern plots and three-
dimensional plots. Appendices A through D present computed results for
four test cases for use in verifying correct operation on other systems.
These results were obtained on the Cyber 70/74 computing system at Georgia
Tech. The remaining part of this chapter describes background of the pro-
gram development and summarizes the features of the computer analysis.

This report comprises Volume II of four volumes. Volume I describes
the salient results of this overall investigation to determine the accu-
racies and ranges of validity of various analysis methods. Volume III
documents the additional software required to analyze radomes using a
surface integration method. Volume IV presents the experimental results
obtained and is meant to serve as a data base for other investigators
seeking to verify the accuracy of their computer codes.

1-2. Background

Development of the radome analysis computer program (RACP) was
initiated in 1971 in an effort to include the effects of the radome on
a ground mapping radar [1]. A three-dimension geometry and vector field
formulation were used. A plane wave spectrum (PWS) representation of
the radiation from the antenna greatly facilitated the computations since
the Fast Fourier Transform (FFT) could be used. The program was used to
compute power patterns on the ground for many different cases of antenna/
missile orientations. From these data, the effects of the radome on

pattern shape, power loss and VSWR were determined.



Monopulse tracking antennas were next introduced into the computer
analysis to evaluate radome materials and shapes for seeker systems in
the 8-18 GHz band [2]. Tangent ogive shapes of various fineness ratios
were analyzed. Monolithic and multilayer wall structures were used.
Algorithms were developed to compute boresight errors from the sampled
data difference patterns in two orthogonal planes. A modification of this
program was also used to conduct a trade-off and development study for
the Multipurpose Missile (MPM), later known as ASALM [3].

The next step in the development of RACP came in 1977 with the
introduction of a conical scan tracking antenna into the analysis [4].
This antenna necessitated a reformulation of the analysis from the trans-
mitting formulation used earlier to a receiving formulation. The big
advantage offered by the latter is that the antenna response can be
calculated for only one direction of arrival of the target return (plane
wave). In the former, the FFT automatically computes "responses" for
many directions of arrival and, hence, is computationally slower.
Subsequent versions of the program have used the same receiving for-
mulation with monopulse and other types of antenna models.

The computed results obtained with the receiving and transmitting
formulations are not always the same [5]. A computed-aided analysis
which utilizes the Huygens-Fresnel principle [6, 7] is generally con-
sidered to be more accurate than the two methods already mentioned, but
requires considerably more computation time that may not be warranted
in all cases. A research program is now underway at Georgia Tech whose
objective is to establish the accuracies and ranges of validity of these

three methods of radome analysis [5].



1-3. Description of the Analysis

The current version of the ray tracing analysis computer program
utilizes a receiving formulation based on the Lorentz reciprocity theorem
[5]. A plane wave of selectable linear or circular polarization is
assumed incident on the outside of the radome and is represented by a
system of parallel rays. There is one ray for each sample data point in
the antenna aperture inside the radome. Each ray is traced from the point
where it impinges on the outside surface to the corresponding aperture
point. The electric and magnetic fields Ei' Ei associated with each ray
are weighted by the flat panel transmission coefficients Tl, T|| as de-
termincd by the unit normal ;, the direction of propagation ﬁ, and the
dielectric properties of the radome wall. The weighted incident fields
Ei, g& at each aperture point are then used in the following integral to

obtain the complex voltage response Vr of the antenna as

= E_ XH! - E' -z d 1
\ C”S(_T Hi - E} XH) © z dxdy (1)

where E

Epr HT are the aperture fields when the antenna is transmitting,

C is a complex constant, and ; is the unit vector normal to the xy
(aperture) plane. For digital computer implementation, the integral in
Equation (1) reduces to a double summation, and the equal-area elements
dxdy become AxAy and can be absorbed into the constant C.

In its present form, the program accommodates only one radome
shape; viz., the tangent ogive. The length, diameter and fineness ratio
are, of course, all variable in the input data. Monolithic and multi-

layer wall configurations can be analyzed; however, only uniform wall

configurations whose properties do not vary from point to point on the



wall can be handled. Provisions are made to allow for a metal tip on
the radome whose effect is aperture blockage.

The geometry subroutines provide for three separate coordinate
systems and the point and vector transformations among them. A reference
coordinate system is provided to orient the antenna/radome combination
with respect to other bodies. The coordinate systems for the antenna
‘and the radome comprise the other two systems. Boresight error and
pattern computations are carried out and expressed in the antenna coor-
dinate system.

The primary outputs of the program are boresight error (mrad.),
boresight error slope (deg./deg.}, gain loss,.and when selected, prin-
cipal plane patterns. Outputs include both printing and plotting
(Calcomp) . Plotting options allow for selection of aperture fields
with and without the radome. A feature is also provided to either ob-
tain or suppress intermediate calculated results for debugging purposes.

Boresight error calculations for monopulse antennas are carried
out by setting the first target return at a known direction within a
few degrees of true boresight. The responses in the two difference
channels and the sum channel are then computed and stored. Another set
of responses for a return 180° away from the first is computed next.

. The two sets of data are then used to construct a linear tracking model
in the two orthogonal planes, and the process is repeated until a bore-
sight null is indicated. The true direction of arrival of the plane
wave at this point represents the boresight error directly.

The current subroutine used to characterize the antenna permits
selection of various polarizations and two aperture distributions. A

uniform, circular aperture distribution having vertical, horizontal or



circular (LHR or RHC) polarizations is one combination. The second
distribution is a tapered rectanqgular distribution having vertical polar-~
ization as found in flat plate antennas. This basic subroutine would not
be difficult to modify to accommodate other distributions, such as rec-
tangular aperture with cosine taper.

Computation time is independent of radome size but depends on the
number of samples used iﬁ the aperture. TFor 256 sample points (16 X 16
array), the time to compute the received voltages in the three channels
is 1.5 seconds.

The program is organized as a main program and a number of sup-
porting subroutines, all written in Fortran IV. The complete program,
including plotting software, contains thirty four subroutines. The core
storage required for the complete program, including all library and
system I/0 routines, is just over 46,000 (decimal) words. Integer, real
and complex variables and arrays are utilized. Single, double and three-
dimensional data arrays are present. Only single precision variables and
computations are required with the 60-bit word available on the Cyber 70
at Georgia Tech.

1-4. References
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Chapter 2

PROGRAM RTFRACP

2-1. Purpose: RTFRACP is a Fortran computer program used to analyze
the effects of a tangent ogive radome on the performance of a mono-
pulse aperture antenna. It consists of a main program and 34 sub-
routines. It uses complex arithmetic and requires 57121 octal
words of core memory fnr execution on the CDC Cyber 70 system (60-bit
words) at Georgia Institute of Technology. Execution time to com-
pute boresight error on the Cyber 70 is approximately two seconds
per look direction when the antenna aperture is represented by
16 x 16 = 256 sample data points. Execution time to compute trans-
mitting and receiving patterns and aperture near fields, and to
compute the necessary Calcomp commands for two- and three-dimensional
plotting, is approximately 35 seconds for one look direction.
The computer-aided radome analysis uses a receiving formulation
based on the Lorentz reciprocity theorem as described earlier [1,2]. The
voitage produced at the terminals of a linear antenna by an incident plane

wave 1is given by
VR(k) = i:j (E. xH_ -E_x ET) * n da (1)

where ET' ET are the fields produced on the surface S enclosing the antenna

when the antenna is transmitting; ER' H_, are the incident fields produced

R

-~

on S by the incident plane wave or perturbations thereof; k is a unit vector
which points from the antenna toward the direction from which the plane

wave arrives; and n is a unit vector normal to the surface S and pointing

9



outward. The fields ET’ ET are taken to be those produced in the planar
aperture when the antenna is transmitting in the absence of the radome.

The geometrical optics approximation

= — (2)
n

is used to generate the magnetic field in the aperture from the aperture
illumination specified by ET' Rays are traced from each sample point in
the aperture in the direction i to the inner radome wall. The plane wave
fields associated with each ray are weighted with the flat panel insertion
voltage transmission coefficients as determined by the radome wall configqu-
ration, the angle of incidence, and the plane of incidence. The individual
contributions are summed up as indicated in Equation (1).

The parameters of the tangent ogive radome are indicated in Figure

2-1. The outside base diameter D and fineness ratio F determine the
os os

outside length according to

F =1L /D (3)
oS 0s (035

A similar relation holds for the inside dimensions; viz.,

is
The radius of curvature of the outside wall ROS is given by

-1
R =TF D / sin (m - 2 Tan ~(2F )) (5)
os os o©s os

10
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Figure 2-1. Tangent Ogive Radome Geometry.
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and the dimension B is given by

B =R - D /2 (6)
os os
The placements of a bulkhead (bottom disk) and metal tip (top disk) can
be specified by ZBOT and ZTOP' respectively. The thickness, dielectric
constant, and loss tangent of the wall may also be specified for up to
N=5 layers. The radome is assumed to be a body of revolution with uni-
form wall dimensions independent of location. The dashed cylindrical

shape of a diameter D_ in Figure 2-1 was used earlier to simulate a laser-

d
induced defect and is not pertinent here.

The subroutine which generates the antenna aperture fields repre-
sents two types of antennas: circular aperture with uniform illumination
and any one of four polarizations (vertical, horizontal, RHC, LHC); flat
plate antenna with tapered illumination and vertical polarization. For
either antenna, the fields are computed for one of three selected channels:
sum, azimuth difference, elevation difference. Inputs include the number
of samples NX, NY and the aperture diameter DAP/A in wavelengths.

The antenna/radome orientation is specified according to the para-
meters defined in Figure 2-2. The angle ¢p selects the plane of scan of
the radome tip with respect to the antenna coordinate system: ¢p = 0°
selects the azimuth plane; ¢p = 90° selects the elevation plane. The
angle 6L scans the tip in the selected plane.

The program computes boresight errors in the azimuth and elevation

planes of the antenna. The radome orientation is specified by ¢p and ¢L,

The first target return (plane wave) is made to arrive from the direction

12
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~ ~ ~ ~ >
k. = i + i + z /& - 2 si
1 XA sin GOS yA sin GOS A sin eos (7)
where qos is the initial specified offset angle; e.g., 2°. The voltage
received by each channel is computed and stored. The second return is

made to arrive from

~ ~

o - 2
= -si + -si + - 2 si
k2 XA( sin GOS) yA( sin GOS) ZA/& sin GOS (8)

and the voltages are again computed. The data from these two points are

used to construct a linear tracking model in the two planes, and a direc-

~

tion of arrival k is predicted which will yield null indications in both
planes. The process is repeated until a desired error tolerance is satis-

fied or a maximum number of iterations is exceeded. Upon completion, the

~

output k indicates the direction from which the plane arrives which yields
an electrical boresight indication. If o and B represent the boresight

error angles in the azimuth and elevation planes, respectively, then they

~

are related to the direction k = x_ k + Ya ky + Zy kZ by

~ ~

A X
k
X
sin a = > (9)
1l -k
v
k
Y
Sin 8 = -/,_———;——_____-——-——_ (lo)
1l -k 2
X
. 11
where K = /é o 2 K 2 (11)
z X y
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Options are also provided whereby principal plane patterns as

shown in Figure 2-3

puted and printed.

and additional outputs around boresight can be com-

These options are useful when preparing software for

a new type of antenna and to ensure correct operation whenever curious

results are obtained.

2-2, Usage: Line No.
DATA APIN/O./ 47
DATA ZBOTIN/0.00/ 49
DATA‘RADIUS/lEO/ 52
DATA THETAA, PHIA, AGAM3A/0.0,90.0,0.0/ 53
DATA NX, NY, NXE, NYE, NX¥/16,16,256,1,512/ 56
DATA NREC, NS, MX, MY/32,16,16,1/ 57
READ (5,6) TITLE 62
READ (5,*) GRAF3D, GRAFSA, GRAFTR, GRAFRV, SUPPRS, IPENCD 65
READ (5,*) NFINE, NPHI, NTHE, DIAOCS, RA, RR, ZTOPIN, FREQ,
OSANG 67
READ (5,*) LMAX, DMRAD, IOPT, RAPMAX, VAIRM, IPOL, ICASE,

N, IPWR 76
READ (5,%*) DIN(I), ER(I), TD(I) (I=1,N) 108
READ (5,*) FINR(I) (I=1,NFINE) 117
READ (5,%) PHI(I) (I=1, NPHI) 120
READ (5,*) THETA(I) {(I=1,NTHE) 122

2=-3. Arguments

a. Inputs.

Units of arguments on input are distances in inches,

angles in degrees, and frequency in gigahertz, unless otherwise noted.

Units of arguments passed to subroutines are centimeters, radians, and

15
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gigahertz. An asterisk is used to denote those DATA arguments that do

not normally need to be changed by the user.

APIN¥*

ZBOTIN

RADIUS*

THETAA*

PHIA*

AGAM3A*

NX,NY

NXE ,NYE

Height of a cylindrical base section of the tangent
ogive radome. It is no longer included in the ray
tracing algorithms and should not be changed from
its zero value.

Distance from base of tangent ogive radome to
missile bulkhead (Figure 2-1).

The radius R used in the far field factor e—ij/R
by Subroutine FAR. Do not change.

Angle Ga between z-axis and the position wvector £a
to the antenna origin. This angle was used in
earlier work to locate the antenna origin in the
reference system using spherical coordinates

(ra, Ga, ¢a). Do not change. See Chapter 7.

Angle ¢a between the projection of Z) axis onto
the xy-plane and the x-axis. Do not change.

Angle between zA—axis and z-axis in Figure 2-2.

Do not change.

Integer powers of two equal to the number of sample
points in the antenna aperture; e.q., 16, 32, 64,
etc. Changing NX and NY necessitates compatible
changes in Lines 16-18.

Integer powers of two which specify the expanded
number of sample points desired when computing

the transmitting patterns of the antenna by

inverse Fourier transforming the aperture fields.

17



NXY

NREC

NS

MX, MY

Subroutine JOYFFT provides this capability of
increased resolution in one or both dimensions.
Changes in NXE, NYE necessitate compatible changes

in Lines 16, 20, 22, and 23. Note that NXE*NYESNX#*NY
and either NXE<NX or NYE=NY.

Integer power of two used by Subroutine JOYFFT for
dimension of complex working array XYFFT. Note
that MX*NX<NXY and MY*NY<NXY. See below for MX
and MY.

Integer power of two equal to the number of points
at which to compute the receiving pattern in either
principal plane. The received voltage is computed
at points Si equally spaced in sinf, where 8 is
the angle measured from the zA—axis as indicated
in Figure 2-3, where sin Si =~ KMAX + (I-1)*2*KMAX/
NREC, and where KMAX = sin emax < 1.0.

Not used. It was originally used by Subroutine
RECBS. Do not remove.

Integer powers of two equal to the magnification
factors desired in the kx and ky (E-plane) direc-
tions, respectively, of the transmitting antenna
patterns. Note that the restrictions MX*NY<NXY
and MY*NY<NXY must be observed. The data cited
above indicated increased resolutions in the NX
direction of MX=16 and no magnification (MY=1l) in
the NY direction. Consequently, note that

NXE=MX*NX=256.
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TITLE

GRAF3D

GRAFSA

GRAFTR

GRAFRV

SUPPRS

A Hollerith string of up to 72 characters which
describes briefly the analysis being done. A
format of 1BA4 is specified and should work for
machines with word length greater than orkequal
to 32 bits. The dimension of TITLE (Line 31)
should be at least 18.

A logical variable used to control the plotting
of the incident fields on the antenna aperture.
This feature has been removed from the program,
and GRAF3D should always be FALSE.

A logical variable which (if TRUE) controls the
plotting of the transmitting power patterns of
the antenna as follows: E-plane sum, E-plane
difference equation (AEL), H-plane sum, and
H-plane difference azimuth(AAZ). The radome

is absent.

A logical variable which controls thé plotting of
the amplitude and phase of the antenna aperture
fields in the following order:

E E .
! EXAEL' EYAEL, XAAZ' TYAAZ

Exzs Eyg
A logical variable which controls the plotting of
the receiving patterns of the antenna with radome
in the same order as specified under GRAFSA above.
A logical variable which controls the printing of
numerous results as illustrated in the test data

in Section 2-6 below. When TRUE, the printing of

these numerous results are suppressed. This feature

19



IPENCD

NFINE

NPHI

NTHE

DIAOS

is convenient to aid in debugging new portions

of software prior to making production runs.

An integer variable which selects pen and paper
for the Calcomp. This variable may be system
dependent. For the Cyber 70, IPENCD=00 yields
ballpoint pen and 11" wide plain paper; IPENCD=40
yields a heavier ink pen and the same paper.
Integer variable equal to the number of fineness
ratios to be considered for the tangent ogive
radome; e.g., NFINE=1.

Integer variable equal to the number of scan planes;
e.g., NPHI=2.

Integer variable equal to the number of angles

in each scan plane at which to compute boresight
errors, etc. Note: The program is set up to
iterate on fineness ratio, scan plane, and scan
angle as outer loop, middle loop, and inner loop,
respectively. Therefore, for each of NFINE fine-
ness ratios, the analysis will be done for NTHE
scan angles in NPHI different scan planes.

Real variable equal to the outside base diameter
(in.) of the radome. See Figure 2-1.

Real variable equal to the distance (in.) from
the gimbal point to the antenna aperture.

Real variable equal to the distance (in.) from

the gimbal point to the base of the radome.

20



ZTOPIN - Real variable equal to the distance (in.) from
the base of the radome to the face of a metal
tip on the radome.

FREQ - Real variable equal to the frequency of operation
in gigahertz.

OSANG - Real variable equal to the offset angle in degrees
at which the first target return is to arrive on
the antenna; e.g., 0OSANG=3.0.

" LMAX -~ 1Integer variable equal to the maximum number of
iterations allowed by Subroutine RECBS in com-
puting boresight error; e.g., LMAX=5.

DMRAD - Real variable equal to the tolerance in milliradians
allowed on computing boresight error; e.g., DMRAD=0.1.

IO0PT - Integer variable which selects the polarization
of the incident plane wave as follows:

1. Linear, elevation component
2. Linear, azimuth component
3. Right hand circular

4, Left hand circular

RAPMAX - Real variable equal to the maximum radius (in.)
of the antenna aperture. See Figure 3-1.

VATRM ~ Real variable equal to the maximum amplitude of
sum channel received voltage without radome. Any
real value can be entered for this variable since
a subsequent program modification (Lines 326-328)
causes VAIRM to be computed automatically.

IPOL - 1Integer variable which selects the polarization

of the antenna when ICASE=1 according to the
21



same code as used above for IOPT.

ICASE - Integer variable which selects one of two types
of antenna apertures for the analysis: ICASE=1
or 2 selects a circular aperture with uniform
illumination; ICASE=3 selects a flat plate
antenna with programmed illumination. See
Subroutine HACNF in Chapter 3.

N - Integer variable equal to the number of layers
(up to 5) in the radome wall. For cases where
more than 5 layers are required, the dimensionél
arrays on Line 37 must be changed to NN=N+1.

IPWR - - Integer variable which selects the component
for which to compute the transmitting power
patterns as follows:

1. Elevation Component
2. Azimuth Component
3. Total power

DIN,ER,TD - Subscripted real variables equal to the thickness
(in.), dielectric constant (er), and loss tangent
(tan §) of each layer of the radome wall. I=1
corresponds to the first layer and is the layer
on the exit side of the wall. Layer N is the
first layer encountered by the incident plane
wave. See Subroutine WALL.

FINR - Subscripted real variable equal to NFINE fine-
ness ratios.

PHI - Subscripted real variable equal to NPHI angles

(degrees) which specify the scan planes.

22



THETA -

b. Outputs.

Subscripted real variable equal to NTHE angles
(degrees) which specify the scan angles in the
scan plane.

The parameters of analysis which are computed and

and outputted by the program depend on whether SUPPRS is true. In what

follows, it is assumed that SUPPRS=FALSE so that all possible outputs

are obtained. Since many of the original input parameters are printed

directly, only those parameters not already explained above will be in-

cluded below. Additional clarification may be found in Section 2-6.

TABLE -

ANGLE -

TPERI, TPARI-

Logical variable which, if TRUE, causes a look-up
table to be used in computing transmission coeffi-
cients., When SUPPRS=FAILSE, an abbreviated table
of transmission coefficients of the radome wall
is printed by Subroutine WALL with variables as
explained immediately below.

Real variable equal to the angle of incidence
(degrees) of the plane wave on a plane sheet of
infinite extent having the layered configuration
specified for the radome wall. The entries in

the table are computed at 250 equal increments

in sin Bi, but only every fifth result is printed.
Complex variables equal to the voltage insertion
transmission coefficients of the sheet for the
two cases of Ei perpendicular to the plane of
incidence (Tl) and Ei parallel to the plane of
incidence (T|R . In the printed table, the

‘e . s 2
power transmission coefficients |T1| are
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RPERT, RPARI-

KXMAX -

DXWL -

KXM,KYM -

MIN, MAX

‘T|||2 are printed; adjacent to each, the phases
of Tl and T|| are also printed.

Complex variables equal to the reflection coeffi-
cients RL' R‘| of the plane dielectric sheet.

Actually, IR

2 . .
J_I and |R”| are printed, accompanied

by the phases RL and R||.
Real variable equal to the folding wavenumber
associated with sampling the aperture fields
according to KXMAX = 1.A2(Ax/A), where Ax is the
distance between samples. See Subroutines HACNF
and FFTA.

Real variable equal to Ax/A.

Real variables equal to the folding wavenumbers

of the principal plane patterns after magnifi-
cation for increased resolution. KXM=KYMAX*NXE/
(MX*NX) and applies to the H-plane.

KYM=KYMAX*NYE/ (MY*NY) and applies to the E—plane.
Usually, the expanded dimension NXE and magnifica-
tion factor MX are selected so that KXM=KXMAX.
Also, NYE and MY are usually selectea so that
KYM<<KYMAX.

Real variables equal to the minimum and maximum
values of the amplitude of the complex arrays
containing the aperture fields as processed by
Subroutine NORMH in preparation for 3D plotting

by Subroutine PLT3DH.
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ROS -

BOS -

FINOS -

FINIS

The following variables
puted and printed:

cur -

ICOMP -

KMAX -

NREC -

Real variable equal to the radius of curva-
ture of the outside shape of the tangent ogive
radome.

Real variable equal to the distance B in inches
defined in Figure 2-1.

Real variable equal to the fineness ratio of
the radome as based on the outside dimensions.
Real variable equal to the fineness ratio of
the radome as based on the inside dimensions.

are printed when the receiving patterns are com-

Integer variable which defines the E-plane (ICUT=1)
or H-plane (ICUT=2) pattern. See Figure 2-3.
Integer variable which defines the field component
of the plane wave incident on the receiving antenna:
ICOMP=1 for elevation component; ICOMP=2 for azimuth
component.

Real variable equal to the sine of the maximum
angle off broadside for which the received voltage
is computed.

Integer variable (power of 2) equal to the number
of points at which the receiving pattern is com-
puted. The pattern is computed at NREC points
spaced equally in kxy=sin6 according to Akx =

2 KMAX/NREC.

Real variable equal to 2*KMAX/NREC.
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ANGMAX

, =1
- Real variable equal to sin ~ (KMAX).

The receiving pattern is computed at NREC points and magnified using

Subroutine MAGFFT to 256 points equally spaced in sin 6 over the range

(~-KMAX, KMAX~DK). Three parameters are printed: angle in degrees,

amplitude in decibels, and phase in degrees. Only every fourth point in

the 256 points is printed. The receiving patterns are printed in the

following order:

E-Plane: %
EL

)
AZ

H-Plane:

A
EL

A
AZ

Subroutine RECM maintains a count NRAY of the number of rays actually

traced from points in the aperture to the radome wall. When SUPPRS=FALSE,

this number will be printed.

Subroutine RECBS computes the boresight error of the antenna as pro-

duced by the radome.

K1, K2

AZTM,ELTM

When SUPPRS=FALSE, the following parameters are printed:

Real subscripted variables containing the direction
cosines (kxi'kyi'kzi) of the last and next to last
true directions to the target. One of these varia-
bles is equal to K, the subscripted variable contain-
ing the direction cosines of the last target return.
Real variables equal to the boresight error in the
H-plane and E-plane associated with the last tar-

get return (kX,ky,kZ). Expressed in milliradians,
these errors are computed according to

2

-1
AZTM Sin- (kX/ 1-k ) *1000.
y

ELTM

i

sin T kY/ 1-kX2)*1000.
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MESAZ ,MESEL-

UAZ,UEL -

" LCTR -

A ~ ~ ~

t = + + . is. t
Let k xAkX yAky zAkz Then AZTM is. the

angle between the zA—axis and the projection of

ﬁ onto the X2 (azimuth) plane. ELTM is the
angle between the zA—axis and the projection

of £ onto the yAZA (elevation) plane.

Real variables equal to the monopulse error
slopes in the azimuth and elevation channels
expressed in units of volts per degree, where the
maximum signal received by the sum channel is
considered to be one volt.

Real subscripted variables equal to the received
tracking functions Imag{A/Z} corresponding to the
target returns K1 and K2 above; e.g., UAZ(l) =
Imag{AAZ/ZAZ} for K1.

Real variable equal to the maximum amplitude of
the received sum channel voltage.

Integer variable equal to the number of iterations

(target returns) used by Subroutine RECBS to

compute boresight error.

Subroutine RECBS also computes and prints six additional monopulse out-—

~ ~

puts around the apparent boresight direction ko. The directions k chosen lie

in the plane kx=ky and are spaced one milliradian apart over the range #3 mrad

~

and centered on the direction ko. The variables printed are as follows:

Real variable equal to the angle in milliradians

~

between kO and k.

Real variables equal to Imag{A/Z} for the target

~

return from direction k for the azimuth and ele-

vation channels, respectively.
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DAZ,DEL - Amplitude and phase (degrees) of the complex
voltages received on the AAZ and AE .channels,
respectively, for target return ﬁ.

SLPAZ,SLPEL— Average values of the monopulse error slopes
(volts/degree) in the azimuth and elevation
channels, respectively, obtained by a linear

approximation of the tracking functions based on

their values at ANG = #3 mrad. For example,
SLPAZ = [VRAZ(3 mrad) - VRAZ(-3 mrad)]/{(.006*57.3)

The main-program always prints the bhoresight error in azimuth (BSEAZ)
and elevation (BSEEL), and the values printed are identical to AZTM and ELTM
defined above. Main also computes the gain of the antenna in decibels with

the radome in place according to
GAIN = 20. * ALOGl@(SMAX/VAIRM)

For other than an "air radome", GAIN is negative and indicates a loss in
antenna maximum gain due to radome reflections and ohmic (tané) losses.
The amplitude of received sum voltage, VAIRM, is always printed as the
last item prior to termination of the program.
2-4. Comments and Method

a. Method. The method of analysis has been presented in Section
2.1. Additional details of analysis are presented in the descriptions of

each subroutine.
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b. Supporting Subroutines. Thirty four supporting subroutines

are required by RTFRACP. The purpose of each one is briefly described

below.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

HACNF--Computes complex vector aperture electric fields

of antenna for all three monopulse channels at NX x NY
sample points.

ORIENT--Computes matrices ROTATE and TRANSLate used for
coordinate transformations by Subroutines POINT and

VECTOR.

POINT--Transforms a point P(XA’ Yapr ZA) in antenna system
to the same point P(xR, yR, zR) in radome coordinate system,
and vice versa.

VECTOR-~Transforms a vector from radome to antenna coor-
dinate system, and vice versa.

INCPW--Computes the rectangular electric field components
of a plane wave incident from the direction ﬁA in antenna
coordinates. The power density of the plane wave is unity.
RECM--Computes the voltage received by each channel of the
antenna for a plane wave PWI(EX, Ey' EZ) incident on the
radome from the direction KA(kx, ky' kz). Subroutine RECM
calls the following subroutines:

VECTOR, POINT, TRACE, RXMIT, CAXB.

TRACE--Directs the ray tracing process and calls Subroutines
OGIVE, OGIVEN, TDISK, TDISKN, BDISK, BDISKN, SQR, CBRT, and
XY.

RXMIT--Computes the transmitted electric fields of the plane

A

wave traveling in direction -k and incident on a flat
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A~

dielectric wall with unit inner normal n. The unit vectors
i, ; are used to resolve the incident plane wave into vector
components perpendicular and parallel to the plane of inci-
dence, and to determine the angle of incidence. RXMIT calls
Subroutines WALL and AMPHS.
(9) WALL--Computes the voltage insertion transmission coeffi-

cients of flat panel model of the radome wall as function
of the sine of the incidence angle.

(10) AXB--Computes real vector cross product C = A X B.

(11) CAXB--Computes the complex vector cross product C = A X B.

(12) RECBS--Computes boresight errors of antenna enclosed by
the radome for the specified orientation, fineness ratio,
etc. RECBS calls Subroutines INCPW, RECM, and AMPHS.

{13) RECPTN--Computes receiving patterns of all three channels.
RECPTN calls Subroutines INCPW and RECM.

(14) OGIVE--Computes point of intersection of ray and ogive by
solving a guartic equation. OGIVE calls Subroutines CBRT,
SOR, and XY.

(15) CBRT--Computes cube root.

(16) SQR--Computes square root with test for negative argument.

(17) OGIVEN--Computes the unit inward normal vector to the ogive

surface at the point P(XR, yR, ZR).

(18) Xy--Used by Subroutine OGIVE to compute the Xp and Ye com-
ponents of the point of intersection of a ray on the
inner radome surface.

{19) BDISK--Computes the point of intersection of a ray and
planar bottom disk representing the bulkhead inside the

radome.
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(20) BDISKN-—-Computes unit normal Vector‘to bulkhead (n==+;R).
(21) TDISK--Computes the point of intersection of a ray and
the base of the metal tip on the radome.

(22) TDISXKN--Computes unit normal vector to metal tip (;=-;R)
(23) FAR~-Computes the amplitude of the power pattern from the
complex plane wave spectra Ax(kx,kyL Ay(kx,ky) of an

antenna.
(24) AMPHS—-Converts a complex number from rectangular to

polar form. This subroutine utilizes the intrinsic

function ATAN2. The amplitude produced is linear (not
decibels), and the phase is in degrees on the range
(-180, 180).

(25) DBPV--Converts a real, two-dimensional array from linear
to logarithmic values in decibels on the range 0 to-40 dB.

(26) NORMH--Normalizes a two-dimensional real array to wvalues
between 0 and 1.

(27) CNPLTH~-Plots single dimensional far field patterns on
axes patterned after standard pattern recorder paper.
CNPLTH calls Subroutine PSI in addition to the usual
Calcomp sgbroutines.

(28) PSI--Used by Subroutine CNPLTH to compute the azimuthal
angle .

(29) PLT3DH--Yields three-dimensional plots of the data in the
two-dimensional real array FIELD. PLT3DH calls Subroutines
PLTT, NORMH as well as the usual Calcomp subroutines.

(30) PLTT--Used by Subroutine PLT3DH to eliminate moving the

pen for hidden lines.
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(31)

FFTA--Computes the Fast Fourier Transform of a one-
dimensional complex array having 2**IEXP elements. Proper

operation is machine dependent.

(32) MAGFFT--Provides increased resolution of a sampled function
using FFT and Discrete Fouriex Transform techniques.

