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CHAPTER 1 

INTRODUCTION 

1.1 	Task History  

The research effort reported here was performed jointly by the 

School of Electrical Engineering of the Georgia Institute of Technology 

and the Dynastat Corporation for the Defense Communications Agency. In 

this effort, the Georgia Institute of Technology was the prime contractor 

and the Dynastat Corporation was the subcontractor. The monitoring 

officer at the Defense Communications Engineering Center was originally 

Dr. William Bellfield. The monitoring officer was later changed to be Mr. 

James Vest. 

This task, the investigation of the correlation between objective 

and subjective measures for speech quality, followed previous work by both 

Georgia Tech [1.1] and the Dynastat Corp. [1.2] [1.3] in related areas. 

The portion of this research performed at Georgia Tech involved the produc-

tion of distorted and coded speech, the measurement of objective quality 

measures, and the correlation of the objective measures with the subjec-

tive measures. The portion of the work performed at the Dynastat Corp. 

included subjective quality testing and the associated analysis. 

1.2 	Technical Background 

Since it has been clear for some years that some form of end-to-end 

speech digitization would be initiated by the Defense Communications 

Systems, a number of speech digitization systems have been developed at 

various laboratories around the country. The job of selecting from these 

candidate systems the features to be included in the final system requires 



that extensive evaluation and testing be performed. 	Likewise, when a 

"final" system is fielded, periodic and initial field testing of all links 

will be a significant requirement. This effort deals with a set of tech-

niques which can be used for more effective and efficient operational 

speech quality testing. In general, these "objective fidelity measures" 

are computed from an "input" or "unprocessed" speech data set, S, and an 

"output" or "distorted" speech data set, Sq , as shown in Figure 1.2-1. The 

output speech data set results when the input speech data set is passed 

through the speech communication system under test. Objective measures 

may be very simple, such as the traditional signal-to-noise ratio, or they 

may be very complex. A complex measure might use such diverse measures as 

a spectral distance or other parameteric distances between the input and 

output speech data sets; semantic, syntactic, or phonemic information 

extracted from the input speech data set; or the characteristics or the 

talker's vocal tract or glottis. If an objective fidelity measure conforms 

to the triangular inequality and the other conditions shown in Figure 

1.2-1, then it is a metric. Although metrics have many features which are 

desirable in a fidelity measure, an objective measure need not be metric to 

be of interest. 

If an objective fidelity measure existed which was both highly 

correlated with the results of human preference tests and which was also 

compactly computable, then its utility would be undeniable. Clearly, it 

could be used instead of subjective quality measures for testing and opti-

mizing speech coding systems. Such tests could be expected to be less 

expensive to administer, to give more consistent results, and, in general, 

not to be subject to the human failings of administrator or subject. Such 

an objective measure would also be very useful in the design of speech 

2 



SPEECH 
CODING 
SYSTEM 

Q 

OBJECTIVE FIDELITY MEASURES 

INPUT SPEECH 
DATA SET 

S 

OBJECTIVE 
FIDELITY 
MEASURE 

F(S, SQ) 

OUTPUT SPEECH 
DATA SET 

SQ 

FQ  = F(S, SQ) 

CONDITIONS FOR A MEASURE TO BE 
A METRIC 

1. F(S, SQ) = F(SQ, S) 

2. F(S, SQ) = 0 if S = SQ 

F(S, SO) > 0 if S SQ  

3. F(S, SQ) < F(S, Sy) + F(Sy, S 

Figure 1.2-1. 	System for Computing Objective Quality Measures. 
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coding systems, either by iterative optimization of the parameters of the 

coding system by repeatedly applying the quality measure--a process which 

is extremely expensive using subjective tests--or, if the procedure were 

analytically tractable, by designing the speech coding system to expli-

citly maximize the quality of the system as defined by the objective 

quality measure. Finally, note that the results of the objective measure 

applied at different times and at different locations could be compared 

directly. This is clearly not generally the case for the results of subjec-

tive quality tests. 

The problem is that an objective fidelity measure which is both 

highly correlated with subjective measures over all possible distortions, 

and which is compactly computable, does not exist. Although at this time 

the speech perception process is not well understood, it is well enough 

understood to state that the human speech perceiver is an active perceiver, 

responding to semantic, syntactic, and talker related information as well 

as phonemic content, and that he uses his vast knowledge of the language 

interactively in the speech perception process. The acoustic correlates 

of the various hierarchically structured elements of the language in the 

speech signal are simultaneously overlapping and redundant. This means 

that certain very small distortions which are properly placed with respect 

to the syntactic structure or the semantic content could cause complete 

loss of intelligibility, while other more extensive distortions might not 

even be perceivable. Hence, it can be argued that objective fidelity 

measures which do not use semantic, syntactic, and other language related 

information cannot correctly predict the quality of a speech coding 

system. 

4 



However, an important point concerning modern speech coding systems 

is that, in general, they do not produce distortions which are in any way 

synchronous with the semantic or syntactic content of the utterance. 

Hence, the distortions introduced by speech coding systems represent a 

subset of all possible distortions. It is our hypothesis that it is 

possible to design relatively compact objective measures which correlate 

well with subjective results over this subset of distortions introduced by 

speech coding systems. We recognize that these measures cannot be com-

pletely general since they do not reflect the complexities of the speech 

perception processing. 

1.3 	An Approach to Designing and Testing Objective Quality Measures 

Over the years, there have been numerous objective measures sug-

gested and used for the evaluation of speech coding systems. These 

measures include signal-to-noise ratios, arithmetic and geometric spectral 

distance measures, cepstral distance measures, various parametric distance 

measures, such as pseudo area functions and log area functions from LPC 

analysis and many more. 

The task of comparing and contrasting the validity of such measures 

is immense. To check the validity of a particular candidate objective 

measure over a wide class of distortions, a researcher must create a data 

base of distorted speech and a corresponding data base of subjective 

results. This is a time-consuming and expensive process, and, as a result, 

the validity of most commonly used objective measures remains a subject for 

speculation. 

In general, we were interested in designing a method for comparing 

the validity of objective quality measures in a cost effective way. In 
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short, we have designed a system for measuring the quality of objective 

fidelity measure--i.e. a quality measure for quality measures. 

The essential features of our method are illustrated in Figure 

1.3-1. First, a test set of undistorted sentences is created. This set, 

in general, consists of phonemically balanced sentences spoken by four or 

more speakers. 	For analysis purposes, the sentences are divided into 

"frames" of a length of 10-30 msec. 	This sentence/frame set is called 

U(m,n), where m is the "condition" (sentence and speaker) and n is the 

frame number. An ensemble of distorted and coded sentences is then pro-

duced by passing the undistorted test set through a large number of con-

trolled distortions and speech coding systems. This forms the distorted 

data base, D(m,n,d) (where d is the distortion) on which the objective 

measures will be tested. 

Once the distorted data base exists, all these sentences are tested 

using subjective speech quality tests. These results form a data base of 

subjective results called S(d). A particular candidate objective measure 

is tested using these three data bases as follows. First, the objective 

quality measure is applied to all the sentences in the distorted data base. 

The application of the objective measure generally involves both the 

undistorted and distorted data bases. Then a statistical correlation 

analysis is done between the results of the objective measure and the 

subjective data base. The results of this correlation analysis are used as 

a figure of merit for comparing the various objective measures. 

Several points should be made about this procedure. First, note 

that the subjective tests are only administered once regardless of how many 

objective measures are to be studied. Hence, the most expensive portion of 

this process, namely the application of the subjective tests, need only be 
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Figure 1.3-1. 	Block Diagram for System for Comparing 
the Effectiveness of Objective Quality 
Measures. 

S(d) 
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done once. Note also that the subjective data base may be expanded over a 

period of time to improve its resolving power or to extend the class of 

distortions involved. Similarly, subsets of the entire data base may be 

used if appropriate to the hypothesis being tested. 

Second, note that this "quality test for quality test" system may be 

used to optimize the parameters of particular objective measures. This may 

sometimes be accomplished explicitly using statistical optimization tech-

niques, or may be accomplished iteratively by reapplying the test repeat-

edly to parametrically different versions of the same objective measure. 

Two figures of merit are used for a particular objective fidelity 

measure. The first is an estimate of the correlation coefficient between 

the objective fidelity measures and 0(d), the subjective quality 

measures, S(d), given by 

y (S(d)-S(d))(0(d)-0(d)) 
d 

P - 

ry (s(d) _ s(d)) 2 1 1/2 [y (0(d) _0(d)) 2 1 1/2 

d 	 d 

1.3-1 

This results in a minimum variance linear estimate of the subjective 

results from the objective results given by 

PP 
S(d) = S(d) + 	S  (0(d)-0(d)) 
	

1.3-2 
a 
0 

where as and o are the estimated standard deviation of the subjective and 

	

objective measures, respectively. 	To say that this correlation 
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coefficient has any absolute validity would be incorrect. Since we have 

not randomly sampled a universe of coding distortions, our estimate of the 

correlation coefficient is biased. In short, estimates of correlation 

coefficients computed in this way are only meaningful when comparing 

objective measures over the same data base, and such estimates should not 

be compared when estimated from different data bases. 

Amore pleasing way to view this analysis is to view the estimate of 

the subjective measure as a linear regression analysis or as simply a least 

squares linear fit. From this, the standard deviation of the error 

expected when the objective estimate is used in place of the subjective 

estimate can be estimated by 

- 	- 
a
e
2 
 = E[(S-E(S1()))

2 
 ] = a

s
2 
 (] - P 2 ) 1.3-3 

This estimate, which incorporates variation in the observed subjective 

qualities as well as the correlation coefficient, is a more pleasing figure 

of merit. 

1.4 	Principal Goals and Procedures 

The research work reported here had these principal objectives: 

1. To design -1000 simple objective measures and 
to test their utility using correlation 
analysis. 

2. To design both time domain and frequency domain 
frequency variant objective measures and to 
test their utility using correlation analysis. 

3. To design more complex composite objective 
measures and to test their utility using 
correlation analysis. 
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The accomplishment of these goals involved numerous additional 

tasks which often led to interesting results in their own right. Some of 

these tasks included: 

1. The design and implementation of a large data 
base of distorted and coded speech. 

2. The performance of the subjective quality tests 
on the distorted data base. 

3. The analysis of the subjective results directly 
from the distorted data base. 

4. The implementation of the objective measures 
across the distorted and coded speech in a cost 
effective way. 

5. The implementation of the "bulk" correlation 
analysis procedures necessary to handle the 
multitude of data produced by this effort. 

In all, a total of approximately 1000 variations of simple and 

frequency variant measures were implemented as part of this study. These 

measures included simple spectral distance measures, frequency variant 

spectral distance measures, parametric distance measures, noise measure-

ments, short time noise measurements, and frequency variant noise measure-

ments. Table 1.4-1 gives a summary of the objective measures studied. 

The composite objective measures considered in this study were 

formed by multiregression optimization on sets of the simple measures. 

These "complex" measures often performed much better than the simple 

measures, and their performance represents an estimate of the limit of the 

ability of objective measures to predict the results of subjective tests. 

The subjective quality test used in this study was the Diagnostic 

Acceptability Measure (DAM) developed at the Dynastat Corporation. This 

test has the special feature that it provides parametric subjective 

results as well as isometric subjective results. This means that the 

objective measures may be tested as to their ability to predict these 
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OBJECTIVE MEASURES 

SIMPLE MEASURES 

SNR 6 
Short Time SNR 6 
Spectral Distance 192 
Parametric 

Energy Ratio (Itakura) 64 
PARCOR Coefficients 24 
Area Ratios 24 
Feedback 24 

240 

FREQUENCY VARIANT 

Banded SNR 6 
Short Time Banded SNR 40 
Spectral Distance 192 

238 

COMPOSITE MEASURES 22 

TOTAL 500 

+Non-linear Regression 1,000 
xParametric Subjective Qualities 40,000 

Table 1.4-1. SUMMARY OF THE OBJECTIVE QUALITY MEASURES STUDIED 
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parametric results as well as the isometric results. In particular, many 

of the objective measures studied, including all of the frequency variant 

measures and the composite measures, may be "tuned" in order to predict 

specific parametric results. Such specific predictions, of course, are of 

great utility to the systems designer. 

The distorted and coded speech data base consisted of 264 "distor-

tions" which were applied to twelve sentences from each of four talkers. 

The total amount of speech data in these tests totaled about eighteen 

hours. The distortions included nine coding distortions, including both 

vocoder and waveform coder techniques, and fourteen "controlled" distor-

tions, including filtering, additive noise, clipping, center clipping, 

interruption, echo, and frequency variant distortions. The coded distor-

tions included both error free and fixed error rate channel simulations. 

The implementation of the distorted data base, the measurement of 

the objective meaures, and the correlation analysis were performed on the 

Minicomputer Based Digital Signal Processing Laboratory [1.4] at the 

Georgia Institute of Technology. The subjective data base and the asso-

ciated statistical analysis were performed at the Dynastat Corporation. 

1.5 	Summary of Major Results 

One of the major characteristics of this study was that the large 

number of objective measures which were studied coupled with the multiple 

analysis methods and both the isometric and parametric subjective measures 

resulted in a very large number of individual correlation results 

(-120,000). From this large base of results, a number of specific 

questions were asked and answered, and a number of important results were 

obtained. This section will just list summaries of some of the major 

results. 
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1. A very good objective quality measure for waveform 
coders and noise distortions was developed based on 
frequency variant (banded) short time signal-to-
noise measurements. 	This measure resulted in a 
correlation coefficient of .93 across all relevant 
distortions and a a of 3.2 quality points on a 100 
point scale. 

2. The best composite measure involved some preclassi-
fication of the candidate system (vocoder vs. wave-
form coder), and resulted in an estimate correlation 
coefficient of .90 and a ue  = 3.5. 

3. The best composite measure study which did not 
require preclassification had an estimated correla-
tion coefficient of .86 and a a

e 
= 4.2. 

4. Neither of the two composite measures above used 
higher order regression models. If such models are 
used, these results are improved, but there are some 
questions as to the accuracy of such predictions. 

5. The optimum value for P in the L norm for spectral 
distance measures was found to %e 8. This is a 
considerable departure from current practice. 

6. Energy weighting of the time frame was found to have 
little value for any of the measures. 

7. The best simple measure was found to be a log area 
ratio measure, which had a p = .64 and= 6.8. 
Surprisingly, this measure was better than any of 
the simple spectral distance measures. 

8. The only two parametric measures which did well were 
the log area ratio measure and the energy ratio 
measure. 

9. The frequency variant spectral distance measures 
performed with about a .1 point improvement in 
correlation over the simple measures. This was less 
than hoped. 

10. The reliability of virtually all of the better 
objective measures was quite high for the number of 
frames used (-'.99). The reliability of the subjec-
tive measures was -.9. 

11. The use of higher order regression analysis (3rd 
order and 6th order) often gave considerable 
improvement in the predicted performance of the 
objective measures. These results, however, must be 
approached with caution, since some tracking of the 
noise is bound to be occurring. 
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1.6 	Discussion 

There are a great many aspects to this study. On the one hand, it 

gives, often for the first time, quantitative comparisons between many of 

the commonly used objective quality measures. Similarly, it gives quanti-

tative predictions for the performance of such measures when used as pre-

dictors of subjective acceptability, at least as it is defined by the DAM 

test. In addition, it allows the comparison of parametrically different 

objective measures of the same type, and the "tuning" of individual objec-

tive measures to predict parametric subjective results. All of these 

results are of importance to the system's designer and the speech 

researcher, but, in general, do not bare directly on the overall problem of 

system quality measure. This is because the performance of any one measure 

by itself (with the noteworthy exception of the banded short time signal-

to-noise ratio for waveform coders) is not good enough to effectively 

predict system acceptability. 

On the other hand, the results of this study tell us a good deal 

about the performance of the subjective measures themselves, and offer new 

data from which to improve the subjective measures. The subjective 

results, in turn, can be used to judge the design of the distorted data 

base. These developments, once again, are quite important, but do not 

appreciably improve the overall quality testing environment. 

The real potential for improvement comes from the use of the compos-

ite objective measures. As previously stated, this study gives fairly safe 

predictions of p =.86 and u
e 
= 4.2 for such measures. There are several 

issues which need to be discussed here, however. First, the approach used 

in this study, which was necessitated by the mass of data involved, was 

essentially a "bulk" approach in which only standard multiregression 
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analysis and coarse, non-data-dependent preclassification was used. If a 

final "best" measure were to be designed, the results of this study should 

be used as a base to study the detailed behavior of the composite measures 

as a function of the particular distortions. Only after this is done can 

pragmatic variations of the composite measures be designed which allow for 

the special interaction of the measures with the data. Second, it should 

be noted that this "best" result was obtained by setting a number of 

parameters in the composite objective measure to optimize this measures 

across the distorted data base. Thus, this should be considered a limit on 

expected performance. 

Another point concerns the nonlinear regression analysis. 	The 

number of degrees of freedom in this analysis was (usually) 1056. Hence, 

using 3rd order or 6th order nonlinear regression analysis was a long way 

from having the order of the analysis equal to the number of degrees of 

freedom. It is noteworthy that often remarkable improvements were 

obtained using nonlinear regression. Some of this effect must be noise, 

but clearly, some of it must be real improvement. Exactly how much 

improvement can be really obtained by nonlinear regression is a subject for 

further study. 

A major point which should be made concerns the reliability of the 

objective measures. For the number of frames used in this study, the 

measured reliability was of the order of .98 or .99 for most "good" 

measures. This means that whatever an objective measure really measures 

for a distortion, it measures the same thing every time. This means that 

these measures could be utilized with great effectiveness for detecting 

malfunctions or nonstandard operation of systems in the field. 
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Some retrospective comment on the contents of the distorted data 

base is also appropriate. The data base was designed to include numerous 

frequency variant controlled distortions in order to facilitate the design 

of frequency variant objective measures. This worked well for time domain 

measures, but not nearly so well for frequency domain measures. Had this 

result been known at the outset, relatively more coding distortions would 

have been included. 

The utility of the measures designed in this study are a function of 

the task for which they are to be used. This study seeks only to quantify 

the predicted effectiveness of objective quality measures. Thus, to 

determine their specific utility, one must also decide what constitutes an 

acceptable prediction of user acceptance. 

A final point should be made here about further possible work in 

this area. 	The same techniques developed here might also be used to 

predict other features from subjective testing. 	The two most obvious 

classes of such tests are the parametric intelligibility tests, such as 

DRT, or a talker identification features test. 
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CHAPTER 2 

SUBJECTIVE CRITERIA OF SPEECH ACCEPTABILITY 

2.1 	Background 

It is generally acknowledged that user acceptance of voice communi-

cations equipment depends on factors other than speech intelligibility. 

Intelligibility is unquestionably a necessary condition, but clearly not a 

sufficient condition of acceptability. Until recently, however, no 

generally satisfactory method of evaluating the overall acceptability of 

"quality" of processed or transmitted speech has been available. 

Under contract with the Defense Communications Agency, Dynastat 

recently undertook to remedy the situation that existed in the area of 

acceptability evaluation. The results of this effort included the Paired 

Acceptability Rating Method (PARM) and the Quality Acceptance Rating Test 

(QUART). Both of these methods provide improved reliability of measure-

ment on an absolute scale of acceptability, though each has limitations 

with respect to range of application. Both served as valuable research 

tools to clarify a number of crucial methodological issues and to indicate 

possible means of further refining the technology of speech evalua-

tion[2.1]. Drawing on insights gained from research with these methods, 

Dynastat continued, under its own auspices, to further develop the tech-

nology of acceptability evaluation. These efforts have culminated with 

the development of the Diagnostic Acceptability Measure. 

2.2 	Design of the Diagnostic Acceptability Measure (DAM)  

In common with several previous methods of evaluating accepta-

bility, the DAM requires the listener to characterize transmitted speech 

by means of absolute, rather than relative, rating or judgments. However, 
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two important features distinguish it from previous methods of predicting 

speech acceptability. First is the fact that it combines an indirect or 

parametric approach with the more conventional direct or isometric 

approach. 

In the case of the isometric approach, the listener is required to 

provide a simple, direct, subjective assessment of the acceptability of a 

sample speech transmission, for example, simply to rate a sample transmis-

sion on a 100-point scale of acceptability. Although the isometric 

approach has considerable appeal from the standpoint of face validity, it 

has several disadvantages[2.2]. For one thing, listener ratings are 

subject to enormous interindividual and intraindividual variation in 

subjective origin and scale, whether as a result of adaption level dif-

ferences or simply of differences in understanding of the task. Research 

with PARM has shown that much of the seemingly random component of varia-

tion in rating scale data actually stems from stable listener differences 

in rating scale behavior. The practical implication of this finding is 

that differences between individual listeners or crews can seriously 

complicate the task. For another thing, listeners' ratings of accepta-

bility tend strongly to be colored by differences in aesthetic preference 

or taste. The first of these disadvantages can be overcome to some extent 

through careful instructional and training procedures and by the discrete 

use of "anchors" and "probes." The most direct means of overcoming the 

second advantage is to use relatively large, representative listening 

crews. However, once the nature or dimensions of the interindividual 

differences in taste are known, stratified sampling may permit the use of 

smaller crews. 
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In the case of the parametric approach, the listener is required to 

evaluate the sample transmission with respect to various perceived char-

acteristics or qualities (e.g., hissiness), ideally without regard for his 

personal affective reactions to these qualitities. Hence, the parametric 

approach serves to reduce the sampling error associated with individual 

differences in "tastes." An individual who does not personally place a 

high valuation on a particular speech quality may nevertheless provide 

information of use in predicting the typical individual's acceptance of 

speech characterized by a given degree of that quality. 

A second distinguishing feature of DAM is that it solicits separate 

reactions from the listener with regard to what he perceives to be the 

speech signal itself, what he perceives to be the background, and with 

regard to his evaluation of the overall effect. This serves at once to 

reduce the listener's uncertainty as to the nature of his task and to 

provide the experimenter with more precise information as to the defic-

iencies of the system being tested. The results of many studies of human 

information processing indicate that, in concentrating successively on 

different aspects of a complex stimulus configuration, individuals are 

able to assimilate a greater amount of information from the stimulus--and 

thus respond more consistently--than otherwise. 

The first step in the development of the DAM involved a series of 

exploratory studies designed to identify the major perceptual correlates 

of overall acceptability--the perceived qualities which govern the 

listener's acceptance reaction--and to develop the most appropriate 

descriptors for these correlates. This involved the experimental evalua-

tion of a large pool of potential descriptors (e.g., hissiness) and the 

selection of those candidates which collectively provided the most 
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comprehensive and reliable discrination among various forms and degrees of 

speech impoverishment. 

Factor analytic techniques were applied to rating data obtained 

with the most promising descriptors to determine the most appropriate 

combination of descriptors and, ultimately, to determine the nature and 

number of elementary perceptual qualities collectively tapped by these 

descriptors. Combinations of redundant descriptors were then combined to 

define a relatively limited number of highly discriminative rating scales. 

Factor analysis was used again on several occasions to further clarify the 

nature and number of underlying perceptual qualities and to select the 

combination of multidescriptor rating scales that would provide the purest 

and most precise measurement of each quality. 

The results of several studies showed that virtually all of the 

perceived differences among a diversity of transmission systems and condi-

tions could be accounted for in terms of six underlying perceptual 

qualities of the signal and four perceptual qualities of the background. 

