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CHAPTER 1

INTRODUCTION

1.1 Task History

The research effort reported here was performed jointly by the
School of Electrical Engineering of the Georgia Institute of Technology
and the Dynastat Corporation for the Defense Communications Agency. In
this effort, the Georgia Institute of Technology was the prime contractor
and the Dynastat Corporation was the subcontractor. The monitoring
officer at the Defense Communications Engineering Center was originally
Dr. William Bellfield. The monitoring officer was later changed to be Mr.
James Vest.

This task, the investigation of the correlation between objective
and subjective measures for speech quality, followed previous work by both
Georgia Tech [1.1] and the Dynastat Corp. [1.2] [1.3] in related areas.
The portion of this research performed at Georgia Tech involved the produc-
tion of distorted and coded speech, the measurement of objective quality
measures, andvthe correlation of the objective measures with the subjec-
tive measures. The portion of the work performed at the Dynastat Corp.

included subjective quality testing and the associated analysis.

1.2 Technical Background

Since it has been clear for some years that some form of end-to-end
speech digitization would be initiated by the Defense Communications
Systems, a number of speech digitization systems have been developed at
various laboratories around the country. The job of selecting from these

candidate systems the features to be included in the final system requires

1



that extensive evaluation and testing be performed. Likewise, when a
"final" system is fielded, periodic and initial field testing of all links
will be a significant requirement. This effort deals with a set of tech-
niques which can be used for more effective and efficient operational
speech quality testing. In general, these "objective fidelity measures"
are computed from an "input" or "unprocessed" speech data set, S, and an

"output" or "distorted" speech data set, as shown in Figure 1.2-1. The

Sq7
output speech data set results when the input speech data set is passed
through the speech communication system under test, Objective measures
may be very simple, such as the traditional signal-to-noise ratio, or they
may be very complex. A complex measure might use such diverse measures as
a spectral distance or other parameteric distances between the input and
output speech data sets; semantic, syntactic, or phonemic information
extracted from the input speech data set; or the characteristics or the
talker's vocal tract or glottis. If an objective fidelity measure conforms
to the triangular inequality and the other conditions shown in Figure

1.2-1, then it is a metric. Although metrics have many features which are
desirable in a fidelity measure, an objective measure need not be metric to
be of interest.

If an objective fidelity measure existed which was both highly
correlated with the results of human preference tests and which was also
compactly computable, then its utility would be undeniable. Clearly, it
could be used instead of subjective quality measures for testing and opti-
mizing speech coding systems. Such tests could be expected to be less
expensive to administer, to give more consistent results, and, in general,
not to be subject to the human failings of administrator or subject. Such

an objective measure would also be very useful in the design of speech
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coding systems, either by iterative optimization of the parameters of the
coding system by repeatedly applying the quality measure~—a process which
is extremely expensive using subjective tests--or, if the procedure were
analytically tractable, by designing the speech coding system to expli-
citly maximize the quality of the system as defined by the objective
quality measure. Finally, note that the results of the objective measure
applied at different times and at different locations could be compared
directly. This is clearly not generally the case for the results of subjec-
tive quality tests.

The problem is that an objective fidelity measure which is both
highly correlated with subjective measures over all possible distortions,
and which is compactly computable, does not exist. Although at this time
the speech perception process is not well understood, it is well enough
understood to state that the human speech perceiver is an active perceiver,
responding to semantic, syntactic, and talker related information as well
as phonemic content, and that he uses his vast knowledge of the language
interactively in the speech perception process. The acoustic correlates
of the various hierarchically structured elements of the language in the
speech signal are simultaneously overlapping and redundant. This means
that certain very small distortions which are properly placed with respect
to the syntactic structure or the semantic content could cause complete
loss of intelligibility, while other more extensive distortions might not
even be perceivable. Hence, it can be argued that objective fidelity
measures which do not use semantic, syntactic, and other language related
information cannot correctly predict the quality of a speech coding

system.



However, an important point concerning modern speech coding systems
is that, in general, they do not produce distortions which are in any way
synchronous with the semantic or syntactic content of the utterance,
Hence, the distortions introduced by speech coding systems represent a
subset of all possible distortions, It is our hypothesis that it 1is
possible to design relatively compact objective measures which correlate
well with subjective results over this subset of distortions introduced by
speech coding systems. We recognize that these measures cannot be com-
pletely general since they do not reflect the complexities of the speech

perception processing.

1.3 An Approach to Designing and Testing Objective Quality Measures

Over the years, there have been numerous objective measures sug-
gested and used for the evaluation of speech coding systems. These
measures include signal-to-noise ratios, arithmetic and geometric spectral
distance measures, cepstral distance measures, various parametric distance
measures, such as pseudo area functions and log area functions from LPC
analysis and many more.

The task of comparing and contrasting the validity of such measures
is immense. To check the validity of a particular candidate objective
measure over a wide class of distortions, a researcher must create a data
base of distorted speech and a corresponding data base of subjective
results. This is a time-consuming and expensive process, and, as a result,
the validity of most commonly used objective measures remains a subject for
speculation.

In general, we were interested in designing a method for comparing

the validity of ohjective quality measures in a cost effective way. In



short, we have designed a system for measuring the quality of objective
fidelity measure-—i.e. a quality measure for quality measures.

The essential features of our method are illustrated in Figure
1.3-1. First, a test set of undistorted sentences is created. This set,
in general, comnsists of phonemically balanced sentences spoken by four or
more speakers. TFor analysis purposes, the sentences are divided into
"frames'" of a length of 10-30 msec. This sentence/frame set is called
U(m,nn), where m is the '"condition" (sentence and speaker) and n is the
frame number. An ensemble of distorted and coded sentences is then pro-
duced by passing the undistorted test set through a large number of con-
trolled distortions and speech coding systems. This forms the distorted
data base, D(m,n,d) (where d is the distortion) on which the objective
measures will be tested.

Once the distorted data base exists, all these sentences are tested
using subjective speech quality tests. These results form a data base of
subjective results called S(d). A particular candidate objective measure
is tested using these three data bases as follows. First, the objective
quality measure is applied to all the sentences in the distorted data base.
The application of the objective measure generally involves both the
undistorted and distorted data bases., Then a statistical correlation
analysis is done between the results of the objective measure and the
subjective data base. The results of this correlation analysis are used as
a figure of merit for comparing the various objective measures.

Several points should be made about this procedure. First, note
that the subjective tests are only administered once regardless of how many
objective measures are to be studied. Hence, the most expensive portion of

this process, namely the application of the subjective tests, need only be
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done once. Note also that the subjective data base may be expanded over a
period of time to improve its resolving power or to extend the class of
distortions involved. Similarly, subsets of the entire data base may be
used if appropriate to the hypothesis being tested.

Second, note that this '"'quality test for quality test" system may be
used to optimize the parameters of particular objective measures. This may
sometimes be accomplished explicitly using statistical optimization tech-
niques, or may be accomplished iteratively by reapplying the test repeat-
edly to parametrically different versions of the same objective measure.

Two figures of merit are used for a particular objective fidelity
measure., The first is an estimate of the correlation coefficient between
the objective fidelity measures and 0(d), the subjective quality

measures, S(d), given by

Y (5(d)-S(d)) (0(d)-0(d))
d

>
Il

E (S(d)-S(@)* ; (0(d)~-0(@y) 21t/ 2 1.3-1

This results in a minimum variance linear estimate of the subjective

results from the objective results given by

S(d) = S(d) + —= (0(d)-0(d)) 1.3-2

where o, and c are the estimated standard deviation of the subjective and

objective measures, respectively. To say that this correlation



coefficient has any absolute validity would be incorrect. Since we have
not randomly sampled a universe of coding distortions, our estimate of the
correlation coefficient is biased. 1In short, estimates of correlation
coefficients computed in this way are only meaningful when comparing
objective measures over the same data base, and such estimates should not
be compared when estimated from different data bases.

A more pleasing way to view this analysis is to view the estimate of
the subjective measure as a linear regression analysis or as simply a least
squares lineaxr fit, From this, the standard deviation of the error
expected when the objective estimate is used in place of the subjective

estimate can be estimated by

62 = EL(s-EGs|0)?) = 5201 - 8D 1.3-3

This estimate, which incorporates variation in the observed subjective
qualities as well as the correlation coefficient, is a more pleasing figure

of merit.

1.4 Principal Goals and Procedures

The research work reported here had these principal objectives:

1. To design ~1000 simple objective measures and
to test their utility wusing correlation
analysis,

2. To design both time domain and frequency domain
frequency variant objective measures and to
test their utility using correlation analysis.

3. To design more complex composite objective
measures and to test their wutility wusing
correlation analysis.



The accomplishment of these goals 1involved numerous additional
tasks which often led to interesting results in their own right. Some of
these tasks included:

1. The design and implementation of a large data
base of distorted and coded speech.

2. The performance of the subjective quality tests
on the distorted data base.

3. The analysis of the subjective results directly
from the distorted data base.

4. The implementation of the objective measures
across the distorted and coded speech in a cost
effective way.

5. The implementation of the "bulk" correlation
analysis procedures necessary to handle the
multitude of data produced by this effort.

In all, a total of approximately 1000 variations of simple and
frequency variant measures were implemented as part of this study. These
measures 1ncluded simple spectral distance measures, frequency variant
spectral distance measures, parametric distance measures, noise measure-
ments, short time noise measurements, and frequency variant noise measure-
ments. Table l.4-1 gives a summary of the objective measures studied.

The composite objective measures considered in this study were
formed by multiregression optimization on sets of the simple measures.
These "complex" measures often performed much better than the simple
measures, and their performance represents an estimate of the limit of the
ability of objective measures to predict the results of subjective tests.