(33) JOYFFPT--Provides increased resolution of selected portions
of a two-dimensional Fouriexr transform. JOYFFT calls
Subroutines FFTA and PWRTWO.

(34) PWRTWO--Used by Subroutine JOYFFT to ensure that a given
integer is a power of 2.

2-5. Program Flow

For the following, refer to the program listing in Section 2-8 and

the line numbers shown on the right-hand margin of that listing.

Line Nos. Explanation

Line 15:

All variables beginning with the letter K in the

main program are real.

Lines 16-32: Declare variables and array dimensions.  Note

equivalence statements in Lines 24-26. The dimension
of IBUF in Line 29 may be computer system dependent.
Note in Line 32 that only twenty fineness ratios,

scan planes, and scan angles can be accommodated.

Lines 34-38: Label common is used as a convenient means to trans-—

mit variables to subroutines not directly called by
MAIN. The labels are generated from the names of

the subroutines which receive the variables, and

each label is terminated with the letter C to denote
common; e.g., TDISKC denotes variables common to MAIN

and Subroutine TDISK.
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Lines 40-42: Declare namelists for printing data. These
namelists are no longer used except for occasional
debugging purposes.

Lines 43-57: Set data in DATA statements as described above
in Section 2-3.

Lines 61-62: Set SMAX and VMAX to unity to prevent division

by zero.
Lines 63-64: Read and write TITLE according to 18a4 format.
Lines 65-67: Read input data using free-field format.
Line 68: Compute sine of the offset angle eOS'
Line 69: Set TABLE=FALSE so that normalizing factor VAIRM

can be computed (Lines 319-329) wvia a call to
Subroutines RECM and RXMIT. In the latter, TABLE=
FALSE causes TL' Tllto be set to unity as in the
case of no radome.

Lines 71-75: Write input data.

Lines 76-77: Read input data and set VAIRM needlessly.

Lines 78-104: Comments explaining input variables.

Line 105: Set NN=N+1= Number of wall layers plus one.

Line 106: Initialize DINCH= total thickness of radome wall
in inches.

Lines 107-109: Read wall data and compute total thickness.

Line 110: Compute DIAIN= inside base diameter of the radome
in inches.

Lines 111-112: Compute indices of the center element of near-field

arrays corresponding to xA=yA=O.
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Lines

Lines

Lines

Lines

113-114:

115-122:

123-126:

127-128:

Line 129:

Lines

Lines

Lines

Lines

Lines

Note:

130-139:

140-144:

145-151:

152-158:

159-177:

Write array dimensional data.

Read fineness ratios, scan planes, and scan angles.
Compute wavelength in inches and centimeters.

Compute B=2ﬂ/Acm.

Call RXMIT and compute table of transmission coeffi-
cients versus sine of incidence angle. The firét call
to RXMIT builds the table. Subsequent calls use the
table if TABLE=TRUE.

Compute DAPWL= diameter of antenna aperture in
wavelengths.

Convert variables in inches to centimeters for

input to subroutines. Some variableé are multiply
defined to avoid conflicts in labeled common; e.g.,
ZBOT and Zl. ©Note that DIACM is the inside diameter
of the radome in centimeters.

Convert angles from degrees to radians using RAD=7/180.
Compute near fields of three channel monopulse antenna
using Subroutine HACNEF.

Set KYMAX=KXMAX, compute magnified folding wavenumbers
KXM, KYM, and print results.

Initialize Calcomp plotter, if required. The commented
initialization (Lines 164-174) applies to the IBM 3033
system at JHU/APL.

Lines 178-258 are used to plot the near fields of the
antenna and/or the transmitting principal plane power

patterns.
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Lines 178-179:

Line 180:

Lines 181-190:

Line 191:

Line 193:

Lines 194-201:

Initialize the maximum values FMXEL, FMXDAZ of

the E- and H-plane patternsbso that when used ini-
tially as inputs to Subroutine FAR, the resulting
pattern will be normalized with respect to its own
maximum and FMXEL and FMXDAZ will be set equal to
these respective maxima. On subsequent calls to FAR,
the resulting patterns will be normalized with respect

to FMXEL and FMXDAZ. Hence, the relative gain of the

‘difference and sum patterns will be correctly dis-

played in the graphs.

Iterate for each of three monopulse antenna channels.
Equate complex arrays EXT, EYT to the selected near
field and compute the amplitude NF of EXT.

Assume transmitting near fields are to be plotted
(GRAFTR=T) .

Call Subroutine PLT3DH to plot the amplitude of EXT.
The inputs XSIZE=6., YSIZE=2.5, HEIGHT=2.5 yield a
3D plot that will fit on a 8%" x 11" report page.
The inputs NF, NX, NY specify the real array to be
pPlotted and its dimensions. The input NMZ=.TRUE.
directs the subroutine to normalize NF so that its
values be between 0 and 1. The input LDB=.FALSE
indicates that the array NF contains linear values
rather than logarithmic values (decibels).

Compute and plot phase of EXT on a scale of -180
degrees to +180 degrees. Note that Line 199 ensures
that the real array NF contains these phase values

scaled to the required 0 to 1 range.
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Lines 202-215:

Line 216:

Line 219:

Line 222:

Line 223:

Line 224:

Line 226:

Lines 227-230:

Repeat amplitude and phase 3D plots for EYT.

Assume GFAFSA=T so that principal plane patterns

are plotted.

If IP=3, go to Line 243 and plot H-plane patterns;
otherwise, plot E-plane patterns.

Call Subroutine JOYFFT to calculate the inverse
Fourier transform of the focomponent of near field
EXT to produce the plane wave spectrum XEEL from
which the radiation field can be computed. 1In the
process of computing the transform, provide increased
resolution from NX x NY points to NYE x NXE points
through the point (NXC,NYC) in the array EXT. 1In

the kX direction, the plane wave spectrum is magnified
by MY; it is magnified by MX in the ky direction.

The array FFTXY is a working array.

Repeat for EYT to produce the plane wave spectrum
YEEL for the yA—component of field.

Call Subroutine FAR to calculate the E-plane elevation
(IPWR=3) power pattern FFSEL of the near field at
equal samples in sin® over the range (-KXM, KXM -AK).
If FMXEL<O (and it is for IP=1), normalize FFSEL with
respect to its own maximum.

Call Subroutine DBPV and convert the power pattern

to decibels on a scale of 0 to -40 dB.

Scale the values in FFSEL to the range of 0 to 1 for

plotting.
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Line 231:

Lines 232-236:

Line 237:

Lines 238-242:

Lines 243-258:
Line 260:
Line 261:
Lines 262-266:
Line 267:

Lines 268-272:

Lines 273-283:

Call Subroutine CNPLTH and plot the power pattern.
If KXM<1l, the pattern is plotted over the angular
range corresponding to sin_l(KXM); if KXM21, the
angular angle is (-90°, 90°). Subroutine CNPLTH
actually plots conical cuts corresponding to

kx= constant or kyf constant as specified by inputs
KXC, KYC. 1In the call here, KXC=KYC=0 so that a
principal pattern is produced.

Write a figure title for the plot and establish a
new origin for the next plot.

If IP=2, the E-plane patterns are finished.

Since JOYFFT changes the input arrays EXT,EYT, it

is necessary to recompute them so that increased
resolution can be obtained in the plane wave spectra
in the H-plane.

Repeat computation and plotting for H-plane power
patterns.

Iterate the radome analysis for NFINE fineness ratios.
Set FINE = outside fineness ratio.

F as defined in

Calculate and write R os’ Frs

os’ B, F

Figure 2-1 for the radome geometry.

Compute RDML = distance from the base of the radome
to the theoretical tip on the inside of the radome.
If ZTOPIN<RDML, the radome has a metal tip, and a
message is written to that effect.

Compute parameters needed by Subroutine OGIVE to

describe the radome shape. R and B are in centimeters
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and apply to the inside dimensions. AP, the height
of the cylinder in centimeters, is not used. RTSQ=
square of the radius of the top disk. RBSQ= square
of the radius of the bottom disk (bulkhead). The
other variables, BSQ, RINV, RSQl, RP, and RP2, are
precalculated here to speed later computations in
OGIVE.

Line 285: Compute conversion factor DPMR for converting milli-
radians to degrees.

Lines 286-288: Initialize the "last" values of boresight error in
azimuth (AZL) and elevation (ELL) and the "last"
value THL of scan angle. These variables are used
later to compute boresight error slope in degrees per
degree from the present and last values of boresight
error.

Lines 289-290: Write title for analysis results.

Lines 291-293: Write parameters of radome wall.

Lines 294-296: Write heading for table of boresight error and gain data.

Lines 297-301: Write this same data to logical unit 7 for subsequent
storage as a disk file, if desired.

Line 309: Iterate the radome analysis for NPHI scan planes.

Lines 310-312: Compute ¢r in radians as required by Subroutine ORIENT.

Line 313: Iterate the analysis for NTHE scan angles in each
scan plane.

Lines 314-316: Compute er in radians as required by Subroutine ORIENT.

Line 317: Call Subroutine ORIENT and compute the rotation matrix
ROTATE and translation matrix TRANSL required for coor-

dinate transformations using Subroutines POINT and VECTOR.
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Line 318:

- Line 319-322:

Line 323:

Lines 324-325:

Lines 326-327:

Line 328:

Line 329:

Line 330:

Lines 333-334:

Line 335:

On the first iteration, TABLE is false so that

the maximum amplitude of the received voltage on
the sum channel is computed without the radome.
Set the direction cosines of the incident plane
wave so that it arrives from the ;A direction.
Call Subroutine INCPW and compute the rectanqular
components PWI of the incident plane wave having
polarization specified by IOPT.

Set TSUP=T and TABLE=F so that an air radome wall
be used and so that prinfing by Subroutines RXMIT
and RECM will be suppressed.

Call Subroutine RECM andbcompute the complex vol-
tages VR received on the sum, difference elevation,
and difference azimuth channels, respectively,
corresponding to VR(I), I=1,3.

Compute VAIRM=|VR(1)|.

Set TABLE=T so that on subsequent iterations

VAIRM will not be recomputed, and so that the table
of transmission coefficients will be utilized when
RXMIT is called.

If SUPPRS=F, compute and print the E-plane and H-
plane receiving power patterns of the antenna with
the radome in place.

Iterate in J for E-plane (ICUT=1) and H-plane
(ICUT=2) patterns.

Set the desired far field component.
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Lines 336-337:

Line 338:

Lines 339-340:

Lines 341-344:

Lines 345-346:

Line 347:

Line 348:

Lines 349-353:

Line 354:

Lines 355-356:

Line 357:

Set KMAX=sin_l (emax)=.996. If KXMAX, as computed
by HACNF, is less than KMAX, then use the smaller

as the maximum angle in the principal plane at

which to compute the pattern.

Set the temporary logical variable TSUP=T so that
printing will be suppressed.

Call Subroutine RECPTN and compute the complex
received voltages on each of three channels at NREC
points over the range (-KMAX, KMAX - DK).

Increase the resolution and print results for all
three channels. Do not print results that are

known to be identically zero.

Transfer the received voltage into a one-dimensional
array VREC.

If NREC>NXE, there is no need to increase the
resolution.

Call Subroutine MAGFFT to increase the resolution of
VREC from NREC points to NXE points. The result is
contained in complex array XYFFT on output.

Compute linear power pattern.

Select NXX=larger of NXE and NREC.

Write heading for printed results from Subroutine
NORMH .

Call Subroutine NORMH to normalize the NXX values in
real array MVREC to be between zero and one. The
input argument LDB=.FALSE. since the values are not

in decibels.
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Line 358: Call Subroutine DBPV to convert the power pattern
in MVREC to decibels.

Lines 359-360: Write correct heading for E-plane or H-plane.

Line 361: Compute the increment in sinf® at which the power
pattern has been computed and resolved.

Lines 362-368: Scale the power pattern to have values between 0
and 1. If SUPPRS=F, compute the angle 6=ANG and
the phase of the pattern, and print the results for
every fourth angle.

Line 372: If GRAFRV=T, plot the receiving power patterns.

Lines 373-378: Call Subroutine CNPLTH and plot the receiving
patterns in turn. Write an appropriate figqure
title following each pattern plot. Re-origin the
plotter pen for subsequent plots.v The result of
Lines 330-383 is four principal plane patterns:
E-plane sum, E—plape AEL' H-plane sum, H-plane AAZ'

Lines 384-386: Call Subroutine RECBS and compute the boresight errors
AZT, ELT in the azimuth and elevation planes of the
antenna as caused by the radome. On output, the real
array KA contains the direction cosines of the last
target return and, hence, gives the true direction
to the target at the time that the tracking functions
in the azimuth and elevation planes indicated the
electrical boresight direction.

Line 387: If this is the first iteration in scan angle, do not

attempt to compute boresight error slope.
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Lines 388-389: Compute boresight error slope (degrees/degree}) in
azimuth and elevation channels.

Lines 390-392: Set the "last" values of boresiéht errors and scan
angle to the current values in preparation for
next iteration.

Line 393: Compute loss in maximum gain of the antenna sum
channel due to the radome.

Lines 349-395: Write results to logical units 6 and 7.

Lines 399-400: Write maximum amplitude of received sum voltage

VAIRM without radome.

Line 401: Terminate plotting software.
STOP
END
2-6. Test Cases

Four test cases are presented in BAppendices A, B, C, and D to
demonstrate correct operation of the radome analysis computer program
RTFRACP.

Appendices A and B present the test data and results for a
circularly (RHC) polarized antenna and five-layer tangent ogive radome
at a frequency of 11.80285GHz (A=1.0 inch). The diameter of the aperture
is 11.84X. The outside diameter of the radome is 16.267 inches. The fine-
ness ratio is 3.00. In Appendix A, the program is exercised without
plotting, and printing is minimized. In Appendix B, all plotting and
printing options are exercised.

Bppendices C and D present the test data and results for a vertically
polarized flat plate antenna of diameter 5.1992XA. All other parameters of the

analysis are the same as in Appendices A and B. Appendix C contains the
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case of no plotting and minimum printing. Appendix D contains the results
for all plotting and printing options.

The first page in each appendix presents the test data as actually
read in by the program except that line numbers have been added along fhe
right-hand margin. The second and succeeding pages of each appendix
contain the printed output as produced by the program. Line numbers have
been added along the right-hand margin.

In Appendices B and D, the plots produced by the program are pre-
sented immediately after the printed output. The plots are presented in
the order that they were produced by the program. Captions have been
added for clarity. In addition, axes have been provided for the three-
dimensional plots.

Referring to Appendix A, Lines 32-40 of the output listing, it is
seen that a circularly polarized antenna produces boresight errors in
both planes even though the scan of the radome tip is confined to a
single plane. Comparison of these results to those in Appendix C (Lines
32-40) indicate that for a linearly polarized antenna, boresight errors
are produced only in the plane of scan as would be expected from symmetry
considerations. Further detailed consideration of the circularly polarized
antenna shows that depolarization of the incident plane wave by the radome
produces additive errors, and the results shown are according to expectations.

The transmitting and receiving patterns in Appendix B (and D) are
not in agreement contrary to expectations. The discrepancy is due to the
fact that the receiving patterns have a (1 + cosf) variation characteristic
of the geometrical optics approximation used for ET' On the other hand,
the transmitting patterns have a cosf variation as characteristic of an
assumption of 0nly‘magnetic current sources in the aperture. The disagree-

ment is significant only for angles away from boresight.
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The total computation time required for each test case on the Cyber

70 system at Georgia Institute of Technology was as follows:

Test Case Appendix Time (sec.) No. of Scan Angles
1 A 17.52 10
2 B 36.844 1
3 C 20.369 10
4 D 34.678 1

In all four cases NX=NY=16, NXE=256, MX=16, and the incident plane wave

contained only an elevation component. Variances in execution time are

due to time-share nature of the computing system used.

2=7.
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15374

COOOTOO0000O00O000

THIS FAY TRACING FCRMULATION RADOME ANALYSIS GCOMPUTER PROGRAM,
RTFRACP, USES GEOMETRICAL CPTICS AND LORENTZ RECIPROCITY

TG COMPUTE THE PESFONSES AND BORESIGHT ERRORS 0F A MONOPULSE
ANTENNA INZIDE & TANGENT OGIVE RAGOME TO AN INCIDENT PLANE
CLECTRCHMAGNETIC WAVE OF SPECIFISD POLARIZATION (TARGET RETURN).

RT FRACP WiS JEVELOFPSO AT GEORGIA INSTITUTE OF TECHNOLOGY, ATLANTA
GZORGIA, PRIMAKILY UNDER GRANT AFQOSR=-77=-3463 (PHYSICS DIRECTORATE)
ANDO DOCUMENTED UNDER JHU/ZAPL CONTRACT NO. €J1C53 (ROBERT C.
MALLALTEY FCOR USE ON A STGNIFICANT RADOME TeCHNOLOGY PROGRAM

FOR THE DEPARTIMENT IJF THE NAVY,

THIS VERSION IS FCR e¥YECUTION ON CYBER 756/74. WITH ONLY MINOR

SYNTAX CHANGES, IT HAS BEEN IMPLEMENTED ON THE IBM 3333 AT JHU/APL.

PROGRAN RTFRACP(INPLT, OUTPUT, TAPES=INPUT, TAPEE=0UTPUT,TAPE7)
IMPLICIT REAL (K)

REAL NF(16416)+ MYREG(256) 4 KAL(3)

COMPLEX SUMX{16+16) ySUMY(1564+16).0ELX(16,16) +DELY(164+16)
COMPLEX DAZX (16 41€) 4DAZY (1651 6) sEXT (169161 4EYT(16,5,16)
COMPLEX VRUI16),VRECI(32,3),VREC(32)

REAL FFSU(25€41) +FFSEL(14256) 4 NORM (3)4P1(3)

COMPLEX PWAT(3),FHIL3I)

COMPLEX XE(Z25€41) 4sYE(25641) 4 XYFFT(512)

COMPLEX XECEL(1,25€) »YEEL(1,2506)
TAUIVALENCE(XE(Le1) o XEEL(1y 1))
FAUIVALENCELYFEIS,1),YZEL(1, 1))
EQUIVALENCE(FFS{1,1),MVREC(1) ,FFSEL(1,1))

LOGICAL GRAF3),GRAFSALGRAFTR, GRAF RV, TABLE ¢ SUPPRS,TSUP
INTEGER IBUF(512)

REAL RCTATE{343)4TRANSLA3)» TITLE(18)

REAL FTINRU2C)PHI(20),THETA(20)

CCMMON/TDISKG/7T0P, RTSQ

CCMMON/TRACC/ 22471

CCMMON/BDISKC/ZROTLRASA
COMMCN/TRaNSC/UIN(B) 3 ZR(B)« TO(EY 3 TZoWALTULy NsNNoD(B) 2ZB,4TK
CCMMON/CGIVC/ PP ,B3N,AP, PINV,4B+RSG14RP2

OoE~NOMLETWN
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NAMELTIST/GECM/PRGRAZAFINy ZRCTINGNXeNY ¢NXE JNYESNXY 3 MX oMY g NXCy NYC
NAMCL IST/KCATA/KXMAX g KYMA Ky KX My KY M
NAMELIST/NEW/LMAX OMRAD,IOPT, RAPMAX ,VAIRM

BOUNOARY VALUES NEERED B8Y SuBF TRAGE (INCHES, CONVERT TO CM BELOW)
1=
Z2=7R COORDINATE CF TGP DISK (Z1,422 IN CM)

APIN IS HEIGHT OF CYLINDER IN INCHES, CONVERT TO CM BELOW

ZR COORCINATE CF BOTTOM DISK

DATA APIN/Ca/

ZBOTIN IS ZR CCOKD OF E0TTOM DISK (3LLKHEAD) IN RADOME COORD IN INCHE

DATA 7ZBOTIN/0.08/

KXMA X, KYMAX ARE CUTPUTS OF NEAR FIZLD SUBR
INITIALIZE CONSTANTS

DATA RADIUS/1EQ/
NATA THETAALWPHIALAGAM3A/0.04+90.0,0.07/
DATA PI/3.1415926535698/

CHrErT SR EXF INE

DATA NXoNY JNXEsNYESNXY/1641E9 256914512/
DATA NREC oNSyMX oMY/ 32,1691E,417/

C¥¥<'-¥ ¥¥FFXEREY

C

C READ IN DESCRIFTION CF RADOME WALL

2¢€0

SHAX=1.0

VMAX=1.0

REACH(5,0)TITLE

WRITE(B+6) TITLE

REAC(S+*) CRAF3IC,GRAFSALGRAFTRyGRAFrVsSUPPRS,IPENCE
FORMAT (uL6)

READ(S, %) NFIM NPHISNTHZ 40IAOS 4RA,KR,ZTOPIN,FREG, 0SANG
SINCS=SIN{CSANG*PI/180.)

TABLE=.FALSE., :

C TARLE IS SET FALSE SO THAT NORPMALIZING FACTOR CAN BE COMPUTED.

265

27¢

WRITE(64+2565) CRALF3IND,GRAFSAy CRAFTR ,GRAFRV,TABLE

FORMAT (™ GRAF23N=",L2y" GRAFSA=",L2+" GRAFTR=",yL2+" GRAFRV=",L2,

$ " TABLE=",L2)

HRITE(R,27C) NFINCyNPHIZNTHEY GSANC

FORMAT (/™ NFINE="3T6," NPHT="413,s™ NTHETA=",13+," O0OSANG= ",F5,2/)
READ(S4+%) LMAX,[OMRAD, IOPT,RAPMA X, VAIRM, IPOL yICASE SN, IPHKR

39
40
41
42
43
b4
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
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OOO0OO0O0O00000000000000O000000O0OO0

DIACS=0UTSIDE CIAMETER CF BASE OF TANGENT OGIVE RADOME
VAIR=MA XIMUM REC™C VCLTAGE W/O RADCME AT KX=0.yKY=G,
NFTNE=NQO. GF FINENESS RATIOS
NPHI=NUMBER OF SCAN PLANES
NTHE=NUMBER OF ANGLES IN EACH SCAN PLANE
DIAIN=INSIDF 3ASE DIAMETER OF RPADOMZ IN INCHES
ZTOPIN=ZR COORD (IN) OF TOP DISK (METAL TIP)
FREQ=FREQUENCY IN GHZ
GRAF3D=.TRUE. GIVES 30 PLOTS OF INCIDENT FIELDS ON APERTURE (DELETED)
GRAFRV=,TRUE., GIVES SA PLOTS OF RECEIVING PATTERNS (AZ & EL)
GRAFSA=,TRUE. GIVES SA PLOTS OF TRANSMITTING PATTERN WITHOUT RADOME
SUPPRS=,TRUE, SUPPRESSES THE PRINTING OF NUMEROUS RESULTS
RAPMAX=MAX RADIUS OF ANTENNA APERTURE IN INCHES.
IOPT SELECTS FOLARIZATION OF INCIGENT PLANE WAVES
=1 ELEV (VERTICAL)
=2 AZIMUUTE (HCRIZCNTAL)
=3 RHC
=4 LHC
IPOL SELECTS FOLARIZATIGN OF ANTENNA WHEN ICASE=11
= SAME COCE AS FOR IOPT
ICASE=1 OR 2 FCR CIRC APERTURE, UNIFCRM ILLUNINATION
=3 FOR FLAT PLATE WITH SPECIFIED ILLUM, VERT POL (CASE III)
N=NUMBER OF LAYERS IN RADOME WALL
OSANG=ANGLE IN DEG IN 45 PLANE OFF BCORESIGHT OF FIRST TARGET RETURN
USED BY SUBR RECBS IN GETTING INITIAL DATA.
IPWR=1 FOR POWER IN FLEV COMP CF FAR FIELD PATTERN
=2 FOR AZINUTH CCMF,=3 FOR TOTAL POWER.
NN=N+1 :
DINCH=C.
DO 5 I=1’N
READ(S %) CIN(I)ZER(I),TD(I)
S DINCH=DIN(I)+[DINCH
DIAIN=DTAQOS-DINCH*2.
NXC=NX/2+1 '
NYC=NY/72+1
WRITE(E s4) NXoNYSNXEgNYESNXY oM MY
L FOPMAT (™ NXoNYyNXEgNYESNXYyMXotYE ™, 7T4)

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
36
97
98
99
100
101
102
103
104
105
106
107
108
109

"110

111
112
113
114
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C RcAD FINENESS RATIOS FOR THIS RUN--BASED ON OUTSIDE DIMENSIONS 115

DO 13 I=1,NFINE 116

13 REAN{S5,*) FINR(I) : 117

C READ ORIENTATIONS FOR THIS RUN (DEGREES) 118
DO 14 I=1,NPHI 119

1a READ(S5,%) PHI(I) 120

ND 15 I=1,NTHE 121

15 READ(S,*) THETA(I) , 122

C COMPUTE WAVELENGTH? 123
WLIN=29,97925/(FREQ*2,.54) 124
WLCM=WLIN®*Z2,54 125
BETA=2.*PI/NWNLCM 126

C INITIALIZE TABLE OF XMNK COEFFICIENTS® 127
CALL RXMIT (FNISFWT,KANORM,PL sTABLE,SUPPRS, BETA) 128
DAPHWL=2 (FRAFMAX/WLIN 129

C CONVERT 70O CENTIMETER AND RADIANS 130
ZA0T=ZBOTIN*2.54 131
Z1=2ZR0T 132
RSOMAX= (2. S4L*RAFMAX) *¥2 133
ZTOP=ZTOPIN*2 .54 134
7R=ZTOP 135
Z2=2T0F 136
RA=RA¥2 .54 137
RR=RR*2,54 138

D JACM=DIAIN*2.5u4 . : 139
RAD=PI/180.3 140

6 FCRMAT (18A4) 141
THETAA=THETAA*RAD 142

PHI A=PHIA*RAD 143
AGAM3A=AGAM3A*RAD 144

C COMPUTE FIELDS OF ANTENNA WHEN XMITTINGS 145
CALL HACNF (SUFX o NXeNYs1,IP0OLe15y0AFWLsDXWL ,KXMAXyICASE) 146

CALL HACNF (SUMY ,NX4NY4s14IP0OLs2s DAPWL » DXWL 4 KXMAX s ICASE) 147

CALL HACNF (DELX oNX9yNY24IP0OLs19DAFWL 9 DXHL 4KXMAX, ICASE) 148

CALL HACNF (CELY sNXaNY 232,IP0L,2,DAPHL y DXWL 4K XMAX, ICASE) 149

CALL HACNF (DAZX o NXsNYy39IPCLoe1s0AFWLY DXWL yKXMAX s ICASE) 150

CALL HACNF(DAZY NXeNY335IP0L,2y CAPWL 9y DXHL 4 KXMAX 4 ICASE)Y 151

KYMAX=KXMAX 152
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OO0

OO0 OOOO00

=

KXM=KXMLX*NXE /M X/ NX ~
KYM=KYMAXENYE/MY/NY
WRITZ (6493 KXMAXQOXWL oKXM oK YM

3 FORMAT (™ KXMAX=KYMAX=",F8,5," XY SPACING=",
FFBe5 4™ WAVELENGTHS™/'" KXM="4FB.5 4" KYM=",F§,5)

INITIALIZE PLCTTER SCFTWARE

IF
GO

(GRAF3D.0RGRAFSA,OR.GRAFTR,CRGRAFRY) GO TO 200
TC 265

203 CONTINUE

------------ CALCOMP INITIALTIZATION =====-e-cmccccccccmccccaaa-

CALL TITL3E&("RADOME ANALYSIS CCMPUTER PROGRAM",

- G.Ke HUDDLESTON “y
“ GEORGIA INSTITUTE OF TECHNOLOGY™ )

CALL INIT3€( MDAY )

CALL PLOT(Ce9=3.+-3)
CALL PLOTS(IRUF45124,3,IFENCD)

IF
GO

{GRAFTR,CR.GRAFSA) GO TO 201
To 2L5

231 FMXEL=C.
FMXDA7=0.

DC
0o
Do
IF
IF
IF
IF
IF
IF

3C IP=1,3
35 I=1,40MNYX
35 J=1,NY
(IPLEQe1) EXT(IHJS)=SUMX(I,N)
(IP.EN1Y EYTU(IHJd)=SUMY(I. N}
(IPLEQ.2) EXT(I+JY=DELX(I,J)
(TP.EQ.2YEYT (I,J)=DELY (T, J)
(IPLEN3) EXTU(IlGJI=0DAZX(IVv D)
(IPJEGe3) EYTLIWJ)=0AZY(Is )

NF(I4J)=CABS(EXT(IsJ?})
35 GCONTINUE

153
154
155
156
157
154
159
160
161
ie2
163
164
165
166
167
168
169
170
171
172
173
174
175
17¢€
177
178
179
180
181
182
183
184
185
186
187
188
189
190
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IF (.NOT.GRAFTR) GO TO 215
C PLOT 30 NEAR FIELDS X-COMPONENTS
CALL PLT3D+"(6.9 Zozg EOSQNF’NXyNY,Q TQUE.‘.FALSE.’
C PLOT PHASE ALSG
00 48 I=14NX
00 40 J=1,NY
NF(I,J"—'C.
CALL AMPHS(EXT(I+J)RLFSAIF)
NF(TI,J)=(AIF+1820.,)/363.
43 CONTINUE
CALL PLT3DKH(E a9 2:592454NF ghNXohNY9s FALSE. 9 FALSES)
C PLOT 3D NEAR FIELDS Y-COMPONENTS
DO 45 I=1,NX
DO 45 J=1,NY-
NF(I,J)=CABSLEYT(T, U))
45 CONTINUE
CALL PLT3DOM (6492453259 NF yNXyNY 54 TRUE .y oFALSE.)
C PLOT PHASE A_SO
GO 50 I=1.NX
00 50 J=1,NY
NF(IsJ}=23.
CALL AMPHSU(EYTIL{I,.J) RLFLAIF)
NF(I,J)=(AIF+180,)/363.
50 CONTINUE
CALL PLT30H (6492592459 NFINXaNY 9o FALSEL1oFALSE,)
IF (GRAFSA) GC TO 215
GO TO 30
215 CONTINUE
IF (IP.EQ.3) €GO TC 228
C CALC EL CUT QF su»
C NOTE THAT JCYFFT CHANGEZS E£XTLEYT.
CALL JOYFFTUEXT yNXyNYsMYgMX gNXC yNYC o XZELs NYESNXE9 XYFFT 4 NXY,4 3)
CALL JOYFFTHLEYT oNXs AY oMY g MUX gNXL yNYC o YEEL o NYESNXESXYFFT o NXY,y 3)
CALL FAR(FFSELWXERL yYEELa NYEQaNXEy FREQSJKYM 9K XMy RADIUSy IPHR,FMXEL)
C SA PLOTS OF ZLEVATICON RESULTS
CALL DBPVIFFSEL JNYE,NXE,1)
2C 216 I=1.NYE
D0 21€ J=1,NXE

191
192
193
194
195
196
197
198
199
200
241
202
203
204
205
206
207
208
209
2190
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228



FFSEL(IZJ)=1.04FFSEL(T,J) /60,
216 CONTINUE

CALL
CALL

CNPLTHFUFFSELINXE gKXMyC a9 Ta)
SYMBOL€+S9€e59 ¢ 140037y 39HF IGUKE TRANSMITTING ELEVATION PO

IWER, 0,4+ 39)

RPWR=

CALL
CALL

FLOAT (IPWR)
NUMBER (99,4999, 44 1464RPWRs a9y 2)
pLOT(E-S,G..'3'

IF (IP.EQ.2) GO YO 3¢
C RECOMPUTE SUMXsSUMY FOR JOYFFTS

CALL

HACNF (EXToNXoNY919IPGOL 91 sOAP WL 9y DXWLy KXMAXyICASE)

WRITE(6,21S) TIPWR
219 FORMAT(™ IPCWER OF FATTERN=", I2)

CALL

22G CALL
CALL

CALL

C SA PLOTS
CALL

TS

po 10

HACNF (EYToNXsNY 9L sIPOL 2 +sDAP KL s OXWLs KXMAX, ICASE)
JOYFFTUEXT g NXaNY sMXa MY sNXCoNYC oY Eg NXEy NYE S XYFFT o NXYy 3)
JOYFFTCEVYT g NXogNY oMU oMY gNXCoNYC o YES NXEg NYESXYFFToNXY o 3)
FAR(FFSyXE s YESNXEJNYE, FREQKXMsKYM,RAD TUS, IPHR,FMXDAZ)
O0F AZIMUTH RESULTS
DBPYUIFFS sNXESNYEL1)

I=14NXE, 1

DO 16 J=1.NYE
FES(IvJI=1.C+FFS(IvJV/740.0
16 CONTINUE

CALL
226 CALL

CNPLTH(FFS yNXE g KXM 90 4y 0o )
SYMBOL(e54€45+014000437HFIGURE TRANSMITTING AZIMUTH POHWER

$ele437)

CALL
CALL

NUMBER(Q?Q.’QQQ.’.1“’prRQD.’0)
FLOT(B454C44=3) .