These ten perceptual qualities were in turn found sufficient for predict-

ing virtually all of the variation in listener ratings of the intelligi-

bility,  pleasantness, and overall acceptability of transmitted speech. It 

was further found that acceptability could be predicted with a high degree 

of precision from ratings of the two higher order qualities, perceived 

intelligibility  and pleasantness. 

The rating form shown in Figure 2.2 was developed on the basis of 

results of the above investigations. ' All items on the form involve 100- 

1
Based in part on the results of the present investigation, this form will 

undergo several modifications for purposes of future research and services 
with the DAM. 
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point rating scales, though it should be noted that the polarities of the 

items pertaining to the perceptual qualities of the signal and background 

are the reverse of those used to evaluate overall effect. One reason for 

this is that most, if not all of these generally undesirable qualities, are 

assumed to have "true psychological zeroes." This generally is not 

warranted for such complex qualities as perceived pleasantness and intel-

ligibility and overall acceptability. 

Some amount of redundancy in the rating form should be evident even 

on casual examination. This is not an undesirable feature at this stage in 

the development of our knowledge of the perceptual consequences of digital 

voice coding. Also evident, perhaps, are the results of some attempt to 

provide for the perceptual consequences of yet - to-be encountered forms of 

speech degradation or processing. 	It is a reasonable expectation that 

features of the rating form which are redundant or extraneous at this time 

may find unique applicability with further developments in speech coding 

technology. 

It follows from the above description of the rating form that more 

refined scoring algorithms can be developed as the need arises. For 

example, two of the background-rating scales clearly pertain to noise, 

though one would pertain most directly to high frequency noise while the 

other would appear to denote perceptual qualities associated with low 

frequency noise. For the present, these scales are combined to yield a 

single score for perceived background noise. 

The ten perceptual qualities treated by the DAM are shown in Table 

2.2-1. Each of these scoring dimensions or scales is identified by a 

mnemonically useful code, e.g., SL denotes that signal quality which is 

most conspicuously associated with "lowpassed" speech. (It should be 
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Table 2.2-1. STRUCTURE OF THE DAM* 

Signal Quality Measures  

Perceptual 
Quality 

Rating 
Scales Used 

Representative 
Descriptors Exemplars 

SF 1,7 Fluttering Amplitude- 
Bubbling Modulated Speech 

SH 3,5 Distant Highpassed 
Thin Speech 

SD 4,14 Rasping Peak Clipped 
Crackling Speech, Quantized 

Speech 

SL 2 Muffled Lowpassed 
Smothered Speech 

SI 8,10 Irregular Interrupted 
Interrupted Speech 

SN 9 Nasal Bandpassed Speech 
Whining Vocoded Speech 

Background Quality Measures  

Perceptual 
Quality 

Rating 
Scales Used 

Representative 
Descriptors Exemplars 

BN 11,13 Hissing Guassian Noise 
Rushing 

BB 15 Buzzing 60-120 Hz Hum 
Humming 

BF 12,17 Chirping 
Bubbling 

Errors in narrow 
band systems 

BR 16 Rumbling 
Thumping 

Low frequency 
noise 

Total Quality Measures 

Quality 
Rating 

Scales Used 
Representative 
Descriptors Exemplars 

Intelligibility 18 Intelligible Undegraded Speech 

Pleasantness 19 Pleasant Undegraded Speech 

Acceptability 20 Acceptable Undegraded Speech 

24 



stressed, however, that lowpassing of speech has perceptual consequences 

other than those reflected on the SL scale, and, moreover, that SL scores 

may be affected by other conditions than high frequency attenuation.) 

For greater convenience in interpretation of score patterns, the 

polarities of the ten derived scales are reversed from those of the origi- 

nal seventeen rating scales. High scores on the derived scales are thus 

associated with freedom from the various perceptual qualities; and are 

thus associated with acceptability, as is the case with ratings of intel-

ligibility, pleasantness and acceptability, itself. 

The contribution of each perceptual quality to the listener's 

acceptance reaction has been closely approximated through experimentation, 

so that each diagnostic score represents the estimated level of accepta-

bility a system would be accorded if it were deficient with respect only to 

the single perceptual quality involved. Thus, the pattern of diagnostic 

scores provides estimates of the relative contributions of the ten per-

ceptual qualities to the acceptance of the system, and permits the communi-

cations engineer to identify the characteristics of a system or device 

which are most detrimental to its acceptance, regardless of difference in 

the values listeners place on the various qualities. 

The application of a multiple nonlinear regression equation (based 

on an analysis of DAM data for more than 200 system-conditions) to the ten 

diagnostic scores yields one gross parametric estimate of the accepta-

bility of the system or condition being evaluated. Appropriately trans-

formed ratings of intelligibility and pleasantness provide two additional 

parametric estimates. (These transformations take into account the fact 

that acceptability is a slightly positively accelerated function of judged 

intelligibility while being a negatively increasing function of judged 
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pleasantness.) The three parametric estimates are then averaged with raw 

or isometric ratings of acceptability to provide the one best, composite  

estimate of acceptability. 

To permit comparisons with the results of previous evaluations 

obtained with PARM, composite acceptability estimates are transformed to 

their PARM equivalents on the basis of the observed regression of PARM 

scores on DAM composite scores in a sample of more than 200 system condi-

tions. A relatively crude estimate of intelligibility is obtained from 

intelligibility ratings based on the regression of DRT scores on these 

ratings in a sample of approximately 100 system conditions (actual speech 

coding systems.) 

2.3 	Materials and Procedures 

2.3.1 Speech Materials 

The test speech material used with the DAM consisted of twelve 

phonemically controlled six-syllable sentences [2.1] which are uttered by 

speakers at a rate of one sentence per four seconds. Different sentences 

are used by different speakers, but the same twelve sentences are always 

spoken by each speaker. 

2.3.2 Evaluation Procedures 

From six to twenty-four experimental system-conditions may be 

evaluated in the course of one testing session, depending on the number of 

speakers involved. Ideally, listeners evaluate all system-conditions in 

sub-sessions involving one speaker at a time. It is particularly desir-

able, however, that the time-ordering of the conditions varies from one 

speaker to the next in a counter-balanced manner. At the beginning of each 

sub-session, listeners evaluate two "anchors" and four "probes." The 
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purpose of the anchors is to provide the listeners with a frame of 

reference in which to make their ratings of experimental system condi-

tions. Data from the four probes, (an LPC, a CVSD, a channel vocoder, and 

Parkhill) are used to adjust all rating data for any circumstantial factors 

which may have operated to increase or decrease the average of all system 

ratings for a given sub-session. Where average ratings of the four probes 

on any scale deviate from historical norms, all data for that scale are 

adjusted in the opposite direction. But, due to the fact that deviations 

in averaged probe ratings do not provide perfectly reliable measures of 

changes in the crews subjective origin or adaptation level, ratings of 

system conditions and the probes themselves are adjusted by an amount equal 

to only .5 of the probe deviation from historical norms. 

2.3.3 Listener selection and calibration 

Listeners used for system evaluations with the DAM undergo rigorous 

selection and training procedures. Initial selection is achieved with the 

use of the DAM itself. Candidates make ratings of a diversity of system 

conditions. The correlations between the candidated ratings and normative 

ratings provide the basis of selection. Following learning sessions with a 

diversity of system-conditions, listener trainees undergo a calibration 

session in which they rate a highly diverse sample of more than 200 system-

conditions with three speakers for each condition. 

The regressions of individual listener ratings on normative rating 

values provide the basis for adjusting the individual's data to compensate 

for differences between his subjective origins and scales and those of the 

historical normative listener. Coefficients of correlation obtained in 

the course of this analysis determine the relative weight accorded the 

individual listener's data in subsequent tests and experiments. Listeners 
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are periodically recalibrated to adjust for changes in their response 

characteristics that may occur with time and experience. 

2.3.4 Analysis of DAM data  

The first step in the analysis of DAM data involves the inversion of 

signal and background quality rating data for each listener. 

R!. 	= 90 - R.. 	 2.3.4-1 1j(u) 

where Ri i(u)  is an inverted rating datum for the jth condition on the ith 

rating scale, 90 is the historically-normative inverted rating of the high 

anchor on the ith rating scale and R..
lj 
 is a raw rating of the jth condition 

on the ith scale. All values are further transformed such that: 

= b. R. + C. 	 2.3.4-2 ij(u) 	lj 	1 

where b. and C.
1  are selected such that R ii(u)  closely approximates the 1  

acceptability rating condition j would receive it its sole deficiency were 

intermsofthesystegicharacteristictappedbyscalei_val uesfor Et.for 

various scales are then used singly or averaged in various combinations to 

yield unadjusted (for listener idiosyncracies) perceptual quality values, 

(S7. for each listener condition). 

Values of S.. 	for each listener, k, are transformed as follows: 
ij(u) 

ST. 	= 137 	S.. 	C. 
ljk 	ik ijk 	lk 

2.3.4-3 

where bik is a scale factor which relates listener k to the normative 

listener for perceptual quality scale, i, and C ik 
	

the difference in 
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subjective origin between listener k and the normative listener. 	A 

weighted average: 

k = 1 ( r ik S ijk  

cn 

rik 
 

k = 1 

2.3.4-4 

where r ik  is the correlation between listener k's rating on a scale i of a 

standard set of conditions and the historically normative ratings of the 

same set of conditions.
2 
The effect of this process is to give greatest 

weight to those listeners whose response characteristics correlate most 

highly with those of the historically normative listener. 

A final, minor adjustment of all averaged adjusted perceptual 

quality values is made in an effort to control transient circumstantial 

influences to which the crew as a whole may be subject during a given 

experimental session. This is accomplished by means of the formula: 

= 	- .5 (T.. - 	) ij(p) 	ij 	 i(h) 
2.3.4-5 

where i_j(p)  is the "probe-adjusted" crew average rating of condition j on 

perceptual quality, i, P i  is the presently obtained average rating of the 

four probes and 
Pi(h) 

is the historical average rating of the same crew's 

 1
The bar over the subscript i is used here to indicate that perceptual 

quality scale values are in some instances obtained by averaging two trans-
formed rating scale values. Henceforth, i will be used without the bar to 
denote the perceptual qualitites, themselves, rather than the rating 
scales from which estimates of them are obtained. 

2
The normal symbological convention in statistics is that the subscripts 
to r. 	denote the two correlated variables. 	This convention is not ik 	. 
observed in this instance alone. 
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ratings of the four probes, and .5 is the estimated coefficient of relia-

bility (session to session) of the probe average. Fully adjusted percep-

tual quality averages serve, as such, for purposes of detailed system 

diagnosis, but they also provide the basis for estimates of three higher-

order criteria of system performance: total signal quality  (TSQ), total 

background quality  (TBQ) and a parametric estimate of overall system 

acceptability (PA). These measures are derived by means of the following 

equations: 

b 	 6 
TSQ = c1( y b.S. + C

3 
 .. i/10 -C3] 

1=1 

 

( 

[10 	
P -C 

	

Y, 	 ) 

	

TBQ = Ci i 	b.S. + C 1 1 	3 i7 	3 =7 

 

2.3.4-6 

 

  

( Corresponding constants in the two equations are not identical, but C. is 

in each case designed to transform the measure in question into its accept-

ability equivalent e.g., the acceptability level the system would be 

accorded if its deficiencies were confined to perceived signal qualities.) 

10 

PA = 	b S + C (TSQ x TBQ) + C
2 i=1 	i 	1 

2.3.4-7 

where the regression coefficients regression constants have been estimated 

on the basis of data for more than 200 system conditions. Even with a 

sample of this size, however, it is to be expected that minor adjustments 

of the b.'s and constants, and of the form of these equations will be made 

as more DAM data are accumulated. 

Two additional parametric estimates of acceptability are derived 

from isometric ratings of intelligibility and pleasantness. 
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PI = C
1 
 I + C

2
I
2 

+ C
3 
	 2.3.4-8 

PP = C
I 

+ C
2
P 2  + C

3 
	 2.3.4-9 

where I and P are averaged ratings of intelligibility and pleasantness 

which have been adjusted for listener idiosyncracies and circumstantial 

effects in the same manner as the perceptual quality values. 

Direct, isometric, ratings of acceptability provide the last of the 

four gross estimates of system acceptability. Following adjustments for 

listener idiosyncracies, the isometric estimate of system acceptability is 

averaged with PA, PI, and PP to obtain the best composite estimate, CA, of 

overall acceptability. Due to slight differences in the reliabilities of 

these four estimates--PA has a slightly higher reliability (.976) than the 

other three measures--a weighted averaged is used for this purpose. 
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CHAPTER 3 

OBJECTIVE MEASURES 

3.1 	Introduction 

Three of the goals of this study as discussed in Chapter 1 were: (1) 

to identify a set of promising objective measures for speech quality; (2) 

to test these measures in order to quantity their effectiveness as speech 

fidelity measures; and (3) to design new measures which are better able to 

predict the results of subjective speech quality measures. The purpose of 

this chapter is to describe in detail the "basic" objective measures con-

sidered in this study. 

In the past several years, there has been considerable interest in 

defining and using objective measures for speech quality [3.1]. As was 

discussed in Chapter 1, the two main uses of objective quality measures are 

the prediction of user acceptance of candidate coding systems and the 

"optimization" of coding systems using the objective quality measures as 

fidelity criteria. The first use leads to reduction in cost of subjective 

quality testing, while the second leads to higher quality speech communi-

cations systems. 

The objective measures included in this study were mainly intended 

for the testing of the three main classes of digital coding systems: 

waveform coders, in which the coding system tries to duplicate the input 

signal at the output; vocoders, in which the system does a deconvolution of 

the filtering effect of the upper vocal tract from the excitation function; 

and transform coding, where a two dimensional time-frequency represen-

tation of the speech waveform is coded instead of the waveform itself. 
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This bias toward digital systems is mainly motivated by current trends in 

technology. This does not mean that the results here are not applicable to 

analog systems, but such systems do pose somewhat greater problems in 

synchronization and phase control. 

The objective measures studied here can be divided roughly into six 

classes: simple spectral distance; simple noise; parametric; frequency 

variant spectral distance; frequency variant noise; and composite. Simple 

spectral distance measures includes all those measures in which the dis-

tortion is computed entirely in the frequency domain and in which the 

spectral weighting of the measure is either unity or derived from the 

original speech signal. Simple noise measures include all those measures 

in which the main component is the "noise" between the input speech signal 

and the output coded signal computed entirely in the time domain. Para-

metric measures include all those measures in which the measure is derived 

from some secondary parameter set which has been derived from the speech 

signals under test. In frequency variant spectral distance measures, the 

measures are performed in the frequency domain, but are performed in bands 

rather than across the entire frequency range. In frequency variant noise 

measures the noise is measured in predetermined frequency bands by approp-

riate pre-filtering. Composite measures are new, hopefully improved, 

measures derived by combining measures from the other five classes. 

The two classes of "simple" measures and the parametric measures 

are included for three principal reasons. First, they are to quantity the 

effectiveness of many of the measures currently in common use for speech 

quality prediction. Second, they are to test the effect of parametrically 

different forms of the various measures. Finally, they are to test the 

utility of such measures against more complex measures. 
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The two frequency variant classes of measures are included for two 

principal reasons. First, it has been known for some time [3.4] that 

hearing and speech perception are a frequency variant operation. This 

phenomenon has been studied physically, but the measurement of Precise 

physical parameters is very difficult. The frequency variant measures 

form a domain in which a secondary measurement of these effects can be made 

using correlation analysis [3.3]. Second, it is well known that many of 

the parametric subjective measures from the DAM (see Chapter 2) are fre-

quency related. The frequency variant objective measures form a domain in 

which the objective measures may be "tuned" to predict such parametric 

subjective quality results. 

The design of the composite measures is one of the principal goals 

of this study. Composite measures are specially intended to be used in 

future objective-subjective testing and as diagnostic tools for coding 

systems. 

3.2 	Basic Concepts and Notations 

Objective measures are made between an undistorted speech data set, 

(I), and a distorted speech data set, d. In this study, the undistorted 

speech data set is made up of a four speaker set, s. Each basic speech set 

consists of twelve sentences from each of the four speakers (see Chapter 4 

for more details). 

In computing objective measures, the estimate is generally formed 

by averaging the results from a number of "frames" of the undistorted and 

distorted speech. In order for the measures to be unbiased, precise frame 

synchronization between the distorted and undistorted speech signal must 

be maintained. Since all of the distortions in this study were digitally 

produced, synchronization was not a great problem during this study (see 
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Chapter 1 and Chapter 4). However for the testing of non-simulated coding 

systems, the synchronization problem would have to be carefully con-

sidered. 

The objective measures in this study are computed from a set of 

input undistorted speech frames, X(n,s,(P), where n is the frame index, s is 

the speaker index and cp means no distortion, and a distorted speech set, 

X(n,s,d), where d is the distortion. Here, the distortion may mean coding 

distortion or a controlled distortion (Chapter 4). In general, each 

distortion measure is characterized by a specific function, F at the frame 

level; and, in general, all the objective measures, called 0(d), are 

computed from 

4 N 

Y 	W(n,$) F[X(n,s,(15),X(n,s,d)] 
4N 
y 	y W(n,$) 

s=1 n=1 

0(d) - s=1 n=1 

3.2-1 

where N is the number of frames in the analysis, and W(n,$) is a weighting 

function for the nth frame and the th 
speaker. Note that W(n,$) may also 

be a function of X(n,s,cb), X(n,s,d), or both. In this environment, there-

fore, describing the objective measures reduces to describing the func-

tions W(n,$) and F[X(n,s,4),X(n,s,d)] used for each measure. 

3.3 	The Simple Measures 

The simple measures refer to the set of measures which produce an 

isometric quality measure from a single compact computational algorithm. 

These measures include such traditional measures as SNR, spectral 

distance, etc. This section describes measures of this type used in this 

study. 
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Figure 3.3.1-1. Comparison of Fourier and LPC Spectra for a Vowel. 



3.3.1 The Spectral Distance Measures 

All spectral distance measures are based on a function V(n,s,d,0), 

th  
the "spectrum" for the n

th 
frame speaker s, the d-- distortion, and the 

frequency variable, O. The first question to be answered is how to derive 

this spectrum from the input speech sample X(n,s,d). Let x(m,s,d) be the 

sampled (at 8 kHz) digital representation of the distorted signal for the 

th 
s
th 

speaker and the d— distortion. Then the "framed" speech time sample 

for the nth frame, x
n
(m,s,d), is given by 

x
n
(m,s,d) = x(m,s,d) W(m-nI) 3.3.1-1 

where W(m) is a finite length window function and I is the frame interval 

in samples. The Discrete Fourier Spectrum for this signal is given by 

+co 
xn

(m,s,d)e-jUm  
ni=  

V(n,s,d,0) = 3.3.1-2 

where the limits on the sum are really finite because of the finite length 

of x
n
(m,s,d). The short time stationarity of speech [3.4] suggests that a 

good window length is 10-30 msec. Although the DFT is a very natural 

function to consider, there are several arguments against its use. First, 

for the window lengths above x
n
(m,s,d) would normally include several 

pitch periods. This would cause V(n,s,d,0) to be a line spectrum, as shown 

in Figure 3.3.1-1. Because small variations in pitch, which have little 

impact on quality, would cause great differences between such spectra, 

then the DFT is not a good candidate for a spectral distance measure. What 

is really needed is the spectral envelope of the DFT. This can be approxi-

mated in several ways. First, it can be approximated by always having only 
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one pitch period in the analysis window of the DFT. This method, however, 

would need the use of a pitch detector plus additional synchronization 

logic which makes this approach unattractive. Second, the spectral 

envelope can be estimated using the parametric LPC analysis technique 

[3.5],[3.6],[3.7]. The advantage of this technique is that it is computa-

tionally simple and results in a very compact representation of the 

spectral envelope. However, like all parametric approaches, it is subject 

to modeling errors. Finally, the spectral envelope could be extracted 

using cepstral deconvolution techniques [3.8],[3.9] . However, previous 

research has shown [3.1] ,[3.10] that this measure is very highly corre-

lated with the corresponding LPC technique and cepstral analysis is more 

computationally intense. 

3.3.1.1 	The LPC Parametric Analysis Technique  

In this study, the basis for the spectral envelope approximations 

was always the LPC parametric technique. In this technique, a set of 

autocorrelation functions, given by 

+00 
R
n
(k) = / 	xn(m,s,d) xn (m+k,s,d) 
	

3.3.1.1-1 
M=—co 

for the n
th 

frame and 0 < k < 10, are computed, and then a set of 10 

"feedback coefficients," a(k), are computed from Durbin's recursion, given 

by 

a (n) = R(0); K(1) = -R(1)/R(0); a l (1) = -K(1) 

a (n) = (1 - K2 (n-1)) (n-1) 

n-1 

K(n) = 	can- 'comn-o-R(n))/a(n) 
i=1 

a
n
(n) = -K(n); a

n
(i) = a

n-1
(i) + K(n)a

n-1
(n-i) 

3.3.1.1-2 

39 



where the autocorrrelation subscripts have been dropped. 	In this 

recursion, the K(n) parameters are the well-known PARCOR (partial 

correlation coefficients) first used 

coefficients, the energy spectrum 

V(n,s,d,O) 	= 

where G is the gain term, given by 

by Itakura [3.11]. 

can be computed by 

G 

From the feedback 

3.3.1.1-3 
10 

1 - 	a(k)e-jek  

k=1 

10 

G = [R(0) 	- 	F 	a(k)R(k)] 112 . 3.3.1.1-4 
k=1 

The LPC approach has 	several 	specific 	advantages 	when used 	for 

spectral analysis. First, the entire analysis for a frame results in only 

11 numbers, a(1) - a(10), and G. This means that a large number of 

spectral analysis results may be stored relatively compactly. Second, the 

gain analysis is separate from the spectral analysis. Since small changes 

in gain do not have great impact on perception, it is desirable to remove 

gain effects from the spectral distance measure. One reasonable way in 

which this may be done from the LPC analysis is force the gain term in 

Equation 3.3.1.1-2 to be 1, giving 

V(n,s,d,O) 	- 1 
3.3.1.1-5 10 

1 - a(k)e-jen  

k=1 

This normalizes 	the 	total area under the 	V(n,s,d,e) 	to be 	equal 	to 1. 

Finally, 	the LPC method 	results in a relatively compact computation of 

V(n,s,d,e) 	from 	a(1) 	- a(10). V(n,s,d,O) 	may 	be 	thought 	of 	as 	the 
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magnitude of the discrete Fourier transform (DFT) of the impulse response 

of an infinite impulse response filter (IIR) whose Z transform is given by 

v(z) - 
1  	 

10 
1 - 	a(k)Z-k  

k=1 

3.3.1.1-6 

The inverse of this filter is an FIR (finite impulse response) filter whose 

Z transform, I(Z), is given by 

1 0 1 
I(Z) = -77  v z 	1  - 	a(k)Z

-k
. 

k=1 

3.3.1.1-7 

The spectrum for I(n,s,d,0), the inverse of V(n,s,d,e), can hence be 

computed from 

I(n,s,d,O) = 
10 

1 - 	a(k)e-jek  

k=1 

3.3.1.1-8 

  

Since this sum has only 11 terms, it can be computed very compactly. Even 

greater gains may be obtained if the FFT is used. Once I(n,s,d,O) is 

known, V(n,s,d,O) may be simply obtained from 

	

V(n,s,d,0) = 1/I(n,s,d,0). 	 3.3.1.1-9 

3.3.1.2 	The Computation  of Objective  Measures 

In this study, six variations of the distance function for spectral 

distance analysis, i.e. the function F in Equation 3.2-1, were studied. 