The subjective quality test used in this study was the Diagnostic
Acceptability Measure (DAM) developed at the Dynastat Corporation. This
test has the special feature that it provides parametric subjective

results as well as isometric subjective results. This means that the

objective measures may be tested as to their ability to predict these
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OBJECTIVE MEASURES

SIMPLE MEASURES

SNR 6

Short Time SNR 6

Spectral Distance 192
Parametric

Energy Ratio (Itakura) 64

PARCOR Coefficients 24

Area Ratios 24

Feedback _Ei

240

FREQUENCY VARIANT

Banded SNR 6
Short Time Banded SNR 40
Spectral Distance 192
238

COMPOSITE MEASURES 22

TOTAL 500

+Non-linear Regression 1,000
xParametric Subjective Qualities 40,000

Table 1.4-1. SUMMARY OF THE OBJECTIVE QUALITY MEASURES STUDIED
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parametric results as well as the isometric results. 1In particular, many
of the objective measures studied, including all of the frequency variant
measures and the composite measures, may be ''tuned" in order to predict
specific parametric results. Such specific predictions, of course, are of
great utility to the systems designer.

The distorted and coded speech data base consisted of 264 "distor-
tions" which were applied to twelve sentences from each of four talkers.
The total amount of speech data in these tests totaled about eighteen
hours. The distortions included nine coding distortions, including both
vocoder and waveform coder techniques, and fourteen "controlled" distor-
tions, including filtering, additive noise, clipping, center clipping,
interruption, echo, and frequency variant distortions. The coded distor-
tions included both error free and fixed error rate channel simulations.

The implementation of the distorted data base, the measurement of
the objective meaures, and the correlation analysis were performed on the
Minicomputer Based Digital Signal Processing Laboratory [1.4] at the
Georgia Institute of Technology. The subjective data base and the asso-

cilated statistical analysis were performed at the Dynastat Corporation,

1.5 Summary of Major Results

One of the major characteristics of this study was that the large
number of objective measures which were studied coupled with the multiple
analysis methods and both the isometric and parametric subjective measures
resulted in a very large number of individual correlation results
(~120,000). From this large base of results, a number of specific
questions were asked and answered, and a number of important results were
obtained. This section will just list summaries of some of the major

results.
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1.

10.

11.

A very good objective quality measure for waveform
coders and noise distortions was developed based on
frequency variant (banded) short time signal-to-
noise measurements, This measure resulted in a
correlation coefficient of .93 across all relevant
distortions and a 0 of 3.2 quality points on a 100
point scale, €

The best composite measure involved some preclassi-
fication of the candidate system (vocoder vs. wave-
form coder), and resulted in an estimate correlation
coefficient of .90 and a g, = 3.5.

The best composite measure study which did not
require preclassification had an estimated correla-

‘tion coefficient of .86 and a 6e = 4.2,

Neither of the two composite measures above used
higher order regression models. If such models are
used, these results are improved, but there are some
questions as to the accuracy of such predictions.

The optimum value for P in the L_ norm for spectral
distance measures was found to be 8. This is a
considerable departure from current practice.

Energy weighting of the time frame was found to have
little value for any of the measures.

The best simple measure was found to be a log area
ratio measure, which had a o = .64 and o0 = 6.8.
Surprisingly, this measure was better thah any of
the simple spectral distance measures.

The only two parametric measures which did well were
the log area ratio measure and the energy ratio
measure,

The frequency variant spectral distance measures
performed with about a .1 point improvement in
correlation over the simple measures. This was less
than hoped.

The reliability of wvirtually all of the better
objective measures was quite high for the number of
frames used (~99). The reliability of the subjec-
tive measures was ~.9.

The use of higher order regression analysis (3rd
order and 6th order) often gave considerable
improvement 1in the predicted performance of the
objective measures. These results, however, must be
approached with caution, since some tracking of the
noise is bound to be occurring.

13



1.6 Discussion

There are a great many aspects to this study. On the one hand, it
gives, often for the first time, quantitative comparisons between many of
the commonly used objective quality measures. Similarly, it gives quanti-
tative predictions for the performance of such measures when used as pre-
dictors of subjective acceptability, at least as it is defined by the DAM
test. In addition, it allows the comparison of parametrically different
objective measures of the same type, and the "tuning" of individual objec-
tive measures to predict parametric subjective results. All of these
results are of importance to the system's designer and the speech
researcher, but, in general, do not bare directly on the overall problem of
system quality measure. This is because the performance of any one measure
by itself (with the noteworthy exception of the banded short time signal-
to-noise ratio for waveform coders) is not good enough to effectively
predict system acceptability,

On the other hand, the results of this study tell us a good deal
about the performance of the subjective measures themselves, and offer new
data from which to improve the subjective measures. The subjective
results, in turn, can be used to judge the design of the distorted data
base. These developments, once again, are quite important, but do not
appreciably improve the overall quality testing environment.

The real potential for improvement comes from the use of the compos-
ite objective measures. As previously stated, this study gives fairly safe
predictions of 5 =,86 and Se = 4,2 for such measures. There are several
issues which need to be discussed here, however. First, the approach used
in this study, which was necessitated by the mass of data involved, was

essentially a '"bulk" approach in which only standard multiregression
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analysis and coarse, non-data-dependent preclassification was used. If a
final "best" measure were to be designed, the results of this study should
be used as a base to study the detailed behavior of the composite measures
as a function of the particular distortions. Only after this is done can
pragmatic variations of the composite measures be designed which allow for
the special interaction of the measures with the data. Second, it should
be noted that this '"best" result was obtained by setting a number of
parameters in the composite objective measure to optimize this measures
across the distorted data base. Thus, this should be considered a limit on
expected performance.

Another point concerns the nonlinear regression analysis. The
number of degrees of freedom in this analysis was (usually) 1056. Hence,
using 3rd order or 6th order nonlinear regression analysis was a long way
from having the order of the analysis equal to the number of degrees of
freedom. It is noteworthy that often remarkable improvements were
obtained using nonlinear regression. Some of this effect must be noise,
but clearly, some of it must be real improvement. Exactly how much
improvement can be really obtained by nonlinear regression is a subject for
further study.

A major point which should be made concerns the reliability of the
objective measures. TFor the number of frames used in this study, the
measured reliability was of the order of .98 or .99 for most 'good"
measures. This means that whatever an objective measure really measures
for a distortion, it measures the same thing every time. This means that
these measures could be utilized with great effectiveness for detecting

malfunctions or nonstandard operation of systems in the field.
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Some retrospective comment on the contents of the distorted data
base is also appropriate. The data base was designed to include numerous
frequency variant controlled distortions in order to facilitate the design
of frequency variant objective measures. This worked well for time domain
measures, but not nearly so well for frequency domain measures. Had this
result been known at the outset, relatively more coding distortions would
have been included.

The utility of the measures designed in this study are a function of
the task for which they are to be used. This study seeks only to quantify
the predicted effectiveness of objective quality measures. Thus, to
determine their specific utility, one must also decide what constitutes an
acceptable prediction of user acceptance.

A final point should be made here about further possible work in
this area. The same techniques developed here might also be used to
predict other features from subjective testing. The two most obvious
classes of such tests are the parametric intelligibility tests, such as

DRT, or a talker identification features test.
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CHAPTER 2
SUBJECTIVE CRITERIA OF SPEECH ACCEPTABILITY

2.1 Background

It is generally acknowledged that user acceptance of voice communi-
cations equipment depends on factors other than speech intelligibility.
Intelligibility is unquestionably a necessary condition, but clearly not a
sufficient condition of acceptability. Until recently, however, no
generally satisfactory method of evaluating the overall acceptability of
"quality" of processed or transmitted speech has been available.

Under contract with the Defense Communications Agency, Dynastat
recently undertook to remedy the situation that existed in the area of
acceptability evaluation. The results of this effort included the Paired

Acceptability Rating Method (PARM) and the Quality Acceptance Rating Test

(QUART). Both of these methods provide improved reliability of measure-
ment on an absolute scale of acceptability, though each has limitations
with respect to range of application. Both served as valuable research
tools to clarify a number of crucial methodological issues and to indicate
possible means of further refining the technology of speech evalua-
tion[2.1]. Drawing on insights gained from research with these methods,
Dynastat continued, under its own auspices, to further develop the tech-
nology of acceptability evaluation. These efforts have culminated with

the development of the Diagnostic Acceptability Measure.

2.2 Design of the Diagnostic Acceptability Measure (DAM)

In common with several previous methods of evaluating accepta-
bility, the DAM requires the listener to characterize transmitted speech
by means of absolute, rather than relative, rating or judgments. However,
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two important features distinguish it from previous methods of predicting
speech acceptability. First is the fact that it combines an indirect or
parametric approach with the more conventional direct or isometric
approach.

In the case of the isometric approach, the listener is required to
provide a simple, direct, subjective assessment of the acceptability of a
sample speech transmission, for example, simply to rate a sample transmis-
sion on a 100-point scale of acceptability. Although the isometric
approach has considerable appeal from the standpoint of face validity, it
has several disadvantages[2.2]. For one thing, listener ratings are
subject to enormous interindividual and intraindividual variation in
subjective origin and scale, whether as a result of adaption level dif-
ferences or simply of differences in understanding of the task. Research
with PARM has shown that much of the seemingly random component of varia-
tion in rating scale data actually stems from stable listener differences
in rating scale behavior. The practical implication of this finding is
that differences between individual listeners or crews can seriously
complicate the task. For another thing, listeners' ratings of accepta-
bility tend strongly to be colored by differences in aesthetic preference
or taste. The first of these disadvantages can be overcome to some extent
through careful instructional and training procedures and by the discrete

use of "anchors" and "probes.'" The most direct means of overcoming the

second advantage 1is to use relatively large, representative listening
crews. However, once the nature or dimensions of the interindividual
differences in taste are known, stratified sampling may permit the use of

smaller crews.
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In the case of the parametric approach, the listener is required to

evaluate the sample transmission with respect to various perceived char-
acteristics or qualities (e.g., hissiness), ideally without regard for his
personal affective reactions to these qualitities. Hence, the parametric
approach serves to reduce the sampling error associated with individual
differences in '"tastes." An individual who does not personally place a
high valuation on a particular speech quality may nevertheless provide

information of use in predicting the typical individual's acceptance of

speech characterized by a given degree of that quality.
A second distinguishing feature of DAM is that it solicits separate
reactions from the listener with regard to what he perceives to be the

speech signal itself, what he perceives to be the background, and with

regard to his evaluation of the overall effect. This serves at once to
reduce the listener's uncertainty as to the nature of his task and to
provide the experimenter with more precise information as to the defic-
iencies of the system being tested. The results of many studies of human
information processing indicate that, in concentrating successively on
different aspects of a complex stimulus configuration, individuals are
able to assimilate a greater amount of information from the stimulus—-and
thus respond more consistently--than otherwise.