30 CONTINUE
205 CONTINUC

c

00 100 NG=1,4NFINE

FINE=

FINRING)

C CALCULATE INSICE FINENESS RATIOC
RIN=FINE*DTAQS/ (SIN(PI-2.,%ATAN(Z. *FINE)))
BIN=RIN=-DILACS/2.

FINE=SQRT((RIN-CINCH) **2-BIN**2)/CIAIN

WRITE(E4+25) PINWBINGFINRINGY, FINE

229
230
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232
233
234
235
236
237
238
239
240
241
242
243
24b
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ROML=FINE*CIAIN#APIN

“IF (ZTOPIN.LT.PDOML) WRITE(E,25) ZTOFPIN
23 FORMAT (™ TANGANT QOGIVE PARAMETERST " ROS(IN)I="

B $F Q.54 30S(INI="yF9,54/26Xs" FINOS=",F5.3,

$ * FINIS=",F8.5)
25 FCORMAT (/" THIS RADOME HAS A TOP DISK AT ZTOPIN= ™4E12.57)
COMPUTE PARAMETERS NFENED BY SUBR OGIVE

R=FINE¥DIACM/ ISIN(PI-2,*ATAN(2, ¥F INE)))

B=R=0IACM/ 2.

AP=APIN¥2,54

RTSA=(SQRT (R**¥2-{JTOP-AP) *¥* 2) -p)**2

REBSQ=(SQRT(R**¥2~(283CT-AP) *¥2) -p)*¥2

BSQ=3%%2

RINV=1,./R

RSQi=R*¥*2

RF=RSN1-8B3Q

RP2=RSQ1+354

DFMR=183.7 (PI*102,)
AZL=5.
fLL=0.
THL=0.
WRITEZ(6,2) TITLEZFINRI(NG),DIAGSZTOFIN,FREQ sRASRR,DAPHL,IPOL,
SICASE,IOPT
00 & I=1'N
8 WRITEAG 7)) I,DINCI)LER(I),TD(I)
7 FORMAT(2Xsi343F134C9F10.34F944)

WRITE(E2 D)
9 FORMAT(//™ OHI THETA BSEEL BSEAZ SLPEL SLPAZ GAIN™/
£ “ (0EG)Y (DEG) (MRAD) (MRAD) (DEG/DEG) (DEG/DEG) (g8)*"/7)

WREITE(7492) TITLEGFIKRING) +DIAGSsZTOPIN,FREQ+RAWRR,CAPHL,IPOL,
SICASE, IOPT
DD 18 I=14N
18 WRITE(T747) ILCINCIY,LER(I),TO(I)
WRITE(7 +9)
2 FCRMAT(1H1,EX,* RESULTS OF RAUGME ANALYSIS*™/
1 1844/ FINENESS RATIO="4FE242Xs
2UDTAMETER="4F8.54™ IN:s LENCTH="2F84.54+" IN."/" FREQUENCY=",

267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
308
301
302
383
304
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23

24

3F7.34™ GHZ "/
4% RA=",FB8.54" INe RRA=",FB.5," INo ANTENNA D="9FB .k,
5% WAVELENGTHS®/* IPCL=",124" ICASE=",12," I0PT=%,I2//
€™ LAYFR THICKNESS(IN.) ER TAND" 7}

DO 100 IPHI=14,NPHI

PHIP=PHI(IFHI)

PHIR=PHIP+18§.

PHIR=PHIK*RAD

DO 100 ITHE=ZL NTHE

THETAL=THETA(ITHE)

THETAR=182 .-THETAL

THETAR=THETAR*RAD

CALL ORIENTU(RA,THETAA,PHIA, FRR4THETARyPHIR,AGAM3A,ROTATE»TRANSL)
IF (TABLE)Y GJ TO 23

MPUTE NORMALIZING FACTOR1t

KA(1)=0,

KE(2)=0.

KA(3)=1,

CALL INCPW (KA LPHWILICPT)

TSUP=.TRUE,

TARLE=,FALSE,

CALL RECM(PWT sKAGNX o NY s KXMAX, KYMAX4FREQ+ROT ATE, TRANSL,
BSUMX o SUMY 3 CEL Xy DELY 4 DAZX,s DAZY VR TABLEY TSUP 4RSQMAX)
VAIFM=CASS (VR (1))

TABLE=,TRUE,

IF (NDT.3UPPRSY GO TO 24

GC 70 353

CONT INYZ

DO 320 J=1,2

ICUT=4

TICOMF=10PT

KMAX=,990

IF (KMAXGT.KXMAX)Y KMAX=KXMAX

TSUP=.TKrUL »

CALL RECPTNI{SUMXsSUMY,,0ELXs DELY s0AZ X DAZY yNXsNY 2 ICUT«ICOMP s KMAX,
INREC WRECT 4 KXMAX 4 KYMAX, FREQ4ROTATE, TRANSL 4T ABLE s TSUP+RSQMAX)
DO 325 M4=1,3

ICHAN=MM

305
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3160
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316
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319
320
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323
324
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328
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330
331
332
333
334
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305
31
32
33

3036

4]

37
308
343
31¢

32%
320

IF ((ICUT.EG.1) JAND. (IGHANL.EQ.3Y) GC TO 325

IF ((ICUT.EQ.2) .AND.(ICHAN.EQ.2)) GO TO 325

DO 26 I=1,NFEL

VFEC(T)=VREL3 (I, ICHAN)

IF INREC.GT.NXE) GU TO 31

CALL MAGFFT(VRECWNRECXYFFT ,NXE)

DO 305 I=1,NXE

MYREC(IV=CARS(XYFFT(TI)) **2

G0 TO 33

DO 32 1=1,NREZ :

MVRECII)=CAES(YVREC(I) ) *»

NXX=MAXD (NXENREC)

WRITE(H,30E)

FORMAT (/" MIN ANG MAX VALUES OF REC™“G PATTERNSL ™/)
CALL NORMH (MURECoNXXy1le .FALSE L)

CALL DBPVIMVYREC yNXX41,41)

IF (J.EQ.1) WRITE(6,308)

IF (J.EQ.2) URITE(6,+339)

DX=2  *KMAX /NXX

DO 3C7 TI=1,NXX,1

I+ (SUPPRS) GC TO02L7
ANG=ASIN(-KMAX+{I-1)*0OK)*1R,/P1I

CALL AMPHS(XYFFT(I) 4 AMP,PHS)

IF (NREGL.GE.NXE) CALL AMPHS (VREG(I) AMP,PHS)

IF (MOD(I,4).EQ.3) WRITE(Ds 310) ANGIMVYREC (I )4PHS
MYREC(IV=1.0+¢MYREC(I) /4D,

FORMAT (/™ REC"™™G PATTERN, EL CUTe EL COMP (08)t */)
FORMAT (/* REC"™“C PATTERM, AZ CUT.EL GOMP (DB)?: */)
FORMAT(FI,1 45 X3 FR.343XsFb.1)

IF (JNOTLEGRAFRV) GO TO 32¢

CALL ONPLTHAMVREC NXX,KMAX, Jesis)

IF (JoEQe1) CALL SYMBOL(a5960541u40+43HFIGURE RECVG POMWER PA

BTTERN=-ELEV PLANEsDes43) :
IF (J.EQ.2) CALL SYMBOL (4546405441040 841HFIGURE RECVG POWER PA
FTTERN-AZ PLANE,yCaals 1)

CALL FLOT(R,5,4C,s~3)
GONT INUE
CONT INUE
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350 GONTINUE
COMPUTE BUORESIGHT ERRGR
275 CONTINUE

CALL RECBS(SUMX ,SUMY 4 DELX+DELYZUAZXs0AZY s NXoNY,

$ LMAXsNSsICPT 2 VRyDOMRADGROTATE yTRANSLy FREQyKXMAX s KYMAX,

$ TABLE ) SINOSe+KA+AZT »ELT+RSQMA Xy VM AX, SMAX,y SUPPRS)

IF (ITHELEQ.1) GO TO 300

SLPAZ=(AZT-AZL) *OPMR/ (THETAL-THL)

SLPEL=(ELT=-ELL)Y*OFME/ (THETAL=-THL)
330 AZL=AZTY

ELL=€LT

THL=THETAL

GAINM=2C .*#ALOG1{ (SMAX/VAIRM)

WRITE(By11) PHIPsTHETALELT 9yAZT +SLPEL +SLPAZ yGAINN

WRITE(7411) PHIPSTHETAL 4ELT WAZT 4SLPEL ySLP AZ 3 GAINM

11 FORMAT (LI X s FoalaFBaleFBa2+FB8a20FSatoFlla&sF7 41)
GRAF3J OPTION HAS BEEN REMOQVED.

103 CONTINUE

WRITE(64105) VAIRM
105 FORMAT(// RECEIVED SUM VOLTAGE WITHOUT RADQOME=",E12.5//)

IF (GRAF3D.0R.GRAFSA.,OR.GRAFTR,OR.,GRAFRYV) CALL PLOT(04+04+999)
STOP
END

381
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BLOCK DATA
COMMCN/TRANSC/DINIE) yER(B )5 TO(E )4 TZ o WALTOLy NoNN2D(B)22ZB,TK
DATA WALTCLeTKaTZ/0 4904904/

END

NOVE W=



Chapter 3

SUBROUTINE HACNF

Purpose: To compute near-field aperture distributions fér two
types of three-~channel monopulse antennas: (1) circular aper-
ture with uniform amplitude and phase distributions; (2) flat
plate antenna with a programmed amplitude distribution and uni-
form phase. Four polarizations can be selected for the circular

aperture. The flat plate antenna is vertically (yA) polarized

only.

Usage: CALL HACNF (E, NX, NY, ICHAN, IPOL, IXY, DAPWL,
DXWL, KXMAX, ICASE)

Arguments

E - Complex array of NX by NY elements which, on

output, contains the values of the specified (IXY)

~ ~

rectangular component (xA or yA) of the electric

field distribution over the specified (ICASE)

antenna aperture having the specified (IPOL) pola-

rization for the specified (ICHAN) channel of a
three-channel monopulse antenna.

NX,NY ~ Even integer number of points in a rectangular
array at which the aperture distribution is com-
puted in the X, and yA directions, respectively.
The point I=NX/2 + 1, J=NY/2 + 1 corresponds to

xA=O, yA=O.
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ICHAN

IPOL

IXY

DAPWL

DXWL

KMAX

ICASE

Integer control variable with values 1, 2, or 3
which éelects the sum, elevation difference, or
azimuth difference channel, respectively.

Integer control variable which selects the antenna
polarization as follows:

~

1 Vertical (yA) polarization

A

2 - Horizontal (xA) "

w
!

Right-hand circular "

4

Left~hand circular "

Integer control variable having values 1 or 2 to
select the Xy OT ¥y component of aperture electric
field.

Diameter, in wavelengths, of the antenna aperture.
Spacing, in wavelengths, between samples in aper-
ture in XA and YA directions (output).

Maximum value of normalized wavenumber corresponding
to KMAX = 1./(2.*DXWL) (output).

Integer control variable having values 1l or 2 to
specify a circular aperture antenna with uniform
amplitude and phase. 1If ICASE=3, a flat plate

antenna having a programmed amplitude distribution

(see Table 3-2) with vertical polarization is selected.

3-4. Comments and Method

a. The integers NX,NY must each be equal to each other and to an

integer power of two; e.g., NX=NY¥=1l6. 1In addition, when ICASE=3 (flat plate

antenna), NX and NY must equal 16.
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b. The actual shape of the circular aperture, as approximated by
a rectangular array of sample points, is shown in Figure 3-1 for the case
of NX=NY=16. Row 1 and Column 1 of the array contain null elements. The
elements inside and on the boundary of the aperture may contain non-zero
values as shown in Table 3-1 for the various cases when ICHAN=1 (sum
channel). Note that specification of DAP in Figure 3-1 determines the

sample spacings according to

D coso D cosa
_Ap

bxp =8y, = v ) T T(n 2) (1)
x y

where o = Tan—l(2/7).

The aperture distributions for three monopulse channels are formed
by phasing the elements in the four quadrants of the aperture appropriately.
The sum channel distribution is formed by assigning equal phases to all
elements. The azimuth difference channel is formed by multiplying all
elements in Quadrants IT and III of the sum distribution by minus one and
by zeroing all elements along xA=0. For the elevation difference channel,
Quadrants IITI and IV are negated, and all elements along the line yA=O
are made zero for symmetry reasons.

The phasing chosen models a tracking antenna and provides outputs
in two orthogonal channels from which the direction of arrival of a target
return can be mathematically determined. Let £ be a unit vector whiéh

points from the antenna origin toward the direction from whence the plane

wave (target return) emanates; i.e.,
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FIGURE 3—1. APPROXIMATION OF CIRCULAR APERTURE

BY RECTANGULAR GRID OF SAMPLE POINTS.

60 -

rXA



Table 3-1. Values of Non-Zero Elements in Circular Aperture

(ICHAN=1, ICASE=1l or 2)

IPOL XY
1 1
1 2
2 1
2 2
3 1
3 2
4 1
4 2

Value
(0 + jO)
(1 + joO)
1 jo)
(O Jj0)
(0 j1)
(1 i0)
(0 - 31)
(1 + 30)

Polarization Type

Vertical

Horizontal
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k = k + k + k :
XA b4 yA Y 2 Zz (2)
Define the tracking functions for this plane wave as

Ai(kx,k )

Tk LK) (3)
X Y

£.(k_,k ) =
iTxy

where Ai represents the output of the elevation (eg) or azimuth (a) difference
channel and I represents the sum channel output. Then for small kx>0' the
phase of fa is + w/2; for small kx<0' the phase of fa is -n/2. Similarly,
for small ky>0, arg (fe) = 7/2; for small ky<0, arg (fe) = -7/2. Hence,
the change in phase by 7 in either channel represents the boresight direc-
tion of the antenna, and tracking is done using the imaginary parts of
the tracking functions rather than their real parts.

¢. The shape and sampling grid used to model the flat plate antenna
are shown in Figure 3-2. In Subroutine HACNF, the integers NX and NY must
both equal 16, and only linear polarization (;A) is applicable to the flat:
plate antenna (ICASE=3). The phasing of the four quadrants is done as
described above to model the three monopulse channels so that tracking can
be simulated. Note that specification of DAp determines the sample spacing

according to

DAP cosa
= = = 4
AxA AyA Nx (4)
-2
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FIGURE 3—2. GEOMETRY OF FLAT PLATE ANTENNA.
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where o = Tan—l (4/6) .

The phase of each sample point in Figure 3-2 for the sum channel
is made equal, but the amplitudes are tapered in the xA and Y directions
as shown in Table 3-2. The amplitude distribution is separable and sym-

metrical so that

EyA(xA,yA) = g(x,)hiy,) = EyA(—xA,yZ) = EyA(xA,—yA) (5)
It is noted that samples 10, 12, 14, and 16 are actually specified in
the program, and samples 9, 11, 13, and 15 are obtained from them by
averaging.
3-5. Program Flow
Line 16: Assign complex values to CFAC to use in generating
vertical, horizontal, RHC, and LHC polarization
according to IPOL.
Lines 17-19: Compute the angle o and the upper bound Rmax of the
radius of the circular aperture.

Lines 20-21: Ensure that IPOL has correct values of 1, 2, 3, or 4.

Line 22: If NX#NY, write error message and stop the program.
Line 23: Ensure that IXY=1 or 2.

Line 24: If NX and NY are not even, stop the program.

Line 25: Test value of ICASE: 1if ICASE=3 generate fields of

flat plate antenna (Lines 47-83); otherwiée, generate
fields of circular aperture (Lines 26-43).
Lines 26-41: Assign complex field value to each sample point
(xA,yA,O) in the aperture according to the values
2 2

shown in Table 3-1. If X, + Y > Rmax,nake the
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Table 3-2. Symmetrical Amplitude Distribution for Flat Plate Antenna

Sample No. fé' Amplitude ‘A Amplitude
9 0 1.0280 0 1.0280
10 Ax 1.0280 Ay 1.Q0280
11 2Mx .9120 27y .9170
12 3Ax . 7959 3Ay .8060
13 4Ax .6077 4Ay .6155
14 5Ax .4194 5Ay .4250
15 6Ax .2097 oAy L2125
16 7Ax 0.0 TAy 0.0
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Lines 42-43:
Lines 44-46:
Line 47-48:
Line 49:

Line 50:

51-54:

Lines

Lines 55-62:

Lines 63-71:

Lines 72-75:

Lines_76—79:

Lines 80-83:

Line 84:

Lines 85-89:

Lines 90-98:

field value zero (Line 40). Multiply the non-zero
elements by CFAC(IPOL) to generate the correét pola-
rization (Line 38).

Compute sample spacing AXA/A and go to statement 60.
Error message and STOP.

Flat plate antenna-- if NX#16, write error message
and STOP (Lines 109-111).

Compute sample spacing AxA/A.
Ensure NX=NY

Zero all elements in the aperture. If IXY=1
(XA—component), go to statement 60.

Assign tapered amplitude values to eight "even"
elements in Quadrant III.

Cdmpute amplitude wvalues for the "odd" elements

in Quadrant III.

Compute amplitude values for elements 3-9 along

yA=O line and along Xp=0 line.

Generate symmetrical amplitude values in Quadrant IV.
Generate symmetrical amplitude values in Quadrants

I and II.

Compute kxmax'

Test to determine if the sum channel data generated
should be phased to produce the aperture distribution
for a specified difference channel (ICHAN).

Form aperture distribution for difference elevation
channel by zeroing all elements along yA=O and

negating all elements for yA<O. RETURN.
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3-6.

3-7.

Lines 99-107: Form aperture distribution for difference azimuth
channel by zeroing all elements along xA=0 and
negating all elements for xA<0. RETURN .

Lines 108-112: Exror message for ICASE=3 and NX#16. Comment of
DAPWL=5.047 applies to the test described in Chapter 2.
END

Test Case: See discussion in Chapter 2.

References

1. D. R. Fhodes, Introduction to Moncpulse, McGraw Hill, New

York, 1959.

Program Listing: See following pages.
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OO0OOOOCOO0OOCO00

SUBROUTINE HACNF(EZNXyNY, ICHAN, IPCL IXY,DAP WL »DXWL ¢ KXMAX, ICASE)
SUBR HACNF COMFUTES ELECTRIC FIELDCOMFONENTS OVER A CIRCULAR APERTURE
OF RADIUS RMAX=I(NX/2-1)/COS(ATAN(2/7)) AND RETURNS SAME IN E(NX,NY)}.
NX MUST ERUAL NY ANC MUST 8t EVEN.

ICHAN=1 FOR SUM CHANNEL IPCL=1 FOR VERT-Y POL. IXy=1 FOR X-=(0OQOMP.
=2 FOR ELEV DIFF =2 FOR HGRIZ-X PCL =2 FOR Y-COMP.
3 FOR AZ DIFF =3 FOR RHC POL
= =4 FOR LHC POL
DAPWL=0IAMETER OF APERTLRE IN WAVELENCTHS {INPUT)
DXWL=SAMPLE SFAGING IN APERTURE (OUTPUT)
KXMAX=MAXIMUM WAVENUMBER (QUTPUT)
ICASE=1 OR 2 FCR UNIFORM, CIRCULAR APERTURE (CASE I AND II)
=3 FOR FLAT-PLATE ANTENNA, VERTICAL POL (CASE 1II).

COMPLEX E(NX,NY),CFAC{W)

REAL XXMAX

DATA CFAC/(i.oﬂ.’,(i-’G.)s(Gao*i. )’(Gl"ll’/

ANG=ATAN(2 /7 .)

IF (ICASE.EQ.3) ANG=ATAN(4.7/6.)

RMEX=(NX/72-1) /COS(ANG) +,001

IF (IPOL.GT.4) IPCL=4

IF (NX.NE.NYY GO TO 15

IF ({IXYLTea1) OR.(IXYLGTW2)) IXY=2

IF (MOD(NX,42) .NE,T) GO TO 15

If (ICASE.EG.3) GG TO 25

DO 10 I=1,NX

X=FLOAT (=(NX/72)+I-1)

00 10 J=1,NY

Y=FLOAT(-(NY/Z2)+J=1)

R=SQRT (X**24Y*¥%7)

IF (R.GT.RMAX) GO TO 9

IF ((IPOL.EQ.1Y .AND,(IXY,EQ.1)) GO 10 9

IF ((IPOL.EC.2).AND,(IXY.EQ.2)) GG TO 9

IF RHC, EY=(1,C)y EX=(0,1) I.E.s EX LEADS EY BY 90 ODEG.
IF LHC.EY=11,03)y EX=(0s-1) I.E.s EX LAGS EY B8Y 90 DEG.
E(I"J)=(1.4C) ‘
F s JI=E(I5J)*CFAC(IPOL)
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15
28

C THE
25

26

69

30

35
44

45

GO TO 1&

E€T I =(5.,0.)

CONTINUE
DXWL=(DAPWL/2 ) *COS (ANG)/ (NX/ 2~1)
GO TC 60

WRITE(6,20)

FORMAT (77" NXJNEJNY OR NX NOT EVENIN SUBR HACNF™//)

sTOP

FOLLOWING IS FOR CASE III (ICASE=Z2)3
IF (NX.NE.1€) GO TO 9¢C
DXWL=(DAPWL/2.Y*COS (ANG)/ (INX/2=2)
NY=NX

DO 26 I=1,4NX

DO 26 J=1,NY

ETsJ)=(0.450.)

IF (IXY.EQ.1) GO 7O 680
E(Bsit)=(a2824,404)
E(As4)=(,42E040.)
Elhes6)=(,2888,0.)
E(6,06)=(.5218,0.)
E(B,6’=(.6060’c o’
Elee8)=(,4194,4 )
E(6+8)=(,7G59,0.)
E(B848)=(1.028,40.)

D0 30 J=4,8,2

DO 30 I=3,8,1

IF ((MOD(J92) 2EQ.D) AND.(MOD(I42) .EQ.0)) GOTO 30
EAL G JI=(E(I=-44J)+E(I+1,JVDV/ s
CONTINLE

DO 35 I=3,8,1

00 35 J=3+842

E(T ) =(E(I4J-1)+E(T,U¢+1) )/ 2,
CONTINUE

DO &0 I=3,9

E(LsJ)I=E(I,8)

DO 45 J=3,¢

E(A, J)=E(8,4J)

D0 5C 4=3,¢9

39
%0
41
42
43
4t

45

L6
L7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
b4
65
66
67
68
69
70
71
72
73
TH
7%
76



oL

58

55
60

DO 50 I=1,¢

E(341I4J)=2(8-T14J)

CONTINUE

DO 55 I=3,1°%

DO 55 JU=1,¢

EAT 9+ ) =E(I4S~-J)

CONTINUE

KXMAX=1a47(2.*CXNWL)

IF (ICHAN.EG.1) REZTURN

IF ((IXY.FQe1) . ANDJ(ICASE.EG.3)) RETURN
IF ((IXY.EGse1).AND. (IPOL.EQ.1)) RETURN
IF ((IXY.EQ.2).AND. (IPOL.EQ.2)) RETURN
IF (ICHAN.EG.3) GO 7O 75

LOAD ELEVATION DIFFERENCE CHANNELS

65

74

JENY/Z2+1

DO 65 I=1,4NX
E(L+J)=(044+C0)
JMAX=NY /2

DO 78 J=1,JMAYX
DO 70 I=1,NX
Etlo)==E(1I,44)
RETURN

LOAD AZIMUTH DIFFERENCE CHANNELY

75

8C

85

I=NX/2+1

DO 80 J=1.,\NY
E(T+3)=(0.4+C4)
IMA X=NX/72

D0 85 I=1,IMAX
DO 85 J=14NY
EllLJ)==C(1+J)
RETURN

DAPWL=5.047 FCR CASE III

93

95 FORMAT (//" **¥¥EREOR EXIT* NX NOT EGUAL TC 16 IN SUBR HACNF¥*¥*//z)

WRITE(6,95)

STOP
END

77
78
79
80
81
82
83
84
85
86
87
88
89
20
91
92
93
el
35
96
97
98
39
140
101
102
103
104
105
106
107
108
109
110
111
112




Chapter 4

SUBROUTINE ORIENT

Purpose: To compute the rotational matrix of direction cosines
ROTATE and the translational matrix TRANSL required to carry out
coordinate and vector transformations between antenna coordinate

system (xA, yA, zA) and radome coordinate system (xR, yR, zR).

Usage: CALL ORIENT (RA, THETA, PHIA, RR, THETAR, PHIR, AGAM3A,

ROTATE, TRANSL)

Arguments

RA, - Spherical coordinates (cm, radians) of the

THETA origin of the antenna coordinate system with

PHIA respect to the reference coordinate system
(x,y,2z) as indicated in Figure 4-1. Note that
the origin of the reference system coincides with
the gimbal point, which is located on the axis of
symmetry zo of the radome.

RR, - Spherical coordinates (cm, radians) of the origin

THETAR, of the radome coordinate system with respect to

PHIR ' the reference system.

AGAM3A - Angle (radians) between the zA and z axes.

ROTATE - Real array of 3 x 3 elements which contains on
output the matrix of direction cosines [Rij]
explained below.

TRANSL ~ Real array of three elements which contains on

output the translation matrix Ti as explained
below.
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Figure 4—1. Coordinate Systems Used in Radome Analysis.
Reference System: (X, Y, Z)
Antenna System: (Xp, Yp, ZA)

Radome System: (Xg, YR, ZR)
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4-4, Comments and Method

-.a. The coordinate systems of Figure 2-2 are obtained from those
shown in Figure 4-1 by setting THETAA = 0, PHIA = 7/2, and AGAM3A = 0.
When this is done, the z and zA axes coincide, the x and xA axes are

parallel, and the y and Ya axes are parallel. The angles ¢P and GL in

Figure 2-2 are related to Gr and ¢r as

¢ =¢ +m (1)

8 =m -9 (2)

~ ~ A

The unit vectors Xpr Ypr Zp were chosen to coincide with the

spherical coordinate unit wvectors X s Gr, ¢r associated with the point

O_: (rr, er, ¢r); hence, XR always lies in the plane of scan as indicated
in Figure 2—2. This observation is important if the properties of the
radome wall are not symmetric with respect to rotation about the zR—axis,
such as in the case of circumferential variations in wall thickness,
nonuniform heating, etc.

b. The details of the coordinate system transformations are de-
scribed in Reference 1 and summarized below. The transformation of the
point P in antenna coordinates (x_, V.. zA) to radome coordinates (xR, yR,

A A

zR) is given by

—~ ~ r =
x; x;] T
Y = R Y + T (3)

)

[y
.

b=
b
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The transformation of a vector

=xF _ +yF _ +2zF _ =xF _ +vyF _+ 4
F=x Ya¥va T %aTzn T *rxr Y ZpF (4)

is given by

’-
P ERN
xR XA
F = R.. F 5
YR ij YA (5)
F F
_ ZR.J \_ zA.

In the above, [Rij] is the matrix of direction cosines which
describes the rotation of the radome coordinate system with respect to the
antenna system; [Ti] describes the translation of the radome origin Or with
respect to the origin Oa of the antenna system. In fact, setting (xA = 0,

= = in E ion ho h iy T rese h
yA 0, z, 0) quat (3) shows that ( <’ Ty' z) represents the

location, in radome coordinates, of the antenna origin,

The matrix [Rij] can be expanded and written explicitly as

r— -
cos al cos Bl cos Yl
Rij = cos a2 cos 82 cos 72 (6)
cos o, cos B3 cos 73
. -
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where

o = angle between X and X, = L'XA’ Xo ‘ ' (7a)
32 = L XAI YR (7b)
a, = L. Xar Zp (7¢)
Bl = | YAI XR (74)
B, = L vur ¥ (7e)
By =L vr2p (7£)
Y, = L. Zpr Xp (79)
Yo T L— ZAI YR (7h)
Y3 = L oz, zp (71)

rXAT ('-X; FT}-J\ |
ool
\-ZAJ kLz L LT.J /
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(T '1 R
XA xR
T
F = F
yA Ri3 ¥R (%)
F F
. ZAJ - 2R
T . T .
where [R,.]  denotes the transpose of [R,.]; i.e., [R,.] = [R,.] since
1) 1) 1) J1

rows and columns are interchanged. Also, since [Rij]-is a unitary matrix,
its inverse is equal to its transpose.

To facilitate the specification of a particular antenna/radome
orientation, the reference coordinate system (%, vy, 2) is used. Trans-

formations from the reference system to the antenna system are described by

r r . =
XAW b r 51n6acos¢a
Ya = Yij y - r, 51n6a51n¢a (10)
Z ~ z - r_cosB
- A ' - a a -~

while transformations from reference system to radome system are described

by

- (% - 1 s )
xéw X rr51n6rcos¢r

YR = pij y - rr51ner51n¢r (1)
z LF - r cosb

. R.J r r -

where [Yij] and [pij] represent the rotations of the two systems with

respect to the reference system. When these two separate transformations
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are combined, there results

Rl = 1P43 iy ’ (12)
() (x - x)
X a r

Ty = pij Ya - Yr (13)
=3 Za ~ %y

where Xa, Yé, etc., are defined in Equations (10) and (11); e.g.,

X =r sinB _cosé_.
a a a a

4-5, Program Flow: See listing below and compare difectly to method
described above. Note that in GAM(I,J), the index I represents the row
‘number in [Yij], and index J represents the column number.
4-6. Test Case: See discussion in Chapter 2.
4-7. Reference
1. E. B. Joy and G. K. Huddleston, "Radome Effects on the
Performance of Ground Mapping Radar," Technical Report,
Contract DAAHO1l-72~C-0598, U. S. Army Missile Command,
March 1973.