The first, called the "linear unweighted" spectral distance, is given by 
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L-1 
y 	cp,8 )1 Y  

t=o 
L-1 

1V(n,s,(1),6 )1 Y  

20 log  
10 	_j  

V(n,s,(1),0t) ." 

F =[ 1-- y [v(n,s,(1,0 t) - V(n,s,d,13 t )1 P 	 3.3.1.2-1 
, L-1 	 lip 

i.e. the L norm of the sample difference. In general, L=128 and 

	

IL 	= 0,...,L-1 	 3.3.1.2-2 
et 	L 

The second form, called the "linear frequency weighted" form, is given by 

F= 

 

y 	Iv(,,s 4 ,0,)1Y 11.(.,s 4 ,et) - V(n,s,d,Oz)I P  

,L=0 

 

1/p 

3.3.1.2-3 

    

    

 

LL 
 

11/(n,s4,0
t
)1 Y  

..e=1 

  

     

In this form, the measure is weighted by the spectrum of the undistorted 

spectrum taken to the y power. The third form, called the "log unweighted" 

spectral distance is given by 

t=o 

        

      

1/p 

 

       

F= 
1 L-1 

L  
t=0 

20 log10 
V(n,s4,0t) 

V(n,s,d,0) 

  

3.3.1.2-4 

        

        

        

Here the constant 20 is used to produce results in db. The fourth form, 

the "frequency weighted log" spectral distance measure is given by 

£= 0 

3.3.1.2-5 F 
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The fifth form of the spectral distance measure, called the "unweighted 6  " 

form is given by 

    

F = 1 
L-1 

L 	• 
v. 2 	1V(n,s,q),6 ) 	- V(n,s,d,ez)

p 

t=0 

1/p 
3.3.1.2-6 

    

    

Finally, the "frequency weighted 6 " form is given by 

L-1 

F 	V(n,s4,0 )1  V(n,s,(1),0 )
6 
- V(n,s,d,6 ) 

F 

lip 

3.3.1.2-7 
=0 

L-1 

F. 	V(n,s4,0t)11 
Z=0 

Implicit in the definitions of the spectral distances above are 

three major questions. First, what nonlinearity should be applied to the 

spectrums before computing the distances for best results? The three 

candidates here are none (linear), log, and raising the spectrum to the 6 

power. This last form is an approximate bridge between the other two 

forms. Second, should the spectrum be weighted by a function of the 

undistorted spectrum, and, if so, by how much? The control parameter for 

this case is y. Finally, what value of p for the L norm should be used? 

For this case, as p—>co, the criterion approaches minimax. 

3.3.2 Parametric Distance Measures 

As in the case of spectral distance measures, the parametric 

distance measures assume that the distorted and undistorted speech signal 

has been divided into frames, given by X(n,s,(0 and X(n,s,d) where n is the 

frame number, s is the speaker, d is the distortion, and 4 indicates no 
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distortion. For each parametric distance measure, a set of L parameters, 

=1,...,L, are derived from the corresponding speech frame 

X(n,s,d). As in the case of spectral distance, a function F for use in 

Equation 3.2-1 is derived for each case, given by 

F = Z=1 IE(n,s,d4) - “n,s,d,t)IP 
	

3.3.2-1 

where once again the L norm is taken. As before, p is an object of study 

for each parametric distance measure. 

All of the parametric distance measures studied were derivatives of 

LPC analysis. There were eight basic measures considered in this study. 

The first two were based on the feedback coefficients set, a(1) -a(10), 

which is described in Equation 3.3.1.1-2. The first form, the "linear 

feedback" measure is given by 

   

F = 
1 	

10 

la(n,s,d,t) - a(n,s,d,101 P  10 
t=1 

3.3.2-2 

   

   

and second form, the "log feedback" measure is given by 

      

lip 

 

F = 20 log10 
a(n,s,d,t)  
a(n,s,(1),t) 

  

3.3.2-3 
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This second measure was not expected to be of much interest, but was 

included for completeness. 

The third and fourth measures were based on the PARCOR coeffic-

ients, K(m), as defined in Equation 3.3.1.1-3. These two measures are 

given by 

1 
10 

10 y 
IK(n,s,d,t) - K(n,s4,t)1 1) 

 t=1 
3.3.2-4 

F = 
1/p 

and 

      

       

       

 

= 
1  10 

10
t=1 

20 logio  
K(n,s,d,,e)  
K(n,s,(1),,e) 

p 
3.3.2-5 

       

       

where K(n,s,d,t) and K(n,s4,t) are the £th PARCOR coefficients derived 

from the (n,$) frame of the distorted and undistorted speech sample, 

respectively. 

The fifth, sixth, and seventh measures were based on the area ratios 

functions AR(n,s,d re) given by 

1 - K(n,s,d,1)  
1 + K(n,s,d,t) 

3.3.2-6 

These measures are given by 
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and 

F 
 =P

10 	 1/p 
o F 	IAR(n,s,cp,t) - AR(n,s,d,t)I P 

 t=1 
3.3.2-7 

10 
1 

F =
id 

2, 	20 1og
10 

Z=1 

 

1/p 

 

AR(n,s,d,Z)  
AR(n,s,(1),t) 

  

 

3.3.2-8 

   

and 

10 	 6 	1/p 
F = 	IAR(n,s,d,t) 6  - AR(n,s,(1),t) I P  

10 t=i  
3.3.2-9 

The final parametric measure of interest is called the "energy 

ratio" measure which was first suggested by Itakura [3.11], and has been 

widely used as a quality measure [3.12],[3.13]. In this analysis, a frame 

by frame LPC analysis is performed on both the undistorted and distorted 

speech, as shown. Then undistorted speech is passed through two "vocal 

track inverse filters" given by 

10 
H(Z) = 1 - X a(t)z 

t=1 

10 
H'(Z) = 1 - 	a 1 (t)Z 
	

3.3.2-10 
t=1 
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e
2
(n,s,(1)) 

F = e
2
(n,s,d)  3.3.2-11 

The energy out of each channel is squared and summed, given e(n,s,,15) and 

e(n,s,d). The energy ratio is then given by 

or 

e(n,s,d) F = 20 log
10 e(n,s,4) 

3.3.2-12 

It turns out that this measure can be computed more compactly than 

is suggested by the above results. In particular, it can be shown that 

111/2 

e(n,s,d) 	
A
T
(n s d) R(n s 	A(n,s d) . 

e(n,s,th) 
T 	A7 (n,s,(01(n,s4) A(n,s,c0 

3.3.2-13 

where 

R(0) R(1) 	 R(9) 

R(1) R(0) 	 R(8) 

R(2) R(1) R(0) 	 R(7) 
R = 

3.3.2-14 

R(9) 	. 	 R(0) 
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and R(k) is defined by Equation 3.3.1.1-1 and 

•-• 

a(1)  

a(2)  

A = 3.3.2-15 

a(10) 

where a(k) is defined by Equation 3.3.1.1-2. 	The three forms of this 

measure which were studied are given by Equations 3.3.2-11 and 3.3.2-12, 

plus 

F 
e(n,s,d)  
e(n,s0p) 3.3.2-16 

   

   

The parametric distance measure study had three main goals. First, 

to compare the various types of parameters for their ability to predict 

subjective results. Second, to investigate the value of p for the L norms 

which gives the best results. Finally, to investigate the nonlinearity 

(none, log, or 	) which is most appropriate for good prediction of 

subjective results. 

3.3.3 Simple Noise Measurements 

For many years, the signal-to-noise ratio (SNR) has been used as a 

quality measure for systems in which it is an applicable concept. In 

digital communications, the signal plus noise model is meaningful in 

systems where the received signal is designed to be a point by point copy 
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Figure 3.3.3-1 	System for computing short time SNR 



of the input signal. These systems include all forms of waveform coders, 

including CVSD, ADM, DPCM, ADPCM, and APC, as well as such new techniques 

as sub-band coding and adaptive transform coding. These systems do not 

include the vocoder and "vocoder-like" systems such as LPC, VEV's of all 

types , channel vocoders, etc. 

In this study, two types of broadband noise measurements were 

studied. The first was the traditional SNR. In this system (see Fig. 

3.3.3-1) any linear or nonlinear phase variations introduced in processing 

are first corrected. Since all of the distortions in the study were 

produced by computer simulation, this process was a completely tractable 

procedure. If real digital communications systems were to be tested, the 

synchronization and nonlinear phase correction problem could be very 

great. Once the phase corrected signals are available, the frame noise 

energy, N(n,s,d) is computed as 

1/2 
1 	

+00 
N(n,s,d) =—  -a 	[x

n
(m,s,d) - x

n
(m,s,0]

2-
1 

ni  . -co 

3.3.3-1 

where x
n
(w,s,d) and x

n
(w,s,(P) are the windowed distorted signal and 

undistorted signal, respectively, as defined by Equation 3.3.1-1, and W is 

the window length. Note that the limits on m are really finite because of 

the windowing process. In the same terms, the signal energy is defined as 

SG(n,$) 

CO 

(x
n
(m,s,0)2 

m = - a) 

3.3.3-2 
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and the traditional SNR can be defined as 

SNR = 0(d) = 10 log10 

4 

s=1 

C
N 

n=1 
(SG(n,$))

2 

3.3.3-3 
4 

s=1 

C
N 

n=1 
(N(n,s,d))

2 

where 0(d) indicates this is an objective measure and the definitions of 

terms is the same as in Section 3.2. 

The second class of measures of interest were "short time" or 

"framed" noise measurements. In this measurement, a frame by frame signal-

to-noise ratio is computed, and then a global average is computed as usual 

from Equation 3.2-1. In this measurement, 

F = 20[1og
10 

G(n,s,d)]
d 	 3.3.3-4 

where 

log10  [1 + G
2
(n,s,d)] = log

10 
1 + SG

2
(n,s,d)  

N
2
(n,s,d) 

3.3.3-5 

and 6 is a parameter for study. These short time signal-to-noise ratios 

have recently been shown to be more highly correlated with subjective 

results than traditional SNR measurements [3.14],[3.15]. 
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3.4 	Frequency Variant Objective Measures 

One of the major hypotheses of the study was that, since it is well 

known that the perception of sound in humans is a frequency variant 

process, then frequency variant objective measures could be expected to 

perform better as predictors of subjective results than objective measures 

which are frequency invariant. One method of testing this hypothesis has 

already been discussed in the section on simple spectral distance 

measures. This was the technique of weighting the spectral distance 

measure by a function of the spectrum of the undistorted speech (see 

Equations 3.3.1.2-3 and 3.3.1.2-5). This section offers a different 

approach to frequency weighting, an approach in which the frequency 

weights are set so as to give maximum correlation between the objective 

measures and the subjective measures. 

The analysis technique can be described as follows. 	First, a 

frequency sampled objective measure is defined. In this study, two such 

measures, spectral distance and short time banded signal-to-noise, were 

used. These two measures will be described in detail below. Let there be 

B frequency bands in the analyses. Then for each distortion, B different 

objective measures, O b (d), where b is the band index and d is the distor-

tion index, are computed. In general, the subjective results for distor-

tion d may be estimated by a linear sum of the banded objective measures by 

B 
S(d) = 	C(b) Ob (d) + C(0) 

b=1 
3.4-1 

where S(d) is the estimate of the subjective measure S(d) and C(b) are a 
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set of unknown constants. The error between the true subjective result and 

the estimated subjective results is given by 

E(d) = S(d) - S(d). 	 3.4-2 

Now, if the C(b), b = 0,...,B are chosen to minimize the squared error, 

then a maximum correlation between S(d) and S(d) is achieved. This minimi-

zation results in a set of equations 

C = 2_ 3.4-3 

where 

C ( 0 ) 

C(1) 

C 

3.4-4 

L C( B) 

D 

F S(d) 
d=1 

D 
S(d) 0 1 (d) 

d=1 

2 = 

3.4-5 

D 
y 	S(d) OB (d) 

d=1 

54 



where cp(m,n), the (m,n) entry of the matrix (I), is given by 

D 
4(m,n) = F 0 (d)0 (d) 

d=1 m 	n  
3.4-6 

where D is the total number of distortions considered. Clearly, an optimal 

set of values for C(b)'s may be obtained in this way for any set of 

distortions in the data base. 

Several points should be discussed here. First, the correlation 

coefficients obtained between '(d) and S(d) after the C(b)'s have been 

found must be considered a limit on the correlation obtained by weighted 

frequency analysis. This, of course, is becatse the data itself is being 

used to compute both the correlations and the weights. Second, since for 

many of the distortions in the distorted data base the banded distortions 

are highly correlated with one another, the results of this analysis cannot 

be considered as a direct estimate of the underlying optimal physical 

weights. This is the reason that a large subset of the distorted data base 

is made of frequency banded distortions. Estimates based on this subset 

would have more universal validity than those taken across the entire data 

base. Finally, since the optimization of Equation 3.4-3 may be done 

against any of the different parametric subjective results (see Chapter 

2), these measures may be "tuned" to predict specific parametric subjec-

tive results as well as isometric subjective results. Since many of the 

parametric subjective results are frequency variant in nature, such tuning 

should be very effective. 
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3.4.1 Banded  Spectral Distance Measures 

One of the two types of frequency variant distance measures con-

sidered is the frequency banded spectral distance measure. From Section 

3.3, recall that in frequency invariant measures, the frequency index, 

et = 
7L-t-  for t = 0,...,L. This is clearly a one band analysis. For a B 

band analysis, the total frequency band (w radians) is divided into B 

sub-bands by 

L
b
L 

6 . wt 	 b-1 
 < 	< 	 3.4.1-1 

	

L — 	7 

where 0
b 

is the upper band limit for b
th 

band. 	In this study, B was 

normally equal to 6. 

To measure the banded spectral distance measure, the values for 

0b
(d) were computed by the same techniques as discussed in Section 3.3.1 

but using the reduced bands given by Equation 3.4.1-1. In this analysis, 

two types of spectral normalizations were computed. First, the spectra, 

V(n,s,d,e), were normalized to have an area of one across the entire band, 

as before. Second, the spectra were normalized to have an area of one in 

each individual band. Since this second method gives a better fit to the 

overall spectrum, it was expected that it would give better correlation 

results. 

3.4.2 Banded Noise Measures 

The frequency banded noise measures are the second class of fre-

quency variant measures considered in this study. Like all noise measures, 
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these were only applied to the subset of the distorted data base for which 

noise measures are meaningful. 

The computation of the banded noise is illustrated in Fig. 3.4.2-1. 

As can be seen, the noise is computed in the usual way and then the results 

are filtered into (usually) 6 separate bands. If the banded time signal is 

given by xb
(m,s,d) and the windowed banded time signal is given by 

x
n,b

(m,s,d) = x
b
(m

'
s

'
d)W(m-nI) 3.4.2-1 

where W(m) is the window function and I is the frame interval as before, 

nth  then the banded noise energy for the n-- frame of the s- 12  speaker of the 

th 	. d-- distortion is given by 

r-  
2 -11/2 

Nb (n , s , d) = 	y (x n,b S d) - x
nb

(n,s,0) 
m= -Go 	 ,  

3.4.2-2 

where, as before, the limit on m is really finite. The banded signal 

energy, SGb (n,$), is given by 

SGb (n , $) = 
+00 

/14-T 	
y 

m= _co 

2 
b(m,s,0) n, 

1/2 

3.4.2-3 

In this context then, the banded short time objective measure is computed 
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from 

where 

F
b 

= 20[1og
10 

G
b
(n,s,d))] 

1og
10

[1 + G
b
(n,s,d)] 	= log

10 
1 

••••■•• 

2 
SG

b
(n

' s) + 

3.4.2-4 

3.4.2-5 
2 

Nb (ns '
d) 

as before. In these studies, (5 is a parameter for study. 

3.5 	The Composite Measures 

The composite measures studied as part of this work were all taken 

to be linear combinations of groups of simple measures or frequency variant 

measures. The procedure in identifying and testing the composite measures 

was as follows. First, choose a set of candidate objective measures which 

have relatively high correlation with the subject results, and which are 

judged to be measuring different objective quantities. This measure will 

be designated 0
p
(d), where this is the p--

th  
 measure of the distortion d. 

Second, rank these measures according to their estimated correlation with 

the subjective data base. Third, study all possible measures which are 

sums of two objective measures, i.e. 

0(d) = g(1)0p  (d) + g(2)0 	(d) 	
P1 # p 2 1 	 2 

3.5-1 
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where g(1) and g(2) are unknown constants. Using least squares analysis 

(see section 3.4), choose the g(1) and g(2) for each combination which 

produces the highest correlation with the subjective data base. Fourth, 

study all measures which are combinations of 3,4,...,p objective measures 

using least squares (maximum correlation) analysis. Finally, within each 

group (1,2,...,p measures), rank the objective measures by their correla-

tion coefficients. 

This analysis produces the optimal, in a least squares sense, 

objective measure which can be constructed from the original p measures for 

a 1 term, 2 term, 3 term,..., and p term composite linear objective 

measures. This p term analysis can be thought of as a limit on the 

correlation obtainable from these measures. At each level, the measure 

with the highest correlation can be thought of as a limit on obtainable 

correlation for that number of terms. The level to level improvement 

supplies information as to the expected gain derivable from including 

additional measures as part of the composite measures. Fially, the weight-

ing factors, g(k), form a vehicle for tuning these composite meassures to 

effectively predict parametric subjective results. 
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CHAPTER 4 

THE DISTORTED DATA BASE 

This chapter describes in detail the contents of the "distorted 

data base." As was discussed in the introduction, the undistorted data 

base consisted of four sets of twelve sentences, each set spoken by a 

different speaker, and each of which was band limited to 3.2 kHz and 

sampled to 12 bits resolution at 8 kHz. The total duration of the twelve 

sentence sets were adjusted to be 49.152 sec., or 393216 time samples, for 

each set. There were three male speakers, CH, LL, and RH, and one female 

speaker, JS. 

A total of 264 "distortions" were identified and applied to the 

undistorted data base (see Table 4-1). The distortions can be roughly 

divided into two types: "coding" distortions, which are simulations of 

digital coding systems; and "controlled" distortions, in which some 

specific perceptually relevant distortion is applied to the speech. All 

distortions were applied digitally using the Georgia Tech Minicomputer 

Based Digital Signal Processing Laboratory [4.1]. The 264 distortions are 

subdivided into 44 types of distortions and, within each type, there are six 

levels of distortion. The total length of the distorted sentences after 

preparation for subjective testing was over 17 hours, excluding anchors 

and probes. 

Subjective testing was applied to the distorted data base using 

eleven four speaker DAM's (see Chapter 2). Each DAM tested four types of 

distortions for each of their six levels, giving 24 distortions per DAM. 

The contents of the individual runs is given in Table 4-2. 
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NO. OF 
DISTOIZTIWTS 

Co'jing Distortion 

Vaptive PC. (A7'C'4) 	 6 

Ar, 7Cive Diff:cren1 PC1 (A)PC 	 6 
6 

Adaptive Delta 1orin1ator (ADM) 6 
Adantive Predictive coding (AFC)  

Linear Predictive Codincl,, (LPC) r ..) 

voice Excit.d Vocoder !VE") 	 12 

Ada:-,tive Trans for Coder (ATC) 	 6 

54 

Control 1e Distortions 

Additive iThise 	 6 

Low Pass Filter 	 6 

P.i(-: 	Pass Filter 	 6 

137InC:. Pass Filter 	 6 

Interruption 	 12 

Clipping 	 6 

'enter Clipping 	 c .) 

Quantization 	 6 

7c7ro 	 6 

60 

Frenuency Variant Controlled Distortions 

Additive Colored Noise 	 36 

sanded Pole Distortion 	 78 

Banded Frequency Distortion 	 36  

150 

TOTAL 	 264 

Table 4-1. TOTAL SET OF DISTORTIONS 
IN 717 DISTORTED DATA BASE. 
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CONTEMTS 07 T TF INDI"IDUAL DP.21 PUNS 

Run Number 	 Distortion 

1 	 Additive noise 
Low pass filter 	 (6) 
High pass filter 	 (6) 
Band pass filter 	 (6) 

Interrupted (12) 
Clipping (61 
Center clipping (6 )  

Colored noise (94) 

Colored noise (12) 
APCM (r,) 

ADPCM (6) 

Banded 	freq. 	dist. (24) 

Banded 	freq. 	dist. (6) 
Banded pole dist. (1F) 

Banded freq. 	dist. (6) 
Banded pole dist. (18) 

Banded pole dist. (24) 

Banded pole dist. (18) 
Echo (6) 

Al))! (6) 
CVSD (6 )  
APC (6) 
Ouantization (6) 

LPC (6) 
VEV (12) 
ATC (6) 

Table 4-2. Contents of the Individual. DAM Buns. 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 
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The remainder of this chapter will be devoted to describing the 

individual distortions. 

4.1 The Coding Distortions  

In all, there were nine types of coding distortions used in this 

study, resulting in a total set of 60 distortions. In all cases, the 

coding distortions were simulated and were designed to be zero phase if 

possible. They were always at least designed so that the distorted speech 

would have frame by frame synchronization with the undistorted speech. 

4.1.1 Simple Waveform Coders  

In this study, there were four systems which were classed as 

"simple" waveform coders: Continuously Variable Slope Delta Modulator 

(CVSD): Jayant's [4.1] Adaptive Delta Modulator (ADM); Adaptive Pulse Code 

Modulation (APCM); and Adaptive Differential Pulse Code Modulation 

(ADPCM). All of these systems can be thought of as special cases of the 

general adaptive waveform coding system illustrated in Fig. 4.1.1-1. In 

all cases, the interpolater, where used, was implemented using zero phase 

FIR interpolation filters implemented with FFT techniques, as was the 

decimation. The "channel simulation" shown in these systems was always 

only capable of introducing random bit errors at fixed rates and simulated 

no other characteristic of a real channel. 

4.1.1.1 CVSD  

The CVSD is a delta modulator, so that the quantizer is always a two 

level quantizer and the coder is a one bit coder. The main feature of the 

CVSD is in the way it computes 6(n) (see Figure 4.1.1-1). Since (n) is 

the output of a one bit quantizer, it may be thought of as a series of ± l's. 
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Figure 4.1.1-1 	General System for Describing Waveform Coders 



(5(n) is computed as 

(n) = 136 (n-1) + A (n) 
	

4.1.1.1-1 

where A(n) is equal to one of two constants depending on whether all of the 

last three values of c(n) were equal to one another or not. So 

A 	if last 3 C(n) equal 
A(n) = 	 4.1.1.1-2 

B 	if last 3 Z(n) not equal 

B is known as the "minimum step size" for CVSD. The corresponding maximum 

1 step size is given by ( 177)A. 

CVSD is hence characterized by five features: 	the input speech 

sampling rate; the value of the predictor parameter, a; the value of the 

"step integrator" parameter, the value of the minimum step size, B; and 

the value of A. A is usually not given, but is rather represented as an 

"expansion ratio," which is the maximum step size divided by the minimum 

step size, giving (-1-4 A 

In terms of its basic parameters, the CVSD systems used in this 

study are summarized in Table 4.1.1.1-1. 