The first step in the development of the DAM involved a series of
exploratory studies designed to identify the major perceptual correlates
of overall acceptability-—the perceived qualities which govern the
listener's acceptance reaction--and to develop the most appropriate
descriptors for these correlates. This involved the experimental evalua-
tion of a large pool of potential descriptors (e.g., hissiness) and the

selection of those candidates which collectively provided the most
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comprehensive and reliable discrination among various forms and degrees of
speech impoverishment.

Factor analytic techniques were applied to rating data obtained
with the most promising descriptors to determine the most appropriate
combination of descriptors and, ultimately, to determine the nature and
number of elementary perceptual qualities collectively tapped by these
descriptors. Combinations of redundant descriptors were then combined to
define a relatively limited number of highly discriminative rating scales.
Factor analysis was used again on several occasions to further clarify the
nature and number of underlying perceptual qualities and to select the
combination of multidescriptor rating scales that would provide the purest
and most precise measurement of each quality.

The results of several studies showed that virtually all of the
perceived differences among a diversity of transmission systems and condi-
tions could be accounted for in terms of six underlying perceptual
qualities of the signal and four perceptual qualities of the background.
These ten perceptual qualities were in turn found sufficient for predict-
ing virtually all of the variation in listener ratings of the intelligi-

bility, pleasantness, and overall acceptability of transmitted speech. It

was further found that acceptability could be predicted with a high degree
of precision from ratings of the two higher order qualities, perceived

intelligibility and pleasantness.

The rating form shown in Figure 2.2 was developed on the basis of

results of the above investigations.1 All items on the form involve 100-

1 . . . . . .
Based in part on the results of the present investigation, this form will
undergo several modifications for purposes of future research and services
with the DAM.
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point rating scales, though it should be noted that the polarities of the
items pertaining to the perceptual qualities of the signal and background
are the reverse of those used to evaluate overall effect. One reason for
this is that most, if not all of these generally undesirable qualities, are
assumed to have "true psychological zeroes.” This generally is not
warranted for such complex qualities as perceived pleasantness and intel-
ligibility and overall acceptability.

Some amount of redundancy in the rating form should be evident even
on casual examination. This is not an undesirable feature at this stage in
the development of our knowledge of the perceptual consequences of digital
voice coding. Also evident, perhaps, are the results of some attempt to
provide for the perceptual consequences of yet-to-be encountered forms of
speech degradation or processing. It is a reasonable expectation that
features of the rating form which are redundant or extraneous at this time
may find unique applicability with further developments in speech coding
technology.

It follows from the above description of the rating form that more
refined scoring algorithms can be developed as the need arises. For
example, two of the background-rating scales clearly pertain to noise,
though one would pertain most directly to high frequency noise while the
other would appear to denote perceptual qualities associated with low
frequency noise. For the present, these scales are combined to yield a
single score for perceived background noise.

The ten perceptual qualities treated by the DAM are shown in Table
2.2-1. Each of these scoring dimensions or scales is identified by a
mnemonically useful code, e.g., SL denotes that signal quality which is

most conspicuously associated with '"lowpassed" speech. (It should be
y p
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Table 2.2-1. STRUCTURE OF THE DAM#*

Signal Quality Measures

Perceptual Rating Representative
Quality Scales Used Descriptors Exemplars
SF 1,7 Fluttering Amplitude-
Bubbling Modulated Speech
SH 3,5 Distant Highpassed
Thin Speech
SD 4,14 Rasping Peak Clipped
Crackling Speech, Quantized
Speech
SL 2 Muffled Lowpassed
Smothered Speech
SI 8,10 Irregular Interrupted
Interrupted Speech
SN 9 Nasal Bandpassed Speech
Whining Vocoded Speech
Background Quality Measures
Perceptual Rating Representative
Quality Scales Used Descriptors Exemplars
BN 11,13 Hissing Guassian Noise
Rushing
BB 15 Buzzing 60-120 Hz Hum
Humming
BF 12,17 Chirping Errors in narrow
Bubbling band systems
BR 16 Rumbling Low frequency
Thumping noise
Total Quality Measures
Rating Representative
Quality Scales Used Descriptors Exemplars
Intelligibility 18 Intelligible Undegraded Speech
Pleasantness 19 Pleasant Undegraded Speech
Acceptability 20 Acceptable Undegraded Speech
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stressed, however, that lowpassing of speech has perceptual consequences
other than those reflected on the SL scale, and, moreover, that SL scores
may be affected by other conditions than high frequency attenuation.)

For greater convenience in interpretation of score patterns, the

polarities of the ten derived scales are reversed from those of the origi=

nal seventeen rating scales. High scores on the derived scales are thus

associated with freedom from the various perceptual qualities; and are
thus associated with acceptability, as is the case with ratings of intel-

ligibility, pleasantness and acceptability, itself.

The contribution of each perceptual quality to the listener's
acceptance reaction has been closely approximated through experimentation,
so that each diagnostic score represents the estimated level of accepta-
bility a system would be accorded if it were deficient with respect only to
the single perceptual quality involved. Thus, the pattern of diagnostic
scores provides estimates of the relative contributions of the ten per-
ceptual qualities to the acceptance of the system, and permits the communi-
cations engineer to identify the characteristics of a system or device
which are most detrimental to its acceptance, regardless of difference in
the values listeners place on the various qualities.

The application of a multiple nonlinear regression equation (based
on an analysis of DAM data for more than 200 system-conditions) to the ten
diagnostic scoreslyields one gross parametric estimate of the accepta-
bility of the system or condition being evaluated. Appropriately trans-

formed ratings of intelligibility and pleasantness provide two additional

parametric estimates. (These transformations take into account the fact
that acceptability is a slightly positively accelerated function of judged

intelligibility while being a negatively increasing function of judged
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pleasantness.) The three parametric estimates are then averaged with raw
or isometric ratings of acceptability to provide the one best, composite

estimate of acceptability.

To permit comparisons with the results of previous evaluations
obtained with PARM, composite acceptability estimates are transformed to
their PARM equivalents on the basis of the observed regression of PARM
scores on DAM composite scores in a sample of more than 200 system condi-
tions. A relatively crude estimate of intelligibility is obtained from
intelligibility ratings based on the regression of DRT scores on these
ratings in a sample of approximately 100 system conditions (actual speech

coding systems.)

2.3 Materials and Procedures

2.3.1 Speech Materials

The test speech material used with the DAM consisted of twelve
phonemically controlled six-syllable sentences [2.1] which are uttered by
speakers at a rate of one sentence per four seconds. Different sentences
are used by different speakers, but the same twelve sentences are always

spoken by each speaker.

2.3.2 Evaluation Procedures

!

From six to twenty~four experimental system-conditions may be
evaluated in the course of one testing session, depending on the number of
speakers involved. TIdeally, listeners evaluate all system~conditions in
sub-sessions involving one speaker at a time. It is particularly desir-
able, however, that the time-ordering of the conditions varies from one
speaker to the next in a counter-balanced manner. At the beginning of each

sub-session, listeners evaluate two "anchors" and four '"probes.”" The
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purpose of the anchors 1is to provide the listeners with a frame of
reference in which to make their ratings of experimental system condi-
tions. Data from the four probes, (an LPC, a CVSD, a channel vocoder, and
Parkhill) are used to adjust all rating data for any circumstantial factors
which may have operated to increase or decrease the average of all system
ratings for a given sub-session. Where average ratings of the four probes
on any scale deviate from historical norms, all data for that scale are
adjusted in the opposite direction. But, due to the fact that deviations
in averaged probe ratings do not provide perfectly reliable measures of
changes in the crews subjective origin or adaptation level, ratings of
system conditions and the probes themselves are adjusted by an amount equal

to only .5 of the probe deviation from historical norms.

2.3.3 Listener selection and calibration

Listeners used for system evaluations with the DAM undergo rigorous
selection and training procedures. 1Initial selection is achieved with the
use of the DAM itself. Candidates make ratings of a diversity of system
conditions. The correlations between the caﬁdidated ratings and normative
ratings provide the basis of selection. Following learning sessions with a
diversity of system-conditions, listener trainees undergo a calibration
session in which they rate a highly diverse sample of more than 200 system-
conditions with three speakers for each condition.

The regressions of individual listener ratings on normative rating
values provide the basis for adjusting the individual's data to compensate
for differences between his subjective origins and scales and those of the
historical normative listener. Coefficients of correlation obtained in
the course of this analysis determine the relative weight accorded the

individual listener's data in subsequent tests and experiments. Listeners
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are periodically recalibrated to adjust for changes in their response

characteristics that may occur with time and experience.

2.3.4 Analysis of DAM data

The first step in the analysis of DAM data involves the inversion of

signal and background quality rating data for each listener.

R!. = 90 - R.. 2.3.4-1
1j(u) ij
where Rij(u) is an inverted rating datum for the jth condition on the ith
rating scale, 90 is the historically-normative inverted rating of the high
anchor on the ith rating scale and Rij is a raw rating of the jth condition

on the ith scale. All values are further transformed such that:

R;j(u) f bi Rij + G, 2.3.4-2
where bi and Ci are selected such that Rij(u) closely approximates the
acceptability rating condition j would receive it its sole deficiency were
in terms of the system characteristic tapped by scale i. Values for Ri for
various scales are then used singly or averaged in various combinations to
yield unadjusted (for listener idiosyncracies) perceptual quality values,
(S{j for each listener condition).