4-8. Program Listing: See following pages.
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SURROUTINE CRIENT(RAWTHETAA LPHIA,RR,THETAR, FHIR,AGAM3A,

- ROTATEZ, TRANSL)

DIMENSTION ROTATE(3,3) . TRANSL ()

REAL GAM (342 4yRHD (3, 3)

DIMENSION T(€3)

PSI=THETAA-AGAM3A

GAM({1,1)=SINI(PHIA)

GAM{1,2)=-COS(PHTIA)

GAM(1,3)=0,

GAM (2, 1)=SIN(PSI)*SIN(THETAR) *COS(PHIA) +COS(PSI)*COS(THETAN)
- *COSU(FHIA)

GAM (242 )1=SINI(FSI)*SIN(THETAA) *SIN(PHIA) +COS (PSI)*COS(THETAA)
- ¥SIN(FHIM)

GAM (2, 3)=SIN(PSI)*CCS(THETAA) =COS(PSI)*SIN(THETAA)

GAM (341 )Y=CCS(PST)*SIN(THETAAI*COS (PHIA) -SIN(PSI)*CCS(THETAA)
- *COS(PHIA)

GAMI{342)=COS(PSIV*SINITHETAR) *SIN(PHIA)-SIN(PSI)*COS(THETAA)
- *SIN(PHIA)

GAM (3, 3)=C0S(AGAM3A)

RHO (141 )=COS{THETAR)*COS(PHIR)
RHO(1,2)=CCS(THETAR)*SIN(PHIR)

RHO(143)==SINITHETAF)

RHO (2, 1)=SIN(PHIR)

RHD {242)==CO0S(PHIR)

RHO(2,3)=(,

RHO {34, 1)=-SIN(THETARY *COS{PHIR)
RHOI(3,2)==SINITHETARI*SIN(PKIR)

RO (353)==-COSATHETAR)

XA=RA*SIN(THETAA)*COS(PHIA)

YA=RA*SINC(THETAA) *SIN(PHIA)

ZA=RA¥COS(THETADM)

XR=RR¥*SIN(THETAR)I*CCS(PHIR)

YR=RR¥SIN(THETAFI*SIN(PHIR)

ZR=RR*COS(THETAR)
COMPUTE THE ROTATE ARRAY BY VNULTIPLYING THE RHO ARRAY

ANG THE TRANSPOSE OF THE GAM ARRAY.,

T=1,43
J=193

CQ
(et o]
NN

O 0 NOULE W N




6L

[l

10

ROTATE(I,J)=C,
DO 2 K=1,3
POTATE (L +J)=ROTATE(I,J)+RHO (I 4KI*GAM(Jy K)
CONT INUE
COMPUTE TRANSL ARRAY
T(L)=XA=-XR
T(2)=YA-YR
T(3)=2A-2ZR
00 10 I=1,3
TRPANSLC(I)=C. 1
D0 10 J=1,3
TRANSLUEID=TRANSL(I) +RHO(I,J)*T(J)
CONTINUE
RETURN
END

39
40
41
42
43
Ll
45
46
47
48
49
50
51
52
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Chapter 5

SUBROUTINE POINT

5-1. Purpose: To transform a point P in antenna coordinates (XA' Ypr ZA)
to radome coordinates (xR, yR, zR), and vice versa.
5-2. Usage: CALL POINT (P, PT, ATOR, T, PO)
5-3. Arguments
P - Real (input) array of three elements representing

the Cartesian coordinates (cm) of the point to be
transformed; e.g., P(1l) = XA' P(2) = yA, P(3) = ZA'
PT - Real (output) array of three elements representing
the Cartesian coordinates {(cm) in the other coor-
dinate system; e.g., PT(1l) = XR' etc.
ATOR - Logical input variable which controls direction of
transformation: ATOR =.TRUE. for antenna-to-radome
(see Equation (4-3)); ATOR = .FALSE. for radome-to-
antenna coordinate transformation (Equation (4-8)).
T - Real (input) array of 3 x 3 elements representing
the ROTATE array computed by Subroutine ORIENT.
PO - Real (input) array of three elements representing
the TRANSL array computed by Subroutine ORIENT.
5-4. Comments and Method
_a. Subroutines required: Subroutine ORIENT must be called prior
to the first call to POINT so that T and PO are available.
b. For method, see Subroutine ORIENT in Chapter 4.
5-5. Program Flow: Compare listing below directly to Equations (4-3)
and (4-8).
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5-6. Test Case: See Chapter 2.
5-7. Reference: See Chapter 4.

5-8. Program Listing: See following page-.
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[ DO OO0

OO

SUBRRUTING FOINT(FFT+ATORS T4 PC)

THIS SMARGUTING TRANSFORMS & FOINT F GIVEN IN ONE COORDINATE SYSTEM
TO THE 32MZ FCINT GIVEN IN ANCTHER COORNINATE SYSTEM, PT,

THE TRANSFOYMATICNH IS ACCOMPLISHED USING THE TRANSFORM MATRIX T

THE LOGICAL VARIABLE ATOP DIFECTS WHICH TRANSFORM IS TO BE MADE

I¥ ATGR IS5 TFUE THE TRANSFORM IS FRCM ANTENNA COORDINATES TO

KANCME COCGRDINATES, IF ATOK IS FALSE THE OPPOSITE TRANSFORM IS MADE
T IS THE MATRIY OF CIRECTION COSINES WHICH Oc SCRIRE THE ROTATION

NF THE RGLDME CODROTANTE SYSTEM WITH RISPECT TO THE ANTENNA
LOORNINATE SY5TEM, PG IS THE ORIGIN OF THE RADOMS COORDINATE

3YSTIM IN ANTENMA CCGXDINATES

REAL PU3)4PT(3) 4 T(343),FPS(3),P0(3)
LOGICAL ATCK
IF(ATOR) GC TC 1

SONVEKRSION FFCM PADCME TO ANTENNA COORDINATES

PSL1)I=P (1) ~FO (1)

PS(2)=P (2)~FD(2)

PS(3)=P{3) =PI (3)

PTCLI=TUL 1) ¥PS(LI4T(2,1)¥PS(2) +7 {(3,10¥PS(3)
PTC2I=T UL, 2V *F3 (1) 4T 2,2V *FS(Z2) 4T (24,21%F5(3)
PTE31=T (1, 2)*FS (14T (2,3)%PS(2) T (3,3)1%PS(3)
RETURN

1 CONTIANUZ

COMVERSIUN FROVM LNTENNA TQ RADGHE COORDINATES

PTULI=T UL 1) FU1)4T {1, 21%B(2) 4T (1, 3)1%P(3)+PC (1)
PTUZI=T (2118 (1) 4T (2,2)1%P(2) 4T (2,3)¥P(3)+P0(2)
PTIII=TAI, VPP (LI +T (E,21%PL2)+T (3 43)*P(3) #P0(32)
RITURA

ENG

[y
OLOINIWE WM

P ek kA s
ODNO WV E WM

NWWWNMNONMNNNNNNNN
N O PORNIIUNLE WN D

W NN
(LI
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to the

Chapter 6

SUBROUTINE VECTOR

Purpose: To transform a vector F in antenna coordinates to radome
coordinates, and vice versa.
Usage: CALL VECTOR (V, VT, ATOR, T)
Arguments
v — TReal (input) array of three elements representing
the rectangular components of the vector to be

transformed; e.qg., V(1) =F __, V(2) = F

<A ya’ v(3) =

F _.

ZA

vT - Real (output) array of three elements representing
the rectangular components of the vector in the

other coordinate system; e.g., VI(l) = F etc.

xR’
ATOR - Logical input variable which controls the direction
of the transformation: ATOR = .TRUE. for antenna-
to~radome (Equation (4-5)); ATOR = .FALSE. for
radome—~to—antenna (Equation (4-9)).
T - Matrix ROTATE described in Chapter 4 as computed
by Subroutine ORIENT.
Comments and Method
a. Subroutines reguired: Subroutine ORIENT must be called prior
first call to VECTOR so that T will be available.
b. For method, see Subroutine ORIENT in Chapter 4.

Program Flow: Compare listing below directly to Egquations (4-5)

and (4-9).
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6-6.

6-7.

6-8.

Test Case: See Chapter 2.

References: See Chapter 4.

Program Listing:

See following page.
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L8

[N

-
’

GO0 ODOOOD™O !

DO

SUBROUTINI VFCTCRIV, VT, ATOR,T)

THIS SUSRDUTINE THRANSFORMS A VECTCR V GIVEN IN ONE CQOROINATE SYSTEM
TO T4f SAMI VECTOX GIVEN IN EANOTHER COORDINATE SYSTEM, VT,

THFE TRANSFORMATION Is AGCOGHMPLISHED USING THE TRANSFGRM MATRIX T

THE LCGICAL VARTAELE ATOR UITECTS WHICH TRANSFORM IS TO 3E MACE

IF ATOR IS TRUE THE TRANSFQORM IS FRCM ANTENNA COOROINATES TO

SENCOME COCRIINATES. IF ATO%X IS FALSE THE QPPCSITE TRANSFORM IS MAJE
T TS THE MATRIX OF UIRECTION COSINES WHICH DESCRIBE THE RCTATICN

JF THe PAD04EZ CCORDIANTZ SYSTEM WITH PESPEGCT TO THt ANTENNA
CUQFOINATZ SYSTEM,

RTAL V), VT3, T3+
L CGTICAL ATCR
IFCATARY GC TC 1

CONVERSION FRCM RANCHME TGO ANTENNA COORDINATES

VI(1)=T (1, 1)V +T (2, 1)%V(2) +T(3,1)¥V(3)
VTIZ2I=ST L, 208147 (2,2)%Y (2} +T(3,2)1%V(3)
VTE3)=T (1, 31¥V (1) #T (243) %V (21 4T (343 )1*V(3)
RITURN

1 CONTINUZ

CONVERSION FRQOM ANTENNA 7O RPADCME COORDINATES

VIIY=T(1,1)*% V(1) 4T (1,2)%¥V(2) +T (1,3 %V (3)
VTU2Y=T(2,11¥V01) 4T (2,2)%V(2) +T(2,3)*%V(D)
VTL3)=T (311 ¥V(1)4T (3,2)1%¥V(2)+T (343)1%V(3)
RETURN

END

Do ~NFPMNE WP
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7-1. Purpose:

Chapter 7

SUBROUTINE INCPW

To compute the rectangular vector components of the

electric field of a plane electromagnetic wave propagating in the

direction —kA and incident on the ZA=O plane of the antenna coor-

dinate system, where (xA=O, yA=O, zA=O) is used as the phase origin.

7-2. Usage: CALL INCPW (KA, EI, IOPT)
7-3. Arguments
KA Real input array of three elements containing

~

the direction cosines of the direction kA from

whence the plane wave emanates; e.g., KA(l) = kxA'
Xa(z) = kyA' KA(3) = sz where £A = ;A kxA + ;A kyA
z sz.
ET Complex output array of three elements containing
the complex rectangular components of the electric
field E, normalized such that |§J= 1.
IOPT Integer input variable which éelects one of four
polarizations (see Figure 7.1):
TOPT = 1 Elevation component only: E = ;
IOPT = 2 Azimuth component only: E = &
' ~ n" LT
IOPT = 3 Right hand circular: E = (¢ 1 + ¢ e72)/V2
~ ~ .l
TIOPT = 4 Left hand circular: E = (¢ 1 + € e—]E)//E
7-4. Comments and Method

a. Circular polarization is defined with respect to the direction

of propagation —kA: looking in the direction of propagation, the observer
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= elevation component
azimuth component

» <

E—Plane
€4 A
(s}
X
610 A >
€
H-Plane —*
6laa>0
z -
0dB
108 0 108
—40dB 1 1 ]
—— oa >0
—=0, >0

Figure 7-1 .Coordinate System for Far Field Patterns
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will see the tip of the E vector trace out a circle in a plane of equal
phase, with the direction of rotation being clockwise for right-hand
circular and counterclockwise for left-hand circular.

b. Spherical to rectangular coordinate transformations [l] are

used to define the rectangular vector components Ex' Ey' Ez in terms of

~

the transverse spherical components Ee' Ea' Let r =k = x kx +y ky +

~ ~

2 k  represent the direction from whence the plane wave emanates, where
z

kx"ky' kz are the direction cosines of r = k. Then, with reference to

Figure 7-1, there results

. . -k k . .k k
A -x 2 y 1 -k
y y
~ .k . =k '
= z + y(0) + z ——e— (2)
0 = X /=
-k 2 \/1—ky2
y

except at ky = + 1, where these equations reduce to
£ = -2 (3)
o = X (4)

The expressions for the field components for the four cases of
interest are summarized in Table 7-1. The corresponding magnetic field

can be obtained from

H = (E x k)/n {5)

7-5. Program Flow: Compare expressions in Table 7-1 directly to the

program listing below.
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Table 7-1. Rectangular Components for Four Cases of Plane Waves

B B B
IOPT x ¥ 2
1 k k /V1-k 2 1k 2 “k k /V1-k 2
Xy y y Yy z y
2 x 1k 2 0 x_/V1k 2
z y X y
LT T LT
ul ) r 2
3 (k -k k e2) /V2(1-k %) J2-x 27 (-k_~k k e72)/V2(1-k )
z Xy y Y X yz y

R e . LT
4 (k k keI 201k Y TNk 2VZ -k -k k e T2y a1k )
z Xy y y X yz y

7-6. Test Case: See Chapter 2.
7-7. References

l. D. T. Paris and F. K. Hurd, Basic Electromagnetic Theory,

McGraw—-Hill, New York, 1969, pp. 8-9.

7-8. Program Listing: See following pages.
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OOOO0O0O0

SUBROUTINE INCPW{KALETI,IOPT)
KA=NEGATIVE OF DIR OF PROP™N OF INCIDENT PLANE WAVE (ANT COOCRD)
EI= ELECTRIC FIELD VECTCR OF INCIDENT PLANE WAVE (QUTPUT)
IOPT=1 MEKES £ ELEVATICN GOMPONENT ONLY
=2 MAKES £1 AZIMUTH COMPONENT ONLY
=3 FOR RHC FOLARIZATION (DEFINED WRT DIR QF PROP OF INC WAVE)
¥4 FOR LHC
POWER OF INCIDENT WAVE IS UNITY.
COMPLEX SI(3),CIA
REAL KA(3) ,IE,IA
1 FCRMAT(/* ERRCR IN SUBR INCPW IQOPT= *,13//7)
COMPUTE ELEVATICN COMPONENT ONLY?
R=1,=KA(3) ¥¥2
IF (R.LT.0.) R=g.
R=SQRT (R)
RY=1.,-KA(2)%*2
IF (RY.CT.04) GO TO 5
GO TO 4§
5 RY=SQART(RY)
GO TO (10,20+32C+30)4I0PT
CORRECTIONS TGO LOCPS 10,20+30,40 MADE JAN 78 BY GKH,
10 TE=1.
EI(LV==-KA(2)*KA(1)¥ IE/RY
EI(2)=RY*IE
EI(N)==-KA(2)*KA(3)*IE/RY
RETURN
COMPUTE AZIMUTH CCMFONENT ONLYS
20 IA=1.,
ET(L)=+KA(3)*IA/RY
EI(2)=CMPLX(0ey04)
EI(3)==-1A*KA(1) /RY
RETURN
COMPUTE PRHC?
W IE=.707
CIA=CMPLX(00010)¥1E
IF (ICPT.EQ.4) CIASCMPLX(Ges=14)%1IE
EI(L1)=(-KA(2)*KA(1) *CIA-KA(3)*¥IE) /RY
EI(2)=CIA*FY

D OONDNE WM =

e
WN PO

P b b
O o ~NOU S
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1745

4G
5¢

60

76

ET(3)=(-KA(2)¥KA(Z) ¥CIA-IE*KA (1)) /RY
RETURN ‘

60 TO (50,€C,70,70),ICPT
EI(1)=(0.4C,)

EI(2)=(Ces D)

EI(3)=-KA(2)

RETURN

EI(1)=(1.4C)

EI(Z):(Ca’Co)

EI(3)=(0.490,)

IE=.707

CIA=CMPLX(J+s1.)*IE

IF (IOPTLEG.4) CIA=CMPLX(0.9=1.)*1IE
EI(I)=IF

EIC2)=(Lay ()

EI(3)==KA(2)*CIA

RETURN

£ND

39
40
41
42
43
4
45
46
47
48
49
50
51
52
53
54
55
56




Chapter 8

SUBROUTINE RECM

Purpose: To compute the complex voltages produced at the terminals

of the three channels of a radome enclosed monopulse antenna by

a plane wave of specified polarization and direction of arrival.

Usage: CALIL: RECM (PWI, KA, NX, NY, KXMAX, KYMAX, FGHZ, ROTATE,

TRANSL, SUMX, SUMY, DELX, DELY, VR, TABLE, SUPPRS, RSQMAX)

Arguments

PWI -

NX,NY -

KXMAX ,KYMAX-

FGHZ -

A complex array of three elements containing Ex'
Ey' EZ of the incident plane wave. See Subroutine
INCPW.

A real array of three elements containing the

direction cosines kxA’ kyA’ sz of the unit

~

vector kA which points from the antenna origin in
the direction from whence the plane wave emanates.
The even integer number of sample points in X,
and Yp directions used to represent the antenna
aperture fields.

Real variables which represent the normalized
folding wavenumbers corresponding to the sample
distances AxA, AyA according to AxA=A/(2*KXMAX),
AyA=A/(2*KYMAX), where A is the free space
wavelength.

Frequency in gigahertz of the monochromatic plane

wave.
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ROTATE , TRANSL~- Real matrices of direction cosines and translation

SUMX, SUMY

where

DELX,DELY

DAZX,DAZY

VR

distances used to carry out coordinate transfor-
mations of points and vectors from antenna to
radome coordinate systems, and vice versa. See
Subroutine ORIENT.

Two dimensional (NX X NY) complex arrays of the

x and y vector components of the antenna aperture
fields for the sum channel of a three-channel
monopulse antenna. The element at I=NX/2+1, J=NY/
2+1, corresponds to that at XA=O' yA=O in the

aperture. The general correspondence is given by

= - + (I-1)*A = - *A
xA Xmax ( ) xA (I-MIDNX) XA
= - + -1 *A = - *

Ya Y ax (7-1) Y, = I MIDNY) AyA

% _

ax AXA*NX/2 and Yoax - AyA *NY/2.

Also see Subroutine HACNF.

Antenna aperture fields for the difference ele-
vation channel.

Antenna aperture fields for the difference
azimuth channel. |

Complex array of three elements which on output
contains the complex terminal voltage of the
antenna for the sum, elevation difference, and

azimuth difference channels, respectively.
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TABLE - Logical variable required by Subroutine RXMIT:
if TRUE, a look-up table is used to calculate the
transmission coefficients of the radome wall; if
FALSE, these coefficients are calculated exactly
for each angle of incidence specified.

SUPPRS ~ Logical variable used to control the printing of
results from Subroutine RXMIT: if FALSE, a table
of power transmission and reflection coefficients
for equal increments in the sine of the incidence
angle is printed. The phases of the complex
voltage transmission and reflection coefficients
of the radome wall are also printed.

RSQMAX - Real variable denoting the maximum radius of the
antenna aperture such that any point (xA2+yA2)>RSQMAX
is omitted from the ray tracing and summation pro-
cedure used to compute the received voltages VR.

8-4. Comments and Method

a. Subroutines Required: TRACE, VECTOR, POINT, RXMIT, CAXE,

b. Method: The voltage VR induced at the terminals of a linear
antenna by a "received" electromagnetic plane wave ER' ER is given by

the Lorentz reciprocity theorem as [1]

VR(k) = C % (ET b'4 ER - ER b'4 ET) " nda (1)
S

A

where k is the unit vector which points in the direction from whence the

plane wave emanates and where ET' ET are the electromagnetic fields of
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the antenna as produced on the closed surface S which surrounds the

antenna when it is transmitting. The unit vector n is the normal to §

pointing into the region not containing the antenna, and C is a com-~
plex constant.

A A

When th i Z = = = ~Ax_A
n e closed surface S is the i 0 plane, n ZA' da dxAdyA XA yA

and the integral in (1) can be approximated by

k = A - - + 2
VRik) = Chx, Ay, ; 1% g Yy ™ Fry Prx ™ Frx Bpy * Bry Hpd )

and yA and where the rec-

where AxA, A¥A are equal sample distances in 3N

tangular vector components of the fields on the zA=O plane are given

generically by
=x E +y E_+ 2 E (3}

It is assumed that the fields ET' ET on S with the radome in place
are unperturbed by the radome. Also, ET is specified according to the
aperture distribution and polarization desired as is usually done in
antenna analysis. The corresponding magnetic field ET' however, presents
something of a vexation in that a non-Maxwellian aperture field can
result if ET is specified independently of ET and Maxwell's equation
§T=VXET/—jwu. On the other hand, specification of ET independently of
ET is tantamount to specifying magnetic and electric current sheets in
the antenna aperture which produce two independent solutions to‘Maxwell's

equations whose sum yields the total fields. This latter approach is
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taken here when the geometrical optics approximation

T (4)

is utilized, where n=Ywe ~ 377 ohms. Also, the magnetic field ER is

given by a similar formula

H =——"H (5)

~

where -k is the direction of propagation of the incident plane wave.
Combining the results of Equations (4) and (5) into (2), and desig-
nating the origin xA=yA=zA=O as the phase reference for the complex

fields, there results

vek) = ¢t § I, E. +Ej JE_ 1.

E_)Q+k ) - (k
1m Ry zZA

+ k E E
Y XA ETx YA Ty Rz

j 2
JJoam k

y XA Xy * kyA YA)}(G)

where

k=x k + k +z_ k (7)

k + k + k =1 (8)



and where the exponential factor accounts for the phase of the incident

wave. It is noted that kxA' kyA' sz are direction cosines of k; hence,
sz=cose, where 6 is the polar angle measured from the zA—axis in the usual
spherical coordinate system. The (l+cosf) term in Equation (6) is charac-~
teristic of the geometrical optics approximation of Equation (4) [2].
The other factors have been absorbed into complex constant C'.

The effects of the radome on the received wvoltage given by Equation
(6) are accounted for by tracing a ray from each aperture element AxAAyA
in the direction ﬂ and weighting the field ER associated with the ray by
the complex insertion transmission coefficients TL' T of the radome wall

as shown in Figure 8~1. These coefficients depend on the incidence angle

Bi and the plane of incidence defined by k and the unit inward normal np

to the radome wall at each point of incidence for each ray as illustrated
in Figure 8-~2. The ray tracing is carried out in the direction k, and
the direction of propagation of each ray is assumed to be the same on

both sides of the wall, an assumption that mandates use of the insertion

transmission coefficients defined for an infinite sheet by

B (®
T T E (B (9)

11

B ®

where the numerator in each case is the field at point P with the sheet
in place and the denominator is the field at the same point with the

sheet removed.
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Figure 8-1. Illustration of the Fact Receiving
Method of Radome Analysis
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Figure 8-2., Plane Wave Propagation Through an
"Infinite Plane Sheet
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The ray tracing is carried out in radome ccoordinates (xR, yR, zR),

and transformations of points and vectors from antenna coordinates (xA, Ypr

zA) to radome coordinates, and vice versa, are required. (These transfor-
mations are described in detail in Subroutines ORIENT, POINT, and VECTOR.)

Let (xA, Ypr 0) be the point in the aperture from which the ray (line)

~

emanates in the direction k. Convert this point and unit vector to the

radome coordinate system. Find the intersection (xRI, YRI' ZRI) of this
. . . / 2
ray with the inner radome surface as described by f( sz + YR z) =constant

since it is a surface of revolution (Subroutines TRACE and OGIVE). Compute

the unit inward normal nR to the surface

= - = + +
R [VE[ = *r "xr © YR "yr 7 %R "zR (11)

and convert it to antenna coordinates

(12)

A A

Use n, and k to determine the plane of incidence, angle of incidence, and

the transmitted plane wave Eé . Eé {(see Subroutine RXMIT) for this ray.

Substitute into Equation (6) and sum the results to obtain the following

expression for the received voltage

vp(k) = c" Y VY -1+ ko) (Epy Bgy *+ Ej

+ +
1o Tx Ry ETy) (kxA E k

1%+ ¥gn BBl ]

i 5 (13)
eJTS-(kxA xA * kyA YA)
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where a sign change and n_l have been absorbed into C".

Equation (13) with C"=1 is used in Subroutine RECM to compute the
received voltage on each of the three monopulse channels. Note that the
received field E% ’ g% at each point (XA, yA,O) is the same for all three
channels so that three summations can be carried simultaneously to maximize
computational speed. In each summation, only the data corresponding to
E , E for the sum, elevation difference, and azimuth difference channels

Tx Ty

need to be changed. Note also that Equation (13) can be rewritten as

X Co \ Cy o3 2T (k
E (n H + ERy)]e ;)

+
' —
Ry ERX) Ty Rx

XA XA J(:yA yA)

(14)

where n Hé , N H' are given by Equation (5).

\4 Rx
8-5. Program Flow
Line 12: Initialize the ray counter NRAY.

Lines 13-18: Compute A {(cm), k0=2n/k, AxA, AyA, and the midpoint

of the NX ¥ NY data arrays corresponding to XA=O' yA=O.

Lines 21-24: Set zA=O=PA(3) and precalculate kokxA and kO kyA'

A~ A A A~

k k
X

Transform kA to radome coordinates kR=xR

.I.
r 1 YR KR

~

Zo sz in preparation for the ray tracing.

Lines 26-28: Initjalize the summations VR(1l), VR(2), VR(3) for the
received voltages on the sum, difference elevation,
and difference azimuth channels, respectively.

Lines 30-33: Iterate for each aperture point xA=PA(l); precalculate

2
. £ .
XA and kokxAXA outside the subsequent loop for yA
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Lines 34-40: Iterate for each aperture point yA=PA(2). Compute

p: 4

2 . . . .
A +yA =RSQ: if point is outside RSQMAX, omit from

computation.

Lines 41-47: Transform (xA,yA,O) to radome coordinates and trace
ray to radome inner surface to find unit inward
normal ;R' If metal tip or bulkhead is encountered
by ray, omit this ray from computation of received
voltages.

Lines 48-52: Transform np to antenna coordinates and compute the

t 3 t P — 1 L} 1 .
ransmitted plane wave WT“(ERX, ERy' ERZ)

j 27 (k Xx. + k v.)
By Y

Lines 53-57: Compute phase PC=e XA A A "A" and apply

to Eéx, E;R, Eﬁz'

Lines 58-71: Form n E%EE% b4 ﬂ and use Equation (14) to add the .
contribution of thisg ray to the received voltage on
each of the three channels.

Lines 72-73: Increment ray counter and continue the iteration until
all aperture points have been used. Upon completion,
NRAY equals the number of rays used in the summation
for each received voltage.

Lines 74-75: 1If SUPPRS is false, write NRAY.

RETURN

END
Test Case: See Chapter 2.
References

1. G. K. Huddleston, H. L. Bassett, and J. M, Newton, "Parametric

Investigation of Radome Analysis Methods," 1978 IEEE APS Symposium

Digest, pp. 199-201, May 1978.
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8-8.

2. Microwave Antenna Theory and Design, ed. by S. Silver,

McGraw Hill, New York, pp. 161-162, 1949,

Program Listing: See following pages.
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SUBROUTINE RECM(PHAL s KA NXgNYy KXMAXy KYMAXy FGHZ,ROTATE » TRANSL »
$ SUMXeSUMY oDELXsDELY2DAZXsDAZY4 VR, TABLE+SUPPRSyRSQMAX)
C NOTE? HMXI,HYI MACNETIC FIELDS KHAVE NOT BEEN OIVIOED BY ETAQ.

LOT

C
c

[aNeNe

IF APERTURE PCINT IS CUTSIDE CIRCULAR APERTURE,

REAL KXMAX,KYMAX,LAMBDA,KO,ROTATE (3,43), TRANSL (3)
REAL KR(3) 4KA(3) 4NIR(3)4NIAL3) PR3 ,PA(3),PIRL3)
LOGICAL ATCR,RTOAWMETAL.TABLE +SUPPRS

COMPLEX SUMXINX gNY) ¢ SUMYINXyNY) sDELXINXoNY) sDELY (NXsNY)
COMPLEX DAZX (NXoNY) 3DAZY(NX ¢NY) 4VR(3)

COMPLEX PWI(3)oPHUT(3)4HPHTLI) ,PC

DATA ATORyKTOA/ «TRUE <y FALSE./

DATA TUPI/€.2831853071796/2ND0O/C/

NRAY=0

LAMBDA=29,97925 /FGHZ

KO=TUPI/LAMEDA

DX=L AMBDA/ (2*KXMAX)

OY=LAMBDA/ (2¥KYMAX)

MIONX=NX/2¢1

MIDNY=NY/Z72+1

RSQMAX IS THZ SQUARE OF THE MAXIMUM RACIUS OF THE APERTURE

PA(3)=0.

PHKA1=KO*KA (1)

PHKA2=KO*KA(2)

CALL VECTOR(KA,KR,ATOR,ROTATE)

VRIII=(04e W)
VRPLZI=1des W)
VE(3)=(04.40.)

ITERATE FOR EACH APERTURE POINT

DO 10 L=1,NXy1
PACL)=(L-MIDNX)*DX
APA=PA(L)I*PRAC1)
PAKA=PA (1) ¥*PHKA1
DO 10 M=14NY,1
PA(2)=(M=-MICNY)*DY

OMIT FROM CALCULATIO

WO NOUE W



B80T

OOOO0

o NeNy]

OO0 )

RSQ=A4PA+PA(2)*PA(2)
IF(RSN.GT.RSQ¥AX) GC TO 10
% CALL POINT(FA,PR,ATGR,ROTATE, TRANSL)

TRACE RAY TO FIRST INTERSECTION POINT
NOTE: ALL APERTURE POINTS MUST BE CONTAINED WITHIN RADOME.

" CALL TRACE (PR4KR+PIR,NIRsMETAL)
IF(METAL) GC TO 4G
CALL VECTOR(NIP,NIA,RTOA,ROTATE)

.TABLE OF XMN CCEFS IS FORMED ON FIRST CGALL TO XMIT

S CALL RXMIT(PWI,PWHT,KA,NIA,PIR,TABLE»SUPPRS,K0)
PHASE=PAKA+PA (2) ¥PHKA?
PC=CEXP(CMFLX (C s 0,+AMOD(PHASE,TUPI)))

PAT (1) =PHT (1) *P(
PWNT(2)=PUWT (2} *PC
PHAT (3)=PWT (3) *P(

FORM MAGNETIC FIELD

CALL CAXB(PRT I KAJHPHT)
COMPUTE CONTRIBUTICN TGO RECEIVED VOLTAGE ON EACH CHANNELER
VRIII=EYT*HPHT(L1)=EXT¥HPHT(2) +PWT (1) *¥HYT
3 ~PHT(2)*HXT+VR(I)
VRILI=VR (1 ) +SUMX Ly M) *(HPNT (2)-PHT (1) )=~SUMY (L, M) ¥*
$ (HPWT(1)+PHT (2))
VRIZ2I=VR(2)4DELX(L M) *(HPWT (2)=-PHT(1))=-DELY (L, M) *
B (HPHT (1)+PHT (2))
VRIZIVI=VR (3D +DAZX (La MY ¥ (HPWT (2)-PWT{1))-DAZY (L, M) *
3 (HPWT (1) +FUT(2))
GEOMETRIC OPTICS AFPROXIMATION IS USED ABOVE IN EXPRESSIONS

FOR REC™D VOLTAGES I.E.HT=ZHAT X ET IN APERTURE.