4.1.1.2 ADM 

The adaptive delta modulator used in this study was essentially 

suggested by Jayant [4.2]. Like CVSD, the ADM is a delta modulator, so the 

different data rates are controlled by the interpolation process, the 

quantizer is a one bit quantizer, and the coder is a one bit coder. For 

this delta modulator, 

(5(n) = A(n)(5(n-1) 	 4.1.1.2-1 
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Predictor 	Step Size 	Minimum 	Expansion 	Bit 
Constant 	Integration 	Step Size 	Ratio 	Rate 

(a) 	 (0 	 (B) 

1 .86 .9922 10 166 8 KBPS 
2 .9696 .9922 10 166 12 KBPS 
3 .98 .9922 10 166 16 KBPS 
4 .99 .9922 10 166 24 KBPS 
5 .995 .9922 10 166 32 KBPS 
6 original 

Table 4.1.1.1-1. Parameters for CVSD. 
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where A (n) takes on one of two values: 	"A" where (n) and Z(n-1) are 

equal; and "B" when they are not. In general, A is greater than one and B 

is less than one. For this study, 

A = 1/B 	 4.1.1.2-2 

The ADM is hence characterized by only three parameters: the input 

speech sampling rate; the value of the predictor parameters, a; and the 

value of the quantizer control parameter, A. In terms of these parameters, 

the ADM distortions used in this study are summarized in Table 4.1.1.2-1. 

4.1.1.3 APCM  

APCM has three main characteristics: first, it uses a multilevel 

quantizer; second, it operates at the Nyquist rate, and hence the inter-

polation and decimation filters are not used; and third, it has no predic-

tion loop, i.e., a = 0. The quantizer control sequence, for this study, 

was controlled exponentially from 

Z (n) = f3d (n - 1) + (1-01 (n)1 	 4.1.1.3-1 

This can be thought of as an exponentially integrated estimation of the 

energy in the quantized error signal, C(n). From this, 

4 
S(n) = Q —

N Z(n) 4.1.1.3-2 

where Q is a control parameter and N is the number of levels in the 

quantizer. This realization is, therefore, completely controlled by three 

parameters: 	the quantizer integration factor, 13; the quantizer 
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Predictor 	 Single Bit 	 Bit 
Constant 	 Multiplier 	 Rate 

(a) 	 (A) 

1 .86 1.1 8 KBPS 
2 .90 1.06 12 KBPS 
3 .96 1.03 16 KBPS 
4 .98 1.03 24 KBPS 
5 .99 1.03 32 KBPS 
6 original 

Table 4.1.1.2-1. Parameters for Adaptive Delta Modulator (ADM) 



multiplier, 0; and the number of levels, N. In terms of these parameters, 

the APCM distortions used in this study are given in Table 4.1.1.3-1. 

4.1.1.4 ADPCM  

The ADPCM used in this study was exactly the same as the APCM 

previously described except the value of a was not zero. The operation of 

this system is hence characterized by four parameters: the quantizer 

integration factor, is; the quantizer multiplier, Q; the number of quanti-

zer levels, N; and the feedback parameter, a In terms of these 

Parameters, Table 4.1.1.4-1 describes the ADPCM distortions used in this 

study. 

4.1.2 The LPC Vocoder  

The operation of the LPC vocoder used in this study is illustrated 

in Figure 4.1.2-1. This procedure is a framed analysis and is character-

ized by a frame interval, I. At each frame interval the input speech, 

x(m,s,d), is windowed, as before, to give 

x
n (m,s,d) = x(m,s,d)W(m-nI) 
	

4.1.2-1 

where W(m) is a window function of length W, n is the frame number, m is the 

time index, s is the speaker, and d is the distortion. For this study, a 

Hamming window was used. From this, a set of autocorrelation functions is 

estimated from 

+. 
R(k) 	y xn (m,s,d)xn (m-k,s,d) 	 4.1.2-2 

m = - CO 
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Quantizer 
Integration 

(0 

Quantizer 
Multiplier 

(Q) 

A of 
Levels 

(T.1) 

1 .92 1 3 1267'J 
2 .92 1 5 if-3575 
3 .92 1 7 22453 
4 .92 1 P 25359 
5 .92 1 11 2767• 
6 .92 1 13 29603 

Table 4.1.1.3-1. Parameter for Adaptive Pulse Code Modulation (APC7). 
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Predictor 	Ouantizer 	Ouantizer 	# of 	P.it 
;'.onstant 	Integration 	•ultiplier 	Levels 	Rate 

(a) 	 (S) 	 (Q) 	 OPS) 

1 .°2 1 3 12679 
2 .`) .92 1 5 18575 

. 9  .92 1 7 22458 
4 .92 1 0 25359 
5 9 .92 1 11 27675 

.92 1 13 29603 

Table 4.1.1.4-1. Parameter, for Adaptive Differential 
Pulse Code Modulation (ADPCM). 

74 



2nd  ORDER 
PRE—EMPHASIS 
FILTER 

HAMMING 
WINDOW 

AUTOCORRELATION 
ESTIMATION 

x(m,s,c6) 

PITCH PERIOD & VOICING 
HOMOMORPHIC 
PITCH PERIOD 
ESTIMATOR 

GAIN 

PARCOR  

COEF.' 

DURBIN'S 
RECURSION 

CHANN 

INVERSE 
SINE 
CODING 

VOICING 

PULSE 
/..$0MOMATATI 	• 

NOISE 	 VOICING 

GENERATOR 

FEEDBACK 
COEF. 
CONVERSION 

a(k) 

y ( m) 

10 

a(k)y(m—k 
k=1 

DE—EMPHASIS 
FILTER 

LPC TRANSMITTER 

LPC RECEIVER 

GAIN 
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Using the well known Durbin's recursion (see 3.3.1.1) a set of feedback 

coefficients, a(1)...a(10), a set of PARCOR coefficients, K(1)...K(10), 

and a gain, given by 

10 
G = [R(0) - F 	a(k)R(k)]1/2  

k=1 
4.1.2-3 

is computed. 

The set of PARCOR coefficients are an equivalent set of parameters 

to the feedback coefficients which may be interchanged by the recursions 

a
1
(1) = -K(1) 

an(k) = an  (k)+ K(n)an-1 (n-k) 	 4.1.2-4 

an (k) = -K(n) 	 k = 1,2,...,n-1 

and 

bN (k) = -a(k) 

K(N) = b
N
(N) 

K(n) = bn (n) 

n-1 	n-1 	n-1 
b(k) = (b(k)-K(n)b(n-k))/1-K2 (n) 	k=1,...n-1 	 4.1.2-5 

Since the spectral sensitivity to quantization errors increases when the 
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PARCOR coefficients have values close to +1, the inverse sine transform of 

the parameters is used [4.3]. 

The pitch detector used is a form of "Homomorphic" or Cepstrum" 

pitch detector [4.4], [4.5]. The pitch and voicing output from the pitch 

detector is multiplexed in with the vocal tract information for transmis-

sion. 

There are four parameters which characterize the LPC vocoder dis-

tortion. They are the window length, W; the number of bits per frame for 

the PARCOR coefficients; the frame interval, I; and the pitch and gain 

bits. The LPC distortions used in this study are described in terms of 

these parameters in Table 4.1.2-1. 

4.1.3 The Adaptive Predictive Coder (APC)  

The operation of the APC used in this study is illustrated in Figure 

4.1.3-1. In this system, the first step is that a framed LPC analyzer is 

applied to the input speech waveform. The LPC analyzer is the same as that 

described in section 4.1.2, and produces a vector of feedback coefficient, 

a(k) for k = 1,...,10. This information is coded to some fixed bit rate 

using "inverse sine" PARCOR quantization [4.3] and then used to control a 

time varying prediction filter with the Z transform 

10 
P(Z) = 1 - 	a(k)Z

-k 	 4.1.3-1 
k=1 

The {a(k)} coefficients are also transmitted to the receiver. The adaptive 

predictor, inside the prediction loop, is then used to estimate the input 

sequence x(m). The error signal, e(n), between the input sequences and the 

output of the predictor is then quantized by an adaptive quantizer 
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'.!inJow 

Tcnc, tb 
(msec) 

pits/ 
Frame 

!vocal 	tract) 

Pitch 	 Frame 
& Gain 	interval 

(cosec) 

Bit 
Pate 
(BPS) 

1 30 unquantized 7 	 15 
0 30 58 7 	 15 4333 

3 30 48 7 	 15 3665 

4 4 30 ,., 38 7 	 18 3000 

5 30 29 7 	 15 .  2400 

6 30 20 

Table 4.1.2-1. 	Parameters 

7 	 15 

for the LPC Vocoder. 

1800 
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FIGURE 4.1.3-1 THE ADAPTIVE PREDICTIVE CODING SYSTEM USED AS PART OF THE CODING 
DISTORTION STUDY 

m ux 



[ 
1 +W 
	 1/2 Q4 

6(n) = 	X-  (m s d) 
9 	 ] 

N W 	n " m CO 

4.1.3-2 

consisting of a AGC followed by a fixed quantizer. In this simulation 6 (n) 

was taken to be the "look ahead" frame energy average, given by 

where W is the window length, Q is a quantizer control parameter, and N is 

the number of levels in the uniform quantizer. 

The total operation of this APC is then characterized by five 

factors: the number of levels in the quantizer N; the frame rate; the 

window length; the number of bits per frame in the predictor coding; and 

the quantizer control factor, Q. In terms of these parameters, the APC 

distortion used for this study is given in Table 4.1.3-1. 

4.1.4 The Voice Excited Vocoder (VEV)  

The voice excited vocoder used in this is 	 in study 	illustrated 

Figure 4.1.4-1. Its operation is essentially similar to the APC described 

in section 4.1.3 except for the following features. Instead of sending the 

entire residual signal, C(n), a low passed version of this signal is sent. 

There is some data rate compression gained by coding and down sampling this 

low passed signal to the Nyquist rate appropriate to its bandwidth. At the 

receiver, the excitation function is recreated by using the base band, 

where appropriate, and using a full wave rectification and LPC flattening 

to regenerate the higher frequency. 

The VEV vocoder simulated here is characterized by five parameters: 

the frame interval, I; the window length, W; the ADPCM transmission rate; 

the voice band bandwidth; and the vocal tract parameter bit rate. Table 

4.1.4-1 described the VEV distortions used in this study as a function of 

these parameters. 
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Window 	 Bits/ 	 Level 	 Frame 	 Bit 
Length 	 Frame 	 (N) 	interval 	Pate 

(APS) 

1 	30 	 unquantized 	 3 	 15 
2 	30 	 58 3 	 15 	 15867 
3 	30 	 48 	 3 	 15 	 15202 
4 	30 	 38 	 3 	 15 	 14533 
5 	30 	 29 	 3 	 15 	 13933 
6 	30 	 20 	 3 	 15 	 13333 

Table 4.1.3-1. Parameters for the Adaptive Predictive Coder (APC). 
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FIGURE 4.1.4-1 	VOICED EXCITED VOCODER 



FRAPIE 
INTERVAL 

(I) 
(msec) 

WINDOW 
LENGTH 

(w) 
(msec) 

ADT'C 4 
 PATE 

(FPS) 

VOICE  
P,A*70 
(Z) 

OCAL 
TRA("T 
DATA 

TOTAL 
DATA 
RATE 

1 15 30 5615 1000 3067 042 
2 15 30 5(45 1000 3203  
3 15 30 5615 1000 2533 3143 
4 15 30 5615 10 1 0 1731 754:. ,, 
5 15 30 5615 1000 1333  
6 15 30 5615 1000 ;000  
7 15 30 7400 1000 3S07 11267 
S 15 30 7400 1100 3200 10000 
9 15 30 7400 1000 2533 633 

10 15 30 7400 1010 1233 ¶333 
11 15 30 7400 1011 1333 9733 
12 15 30 7400 1000 1000 3400 

Table 4.1.4-1. Parameters for the Voice Excited Vocoder (VEV). 
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4.1.5 Adaptive Transform Coding (ATC)  

Adaptive transform coding is a relatively new coding technique as 

applied to speed [4.6], [4.7], and one that has been shown to have great 

promise. In this study, it was not desired to produce high quality ATC 

speech, because that was still a subject of research at the time these 

distortions were chosen. Rather it was to include in the data base a 

distortion which was qualitatively "like" that produced by ATC. 

The ATC coding system used in this study is illustrated in Figure 

4.1.5-1. First, the speech is windowed to 256 samples using a rectangular 

window and a frame interval of 256 points also. Each windowed speech 

sample is then both transformed using the DCT and analyzed using LPC 

analysis. An approximate spectrum is computed from the LPC analyzer from 

V(et ) = 

 

1 

  

 

10 
1 - y a(k)e-jket 

k=1 

 

4.1.5-1 

    

and then the levels are allocated at spectral sample et , 0<t<255, by 

levels (0 ) = (TOTAL LEVELS) .V(0t ) 
	

4.1.5-2 

255 
(recall that y v(0 ) = 1), where if B is the total bits allocated, then 

,E=o 

TOTAL LEVELS = 2
B 	

4.1.5-3 

The individual quantizers are uniform with a range, r(t) given by 

-GV(e t ) < r(t) < GV(6t) 
	

4.1.5-2 
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Figure 4.1.5-1 	ADAPTIVE TRANSFORM CODER USED FOR THE DISTORTED DATA BASE 



where G, the gain, is given by equation 4.1.2-3. 

The operation of this transform coder is characterized by 4 

parameters: The frame interval and window length, which must be the same; 

the order of the LPC; the LPC vocal tract parameter bits per frame; and 

the transform coder bits per frame, B. The distortions used in this ATC 

system are summarized in terms of these parameters in Table 4.1.5-1. 

4.2 The Controlled Distortions 

A large portion of distortions used in this study were not explicit 

coding distortions, but were "controlled" distortions. These distortions 

were included for one of two reasons. Either they were considered to be 

examples of specific types of subjectively relevant distortions, or they 

were considerd to be one type of which occurs in coding distortion, but 

which does not occur in isolation. 

A large portion of the controlled distortions are frequency variant 

distortions. These distortions are included for two reasons: first, they 

offer a measure of the subjective importance of different types of distor-

tions when applied in different bands; and, second, they offer an environ-

ment in which the frequency variant objective measures will be relatively 

uncorrelated from band to band. 

4.2.1 Simple Controlled Distortions  

In this section, each of the non-frequency variant controlled dis-

tortions will be discussed separately. 

4.2.1.1 Additive Noise  

In the additive noise distortions, white Gaussian noise was added 

to each sample of the undistorted signal, i.e., 
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Window Length 
Frame Interval 

LPC 
Order 

LPC 
Bits/ 
Frame 

Trans 
Bits/ 
Frame 

Bit 
Rate 
(BPS) 

1 	256 10 4,333 15,667 20,000 

2 	256 10 3,666 12,334 16,000 

3 	256 10 3,000 9,000 12,000 

4 	256 10 2,400 8,600 11,000 

5 	256 10 1,800 7,800 9,600 

6 	256 10 1,500 6,500 8,000 

Table 4.1.5-1. PARAMETERS FOR THE ADAPTIVE TRANSFORM CODER 
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x(m,s,d) = x(m,s,c0+ A•n(m) 
	

4.2.1.1-1 

where n(m) is a zero mean unit variance white noise sequence, and A is a 

multipicative constant. This distortion is well characterized by its 

signal-to-noise ratio (SNR) as shown in Table 4.2.1.1-1. 

4.2.1.2 Filtering Distortions 

There were three filtering distortions included: low pass filter-

ing; high pass filtering; and band pass filtering. The filters were 

implemented digitally using recursive eliptical filters, i.e., 

K 	 K 
x(m,s,d) = 	b(k)x(m-k,s4) + I a(k)x(m-k,s,d) 

	
4.2.1.2-1 

k=0 	 k=1 

where K is the order of the eliptical filters. Table 4.2.1.2-1 gives the 

orders of the filters used along with the band limits for each distortion. 

4.2.1.3 Interruptions 

The interruption distortion was characterized by two numbers: a 

"keep" number, KP, and a "discard" number, DR. The interrupt distortion 

operated on frames of length KP + DR. Within in frame, the first KP 

samples were undisturbed, while the last DP were set to zero. Table 

4.2.1.3 summarizes the interrupt distortions in this study. 

4.2.1.4 Clipping  

The clipping distortion is a nonlinear distortion given by 

CL 
x(m,s,d) = 
	

4.2.1.4-1 
x(m,s4) 
	 l x(m,s , q5) 1<cL 
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Signal-to-Noise Patio(D3) 

1 30 

2 24 

3 13 

2 4 	 1 

5 

6 	 0 

Table 4.2.1.1-1. THE ADDITIVE NOISF DisTO7PIO 



Low Pass Filters 

Order 	Band Limit(IIZ) 

400 

SOO 

7 	 1,300 

7 	 1,900 

7 	 2,600 

5 	 3,400 

Tligh Pass Filters 

Order 	 Band Limit 

0 

400 

7 	 ROO 

7 	 1,300 

7 	 1,900 

7 	 2,600 

Band Pass Filter 

Order Lower Band Limit Upper Band Limit 

400 

400 800 

3 9 300 1,300 

4 1,300 1,900 

1,900 2,600 

11 2,600 3,400 

Ta'lle 4.2.1.2-1. FILTER CJ1ARAETERTSTICS FOR RECURSIVE 
PILTERS USED FOR FILTER DISTORTION 

4 

3 
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Keen Constant 

DP 

Discard Constant 

1 300 10 

2 300 25 

3 300 50 

4 300 75 

5 300 110 

6 300 150 

7 1,024 16 

8 1,024 32 

9 1,024 64 

10 1,024 128 

11 1,024 256 

12 1,024 512 

Table 4.2.1.3-1 	"KEEP" AND "DROP" CO*ISTANTS 
FOR INTERRUPT DISTORTION 
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where the constant CL is called the clipping constant. The constant must 

be compared to the "maximum average energy," MAE, for an utterance, given 

by 

MAE = MAX[E(m) ] 
	

4.2.1.4-2 

where E(m) is given by 

E(m) = (1-a)E(m-1)+ax(m,s,(P) 	 4.2.1.4-3 

where a is an exponential integration constant set to have a window length 

30 msec. For all the input sentences, the MAE was set to be .122 on a 

scale -1 x(m,s,d) 1. In these terms, the clipping constants for the 

clipping distortions are shown in Table 4.2.1.4-1. 

4.2.1.5 Center Clipping 

The center clipping distortion is a non-linear distortion given by 

x(m,x00 
	

x(m,s, 4))1_cN 

x(m,p,d) = 
	

4.2.1.5-1 

0 
	

x(m,s,(1))1<CN 

where CN is the "center clipping constant." Table 4.2.1.5-1 gives the 

parameters for the distortion on the same scale as for clipping. 
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Clipping Constant 

1 .152 

2 .076 

3 .038 

4 .0305 

5 .0153 

.0076 

Table 4.2.1.4-1 	CLIPPING CONSTANTS POP 
CLIPPING DISTORTION 

Center Clipping 
Constant 

1 .0019 

2 .0038 

3 .0076 

4 .019 

5 .038 

6 .076 

Table h.2.1.5-1 	CENTER CLIPPING CONSTANT POP 
CENTER CLIPPING DISTORTIO N 
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4.2.1.6 Quantization Distortion 

The quantization distortion is just a PCM system which is non-

adaptive and which uses relatively coarse quantization. The quantizers 

used were always chosen to be linear and to cover a range of twice the 

maximum energy (see 4.2.1.4). The quantization distortion is described in 

terms of the number of levels in the quantizer and the associated bit rate 

in Table 4.2.1.6-1. 

4.2.1.7 Echo Distortion 

The Echo distortion was implemented by 

x(m,s,d) = I [x(m,s,0+x(m-EC,s,01 
2 

4.2.1.7 

This is clearly not the only way to implement an echo, but the result is 

very clearly a subjective echo. The distortion is entirely characterized 

by the "echo delay," EC, and is described in Table 4.2.1.7-1. 

4.2.2 Frequency Variant Controlled Distortions 

This study included a total of three types of frequency variant 

controlled distortion. The first, the "additive colored noise," was 

designed to approximate waveform coder distortions in a frequency variant 

way. The second, called "pole distortion," was to approximate vocal tract 

modeling distortions in vocoders and AFC's in a frequency variant way. 

Finally, the "banded waveform distortion" was designed to approximate the 

distortions found in ATC and adaptive subband coders in a frequency variant 

way. 
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Number of Levels 
in Quantizer ^it Pate 

1 64 48,000 

2 48 44,67 0 .7 

3 32 40,000 

4 24 36,67 ().7 

5 16 32,000 

6 12 23,679.7 

Table 4.2.1.6-1. OUANTIZATTON.  DIsTORTTON PARAmETES 

Echo Constant 

1 10 

2 50 

3 100 

4 200 

5 500 

6 1,000 

Table 4.2.1.7-1. ECHO CONSTANT F02 
THE ECU() 0ISTOETT0 ,7 
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4.2.2.1 Additive Colored Noise  

The additive colored noise system is illustrated in Figure 

4.2.2.1-1. White Gaussian noise is first bandpass filtered into six bands 

giving an output signal Nb (m), where b is the band number and m is the time 

index. Then the banded noise is added to the input speech using a noise 

constant, NC, giving 

x(m,s,d) = x(m,s,q)+NC Nb (m) 	 4.2.2.1-1 

The bandpass filters were all eliptical with a unity gain in the passband 

(see 4.2.1.2). Table 4.2.2.1-1 gives a summary of the additive colored 

noise distortions. 

4.2.2.2 The Pole Distortion 

Figure 4.2.2.2-1 illustrates the implementation of the "pole dis-

tortion." The speech is first pre-emphasized using a second order filter, 

and a framed LPC analysis is performed. The results of the LPC analysis is 

then used to inverse filter the original speech, giving an approximation of 

the glottal wave excitation [4.8]. 

The poles of the vocal tract functions are then found by factoring 

the LPC polynomial. Then the pole distortion is applied by first identify-

ing all the poles within a fixed frequency range, and then moving them 

slightly in both frequency and bandwidth. This "jittering" of the poles is 

controlled by two uniform random number generators. The "frequency 

range," FR, factor gives the range of frequency, in Hertz, in which the 

poles are allowed to move. The "bandwidth factor", BF, is a multiplicative 

factor controlling the bandwidth motion by 

96 



N 1 (m) 
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FIGURE 4.2.2.1-1 SYSTEM FOR CREATING THE FREQUENCY VARIANT ADDITIVE 
NOISE DISTORTION 



Bandpass 

Noise Constants 

Filter 1 2 3 4 5 6 

0-400 HZ .305 .152 .076 .038 .019 .009 

400-800 HZ .305 .152 .076 .038 .019 .009 

800-1300 HZ .305 .152 .076 .038 .019 .009 

1300-1900 HZ .305 .152 .076 .038 .019 .009 

1900-2600 HZ .305 .142 .076 .038 .019 .009 

2600-3400 HZ .305 .152 .076 .038 .019 .009 

Table 4.2.2.1-1. COLORED NOISE DISTORTIONS 
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Figure 4.2.2.2-1 	System for Producing the Frequency Variant Pole Distortions 



distorted radius = (undistorted radius)(1+BF-r) 	 4.2.2.2-1 

where r is a uniform random variable which ranges between plus one and 

minus one. 

Once the pole locations are distorted, they are recombined to form a 

new set of LPC coefficients, a'(k). These coefficients are used to imple-

ment a new vocal tract filter to create the distorted speech. 

The pole distortions (PD) are summarized in Table 4.2.2.2-1. 