Values of Sij(u) for each listener, k, are transformed as follows:

1

S{jk = b{k Sijk + Cik 2.3.4-3

where bik is a scale factor which relates listener k to the normative

listener for perceptual quality scale, i, and Cik is the difference in
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subjective origin between listener k and the normative listener. A

weighted average:

0 2.3.4-4
)

where LT is the correlation between listener k's rating on a scale i of a
standard set of conditions and the historically normative ratings of the
same set of conditions.2 The effect of this process is to give greatest
weight to those listeners whose response characteristics correlate most
highly with those of the historically normative listener.

A final, minor adjustment of all averaged adjusted perceptual
quality values is made in an effort to control transient circumstantial

influences to which the crew as a whole may be subject during a given

experimental session. This is accomplished by means of the formula:

Sij(p) = Sij - .5 (Pi - Pi(h)) 2.3.4-5

where gij(P) is the "probe-adjusted" crew average rating of condition j on
perceptual quality, i, ﬁi is the presently obtained average rating of the

four probes and Fi( ) is the historical average rating of the same crew's

h

1 . T . .-
The bar over the subscript 1 is used here to indicate that perceptual

quality scale values are in some instances cbtained by averaging two trans-—
formed rating scale values. Henceforth, i will be used without the bar to
denote the perceptual qualitites, themselves, rather than the rating
scales from which estimates of them are obtained.

2 . . . .. . .
The normal symbological convention in statistics is that the subscripts

to r. denote the two correlated variables, This convention 1s not
observed in this instance alone.
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ratings of the four probes, and .5 is the estimated coefficient of relia-
bility (session to session) of the probe average. Fully adjusted percep-
tual quality averages serve, as such, for purposes of detailed system
diagnosis, but they also provide the basis for estimates of three higher-

order criteria of system performance: total signal quality (TSQ), total

background quality (TBQ) and a parametric estimate of overall system

acceptability (PA). These measures are derived by means of the following

equations:

[/ b 6
TSQ = ciL izl b;S, + Cy .1, i/10] -C4
2.3.4-6
10 10
18Q = CiL 127 bi5; ¥ C3 487 | %

(Corresponding constants in the two equations are not identical, but Ci is
in each case designed to transform the measure in question into its accept-—
ability equivalent e.g., the acceptability 1level the system would be
accorded if its deficiencies were confined to perceived signal qualities.)

) 2.3.4-7
PA= 1 b.S +C (TSQx TBQ) +C,

where the regression coefficients regression constants have been estimated
on the basis of data for more than 200 system conditions. Even with a
sample of this size, however, it is to be expected that minor adjustments
of the bi's and constants, and of the form of these equations will be made
as more DAM data are accumulated.

Two additional parametric estimates of acceptability are derived
from isometric ratings of intelligibility and pleasantness.
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PI

il

2
CII + CZI + C3 2.3.4~8

. 2
ClP + CZP + 03 2.3.4-9

PP

where I and P are averaged ratings of intelligibility and pleasantness
which have been adjusted for listener idiosyncracies and circumstantial
effects in the same manner as the perceptual quality values.,

Direct, isometric, ratings of acceptability provide the last of the
four gross'estimates of system acceptability. Following adjustments for
listener idiosyncracies, the isometric estimate of system acceptability is
averaged with PA, PI, and PP to obtain the best composite estimate, CA, of
overall acceptability. Due to slight differences in the reliabilities of
these four estimates--PA has a slightly higher reliability (.976) than the

other three measures--a weighted averaged is used for this purpose.
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CHAPTER 3

OBJECTIVE MEASURES

3.1 Introduction

Three of the goals of this study as discussed in Chapter 1 were: (1)
to identify a set of promising objective measures for speech quality; (2)
to test these measures in order to quantity their effectiveness as speech
fidelity measures; and (3) to design new measures which are better able to
predict the results of subjective speech quality measures. The purpose of
this chapter is to describe in detail the '"basic' objective measures con-
sidered in this study.

In the past several years, there has been considerable interest in
defining and using objective measures for speech quality [3.1]. As was
discussed in Chapter 1, the two main uses of objective quality measures are
the prediction of user acceptance of candidate coding systems and the
"optimization" of coding systems using the objective quality measures as
fidelity criteria. The first use leads to reduction in cost of subjective
quality testing, while the second leads to higher quality speech communi-
cations systems.

The objective measures included in this study were mainly intended
for the testing of the three main classes of digital coding systems:
waveform coders, in which the coding system tries to duplicate the input
signal at the output; vocoders, in which the system does a deconvolution of
the filtering effect of the upper vocal tract from the excitation function;
and transform coding, where a two dimensional time-frequency represen-—

tation of the speech waveform is coded instead of the waveform itself.
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This bias toward digital systems is mainly motivated by current trends in
technology. This does not mean that the results here are not applicable to
analog systems, but such systems do pose somewhat greater problems in
synchronization and phase control.

The objective measures studied here can be divided roughly into six
classes: simple spectral distance; simple noisej parametricj; frequency
variant spectral distance; frequency variant noise; and composite. Simple
spectral distance measures includes all those measures in which the dis-
tortion is computed entirely in the frequency domain and in which the
spectral weighting of the measure is either unity or derived from the
original speech signal. Simple noise measures include all those measures

in which the main component is the '

'noise" between the input speech signal
and the output coded signal computed entirely in the time domain. Para-
metric measures include all those measures in which the measure is derived
from some secondary parameter set which has been derived from the speech
signals under test. 1In frequency variant spectral distance measures, the
measures are performed in the frequency domain, but are performed in bands
rather than across the entire frequency range. In frequency variant noise
measures the noise is measured in predetermined frequency bands by approp-
riate pre-filtering. Composite measures are new, hopefully improved,
measures derived by combining measures from the other five classes.

The two classes of "simple'" measures and the parametric measures
are included for three principal reasons. First, they are to quantity the
effectiveness of many of the measures currently in common use for speech
quality prediction. Second, they are to test the effect of parametrically

different forms of the various measures. Finally, they are to test the

utility of such measures against more complex measures.
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The two frequency variant classes of measures are included for two
principal reasons. First, it has been known for some time [3.4] that
hearing and speech perception are a frequency variant operation. This
phenomenon has been studied physically, but the measurement of precise
physical parameters is very difficult. The frequency variant measures
form a domain in which a secondary measurement of these effects can be made
using correlation analysis [3.3]. Second, it is well known that many of
the parametric subjective measures from the DAM (see Chapter 2) are fre-
quency related. The frequency variant objective measures form a domain in
which the objective measures may be "tuned" to predict such parametric
subjective quality results,

The design of the composite measures is one of the principal goals
of this study. Composite measures are specially intended to be used in
future objective-subjective testing and as diagnostic tools for coding

systems.

3.2 Basic Concepts and Notations

Objective measures are made between an undistorted speech data set,
¢, and a distorted speech data set, d. In this study, the undistorted
speech data set is made up of a four speaker set, s. Each basic speech set
consists of twelve sentences from each.of the four speakers (see Chapter 4
for more details).

In computing objective measures, the estimate is generally formed
by averaging the results from a number of "frames' of the undistorted and
distorted speech. 1In order for the measures to be unbiased, precise frame
synchronization between the distorted and undistorted speech signal must
be maintained. Since all of the distorticns in this study were digitally

produced, synchronization was not a great problem during this study (see
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Chapter 1 and Chapter 4). However for the testing of non-simulated coding
systems, the synchronization problem would have to be carefully con-
sidered.

The objective measures in this study are computed from a set of
input undistorted speech frames, X(n,s,$), where n is the frame index, s is
the speaker index and ¢ means no distortion, and a distorted speech set,
X(n,s,d), where d is the distortion. Here, the distortion may mean coding
distortion or a controlled distortion (Chapter 4). In general, each
distortion measure is characterized by a specific function, F at the frame
level; and, in general, all the objective measures, called 0(d), are

computed from

4 N
szl nzl W(n,s) F[X(n,s,$),X(n,s,d)]
0(d) =  q 3.2-1
E X W(n,s)
s=1 n=1

where N is the number of frames in the analysis, and W(n,s) is a weighting
. th th

function for the n— frame and the s— speaker. Note that W(n,s) may also

be a function of X(n,s,¢), X(n,s,d), or both. In this environment, there-

fore, describing the objective measures reduces to describing the func-

tions W(n,s) and F[X(n,s,$),X(n,s,d)] used for each measure.

3.3 The Simple Measures

The simple measures refer to the set of measures which produce an
isometric quality measure from a single compact computational algorithm.
These measures include such traditional measures as SNR, spectral
distance, etc. This section describes measures of this type used in this

study.
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3.3.1 The Spectral Distance Measures

All spectral distance measures are based on a function V(n,s,d,0),
" " th th .. .

the "spectrum" for the n— frame speaker s, the d— distortion, and the
frequency variable, 6. The first question to be answered is how to derive
this spectrum from the input speech sample X(n,s,d). Let x(m,s,d) be the
sampled (at 8 kHz) digital representation of the distorted signal for the
th th . . " " .
s— speaker and the d— distortion. Then the "framed" speech time sample

for the nEh frame, xn(m,s,d), is given by
xn(m,s,d) = x(m,s,d) W(m-nI) 3.3.1-1

where W(m) is a finite length window function and I is the frame interval
in samples. The Discrete Fourier Spectrum for this signal is given by

+ 00 .
v(n,s,d,0) = | 2 xn(m,s,d)e—Jem 3.3.1-2

m=— o
where the limits on the sum are really finite because of the finite length
of xn(m,s,d). The short time stationarity of speech [3.4] suggests that a
good window length is 10-30 msec. Although the DFT is a very natural
function to consider, there are several arguments against its use. First,
for the window lengths above xn(m,s,d) would normally include several
pitch periods. This would cause V(n,s,d,0) to be a line spectrum, as shown
in Figure 3.3.1-1. Because small variations in pitch, which have little
impact on quality, would cause great differences between such spectra,
then the DFT is not a good candidate for a spectral distance measure. What
is really needed is the spectral envelope of the DFT. This can be approxi-

mated in several ways. First, it can be approximated by always having only
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one pitch period in the analysis window of the DFT. This method, however,
would need the use of a pitch detector plus additional synchronization
logic which makes this approach unattractive. Second, the spectral
envelope can be estimated using the parametric LPC analysis technique
[3.5]1,[3.6],[3.7]. The advantage of this technique is that it is computa-
tionally simple and results in a very compact representation of the
spectral envelope. However, like all parametric approaches, it is subject
to modeling errors. . Finally, the spectral envelope could be extracted
using cepstral deconvolution techniques [3.8],[3.9] . However, previous
research has shown [3.1],[3.10] that this measure is very highly corre-

lated with the corresponding LPC technique and cepstral analysis is more

computationally intense.