DIVISION BY ETAQ IS NOT DONE TO SAYE COMPUTATION TIME.
NRAY=NRAY+1

18 GONTINUE
NCO=1
IF (NOT.SUPPRS) WRITE(Es16) NKAY
16 FORMAT (™ NUMBER CF RAYS USED IN CCMFUTING APERTURE FIELD =",I10)

39
40
L1
42
43
&
L5
46
47
48
49
50
S1
52
53
54
55
56
S?7
58
59
60
61
62
63
6i
65
66
67
68
69
70
71
72
73
T4
75
76




601

.25 RETURN
END

77
78
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Chapter 9

SUBROUTINE TRACE

Purpose: To direct the ray tracing to find the intersection of a
ray emanating from a point inside the radome and the inner radome
surface. All dimensions are in centimeters. Radome coordinates
are implied.
Usage: CALL TRACE (PO, K, P, N, METAL)
COMMON/TRACC/Z2, Z1
Arguments
PO - Real input array of three elements containing the
point Po(xo, yo, zo\ from which the ray emanates.
K ~ Real input array of three elements containing the
direction cosines of the ray; i.e., K(1) = kx'
K(2) = ky' K(3) = kz.
P - Real output array of three elements containing
the point of intersection P(x, y, 2z) of the
ray and the inner radome surface.
N - Real output array containing the direction
cosines of the unit inward normal vector to the
radome inner surface at P(x, vy, z); i.e.,
N(l) = nx, N(2) = ny, N(3) = nz where
; = ;nx + ;ny + ;nz.
METAL - Logical output variable which indicates any
opaque surfaces encountered, such as a metal
tip or bulkhead: METAL = .TRUE. indicates that
P(x, y, 2) lies on such an opaque surface.
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z2 - Real input variable which designates the Zp
coordinate (cm} of the intersection of the ogive
section of the radome, and the metal tip (if any);
must be set in main program prior to the first call
to TRACE.
zl ‘ - Real input variable which designates the 2, coor-
dinate (cm) of the intersection of the ogive
section and the bulkhead of the air frame; must
be set in main program prior to the first céll to
TRACE.
9-4. Comments and Method
a. Subroutines required: O0OGIVE, TDISK, BDISK, OGIVEN, TDISKN,
BDISKN
b. The inner surface of the radome is represented by three distinct
surfaces as indicated in Figure 9-1: a planar bottom disk (bulkhead}, a
tangent ogive, and a planar top disk (base of a metal tip). The ray is
traced to the ogive surface first to find a point of intersection P(x, y, 2):
(1) 1f zl<z<22, then the ogive section of the radome was struck,
the unit normal is computed (OGIVEN), METAL is set to ,FALSE.
and the program returns.
(2) 1If z>22, it is assumed that the ray encountered the top disk
before impinging on the ogive surface (which actually extends

beyond the z. coordinate). The ray is then traced to find its

2

intersection with the plane 2z = 2z If the top disk is indeed

¢

struck, then METAL is set .TRUE. and n = -z is returned.
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INCIDENT
PLANE WAVE

ZgoT

Figure g-1, Tangent Ogive Radome Geometry.
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(3) 1If z<zl from (1) above, it is assumed that the bottom disk

was struck by the ray before it encountered the ogive surface.
The ray is traced again to find its intersection with the
plane z = zl. If this bottom disk is indeed struck, then
METAL = .TRUE. and ; = ; is returned.

The steps in (2) and (3) above appear to be unnecessary; however,
they are included to ensure that the ray tracing procedure works correctly
and to alert the user if it does not. For example, if incorrect variable
values are passed to the supporting subroutines, there is a good chance
that no intersection will be found with any one of the three surfaces, in
which case the following error message is outputted:

"THERE IS A HOLE IN THIS RADOME"

The message is continued with the values of (xo, Y zo) and (kx, ky' kz).
Incorrect values of geometry variables passed to the supporting subroutines,
and attempts to trace a ray from a point exterior to the inner radome
surface, will prompt the error message and alert the user of his mistake.
9-5. Program Flow: See listing below.

9-6. See Chapter 2.

9-7. References: None

9-8. Program Listing: See following pages.
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P> OO OO

YOy |9y

o

OO

oo

SUBFCUTINT TRACEZ(POsK 4P NWMETAL)

SURFQUTINT TRACE TRACES A FAY FrROVM LTS POINT OF QRIGIN POG(3)
TS ITS POINT CF INTERSECTIGN WITH THE RADOME WALL, PI(3)
THZ RAY TS TRAVELING IN THE DIRZCTICN K(3)

RELGL PO(3) 4KL2) 4P (3),4N(3)
LOGTICAL METALLKIT

SET SURFACE INTERSECTION Z VALUES

72 IS THCZ INTERSACTINN OF THFE TOF DISK ANC THE OGIVE

Z1 IS THE INTERSZCTION OF THE OGIVE AND THE BOTTOM DISK
SOMMCON/ZTRACCr 22,71

DETERMINE IF RAY INTEZRSELCTS WITH OGIVE SECTION
CALL CGIVE(FO4K,4P4HIT)
TFELNOTLHITY GO TC 2
IF(F(3) LT.21) GC TC 2
IF(F(3Y,GTZ2) CO TC 1
GC VO 140

DETZIRPMINE IF RAY INTERSELTS WITH TOP [ISK
1 CALL TOISKU(FOyKyPWHIT)

IF(HIT)Y GO 70O 11

GO TC 13

DETZRMINE IF =AY INTERSECTS WITH RPOTTOM OISK
2 CALL RDISK(FOK4PGHIT)
IF(HITY GO TO 12
13 WRITE(E,130)
107 FOPMAT (/42X,"THERE TS A HOLE IN THIS PADOGMc™)
WRITE(L 44713 PCyK
131 FORMAT (2X,"RAY STAPTZID HERC™,3G10 .44 RAY TRAVELED IN THIS DIRECTIO
BNy 3CG1T .4/ /)
RETURN
18 TALL OGIVFANL(P M)
METAL=.FALSE.
RETHRN

ODE® NN EWMN e
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Chapter 10

SUBROUTINE RXMIT

10-1. Purpose: To compute the complex rectangular vector components of
the electric field ET transmitted through the radome wall, where
it is assumed that the incident field Ei' Bi is locally a plane
wave and that the radome wall behaves as an infinite plane dielec-
tric sheet. The direction of propagation of the plane wave —i
and the unit inward normal ; at the point Pl(x, y, z) are used to
determine the angle of incidence and the plane of incidence of
the plane wave. All dimensions are in centimeters. Radome coor-
dinates are implied.

10-2. Usage: CALL RXMIT (PWI, PWT, K, NORM, Pl, TABLE, SUPPRS, BETA)

COMMON/TRANSC/DIN(6), ER(6), TD(6), TZ, WALTOL, N, NN,
D(6), ZB, TK
10-3. Arguments
PWI - Complex input array containing the vector com-
ponents of the incident electric field; i.e.,
PWI (Exi, Eyi' Ezi).
PWT - Complex output array containing the vector com-
ponents of the transmitted electric field; i.e.,

PWT (E E _, E ).
X

t’ Tyt’ Tzt
K - Real input array containing the direction cosines
of the direction from whence the plane wave

~ ~ ~

emanates; i.e., Kk , k , k) =xk + vk +2z k.
X Yy z X v z
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NORM

rl

TABLE

SUPPRS

BETA

DIN,
ER,
™,

D,

Real input array containing the rectangular com-

-~ A~ -~

ponents of the unit inward normal n = x n + ¥y ny
b4

A~

+zn; i.e., NORM (n , n , n ).
Z b4 v z
Real input array containing the coordinates (x, vy,

of the point on the radome inner surface where

the transmitted plane wave is assumed to emerge;

i.e., Pl{x, v, 2).

Logical input variable: if TRUE, a look-up table
is used to compute the insertion voltage trans-
mission coefficients Tl' ﬁ] corresponding to the
angle of incidence Si; if FALSE, Tl’ q, are each
set to unity to simulate the absence of the radome.
Originally, if TABLE = .FALSE., the coefficients
Tl' ﬁl were computed at each point Pl(x, y, z) by
a call to Subroutine WALL as in the case of the

wall configuration being dependent on position

(temperature variables, prescription tapers, etc.)

Logical input variable: if FALSE, a table of trans-

mission coefficients versus sinei is printed.
Actually,lTl'Z, lTle, |Rli2, IR!”2 and the phases
of Tl' Tll, Rl' R” are printed.

Real input variable B = 2n/)A, where A is the free
space wavelength (cm) .

Real input arrays which specify the thickness in
inches, relative dielectric constant ér' and loss
tangent tan§ of the N layers comprising the multi-

layer radome wall. Layer 1 is the first layer on

118
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N, the exit side of the wall; layer N is the first

NN layer on the incident side. ER(NN), TD(NN)
specify Er, tané of the medium in which the N-layer
structure is immersed (normally, free space so that
ER(NN) = 1.0, TD(NN) = 0.0). The real array D
contains, after the first call to RXMIT, the

thickness in centimeters of each laver.

TZ, - Real variables used previously to specify longi=-
WALTOL, tudinal and circumferential variations in wall
ZB, TK thickness and in the tolerance on thickness. These

variables are not active in this version of RXMIT.

10-4. Comment and Method

a. Subroutines required: WALL, AMPHS, AXB

b. The transmission of an incident plane wave through a plane

. . . , -12

dielectric sheet immersed in free space (eo = 8.854 X 10 farads/m, uo =

=7 . . . . . :
47 X 10 henries/m) may be described in terms of the insertion voltage

transmission coefficients

E._(PY)
Tt
I, =% (P") (1)
il

Pl
Bl P )

== (2)
Il Ei”(P )

where Etl' EtII are the transmitted fields at P' with the sheet in placé,
and Eil' Eillare the incident fields at the same point in the absence of
the sheet. The point P' lies on the colinear extension of the incident

ray and is located on the exit side of the sheet.
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Since the transmission coefficients TL, T” are different, it is
necessary to resolve the incident electric field Ei into perpendicular
and parallel components; i.e., vector components which are perpendicular
to and parallel to the plane of incidence (PQOI) defined by ﬁ and ;R as

illustrated in Figure 10-1. The unit vector perpendicular to the POI is

given by

k = ry = = (3)

The incident electric field may be written as

= .+ L+ . =k .+ k ) 5
Ei xEXl yEYl z Elz i Ell I El“ (5)
where
E. =k <+ E, =k E., +tk E ., +k E | (6)
il 1 -1 xl x1 vyl vy1i zl z1
E.,=k,*E. =k E. +k E . +k E . (7)
ill [l = x|l Txi vl Tyi z|| "zi

r In terms

and where kxl' kx|r etc. are the vector components of kl, k

of the coordinate system (x, v, 2),
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EiLalL

A
Ty EjLa)

A A A AA
T11 Ei11 811 a; = kxng/| kxng|

511 = Q_LXQ

Figure 10-1.plane Wave Propagation Through an
Infinite Plane Sheet
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~

E. = x(E .
—i xil

where, for example

10-5. Program Flow

Lines

Line 9:

Lines 10-12:

Lines 15-16:

Lines 17-59:

+ E . + E . + E . + E . + E . 8
Xl|P v yil ylH) z( zil 21IP (8)
E . = «+k E =k .
xil X 1 il xl Ell (9)
=k T BE, + k,, T, E. 10
= L 71 il [ 71 (10)

+T,E ) +z(T E., +T,E , ,)
[l “yill 1 Tzil | Tzi|

(11)

yil

Comments
Set NANGLE = number of entries used in the look-up

tables for Tl, TI

NDO causes initialization of variables and the com-
putation of the look-up tables on the first call to
RXMIT (lines 11-59).

Convert layer thicknesses from inches to centimeters.
Compute 1ook;up tables for Tl, T|| at NANGLE points
spaced equally in sinei over the range (0, 1). If
SUPPRS = .FALSE., print a table of transmission co-
efficients (every fifth point only). If ER(1l)< 1.05,
set AIR = .TRUE. and compute unity transmission coeffi--

cients for the "air" radome (for testing).
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10-6.

10-7.

10-8.

Lines 60-78: Compute sinei.

Lines 79-86: Interpolate in table to compute TL' ﬁlat sinei.

Lines 87-100: Normalize the vector kl'

Lines 101-112: Compute E . , E, , E . .
xil yil zil

Lines 113-124: Compute E |’ E

xi|]” Tyill’ Bl

Lines 125-129: Compute Ext' Eyt' Ezt and return.

Lines 130-136: If sinei is out of range of the table, write error
message, set TL' T” to unity, and continue.

Test Case: See Chapter 2.

References: None

Program Listing: See following pages.
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96

c

vt

v

115

116

91

32

SUBROUTINE RXMIT(PHI,PWTy»KsNORM,P1,TABLE,SUPPRS,8BETA)
COMPLEY PWI(3)PHT(3) 2EZPER JEZPAR '

COMPLEX EXPARLEYPAR,EXPERLEYPLER,,TPARI ,TPERI ,O0T RPERI,RPARI
REAL K2V, NCRFMUI) JKPER{3I) 4P LI3) JAMPLL) 4 PHS(4) 4 KPAR(3)
LOGICAL TABLE,SUPPRS,AIR

COMPLEX TPER(Z25C),TPAR(250) sRPERs RPAR .
CCMMON/TRANSC/DINUEY S ER(S) o TO (B D)o TZ 4 WALTOL ) Ny NNoD(6),52ZB,TK
DATA P1/3.1L15928%/

DATA NANGLE/2SG/

DATA NDO/s0O/

IF (NDG.EQ.1) GO 70 5

NDC=1

AIR=,FALSE .

IF (ER(1).LT7.1.05) AIR=.TQUEC

06 90 I=1,NN

D(IV=DINI(I)*2.54

PIOZ2=PI/2.

C FORM WALL TRANSMISSION TABLES

MANGLE=NANGLE=-1

ANGLE=MANGLE

RAD=180./P1

IF (.NOT.SUPPRS) HWRITE(E,115)

FORMAT (/™ ANGLE",TX;"TPERI'*Z"QBX’"TPAQI"Z"QBX,
$ "RPERI**2%,8Xs"RPARI**2"//)

FORMAT (1X3F5.25, b (3IXsF5.3,F8,1))

DO 100 I=1,MANGLE

SINE=(I-1)7ANGLE

IF (AIR) GC TC 91

CALL NALL(EETA9SINFQD’tR’TD;N.NN'TPER(I)'TPAR(I)’RPERsRPAR)
G0 TO 92

TPER(IN=(1440.)

TPAR(IN=(1.,0.)

RPER=(B"GI,

RPAR=(0.574) ,

IF (HOD(I.S).NE.U) GO 7O 1€1

OO N £ W



Q2T

CALL AMPHS(TPER (1) AMP (1) ,PHS (1))
CALL AMPHSU(TPAR{IN,AMP(2),PHS(2})
CALL AMPHSIRPERLAMP(3) ,PHS(3))
CALL AMPHS(RPAR,AMP (40 ,PHS(4))

C CONVERT TO POWER XMN COEFFICIENTS

OO0

e NeRe

00 95 L=1,4
95 AMP (LY =AMP (L) *¥*2
IF (.NOT,SUPPRS) WRITE(6,y116) ANG,((AMP(J)yPHS(J)) sJ=1,4)
100 CONTINUE
XGC=0.
IF (FR(1).LT+1.G5) XC=1.40
TPER (NANGLE) =CMPLX(XC,sC.)
TPAR(NANGLE)=CMPLX(XC,sC.)
ANG=9C,
CALL AMPHS(TPEF (NANGLZ) AMP (1) 4PHS(1))
CALL AMPHS(TPAR(NANGLE) 4AMP (2),PHS(2))
CALL AMPHS (RPER,AMP (3),PHS(3))
CALL AMPHS(RPARAMP (4) 4PHS(4))
IF (.NOT.SUPPRS) WRITE(6511E) ANG. ((AMPIJ), PHS(J)) sJd=1,+4)
IF (JNOT.,SUPPRS) WRITE(6,105)
105 FCORMAT(//* TABLE OF XMN COEF., IS FORMED™//)
5 CONTINUE

FIND VECTOR NORMAL TO NORM AND K
CALL AXB(KsNORM,KPER)
FIND MAGMITUE OF KPER (THIS IS ALSO THE SINE OF THE INCLUDED ANGLE)

SINE=SORT(KFER (1) ¥KPER(1) +KPER(2) *KPER(Z) +KPER(3VI*KPER(3I))
IF(SINE.GT+1.,0) SINE = 1.0

IF(TABLE)Y GC TO 25

TPERI=(1.+40.)

TPARI=(1.,3)

RPERI=(0e,40.)

RPARI=(G.s 0.

GO 70 3

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
56
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76



9¢1

OO0 OO0

OO0

OO0

OO0

USE TABLE OF TRANSMISSION COEFFICIENTS

25 RI=SINE*MANGLE+1.C
ILt=RI
IF((IL.GE.NANGLE) ,OR. (IL.LT,1)) GO TO 50
ITH=IL+1
X=RI-IL
TPERI=(1.0=-X) *TPERC(IL) +X*TPER(IH)
TPARI=(1.0-X) *TFAR(IL) +X*¥TPAR(IH)

TEST FOR NORMAL INCIDENCE
3 IF(SINE.T.1E-10) GO 7O 2
UNITIZE PERPENDICULAR VECTOR

SEC=1/SINE
KPER(1)=KPER (1) *SEC
KPER({2)=KPER(2) *SEC
KPER (3)=KPEK (3) *SEC
G0 70 1

2 KPER({1)=1.0
KPER(2)=0. 4
KPER(3)=0.¢C

1 CONTINUE

FIND DOT PROCLCT OF INCIDENT ELECTRIC FIELD WITH KPER
DOT=PWI(1) *KPER(1)+PHI(2) *KPER(2) +PHI(I)I*KPER(3)
FIND PERPENDICULAR COMPONENTS OF ELECTRC FIELD
EXPER=BOT*KPER(1)
EYPER=DOT*KPER(2)
EZPER=DOT*KPER(3)

FIND FARALLEL CCMPONENTS OF FLECTKRIC FIELD

77
78
79
80
81
82
83
84
85
86
87
88
89
94
91
92
93
94
95
96
97
98
99
1090
101
102
163
1904
1065
106
107
108
109
110
111
112
113
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Lzt

OO0

EXPAR=PWI(1)=-EXPER
EYPAR=PWI(2)-EYPER
EZPAR=PWI(3)-EZPER
CALL AXB(KPERyK4KPAR)

KPAR IS A UNIT VECTOR AS REQUIRED

DOT=PWI (1) ¥*KPAR (1)+PUI(2)*KPAR(2) +PRI (3)*KPAR(I)
EXPAR=0D0T*KPAR(1)
EYPAR=0OT*KPAR( 2}
EZPAR=DOT*KPAR(3)

FIND X AND Y COMPONENTS OF TRANSMITIED FIELD

50
55

PRT(L)=EXPAR*TPARI+EXPER*TPERI
PHT(2)=EYPAR*TPARI+EYPER*TPERI

PRT (3)=EZPAR¥*TPARI+EZPER¥TPERI

RETURN

WRITE(6455) SINE

FORMAT (/10X SINE="F10.74* IS NOT IN THE WALL TABLE */)
TPERI=(1.50.)

TPARI=(1.+0.)

GO 10 3

ENO

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
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1i-1.

11-2.

11-3.

Chapter 11

SUBROUTINE WALL

Purpose: To compute the transmission and reflection coefficients

of a N-layer dielectric sheet having thicknesses dn, dielectric

constants Er

0’ and loss tangents tan(Sn for each layer when a plane

wave is incident at angle 6..
1

Usage: CALL WALL (BETA, SINE, D, ER, TD, N, NN, TPER, TPAR,

RPER,

Arguments

BETA

SINE
D,
ER,

TD

NN

TPER, TPAR

RPER, RPAR

RPAR)

Real input variable

2n/A, where A is the free

space wavelength.

Real input variable

sin 9..
i

Real input arrays containing the thickness (cm),

dielectric constant €. and loss tangent tand$ of

each layer.

Integer
layers.
Integer
Complex
voltage

ponents

input variable equal to the number of

input = N+1.
output variables equal to the insertion
transmission coefficients for the com-

of the incident electric field perpendi-

cular to and parallel to the plane of incidence,

respectively.

Complex

output variables equal to the reflection

coefficients Rl, R”.
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11-4. Comment and Method
a. Layer 1 is the first layer on the exit side of the panel; layer
N is the first layer on the incident side. Tl, T” have the same value for
either side of the panel being the incident side; however, Rl, RH are
different (in phase) for the two cases.
b. The details of the method are presented in Reference 1 and are
reproduced in Appendix E.
11-5. Program Flow: See Reference 1.
11-6. Test Case: See Chapter 2.
11-7. References
1. E. B. Joy and G. K. Huddleston, "Radome Effects on the
Performance of Ground Mapping Radar," Technical Report,
Contract DAAH01-72-C-0598, U. S. Army Missile Command,

March 1973.

11-8. Program Listing: See following pages.
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DO OTTOOO00O0

OO OCO0

a0

O

[ ]

SUEROUTING WALL (BETAGSTNE 3D 4ERy TO oNWNNy TPER ¢ TPARyRPER S RPAR)
SUZROUTINL WALL COMPUTES THC TRAMSMISSION AND REFLECTION
COTFFICIENTS FGR AN N LAYER, PLANY CISLECTRIC PANZL FOR PLANE
WAVE INCIDJZNT AT SINLANGLZ)Y FOR PERPENDICULAR AND
PLRALLEL POLARIZATIONS.

PALARAMETERS OF THE WALLt N= THE NUMBER OF LAYERS
NN= N+1 REQUIREQC TO DIMENSION ARRAYS
D= THICKNESS OF EACH LAYER IN GENTIMETERS
Tk= FelL ATIVE DIELECTRIC CONSTANT OF EACH LAY
T0= THE LOSS TANGENT FCR EACH LAYER
TNLTN2 ARZ THE NCRMAL VOLTAGE XMN COEFFICIENTSS TPER,TPAR ARE THE
INSERTICN VYOLTEGEZ TRANSMISSTION COEFFIGCIENTS. IT IS IMPORTANT TO
NOTE THAT THE xWN CQOEFS ARE THE SAME FOR PLANE WAVE INCIDENT FROM
EITHER SIDE OF THE STRATIFIED OIELECYRIC PANEL IMMERSED IN FREE SPAGE:
HOWEVER, THE REFLECTICN COEFS ARE NOT,., THAT IS, FOR COMPUTING RPER,
RPAKy THE CKNIFRING OF FRINN)TDINN) IS IMPORTANT WITH LAYER 1 BEING
THE FIRST LAYZF ON THE EXIT SIDEs LAYER N BEING THE FIRST LAYZIR ON THE
INCIO=ENT SIDE. LAYZR NN AND LAYER {0 ARE JUST FREE SPACE LAYERS
OF SEMI-INFINITF DFFTH,
EaGyR1,R2, ARZ ARRAYS USED IN THE SUBFOUTINE HAVING NN DIM™L LIMITS

COMPLEX FAc) 4C(E)4R1(0)4RP2(E) GGy EC+RRLWRR24AALL,AAZ 4 X1,4X2,

BT o XU g YLaYZa Y3, YUoUlyUZsU3 g Lie s VigV24aVIZ Ve 4P 14P23P3+PLyQ1+02+03,0Q4

COMPLEX TPRER,TPARLRFERGRPAR U V4TN1,TN2

DIMENSICHN cRONN) o TOINNY WD (N}

ERINN)=1,:

TOINNYI=],

N0 50 I=14NN

57 E(L) =CHMPLXA{ER{TI) y~ER(II*TSLI))

AB=RETA® ), 7C7 7071707071

CALCULATE TOTAL THICKNESS OF wWALL IN CM
DYOTauL=4d.0C
00 200 I=t.N
203 OTOTAL=DTOTAL+D (D)

<

IS THE SINE OF THE ANGLE SQUARED
IS THEZ COSINT GF THE ANGLE
S=SINEZ¥SINE

o

OO NON W -



76

77
78

ZET

176
177

793

8¢

£1

84

85

ER(1I*TL (1)
SORTALAD*¥AD+FT*LT )
F(SR-AD) 76476477

SART(1.0-5)

A=AB*SQRT(SR=-ADY
B=AQ¥SQRT(SR+ LD)
GLi)=CrPLX (A, B)
GO=CHPLX(( L2 2ETAXC)
FE=1.1

Sum=1,
SUM=SUM+D (1) /7SQRT(AD)
RR1=(G(1)-CGY /7 (G{1) +GG)
RRZ2=A(EE*GUL)=-E(1)*GG) /7 (EC*G L)+ (1) *G6)
DO 84 I=1,N

II=1+14

AD=€R(II)~-S
ET=EZRCIDI*TC(IID

IF (T=N) 1764177,177
SUM=SUM+D(II) /SQRTCAD)
CONTINUE

SR=SART (AD*ANFET*ET)
IF(SP-A0) 79,79,4A¢

A=(,

GO TC R1
A=LB¥SQRT(ER-4D)
A=ARXSQRT(SR+ AD)
GIII)Y=CMPLX(A,B)
RICDI=(G(II)=GCINN/(G(II) +G (1))

R2ZII)I=(E(DI*GUIINI-E(I}*GU(I V) Z7(ECI)*GUII)+ECITI)*G(I))

SUM=35%SUHM
Abi=1.0-R1
AAZ=1.0-RR2

DO 8% I=14N
AAL=AA1%*(1,0-R1 LI
Af2=pA2*%(1.0~R2(1))
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€€T

95

124

Aft=1.,C0/7 ALR1
La?=1,0/7 ARZ
J==G6(1)*0(1)
V=G(1)*2 (1)
Y1=CExP (W)

X 4= CEXP (V)
X2==RR1¥X4
X3==RRk1*X1
Yi=x1

Yia=Xg

Y2=-RR2%Yy
Y3=-RR2%*V1

D0 135 I=24NN

IF(I-NN) 3E5,90,1

Ui=1.¢C
U2==F1(N)
U3==rR1(N)
Uag=1,C

Vi=1.:¢
V22=RZ(N)
V3==32 (N}
Vl*:ior’

GC TO 1C:
I1I=I-1
U==G{I)*C(1)
V=G(I)*3(])
Ui=CaxrP (W)
UL=0IXP ()
J2==-k1(I1)*Uu
U3==-k1(II)*Ut
vi=Uuti

Va=Uh
V2==R2(II) *vs
V3==-R2(II)*y1
Pil=X1*U1+X2¥U3
Be=X1¥Uz+X 2¥%UL
PI=X3¥UL+X4*Y3
PL=X3IFU2+xX4*U4
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78
79
80
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84
85
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90
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92
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9%
35
96
37
98
99
i00
101
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103
104
105
106
107
108
109
1190
111
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VET

(@]

105

RI=YL*FY L+Y 2RV R
Q2=Y1¥y2eYZ?yy
Q3=Y3I¥Y14YLFYR
Qu=Y3¥Y2+¢Yaryl
X1=P1

X2=F2

X3=P3

YL=Ps

Yi=11

¥2=0Q2

¥Y3=Q3

Yu=Q4
RFFR==X3I/ X4

TN1,TN2 ART NORMAL VOLTAGF
RPAG==YI/Yis
TNI=(X14X2*RPER)*¥A41
U=sCHMPLX (T, 4=SUM¥FEITA)
U=sCEXP(U)

TPERLGTOAR HERE ARE VCLTAGE
TPED=TN1¥*Y
TNZ=(YL+Y2*%KPAR)*AA?2
TELR=TND ¥

XMN CCE FFICIENTS.

XMN COTFFISTIENTS AT £XIT PGINT OFf RAY,.

“ODIFY TRANSHISETICN CC=FFICIZNTS FOR INSERTIUN

342

UzOMPL X (0 L ,BETAYJTCTAL*C)
U=CeEX2 (U)

TPIR=TNL*Y

TrAR=TNZ®U

CONTINUZ

RETURN

END
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12-1.

12-2.

12-3.

12-4.

12-5.

12-6.

12-7.

12-8.

Chapter 12

SUBROUTINE AXB

Purpose: To compute the real vector cross product C = A X B, where

A, B, C are expressed in rectangular components.

Usage: CALL AXB(A, B, C)

Arguments
A, B - Real input arrays containing the rectangular com-
ponents of A= xA +y A + 2z A and B; i.e.,
- X v z —
B(B B B ).
A(A,, B, B), B(B,, B, B)
C - Real output array containing the rectangqular com-

ponents of the vector C = A X B; i.e., C(Cx, Cy, CZ).
Comment and Method
a. Both input vectors must be real.
b. The computation of C = A X B is elementary.
Program Flow: See listing below.
Test Case: None

References: None

Program Listing: See following page.
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9LT

G

SUsRCUTIND AXE(Ly£,0)

SCMPUTE VESTCR €REO3S PRCDUCT CF A GRISS By
DIMENSTIN L4(3)4E(3) ,T(3)
COI=L(2V¥E(3)-h(3)¥3(?)
SU2Y=L(3Y*FE(L)-202)*83(2)

DU3V=L (L)IREL2)=A(2V*B (1)
RETURN
=D

RESULTING IN C

® NV WM

e e A L S A A S o ot 5



Chapter 13

SUBROUTINE CAXB

13-1. Purpose: To compute the complex vector cross product C = A X B,
where A is a complex vector and B is a real vector expressed in
rectangular coordinates.

13-2. TUsage: CALL CAXB (A, B, O

13-3. Arguments

A - Complex input array containing the rectangular
components of the vector A = ; AX + ; Ay + ; Az;
i.e., A (Ax’ Ay, AZ).

B — Real input array B (BX, By' Bz) representing
the vector B.

C - Complex output array C (CX, Cy' Cz) representing
the vector C = A X B.

13-4. Comment and Method: None

13-5. Program Flow: See listing below.

13—6. Test Case: MNone

13-7. References: None

13-8. Program Listing: See following page.
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S

()

-

~ R
Dax

AN

SURRCUTINI CAXBIA,3,()

9 COMPUTEZS VFCTCOR CFRUSSE PROLULT

COMPLEX AND E IS RzAL,
COMPLEX AL2),C(3)

AL 3(3)
1)=A4(2)%B(3)-4A(3)*A(2)
ZY=A(V*E(LV-4 (1) *B(3)
=2 (DIFE(2)-A02)%3 (1)
TURN '

b

- o

b
c
C
R

Z 0

AXB=(C,

WHERE A& AND C

-

S PO NPT & NN -



14-1.

14-2.

14-3.

Chapter 14

SUBROUTINE RECBS

A

Purpose: To compute the angle of arrival k of a plane wave on a

monopulse antenna which yields an electrical boresight indication

which, due to the radome, may be different from the mechanical

boresight along the z axis of the antenna. The antenna aperture

lies in the xy plane. All dimensions are in centimeters. Antenna

coordinates are implied.