4.2.2.3 The  Banded  Frequency Distortion 

The operation of the banded frequency distortion is illustrated in 

Figure 4.2.2.3-1. The speech is first windowed using overlapping Hamming 

windows, where the window length is twice the frame interval, and the frame 

interval is 128 points. The speech is then transformed using a 256 point 

FFT. In the frequency domain, noise is then added to the samples in bands. 

The noise is added with a random magnitude but with a phase equal to the 

phase of the original speech. Then the samples are inverse transformed 

back into the time domain and recombined using overlapped adds. 

The parameters controlling the banded frequency distortion are the 

band limits and the standard deviation of the added noise, which is white 

and Gaussian. Table 4.2.2.3-1 summarizes the banded distortions used in 

this study. 
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Pole Distortion 

Frequency "Distortion 

Distortion 
Band 	(112) 

Frequency Range 

1 2 3 4 5 

200-400 20 40 60 SO 100 120 

400-300 20 40 60 30 100 120 

300-1300 50 90 130 170 210 250 

1300-1900 50 90 130 170 210 250 

1900-2600 100 150 200 250 3n0 7,0 

2600-3400 150 200 250 300 350 400 

Bandwidth Distortion 

Distortion 

Band 1 2 3 4 5 6 

0-400 .025 .05 .075 . 1  .3 

400-800 .025 .05 .075 .1 .2 .3 

800-1300 .025 .05 .075 .1 .3 

1300-1900 .025 .05 .075 .1 .2 .3 

1900-2600 .025 .05 .075 .1 .2 .3 

2500-3400 .02.5 .05 .075 .1 .2 .3 

Table 4.2.2.2-1. POLE DISTORTION C0NT1ZOL PARAMETE7q 
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RECOMBINATION 
PROCEDURE 
(OVERLAP ADD) 

x(m,s,0) 
	 x(m,s,d) 

Figure 4.2.2.3-1 System for Implementing the Banded Frequency Distortion 



Banded Distortion 

Band 
Limits 

Standard Deviation 
of Noise 

1 2 3 4 5 6 

0-400 .1 .2 .4 .6 r, 1. 

400-300 .5 .8 1.1 1.' 1.7 2 .0 

900-1300 2.0 2.2 .4 2.() 2.3 1.0 

1300-1900 2.0 2.2 2.4 2.6 2.3 3.0 

1900-2600 3.5 4.0 4.5 5.0 5.5 6.0 

2600-3400 10. 13. 16. 19. 22. 25. 

Table 4.2.2.3-1. CONTROL "DAPAMETFRS FOR BVIDFD 
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CHAPTER 5 

EFFECTS OF SELECTED FORMS OF DEGRADATION ON SPEECH 

ACCEPTABILITY AND ITS PERCEPTUAL CORRELATES 

The primary purpose of this phase of the project was to provide 

criterion measures for evaluating the predictive potential of the various 

physical voice measures presently under consideration. For this purpose 

it was essential that representatives of widely diverse forms of degrada-

tion be included among the conditions evaluated. Among the forms con-

sidered are those inherent in the simplest types of analog speech trans-

mission as well as those associated with the most elegant digital voice 

coding and transmission techniques in use today. Only with such diversity 

could any assurance be had that observed correlations between specific 

physical voice measurements and various subjective criteria will obtain 

for more than a narrow class of distortions. 

A second purpose to be served by this phase of the project was the 

cross validation of the DAM itself. Since the DAM was developed as the 

result of a comprehensive examination of the effects of representative 

types of degradation (including many of those treated in the present 

investigation) on various subjective criteria of acceptability, the 

results of the present investigation permit a rigorous test and possible 

refinement of DAM administration and scoring procedures. 

Finally, depending on the configurations of DAM scores produced by 

various novel forms of degradation, some insights may be gained which 

permit improvements in current technology of acceptability prediction from 

physical voice measurements. Conceivably, novel techniques may also be 

suggested by these results in combination with results bearing on the 
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efficiency of specific prediction techniques for specific classes of 

degradation. 

All of the above purposes are given consideration as appropriate in 

the course of discussing the results presented in the following sections. 

5.A 	Methods and Materials 

5.A.A Listening Crews 

Professional listening crews (young adults of both sexes) of eight 

to ten members participated in all evaluation sessions conducted under the 

project. On the basis of a retrospective criterion of self-consistency 

within each testing session, one or more members were eliminataed such that 

the data for the eight most self-consistent members were retained for 

analysis. 

5.A.B Speakers 

Four speakers, three males and one female, were used for all evalua-

tions. The ordering of experimental system-conditions varied from one 

speaker to the next in a systematic manner designed to minimize time-order 

effects on the data for any system-condition. Twenty-four system-

conditions, two anchors and four probes were evaluated in each testing 

session. The anchors and probes were always presented at the beginning of 

each series of system-conditions involving a given speaker. The ordering 

of anchors and probes was randomly determined in each instance. Whenever 

possible, several distinct types of degradation were represented in a 

given session. System-conditions were effectively randomly ordered within 

a session for one speaker, and then systematically reordered for the 

remaining speakers to provide some amount of counterbalancing and, thus, 

to soften the effects of any inter-condition influences. 
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5.B 	Experimental Results 

Presented in the following sections are DAM score patterns for the 

various forms of degradation. For each class of degradation the diagnostic 

patterns are presented in separate sub-figures for male (average of three) 

and female speakers. Except where pronounced sex differences are evident, 

the discussion will be addressed primarily to the results for the male 

speakers. Primary interest in these figures attaches to the Composite 

Acceptability score (C-A) and the parametric score for acceptability, 

(P-A), intelligibility (P-I), and pleasantness (P-P). Although it is one 

of the components of C-A, the isometric acceptability score (I-A) is not 

included in the graphic portrayals. The reason for this is that it has a 

virtually perfect correlation (.994) with the average of the parametric 

intelligibility and parametric pleasantness scores. Of considerable but 

secondary interest are the "diagnostic patterns" of perceptual quality 

scores. Depending on the form of degradation involved, diagnostic score 

patterns for experimental systems may provide insights of substantial 

value for purposes of remedial action. Here, they serve primarily to 

enhance our basic knowledge of the perceptual affective consequences of 

speech degradation and to reveal further useful features of the DAM. 

Two administrations of the DAM, separated by intervals of four to 

six weeks, were performed for all the system-conditions except those 

involving pole distortions and band distortions. With the exception of 

these later cases, all results presented in the following sections are thus 

averages based on response data from two administrations. 

5.1 	Degradation by Coding 

Treated in this section are cases of distortion which are intrinsic 

107 



to various speech coding techniques and, in a sense, reflect the inade-

quacies of such techniques. In one category are various broadband wave 

form-preserving techniques in which a major source of degradation is quan-

tization of the speech signal. In the second category are various, more 

complex predictive coders. 

5.1.1 Simple wave-form coders 

The wave-form coders treated in this investigation are CVSD, ADM, 

APCM, and ADPCM which are described in section 4.1.1. 

5.1.1.1 	Effects of continuously variable-slope delta modulation  (CVSD)  

on DAM scores 

Five realizations of CVSD technique, which differed only with 

respect to data rate, were treated in this investigation. A control 

condition involving essentially unprocessed speech was included within the 

same DAM testing session. The DAM results are presented in Fig. 5.1.1.1. 

In all major respects they are typical of previous DAM results for CVSD 

[5.1]. Except in the case of the lowest data rate, background quality is 

negligibly affected by CVSD. Listeners evidently do not confuse quantiza-

tion "noise" with true noise. Rather, they correctly perceive it as 

distortion: the SD scale of the DAM is the most sensitive of the percep-

tual quality measures. The present results differ somewhat from those of 

previous studies in that they show consistent, though not pronounced 

reductions in scores on the SH, SL and SN scales as data rate is reduced. 

Such results are most typical of conditions involving audio pass-band 

restriction and may, therefore, have a rational basis in the present case. 
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For reasons that are not immediately obvious, scores for the 

control case and for the case of 32K bps CVSD are generally somewhat lower 

than those previously obtained for nominally comparable conditions, though 

scores for the 16K bps case are very close to historical norms for this 

condition. 

5.1.1.2 	Effects of adaptive delta modulation (ADM) on DAM scores 

Figure 5.1.1.2 presents DAM results for the case of adaptive delta 

modulation. Predictably, perhaps, they are quite similar to those for CVSD 

at most corresponding data rates. An exception is the case of ADM at 8K 

bps where a severely depressed score on the SI (signal interrupted) scale 

can be observed. It is quite possible that this result can be attributed 

to an experimental artifact, but further investigation will be needed to 

resolve this issue. This is not of great interest since no one has 

seriously suggested using such a coding procedure at this rate. 

5.1.1.3 	Effects of adaptive pulse code modulation  (APCM) on DAM scores 

Figure 5.1.1.3 presents DAM results for the case of adaptive pulse 

code modulation techniques. As in the two previous cases the subjective 

consequences of this type of coding are confined almost exclusively to 

signal quality. Here their general form is quite similar to those for the 

cases of CVSD and ADM but for a small, though consistent, depression of 

scores on the SI scale. However, the general level of scores for APCM is 

substantially lower than for CVSD and ADM. 

5.1.1.4 	Effects of adaptive differential  pulse (ADPCM) code modulation 

on DAM scores 

Figure 5.1.1.4 shows DAM scores for adaptive differential pulse 

code modulation. The results for this condition are quite similar to those 
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for APCM. It would appear that adaptive differential pulse code modulation 

does not significantly improve acceptability over APCM at comparable 

degrees of quantization, but may, however, at comparable transmission data 

rates with optimal channel coding. Qualitatively, ADPCM would appear to 

sound somewhat less distorted but more interrupted than APCM. 

5.1.2 The effects of linear predictive coding on DAM scores 

The linear predictive coder used in this investigation is described 

in Section 4.1.2. Figure 5.1.2 shows that the present realization of LPC 

in the range of 2-2.9K bps yields DAM score patterns and overall levels 

very similar to those of the normative 2.4K bps LPC as reported by Voiers 

[5.1]. Normative DAM results for the ,  higher data rates are not available 

for systems without error correction, so that comparisons are not possible 

for the higher data rates. However, the present results indicate that 

increasing the data rate to 3.9K bps significantly improves the quality of 

LPC-processed speech, though further increases do not appear to be bene-

ficial. On the other hand, it appears that digitization at high data rates 

does not significantly impair quality obtained with analog LPC techniques. 

(LPC/Orig. in Figure 5.1.2) 

5.1.3 The effects of adaptive predictive coding on DAM scores 

Figure 5.1.3 shows the effects of APC on DAM scores. The parameter 

in these graphs is bits/frame which is associated with data rates of from 

13333 to 15867 bps. 

Perceptual quality score patterns for APC are quite similar to 

those for LPC. Though score levels are generally somewhat higher for APC, 

this superiority is evidently achieved only at enormous cost in trans-

mission data rate. Listeners perceive significant amounts of signal and 
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background "flutter" (SI scale) and raspiness (SD scale). 

5.1.4 Effects of voice-excited vocoding (VEV) on DAM scores 

The voice excited vocoding technique, described in Section 4.1.4 is 

essentially a modification of the APC technique treated above. Two reali-

zations of VEV were examined here. In the first (Fig. 5.1.4.1) the voice 

band had seven level quantization; in the second (Fig. 5.1.4.2), thirteen 

level quantization. The parameter in each case is PARCOR frame rate. 

Differences between the subjective effects of these two techniques are 

very small. Listeners possibly perceive a slightly greater degree of 

signal and background flutter with coarser quantization in the case of male 

speakers, but this trend is absent in the case of the female speaker. 

Generally, more background flutter is perceived in the case of VEV than in 

the case of APC. 

5.2 	Controlled Degradation 

Treated in this section are various basic types of speech degrada-

tion, one or several of which may be encountered in most speech-communica-

tion situations. They are distinguished from the coding distortions dealt 

with in Section 4.1 by the fact that they are generally not deliberately 

introduced but occur rather as by products of various coding techniques or 

channel characteristics. 

5.2.1 Simple forms of controlled degradation 

Seven of the commonly encountered forms of degradation are dealt 

with in the following sections. They include broad band-limited Gaussian 

noise, frequency passband restriction, interruption, peak and center clip-

ping, coarse quantization and echo. 
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5.2.1.1 	Effects of additive broad-band noise on DAM scores 

Noise is the most umbiquitous of all deterrents to efficient 

communications. Accordingly, its effects on DAM scores merit special 

consideration. 

Figure 5.2.1.1 shows DAM diagnostic profiles for six conditions of 

S/N ratio (4K Hz passband for the speech and noise). From the figure it is 

clear that the SN scale is the most sensitive to additive Gaussian noise, 

but the results again illustrate an important principle of the psycho-

physics of speech: In virtually no instances are the consequences of 

degradation with respect to a single stimulus parameter confined to a 

single stimulus elementary phychological parameter. It has long been 

known, for example, that whereas the elementary psychological parameter, 

pitch, depends primarily on stimulus frequency, it also varies with 

stimulus intensity, duration, and complexity. In the present case, the 

mechanism whereby values on the SL scale (normally most sensitive to high 

frequency attenuation) also decreases with S/N ratio is easily specified: 

The spectrum level of typical speech is highest in the region of 500 Hz but 

decreases at approximately 9 dB per octave both above and below that 

region. A secondary effect of uniform spectrum noise, therefore, is 

generally that of passband restriction, particularly at the upper end of 

the speech spectrum. Less readily predicted, but by no means contrain-

tuitive, is a slight reduction of the SD scale (the scale most sensitive to 

amplitude distortion). With extremely unfavorable S/N ratios, listeners 

are evidently not able to make the noise vs. distortion distinction with 

the same ease that they accomplish this under less severe conditions of 

degradation. 
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5.2.1.2 	Effects of frequency on DAM scores 

The results of research leading to the development of the DAM served 

in many instances to confirm the principle that even the simplest forms of 

signal impoverishment have relatively complex subjective consequences: 

Although the effects of a given form of distortion may be most pronounced 

in one subjective dimension, they are usually evident in two or more 

dimensions. On the other hand, many forms of degradation may have a common 

perceptual effect, as well as unique perceptual consequences. In fact, 

perceptual quality scales SH, SL, and SN were found to be sensitive in 

varying degrees to the effects of three major forms of frequency distor-

tion. 

All forms of passband restriction have previously been observed to 

affect the SL scale, which is associated with the perceptual qualities of 

muffledness, dullness, etc. The effects of high frequency attenuation 

were found to be confined primarily to this DAM parameter, though some 

depression of scores on the SH scale was observed with extremely severe 

high frequency attenuation. 

The effects of low frequency attenuation, i.e., high-pass filter-

ing, were observed to be most pronounced in the case of the SH scale, which 

was in fact designed primarily to sense such effects. However, the SL 

scale was also observed to be sensitive to high-pass filtering in lesser 

degree. A third scale, (SN) which is concerned with the perceptual quality 

of nasality, was fbund to be sensitive to passband width restriction more 

or less without regard to the location of the passband. Present results 

will be seen to provide strong confirmation of findings of the earlier 

validation studies of the DAM, though sharper filtering was achieved here 

than previously. In the present investigation frequency filtering was 
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achieved by means of elliptic digital filters with 40 dB or less ripple and 

transition bands equal to 5 percent of the nominal cutoff frequencies. 

5.2.1.2-1 	Effects of bandpass  fi.lering on DAM scores 

Figure 5.2.1.2-1 shows the effects of bandpass filtering on DAM 

diagnostic score patterns. Consistent with previous findings, three of 

the primary perceptual quality scales (SH, SL, and SN) are sensitive, but 

in different ways, to this form of signal distortion. Differences between 

the trends of the SH scores and SL scores are best rationalized in terms of 

the character of the rejected band(s) associated with each condition. To 

the extent that high frequency rejection  predominates, SL scores suffer 

greatest reduction, whereas SH scores reflect the predominance of low-

frequency rejection. Scores on the SN scale vary in a more complex manner 

with the location of the passband, being highest for the high and low 

extremes, lowest for those passbands near the middle of the frequency 

scale, in particular those covering the frequency range of the second 

format. Generally, the scales pertaining to background qualities are 

little affected by passband restriction. The one case in which a back-

ground exhibits depression (BB scale in the case of the 2600-3400 Hz 

condition) is quite possibly due to an increase in hum associated with the 

higher gains needed for the high frequency bands. 

5.2.1.2-2 	Effects of low-pass filtering on DAM scores  

From Figure 5.2.1.2-2 it is evident that the effects of low-pass 

filtering are confined primarily to the SL scale, a result consistent with 

the purpose for which this scale was designed. Although some variation in 

other signal quality scales is evident, no consistent trends emerge. All 

of the background quality scales are virtually "blind" to this form of 
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degradation. 	It may be of some interest to note that 	neither the most 

sensitive perceptual quality nor overall acceptability are substantially 

affected until attenuation of frequencies below 2K Hz occurs. The fact 

that the parametric scale for intelligibility is more uniformly affected 

by high frequency attenuation is consistent with results on the effects of 

high frequency attentuation on objectively measured intelligibility. It 

is perhaps consistent with common intuition that parametric pleasantness 

is generally the least affected of the higher order qualities. 

5.2.1.2-3 	Effects of high-pass filtering on DAM scores 

Four perceptual quality scales appear sensitive to high-pass 

filtering as shown in Figure 5.2.1.2-3. As expected, the SH scale ulti-

mately exhibits the greatest depression, but two other scales, SL and SN, 

are more sensitive to moderate degrees of high-passs filtering. Only after 

frequencies as high as 800 Hz are attenuated does the signal appear to 

acquire the characteristic "high-pass quality." 

Again, a decrease in BB scores with increased high-pass filtering 

is possibly an experimental artifact. The fact that no comparable trend in 

BB scores is evident in the case of the female speaker adds credibility to 

such an explanation. 

5.2.1.3 	Effects of periodic interruption on DAM scores 

Two interruption rates, each with six signal-duty factors were 

treated in this investigation. In the first case, the signal was inter-

rupted once every 300 samples or 26.6 times a second. The duration of each 

interruption was then varied from 10 to 150 samples, i.e., from 1.25 milli-

seconds to 18.75 milliseconds. In the second case, the signal was 
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interrupted once every 1024 samples or 7.8125 times a second. Duration of 

these interruptions was varied from 2 milliseconds to 64 milliseconds. 

Figure 5.2.1.3-1 shows that the predominant perceptual quality 

associated with the more rapid interruption rate is "signal flutter," 

which quality becomes increasingly pronounced as signal duty factor 

decreases. Listeners perceive the signal to be interrupted with increas-

ing duration of interruption, but the interrupted quality is less salient 

than the fluttering of quality. Figure 5.2.1.3-2 shows the effects of less 

frequent interruption. The fluttering quality is still pronounced but the 

interruption is now more apparent and in fact predominates in the case of 

the lowest signal duty factor (.50). Moreover, listeners appeared less 

inclined in this case to perceive the background as fluttering than they 

did in the case of more rapidly interrupted speech. 

5.2.1.4 	Effects of Peak Clipping on DAM scores 

Two forms of amplitude distortion are potentially present in many 

voice communications channels. They can be simply described as "peak 

clipping" (clamping) and "center clipping," (as might result from inter-

modulation distortion). It was out of concern for the first of these that 

the SD scale of the DAM was developed. However, no special provision for 

the latter was made in the design of the DAM. 

Figure 5.2.1.4 shows the effects of six levels of peak clipping on 

DAM score patterns. The values associated with each condition indicate 

levels at which peak clipping occurred on a scale where the rms amplitude 

of the unclipped speech signal was approximately 1350. Two perceptual 

quality scales SD and BB appear sensitive to this form of degradation. 

However, an experimental artifact is possibly involved in the case of the 

latter scale. As noted earlier, the BB scale is quite sensitive to 60 Hz 
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hum, which might have been expected to increase as audio gain was increased 

to compensate for the effects of clipping on signal level. 

5.2.1.5 	Effects of center clipping  

The effects of peak clipping and center clipping on speech intel-

ligibility have long been known, but no attempt has thus far been made to 

quantify their effects on acceptability. Licklider [5.2] observed that 

peak clipping can actually enhance intelligibility under certain circum-

stances but that center clipping is detrimental to intelligibility under 

all circumstances. The reasons for this are readily found in the fact that 

the low energy segments of the speech signal that are removed by center 

clippings are generally those involving consonant sounds, which are, in 

turn, the major carriers of useful speech information. 

Since the low energy components of speech are also those involving 

the upper range of the speech spectrum, one would predict the perceptual 

effects of center clipping to be considerably more complex than those of 

peak clipping. Fig. 5.2.1.5 shows this to be the case. From the figure it 

appears first that the perceptual consequences of center clipping are 

confined completely to perceived signal qualities. Listeners perceive 

virtually no background effects. Among the six signal qualities, however, 

the effects of center clipping are quite diverse. All but one (SH) of the 

signal quality scales appear highly sensitive to this form of degradation. 

The reasons for this diversity of effects are easily determined, moreover, 

once it is recalled that removing the low energy components of speech 

serves at once to interrupt and to low-pass the speech. 
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5.2.1.6 	Effects of signal quantization on DAM scores 

Amplitude quantization is an essential step in a number of modern 

speech coding techniques, though the ultimate effect in most cases is 

extremely fine quantization. Because the SD scale was originally designed 

for sensitivity to these techniques it is of some interest to know how the 

DAM generally and the SL scale in particular respond to relatively coarse 

quantization. 

Figure 5.2.1.6 shows that the SL scale is in fact extremely sensi-

tive to this form of distortion, but that several other scales are also 

somewhat sensitive. Perceptually, quantized speech has some of the 

quality of band-pass filtered speech, lowband-passed speech in particular. 

A moderate buzz quality is also evident. Possibly of additional interest 

is the difference between scores for the higher order qualities, intel-

ligibility and pleasantness. Listeners perceive quantized speech to 

possess relatively high intelligibility but apparently find it unaccept-

able on aesthetic grounds, as evidenced by the low ratings they give it on 

pleasantness. 

5.2.1.7 	Effects of echo on DAM scores 

As noted in Section 4.2.1.7 the echoic conditions treated here were 

somewhat unrealistic but were selected to ensure a clear subjective 

effect. As observed elsewhere the DAM in its present version does not make 

explicit provision for echo: no single rating scale pertains unequivocal-

ly to this phenomenon. From Figure 4.2.1.7, however, listeners were evi-

dently able to find the means of distinguishing between the various delays 

through a combination of perceptual quality scales. It appears, moreover, 

that listeners experienced no uncertainty as to whether echo should be 
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characterized as a signal distortion or a background disturbance. They 

agreed that it should be the former and indicated their perceptions primar-

ily via the SL and SI scales, with the result that all of the higher order 

perceptual quality scales "tracked" in a consistent manner. 

5.2.2 Effects of frequency-variant controlled distortions on DAM scores 

Three classes of degradation fall in this category: 	additive 

colored noise (Section 4.2.2.2), pole distortion (Section 4.2.2.2), and 

banded frequency distortion (Section 4.2.2.3). 

5.2.2.1 	Effects of additive colored noise on DAM scores 

Figure 5.2.2.1 permits a comparison of the effects of noise bands in 

six different frequency regions on DAM score patterns. 	The six bands are 

designated in the figure as follows: 

N1 - 	0- 400 Hz 

N2 	- 400- 800 Hz 

N3 	- 800-1300 Hz 

N4 	- 1300-1900 Hz 

N5 	- 1900-2600 Hz 

N6 	- 2600-3400 Hz 

Figure 5.2.2.1M-N1 shows the pattern of DAM scores which results 

from speech masking by a low-frequency band of noise. Depressed scores on 

the BN (background noise) and BR (background rumble) scales conform with 

intuitive expectations, and otherwise serve to provide additional valida-

tion of these two scales. Not immediately clear is the reason for somewhat 

depressed scores on several perceived signal quality scales and on the 

scale for total signal quality. 
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As shown in Figure 5.2.2.1M-N2, the quality, background rumble, 

decreases significantly as the noise band is raised above the 0-400 Hz 

region. 