3.3.1.1 The LPC Parametric Analysis Technique

In this study, the basis for the spectral envelope approximations
was always the LPC parametric technique. In this technique, a set of

autocorrelation functions, given by

4o
R (k) = ) x_(m,s,d) x_(mtk,s,d) 3.3.1.1-1

m=-co

for the n—tEE frame and 0 £ k = 10, are computed, and then a set of 10

1

"feedback coefficients,”" a(k), are computed from Durbin's recursion, given

by
& (n) = R(0); K(1) = -R(1)/R(0); al(1) = -K(1)
a () = (1 - K2(n-1)) (n-1)
3.3.1.1-2
n-1
K(n) = 7 (a"1(i)R(a-1)-R(n))/e(n)
i=1

a%(n) = -K(n); a®(i) = a® 1(i) + R(n)a™ (a-1)
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where the autocorrrelation subscripts have been dropped. In this
recursion, the K(n) parameters are the well-known PARCOR (partial
correlation coefficients) first used by Itakura [3.11]. From the feedback

coefficients, the energy spectrum can be computed by

V(n,s,d,0) = o 3.3.1.1-3
1 - § a()e %
=1
where G 1s the gain term, given by
10
¢ = [R(0) - T aClor(o] M2, 3.3.1.1-4
k=1

The LPC approach has several specific advantages when used for
spectral analysis. First, the entire analysis for a frame results in only
11 numbers, a(l) - a(l10), and G. This means that a large number of
spectral analysis results may be stored relatively compactly. Second, the
gain analysis is separate from the spectral analysis. Since small changes
in gain do not have great impact on perception, it is desirable to remove
gain effects from the spectral distance measure. One reasonable way in
which this may be done from the LPC analysis is force the gain term in

Equation 3.3.1.1-2 to be 1, giving

v(n,s,d,f) = 5 ! 3.3.1.1-5

1 - Y a(r)e 1™
k=1

This normalizes the total area under the V(n,s,d,8) to be equal to 1.
Finally, the LPC method results in a relatively compact computation of

v(n,s,d,s) from a(l) - a(10). v(n,s,d, 8) may be thought of as the

40



magnitude of the discrete Fourier transform (DFT) of the impulse response

of an infinite impulse response filter (IIR) whose Z transform is given by

v(z) = 3.3.1.1-6

The inverse of this filter is an FIR (finite impulse response) filter whose

Z transform, I(Z), is given by

N 10 K
(Z) =grzy =1 - 1 atz . 3.3.1.1-7
k=1

The spectrum for I(n,s,d,6), the inverse of V(n,s,d,9), can hence be

computed from

I(n,s,d,8) =1 - ) a(k)e ) 3.3.1.1-8
Since this sum has only 11 terms, it can be computed very compactly. Even
greater gains may be obtained if the FFT is used. Once I(n,s,d,f) is

known, V{(n,s,d,8) may be simply obtained from

v(n,s,d, 8) = 1/1(n,s,d,0). 3.3.1.1-9

3.3.1.2 The Computation of Objective Measures

In this study, six variations of the distance function for spectral
distance analysis, i.e. the function F in Equation 3.2-1, were studied.

The first, called the "linear unweighted'" spectral distance, is given by

41



L-1 1/p
F = y [V(n,s,6,8,) - V(n,s,d,ez)]P 3.3.1.2-1
i.e. the LP norm of the sample difference. 1In general, L=128 and

5 = E% =0,...,L-1 3.3.1.2-2

L

The second form, called the '"linear frequency weighted" form, is given by

L

. ] 1/p
E IV(D,S,(I),GK)'Y |V(H,S,¢,6£) - V(D,S,d,eﬂ)’p

F = T 3.3.1.2-3
L z ‘V(D,S,(b,ez)'Y

= J

In this form, the measure is weighted by the spectrum of the undistorted
spectrum taken to the y power. The third form, called the "log unweighted"

spectral distance is given by

1 V(n,5,0,0,) | |p 1/»

20 lOg10 v(n,s,d,0

) 3.3.1.2-4
e

o
1]
==
Il ~11

£=0

Here the constant 20 is used to produce results in db. The fourth form,

the "frequency weighted log" spectral distance measure is given by

i
FLgl . Vin,s,0,0) ) [p M7
|v(n,s,4,0,) 20 log ———
1 220 £ 10 V(m.s,d,eﬂ)

3.3.1.2-5
L-1

y IV(n,s,¢,6£)|Y

i 220 |
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The fifth form of the spectral distance measure, called the "unweighted § "

form is given by

[
-1 1/p
F = % }: |V(n,S,¢,8F)6 - V(n,S,d,8£)6|p 3'3'1'2_6
£=0 i

Finally, the '"frequency weighted §" form is given by

—~ 1/p
Ll § 5|
}: V(n’S’¢"a£)|Y V(n,S,¢,8£) - V(n,s,d,GK)
£=0
F = T - 3.3.1.2-7
2 |V(I‘1,S,¢,6£)‘Y
£=0 o

Implicit in the definitions of the spectral distances above are
three major questions. First, what nonlinearity should be applied to the
spectrums before computing the distances for best results? The three
candidates here are none (linear), log, and raising the spectrum to the §
power. This last form is an approximate bridge between the other two
forms. Second, should the spectrum be weighted by a function of the
undistorted spectrum, and, if so, by how much? The control parameter for
this case is Y. Finally, what value of p for the Lp norm should be used?

For this case, as p—>, the criterion approaches minimax.

3.3.2 Parametric Distance Measures

As in the case of spectral distance measures, the parametric
distance measures assume that the distorted and undistorted speech signal
has been divided into frames, given by X(n,s,¢) and X(n,s,d) where n is the

frame number, s is the speaker, d is the distortion, and ¢ indicates no
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distortion. For each parametric distance measure, a set of L parameters,
¢(n,s,d,£), £ =1,...,L, are derived from the corresponding speech frame
X(n,s,d). As in the case of spectral distance, a function F for use in

Equation 3.2-1 is derived for each case, given by

L 1/
Fo + ) le(n,s,d,¢) - E(n,s,d,£)|P ° 3.3.2-1
Loe1

where once again the Lp norm is taken. As before, p is an object of study
for each parametric distance measure.

All of the parametric distance measures studied were derivatives of
LPC analysis. There were eight basic measures considered in this study.
The first two were based on the feedback coefficients set, a(l)-a(l0),
which is described in Equation 3.3.1.1-2. The first form, the "linear

feedback'" measure is given by

R o | Up
F = E z |a(n,s,d,£) - a(n,s,d,¢)| 3.3.2-2

and second form, the "log feedback" measure is given by

1/p
10 P
(—l— ) a(n,s,d,0) 3.3.2-3

120 log
10,5 10| a(m,s,d,L)
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This second measure was not expected to be of much interest, but was
included for completeness.
The third and fourth measures were based on the PARCOR coeffic-

ients, K(m), as defined in Equation 3.3.1.1-3. These two measures are

given by
10 1/p
F = 1 E lK(n,s,d,K) - K(n,s,¢,£)lp
10 :
£=1
3.3.2-4
and
] 1/p
F = L %-0 20 ].Og K(n’S’dVC) p
].0 ,@:l ]'0 K(H,S,q),K) 3-3.2—5

where K(n,s,d,£) and K(n,s,¢,L) aré the £ th PARCOR coefficients derived
from the (n,s) frame of the distorted and undistorted speech sample,
respectively.

The fifth, sixth, and seventh measures were based on the area ratios

functions AR(n,s,d,f) given by

1 - K(n,s,d,£) -
1 + K(n,s,d,£) 3.3.2-6

AR(n,s,d )=

These measures are given by
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= -/

, 10 1/p
F=|75 Y |AR(n,s,$,£) - AR(n,s,d,2)|P 3.3.2-7

and
1/p
10
|1 AR(n,s,d,f) _
F=| 15 Kzl 20 loglO‘AR(n e K)‘ :] 3.3.2-8
and
10 1/p
F = ~fa 2 |AR(n,s,d,£)(5 - AR(n,s,¢,£)‘5|p 3.3.2-9
£=1

The final parametric measure of interest is called the '"energy
ratio" measure which was first suggested by Itakura [3.11], and has been
widely used as a quality measure [3.12],[3.13]. 1In this analysis, a frame
by frame LPC analysis is performed on both the undistorted and distorted
speech, as shown. Then undistorted speech is passed through two ''vocal

track inverse filters" given by

10
H(Z) =1- ) a(Dz
£=1

-£

10 )
H'(2) =1 -7 a'(Dz 3.3.2-10
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The energy out of each channel is squared and summed, given e2(n,s,¢) and

e2(n,s,d). The energy ratio is then given by

2
F =32_(_11’_92.Q 3.3.2-11
e (n,S’¢)
or
- e(n,s,d) 3.3.2-12
F=20 log10 e(n,s,¢)

It turns out that this measure can be computed more compactly than

is suggested by the above results. In particular, it can be shown that

T 1/2
e(n,s,d) _ A" (n,s,d) R(n,s,¢) A(n,s,d) 3.3.2-13
e(n,s,9) AT(n,sub) R(n,s,¢) A(n,s,$)
where
(R(0) R . : . R(9)
R(1) R(0) . . .  R(8)
R(2) R(1) R(Q) . . R(7)
R =
- ) ) 3.3.2-14
L_R(g) . . . . R(O)J
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Figure 3.3.2—1 Computation of the Residual Energy Distance Measure



and R(k) is defined by Equation 3.3.1.1-1 and
a(l) )

a(2)

>
n

3.3.2-15

L‘a(lO)

where a(k) is defined by Equation 3.3.1.1-2. The three forms of this
measure which were studied are given by Equations 3.3.2-11 and 3,3.2-12,

plus

e(n,s,d) 8
e(nasa(p)

3.3.2-16

The parametric distance measure study had three main goals. First,
to compare the various types of parameters for their ability to predict
subjective results. Second, to investigate the value of p for the L_ norms
which gives the best results. Finally, to investigate the nonlinearity
(none, 1log, or|.‘6 ) which is most appropriate for good prediction of

subjective results.