Usage: CALL RECBS (SUMX, SUMY, DELX, DELY, DAZX, DAZY, NX, NY,
LMAX, NS, IOPT, VR, DMRAD, ROTATE, TRANSL, FGHZ, KXMAX,
KYMAX, TABLE, SINOS, K, AZTM, ELTM, RSQMAX, VMAX, SMAX,
SUPPRS)

Arguments

SUMX,. SUMY,- Complex input arrays of NX by NY elements each

DELX, DELY, containing the aperture distributions of the

DAZX, DAZY monopulse antenna. See Subroutine HACNF.

LMAX - Integer input variable which controls the maximum
number of iterations that will be done to find
the electrical boresight within the tolerance
specified by DMRAD.

NS - Inactive integer variable.

I0PT - Integer input variable which selects the polari-
zation of the incident plane wave. See Subroutine
INCPW.

VR - Complex array of three elements representing the

received voltage on the sum, elevation difference,
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DMRAD

ROTATE,
TRANSL,
FGHZ,
KXMAX,
KYMAX,
TABLE

SINOS

AZTM,

ELTM

and azimuth difference channels of the antenna,
respectively (output).

Real input variable equal to the tolerance to which
the electrical boresight in milliradians is to be
computed; i.e., 0.1 milliradian.

Variables required by Subroutine RECM.

See Chapter 8.

Real variable equal to the sine of the angle eos
{(measured from the z-axis) in the ¢ = 45° plane
(¢ measured from +x toward +y) at which the first
target return arrives; e.g., eos = 3 degrees.
Real output array containing the direction of
arrival of the final target return: i.e.,

K(kx, ky' kz).

Real output variables equal to angles (mrad) in
the azimuth and elevation planes of the antenna
which specify the direction of arrival of the final
target return. If £ is the unit vector pointing
from the origin in the direction of the final
return, then the orthographic projection of this
vector onto the xz-plane makes an angle AZTM with

the z-axis; its projection onto the yz-plane

makes an angle ELTM with the =z-axis.
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RSOMAX ~ Real variable needed by Subroutine RECM. See
Chapter 8.

VMAX — Unused.

SMAX - Real output variable equal to the magnitude of
the received sum voltage for the final return;
used to compute loss in antenna gain.

SUPPRS ~ Logical input variable which controls the compu-

tation and printing of additional antenna outputs
around the boresight direction. If TRUE, the
complex voltage outputs of the difference channels
will be computed at one milliradian increments over
the range *3.0 mrad, centered on the direction of
the final target return.

14-4. Comments and Method

a. Subroutines required: AMPHS, RECM, INCFW.

b. Subroutine RECBS uses a linear tracking model to determine the
direction of arrival i = ; kx + ; ky + ; kZ of a plane wave which will
produce null indications in the elevation and azimuth difference channels
of the monopulse antenna inside the radome. Subroutine RECM is used to
compute the received voltage on each channel for the specified polarization

(IOPT) and direction of arrival.

The first target return is made to arrive from the direction

0 S t oy . 2

k., = x sing + v sind + zv¥1-2sin © (1)
os os os

to produce outputs
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Vanz
UAzl = Im v (2a)
z
v
_ AEL |
UELl = Im v, 5 (2b)

where V_, V

5 AEL' VAAZ are the complex voltage outputs of the three-

channel outputs of the three-channel antenna. The second return is made

to arrive from

~ ~ ' ~ - ~ S

k. = x(-sin6 ) + y(-sinf ) + zv¥1l-2sin"6 (3)
os os os

t d .
o produce outputs UAZ2’ UEL2

Construct a linear model for each channel independently using

the slope/intercept equation for a line; i.e.,

Upz = Maz ¥y * Pag (4a)

— b

Upp, = Mpp X, *+ Py (4b)

where

_ - - 5

Mz = Wagr = Uaga)/ yp — Kyo) , (5a)
_ _ - b

Mpr, = (Ugp UELZ)/(kyl ky2) (5b)
= - k 6

bAZ UAZl MAZ %l (6a)

Per, = Vrn1 T ML K1 (6b)
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Use this model to estimate the values of k , kK that will make U = U
x' Ty AZ EL

= 0; i.e.,

kX = - bAZ/MAZ (7a)

ky = - bEL/MEL (7b)

where the value of kZ follows from

The third target return is made to arrive from this direction and

the values of UAZ' UEL are computed via Subroutine RECM. Now, according

to the last linear model, a value of UAZ within the range

lu M, sinb . +b (9)

AZ[ AZ 1 AZ

would indicate that the null has been found within the tolerance etol

(=DMRAD) specified. If this tolerance is not satisfied for both

channels, then the process is repeated until it is or until LMAX is ex-

A A

ceeded. In continuing the iterations, k2 becomes k, and the estimated

~

point becomes kz.

On the last return, the direction of arrival in specified by k.

The angles in the azimuth and elevation planes are given in milliradians

by

_l k
AZTM = sin (—X-z—) - 1000 (10)



2

k

ELTM = sin © (——Y—) 1000 (10b)
1-k

X

The monopulse error slopes, M M__, are also computed in volts/degree

AZ' TEL
according to
MESAZ = MAZ/57'3 (lla)
MESEL = M 57. 11b
S EL/ 3 ( )

where the maximum amplitude SMAX received on the sum channel is assumed
to be one volt for normalization purposes.
If SUPPRS = .FALSE., additional outputs around the boresight

~

direction k are computed. The directions are specified by the angle B8

~ ~ ~

k. = x (sinf + k) + y(sing + k) + z k (12)
1 X v z
where 0 varies over the range *3 mrad. At each direction, the monopulse

ut
outputs UAZ' U

b, are printed as well as the complex monopulse tracking

functions shown in the brackets of Equations (2). It is noteworthy that
the phase of the tracking function will change from ~-90° to ~+90° as
the angle 6 in Equation (12) goes from negative to positive values. This
behavior is a consequence of the phasing chosen for the aperture distri-
butions for the difference channels in Subroutine HACNF.
14-5. Program Flow
Line Nos. Comments
Lines 11-15: Initialize variables. Convert DMRAD to radians
and compute sine.
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Lines 16-30: Compute first two target returns to construct
linear tracking model.

Lines 31-38: Compute slopes MAZ = SLPAZ, MEL = SLPEL from first
two returns.

Line 39: Iterate on linear model up to LMAX times.

Lines 43-44: If the increment in Ak is larger than sin(DMRAD/1000),
then use it to compute slopes; if not, use the last
computed values of slopes to avoid division by too
small a number.

Lines 45-46: Compute intercepts bAZ' bEL'

Lines 47-48: Compute accuracy criteria based on current slopes
and intercepts.

Lines 49-51: Compute direction i that the model indicated will
produce nulls UAZzO, UELzO in both planes.

~

, U for this direction k.

Li 52-56: mpute U
ines Compute Az

EL

Lines 57-92: Update the linear tracking model by storing the last

two points in each channel as U(l), U(2); e.g.,

= = 1) = 1 d
UAZ(l) UAZ(2) and UAZ(Z) UAZ' Kl( ) K2( } an
K2(l) = K(1), etc.
Line 923: At least three iterations are always used.
Lines 94-95: IfU _, U are within error bounds, exit the loop;

AZ EL

if not, continue to iterate.

Lines 96-97: If LMAX exceeded, inform the user.

Line 98: Compute amplitude SMAX on sum channel for final
target return.

Lines 99-100: Compute slopes for final return.

Lines 101-102: Compute boresight error AZTM, ELTM.
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14-6.

14-7.

Lines 103-104: Compute kz for k, and k2.

1

Lines 105-108: Convert slopes to volts/degree.

Lines 109-117: If SUPPRS = .FALSE, print results.

Lines 118-139: Compute and print additional outputs around the
boresight direction i.

Lines 140-144: Compute and print the slopes of a linear tracking
model based on the points at +3 mrad and -3 mrad
{hence, the division by .006 = 6 mrad).

Line 145: RETURN

Line 146: END

Test Case: See Chapter 2.

References: None.
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LYT

SUBRDUTINZ REGBS(SUMXySUMY DELXDELYDAZX 4D AZYSNX,
ENY LMAX G NS g IOPT 3 YRy OMRADSROTATE o TRANSLyFGHZ s KXMAX s KYMAX
F TABLE S SINCS+KeAZTMZELTM, RSAMAX 4V MAX,y SMAX, SUPPRS)

C DMRAD IS THE JESIRED ACCURACY OF HORESIGHT DATA (INPUT IN MRAD)

(o NYNS

COMPLEX SUMXINX oNY) s SUMYUINX oNYD) JDELX INX G NY) ,DELY(NXsNY)
COMPLEX DAZX(INXoNY) 3 DAZY(NXINY) ZVR(3)
COMPLEX EINCTDI)

REAL ROTATE(353) s TRANSL(3) 4 KXMA X, KYMAX
REAL K1(3) 4K2(3),UAZ(2)UcL (2)4K(2)
LOGTICAL TABLESSUPPPS

DPAD=DMRAD/1COT.

SDRAD=SIN(CRACQC)

SALFA=(.

AMUL =1

DO 70 J=1,2

IF (J.EQ.2) ANMUL==1.

K2(1)=SINCS*ArUL

K202 =SINOS*aML

COMPUTE UAZ UEL AT K2t

7€

K2{3)=SART (1. =KZ(1)**¥2-K2(2)1%%2)

CALL INCPW(K2,EINC,I0PT)

CALL RECMCEINC, K2 NXyNY 4KXMAX ¢ KYM AX yFGHZy ROTATE, TRANSL,
$ SUMXaSUMY sDELXDELY s DAZX+sDAZYS VR, TABLE +SUPPRS,RSQMAX)
UAZUJY=ATMAGIVRI3)I/VR{1))

VEL(D =AIMAGIVRI2I/VR(L))

CONTINUE

K101)¥=SINJS

K1(2)=SINOS

K1(3)=50QRT(1,-K1{1)*¥*¥2-K1(2)*¥*7)

LCTR=J

ENSURFE THAT INITIAL ESTIMATES MEET PROPER CONOITIONSS

IF (CUAZ (L) oL TeCle)eORGHUAZ(2) «OTala) e ORJHIUELIL) oL Tode)a0OR,
F(UEL(2).6TC.Y) GG TO 101

C=K1(1)-K2(1)

3=K112)-K2(2)

SLPAZ=(UAZ (1) -ULZ(2))/C

SLPEL=(UEL (1) -UEL(2)) /D

O BN £ WN -



8FT

(e Ne]

76

77

74

DO 40 IP=1,LMAX

LCTR=LCTR+1

K{1)=(KL(1I+K2(1)* 0.5
C(2)=(KL1{2)+K2(2))*C,.5

IF (ABS(C) .CT.SCRAD) SLPAZ=(UAZWU1)-UAZIZ2))/C
IF (A35(D) .GT.SCRPAD) SLPEL=(UEL (1)-UEL(2))/D
BAZ=UAZ(1)=-SLPAZ*K1(1)
SEL=UEL (1) -SLPEL*KL (2)
ACCAZ=ABS{SLPAZ*SGRAD+BAZ)
ACCEL=ABS(SLRPEL*SNRAD+BEL)

K(1)==BAZ/SLPAZ

K(2)==-8EL/SLPEL
KI3)=SOFT(1.-K(1)¥*2=-K{(2)**2)

CALL INCPHIK,EINC,IGPT)

CALL SECMIE INC K¢ NX g NY s KXMAX, KYMAX,FGHZ yROTATE, TRANSL »
T SUMXeSUMY s CELXsDELYSCAZX +DAZ Y4 VR yTABLE +SUPPRS,RSGMAX)

UA=AIMAGIVRIZ)I/VR (L))
UE=AIMAGWVEL(Z2)/VR(1))
IF (IF.GT.,1) GO TC &5
IF (UA,GT.C.) GO TO 76
UEZ(2)=UA

K2(1)=K (1)

JAZ=1

GO 70 77

UAZ(1)=UA

K1(1)=x (1)

JAZ=2

IF(UE.GT,da) GC TC 78
UEL (2)=UE

K2(2)=K(2)

JEL =1

GO T0 73

UEL (1) =UE

K1(2¥=K(2)

JEL =2

GO T¢ 79

IF (JAZ.E2Q.2) GO TO 66
UAZ (1) =UA

39
“0
41
42
43
b
45
46
W7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
b4
65
66
67
68
69
70
71
72
73
Tu
75
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6v1

hH

68

79

86

25
85

K1€(1)=K(1)

JAZ=2

GO 70 &7

URZ (2) =UA

K2(1y=xk{1)

JazZ=1

IF (JEL.EQ.EY GO TC 68

UEL (1) =UE

K1(2)=K1(2)

JEL=2

GC TO 79

UEL (2) =UE

K2(2)¥=K(2»

JEL=1

C=x1t11)-K2(1)

D=K1(2)-KZ (2)

IF (IP.LT.3) GO TO 88

IF C(ABS(UA)LTLACCAZ) AND. (ABS(UE)Y .LTLACCEL)) GO TO 85
CONTINUE

WRITE(6425)

FORMAT (/™ LMAX EXCEEDED BEFCRE ACCURACY CRITERION MET™//)
SMAX=CABS(VF (1))

IF (ABS(C).GT.SCRAD) SLPAZ=(UAZ(1)-UAZ(2))/C
IFf (ABS(D) .CT.SORAD) SLPEL=WELI)=UEL(2) )/ D
AZTM=ASIN(K(1V/SQRT (1.-K(2) ¥* 2} )* 1000,
ELTM=ASIN(K(2)/SART (1,-K(1)*#¥2))* 1000,
K1(3)=SQRT (1. =K1 (1) **2-K1(2)**2)

K2(3)=SORT (L.-K2(1)**¥2=K2 (2)%%2)

CONVERT SLCPES TO VOLTS/0EGe WHERE THE SIGNAL RECEIVED BY SUM

CH

93

ANMEL TS CONSICERED TO BE ONE VOLTs

SLPAZ=SLPAZ/5T7.3

SLPEL=SLPEL/S 7.3

IF (SUPPRS) RETURN

WRITE(E490) KI19KZ2sA2TMsELTH 3SLFPAZ +SLPELWUAZ JUELSMAXHLCTR
FORMAT(//" FINAL ANSWERS FOR MCNOFULSE SYSTEMt =//" Kit *",3E12.5/
B K28 Ma3E1E.5//7% AZTM= ",E12.5," MRAD™/" ELTM= ",£12.5," MRAD™//
$ * MESAZ= “yE£12.5," VOLTS/DEG™/"™ MESEL= "4E12.54" VOLTS/DEG™

B/ UATT "42012.57" UELT ™, 2E12.5//7°% SMAX= *,E21.14,

77
78
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80
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84
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88
89
90
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i 30 LCTR= *,T3/N
WRITEZ (R ,498)
95 FORMAT(// AQTITICNAL MONOPUL SE OUTPUTS ARQOUNC 3C0RESIGHTS: "//)

DC 99 IP=147

K1(II1=SINC(-3,+TP-1)/71000.) ¢K (1)
K1(2)=SIN( (=3 ,+¢IP=-11v/100G0,) +X(2)

ANG==3,¢+]IP-1

KL1{3)=SQART(1,-K1 (1Y **¥2-K1 [(2)1**2)

CALL TNCPW(KL,ETINC, I0PT)

CALL RECM(EINCI KL sNXsNYyKXMAX JKYMAX sFGHZyRCTATE, TRANSL,

P OSUMY, SUMY,0ELXNELY,CAZXsCAZY, VR yTABLE,SUPPRS,RSAMAX)
UAZ (DI =AIMAGIVE(3)/7 VR (1))

UEL T =AIMAGIYRI2)I/7VR(L D)

IF (IP,zQ.1) SLF1=UAZ (1)

TF (IPLEQ.1Y SLEZ2=UcLD)

WRITE (by90) ANGLWUAZ7 (1) ,UEL(1)

96 FORMAT (™ ANG= ",F5,1," MRAD FRGM BOKZISIGHT VRAZ= ",E12.5,

£ VOLTS VREL= ™y¥12,5,™ vOLTS"/)

VRIZ2)I=VvE () /VR(1)

VR(2)=VRI(2V/VYR(1)

CALL AMPHS (VR (3D 440D

CELL AMPHS (VR (2),Z,F)

HPIT‘E(f)qq-t) CqD 1E9F

34 FORMAT (™ CAZ(AMP,FPHS)= *y 2F12.5," DEL (AMP 4PHS) = ",2E12.57)
99 CONTINUE

SLPL=(UAZ(1}Y-SLP1)/ (. 036%57 ,3)

SLP2=(UZLI1)-SLP2)/ (.006%57.,3)

WRITE(6497) SLP1,SLFZ

37 FLRMAT (/" BAVERRGE SLPAZ= “,E12.5," VOLTS/DEG™/
£ AVERAGE SLPEL= "™,E12.5," VOLTS/DEG*™/*" SUM=1,0 VOLT™/7/)
100 RETURN
£ND

04T
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15-1.

15-2.

15

Chapter 15

SUBROUTINE RECPTN

Purpose: To compute the receiving patterns of a monopulse antenna
at NREC points in a specified principal plane. A plane wave of
specified polarization (ICOMP) is made to be incident on the
antenna at equal increments in sin® over the range (-KMAX, KMAX ~DK)
in either the elevation plane (ICUT = 1) or azimuth plane. The
received voltage in each channel is computed in the presence of
the radome and stored for return to the calling program.
Usage: CALL RECPTN (SUMX, SUMY, DELX, DELY, DAZX, DAZY,

NX, NY, ICUT, ICOMP, KMAX, NREC, VREC, KXMAX, KYMAX,

FGHZ, ROTATE, TRANSL, TABLE, SUPPRS, RSQMAX)
Arguments

SUMX, SUMY,~ Complex input arrays of NX by NY elements con-

DELX, DELY, taining the aperture field distributions of the

DAZX, DAZY, monopulse antenna. See Subroutine HACNF.

ICUT ~ Integer input variable which specifies the prin-
cipal plane in which the pattern is computed:
elevation (ICUT = 1) or azimuth (ICUT = 2).

ICOMP ~ Integer input variable which specifies the linear
polarization of the incident plane wave: elevation
component ; onlf (ICOMP = 1) or azimuth component
& only (ICOMP = 2). See Figure 15-1 for further

clarification.
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= elevation component
= azimuth component

Y
E—Plane
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X
oe ‘ A
€
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108 0 108
—40dB i ] L
—'>0e >0

Figure 15-1Coordinate System for Far Field Patterns
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KMAX - Real input variable equal to Sinemax' where the
pattern is computed over the angular range (-6 ’

max

emax)' but in equal increments in siné so that
Fourier interpolation can be applied directly in
the wavenumber domain using the Fast Fourier
Transform.

NREC - Integer input variable equal to the number of
points at which the pattern is computed.

VREC ~ Complex output array of NREC by 3 elements con-
taining the computed receiving patterns for the
sum, elevation difference, and azimuth difference
patterns of the monopulse antenna.

KXMAX,KYMAX,—- Input variables required by Subroutine RECM. See

FGHZ,ROTATE Chapter 8.

TRANSL, TABLE,

SUPPRS , RSQMAX

15-4. Comments and Method

Subroutines INCPW and RECM are used to compute the incident plane
wave and the received voltage in each channel for each direction of arrival -
in the specified plane. For the elevation plane, the direction of arrival

is given by
k=x (0) + vy sinb + zfl—sinze (1)

where 6 is the angle measured from the z-axis. For the azimuth plane

k = x sinf + y (0) + z/l—sinze (2)

153



R NP SN

The increments in angle are given by

Values of kmax>l correspond to the invisible region and must be excluded

from consideration.

15-5. Program Flow: Compare program listing below directly to the
discussion above.

15-6. Test Case: See Chapter 2.

15-7. References: None

15-8. Program Listing: See following page.
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GQQT

OO0 000

SUBROUTINE RECPTIN(SUMX, SUMY 4DEL Xe CELY sDAZXy DAZY s NXsNY 4 ICUTy ICOMP,
B KMAXGNRECSVREC s KXMAX s KYMAX F GHZy ROTATE sTRANSL
¥ TABLE,SUPFRS,RSQMAX)
SUBR RECPTN COMPUTES THE RECEIVING VOLTAGE PATTERN NF THE ANTENNA
WHOSE TRANSMITTING NEAR FIELD ON ZA=0 PLANE IS EXT.EYT.
RAY T FACING IS USEQ TO ACCOUNT FOR RALCOME (SUBR RECM).
NREZC=NUMBER OF FOINTS AT WHICH FATTERN IS COMPUTED
ICUT=1 FOR EL CUT, =2 FCR AZ CUTY
ICOMP=1 FCR FL COMPCNENT, =2 FGR aAZ CCMPONENT
KMAX<1, SPZCIFIES ANGULAR LIMITS (ANALAGOUS TO KXMAX)
COMPLEX SUMXINX ¢NY) 3 SUMYINX oNY) sDELXINX G NY) oDELY INX4NY)
COMPLEX CAZXUINX oNY) 3 TDAZY INY 4,NY)
COMPLFX VRECINPZICs3)4EINC(3)4 VR(3)
REAL KXMAX S KYMAX KMAX 4KA(3)Y ROTATE(3,43),TRANSL(3)
LOGICAL TAELE SUPDPRS
NATA PI/3.141E9285/
ETa0=120.%F1
TF (IABSC(ICUT),GT.2) ICUT=2
J=1
IF (KMAX,GE.l4) KMAX=1.-2./NREC
DK=2 ¥ KMAX/NREC
IF {(ICUT.EGe1) U=2
ANGMAX=ASIN(KMAX)*180,/PI
WREITE(E.10) TCUTLICCMPKMAX JNRECs [K9s ANGMAX
D0 & I=14+NREC
KACICUTI=O0.
KA(J)==-KMAX+(I=1)¥DK
KA(3)=SQRT {1.=KA(J) **2)
CALL INCPWI{KA,E INC, ICOMP)
CALL RPECMIEINCIKASNXINY JKXMAX KYMAXaFGHZ4ROTATE y TRANSL »
T SUMX,SUMY 4CELXsDELYHZDAZX sDAZYs VR,TABLE,SUPPRS,,RSUMAX)
VREC (I, 1)=VK (1)
VEEC(I,2)=vk(2)
VEREC(T,3)=VF (D)
5 CONTINUZ
WRITE(E417) ICUT,ICCMPLKMAX ,NRKECs LK ANGMAX
1} FCRMAT (/" RECEIVING PATTERN COMPUTELC FORE /™ ICUT= *,I2/
" ICOMP= ", 12/™ KMAX= " ,F7.37" NREC= ", I5/™ DK= *

O RNON S LN~
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*
B

L s
* (ICOMP=1 FOw
RLTUYRM

ENG

FL COMPCNENT,

T12.5/" ANGMAX= ",F5,2/" (I4UT=1 FOR EL CUT,

=2 FOR A7IMUTH)

=2 FOR AZ CUT™/
*r7)

39
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Chapter 16

SUBROUTINE OGIVE

16-1. Purpose: To solve for the intersection PH(x, y, z) of a line (ray)
and a tangent ogive sgsurface. The ray starts at point Po(xo, Yr 2 )

o
and travels in the direction K(k , k , k) =k = xk  + §k + zk .
X vy z X Yy z
Dimensions are in centimeters. Radome coordinates are implied.
1l6-2. Usage: CALL OGIVE (PO, K, PH, HIT)
. COMMON/OGIVC/RP, BSQ, AP, RINV, B, RSQl, RP2
16~3. Arguments
PO - Real input array containing the point of origin
£ ’ .
of the ray Po(xo, yo zo)
K - Real input array containing the direction cosines
of the ray K(kx, ky' kz).
PH - Real output array containing the point of intersec-
tion PH(x, y, 2), if HIT = .TRUE.
HIT - Logical output variable which indicates if an
intersection solution was found (TRUE).
The following variables are common with the main program and are precal-

culated to speed up the ray tracing computations. Refer to Figure 16-1 of

the radome geometry for the definitions of R and B.

RP — Real input variable = R* - B.

BSQ ~ Real input variable = B2.

AP - Real input variable = 0. See APIN in Section 2-4.
RINV - Real input variable = 1/R.

B — Real input variable. See Figurels-].
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Figure 16~-1. Tangent Ogive Radome Geometry.
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)

RSQ1 - Real input variable

It
zs)
+
us)

RP2 - Real input variable
16~4. Comment and Method

a. The common variables must be computed in the main program
prior to the first call to OGIVE.

b. Subroutines required: CBRT, SQR, XY. Real function CBRT (x)
computes cube rcot; SQR computes square root with test for negative
argument.,

c. The intersection of a ray and ogive surface requires the

solution of a quartic equation in the parameter zp as follows [1]

where

_ 2(1+U) (22a+V)
(1+U)2

2(1+U)(—3P+A2+w) + (2A+v)2 - 4B2U

(l+U)2

2(2A+V)(—§p+A2+W) - 4B2V

(l+U)2

(-—R.p+A2+W)2 - 432w

(1+U)2

and where
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o i3 SN RSt b

K.” + K
1 2
— — = 6
U Ny > (6)
3
2(KlPl + K2P2)
v = < (7)
3
2 2
= 8
W Pl +P2 (8)
2
R =R2—B (9)

The variables R and B are defined on Figure 16~1 and by the ogive

equation

r = A2y = RE- (z—ap)2—B (10)

where the z-axis is the axis of revolution for the ogive shape. The
variable a_ provides for an offset along z of the coordinates for the ogive.
Equations (1) through (9) result when the following equations for a fay

X

(line) passing through the point PO(XO, Yoo zo) in the direction k = %k +

§ky + Ekz are substituted into Equation (10):

= = ° - constant (11)

All four roots of the quartic equation may be found from the re-

solvent cubic equation [2]

3 2 2
- + —_ . - =
P C3p (C]C2 4C])P C] Cl + 4C3Cl C2 0 (12)
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This cubic equation has at least one real root P, given by

1/3
= (13)
where
1 2
- = - - 14
S 3[3(c4c2 4cl) C,y 1 (14)
T = ﬁL—[—Zc 3 + 9Cc_(c.Cc, - 4C.) + 27(-C 2c + 4c.C, - C 2)] (15)
27 3 3'7472 1 4 71 371 2
Once P, is found, the roots of the quartic equation follow from
C R
3 1 D
= — + — * — 1
21,272 T2 7 32 (16)
C R
3 1 | E
= e e —— t -
3,44 T2 72 (17)
where
2
€4
= j— - +
Ry 2 ~ ¢33t P, (18)
2 3
. 3c4 . 2 e 4c4c3 - 8c, - Cy 1o
- 4 1 3 4R
1
2 3
. 3¢, . 2 o 4c4c3 - 8c2 - C, 20
- 4 1 3 4Rl

The correct root zpo is chosen as the one with the smallest absolute value

and which has the same sign as kz. The intersection point P(xX, v, 2)
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follows from
z =2 + z (21)
X = z + x (22)

k
y=iiz +y (23)
Z

The rectangular components of the unit inward normal vector at P(x, y, 2z)

are given by

B + Vx2+y2

n = -X —fF== (24)

X R VX2+y2

2 2
B + vx +y (25)

n = -y — =
y R ¥x +

n = - —=F (26)

In the the special case of kz=0, the z coordinate does not change

so that
z =z (27)
The equations of the line in the z=zO plane become
x=x +k t (28)
X

(o]
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= + 2
Y =y, ky t (29)

where the parameter t is the distance along the line from (xo, yo, zo)
to (X, y, 2). Substituting Equations (27) - (29) into (10) yields the

following quadratic equation in t

t2+2(kx +ky)t+(x2+y2)=(‘/R2—(z—a)2-B)2=R2
X o y o ° o o p

{30)
The guadratic formula yields the following solutions to the above equation
b = - (kx +ky) t [(kx +ky)2-(x +y72) +r°7
1,2 X O vy o X O vy o [e} o s
The unit normal may be computed by Equations (24) through (26).
10-5. Program Flow: See listing below and compare directly to the above
equations.
10-6. Test Case: See Chapter 2.
10-7. References
1. E. B. Joy and G. K. Huddleston, "Radome Effects on the
Performance of Ground Mapping Radar," Technical Report,
Contract DAAHO01-72-C~0598, U. S. Army Missile Command,
March 1973.

2. Stegun, and Abromowitz, Handbook of Mathematical Functions,

National Bureau of Standards, June 1964, p. 17.