As the frequency region of the noise band is increased beyond the 

800-1300 Hz frequency region, the perceptual consequences of the noise 

undergo several qualitative changes. The noise is perceived to have less 

"rushing-roaring" quality (BN) but more of a "buzzing-humming" quality as 

reflected in scores on the BB scale. At the highest noise levels listeners 

also tend to perceive an increasing raspy (SD scale) quality which is most 

typical of amplitude-distorted speech. 

5.2.2.2 	Effects of Pole Distortion on DAM scores 

Two types of pole distortion, as described in Section 4.2.2.2, are 

examined in this section. The first of these involves distortion of pole 

frequencies within a given frequency band, the second, involves "radial 

distortion" and, hence, band-width distortion. 

5.2.2.2.1 	Effects of pole frequency distortion  

Figure 5.2.2.2-1 shows the effects of pole distortion in each of six 

frequency bands: 

200- 400 Hz 

400- 800 Hz 

800-1300 Hz 

1300-1900 Hz 

1900-2600 Hz 

2600-3400 Hz 
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The parameter within each sub-figure is range of frequency distortion 

(rms). 

0-400 

Values of this parameter are as follows: 

BAND 

400-800 	800-1300 	1300-1900 	1900-2600 	2600-3400 

20 20 	50 	50 100 	150 

40 40 	90 	90 150 	200 

60 60 	130 	130 200 	250 

80 80 	170 	170 250 	300 

100 100 	210 	210 300 	350 

120 120 	250 	250 350 	400 

From Figure 5.2.2.2-1, 	it 	appears that 	the 	subjective effects 	of 

pole frequency 	distortion 	are 	expressed primarily 	via 	the SF 	(signal 

flutter) 	and 	BF 	(background 	flutter) 	scales. 	The 	remaining perceptual 

quality scales are virtually unaffected by this form of degradation. It 

appears, farther, that the perceptual consequences of pole distortion are 

generally neglible in the upper end lower extremes of the 3.4K Hz band 

involved here. 

5.2.2.2-2 	Effects of radial pole distortion  

Figure 5.2.2.2-2 shows the effects of radial pole distortion. In 

this case the frequency bands involved were as indicated above except for 

the lowest band which was 0-400 Hz instead of 200-400 Hz. The parameter in 

all sub-figures is relative "radius jitter." The values being: 
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in all cases. From the figure it is evident pole-bandwidth distortion has 

qualitatively different perceptual consequences than pole-frequency dis-

tortion. The perceptual effects of radial or bandwidth distortion are 

confined primarily to the background and are quite pronounced in all but 

the highest frequency band. 

5.2.2.3 	Banded frequency distortion  

Banded frequency distortion is of interest in relation to transform 

coding techniques where noise may be a factor at the power spectral level. 

In the present case six levels of noise were produced in each of six 

spectral bands (See Section 4.2.2.3). 

From Figure 5.2.2.3 it appears that banded frequency distortion in 

the range treated here has relatively minor subjective consequences. In 

all but the lowest frequency band involved, perceived background flutter 

is the most pronounced effect. 

Some amount of signal flutter (SF scale) and raspiness (SD scale) is 

evident in the cases of the 400-800 Hz and 800-1300 Hz bands, but these 

qualities are negligible in the remaining bands. 
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CHAPTER 6. THE EXPERIMENTAL RESULTS 

6.1 	Introduction 

This chapter gives both a detailed description of the experiments 

performed as part of this study and a complete analyses of the experimental 

results. In all cases, the experiments performed were based on correlation 

analyses, and the figure-of-merit used for each objective quality measure 

studied was either the estimated correlation coefficient,p , or the esti-

mate standard deviation of error when the objective measure is used to 

estimate the subjective measure,ae  (see Chapter 1). 

This chapter is divided into five additional sections. The first 

describes the standard analysis techniques used in this study. The second 

describes the results of the spectral distance measure studies. The third 

describes the results from the parametric measure studies. The fourth 

describes the results from the frequency variant measure studies. The 

fifth describes the results from the composite measures. 

6.2 	Analysis Procedures 

Every correlation experiment performed as part of this study 

resulted in an estimated correlation coefficient, P , and an associated 

estimated standard deviation of error, a e  . To describe each experiment 

exactly, one must therefore know four things: exactly what objective 

measure(s) was used; exactly what analysis method was used; exactly what 

subjective parameter was used; and exactly what set of distortions was used 

in the correlation analyses. The first three items will be discussed in 
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this section. The objective measures will be discussed in the following 

sections. 

6.2.1 The Estimation Procedures 

The three estimation procedures used in this study were linear 

regression, non-linear regression, and linear multi-regression. In linear 

regression, the subjective result is estimated from the objective result 

by 

S(s,d) = S(1) 0(s,d) + S(0) 	 6.2.1-1 

where S(s,d) is the estimate of the subjective result for speaker s and 

distortion d, 0(s,d) is the objective measure for speaker s and distortion 

d, and W) and S(0) are constants. The solution which gives a minimum 

squared error between S(s,d) and S(s,d) is given by 

Pa 
(3 (1) = -8---s 	 6.2.1 - 2 

0 

and 

S(0) = 	- 0- 
 Pa s 	

6.2.1-3 
a0 

where a
s is the estimated standard deviation over the subjective data, a 0 

 is the estimated standard deviation over the objective data, p is the 

estimated correlation coefficient, S is the average subjective result, and 

0 is the average objective result. 

In non-linear regression analysis, the subjective estimate is given 

by 

K 
S(s,d) = 	S(k) 0

k
(s,d) 

k=0 
6.2.1-4 
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where K is the order of the regression. Note that for K=1, this equation 

becomes the linear regression equation. To find 8(k), the subjective 

error, given by 

E2 (s,d) = (S(s,d)-S(s,d)) 2 	 6.2.1-5 

is minimized with respect to “k). This leads to a set of linear equations 

of the form 

E 8 = Z 	 6.2.1-6 

where 

8 	= [8(0),8(1), . . . ,(3 (N)] 
	

6.2.1-7 

7T 
	[ , = L y 	s(s,d), y 0(s,d)S(s,d), • • • , y 	A)0( 	A),  

s,d 	s,d 	 s,d 
6.2.1-8 

and 

E(k,t) = y 	Ok+t(s,d) 
	

6.2.1-9 
s,d 

where E(k,Z) is the k and t entry to the matrix E. Once E is inverted, p is 

obtained from 

2 	1 r T a. - 	E - N y 8(k)0] 
— N-1 

 
k=0  

6.2.1-10 
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P = 

K 	_ 	1/2 [
N-
1 	 k 
1 

(
—
S
T 
Z-NS ' S(k)0 ) 

k=0 	 6.2.1-11 

C3 	a 
S S 

where N is the total number of points in the sample. 

Linear multiregression is in many ways similar to non-linear 

regression. In this procedure, it is desired to estimate the subjective 

results from several (K) different objective measures by 

K 
S(s,d) = 	(k)0(s,d,k) 
	

6.2.1-12 
k=0 

where the extra index "k" has been added to the objective measure to 

differentiate the different measures. To find S(k), the squared subjec-

tive error 

L 
	2 
L 	e (s,d) = 1. (S(s,d)-S(s,d))

2 

s,d 	 s,d 

is minimized, giving 

6.2.1-13 

e = Z _ 6.2.1-14 

where 

T 
is given, as before, by equation 6.2.1-7, Z T 

is given by 

zT = [ y 	S(s,d), 	S(s,d)0(s,d,1), 	S(s,d)0(s,d,k)] 
s,d 	s,d 

6.2.1-15 

and 

e(k,,E) = 	y 	0(s,d,k)0(s,d, ,e) 	 6.2.1-16 
s,d 

After S is computed by inverting e, p may be computed from 
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'(;ŝ 	N-1 
2 

= 
1 

 [S
T 

e 	- N X 8(k)0(s,d,k)] 
k=0 6.2.1-17 

and 

P = 

1 
N-1 D

T 
Z - N S 	S(k)0(s,d,k)] 

k= 0 
6.2.1-18 

  

a,. a,. 
s s 

where 0(s,d,O) = 1. 

6.2.2 The Distorted Data Sets 

In Chapter 4, a detailed description of the distorted data base was 

given. This data base contained coding distortions, wideband controlled 

distortions, and frequency variant controlled distortions. There are 

several points which should be made about this data base. First, it was 

heavily loaded with frequency variant distortions because it was felt that 

considerable improvement in objective quality measures might be achieved 

by better understanding the frequency variant perceptual effects. Hence, 

measures tested over the set of all distortions, called ALL, is of consid-

erable interest, and represents a lower limit on the performance of any 

measure. 

However, an ensemble of distortions which contains as many fre-

quency variant distortions as this data base does not represent a good 

estimate of a true coding environment. Hence, a second major distortion 

set was identified, called WBC (wide band distortions) which, in the 

opinion of the researchers, gives a better estimate of the true behavior of 

the measures in a true coding environment. A description of the distortion 

set WDB is given in Table 6.2.2-1. 

In addition to WDB, a total of seven additional data subsets were 

identified and used. 	These were WFC (waveform coders), CODE (coding 
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Coding # of 
Distortions Cases WBD WFC CODE CON WBN NBN BD PD ND 

ADPCM 
APCM 

6 	X 
6 	X 

X 
X 

X 
x 

CVSP 6 	X X X 
ADM 6 	X X X 
APC 6 	X X X 
LPC 6 	X X 
VEV 12 	X X 
ATC 6 	X X X 

Controlled 
Distortion 

Additive Noise 6 	X X X X X 
Low pass 	filter 6 	X X 
High pass 	filter 6 	X X 
Band pass filter 6 	X X 
Interruption 12 	X X 
Clipping 6 	X X 
Center clipping 6 	X X 
Quantization 6 	X X X X 
Echo 6 X 

Frequency 
Variant 

Additive colored 
noise 

36 X X X 

Banded pole 
distortion 

78 X X 

Banded frequency 
distortion 

36 X X 

Table 6.2.2-1. SUBCLASSES OF DISTORTIONS USED AS PART OF THIS RESEARCH 

154 



distortions), CON (controlled distortion), WBN (wide band noise), NBN 

(narrow band noise), BD (band distortion), and PD (pole distortions). The 

contents of these various sets are also shown in Table 6.2.2-2. 

6.2.3 The Subjective Data Set 

In all, the subjective data base contains 20 subjective results per 

distortion. Although 18 of these were used in the total data analysis of 

this study, the emphasis in on the results on only a few. This includes CA 

(composite acceptability), TBQ (total background quality), and TSQ (total 

system quality) for the isometric measures, and all the parametric results 

for the parametric measures. Of these, CA was considered most important, 

and most major isometric results are based on this measure. 

6.2.4 Non-parametric Rank Statistics 

An important part of this study was the comparison of different 

analysis methods and parameterizations for their ability to better predict 

subjective results. Based on our figures-of-merit, correlation coeffic-

ients and standard deviation of error, it is easy to rank these methods 

with respect to one another. The problem is that the specific statistical 

environment for our tests, namely correlation coefficient estimates with 

non-zero centered correlation coefficients across correlated sample sets, 

has not been widely treated in the literature. 

In order to get some statistical handle on this problem, non-

parametric pairwise rank statistics were used. In this approach, treat-

ments are always treated in pairs, so that the question being asked is 

always if one treatment is better than the other. The data base is then 

scanned to find all cases where two measures differ only in that one of the 

measures has received treatment 1 and the other has received treatment 2. 
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The null hypothesis is that the treatments make no difference. If this 

were true, then each of the treatments would be ranked first in the pairs 

in about one-half of the cases. Let there be N such cases, and let the rank 

of the first treatment (either 1 or 2) be given by RK(1,n), 1 < n < N. Then 

the rank statistic which is formed, called RS, is given by 

N 
RS = 1 	RK(1,n) 

N n=1 
6.2.4-1 

This statistic varies between 1 and 2. If it is equal to 1, then the first 

treatment was always ranked first. If it is equal to 2, then the first 

treatment is always ranked second. 

N+1 
RS can only take on a finite set of values, namely 

N 
 TT  , —R.— ,..., 

2N-1 	2N 	 N+a N  , —1TI  . The probability is that RS takes on a value 	is given by 
N 

N!  

prob ( N+a ) _ a! 
(N-a)! 

N 	
2
N 

6.2.4-2 

Hence, the probability that RS takes on a value of 
(N+0.) 

 or less is given by 

a 
prob (RK < N+a) = 

1  N!  

2171  a=0 a!(N-a)! 
6.2.4-3 

From this relationship, it is always easy to compute the significance of a 

ranking in the usual sense. 

For multiple values of the same parameter (i.e., multiple treat-

ments of the same type), all possible pairwise rankings were done. An 

example of the results of such an analysis for four parameter values is 

given in Table 6.2.4-1. Above the diagonal in the matrix is placed the 
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PARAMETERS 

1 2 3 4 

1 RS12 RS13 RS14 

2 SL12(N12) RS23 RS24 

3 SL13(N13) SL23(N23) RS34 

4 SL14(N14) SL24(N24) SL34(N34) 

RSXY = 

SLXY = 

NXY 

Rank statistic between parameters 
X & Y (equ. 6.2.4-1) 

Significance limit (in the probability domain) 
for the X-Y rank statistic 

Number of samples available for computing RSXY 

Table 6.2.4-1. EXAMPLE LAYOUT FOR THE RESULTS OF A 

FOUR PARAMETER PAIRED RANKING TEST 
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pairwise values for RS. Below the diagonal is placed the one-sided proba-

bility limit. For significance at the .01 level, this number must be below 

.01, and for significance at the .05 level, it must be below .05. 

The pairwise ranking test described here is a relatively weak 

statistical test. It has been adopted because it does give some statisti-

cal insight into the significance of the test results, and because many of 

the results reported here are very strong. 

6.3 	The Spectral Distance Measure Results 

A total of 192 variations of the spectral distance measures 

described in Chapter 3 were included as part of this study. Any of these 

spectral distance measures can be described by four conditions. First, the 

spectral distance measure may be between linear spectra, log spectra, or a 

spectrum taken to the 8 power. If the latter case is used, the value of 5 

must be specified. Second, between frames, the measures are weighted by 

the energy of the original signal taken to the a power. If a=0, then there 

is no energy weighting. Third, the measures always involve an L norm, and 

the value of p is important. Fourth, within frames, the distance measure 

may be spectrally weighted by V(n,s,d0 t ) Y . If y=0, there is no spectral 

weighting. In these terms, Table 6.3-1 summarizes the 192 spectral 

distance measures studied here. 

The total analysis performed on the 192 spectral distance measures 

was linear, 3rd order nonlinear and 6th order nonlinear regression. These 

analyses were performed across all nine of the distortion subsets (ALL, 

WBD, WFC, CODE, CON, WBN, NBN, BD, PD) for nine subjective parameters (CA, 

TBQ, TSQ, P, A, I, PP, PA, PI). In all, there were therefore 192 x 3 x 9 x 

9 = 46,656 analyses. Obviously, it is unreasonable to even print this 
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SUMMARY OF SPECTRAL DISTANCE MEASURES 

Linear Spectral Distance Measures 

Energy Weighting (a) 	0 	.5 	1 	2 

Lp Norm (P) 	 1 	2 	4 	8 

Spectral Weighting (1) 	0 	1 	2 

Total cases = 48 

Log Spectral Distance Measures 

Energy Weighting (a) 	0 	.5 	1 	2 

Lp Norm (P) 	 1 	2 	4 	8 	10 	12 	14 	16 

Spectral Weighting (y) 	0 	1 	2 

Total cases = 64 

Spectral Distance Measures 

Energy Weighting (a) 	0 

Lp Norm (P) 	 1 	2 	4 	8 	10 	12 	14 	16 

Spectral Weighting (1) 	0 	1 	2 

Nonlinearity (6) 	.2 	.3 	.4 	.6 	.8 

Total cases = 90 

Table 6.3-1. SUMMARY OF THE 192 SPECTRAL DISTANCE MEASURES STUDIED 
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number of results. What is done, instead, is to use this new data base of 

results to answer specific questions of interest about the utility of 

sample spectral distance measures and the optimality of the controlling 

parameters. 

6.3.1 The Best Spectral Distance Measures 

The first question of interest is what are the best spectral 

distance measures and how good are they. Table 6.3.1-1 gives a list of the 

five best spectral distance measures for CA, TSQ, and TBQ for ALL and WBD. 

Several points should be noted here. First the best measure for the 

spectral distance measure overall distortions for CA uses the I 1 .2  non-

linearity and uses neither energy weighting nor spectral weighting. The 

1 

 

. 2 
nonlinearity is very close to the log nonlinearity over much of its 

range, and indeed, two log measures are included in the top five. 

The maximum correlation coefficient is -.6020, corresponding to a 

standard deviation of error of 7.86. This is not very good, and even 

though this is one of the better simple measures, it does not do very well. 

This is a general result and clearly indicates that composite measures are 

necessary if effective objective measures are to be designed. 

The results over TSQ are similar, though slightly lower, than those 

for CA. Here, the log measures are consistently better than those using 

the nonlinearity. 

By comparison, the results for TBQ are very poor, with a maximum 

correlation of only .135. Note that these correlations are all positive, 

as would be expected. Since all the spectral distance measures explicitly 

measure signal distortion, it is not surprising that they do a poor job on 

background qualities. 
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P a
e Nonlinearly 

(6) 

Lp 
Norm 
(P) 

Spectral 
Weighting 

(Y) 

Energy 
Weighting 

(a) 

CA (ALL) .60 7.9 11 	.2 2 0.0 0.0 
.60 7.9 11 	.2 2 0.0 0.5 
.60 7.9 log 4 0.0 0.0 
.59 7.9 log 2 1.0 0.0 
.59 7.9 11 	.2 4 0.0 0.0 

CA(WBD) .63 7.0 log 2 1.0 1.0 
.63 7.0 log 4 2.0 1.0 
.63 7.0 log 8 2.0 1.0 
.63 7.0 log 4 1.0 1.0 
.63 7.0 log 2 1.0 0.5 

TSQ(ALL) .57 8.8 log 2 1.0 2.0 
.57 8.8 log 2 1.0 1.0 
.57 8.8 log 1 1.0 2.0 
.57 8.8 log 1 2.0 1.0 
.57 8.8 log 1 1.0 2.0 

TSQ(WBD) .64 7.5 log 8 2.0 2.0 
.64 7.5 log 4 2.0 2.0 
.64 7.5 log 4 1.0 2.0 
.64 7.5 log 8 2.0 1.0 
.64 7.5 log 4 2.0 1.0 

TBQ(ALL) .14 7.2 linear 1 0.0 2.0 
.13 7.2 linear 2 0.0 2.0 
.13 7.2 linear 2 1.0 2.0 
.13 7.2 linear 1 1.0 2.0 
.13 7.2 linear 4 2.0 2.0 

TBQ(WBD) .23 6.2 11 	.6 1 0.0 2.0 
.23 6.2 11 	.4 1 0.0 2.0 
.23 6.2 11 	.8 1 0.0 2.0 
.23 6.2 11 	.6 1 0.0 1.0 
.22 6.2 11 	.8 1 0.0 1.0 

Table 6.3.1-1. 	Best Five Spectral Distance Measures for CA, TSQ, 
and TBQ Across ALL and WBD. 
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The correlations of all the measures over the WBD set show about a 

.03-.08 point improvement over the ALL set. This, of course, is a more 

realistic estimate of how these parameters would perform on true coding 

distortions. Here, the best result for CA is p = -.6345 witha e = 7.086 and 

for TSQ is p = .6427 with ae= 7.67, with the log nonlinearity always the 

best. The results for TBQ are once again very poor, though significantly 

better than for ALL. 

6.3.2 The Effect of Energy Weighting  

The effect of energy weighting was tested for spectral distance 

measures using the ALL and WBD data sets, for four groupings: all spectral 

distance measures; log spectral distance measures; linear spectral 

distance measures; and 1 1 6  spectral distance measures. The composite 

rank analyses for this test is shown in Table 6.3.2. 

The results for energy weighting here are very clear. 	Energy 

weighting does not help. The ranking for a is 0 - .5 - 1 - 2, where 0 or no 

weighting is best. This is a very strong result for all the spectral 

distance classes. Note also that the only deviation from this strong (in 

fact, perfect) result occurs in the linear spectral distance case. How-

ever, linear spectral distance measures consistently perform poorly, so 

these deviations are of little interest. 

6.3.3 The Effects of Spectral Weighting  

The effects of weighting the spectral distance measure in the 

frequency domain by 1V(n,s,d,e) -1Y was tested for ALL and WBD for y = 0,1, 

and 2 across the same for groups of spectral distance measure used in 

section 6.3.3. The results of this study are shown in Table 6.3.3-1. 
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Energy Weighting Parameter 

0 	 .5 

(a) 

1 2 

0 1.04 1.02 1.00 

.5 .4x10
-11

(48) 1.00 1.00 

1 .2x10
-12

(48) .4x10
-14

(48) 1.00 

2 .4x10
14

(48) .4x10
-14

(48) .4x10
-14

(48) 

0 .5 1 2 

0 1.00 1.00 1.00 

.5 10 -6 (20) 1.00 1.00 

1 - 6 
10 	(20) 10

-6
(20) 1.00 

2 10-6 (20) 10
-6

(20) 10-6 (20) 

0 .5 1 2 

0 1.00 1.00 1.00 

.5 .2x10
-5

(16) 1.00 1.00 

1 .2x10-5 (16) .2x10
-5

(16) 1.00 

2 , .2x10-5 (16) 
' .2x10 -5 (16) .2x10-5 (16) 

0 .5 1 2 

0 1.67 1.08 1.00 

.5 .019(12) 1.00 1.00 

1 .003(12) .002(12) 1.00 

2 .002(12) .002(12) .002(12) 

Group Tested 

All spectral 

distance 

measures 

Log spectral 

distance 

measures 

Linear spectral 

distance 

measures 

I•l spectral 

distance 

measures 

Table 6.3.2. RANK TEST RESULTS FOR ENERGY WEIGHTING 

Each frame was weighted by the energy in 
the undistorted speech frame to the a power. 
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Spectral Weighting Parameter (y) 

0 1 2 

All 	spectral 0 1.84 1.50 

distance 1 .5x10
-4

(32) 1.28 

measures 2 .57(32) .01(32) 

Log spectral 0 1 2 

distance 0 2.00 1.31 

measures 1 .15x10
-4

(16) 1.06 

2 .10(16) .2x10
-3

(16) 

0 1 2 

Linear spectral 0 1.68 1.68 

distance 1 .10(16) 1.50 

measures 2 .10(16) .59(16) 

Table 6.3.3-1. 	RANK TEST RESULTS FOR SPECTRAL WEIGHTING BY 
V(m,p,d,e)Y  FOR SPECTRAL DISTANCE MEASURES. 
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The consistent result here is that the second case,y=1, is signifi-

cantly better than 1=0 at both the .05 and .01 level, but is significantly 

better than y=2 at only the .1 level. Once again, this result is weaker 

for the case of linear spectral distance measures. So the basic result is 

that y=1 should be used, but this is a weak statement. 