3.3.3 Simple Noise Measurements

For many years, the signal~to-noise ratio (SNR) has been used as a
quality measure for systems in which it is an applicable concept. In
digital communications, the signal plus noise model is meaningful in

systems where the received signal is designed to be a point by point copy
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of the input signal. These systems include all forms of waveform coders,
including CVSD, ADM, DPCM, ADPCM, and APC, as well as such new techniques
as sub-band coding and adaptive transform coding. These systems do not
include the vocoder and '"vocoder-like" systems such as LPC, VEV's of all
types, channel vocoders, etc.

In this study, two types of broadband noise measurements were
studied. The first was the traditional SNR. 1In this system (see Fig.
3.3.3-1) any linear or nonlinear phase variations introduced in processing
are first corrected. Since all of the distortions in the study were
produced by computer simulation, this process was a completely tractable
procedure. If real digital communications systems were to be tested, the
synchronization and nonlinear phase correction problem could be very
great. Once the phase corrected signals are available, the frame noise

energy, N{n,s,d) is computed as

1/2
1 ¥ 2
N(n,s,d) ={j— 2 [xn(m,s,d) - xn(m,s,¢)] —] 3.3.3-1

W
mnm= -

where xn(w,s,d) and xn(w,s,¢) are the windowed distorted signal and
undistorted signal, respectively, as defined by Equation 3.3.1-1, and W is
the window length. Note that the limits on m are really finite because of

the windowing process. In the same terms, the signal energy is defined as

m= —w

- - 1/2
SG(n,s) =[ﬂ%~ z (xn(m,s,¢))2_] 3.3.3-2
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and the traditional SNR can be defined as

1

N 2

Y (SG(n,s))
n=1

N

T (N(n,s,d))?

SNR = 0(d) = 10 log10 3.3.3-3

w
I~ 0~
i

w
jat
3
]
et

where 0(d) indicates this is an objective measure and the definitions of
terms is the same as in Section 3.2.

The second class of measures of interest were '"short time" or
"framed" noise measurements. In this measurement, a frame by frame signal-
to-noise ratio is computed, and then a global average is computed as usual

from Equation 3.2-1. 1In this measurement,

F = 20[log10 G(n,s,d)](S 3.3.3-4

where

o, :
log,, [1 + G (n,s,d)] = log, Ll + E%—(—“—Sﬁj 3.3.3-5
N (n,s,d)

and § is a parameter for study. These short time signal-to-noise ratios
have recently been shown to be more highly correlated with subjective

results than traditional SNR measurements [3.14],[3.15].
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3.4 Frequency Variant Objective Measures

One of the major hypotheses of the study was that, since it is well
known that the perception of sound in humans is a frequency variant
process, then frequency variant objective measures could be expected to
perform better as predictors of subjective results than objective measures
which are frequency invariant. One method of testing this hypothesis has
already been discussed in the section on simple spectral distance
measures. This was the technique of weighting the spectral distance
measure by a function of the spectrum of the undistorted speech (see
Equations 3.3.1.2-3 and 3.3.1.2-5). This section offers a different
approach to frequency weighting, an approach in which the frequency
weights are set so as to give maximum correlation between the objective
measures and the subjective measures.

The analysis technique can be described as follows. First, a
frequency sampled objective measure is defined. 1In this study, two such
measures, spectral distance and short time banded signal-to-noise, were
used. These two measures will be described in detail below. Let there be
B frequency bands in the analyses. Then for each distortion, B different
objective measures, Ob(d), where b is the band index and d is the distor-
tion index, are computed. In general, the subjective results for distor-

tion d may be estimated by a linear sum of the banded objective measures by

n B
S(d) = § C(b) 0, (d) + C(0) 3.4-1
b=1

where S(d) is the estimate of the subjective measure S$(d) and C(b) are a
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set of unknown constants. The error between the true subjective result and

the estimated subjective results is given by

E(d) = S(d) - S(d). 3.4-2

Now, if the C(b), b = 0,...,B are chosen to minimize the squared error,
then a maximum correlation between S(d) and S(d) is achieved. This minimi-

zation results in a set of equations

$C=p 3.4-3
where
™ c(0)
c(1)
E =
3.4-4
L C(B) _J
- -
) S(d)
d=1
D
I S(d) 0,(d)
d=1
p =
3.4-5
D
i S(d) oy(d)
— d=]- ——
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where ¢ (m,n), the (m,n) entry of the matrix ¢, is given by

D
¢(m,n) = dzl 0,(0_(d) 3.4-6

where D 1s the total number of distortions considered. Clearly, an optimal
set of values for C(b)'s may be obtained in this way for any set of
distortions in the data base.

Several points should be discussed here. First, the correlation
coefficients obtained between $(d) and S(d) after the C(b)'s have been
found must be considered a limit on the correlation obtained by weighted
frequency analysis. This, of course, is becatise the data itself is being
used to compute both the correlations and the weights. Second, since for
many of the distortions in the distorted data base the banded distortions
are highly correlated with one another, the results of this analysis cannot
be considered as a direct estimate of the underlying optimal physical
weights., This is the reason that a large subset of the distorted data base
is made of frequency banded distortions. Estimates based on this subset
would have more universal validity than those taken across the entire data
base. Finally, since the optimization of Equation 3.4-3 may be done
against any of the different parametric subjective results (see Chapter
2), these measures may be '"tuned" to predict specific parametric subjec-
tive results as well as isometric subjective results. Since many of the
parametric subjective results are frequency variant in nature, such tuning

should be very effective.
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3.4.1 Banded Spectral Distance Measures

One of the two types of frequency variant distance measures con-
sidered is the frequency banded spectral distance measure. From Section
3.3, recall that in frequency invariant measures, the frequency index,
0p = 1%’forﬁ =0,...,L. This is clearly a one band analysis. For a B
band analysis, the total frequency band (7 radians) is divided into B

sub-bands by

Y 8, _;L 8, L

= —= 3.4.1-1
L L w — T

where 8, is the upper band 1limit for bEE band. In this study, B was
normally equal to 6.

To measure the banded spectral distance measure, the values for
Ob(d) were computed by the same techniques as discussed in Section 3.3.1
but using the reduced bands given by Equation 3.4.l1-1, In this analysis,
two types of spectral normalizations were computed. First, the spectra,
v(n,s,d,0 ), were normalized to have an area of one across the entire band,
as before. Second, the spectra were normalized to have an area of one 1in
each individual band. Since this second method gives a better fit to the
overall spectrum, it was expected that it would give better correlation

results.

3.4.2 Banded Noise Measures

The frequency banded noise measures are the second class of fre-

quency variant measures considered in this study. Like all noise measures,
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these were only applied to the subset of the distorted data base for which
noise measures are meaningful.

The computation of the banded noise is illustrated in Fig. 3.4.2-1.
As can be seen, the noise is computed in the usual way and then the results
are filtered into (usually) 6 separate bands. If the banded time signal is

given by xb(m,s,d) and the windowed banded time signal is given by
xn’b(m,s,d) = Xb(m,s,d)W(m—nI) 3.4.2-1

where W(m) is the window function and I is the frame interval as before,
. th th
then the banded noise energy for the n— frame of the s— speaker of the

d-Eh distortion 1is given by
1 2' 1/2
N, (n,s,d) =| & Y (e p@s,d) = x4 (n,5,4)) 3.4.2-2

where, as before, the limit on m is really finite. The banded signal

energy, SGb(n,s), is given by

1 +oo 9 1/2
SG, (n,s) = = ) X, p(@s8,9) 3.4.2-3

m= -0

In this context then, the banded short time objective measure is computed
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from

, I
F, = -
b 20[10810 Gb(n,s,d))] 3.4.2-4
where
2
2 SGb(n,S)
10810[1 + Gb(n,S,d)] = loglo l + '2—"—_ 3.4.2"5
Nb(n,s,d)

as before. 1In these studies, § is a parameter for study.

3.5 The Composite Measures

The composite measures studied as part of this work were all taken
to be linear combinations of groups of simple measures or frequency variant
measures. The procedure in identifying and testing the composite measures
was as follows. First, choose a set of candidate objective measures which
have relatively high correlation with the subject results, and which are
judged to be measuring different objective quantities. This measure will
be designated Op(d), where this is the pEE measure of the distortiomn d.
Second, rank these measures according to their estimated correlation with
the subjective data base. Third, study all possible measures which are

sums of two objective measures, i.e.

0(d) =.g(1)-0pl (d) + g(2)0p2 (d) p ¥ P, 3.5-1
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where g(1) and g(2) are unknown constants. Using least squares analysis
(see section 3.4), choose the g(1) and g(2) for each combination which
produces the highest correlation with the subjective data base. Fourth,
study all measures which are combinations of 3,4,...,p objective measures
using least squares (maximum correlation) analysis. Finally, within each
group (1,2,...,p measures), rank the objective measures by their correla-
tion coefficients.