10-8. Program Listing: See following pages.
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¥o1

OO0 O

OO ODO0O00O00000 OO

&

SUBRQUTINT CORIVEA(B0,KyPHy=HTTY
RPULL SHRR/eb oML 3™ 2, Uy Vg AS Qe AIMV AL A1 A2yA22,A44,008F (
F4)
THTIS SUGROUTING SOLVES FOR THE INTERSECTION GF A RAY AND AN OGIVE,
inNPuUY PL=-=-REAL ARRAY OF CUFEFFICIENTS OF INSIDEZ POINT
K ==FPEALARPAY OF OIRECTICN COSINES OF RAY
cuTPUT PR==COORINATES CF THE INTEZRSECTION WITH THE RADOME
HIT~-==,TRUE, IF THE RAY HIT THE SURFACE
AL POLR) 4PHLEZ) (KLL?)
G CHMMON/OGIVO/FP 3 ASN AP FINV 98 9+ S 14RrP2
LCHTCAL HIT
HIT=.TRUE,
UNIT OF DISTANCE IS CENTIMETEER
THI OGIVE SHAPE 1S DESCrIBED 3Y THE EQUATION
SGRTAX¥*ZeY¥ X2V CQRT(R*¥ 2= {(7=~AP) ¥% /) -
GIVEN & FINENESS RATIO ,Fs AND & DIAMETER 0. R AND B
MAY A% CALCULAT=ZD AS FOLLOWS,.
R=F*¥0/ (SIN(PI-2¥AT AN {2¥%F))
=P =N/ 2
AP= 7 COQRCINATE OF THE GENERATION CENTER COF THE OGIVE
COORDINATES,
THE JATA NZEL=ZC FOR THE [(JATA STATEMENT IS
QD:Q*‘FZ-B;#Z
BSQ=8%¥2
AP=AP
QRIMV=1.L/K
R= ¢
R5G1=R**2
.{PE:D ¥ 2+B¥¥2
TF(ABSIKA3Y) LT ,12=-706G0 TO 39¢C
IF(ARSIK(3IM).GT 414-1E-7) GO TO 33¢
A=P0(2)-4P
Mi=1.0/7K(3)
M2=K (z) ¥M1
M1=K (1) ¥M1
Y=l ¥Mi+M2*M2
V=2 o GFIMIFFG (L) #M2FFEQ(2))
WP 1) *PO (LY +PC(2) *PO(2)

O XN W e



S9T1

ASQ=A*4

CAINVELL /(L U (2, 04U

CCEF (u)=2.,0% (2.3 4V ) ¥ (L, D+UIFAINY

COEF(3)=(2. 2% (~7P+U* (W-ReP2 Y442 JOFARY HASQ* (3L 0+UN )+ VHVIFAINY
CCEF(21=(4, 7% A% (~RP+ASQ+H )+ 2, 2¥ V¥ (ASQ+W=-RP2 ))FAINY
CCEF (1) =(W¥ (2,2 % (ASQ-RP2 ) +WI+ RPX(RP -2, J*ASG) +ASQ*ASGI*AINY

A2=C0EF{3)¥.3333333333
AL=COFE(2V*INEF (4) -4, 3¥COSF (1)
AL==COrFLZI*CCrF(2Y=-COZF () *CLeFCL)IYCOEFL4) +4 J0*COEF (1) *COEF (D)
427=p2%42
Adu =COEF (L) *,2¢C
N=A1%,3333233333-222
RI1I=(-A1¥COEF (V=3 ,3¥A()*(,1€6C0EDOBETHAZ*A22
RANSQ=Q¥*¥J+L1%F 1
IF (RADSQ.LT«T4) GO TO 232
RAU=SCR(RADSQ)
Y=CBRT(RL+~LD)I+CBRT(P1-PAL) +A2
RSN=COEF (4 ) *ALL~COEF (3) +Y
IF (ABS(RESC)eLTe1.0c-05) GO TC 350
R=SNR(RSY)
IF (K(3),LT.24) GO TO 3e0
7=POA(3) -A44+ (S-SQAR(3. 0¥COEF (4 ) * AL 4-RSQ-2, J*COEF (3 + (4. 0*¥COEF (4) *
2 CCFFE3) =B, 0%COEF(2)Y-COEF(U)**3) /(L. 0FR}))¥*(,5
CALL XY(PCyKeZ+PH)
RETUSN
Z=P0O(3) =~A4u4~(F=-SOR(3.0F¥COFF (L I*AL4~-RSA~2.J*COEF(3) - (4. 0%COEF (4)*
2 COEFC3) -8, 3¥COEF(2Y-COEF(4)**3) /(u,C*¥R))I)I*0.5
CALL XY(PCaKeZeFH)
RETUGN
PHI =ACOS(RLI/SNR-N**T))
Y2, 0%S0(-0Y2COS(PHI*L ,33333323331+42
GO T 3L
Z=PN{Z) 344+ (F-S0x (3, 2*COEF (0¥ Ae -2 . GFCOEF(3)+2.C*¥SQR(Y*Y-
4 L, ¥{CEF(1))})Y*0,5
CALL XY(PLyaKylsFH)
RETURN :
Z=PO(3)-A0u+ (FeSOQR(Z L C¥COEF (4 1% A4 4~2, C*¥L0EF (3V -2, 0FSQR(Y*Y~

39
40
41
42
43
L
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
bk
65
66
67
68
69
70
71
72
73
T
75
76



99T

38¢C

331

? 4 JO¥COEF(1Y)))*T,.5
CALL XYU(PGyKa74PH)

R-TURN .
7=uPH+STIGNI{L o KIZVI¥SNARTIRSN1I-(SGRT U (PO(1)) *¥2+ (PO(2))*¥*2) +
T OBYYEED)

PHI4I=PC (L)

DHL{2)Y=PC(2)

PH(3)I=Z

RITYRN

RSNZ2=SART(RSQ1-(PUII) =-LAP) ¥*¥ 2) -

DSN2=RPSQ2%**2

RLPz=APO(LIFK (LI 4PD(2) *K(2V I e SART ((FO (L I¥K(1) +PO(2)*¥K(2) ) *¥ 2~
FAPD (L) *¥ 2+ FC (7Y ¥¥2-RSA2))

RINS=(FPCLI*K (11 +PO (21U ) =SART ({FO (L) FK (1} +PO(2) *K(2) ) *¥2 =~
TARPO(1)**Z2+F0(2) **¥2-R5Q2)}

PH(3)I=FO(3)

IF(RILNG.LTL LY GO TG 391

PHIY=PC{L Y 4R LN*¥K (1)

PHIZ2)I=PC(Z2)+RLN*K(2)

RETURN

PHROL)I=PO(L)+PLP*K (1)

PHI2)=PC(2)Y+ELF*¥K(?)

RETURN

END

77
78
79
80
81
82
83
84
85
86
87
88
89
EL
91
92
93
L
a5
96
g7
38
99
100
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FUNCTION JE&T OX)

SIGNX=1,3

IF(X.LT.G-\:) :IGN)(:"lac
CBRT=SIGHNXF(STIONX*X)**[,33333333323333
RETURPN

— NG

[« IRV RN NIV VI g



891

ik

SUNCTION SGR(SQ)
THF(SGLEaT,¥GC TO 99
SO=SART{5C)

RETURN

SiIk= 4,

RETURN

=NO

NP W N



Chapter 17

SUBROUTINE OGIVEN

A

17-1. Purpose: To compute the unit inward normal vector n = x n, +

~ ~

y ny + z nZ to the tangent ogive surface at the point PI{x, vy, z).
Dimensions are in centimeters and radome coordinates are implied.
17-2. Usage: CALL OGIVEN (PI, N)
COMMON/OGIVC/RP, BSQ, AP, RINV, B, RSQl, RP2
(See Chapter 16 for common variables.)
17-3. Arguments
PI ~ Real input array containing the point PI(x, vy, z)
on the tangent ogive surface at which the unit
normal is desired, as computed by Subroutine OGIVE.
N - Real output array containing the direction cosines
(nx, ny, nz) of the unit inward normal vector.
17~4. Comments and Method

The tangent ogive surface is described by

f(r,z) = r - VR2 - (z—ap)2 + B =0 (1)

/2 2 . . . .
where r = /x +y and where R and B are defined in Figure l6-1. The unit

inward normal to this surface is given by

- v ~ 4df dr ©df dr ~ daf

£ af dr | df af
DT TvE[ T TTvE] |Farax " Yarady T %Az (2)
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where V is the gradient operator. Equation (2) can be rewritten as

S ; Xygly 4 (3)
vEl | ¥ Y T Y ¢ az

where the differentiation with respect to r has been done and df/dr = 1

has been used. The remaining terms are given by

ar _ 7 (4)
dz /&2 - (z-a )2
p
(z—ap)
R
lvel = f1 + = - (5)
R2 - (z-2 )2 /%2 - (z-a )2
p p
. 2 2 2 . . . . .
since r =x + vy . The direction cosines can be written explicitly as
nz = - (z—ap)/R (6)
% VR2 - (z—-a )2 + B)
n_o=- P 2l (7
X r R r R
y, (r+B)
= - (£ 8
n, (r) R (8)

/2 2 .
where the relation (r+B) = ¥R - (z—ap) from Equation (1) has been used.
17-5. Program Flow: Compare Equations (6) — (8) directly to the
listing below.

1l7-6. Test Case: See Chapter 2.
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17-7. Reference

1. Smail, L. L., Analytic Geometry and Calculus, Appleton-

Century-Crofts, Inc., New York, 1953.

17-8. Program Listing: See following page.
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LT

[ BN I o Eep BE4p

SHEROLTIN: CGIVIN (PT,N)
THIZ SUBROUTINE CALCULATES THZ INWarT NORMA(L TO THE OGIVE SURFACE
AS 4 PLARTIGULAR PCINT,
InNFUTY FI~~-GEAL ARRAY OF CCEFFICIZNTS UF THE POINT
ouTPUT N ==%Eal ARRLY (F CGIRZCTION COSINES OF NORMAL TO
SU~FOCE LT BCINT OF INTERSECTION
RPEAL NIRYZhTAN,PI(3)
CCMMCN/OGIVO/RP 4ASR,APPINV 23 ,R5Q1,RP2
NA3)==(PI(3)-aFRI*IINYV
R=SNAFPTUPTIII*FI(L)+PI(2)*¥FT1 (2))
NTAN==(P+3)*RINV/R
N(L)=PT (1) *NT AN
N{2V=FI (2) *NT AN
RZTURN
ENR

[Nalie "IV o \BEN B L R JYRN SO



18-2.

18-3.

18-4.

Chapter 18

SUBROUTINE XY

Purpose: To compute the x and y coordinates of the intersection
point PI(x, y, 2z) of a line (ray) having direction cosines

K(kx, ky, kz) with a surface of revolution when z is known. The
line passes through the known point P(xo, Yor zo). All dimensions

are in centimeters.

Usage: CALL XY (P, X, %, PI)

Arguments

P v - Real input array containing the known point
through which the ray passes; i.e., P(xo, yo, zo).

K ' - Real input array of the direction cosines of the
ray; i.e., K(kx, ky, kz).

Z - Real input variable equal to the known z coordinate
of the intersection as found, for example, from
Subroutine OGIVE.

PI -~ Real output array containing the desired point

of intersection PI(x, y, 2z).
Comments and Method

The parametric equations for a line in space passing through the

point P(x , v , z ) and having direction cosines (k , k , k ) are given by
o o o X y z

x=x +k t (1la)
o X

= + k t 1b

Y YO y (1b)

z =2z +k t (lc)
o 2

173



where t is the distance along the

When one coordinate z is known, t

kz # 0.

18-5. Program Flow: Compare the
above.

18-6. Test Case: See Chapter 2.

18-7. References: None

line from P(x , v , 2} to PI{x, v, 2Z).
o o o

follows from Equation (lc), provided

listing below directly to the equation

18-8. Program Listing: See following page.
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SLT

G
t}

¥

SUBROUTINE XY (P sKe74PI)

XY CALCULATZIS THE X AND Y CCOMFONENTS OF AN INTERSECTION POINT PI

FCR THE CASE WHFN THE POINT OF EMINATION Py THE DIRECTION OF

PROFAGATION K ANG THE
ARPT GIVEN

REAL P(3),K(3),PI(X)
PIC3Y=7
T=(PI(3)=P (3 VI /K(3)
PI(1)=P (1) +K(1)*T
PI(2)=P(2)+K(2)*T
RETURN

FNU

z

COORDINATE

OF THE INTERSECTION POINT

W N E WM P
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19-1.

19-2.

19-3.

Chapter 19

SUBROUTINES BDISK, BDISKN, TDISK, TDISKN

Purpose: To compute the intersection PI(x, vy, z) of a line (ray)
emanating from the point P(x , vy , zo) having direction cosines
o o

or at z = z .

K(kx, ky, kz) with a planar disk at z = 2, ot top

Subroutine BDISKN is used to compute the unit inward normal n = z.

FN FN

Subroutine TDISKN is used to compute the normal n = -z.
Usage:
CALL BDISK (P, K,vPI, HIT} CALL TDISK (P, X, PI, HIT)
COMMON/BDISKC/ZBOT, RBSQ COMMON/TDISKC/ZTOP, RTSQ
CALL BDISKN (N) CALL TDISKN (N)
Argumgnts

P - Real input array containing the point P(xo,

yo, zo) from which the ray emanates.

K - Real input array of direction cosines K(kx' ky' kz).

PI - Real input array containing the desired point
of intersection PI(x, y, 2).

HIT - Logical output variable which is TRUE if an
intersection is found.

ZBOT - Real input variable equal to the z coordinate of
the planar disk.

RBSQ - Real input wvariable equal to the square of the
radius of the planar disk.

N - Real output array containing the direction cosines

of the unit inward normal vector; wviz., N(O, 0, 1).
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19-4. Comments and Method

From the parametric equations for the ray

x=x +k t (la)
o) X

= + k t 1b

v =y, otk (1b)

z =z +k t (1c)
o z

and the equation of the plane z = z the parameter t is given by

bot’

t = (z - ZO)/kZ (2)

bot
provided kZ # 0. The x and y coordinates follow from the above equations;

(where r. is the radius of the disk), no inter-

however, if (x2 + y2)>r b

b

section is found. Similar statements apply for the top disk.

19-5. Program Flow: Compare the listings below directly to the equations
above.

19-6. Test Case: See Chapter 2.

19-7. References: None

19-8. Program Listing: See following pages.
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6LT

C

L

-
</

B REaNe]

gL
TO
IN

SURFRUTINE BNISK(P,K,

ISK CALCULATES T
THE XY PLLAE Wi
T K DIECTION

H A

FILHIT)

RAY EMANATING FROM

HZ POINT CF INERSECTION PI 0OF A DISK HORIZONTAL
T

POINT P ANC TRAVELING

THE cQUATICN USTN FOR THE B80T LISK IS Z=ZB0T FOR (X¥¥2+4Y¥¥2)<RSN

CCMMON/BCISKC/780T,R3S0

REAL P24 KI(3) 4RI (D)
LOGICaL HIT
Z7=7807~FL(2)
IF(2T.G6ELL.2Y GC TO 1
PI(2)=783CT

T=2T/K(3)
PICL)I=P (1) +k{1)*T
PI(2)=P(2) +K(2)*T
PITSG=PI(I*PI(LI4+P](
IFCFITSQ.uT.RBSO+G. 1)
HIT=,TRUE.

RETURN

HIT=.FALSZ.

RITUBN

ZND

2V*P 1 2)
GO TC 1
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DO OO0

SURROUTINT TNISK(P,KePI4HIT)

TOISK CALCULATES THF FOINT OF INTERSECTION PI OF A DISK HORIZONTAL
TO THE XY P_ANF WITH A4 RaY EMANATING FROM PCINT P ANC TRAVELING
IN THe ¥ DIRECTION,

THE EQUATION USED FCR THE TGP GISK IS Z=ZTOP FOR (X¥®*2+Y¥¥2)<RSQ

CCMMCN/TOISKO/ZT0P,FT5Q
REAL PU3),K(3),PI(3)
LCGICAL WIT
Z7=270P=-2(3)
IFC2zTelze2.2) GO YO 1
PIC3)I=7TOP
T=ZT/K(3)
PI{I)I=P (1) +K (1Y RT
DI(2¥=P(2) +K(2)*T
PITSQ=PI(I*PI( 1) +PI(2Y*PLI(2)
TFIFITSQ.GT.RTSG+5.1) GG TO 1
HIT=,TRUE .
RETURAN
1 HIT=.FALSE.
RETURN
END
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Chapter 20

SUBROUTINE FAR

Purpose: To compute the far field pattern in wavenumber coordinates
(kx' ky) of an antenna whose radiating characteristics are specified
k). -
by the complex plane wave spectra AX(kX, ky), Ay(kx' y) The an
tenna is located in a plane perpendicular to the z (polar) axis.
Usage: CALL FAR (FIELD, XFIELD, YFIELD, NX, NY, FGHZ, KXMAX, KYMAX,

RADIUS, IPWR, FMAX)

Arguments

FIELD - Real output array of NX by NY elements containing
the far field power pattern at discrete wavenumbers
kX = sinBcos¢, ky = sinfsing, where 8§ and ¢ are the
usual polar and azimuthal angles.

XFIELD, - Complex input arrays of NX by NY elements con-

YFIELD taining the plane wave spectra AX, Ay at discrete
wavenumbers kX, ky.

NX, NY - Integer input variables equal to the array sizes.

FGHZ ~ Real input variabie equal to the frequency in

gigahertz.

KXMAX,KYMAX~ Real input variables equal to the maximum wave-
number associated with the elements of the arrays
FIELD, XFIELD, and YFIELD. The element I=1, J=1
in these arrays corresponds to the wavenumber
coordinate (-KXMAX, -KYMAX). For any (I,J), the

wavenumber coordinates are given by
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where

RADIUS

IPWR

FMAX

NX

KX = (I - 7;’— 1) * KXINC
KY = (J - %— 1) * KYINC
KXINC = 2*KXMAX/NX
KYINC = 2*KYMAX/NY

Real input variable equal to the radius r in
centimeters of the sphere on which the far field
pattern is computed. This variable effects only

-jkr , . .
the term e /r, and r is set to unity in the
calling program for normal use.

Integer input variable which selects the vector

components to be used in computing the power

pattern:
1 = Elevation component only
2 = Azimuth component only
3 = Total power
4 = Right hand circular polarization
5 = Left hand circular polarization

Real input and output variable. On input, if
FMAX < 0, the program will normalize the array
FIELD from zero to one and output the normalizing
factor as FMAX. If FMAX > 0 on input, it will be
used as the normalizing factor; on output it will

be unchanged.
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20-4. Comments and Method

Let Ex(x, y, 0), Ey(x, e d) be the tangential electric fields of
a rectangular antenna aperture located in the z= plane and centered at
the origin of the coordinate system. The plane wave spectra of the aper-

ture fields are defined by

[e0) [e0)
1 +j(kxx + kyy)
Ax(kxl k) = > Ex(xl y, 0) e dxdy (1)
Y o@en® _
o« [e0) +. k
_ 1 3 ( xx + kyY)
A (kx, k) = 5 E (x, v, 0) e dxdy (2)
Y (2my© J ¥
—kxAx -k A
= XX Y¥
Az(kx, ky) kz (3)
where
2 2 2 2 2N2
k +k +k =k=() (4)
X y z A

The electric field El (& = x, y, or z) at any point (x, y, z > 0)

is given by

- -3 k'r
El(x, Y, Z) J J Al(kx' ky) e dkxdky (5)
where
r=xx +yy + zz (6)
= +
k xkx + yky zkz (7)
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And for the special case of large r, the rectangular field components

El approach their asymptotic values [1]

-Jjk
e T

E (r, k. , k) ~ jz2uk
yo

- <o cosf Al(kxol k ) (8)

yo

where the stationary phase points are given by

k. =k sin® cosé ()
X0

k. =k sind sin¢ (10)
yo

k = k cosb (11)
zo

In the above equations, 6 is the polar angle measured from the z axis,
and ¢ is the azimuthal angle measured from +x toward +y in the convén—
tional spherical coordinate manner.

Consider the antenna measurement coordinate system in Figure 20-1.
Let the wavenumbers kx, ky' kZ be normalized by k = 21/%, so that for

k2

2 . . . . o
% + ky < 1, they represent direction cosines of the direction specified

by (8,¢), or equivalently by (g,a). 1In terms of these normalized wave-

A A

numbers, the unit vectors e,0 may be written as

~ . -k k ) . -k k
e =x —2¥ 4 yik %4z LEZ > (12)
1 -k 4 1 -k
y y
SO k . -k
zZ X

The elevation and azimuth components of the far field Eff then follow

via the vector dot product as
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= glevation component
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zimuth component
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E—Plane
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€
6la>0
z -
0dB
108 0 108
—40dB 1 1 I
—e- od >0

Figure 20-1Coordinate System for Far Field Patterns
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“ -jkr . ~ “ ~

. e
= . - . + + p— p—
EEff > gff ji2 k > [x szx y Ay z ( kxAx kyAy)] (14)
-jkr .
E pg = 327k @+ E.. (15)

(In Subroutine FAR, the factor j2mnk is not used, and the plane wave spectra
Ax, Ay are provided as computed previously using the Fast Fourier Trans-
form.)

It is convenient to recall that the receiving and transmitting

patterns of an antenna are identical, and that the receiving pattern

VR(k) is given in terms of the far field E

Egp by [2]

A

VR(k) = C n, . Eff(k) (16)

~

where nb is a infinitesimal current source (probe) located on the far-field
measurement sphere, and C is a complex constant which is set to unity for

convenience. The elevation component of the receiving power pattern is

given simply by

Sy 2 " ~ a2 S 2
V|2 = e = B 0|7 = [E_ 007, (17)
and the azimuth component by
S 2 ~ So2 S o2
v )] = o« Ec 0" = |E . (K)] (18)
The total power pattern is given by
Sop2 2 2 2 2 2
VRO g = (B ™+ 1B g™ = JE e [T+ B | + [B g (19)
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and is the receiving pattern when the probe is polarization matched at
every point to the test antenna.
In the case of circularly polarized fields, the probe nb can be

expressed as

" o~ _. T
N € +ae J 2
RHC: nb = —————— (20)
V2
h_ll\
- £ e J 2+ a
LHC: = - (21)
T

where the appropriate nb is used.

Subroutine FAR implements the above equations and computes the power
patterns for an aperture in an infinite ground plane; i.e., the use of
only Ax and Ay is tantamount to the assumption that Etan outside the finite

aperture area is zero. For the extended case of a finite aperture in free

space, the tangential magnetic field also contributes to the radiated

Bean
field, and the far fields are given by Equations (3-46) - (3-49) of
Reference 3. In fact, it is only by including the effects of Etan that
the transmitting and receiving formulations for the finite aperture can be
shown to be equivalent [4].

The current version of Subroutine FAR listed below could be easily

modified to include the additional terms. If the geometrical optics

approximation for the aperture fields is made; viz.,
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H = — (23)

then the far-field expressions become

~

x[(k +1 - kz) A -kk Al
z X X Xy 'y

Eep (kyr k)

+

- v 5
vi-k k A + (k + 1 -k)A ]
Xy X z y Y

+

;[—k (L +k)A -k (1 +k)Aa] (24)
X z' % V% 2y

These modifications would invelve changes only to Lines 70 - 72 of

Subroutine FAR.

20-5. Program Flow: Compare listing below directly to Equations (1) -
(22) above.

20-6. Test Case: See Chapter 2.

20-7. References

1. P. C. Clemmow, The Plane Wave Spectrum Representation of

Electromagnetic Fields, Pergamon Press, Oxford, 1966.

2. G. K. Huddleston, H. L. Bassett, and J. M. Newton,
"Parametric Investigation of Radome Analysis Methods”, 1978

IEEE/AP-S Symposium Digest, pp. 199-202, May 1978, and in Proc.

of the Fourteenth Symposium on Electromagnetic Windows, pp.

21-28, June 1978.

3. G. K. Huddleston, "Optimum Probes for Near-Field Measurements
on a Plane”, Ph.D. Dissertation, Georgia Institute of Tech-
nology, Atlanta, Georgia, August 1978.

4. G. K. Huddleston, "Equivalence of Transmitting and Receiving
Formulations in Radome Analysis", in preparation.

20-8. Program Listing: See following pages.
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16T

OGO OO OO OO0 O000

3

SUBCYQUTING FARCFIELT s XFIELDSYFIELCoNXaNYy FGHZ 9 KXMAX,KYMAX,
CARTUS yIFWR FMAX)

FIZLD IS A TWO DIMENSIONAL REAL ARPAY (NX,NY). ON OQUTPUT
[T CCNTAINS THE FAw FIELC POWER PATTERN OF A COMPLEX
VECTCP PLAND WAVE SPECTRUM,

XFIELD AND YFTELD ARE TWO OIMENSIONAL COMPLEX ARRAYS WHICH
SONTRAIN RESPECTIVELY THE X AND ¥ COMPONENTS OF A
CCMPLEX PLANE WAVE SPECTRUM

KxMaX ENC KYMAX ARE RESPECTIVELY THE MAXIMUM ABSCOLUTE
VALUES OF KX ANT KY WAVENUMRERS FOR WHICH THE FAR FIELOD
I> CALCULATED. KXMAX ANDC KYMAX ARE NORMALIZED SUCH THAT
K¥X=1.2 AND KY=1,0 COFKESFOND TO THE VISIBLE
PEGICN CF WAVENUMBER SPACE.

FMaix IS AN INPLT-GUTPUT VARIABLE. IF FMAX IS LESS THAN OR
ZGUAL TO ZERC ON INPUT, THE FIELD ARRAY IS NORMALIZED
FECM ZFRO TQ ONE AND FMAX IS THE NOPMALIZING FACTOR,

[F FMAX IS GREATER THEN ZERO ON INFUT IT REMAINS
UMUHANGED 2ND IS USED AS THE NORMALIZING FACTOR.

IPWR CETIRMINES WHICH POWER COMPONENT WILL BE USED IN THE
FAR FIELD CALCULATIONS. 1IPWR=1 FOR ELEVATION COMPONENTS,
IFWR=2 FCR AZIMUTH COMPONENTS, AND IPWR=3 FOR TOTAL POWER
IFWR=4 FCR RIGHT~-HAND CIRCULAR POLARIZATION COMPONENTS
IFWR=5 FOR LEFT-HAND CIRCULAR POLARIZATION COMPONENTS

RADIUS SPECIFIZS THE KADIUS CF THE FAR FIELD SPHERE 1IN
GENTIMETERPS

Enl FIZLS(NX YD
CAL KeKXgKY 3 KZ 3 KXIAGyKYINC 9K XMAX ¢ KYMAX

OMPLEX XFIELCUINXGNY) gYFTELDINXWNYD) 3040574 EXGEY
COMPLEX HTHET Ry HPHI JHX4HY 4HZ

IM=14NX/?2

IJM=LeNY /2

SR2=3QRT (2 W)

HTHETA=CMPLX(1e v3a) /SR2

HOHT=CMPLX((asl.)/SR2

TF (TPWR . ZGe5) HPHI=~HPHI
IF(IPHR.GS 4 1.8NCLIPKRWLFL5) GO 7O 101

OO NOUTLE WM



AN

132

W2ITo(by130)
FOUMAT (1HL 93X 4" VALUS ASST
-FAx IS NOT ALLOWED, IFWR
TPwR=2

SONTINUE
PT=3,141532r53583%
K=2*pI*¥FGHZ2/72¢S, 3792¢
Q:(Co':"lo:"

AX2=NX/2

NY2=NY/Z

KXINC=0,¢

KYINC=(. 8

IF(NXZz.EQ.CY GO TG 1
CXTNC=KXMAaX/NYXZ .
IFINY2LENQ.LGY GO TG 2
KYINC=KYMAX/NYZ

CONTINUE

GNED T
=3 ASSUMED.")

CALCULATE THE POWER PATTERN CN A SPHERE,

R=RADIUS
RI=ZAMON(KFR,2.,0%0])
CQFK¥LEXP A=Q¥RE) /R
00 6 I=1,NX,1

DO & J=1.nNY¥,1
KX={I~NXZ-140)*¥KXINC
KY=(J=hY2=1.31*KYINT
KZ=1 0=-KX*¥2=KY ¥¥2
IF(KZJsLELSaC) GO TO 5
KZ=SORT(KZ)
D=Z0RT({1.~KY¥¥*2)
SZ==CH(KXFXFTZLO(I,J) #KYFYFISLOCILNJMY
EX=C*KZ¥XFIELO(I,N
EYSL¥KZEYFICLE(I W)
YFLIELDA(T o) =EX
YEIFLODO(TWJY=2Y

IFCIFWRCCol) FIELDUT s JI=UABS (~EX¥KYRKX/QHE Y*¥D-EZ¥KZ¥KY /D) **2
IF(IPUF,Z0.2) IELNUI +J)=CABS (-EY ¥KZ/ D=-EZ¥KX/D) **2

0 THE ARGUMENT IPWR IN SUBRQUTINE

33
4t
b1
42
43
b
45
46
«7
438
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
oL
65
66
67
68
69
78
71
72
73
74
75
76



€61

O

11

IFCIPWR.EQW3) FIZLD(I LI =CABSH(EX) *¥2+CABS(EY)I*¥¥24+(ABS(EZ)*¥*2

IF(IPWR ,GF 1, AND.IPWR.LFL3)Y KO TO 6
IF (I1.EQ.IrJANDLJ.E0.dM) GO TO 7
RAL=SAFRTAKX*¥¥ 24 KY*¥ )

HX= (HTHETA¥KX¥K Z2-HPHT ¥KY)} /2 4D

HYs (HTHETA®KY¥K Z+HP KT *KX )} /RPAD
H7z=HTHETA*RAT

GO0 TO 10

HYX=HTHCTA

HY=HPHYT

H7=(CMPLX () a9eT4)

FIELD(I s ) =CAES(EXFHXFEYPHY 4E7%HZ I¥ ¥
GO TG ¢

FIZLDC(L, =0, 10

GONTINUE

NCRMALIZE THIZ POWER PATTEERN.

IF(FMAX . GT LW ) GO TO S
N9 8 I=1l,MX

A0’ J=1,NY
R=FIzZLU(I, J)
TF(R.,GT.FMLX) FMAX=R
CONTINUL

CONT INUL

12 11 T=14hX

D0 11 J=1,NY
FIZLN(IZJY=FIEL (I VY /FMAX
GCONTINUZ

RETURN

END

77
78
79
80
81
82
83
84
8%
86
87
38
89
90
91
92
393
94
35
96
97
98
99
100
101
1902
i93
104
105
1086
107
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21-4.

21-5.

21-6.

21-7.

21-8.

Chapter 21

SUBROUTINE AMPHS

Purpose: To convert a complex number ¢ = x + jy from
rectangular to polar form c =|c[ej¢.

Usage: CALL AMPHS (C, AMP, PHS)

Arguments
C - Complex input variable containing the rectangular
components of the complex number to be converted;
i.e., C = CMPLX(X,Y).
AMP - Real output variable equal to Vx2+y2.
PHS - Real output variable equal to the phase angle ¢
in degrees.
Comment

The intrinsic Fortran function ATAN2 is used to compute PHS.
Program Flow: See listing below.

Test Case: None

References: None

Program Listing: See following page.
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961

2

SUBRCUTINS AMPHS((,AMP,PHS)
ComPLox C

337a PI/341415G728%/
AMP=C8A5(0)

Y=t AL {3)

Y=3T#AG (D)

IF (AZS(XY.LT.15-14) 6O TGO
PHS=ATENZ{Y«XI¥®1RD, /D]
RETURN

PH3zan,

IF (Y-LT.:.’ p*“5=-9"3.

IF (AMPLLT.15-17) PHS=-18{.
RETURN

ENG
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Chapter 22

SUBROUTINE DBPV

22-1. Purpose: To convert a real array of linear values, normalized to
lie between zero and unity, to decibels.

22-2. Usage: CALL DBPV (FIELD, NX, NY, IPV)

22-3., Arguments

FIELD - Real input/output array of NX by NY elements: on
input, it contains the values to be converted; on
output, it contains the corresponding decibel values
on the range (-40, 0). All input values less than
10 © are set to —40 dB on output.

NX, NY - Integer input variables which specify the size of
the array FIELD.

IPV - Integer input variable which specifies whether the
input values in FIELD represent power (IPV=l) or
voltage (IPV=2). If 1PV=1l, F(I, J) = 10 1og10
F(I, J) is returned; if IPV=2, F(I, J) = 20 log10
F(I, J) is returned.

22-4. Comments
It is intended that the input array FIELD be normalized prior to the
call to Subroutine DBPV.
22-5. Program Flow:. See listing below.
22-6. Test Case: None

22-7. References: None

22-8. Program Listing: See following page.
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OO0 0O

SUBROUTINE CBPVIFIELOJNXSNYLIPV)
MODIFISD BY GKH 4/78 TO PERMIT POWER (IPV=1) QR VOLTAGE (IPV=2) DB.