6.3.4 The Effects of L Averaging 

The effects of L averaging in the frequency domain for p = 1,2,4, 

8,10,12,14, and 16 were tested for ALL and WBD across the same spectral 

distances groups as in the last two tests. The results of the study are 

given in Table 6.3.4-1. 

When viewed across all the spectral distance measures, the results 

are mixed, with p=1 best, but not significantly so. However, the individ-

ual results here show a very different picture. The linear spectral 

distance measures, the ranking is p = 1-2-4-8, where every result is 

significant at the .01 level. 	Since linear spectral distance does not 

perform well, this is not an interesting result. 	For the log spectral 

distance measure, the ranking is p = 4 - 8 - 2 -11 - 10 - 12 - 14 - 16, 

where the only non-significant results occur between the 4 and 8 levels. 

(Note that the lack of significance generally associated with the 10 - 12 - 

14 - 16 levels is due to the lack of samples.) This is a very powerful and 

interestingresult since most researchers have used p=1 or p=2 in utilizing 

log spectral distance measures. These results clearly show that a value of 

p between 4 and 8 will work better. 

The results for 1 l i spectral distance measure are mixed. This is 

clearly expected since this measure, in a sense, forms a bridge of non-

linearities between the linear (8=1) and the log (&-=' , .33) nonlinearity. 
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Lp NORM PARAMETER (p) 

1 2 4 8 10 12 14 16 

All 1 1.39 1.29 1.15 1.00 1.00 1.00 1.00 

Spectral 

Distance 
2 .08(44) 

Measures 4 .005(44) .1x10
-4

(44) 1.18 1.36 1.00 1.00 1.00 

8 .3x10
-5

(44) .5x10
-6

(44) .8x10
-8

(44) 

10 .06(4) .06(4) .06(4) .06(4) 1.09 1.00 1.00 

12 .06(4) .06(4) .06(4) .06(4) .06(4) 

14 .06(4) .06(4) .06(4) .06(4) .06(4) .06(4) 1.00 

16 .06(4) .06(4) .06(4) .06(4) .06(4) .06(4) .06(4) 

Log 1 2.00 2.00 1.58 1.00 1.00 1.00 1.00 

Spectral 
Distance 

2 .2x10
-3

(12) 1.67 1.5 1.00 1.00 1.00 1.00 

Measures 4 .2x10
-3

(12) .19(12) 1.33 1.00 1.00 1.00 1.00 

8 .38(12) .61(12) .19(12) 1.00 1.00 1.00 1.00 

10 .06(4) .06(4) .06(4) .06(4) 1.00 1.00 1.00 

12 .06(4) .06(4) .06(4) .06(4) .06(4) 1.00 1.00 

14 .06(4) .06(4) .06(4) .06(4) .06(4) .06(4) 1.00 

16 .06(4) .60(4) .06(4) .06(4) .06(4) .06(4) .06(4) 

Table 6.3.4-1(a) RANK TEST RESULTS FOR L NORM FOR SPECTRAL DISTANCE MEASURES 



Linear 
Spectral 
Distance 
Measures 

11 5 
 Spectral 

1 

2 

4 

8 

1 

2 

4 

8 

1 

.2x10
-3

(12) 

.2x10-3 (12) 

.2x10-3 (12) 

.02(20) 

.2x10
-4

(20) 

10-6 (20) 

2 

1.00 

.2x10-3 (12) 

.2x10
-3

(12) 

1.25 

10-6 (20) 

10-6 (20) 

4 

1.00 

1.00 

--- 

.2x10-3 (16) 

1.05 

1.00 

10-6 (20) 

8 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

Table 6.3.4-1(b). RANK TEST RESULTS FOR Lp NORM 
FOR SPECTRAL DISTANCE MEASURES 



6.3.5 The Effect of the Pointwise Nonlinearity 

In the study of the effects of the pointwise nonlinearities, the 

cases considered were I 16  for 6 = 1,.2,.3,.4,.6, and .8 plus log. The 

results are shown in Table 6.3.5-1. 

The basic result here is that the ranking is .2 - log - .3 - .4 - .6 

-.8 - 1 where there is no significant difference between the 6=.2 case and 

the log, but all other differences are significant at the .01 level. This 

means that (1) a nonlinearity should be used (linear was ranked lowest), 

and (2) the log, 11 
.2

, and 11 .3  give very similar results. These three 

functions are indeed very similar over most of their ranges. 

6.3.6 The Effects of Other Subjective Measures 

Table 6.3.6-1 shows the maximum correlation value found for 

spectral distance measures over ALL and WBD for nine different isometric 

subjective quality measures available from the DAM; Composite Acceptabil-

ity, CA; Total System Quality, TSQ; Total Background Quality, TBQ; para-

metric Pleasantness, PP; Parametric Intelligibility, PI; Parametric 

Acceptability, PA; raw Pleasantness, P; raw Intelligibility, I; and raw 

acceptability, A. The maximum values are given here, since they were 

fairly representative of the overall results for the entire subjective 

parameter. 

Several things are noteworthy here. First, note, as before, TBQ is 

not tracked well by the objective measures. Second, note that the behavior 

is similar over all the measures, but with intelligibility measures (PI and 

I) being tracked better than the rest. The worst tracking of a system 

quality was for pleasantness (PP and P), with acceptability showing inter-

mediate behavior. 
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NONLINEARITY PARAMETER 

6 

log .2 .3 .4 .6 .8 1 

log 1.81 1.38 1.25 1.00 1.00 1.00 

.2 .01(16) 1.25 1.00 1.00 1.00 1.00 

.3 .22(16) .04(16) 1.00 1.00 1.00 1.00 

.4 .15x10
-4

(16) .15x10
-4

(16) .15x10-4 (16) 1.00 1.00 1.00 

.6 .15x10
4
(16) .15x10

-4
(16) .15x10

-4
(16) .15x10

-4
(16) 1.00 1.00 

.8 .15x10
-4

(16) .15x10
-4

(16) .15x10
-4

(16) .15x10
-4 (16) .15x10-4 (16) 1.00 

1 .9x10-12 (40) 1 0-6  (20) 10
-6

(20) .15x10
-4

(20) .15x10-4 (20) .15x10-4 (20) 

Table 6.3.5-1. PAIRWISE RANK TEST FOR 6 ON THE 1 6  NONLINEARITY PLUS THE LOG NONLINEARITY 



DISTORTION 
SET 

	

CA 	TSQ 	TBQ 	PP 	PI 	PA 	P 	I 	A 

... 
ALL 	p 	-.60 	-.57 	.14 	-.53 	-.64 	-.53 	-.51 	-.66 	-.61 

... 

	

a
e 
 7.8 
	

8.8 	6.0 	8.5 	8.2 	8.3 	7.8 	6.8 	8.3 

WBD 	p 	-.63 	-.64 	.23 	-.50 	-.69 	-.62 	-.47 	-.71 	-.64 

	

ae  7.0 	7.7 	6.0 	7.3 	8.2 	6.9 	6.5 	6.9 	7.0 

Table 6.3.6-1. MAXIMUM CORRELATION OVER ALL SPECTRAL DISTANCE 
MEASURES FOR DIFFERENT SUBJECTIVE MEASURES 



6.3.7 The Effects of Different Distorted Data Bases 

Table 6.3.7-1 shows the results for the best spectral distance 

measures for CA, TSQ, and TBQ over all the distorted data base subsets (see 

section 6.2.2). There are several surprising features of this data. 

First, the performance of the individual measures of many of the subsets is 

surprisingly uniform. This suggests there is only a slight gain to be 

expected from these measures if there is a preclassification step in the 

analysis. Another interesting result is the measures performance on wide 

band noise vs. narrow band noise. It does outstandingly on narrow band 

noise, and not very well on wide band noise. This is probably due to the 

fact that no energy measurement is included in these spectral distance 

measures. 

6.3.8 The Effects of Nonlinear Regression Analysis 

In order to study the effects of using higher order regression 

analysis, the CA, TSQ and TBQ subjective measures were tested for third and 

sixth degree regression analysis across the ALL and WBD distorted data 

base. Table 6.3.8-1 gives a compilation of these results for the best 

measures observed. In both the CA and TSQ cases, it would appear that one 

obtains remarkable improvements by going to higher order regression 

analysis. In the most remarkable case, sixth order WBD across CA gives a 

correlation of .98 and a a
e 

on only 1.7. One must be very careful in 

analyzing these results. Clearly, the more parameters in the nonlinear 

approximation which are set optimally, the better the results will be. 

This, of course, is a mathematical certainty. As we allow larger higher 

order regressions, at some point we begin to track the noise in the system. 

In this sense, the numbers presented here should be considered approximate 
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DISTORTION 
SET 

CA TSQ TBQ 

ALL P -.60 -.57 .13 ae 7.8 8.8 7.2 

WBD P -.63 -.64 .23 

e 7.0 7.7 6.0 

CODE -.65 -.64 -.30 

e 6.1 6.8 6.6 

CON P -.63 -.64 .21 
ae 8.3 8.6 7.5 

WBN -.58 -.57 -.29 
a e 6.2 7.1 6.5 

NBN -.92 -.83 -.87 
ae 3.6 3.4 3.8 

BD P -.65 -.67 -.50 

e 5.6 7.6 4.1 

PD P -.67 -.67 -.30 

'Ye 6.0 6.2 7.4 

Table 6.3.7-1. MAXIMUM CORRELATION VALUES FOR SPECTRAL 
DISTANCE MEASURES FOR CA, TSQ, AND TBQ 
OVER THE DIFFERENT SUBSETS OF THE DISTORTED 
DATA BASE. 
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CA 

1st 	 3rd 	 6th 
Order 	 Order 	 Order 

ALL 	p 	.60 	 .69 	 .80 
a
e 	

7.8 	 7.1 	 5.8 

WBD 	p 	.63 	 .73 	 .98 
a 	7.0 	 6.1 	 1.7 
e 

T SQ 

1st 	 3rd 	 6th 
Order 	 Order 	 Order 

	

.57 	 .64 	 .75 

	

8.8 	 8.2 	 7.0 

	

.64 	 .70 	 .88 

	

7.7 	 7.1 	 4.61 

TBQ 

1st 	 3rd 	 6th 
Order 	 Order 	 Order 

	

.14 	 .28 	 .44 

	

6.0 	 6.9 	 6.4 

	

.23 	 .42 	 .84 

	

6.0 	 5.5 	 3.3 

Table 6.3.8-1. THE EFFECTS OF NON-LINEAR 
REGRESSION ANALYSIS ON 
SPECTRAL DISTANCE MEASURES. 
ONLY MAXIMUM RESULTS ARE 
SHOWN. 

ALL 

WBD 

ALL 

WBD 

p 
a 
e 

p 
a 
e 

p 
a 
e 

p 
a 
e 



upper limits on the performance of measures based on higher order regres-

sion models. 

In spite of the above warning, these results are very promising. 

Certainly, the third order effects are probably attainable in a real 

system. Because of the apparent improvement attainable from these poly-

nomial pointwise nonlinearities, it would be of great interest to investi-

gate other forms of this nonlinearity. 

For the case of TBQ, the improvements are equally remarkable. How-

ever, as before, the spectral distance measures are relatively ineffective 

at predicting the subjective background quality. 

6.4 	Simple Noise Measures 

The simple noise measures studied, as described in Section 3.3.3, 

include both the ordinary SNR and the "short time" SNR. In this study, 

only four measures were studied: the ordinary SNR and the short time SNR 

with 6 = .5, 1, and 2. In all the short time studies, the frame interval 

was taken to be 256 points. Previous researchers [6.1] have indicated that 

this measure is relatively insensitive to the frame interval. This 

measure, of course, is only meaningful over the waveform coders and those 

controlled distortions which can be thought of as being additive noise. 

Hence, these measures were only tested across WFC (waveform coders) and ND 

(noise distortions). Table 6.4-1 shows the results of these experiments. 

The first obvious point here is that the traditional SNR is not a 

very good objective measure. By comparison, all forms of the short time 

SNR always perform better. The performances of all the measures are 

comparable over the WFC and ND distortion sets, and this should be a good 

estimate of their expected performance in real coding tests. The best 
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WFC ND 

SNR .24 8.8 .31 8.8 

Short time SNR ( 6 =.5) .76 5.6 .77 5.9 

Short time SNR (6=1) .77 5.7 .78 6.0 

Short time SNR ( 6 =2) .75 5.5 .77 5.9 

Table 6.4-1. RESULTS FOR SNR AND SHORT TIME 
SNR FOR CA ACROSS WFC AND ND 
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value of 6 was found to be 1, though the differences between the three 

values were small. 

The clear point here is that the short time SNR is clearly superior 

to the traditional SNR, and should replace this measure whenever possible. 

6.5 	The Parametric Distance Measures 

The parametric distance measures, as discussed in Section 3.3.2, 

can be divided into seven classes; feedback coefficient distance measures; 

log feedback coefficient distance measures; PARCOR distance measures; log 

PARCOR distance measures; area ratio distance measures; log area ratio 

distance measures; and the energy ratio measure. In the experimental 

study, the first six measures were studied as a group, while the energy 

ratio measure, because of its wide use, was studied separately. In all, 38 

forms of the energy ratio measure and 72 forms of the other measures were 

studied. The overall experimental philosophy was the same for these 

measures as for the spectral distance measures, and a similar set of 

experiments were conducted. These are isometric measures, so, as before, 

the ALL and WBD distortion subsets are used to predict their effectiveness. 

Within each of the seven classes of parametric distance measure, 

the particular distance measure may be described by two conditions: the 

value of pin the L norm; and the energy weighting parameter, a. In terms 

of these parameters, Table 6.5-1 describes the measures tested for each of 

the seven classes. 

6.5.1 The Best Parametric Distance Measures 

The best parametric distance tested was found to be the L
1 
log area 

ratio measure without energy weighting. This measure has a correlation 

coefficient of -.62 for CA across ALL, and a correlation coefficient of 
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Lp Norm (p) 
Energy 

Weighting(a) Total 

Linear feedback 1, 	2, 	4 0, 	1, 	2 9 

Log feedback 1, 	2, 	4 0, 	1, 	2 9 

Linear PARCOR 1, 	2, 	4 0, 	1, 	2 9 

Log PARCOR 1, 	2, 	4 0, 	1, 	2 9 

Linear area ratio 1, 	2, 	4 0, 	1, 	2 9 

Log area ratio 1, 	2, 	4 0, 	1, 	2 9 

Energy ratio measure .25,.5,1,2,4,8 0,.25,.5,1,2,4,8 38 

Table 6.5-1. SUMMARY OF PARAMETERS FOR 
PARAMETRIC DISTANCE MEASURES 
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-.65 for CA across WBD. This is a very important result, for it says that 

this parametric distance measure performed better than any of the spectral 

distance measures. 	Since this measure is an order of magnitude more 

compact to compute, this is a very important result. 

Tables 6.5.1-1 through 6.5.1-7 give the best six measures for each 

of the seven categories for CA across ALL and WBC. The only two of these 

measures which show any promise are the log area ratio distance measure and 

the energy ratio distance measure. The results for these two measures will 

he presented in more detail. 

6.5.2 The Log Area Ratio Measure 

The results for the log area ratio measure tests are summarized in 

Table 6.5.2-1, which gives the results of all the log area ratio measures 

studied for CA, TSQ, and TBQ across CA and WBD. In each case, the log area 

ratio measure performs comparable to but better than the corresponding 

spectral distance measure. Like the spectral distance measure, perfor-

mance was relatively poor for TBQ. 

Table 6.5.2-2 shows the maximum results for the log area ratios 

across the other distortion subsets for CA. Here, once again, the results 

are comparable to but better than those from the spectral distance 

measures. 

Table 6.5.2-3 shows the effects of third order and sixth order 

nonlinear regression. Improvements here are also comparable to those from 

spectral distance measures. 

Examination of the data also shows other similarities to the spec-

tral distance results. For the log area ratio, no energy weighting is 

best, followed by energy weighting to the first, then second power. 
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CA (ALL) 

.06 

a
e 

9.8 

p a 

0 

.06 9.8 2 0 

.04 9.8 1 

.03 9.8 2 1 

.03 9.8 1 2 

.03 9.8 2 2 

CA (WBD) 

a
e a 

.14 8.9 2 0 

.14 8.9 1 0 

.12 8.9 2 1 

.12 8.9 1 1 

.11 8.9 2 2 

.08 8.9 1 2 

Table 6.5.1-1. BEST SIX RESULTS FOR L[NEAR 
FEEDBACK PARAMETRIC DISTANCE MEASURE 



CA (ALL) 

. 11 

. 10 

.05 

.05 

.04 

.04 

a 
e 

9.8 

9.8 

9.8 

9.8 

9.8 

9.8 

1 

2 

1 

2 

1 

2 

a 

0 

0 

1 

1 

2 

2 

CA (WBD) 

.32 

.31 

.29 

.28 

.26 

.25 

a
e 

8.5 

8.6 

8.6 

8.6 

8.6 

8.7 

2 

1 

2 

1 

2 

1 

a 

0 

0 

1 

1 

2 

2 

Table 6.5.1-2. BEST SIX RESULTS FOR LOG PARCOR 
PARAMETER DISTANCE MEASURE 
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CA (ALL) 

a 
e 
	 a 

	

.11 
	

9.8 	 1 	 0 

	

.11 
	

9.8 	 2 	 0 

	

.06 
	

9.8 	 1 

	

.06 
	

9.8 	 2 	 1 

	

.05 
	

9.8 	 1 	 2 

	

.05 
	

9.8 	 2 	 2 

.33 

.32 

.31 

.30 

.28 

.27 

a
e 

8.5 

8.5 

8.5 

8.6 

8.6 

8.6 

2 

1 

2 

1 

2 

1 

a 

0 

0 

1 

1 

2 

2 

Table 6.5.1-3. BEST SIX RESULTS FOR LOG FEEDBACK 
COEFFICIENT PARAMETRIC DISTANCE MEASURE 
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CA (ALL) 

a
e 

a 

.24 9.6 1 0 

.22 9.6 1 1 

.21 9.6 1 2 

.20 9.6 2 0 

.19 9.7 2 1 

.18 9.7 2 2 

CA (WBD) 

a 
e 

p a 

.32 8.5 1 0 

.30 8.6 2 0 

.28 8.6 1 1 

.28 8.6 1 2 

.2 7 8.6 2 1 

.26 8.7 2 2 

Table 6.5.1-4. BEST SIX RESULTS FOR LINEAR AREA 
RATIO PARAMETRIC DISTANCE MEASURE 
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CA (ALL) 

(l
e 

.46 

.30 

.29 

.21 

.16 

.12 

8.7 

9.3 

9.4 

9.6 

9.7 

9.8 

1 

2 

1 

1 

2 

2 

0 

0 

1 

2 

1 

2 

CA (WBC) 

u
e 	

a 

.43 
	

8.1 	 1 	 0 

.31 
	

8.5 	 2 	 0 

.30 
	

8.6 	 1 	 1 

.24 
	

8.7 	 1 	 2 

.21 
	

8.8 	 2 	 1 

.18 
	

8.8 	 2 	 2 

Table 6.5.1-5. SIX BEST RESULTS FOR THE LINEAR 
PARCOR PARAMETRIC DISTANCE MEASURE 
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CA ( ALL) 

a
e P a 

. 62 7.7 1 0 

. 62 7.7 2 0 

. 62 7.8 1 1 

. 61 7.8 2 1 

.60 7.9 1 2 

.59 7.9 2 2 

CA (WBC) 

a
e a 

.65 6.8 1 0 

.64 6.9 2 0 

.64 6.9 1 1 

.64 6.9 2 1 

.64 6.9 1 2 

.62 7.0 2 2 

Table 6.5.1-6. BEST SIX RESULTS FOR LOG AREA 
RATIO PARAMETRIC DISTANCE 
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••■ 

a
e 

.60 7.9 

.58 8.0 

.53 8.3 

.51 8.5 

.49 8.6 

.49 8.6 

Energy 
Weighting(a) 

	

.25 
	

0.0 

	

.5 
	

0.0 

	

.5 	 .25 

	

2.5 	 .25 

	

1.0 
	

1.0 

	

1.0 	 .50 

CA (ALL) 

CA (WBD) 

a p 	
Energy 

e Weighting(a) 

.65 	 6.8 	 .25 	 0.0 

.63 	 7.0 	 .50 	 0.0 

.62 	 7.0 	 .50 	 1.0 

.62 	 7.0 	 .25 	 .25 

.61 	 7.1 	 .50 	 .50 

.61 	 7.1 	 .25 	 .50 

Table 6.5.1-7. BEST SIX RESULTS FOR THE ENERGY 
RATIO PARAMETRIC DISTANCE MEASURE 
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„ 	.. 
P 	ae 	

L
P 	

ENERGY 

NORM 	WEIGHTING 
P 	(a) 

CA (ALL) 

CA (WBD) 

TSQ (ALL) 

TSQ (WBD) 

TBQ (ALL) 

TBQ (WBD) 

.62 	7.7 	1 	0 

.62 	7.7 	2 	0 

.62 	7.8 	1 	1 

.61 	7.8 	2 	1 

.60 	7.9 	1 	2 

.59 	7.9 	2 	2 

.65 	6.8 	2 	1.0 

.64 	6.9 	2 	2.0 

.64 	6.9 	1 	1.0 

.64 	6.9 	2 	0.0 

.64 	6.9 	1 	2.0 

.62 	7.0 	1 	0.0 

.58 	8.7 	1 	2.0 

.58 	8.8 	1 	1.0 

.57 	8.8 	2 	1.0 

.57 	8.8 	2 	0.0 

.54 	9.0 	1 	0.0 

.52 	9.1 	2 	0.0 

.62 	7.0 	2 	1.0 

.61 	7.1 	2 	2.0 

.61 	7.1 	1 	2.0 

.60 	7.2 	1 	1.0 

.59 	7.2 	2 	0.0 

.58 	7.3 	1 	0.0 

.11 	7.2 	1 	0.0 

.11 	7.2 	2 	0.0 

.03 	7.2 	1 	1.0 
.2 	7.2 	2 	1.0 

.006 	7.2 	2 	2.0 

.0006 	7.2 	1 	2.0 

.15 	6.1 	2 	2.0 

.15 	6.1 	1 	2.0 

.14 	6.1 	2 	1.0 

.13 	6.1 	1 	1.0 

.10 	6.1 	2 	0.0 

.10 	6.1 	1 	0.0 

Table 6.5.2-1. TOTAL RESULTS FOR LOG AREA RATIO PARAMETRIC 
MEASURE FOR CA, TSQ, AND TBQ FOR ALL AND WBD 
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Distortion 
Subset p a 

e 

ALL .62 7.7 

WBD .65 6.8 

WFC .64 6.9 

CODE .62 6.2 

CON .65 8.2 

WBN .40 7.0 

NBN .91 3.8 

BD . 58 6.0 

PD .53 6.9 

Table 6.5.2-2. THE MAXIMUM VALUES FOR CA FOR THE 
LOG AREA RATIO MEASURE ACROSS 
DIFFERENT DISTORTION SUBSETS 
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ANALYSIS ORDER 

1st 
Order 

p e 

3rd 
Order 

a
e 

6th 
Order 

a
e 

CA (ALL) .62 7.7 .64 7.5 .69 7.1 

CA (WBD) .65 6.8 .66 6.7 .79 5.5 

TSQ (ALL) .58 8.7 .59 8.7 .72 7.4 

TSQ (WBD) .62 7.0 .63 7.0 .72 6.1 

TM, (ALL) .11 7.2 .24 7.0 .42 6.6 

TBQ (WBD) .15 6.1 .35 8.4 .94 3.1 

Table 6.5.2-3. THE EFFECTS OF HIGHER ORDER REGRESSION ANALYSIS 
ON THE LOG AREA RATIO DISTANCE MEASURE 
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6.5.3 	The Energy Ratio Distance Measure 

The results for the energy ratio distance measure are summarized in 

Tables 6.5.3-1, 6.5.3-2, and 6.5.3-3. The first table gives maximum 

results for CA, TSQ, and TBQ over CA and WBD. The second table gives 

maximum results for CA over the other distortion subsets. The third table 

shows the results of nonlinear regression analysis. 