This analysis produces the optimal, in a least squares sense,
objective measure which can be constructed from the original p measures for
a 1 term, 2 term, 3 term,..., and p term composite linear objective
measures. This p term analysis can be thought of as a limit on the
correlation obtainable from these measures. At each level, the measure
with the highest correlation can be thought of as a limit on obtainable
correlation for that number of terms. The level to level improvement
supplies information as to the expected gain derivable from including
additional measures as part of the composite measures. Fially, the weight-
ing factors, g(k), form a vehicle for tuning these composite meassures to

effectively predict parametric subjective results.
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CHAPTER 4

THE DISTORTED DATA BASE

This chapter describes in detail the contents of the "distorted
data base." As was discussed in the introduction, the undistorted data
base consisted of four sets of twelve sentences, each set spoken by a
different speaker, and each of which was band limited to 3.2 kHz and
sampled to 12 bits resolution at 8 kHz. The total duration of the twelve
sentence sets were adjusted to be 49,152 sec., or 393216 time samples, for
each set. There were three male speakers, CH, LL, and RH, and one female
speaker, JS.

A total of 264 '"distortions" were identified and applied to the
undistorted data base (see Table 4~1). The distortions can be roughly
divided into two types: '"coding" distortions, which are simulations of
digital coding systems; and '"controlled" distortions, in which some
specific perceptually relevant distortion Is applied to the speech. All
distortions were applied digitally using the Georgia Tech Minicomputer
Based Digital Signal Processing Laboratory [4.1]. The 264 distortions are
subdivided into 44 types of distortions and, within each type, there are six
levels of distortion. The total length of the distorted sentences after
preparation for subjective testing was over 17 hours, excluding anchors
and probes.

Subjective testing was applied to the distorted data base using
eleven four speaker DAM's (see Chapter 2). Each DAM tested four types of
distortions for each of their six levels, giving 24 distortions per DAM,

The contents of the individual runs is given in Table 4-2.
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NO. OF
DTS TORTTORS DISTORTIONS

Coding Distortion

Adaptive PCM (APGM) 6
Adontive Differeatial PCy (ADPOM) é
mrad ¢
Adaptive Nelta Yodulator (ADM) 4
Adantive ¥redictive Toding (APC) g
T,in~ar Predictive Coding (LPC) )
Voice Excited Vocoder (VE™) 12
Adantive Transfors Toder (ATO) )
54
fontrolled NDistortions
Additive jfoise 4
T.ow Pass Filter 6
Hielh Pass Filter O
Band Pass Filter f
Interruption 12
Clipping 3
“enter Clipping 5
Ouantization 5
%eho 6
60
Frequency Variant Controlled Distortions
Additive “olored Moise 36
Randed Pole Distortion 78
Banded Frequency Distortion 36
150
TOTAL 264

Table 4-1. TOTAL SET OF DISTORTIONS
IN THE DISTORTED DATA BASE.
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CONTENTS OF TUE TNDITIDUFAL DA BUNMS

Run Number ])'i_stort ion
1 Additive noise (")
Low pass filter (A)
High pass filter (A)
Band pass filter (/)
2 Interrupted GA
Clipping (%)
Center clipping ()
3 Colored noise (240
4 Colored noise (12
APCM (a)
ADPCH {s)
5 Banded freq. dist. (24)
6 Randed freq. dist. (n)
Randed pole dist. (18)
7 Banded freq. dist. (5)
Banded pole dist. (18)
& Banded pole dist. (24)
a panderd pole dist. {18)
Echo ()
10 AnM (+)
CVSh (A
APC (¢)
Nuantization (")
i1 LPC (a)
YEV (12)
ATC {5)

Table 4-2. Contents of the Individual DAM Puns.
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The remainder of this chapter will be devoted to describing the

individual distortions.

4.1 The Coding Distortions

In all, there were nine types of coding distortions used in this
study, resulting in a total set of 60 distortions. In all cases, the
coding distortions were simulated and were designed to be zero phase if
possible. They were always at least designed so that the distorted speech

would have frame by frame synchronization with the undistorted speech.

4.1.1 Simple Waveform Coders

In this study, there were four systems which were classed as
"simple" waveform coders: Continuously Variable Slope Delta Modulator
(CVSD): Jayant's [4.1] Adaptive Delta Modulator (ADM); Adaptive Pulse Code
Modulation (APCM); and Adaptive Differential Pulse Code Modulation
(ADPCM). All of these systems can be thought of as special cases of the
general adaptive waveform coding system illustrated in Fig. 4.1.1-1. 1In
all cases, the interpolater, where used, was implemented using zero phase
FIR interpolation filters implemented with FFT techniques, as was the
decimation. The '"channel simulation'" shown in these systems was always
only capable of introducing random bit errors at fixed rates and simulated

no other characteristic of a real channel.

4.1.1.1 CvsD
The CVSD is a delta modulator, so that the quantizer is always a two
level quantizer and the coder is a one bit coder. The main feature of the

CvSD is in the way it computes 6(n) (see Figure 4.1.1-1). Sinceé& (n) is

the output of a one bit quantizer, it may be thought of as a series of + 1's.
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§ (n) is computed as

§(n) = gs(n~1) + A (n) 4.1.1.1-1

where A(n) is equal to one of two constants depending on whether all of the

last three values of £(n) were equal to one another or not. So

A if last 3 &(n) equal
A(n) = R 4.1.1.1-2
B if last 3 &(n) not equal

B is known as the "minimum step size" for CVSD. The corresponding maximum
; . . 1
step size is given by (T:E)A°
CvSD is hence characterized by five features: the input speech
sampling rate; the value of the predictor parameter, o; the value of the
"step integrator" parameter, B; the value of the minimum step size, B; and
the value of A. A is usually not given, but is rather represented as an

"expansion ratio," which is the maximum step size divided by the minimum

. .. 1 A
step size, giving (T:E) 3

In terms of its basic parameters, the CVSD systems used in this

study are summarized in Table 4.1.1.1-1.

4.1.1.2 ADM

The adaptive delta modulator used in this study was essentially
suggested by Jayant [4.2]. Like CVSD, the ADM is a delta modulator, so the
different data rates are controlled by the interpolation process, the
quantizer is a one bit quantizer, and the coder is a one bit coder. For

this delta modulator,

§(n) =4 (n)s(n-1) 4,1.1.2-1
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AP WN -

Predictor
Constant

(a)

.86
.9696
.98
.99
.995

Step Size
Integration

(8)

.9922
.9922
.9922
.9922
.9922

Table 4.1.1.1-1.

Minimum
Step Size
(B)

10
10
10
10
10

Expansion
Ratio

166
166
166
156
166

Parameters for CVSD.

69

Bit
Rate

8 KBPS
12 KBPS
16 KBPS
24 KBPS
32 KBPS
original



where A (n) takes on one of two values: "A" where & (n) and &(n-1) are
equal; and "B" when they are not. In general, A is greater than one and B

is less than one. TFor this study,

A=1/B 4,1.1.2-2

The ADM is hence characterized by only three parameters: the input
speech sampling rate; the value of the predictor parameters, @; and the
value of the quantizer control parameter, A. In terms of these parameters,

the ADM distortions used in this study are summarized in Table 4.1.1.2-1.

4.1.1.3 APCM

APCM has three main characteristics: first, it uses a multilevel
quantizer; second, it operates at the Nyquist rate, and hence the inter-
polation and decimation filters are not used; and third, it has no predic-

tion loop, i.e., a = 0. The quantizer control sequence, for this study,

was controlled exponentially from

Z (n) =g6(n-1) + (1-8)|E(n)| 4.1.1.3-1

This can be thought of as an exponentially integrated estimation of the
energy in the quantized error signal, &(n). From this,

4

§(n) = Z(n) 4.1.1.3-2

IR

where Q is a control parameter and N is the number of levels in the
quantizer. This realization is, therefore, completely controlled by three

parameters: the quantizer integration factor, Bj; the quantizer
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SN PN

Predictor
Constant

(o)

.86
.90
.96
.98
.99

Table 4.1.1.2-1.

Single Bit
Multiplier
(4)

1.1

1.06
1.03
1.03
1.03

Bit
Rate

8 KBPS
12 KBPS
16 KBPS
24 KBPS
32 KBPS
original

Parameters for Adaptive Delta Modulator (ADM)
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multiplier, Q; and the number of levels, N. In terms of these parameters,

the APCM distortioms used im this study are given in Table 4.1.1.3-1.

4,1.1.4 ADPCM

The ADPCM used in this study was exactly the same as the APCM
previously described except the value of g was not zero. The operation of
this system is hence characterized by four parameters: the quantizer
integration factor, g; the quantizer multiplier, Q; the number of quanti-
zer levels, N; and the feedback parameter, o. In terms of these
parameters, Table 4,1.1.4-1 describes the ADPCM distortions used in this

study.

4,1.2 The LPC Vocoder

The operation of the LPC vocoder used in this study is illustrated
in Figure 4,1.2-1., This procedure is a framed analysis and is character-
ized by a frame interval, I. At each frame interval the input speech,

x(m,s,d), is windowed, as before, to give

Xn(m,s,d) = x(m,s,d)W(m—nI) 4.1.2-1
where W(m) is a window function of length W, n is the frame number, m is the
time index, s is the speaker, and d is the distortiomn. For this study, a

Hamming window was used. From this, a set of autocorrelation functioms is

estimated from

R(k) = ) Xn(m,s,d)xn(m-k,s,d) 4,1.2-2
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Nuantizer
Integration

(g)

a2
.92
.92
.92
.92
f .02

VLR WON

Table 4.1.1.3-1.

Quantizer
Multiplier

()

— P et ek pmd

Parameter for Adaptive

73

* of it
Tevels Pate
0 (PR}
3 12674

5 15575
7 22487

i 25359

11 2767
13 24A/03

Pulse Code todulation (APCT),



) N

I~
-

CNY Ot

Dredictor Nuantizer Quantizer # of Bit
Tonstant Integration Multiplier Levels Rate
(o ) ) (nP3)

.9 .02 1 3 12679

o .92 1 5 18575

.0 .92 1 7 22458

.2 .92 1 a 25350

.9 .92 1 11 27675

It .02 1 13 28603

Tabhle 4.1.1.4-1.