SUBROUTINE 0B COMERTS AN INPUT ARRAY (FIELD(NXsNY)) OF

VOLTAGE OR POWER VALUES TO DECIBLES AND RETURNS DB VALUES IN THE
SAME ARRAY,

ALL VALUES OF FOWER LESS THAN 40 OB COWN ARE SET EQUAL T( =-40DB

DIMENSTION FIELD{INXeNY)
00 10 I=1,4NX
00 10 J=1.NY
IF (IFV.EQ.2) FIELD(I,JI=FIELDA(I, J)**2
IF(FIELD(IsJ)LEL1E-%) FIELOD(I, N =1E-u
FIELD(ILJ)=10.0%ALCCIO0(FIELD(I, I )
19 CONTINUE
RETURN
£ND

W®NGOUFEWN -




Chapter 23

SUBROUTINE NCRMH

23-1. Purpose: To normalize a two-dimensional real array of field values
so that all values in the array lie between zero and unity.
23-2. Usage: CALL NORMH (FIELD, IMAX, JMAX, LDB)
23-3. Arguments
FIELD -~ Real array of IMAX by JMAX elements. On input,
it contains the field values expressed as non-
negative real linear amplitude or as amplitude
in decibels. On output, the linear amplitudes
are replaced by their scaled values FIELD(I,J)/
FMAX, where FMAX is the maximum amplitude value
in the array; the logarithmic amplitude wvalues
are replaced by (FIELD(I,J)+40.)/40., where -40
decibels is assumed to be the lower bound on the
original data.
IMAX,JMAX - The number of elements in FIELD.
LDB ~ A logical variable set TRUE if the values in
FIELD are in decibels.
23-4, Comments and Method
A function f(x,y) of two variables having minimum value fmin and

maximum value fmax may be normalized to Osfn(x,y)$1 according to

f{x,y) - fmin
£ (xy) =% - (1)
max min
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provided that the denominator is not zero. In this procedure, the fn=0
corresponds to f=f , , and f =1 corresponds to f=f .
min n max

When f(x,y) represents a linear (vice logarithmic) variable, it

is desirable to force fmin to be zero if the minimum value of £ is actually

greater than zero. 1In this special case, fn becones

£ (xy) =3

max

Equation (2) is also used to treat the special case of fmax - £ ~ 0;
however if Ifmax|<l' fmax is set equal to *l., where the sign used is

that of fmax' This refinement has the effect of producing a constant

function whose value lies between zero and unity; without it, fn would
be simply set to unity or division by zero may result.

When f(x,y) represents a logarithmic variable, such as the ampli-
tude in decibels of an electromagnetic field, all of the foregoing dis-
cussion applies; however, a minimum value fmin must be imposed. If
fmin<—40, fmin is set equal to -80 (decibels); otherwise, a -40 decibel
level is assumed. A value of fmax equal to zero decibel is also assumed.
23-5. Program Flow

Lines 9-16: Find minimum MN and maximum MX values of data in

FIELD; form their difference DR=MX~-MN.
Line 17: If array values are in decibels, go to 50.
Line 18: If all values in the array are the same, go to 25

and scale the data to lie between zero and unity

(Lines 28-37).
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Lines 19-27:

Line 38:

Lines 39-46:

Lines 53-54:

Test Case:

References:

If all linear amplitude values in FIELD are not

identical, scale the data according to FIELD(I,J)

(FIELD(I,J) - Min. Value)/(Maximum Value - Minimum

Value).

If values in FIELD are in decibels, and the minimum

value is less than -41dB, then assume a -80dB low
bound, go to 60 {(Lines 47-52), and scale the data
according to (FIELD(I,J) + 80.)/80.
Scale the data according to a -40d4B lower bound;
(FIELD(I,J) + 40.)/40.
Write MN and MX.

See Chapter 2.

None.

Program Listing: See following pages.
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zoe

OO0

SUBROUTINZ NORMH(FIELD, IMAX yJMA X, LDR)
MODIFIED BY GKH 4778 TO CAUSE PROPER NORMALIZATION OF BOTH
LTNEAR AND D3 AREAYS.

NORMALIZE FIELC SO THAT ALL VALUES ARE BETWEEN ZERQ AND ONE.

REAL MN MX,FIELD(IMAX,,JMAX)
LCGICAL LCE
MX=FIELD(1,1)
MN=MX
Do 20 I=t1,IMAX
D0 206 J=1,JMAX
MN=AMINL{MN,FIELD(I,,J))
MX=AMAXL(MX,FIELD(I,J))
20 CONTINUE
DR=MX=-MN
IF (LOB) GC TC 59
IF (DR.LT.1E-18) GO TO 25
TMN=MN
IF (MN.GT.GC+) TMN=0,
TOR=0R
IF (MN.GT.0.) TCR=MX
00 21 I=1,IMAX
DO 21 J=1,.JMAX
FTELD(IJI=AFIELD(I,J}=TMN) /TDK
21 CONTINUE
GO TO 35
CASE WHERE ALL VALUES ARE THE SAME?
25 TMX=MX
IF (ABS(MX)elTe1.0) TMX=SIGN(1.4MX)
00 3§ I=1,INAX
00 33 J=1,JMAX
FTELDIIZJY=FIELCAIy o)/ TMX
FIELD IS FILLED WITH SAME VALUES SCALED BETWEEN ZERO AND UNITY,
IF (FIELD(I,J)aLT.%5.) FIELD(I,LJ)=1D.
35 CONTINUE
50 TQ 35
50 IF (MN.LT.-41,) GO TO 68

P e b ek ph A A b e e
DR NPV LS NN OO0~ WM

NN
N e &

NN NN N
O NN W

INEN
- o

NN W
NOWMmEWN
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€02

ASSUME G TO =-4{. SCALE®

55

6C

65
35
4c

DO 55 I=1,INMAX

00 55 J=1,JMAX

FIELD(I o JI=(FIELD(I9J)+4G.) 74 G,

IF (FIELD(IHJ).LT.0.) FIELD(I+J)=0.
IF (FTELO(I4J).CGT.1.) FIELO(I J)=1.
CONTINUE

GO TO 35

DO €5 I=1,1NMAY

DO €5 J=1,JMAX
FICLD(ILJ)I=(FIELD(I,J)+E0.) /80,

IF (FIELD(IyJ).LT.0,.) FIELD(I,J)=0.
IF (FIELD(I JY.GTW14) FIELDU(IW.Jdi=1.
CONTINUE

WRITE(E,4T) MNyMX

FORMAT (/7™ SUBFROUTINE NORMt MIN= “,E10.3,"

RETURN
END

MAX= *,E10.377)

39
40
41
42
83
bl
45
46
47
48
%9
50
51
52
53
54
55
56
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Chapter 24

SUBROUTINE CNPLTH AND FUNCTION PSI

24-1. Purpose: To plot (Calcomp) single dimensional far field patterns

at constant wavenumber k_. .
fix

24-2, Usage: CALL CNPLTH (FIELD, N, KMAX, KCNTR, KFIX)

2 2
PSI = ATAN2 (K//l. - K" - K.,
fix
24-3. Arguments
FIELD - Real input array of N elements containing the

field values in decibels but normalized so that
-40 dB corresponds to O and O dB corresponds to
unity on the normalized scale.

N - Integer input variable which specifies the number
of elements in FIELD.

KMAX - Real input variable equal to the half width of
the wavenumber range corresponding to the array
elements 1 through N of the array FIELD; i.e., the
increment in wavenumber corresponding to the dis-
tance between the Ith and (I+l)st element is
2 KMAX/N.

KCNTR - Real input variable equal to the wavenumber coor-
dinate of the (N/2 + 1l)st element of the array
FIELD. FIELD(l) has wavenumber coordinate
KCNTR - KMAX.

KFIX - Real input variable equal to the fixed value of
the other wavenumber coordinate. For example, if

kx varies, then ky = KFIX.
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24-4. Comment and Method

Let F(kx, ky) represent the far-field power pattern of an antenna
where kx and ky are normalized wavenumbers as defined in Chapter 20. A
pattern cut at constant wavenumber is a conical cut about the real axis;
e.g., a kx = constant cut is a conical cut about the x axis of the coor-
dinate system.

For principal plane cuts, kx = 0 yields an E-plane pattern as
defined in Figure 2-3; ky = 0 yields an H-plane pattern. For principal
plane cuts, KCNTR = 0 and KFIX = O.

The plotting commands are set up to produce a 4" X 8" rectangular
pattern plot on a standard pattern scale. The plot is positioned on the
paper to give margins of 2" on the left, 1" on the right, and 2.25" from
the bottom and, hence, is suitable for direct use as a figure in a tech-
nical report.

24-5. Program Flow: See listing below.
24-6. Test Case: See Chapter 2 and pattern plots in Appendices B and D.
24-7. References: None

24-8. Program Listing: See following pages.
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SURBROQUTINE CNPLTH(FIELD NyKMAXsKCNTRyKFIX)
MODIFIED BY GKH 4/28/78 TO GIVE 4 X 8 SA PLOTS WITH MARGINS
OF 2* FROM LEFT, 2.25 FROM BTM, AND 1™ ON RIGHT.

L0Z

COO0OOOO0O0O0O0O000O0

THIS SUBROUTINE FLCTS SINGLE OIMENSIONAL FAR FILED PATTERNS
THE PLOTS ARE CCNSTANT WAVENUMBER PLOTS WHICH CORRESPOND
TO CONICAL FAER FIELC PATTERNS
FIELD(N)Y IS A CNE DIMENSIONAL FAR FIELD POWER PATTERN
NCRMALIZED FRCM ZERC(CORRESPONUING TO ~-40 DB8) TO ONE
(CORRESPONDING TO 0 D8)

KMAX IS THE HALF WIDTH CF THE WAVENUMBER REGICN OF FIELD
KCNTR IS THE CENTER WAVENUMBER COCRCINATE OF THE INPUT FIciD
FIELD(1) HAS A WAVENUMBER COORODINATE KCONTR-KMAX

FIELD(N/2+1) HAS WAVENUMBER COGRDINATE KCNTR

KFIX IS THE FIXE0 VALUE OF THE OTHER WAVENUMBER COORDINATE

REAL FIELOIN) 4K oKMAX ¢ KCNT Ry KF IX

PSIMIN=PSI (KCNTR=KMAX4KFIX)

PSIMAX=PSI (KCNTR+KMAX =2*¥KMA X/ Ny KF IX)
PSIMID=PSI(KCNTRLKFIX)
DELPSI=2*AMAXL1(PSIMID-PSIMINsPSIMAX=-PSIMID)
ISCALE=3608

IF(DELPSI.LE.60) ISCALE=6L

IF(DELPST.LE.10) ISCALE=1(

INITIALIZE FACTOR TO UNITY AND DRAW LEFT MARGIN FOR GUIDE LATER.

CALL FACTOR(1.)

CALL PLOT(0490.04-3)
CALL PLOT(0.,8.5,2)
CALL PLOT(Ce9Ces3)

SET LOGICAL CRIGIN OF SA PLOT:

CALL PLOT(24424254-3)

PLOT AT .4 SCALE FACTO&K OF FULL SiZt SA PLOT (410 X 20)12

CALL FACTOR(. &)

ORAW RECTANGULAR PERIMETER BOX
CALL PLOT(C.0,40.75,3)

CALL PLOT(Q0.0+1Ce€25,+2)

CALL PLOT(Z2C.0410.62542)

WE®NOWE WN -
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CALL PLOT(ZC0.Cya7E,2)
CALL FLOT(C.0+a7542)

PLOT HORIZCNTAL DECTBEL SCALES
¥=0,7542.,4€875

DO 1 I=2,4,1

DB=4Q,008006C01~-¢I~-1)*10.0

CALL PLOTI(0.0,Y,3)

CALL PLOT(5,0,Y,2)

CALL NUMBEFRI(S5 9633y Y=(elT7+C 21490840 .04+-1)
CALL PLOT(5,3323324Y,3)

CALL PLOT(15.33334Y,2)

CALL NUMBERI(15,38323Y-0.07+4C0144DB840.0,-1)
CALL PLOT(15,€6664Y43)

CALL PLOT(20,C,Y,2)

Y=Y+2,. 468?5

PLOT HORIZCNTAL ANGLE TICK MARKS
X=0.6606667

DO 2 I=1,2¢,1

CALL PLOTI(X40.7543)

CALL PLOT(X,9.85,2)
X=X+0.6666€E€67

PLOT HORIZONTAL ANGLE SCALE

DO 3 T=1+9,1
ANG=IARS(5~-I)*ISCALE/10.040.0001
OX=0.18

IF(ANG.LT.100.0)0X=0.11
TF(ANG.LT.1C.20X=C.04
X=1%*2.0-0X

¥=0,90

CALL NUMBER(X+Y+s04145ANGo 800 =1
GCONTINUE

DIGRESS TO PLCT INTERIOR VERTICLE DECIBLE SCALES AND LABLES

OX==1.C
X= £5.,3333

39
40
41
“2
43
4
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
Bl
65
66
67
68
69
70
71
72
73
74
75
76
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D0 6 I=142,1

Y=(U .75

CALL PLOTI(X,Y,43)

CALL PLOT{X3134€25,2)

CALL SYMBOL(X-DX*0,1440.0743.85,0.14y 27HRELATIVE POWER ONE WAY (D
$B)+90.0427)

DO 5 J=1s4,41

DO L L=144,y1

DB=13-2%L+0.0001

Y=Y+5.875/72G.73

CALL PLOT(X,Y,3)

CALL PLOT(X40X*¥(Q.07+¥,42)

CALL NUMBER(X4DX*¥0,16660~0+04+Y=0.074+0.14+0840e084-1)
CONTINUE

Y=Y+3,875/25.0C

X=14.6667

Dx=-0Xx

PLOT CONE ANGLE AND CENTER OF ROTATION ANGLE

CONE=ACOS(KFIX)*140/3,14159265358¢<8

CALL SYMBOL(6e5+04S490414913HCONE ANGLE = 40.0413)

CALL NUMBER(9S€9,4999 .90 .14 CONESD041)

CALL SYMBOL (99,4999, 40,144 29H CENTER RCTATION ANGLE = 5040,
$29)

CALL NUMBER (€9C,4999,4 0 14 4PSIMIDS0.0,1)

PLOT PATTERN

IPEN=2Z

DO 1T I=1sNs1
K=KCNTR+{I-N/2.-1) ¥ KMAX¥2/N
A=PSI(K,KFIX)-PSIMID
X=10,0420.C*A/ISCALE
Y=FIELD(I)
IF(Y.LT.O.G) ¥Y=0,.,0
[FLYGT1e0) Y=1,.1
Y=Y*9,875+40.,7°%
TF(XLTe0.0)X=04.0
TF{X.GTe2%40) X=20.0

77
78
79
80
81
82
83
84
a5
86
87
88
89
90
91
92
93
9%
95
96
97
98
99
100
101
192
103
104
105
186
107
148
109
110
111

112

113
116
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CALL PLOT(X,YsIFEN) 115

IPEN=2 116

10 CONTINUE 117

G RESTORE FACTOR AND CONCLUDE PLOT AT 8TM RT GORNER OF PAGE?R 118
CALL FACTOR(1.7) 119

CALL PLOT(C.4=2.25,4=3) 129
RETURN 121

END 122
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FUNCTION PSI(K,KFIX)

REAL KeKFIXyKZ

K7=1 e=K¥¥2-KF [X*¥2

IF (KZ.LE.Ge) KZ=L.

KZ=SART (KZ)
PSI=ATANZ2(K,K2)*180+/3.141592653
REZTURN

ENDO

BNV & WN
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Chapter 25

SUBROUTINES PLT3DH AND PLTT

25-1. Purpose: To plot {Calcomp) the two-dimensional array FIELD (I, J).

25-2. Usage: CALL PLT3DH (XSIZE, YSIZE, HEIGHT, FIELD, IMAX, JMAX, NMZ,

LDB)
25-3, Arguments
XSIZE,
YSIZE,
HEIGHT
FIELD,
IMAX,

JMAX

NMZ

LDB

25-4. Comments

Real input variables in inches defined on Figure 1.

Real input array of IMAX by JMAX elements con-
taining the values to be plotted. These values
must be normalized to the range (0, 1) before
plotting.

Logical input variable. If NMZ = .TRUE., the
array FIELD will be normalized with respect to
its own maximum value; if NMZ = .FALSE., no
normalization will be done.

Logical input variable required by Subroutine

NORMH (Chapter 23).

In Figure 25-1, the axes and labels shown are not produced by the

subroutine; these axes are presented to demonstrate the perspective of the

plot and to identify its dimensions. Report size plots will be produced

suitable for one 8 1/2" X 11" page when FACTOR = 1.0 and
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Figure 25—1. Dimensions of Three—Dimensional Plot.
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XSIZE = 6.0”
YSIZE = 2.5"
HEIGHT = 2.5"

Margins in this case will be 1.5" on the left, 1" on the right, and 4.25"
from the bottom of the plot paper. Margin lines are provided on the plot
paper to outline the 8 1/2" X 11" page. Also, the plot itself can be
carefully cut from the plot paper and cemented onto a set of axes as has
evidently been done in Appendices B and D.

25~5. Program Flow: See listing below.

25~6. Test Case: See Chapter 2 and Appendices B and D.

25-7. References: None.

25-8. Program Listing: See following pages.
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OO0 OODODOOOO00O000

c

SUBROUTINE PLT3LCH(XSIZE,YSIZE JHEZIGHT,FIZLOD, IMAX, JMAX,NMZ,LDB)
L0OB IS REQUIRECD BY SUBR NORMH TO SPECIFY IF ARRAY FIELD
IS IN CB (TRUE) Ck NCT (LDOB=.FALSE.).
MODIFIFC BY GKH 4/28/7® TO GIVE REPORY SIZZ PLOTS WHEN
XSIZE=6.0s YSIZE=2.5, HEIGHT=2.5+s Il+E.s LEFT MARGIN OF
1.5, RIGHT OF 1* AND 4.25"™ FPCM BTM MARGIN.

XSIZE IS THE MAXIMUM LENGTH OF THE PLOT IN INCHES.

YSIZE IS THE MAXIMUM WIDTH OF A ZERGC PLOT IN INCHES.

THE SUM CF 1/2 INCH + YSIZE + HEIGHT MUST BE LESS THAN
OF ZGQUAL TC THE PAPER WIDTH.

FIELD{IMAX,JMAX) IS THE TWO-DIMENSIONAL REAL ARRAY TO
BE PLOTTED. IF FIELD IS NOT NORMAL IZED ON INPUT, NMZ
MUST BE L TRUE. .

NMZINCRMALIZE) IS A LOGICAL INPUT VARIABLE. IF ITS VALUE
IS «TRUE. THE VALUES IN FIELD WILL BE REPLACED WITH
THETIR NOPMALIZED(ZERO TO ONE) COMPONENTS.

REAL FIELD(IMAX,JMAX) 4 HID(128)
LOGICAL NMZ,LOA
REAL LASTX LASTY,LASTH,LASTHM
IFU(NMZ) CALL NCRMH(FIELD,IMAX,JMAX,LD8)
XPAGE=0.0
YPAGE=0.0
LASTHM=0.0
NIJ=IMAX+JIMAX
RI=THMAX-1.0
RJzJMAX‘io 0

INITIALIZE FACTOR TO UNITY, ORAW LEFT MARGIN,AND SET LOGICAL OFRIGINS
CALL FACTOR(1.0)
CALL PLOT(0.40409-3)
CALL PLOT(C.s11.+2)
CALL PLOT (049 0e43)
CALL PLOT(1.553.75+,-3)
DO 1 I=1,N1J

1 HID(I)=-0.5
D0 7 J=1,JMAX
Ad=J=-1.0

LW ENOWNLE WN =
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DO 7 I=1,IMAX

Al=I-1,0

LASTX=XPAGE

XPAGE=(AJ+ A1V *XSIZEZ(RI+RD

LASTY=YPAGE

YPAGE= (AJ*RI/RJ-AI*RI/RI+RII*YSIZE/(RI*RIV+HEIGHT*FIELD(I, )
LASTH=LASTH+M

LASTHM=HID (I +)}

IF(YPAGE-HIC (I+J)) 5,542

IF(I.NE.1) GO TO 3

CALL PLTT(XPAGE,YPACE,3)

IPEN=2

GO 70 &

CALL PLTTU(XPAGE 4 YPAGE, IPEN)

IPEN=2

HID(I+J)=YFAGE

GO 1O 7

IF(I.EQ.1) IPEN=3

IF(IPENC.EQ.3) GO TO b
XAN=LASTX*HID(I+J)~-LASTH*XPAGE-LASTX*YPAGE+ XPAGE®LASTY
X10=HID(I+J¥-LASTH-YPAGE+LASTY

X1=X1N/X10D

Yi=(X1*¥ (HID(I+J)=LASTHI+LASTH*XPAGE-LASTX*HID(TI+4) )/ (XPAGE-LASTX)
CALL PLTT(X1,Y1,2)

IPEN=3

CALL PLTTU(XPAGE s YPAGE, IPEN)

CONTINUE

DO 8 I=1,N1J

HID(I)==0.5

00 16 II=1,IMAX,1

I=IMAX=-TI+1

Al=1-1

D0 1€ J=1,JMAX

AJ=J-1

LASTX=XPAGE

XPAGE=(AJ+ ATI) *XSIZE/(RI+RY)

LASTY=YPAGE

YPAGE=(AJ*RI/RJU-ATI*RJI/RIFRII*¥YSTIZE/ (RIUHRII+HEIGHT*FIELD (I, J)

39
40
51
42
43
44
45
46
47
48
49
50
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52
53
54
55
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LASTH=LASTHKM 77

LASTHM=HID (I+J) 78
IF(YPAGE-ATID(T+J)) 13,14,9 79
9 IF(JWNEL1) GO TO 10 80
CALL PLTT(XFAGE ,YPAGE,3) 81
IPEN=2 82
G0 TC 12 83
10 IF(IPEN.EG.Z) GO TO 11 | 84
XAIN=LASTX*YPAGE-LASTY*XPAGE-LASTX*HID (I +J) +XPAGE*HIC(I+J=-1) 85
X1D=YPAGE-LASTY-HID(I+J)+HID(I+J-1) 86
X1=X1N/ X10 87
Y1=(X1* (YPAGE=LASTY) +LASTY*XPAGE= LASTX* YPAGE) / (XPAGE-LASTX) 88
CALL PLTTU(X1,Y1,3) 89
IPEN=2 90
11 CALL PLTT(XPAGE,YPAGE, IPEN) 91
12 HID (I+J)=YFAGE , 92
GO TO 16 93
13 IPEN=3 9
GO TO 15 95
1t IF(J.EQ.1) IPEN=3 96
15 CALL PLTT(XPAGE,YPAGE ,IPEN) 97
16 CONT INUE 98
CONGLUDE PLOT AT RT 8TM CORNER OF REPORT PAGE! 99
CALL PLOT(XSIZE+14y=3475,-3) 100
RETURN 101

END 102
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OO0

SUBROUTINE FLTT(X,Y,IPEN)
SUBROLUTINE PLTT ELIMINATES MOVING PEN FOR HIDDEN LINES.

XLAST=XN

YLAST=YN

ILAST=IN

XN=X

YN=Y

IN=IPEN

IF{TPENCEQ«2.ANDILAST.EQ.2) CALL PLOT(X,Y, IPEN)
IF(IPEN<EQ.2. AND+ILAST.EQ.3) CALL PLOT(XLAST,YLAST,L,ILAST)
IF(IPENJEQ.2. 8ND, TLAST.EQ.3) CALL PLOT(X, Y, IPEN)
IF(IPENCNSE 4 2. ANDSIPENJNES3) CALL FLCTIX,Y,IPEN}
RETURN

END

OONPINEF N






Chapter 26

SUBROUTINE FFTA

26-1. Purpose: To compute the Discrete Fourier Transform (DFT) or its
inverse of a sequence of complex numbers consisting of 2N elements,
where N is an integer. The Cooley-Tukey algorithm is used to per-
form computations in place to speed up the computations and to
return the transformed values in the input array.

26-2. Usage: CALL FFTA (FIELD, NEXP, IBMISN)

26-3. Arguments

FIELD - Complex array of 2%** NEXP elements: on input it
contains the sample data to be transformed; on
output it contains the transformed data. See

below for ordering of data.

NEXP - Integer exponent; e.g., for 64 elements in FIELD,
NEXP=6.
IBMISN - 1Integer parameter which controls operation:

IBMISN = 3 performs the inverse DFT

IBMISN # 3 performs the DFT as defined in

4 below.
26-4. Comments and Method

a. Subroutine FFTA is machine-dependent in that the bit reversed

number, IFLIP, must be generated using Fortran instructions which are
peculiar to a particular machine. Also, the word length must be taken
into account. Lines 38-42 of the attached program listing are used to

effect the desired operation for the CDC Cyber 70 (60-bit word, numbered
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0 through 59 from right to left with Bit 0 being the least significant):
IFLIP=0
DO 4 II=1, IEXP, 1
J=60 - II
IFLIP=2*IFLIP + AND (SHIFT(I,l1+J), 1B)
4 CONTINUE
The SHIFT(I,1+J) operation shifts the bits of the integer I to
the left by 1+J bit positions. The AND operation strips off the right
most bit of the shifted result. E.G., when II=1, the right most bit of
I (Bit 0) is extracted from I by the AND(SHIFT) operation. The current
value of IFLIP is then shifted one bit to the left by the 2*IFLIP opera-
tion. The two results are then added together. &A total of NEXP bits
are extracted, starting with Bit 0, followed by Bits 1, 2,...(NEXP-1).
The net result of these operations is to take the NEXP-bit binary
representation of the array element number I, reverse the order of the
bits, and right justify the result. Array elements in FIELD numbered I
and IFLIP are then interchanged if I>IFLIP. The first and last elements
of FIELD always remain in place. The array elements are rearranged in
this manner so that they will be ordered after transforming [1].
b. To explain the ordering of the data in the complex array FIELD,
it is convenient to consider the specific example of using FFTA to com-

pute the Fourier transform G(f) of a time function g(t) as defined by

T
max

-j2nft
e 347

G(£f) g(t) dt (1)

max



and as approximated by

G(£) = I g(t,) N T (2)

vwhere ti are the equally spaced points along the t axis when g is sampled

over the interval -T £t <7 .
max max

There are N=2NEXP samples in the input array FIELD(I) corresponding
to I=1,N. The first sample (I=1l) corresponds to g(—Tmax). The last
sample (I=N) corresponds to g(Tmax—At). The I=(N/2+1)th sample corresponds
to g(0); i.e., the value of g at t=0. The DFT assumes periodicity of the
sampled data so that the value at t=Tmax is identical to that at t=-?m .

ax

The sample spacing is

At=27 /N (3)

and corresponds to a folding frequency fmax of

£

1/2At (4)

On output, the array FIELD contains the frequency components G(f)
at N equally spaced frequencies Af over the band -f s f<f ; where
max max

I=1 corresponds to f=-f ; I=(N/2+1) to f=0, and I=N to f=f -Af, where
max max

Af = 2 fmax/N (5)
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and where

_ 1
Tmax T 2AF (6)
Also, by the inversion integral [2],
max
+4 .
g(t) = J cf) et IPTEE 45 5 a3 G(£,) QJ2mEt (7)
-F p
max

This version of Subroutine FFTA is written so that division by N

~-j2nft

is done when the Fourier transform (kernel = e ) is computed. When

the expression in Equation (3) for At is used in (2), there results

1

G(E) =2 T 23 g(t,) e 2™ (8)
p N i i

max

Transposing 2 Tmax and using Equation (6) yields

-j2nf t,
z g(ti) e 34T pi (9)
i

2

Af G(f ) =
p
where the righthand side is the definition of the Discrete Fourier Trans-
form as computed by FFTA. Inversely,

g(t;) = I AF G(£) eTI2mEE, (10)

P
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which is the Inverse DFT as computed by FFTA.

Conversely, if the original data in the input array FIELD are
samples of a frequency spectrum G(f), a similar analysis shows that FFTA
computes At g(ti) as the inverse transform (IBMISN=3); i.e., the time
function is modified in amplitude by At. Of course, when the forward
transform (IBMISN#3) is performed on this result, the original sampled
data G(fi) are obtained in FIELD on output.

From the above considerations, the following conclusions can be
drawn concerning the use of FFTA to compute the Fourier transform G(f)

of a windowed time function g(t):

G(fp) =27 o ° FF'I'A{g(ti)} (11)
— l Y =
g(ti) = E_E;;; IFFTA{G(fp)} » IFFTA{AF G(fp)} (12)

As an example, let g(t) be the rectangular pulse function which
has constant amplitude Vb for ]t'Sto and which is windowed in the larger

time interval ]tlSTmax. The Fourier transform G(f) is given by [3]

sin 2nft
O

G(f) = 2 tov (13)

o 2nft
o

Let g(t) be sampled at N=2NEXP points over the interval 'tlSTmax' and let
these sampled points be placed in the array FIELD. Then the spectrum

G(f) will be closely approximated at discrete frequencies fp by



G(f) ®=2T * FIELD(I)
P max

where

fp = —fmax + (I-1) * Af
and where FIELD is the output of FFTA according to CALL FFTA (FIELD, N, 0).

Proper consideration should be given to the sampling of the time
function so that the DFT produces a good estimate of the actual integral
transform. For example, if to=Tmax' and all samples are constant, then
the DFT will produce a single nonzero frequency component at f=0 (corres-
ponding to the (N/2+1)th element of FIELD); i.e., a delta function. Such
a result follows from the facts that the Fourier transform of a constant
g(t)=Vo is G(f)=V06(f) and that the DFT assumes a periodicity of the
sequence of samPles provided to it.

Consider the other extreme. Let the pulse g(t) be represented by
only one sample at t=0 in the window ltISTmax. The Fourier transform of
g(t)=V06(t) is G(f)=Vo, a constant.

It is clear from the above considerations that the time function
must be properly windowed and properly sampled to produce a good estimate
of its transform via the DFT. Simply stated, the time function should be
sampled at a rate At which is twice the highest frequency contained in

the function as interpreted by the DFT.
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26 ~5. Program Flow

Lines 22-24:

Lines 26-29:

Lines 30-35:

Lines 36-49:

Lines 50-73:

Lines 74-79:

Lines 80-85:

26 -6. Test Case

Compute N=2NEXP and set the sign ISN of the exponent

in the Fourier kernel.

Compute IEXP=NEXP from N. This is a redundant com-
putation made when the original FPFT subroutine was
modified to conform to the call to a library version
on another computer system.

Rearrange the order of the input data so that samples
for t20 are placed in the lower half of the array,

and those for t<0 are placed in the upper half. For

a frequency function, the data are rearranged so

that the first N/2 points give the components for
non-negative frequencies (I=1 co;responds to £=0),

and the last N/2 points contain the data for the
negative frequencies.

Rearrange the data in FIELD so that it will be ordered
after transforming as described for Lines 30-35 above.
Perform the summation using the Cooley-Tukey algorithm
[11.

I1f forward transform is being done, divide all values
in FIELD by N.

Rearrange the output data in FIELD so that it conforms
to that used on input; i.e., f£.=f + (I-1)Af or

1 max

t,==T + (I- iate.
max (I-1)At as appropriate

A rectangular pulse function with amplitude v6=1oo was chosen for

11

g{t) with to=.10 second Tmax=l'6o seconds, and N=2048=2"", The resulting
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sample increment At and folding frequency fmax were 0.116 second 320.0
Hertz, respectively. The comparison of the central nine points of the

computed and true frequency spectra were as follows (CDC Cyber 70):

True G(f) Computed G(f)
I f (Hz) Amp. Phase (°) Amp. Phase(°)
1021 -1.250 18.006 0.00 18.006 0.35
1022 ~0.938 18.863 0.00 18.863 0.26
1023 -0.625 19.490 0.00 19.490 0.18
1024 -0.313 19.872 0.00 19.872 0.09
1025 0.000 20.000 0.00 20.000 0.00
1026 0.313 19.872 0.00 19.872 ~0.09
1027 0.625 19.490 0.00 19.490 -0.26
1028 0.938 18.863 0.00 18.863 -.035

26-7. References

1. Cochran, W. T., et al, "what is the Fast