The energy ratio distance measure does quite well in all tests, but 

it is not able to quite match the performance of either the log area ratio 

measure or the best spectral distance measure. The general performance of 

all three of these measures is very similar, with the energy ratio measures 

being the poorest of the three. This is probably because these measures 

are measuring very similar features of the speech distortions. 

6.6 	Frequency Variant Measures 

There are two basic classes of frequency variant measures studied 

as part of this research: frequency variant spectral distance measures; 

and frequency variant noise measurement. For both cases, the frequency 

range 200-3200 Hz is divided into six bands, as shown in Table 6.6-1. The 

individual measures for each of the bands is then computed, and the overall 

objective measure is formed as an optimally weighted sum of the subband 

results. 

6.6.1 The Frequency Variant Spectral Distance Measures 

The parameters controlling the frequency variant spectral distance 

measures are the same as those controlling the spectral distance measures. 

These include four conditions. First, the distance measure may be between 

linear spectra, log spectra, or spectra taken to the (S power. Second, the 
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CA 	 WBD 

P 	ae 	
p 	a 

 

CA 	.59 	7.9 	 .65 	6.9 

TSQ 	.54 	9.0 	 .62 	7.0 

TBQ 	.12 	7.1 	 .24 	6.8 

Table 6.5.3-1. MAXIMUM RESULTS FROM THE 
ENERGY RATIO DISTANCE MEASURE 



Distortion 
Subset a

e 

ALL .59 7.9 

WBD .61 6.9 

WFC .58 6.7 

CON .59 8.7 

CODE .53 6.7 

WBN .47 6.7 

NBN .80 5.5 

BD .60 5.9 

PD .57 6.7 

Table 6.5.3-2. THE MAXIMUM VALUE OF CA FOR THE 
ENERGY RATIO MEASURE ACROSS 
DIFFERENT DISTORTION SUBSET 



ANALYSIS CODE 

p 

1st 
Order 

a e 

3rd 
Order 

p  
a e 

6th 
Order 

e 

CA(ALL) .59 7.9 .64 7.6 .64 7.5 

CA(WBD) .65 6.9 .66 6.7 .68 6.6 

TSQ(ALL) .54 9.0 .38 8.8 .60 8.6 

TBQ(ALL) .62 7.0 .63 7.0 .65 6.8 

TBQ(ALL) .12 7.1 .24 7.0 .69 5.2 

TBQ(WBD) .24 6.8 .30 6.7 .36 6.4 

Table 6.5.3-3. THE EFFECTS OF HIGHER ORDER REGRESSION 
ANALYSIS ON THE ENERGY RATIO DISTANCE MEASURE 
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BAND NUMBER RANGE (Hz) 

1 200-400 

2 400-800 

3 800-1300 

4 1300-1900 

5 1900-2600 

6 2600-3400 

Table 6.6-1. FREQUENCY BANDS USED FOR THE FREQUENCY 
VARIANT OBJECTIVE MEASURES 
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distance measure may be frequency weighted by the energy spectrum, 

V(n,s,d,O) Y . Third the measure may be time weighted by the energy of the 

frame taken to the a power. And finally, of course, an Lp norm is evolved, 

and the value of p is an important parameter. In all, a total of 96 

variations of these measures were studied. These measures are summarized 

in Table 6.6.1-1. 

Table 6.6.1-2 shows the results for the five best log spectral 

distance measures. As can be seen, the use of frequency weighting improves 

the spectral distance results by about .1 points in the correlation 

measure. Also, it was found that the same log spectral distance measures 

which did well in the non-frequency-variant cases did well in the frequency 

variant cases as well. 

Table 6.6.1-3 shows the results for the five best linear spectral 

distance measures. Here, the improvement from the non-frequency-variant 

case is remarkable. Not only is the frequency variant linear spectral 

distance measure better than the non-frequency-variant case, it is better 

than the log measure also. This is an important result. 

An important point about these frequency variant measures is that 

they are "tunable" for parametric as well as isometric subjective quality 

measures. Hence, correlation analyses were performed for the parametric 

subjective categories of SF,SH,SD,SL,SI,SN,BN,BB,BF, and BR across ALL and 

WBC. Table 6.6.1-4 shows some results from that study. 

Qualitatively, these results are relatively easy to understand. 

Basically, the frequency variant spectral distance measures did well on 

frequency variant parametric subjective measures (SF,SH,SL,SN,BN, and BB) 

and poorly on the non-spectrally-related subjective measures (SP,SI,BF, 
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Linear Spectral Distance Measure 

Spectral weighting parameter (Y) 0, .5, 1, 2 

Energy weighing parameter (a) 0, 1, 2 

Lp Norm (p) 1, 2, 4, 8 

TOTAL 48 

Log Spectral Distance Measure 

Spectral weighting parameter (I) 0, .5, 1, 2 

Energy weighting parameter (a) 0, 1, 2 

Lp Norm (p) 1, 2, 4, 8 

TOTAL 48 

Table 6.6.1-1. SUMMARY OF 96 FREQUENCY VARIANT 
SPECTRAL DISTANCE MEASURES TESTED 
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LOG FREQUENCY VARIANT SPECTRAL DISTANCE MEASURES 

Condition 
Spectral 
Weighting 

(y) 

Energy 	Lp 
Weighting 	Norm 

(a) 	(p) 

CA (ALL) .68 7.2 1.0 0.0 4 
.68 7.2 1.0 0.0 2 
.68 7.2 2.0 0.0 8 
.67 7.3 1.0 0.0 1 
.67 7.3 1.0 0.0 8 

CA (WBD) .72 6.2 1.0 0.0 2 
.72 6.2 1.0 0.0 4 
.71 6.3 1.0 0.0 8 
.71 6.3 1.0 0.0 4 
.70 6.4 0.5 0.0 2 

TSQ (ALL) .61 8.5 1.0 1.0 2 
.61 8.5 2.0 1.0 4 
.61 8.5 2.0 1.0 8 
.60 8.6 1.0 1.0 2 
.60 8.6 1.0 0.0 4 

TSO (WBD) .64 7.7 2.0 2.0 8 
.64 7.7 2.0 2.0 4 
.64 7.7 2.0 1.0 4 
.64 7.7 1.0 2.0 8 
.64 7.8 1.0 2.0 4 

TBO (ALL) .23 6.0 2.0 0.0 1 
.23 6.0 2.0 0.0 2 
.22 6.0 2.0 1.0 2 
.22 6.0 2.0 1.0 1 
.22 6.0 2.0 2.0 4 

TBQ (WBD) .35 5.8 2.0 0.0 1 
.34 5.8 2.0 0.0 1 
.34 5.8 1.0 0.0 1 
.33 5.8 2.0 0.0 2 
.32 5.8 0.5 0.0 1 

Table 6.6.1-2. BEST FIVE SYSTEMS FOR EACH CATEGORY FOR LOG 
FREQUENCY VARIANT SPECTRAL DISTANCE MEASURES 
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LINEAR FREQUENCY VARIANT SPECTRAL DISTANCE MEASURE 

CA (WBD) 

TSQ (ALL) 

Spectral 	Energy 	Lp 
Weighting Weighting 	Norm 

(Y) 	(a) 	(p) 

.68 	7.2 	0.0 	2 	1 

.68 	7.2 	0.0 	2 	2 

.68 	7.2 	0.5 	2 	1 

.68 	7.2 	0.0 	1 	1 

.68 	7.2 	0.0 	2 	4 

.72 	6.2 	0.0 	2 	1 

.71 	6.3 	0.0 	2 	2 

.70 	6.4 	0.0 	1 	1 

.70 	6.4 	0.0 	1 	2 

.70 	6.4 	0.5 	2 	1 

.61 	8.5 	0.5 	2 	1 

.61 	8.5 	1.0 	2 	1 

.61 	8.5 	0.5 	2 	2 

.61 	8.5 	0.5 	1 	1 

.61 	8.5 	1.0 	1 	1 

Condition 

CA (ALL) 

TSQ (WBD) 	.68 	7.3 	0.0 	2 	1 
.67 	7.4 	0.5 	2 	1 
.67 	7.4 	0.0 	2 	2 
.67 	7.4 	0.5 	2 	2 
.67 	7.4 	0.5 	1 	1 

TBQ (ALL) 	.24 	7.0 	0.0 
.24 	7.0 	0.0 
.23 	7.0 	0.0 
.23 	7.0 	0.0 
.22 	7.1 	0.0 

2 
	

1 
1 
	

1 
2 
	

2 
1 
	

2 
2 
	

4 

TBQ (WBD) 	.38 	5.7 	0.0 	0 	2 
.38 	5.7 	0.0 	1 	2 
.38 	5.7 	0.0 	2 	2 
.38 	5.7 	0.0 	2 	4 
.38 	5.7 	0.0 	1 	1 

Table 6.6.1-3. BEST FIVE SYSTEMS FOR EACH CATEGORY FOR LINEAR 
FREQUENCY VARIANT SPECTRAL DISTANCE MEASURES 
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Parametric 

Measure P 

Subjective  

ALL 

a
e P 

WBD 

a
e 

SF .61 3.8 .74 4.2 

S}I .63 3.9 .73 3.9 

SD .42 6.3 .26 6.7 

SL .72 3.6 .81 3.6 

SI .17 5.6 .19 7.9 

SN .45 3.8 .55 4.2 

BN .48 5.1 .23 4.0 

BB .43 4.0 .26 3.5 

BF .18 6.5 .38 5.4 

BR .27 2.8 .21 1.8 

Table 6.6.1-4. SAMPLE OF RESULTS FOR FREQUENCY VARIANT 
SPECTRAL DISTANCE MEASURES USED FOR 
PREDICTING PARAMETRIC SUBJECTIVE RESULTS 
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and BR). The performance on several of the measures (SF,SH,SL) can be said 

to be very good, while the performance on the others is moderate or poor. 

6.6.2 Frequency Variant Noise Measurements 

The frequency variant noise measures studied include both the 

frequency variant form of the ordinary SNR and the frequency variant form 

of the short time SNR. Only the one form of the frequency variant SNR was 

tested. However, 49 versions of the short time frequency variant SNR were 

tested. These different measures are characterized by two parameters. The 

first parameter, the energy weighting parameter a , controls the time 

domain weighting by the energy of the original speech. The second,c5 , 

controls the power to which the log of the measure is taken (see 3.4.2). 

In terms of these parameters, the 49 cases studied are shown in Table 

6.6.2-1. 

Of course these noise measures, like all noise measures, cannot be 

used across the whole distorted data base. Hence, these tests were only 

run across WFC, WBN, NBN, BD, and PD. The most important of these is WFC 

(waveform coders), since it represents an estimate of the measures' per-

formance in a real coding environment. 

Table 6.6.2-2 shows the results for WFC. The first noteworthy point 

is that these are outstanding results, with the best measure having a 

correlation coefficient of .93 and a a
e 

of only 3.28. Note also that this 

is not an isolated measure, but that several forms of the measure come 

close to this performance. 

In order to test the best values for the various parameters, a rank 

order study was done on both a and 6. The results of these studies are 

shown in Tables 6.6.2-3 and 6.6.2-4. As can be seen, the ranking for 6 is 
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Banded Short Time SNR 

Energy Weighting (a) 
	

0,.25,.5,1,2,4,8 

Power of log (6) 
	

0,.25,.5,1,2,4,8 

TOTAL 	 49 

Table 6.6.2-1. SUMMARY OF 49 SHORT TIME BANDED 

SIGNAL-TO-NOISE RATIO MEASURE 
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Energy 	Power 
Weighting Parameter 

a 
e 	

a 

CA (WFC) 

TSQ (WFC) 

.93 	3.3 	0.0 	 .25 

.93 	3.3 	0.0 	 .50 

.93 	3.3 	.25 	.25 

.93 	3.3 	.25 	.50 

.93 	3.3 	.50 	.25 

.81 	3.6 	0.0 	 .25 

.81 	3.6 	0.0 	 .50 

.81 	3.6 	.25 	.25 

.81 	3.6 	.25 	.50 

.81 	3.6 	0.0 	1.00 

TBQ (WFC) 	.93 	2.9 	0.0 	 .25 

	

.93 	2.9 	.25 	.25 

	

.93 	2.9 	0.0 	 .50 

	

.93 	2.9 	.25 	.50 

	

.93 	3.0 	.50 	.25 

Table 6.6.2-2. BEST FIVE RESULTS FOR BANDED 
SHORT TIME SNR MEASURE ACROSS WFC 
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Energy Weighting Parameter(a) 

0 .25 .50 1.0 2.0 4.0 8.0 

0 1.0 1.0 1.0 1.0 1.0 1.0 

.25 .008(7) 1.0 1.0 1.0 1.0 1.0 

.5 .008(7) .008(7) 1.0 1.0 1.0 1.0 

1.0 .008(7) .008(7) .008(7) 1.0 1.0 1.0 

2.0 .008(7) .008(7) .008(7) .008(7) 1.0 1.0 

4.0 .008(7) .008(7) .008(7) .008(7) .008(7) 1.0 

8.0 .008(7) .008(7) .008(7) .008(7) .008(7) .008(7) --- 

Table 6.6.2-3. RESULTS OF THE PAIRWISE RANKING TEST FOR THE ENERGY 

WEIGHTING PARAMETER, a , FOR THE SHORT TIME SIGNAL-

TO-NOISE RATIO 
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Power Parameter 

.25 .5 1.0 2.0 4.0 8.0 

.25 1.14 1.0 1.0 1.0 1.0 

.5 .06 	(7) 1.0 1.0 1.0 1.0 

1.0 .008(7) .008(7) 1.0 1.0 1.0 

2.0 .008(7) .008(7) .008(7) 1.0 1.0 

4.0 .008(7) .008(7) .008(7) .008(7) 1.0 

8.0 .008(7) .008(7) .008(7) .008(7) .008(7) 

Table 6.6.2-4. RESULTS OF THE PAIRWISE RANKING TEST FOR THE POWER 

PARAMETER FOR THE BANDED SHORT TIME SIGNAL-TO-

NOISE RATIO 
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.25-.5-1-2-4-8, with .25 and .5 giving similar results. The ranking for a 

is 0-.25-.5-1-2-4-8. So, as before, the best energy weighting is no energy 

weighting. 

6.7 	The Composite Distance Measures 

The composite distance measures studied in this research were 

always taken to be linear sums of up to six of the simple or frequency 

variant measures already discussed. Basically, there were two types of 

composite measures studied: measures without preclassification and 

measures with preclassification. In the measures without preclassifica-

tion, exactly the same composite objective measure was applied to all the 

distortions under study. In the measures with preclassification, each of 

the distortions was assigned a class, and a different composite measure was 

applied to each class. The preclassification technique was not exten-

sively explored in this study, but was only used to differentiate the 

spectral coders, such as vocoders, from those coders which could be consid-

ered as signal plus noise. 

The composite measures were used in two ways in this study. The 

first use was to determine if different single measures were really measur-

ing the same quantity or were measuring some different quantity. If they 

measure the same quantity, then the correlation coefficient based on their 

composite measure show only slight improvement. If they measure a differ-

ent quantity, then the correlation coefficient show more improvement. 

The second use for the composite measure was to search for a reason-

able measure to be used in an objective quality testing system which 

attempts to predict the subjective results from the objective results. Two 

points should be made about this study. First, since the optimization of 
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the composite measure involves the setting of certain of the parameters 

based on the data, the results found here are limits on the performance of 

these measures, and other tests need to be made concerning their robustness 

Second, the composite measure technique used here is essentially a "bulk" 

technique which allows the automated study of a number of combinations 

rather easily. It is undoubtedly true that some additional gain might be 

obtained from studying the measures "by hand", using interactive graphics, 

and making appropriate pragmatic changes in the definitions of the objec-

tive measures. 

6.7.1 The Composite Measure Used to Measure Mutual Information 

In this part of the study, a large number of six wide composite 

measures were designed to•find to what extent the correlation coefficient 

could be improved by combining the results of specific groups. For 

example, composite measures were made from all log spectral distance 

measures. This would answer the question of whether all the log spectral 

distance measures really contained similar information, or if some con-

tained different information. Similarly, composite measures between log 

spectral distance measures and log area ratio measures would determine if 

they measured different information. By no means are these tests all 

inclusive, but they do represent a reasonable sampling of the effects. 

Table 6.7.1-1 gives a summary of the maximum results for the classes 

studied for CA across WBC and, where appropriate, WFC. 

The results here can be summarized as follows. First, from line 1, 

all the log spectral distances contain similar information. This is true 

to a lesser extent (line 2) of all classes of spectral distance measures. 

From line 3, the best parametric measures, the log area ratio, and the best 
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OBJECTIVE 
QUALITY 
MEASURES 

MAXIMUM 
SINGLE 
RESULT 

MAXIMUM 
COMPOSITE 
RESULT 

DISTORTION 
SUBSET 

P o
e 

P 	o
e 

1. 1 .63 7.0 .64 	6.9 WBD 
2. 1,2,3 .63 7.0 .67 	6.7 WBD 
3. 1,11 .65 6.8 .69 	6.6 WBD 
4. 1,2,3,6,7,8,9,10,11,12 .65 6.8 .75 	6.0 WBD 
5. 11,12 .65 6.8 .67 	6.7 WBD 
6. 1,2,3,15 .72 6.2 .74 	6.0 WBD 
7. 4,5 .77 5.7 .78 	5.7 WFC 
8. 13,14 .93 3.3 .93 	3.3 WFC 
9. 4,5,13,14 .93 3.3 WBD 

10. 10,11 .65 6.8 .69 	6.6 WBD 
11. 8,9,10,11 .65 6.8 .70 	6.5 WBD 
12. 6,7,10,11 .65 6.8 .70 	6.6 WBD 

1. Log Spectral Distance 9. Log Parcor Distance 
2. Linear Spectral Distance 10. Linear Area Ratio 
3. Spectral Distance 11. Log Area Ratio 
4. SNR 12. Energy Ratio 
5. Short Time SNR 13. Frequency Variant SNR 
6. Linear Feedback Distance 14. Frequency Variant Short Time 
7. Log Feedback Distance SNR 
8. Linear Parcor Distance 15. Frequency Variant Spectral 

Distance 

Table 6.7.1-1. RESULTS OF THE COMPOSITE DISTANCE MEASURE TESTS 
TO MEASURE MUTUAL INFORMATION AMONG DIFFERENT 
DISTANCE MEASURES 

206 



spectral distance measures contain some separate information, but are 

really also quite similar. 

In studying the parametric measures, we see that the whole para-

metric set when combined with the whole spectral distance set (recall 6 

systems from this group is still all that is involved) a reasonable 

improvement is obtained. This illustrates a more or less general phenom-

enom which was observed. That is that often more improvement was obtained 

by combining a good measure with a bad measure of a vastly different type 

than from combining two or more similar good measures. Evidently, the 

better parametric measures are measuring similar information as the 

spectral distance measures (line 3), and likewise, the better parametric 

measures contain similar information (line 5). However, when some of the 

less good parametric measures are included (lines 4, 10, 11, 12), better 

overall results are obtained. 

In the non-frequency-variant noise measures (line 7), the addition 

of the SNR to the short time SNR adds little. Similarly, in the frequency 

variant case (line 8), the addition of the frequency variant SNR adds 

little to the frequency variant short time SNR. In fact, including all 

these measures together (line 11) adds little to the frequency variant 

short time SNR. 

Finally, it should be noted that the addition of simple spectral 

distance measures to frequency variant spectral distance measures (line 6) 

adds little information not available from the frequency variant case 

above. 
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6.7.2 Composite Measures for Maximum Correlation 

Because the study of the composite measures was a very time consum-

ing task, it was impossible to study a large number of them in detail 

Basically, the results from all of the correlation studies plus the results 

from section 6.7.1 were used to guess at what might be good measures. In 

all, 12 measures without preclassifications and 8 measures with preclassi-

fication were studied. Table 6.7.2-1 describes the best of each of these 

types of measures and shows their results across ALL and WBD for CA, TSQ, 

and TBQ. 

Several points should be made about these results. First, these are 

maximum obtainable results, and the robustness of these measures has not 

been tested. Second, the remarkable gain obtained from the preclassified 

version was almost solely due to the action of the short time frequency 

variant signal-to-noise ratio measure. However, with these reservations, 

these results are clearly quite good. 

In a real, fieldable system for objective quality testing, it is not 

clear how close to the limits observed in this study the results would be. 

However, this was done across a very large data base with many degrees of 

freedom, and the results here are the best estimates available at this 

time. 
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BEST COMPOSITE MEASURE WITH PRECLASSIFICATION 

CLASS: SYSTEMS WHICH ARE SIGNAL + NOISE 

MEASURE 

1. SHORT TIME BANDED SNR 18=11 
2. LOG AREA RATIO [a=0; p=1] 
3. FREQUENCY VARIANT LOG SPECTRAL [a =0; y=1.0; p=4] 
4. PARCOR [a =0; 	1)=1] 
5. LINEAR SPECTRAL DISTANCE Id =1; a=2; y=0; p=2] 
6. ENERGY RATIO [a=0; (S=.25] 

CLASS: ALL OTHER SYSTEMS 

MEASURE 

1. LOG AREA RATIO [a=0; p=1] 
2. FREQUENCY VARIANT SPECTRAL DISTANCE [a=0; Y=1.0; p=4] 
3. PARCOR [a=0; p=1] 
4. FEEDBACK [a=0; p=1] 
5. ENERGY RATIO [a=0; 6=.25] 
6. SPECTRAL DISTANCE Id=1; a=2; y=0; p=2] 

RESULTS 

CA 	 TSQ TBQ 
^ 	, 
A 	a e 	 p 	 a e p a e 

ALL .89 	3.5 	.88 	4.0 .41 6.1 
WBD .90 	3.5 	.90 	3.9 .32 3.8 

BEST COMPOSITE MEASURE 
WITHOUT PRECLASSIFICATION 

1. LOG AREA RATIO Ia =0; p=11 
2. FREQUENCY VARIANT SPECTRAL DISTANCE [a=0; y=1.0; p=4] 
3. PARCOR [a=0; p=]] 
4. SPECTRAL DISTANCE [6=1; a=2; y=0; p=2] 
5. ENERGY RATIO [a=0; 6=.25] 
6. FEEDBACK la=0; p=]] 

RESULTS 

CA 	 TSQ TBQ 

P 	 a 	 p 	 a 
e e 

p a 
 

ALL .84 	4.6 	.82 	4.9 .38 6.2 
WBD .86 	4.2 	.86 	4.6 .48 6.0 

TABLE 6.7.2-1. THE BEST COMPOSITE MEASURES DISCOVERED DURING THIS STUDY 
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