Parameter for Adaptive Differential

Pulse Code Modulation (ANPCM),
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Using the well known Durbin's recursion (see 3.3.1.1) a set of feedback

coefficients, a(l)...a(10), a set of PARCOR coefficients, K(1)...K(10),

and a gain, given by
10

¢ = [R(O) - ) a(kR(K)]
k=1

1/2 4.1.2-3

is computed.
The set of PARCOR coefficients are am equivalent set of parameters

to the feedback coefficients which may be interchanged by the recursions

al(1) = -(1)

a"(k) = a™ (k) + K(n)a™ L(n-k) 4.1.2-4
a"(k) = -K(n) k= 1,2,...,n-1

and

bN(k) = -a(k)

R(N) = b (N)

K(n) = b"(n)

n—-1 n-1 n-1 9

b(k) = (b(k)=K(n)b(n=k))/1-K*(n)  k=1,...n-1 4.1.2-5

Since the spectral sensitivity to quantization errors increases when the
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PARCOR coefficients have values close to +1, the inverse sine transform of
the parameters is used [4.3].

The pitch detector used is a form of '"Homomorphic" or Cepstrum"
pitch detector [4.4], [4.5]. The pitch and voicing output from the pitch
detector is multiplexed in with the vocal tract information for transmis-
sion.

There are four parameters which characterize the LPC vocoder dis-
tortion., They are the window length, W; the number of bits per frame for
the PARCOR coefficients; the frame interval, I; and the pitch and gain
bits. The LPC distortions used in this study are described in terms of

these parameters in Table 4.1.2-1.

4.1.3 The Adaptive Predictive Coder (APC)

The operation of the APC used in this study is illustrated in Figure
4.1.3-1. 1In this system, the first step is that a framed LPC analyzer is
applied to the input speech waveform. The LPC analyzer is the same as that
described in section 4.1.2, and produces a vector of feedback coefficient,
a(k) for k = 1,...,10. This information is coded to some fixed bit rate
using "inverse sine" PARCOR quantization [4.3] and then used to control a
time varying prediction filter with the Z transform

10
P(z) =1 -3 a()z® 4.1.3-1

k=1
The {a(k)} coefficients are also transmitted to the receiver. The adaptive
predictor, inside the prediction loop, is then used to estimate the input
sequence x(m). The error signal, e(n), between the input sequences and the

output of the predictor is then quantized by an adaptive quantizer
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S TR

-

=~

Ot

simlow Bits/ Pitch Frame Bit

Tenoth Frame & Gain Interval Pate
(msec) vocal tract) (nsec) (rP3)
30 unquantized 7 15 -=

0 5% 7 15 4333
30 48 7 15 3665
2 35 7 15 3000
3 29 7 15 2400
30 20 7 15 1800

Table 4.1.2-1. Parameters for the LPC Vocoder.
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consisting of a AGC followed by a fixed quantizer. In this simulation § (n)

was taken to be the '"look ahead" frame energy average, given by

+W R 1/2
LX) (ms,d)
m:oo

§(n) = g% 4,1.3-2

1
W
where W is the window length, Q is a quantizer control parameter, and N is
the number of levels in the uniform quantizer.

The total operation of this APC is then characterized by five
factors: the number of levels in the quantizer N; the frame rate; the
window length; the number of bits per frame in the predictor coding; and
the quantizer control factor, Q. 1In terms of these parameters,rthe APC

distortion used for this study is given in Table 4.1.3-1.

4.1.4 The Voice Excited Vocoder (VEV)

The voice excited vocoder used in this study is illustrated in
Figure 4.1.4-1. 1Its operation is essentially similar to the APC described
in section 4.1.3 except for the following features. Instead of sending the
entire residual signal, £(n), a low passed version of this signal is sent.
There is some data rate compression gained by coding and down sampling this
low passed signal to the Nyquist rate appropriate to its bandwidth. At the
receiver, the excitation function is recreated by using the base band,
where appropriate, and using a full wave rectification and LPC flattening
to regenerate the higher frequency.

The VEV vocoder simulated here is characterized by five parameters:
the frame interval, I; the window length, W; the ADPCM transmission rate;
the voice band bandwidth; and the vocal tract parameter bit rate. Table
4.1.4-1 described the VEV distortions used in this study as a function of

these parameters.
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NN~

Window
Length

30
30
30
30
30
30

Table 4.1.3~-1.

Bits/
Frame

unquantized
58
48
38
26

20

Level
()

W Ww W w

Frame
Interval

15
15
15
15
15
15

Bit
Rate
(RPS)

15847
15200
145373
13933
13333

Parameters for the Adaptive Predictive Coder (APC),
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WS W N

FRAME,
TNTERVAL
(1)

(msec)

15
15
15
15
L5
15
15
15
15
13
15
15

Table 4.1.4~1.

WINDOW
LENGTH
(vr)

{msec)

39
30
30
30
30
30
30
30
30
30
30
39

ADPCH
PATE
{RP3)

5615
5615
5615
55615
5615
5615
7400
7400
7400
7450
7400
7400

VOICE
DAY

(7))

1200
1000
1600
1000
1000
1000
1000
1900
1000
1023
1990
1000

NCAT,
TRACT

DATA

3867
2200
2533
1233
1333
JOo0
38607
3200
2533
1933
1233
1000

Parameters for the Voice Txcited Yocoder (VEV),



4.1.5 Adaptive Transform Coding (ATC)

Adaptive transform coding is a relatively new coding technique as
applied to speed [4.6], [4.7], and one that has been shown to have great
promise. In this study, it was not desired to produce high quality ATC
speech, because that was still a subject of research at the time these
distortions were chosen. Rather it was to include in the data base a
distortion which was qualitatively '"1ike' that produced by ATC.

The ATC coding system used in this study is illustrated in Figure
4,1.5-1. First, the speech is windowed to 256 samples using a rectangular
window and a frame interval of 256 points also. Each windowed speech
sample is then both transformed using the DCT and analyzed using LPC

analysis. An approximate spectrum is computed from the LPC analyzer from

1

V(8,) 10

_ ~iké
! kzla(k)e ¢ 4,1.5-1

and then the levels are allocated at spectral sample QK, 0<{<255, by

levels (eﬂ) = (TOTAL LEVELS) - v(ez) 4.1.5-2
255

(recall that Y V(@Z) = 1), where if B is the total bits allocated, then
£=0

TOTAL LEVELS = 2° 4.1.5-3

The individual quantizers are uniform with a range, r({£) given by

—GV(@E) < r(f) < GV(@K) 4,1.5-2
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where G, the gain, is given by equation 4.1.2-3.

The operation of this transform coder 1is characterized by 4
parameters: The frame interval and window length, which must be the same;
the order of the LPC; the LPC vocal tract parameter bits per frame; and
the transform coder bits per frame, B. The distortions used in this ATC

system are summarized in terms of these parameters in Table 4.1.5-1.

4.2 The Controlled Distortions

A large portion of distortions used in this study were not explicit
coding distortions, but were '"controlled" distortions. These distortions
were included for one of two reasons. Either they were considered to be
examples of specific types of subjectively relevant distortions, or they
were considerd to be ome type of which occurs in coding distortion, but
which does not occur in isolation.

A large portion of the controlled distortions are frequency variant
distortions. These distortions are included for two reasons: first, they
offer a measure of the subjective importance of different types of distor-
tions when applied in different bands; and, second, they offer an environ-
.ment in which the frequency variant objective measures will be relatively

uncorrelated from band to band.

4.2.1 Simple Controlled Distortions

In this section, each of the non-frequency variant comtrolled dis-

tortions will be discussed separately.

4.2.1.1 Additive Noise

In the additive noise distortions, white Gaussian noise was added

to each sample of the undistorted signal, i.e.,
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LPC Trans Bit

Window Length LPC Bits/ Bits/ Rate

Frame Interval Order Frame Frame (BPS)
256 10 4,333 15,667 20,000
256 10 3,666 12,334 16,000
256 10 3,000 9,000 12,000
256 10 2,400 8,600 11,000
256 10 1,800 7,800 9,600
256 10 1,500 6,500 8,000

Table 4.1.5-1. PARAMETERS FOR THE ADAPTIVE TRANSFORM CODER



x(m,s,d) = x(m,s,4) + A-n(m) 4,2.1.1-1

where n(m) is a zero mean unit variance white noise sequence, and A is a
multipicative constant. This distortion is well characterized by its

signal~to-noise ratio (SNR) as shown in Table 4.2.1.1-1.

4.2.1.2 Filtering Distortions

There were three filtering distortions included: 1low pass filter-
ing; high pass filtering; and band pass filtering. The filters were
implemented digitally using recursive eliptical filters, i.e.,

K K
x(m,s,d) = ) b(kK)x(m-k,s,p) + } a(k)x(m-k,s,d) 4.2.1.2-1
k=0 k=1
where K 1s the order of the eliptical filters. Table 4.2.1,2-1 gives the

orders of the filters used along with the band limits for each distortion.

4,2.1.3 Interruptions

The interruption distortion was characterized by two numbers: a
"keep' number, KP, and a "discard" number, DR. The interrupt distortion
operated on frames of length KP + DR. Within in frame, the first KP
samples were undisturbed, while the last DP were set to zero. Table

4.2.1.3 summarizes the interrupt distortions in this study.

4.2.1.4 Clipping

The clipping distortion is a nonlinear distortion given by

CL | x(m,s,6)|2CL
x(m,s,d) = 4.2.1.4-1
x(m, s,0) | x(m,s,6)|<CL
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Signal~-to-Moise Ratio(D3)

1 30
2 24
3 13
4 12
5 fH
6 0

Table 4,2,1.1-~1, THE ADDITIVE MOISF DISTORTTOMN
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J.ow Pass Filters

drder Rand Limit{112)
i 8 400
2 © SC0
3 7 1,300
4 7 1,900
3 7 2,600
f 5 3,400

"iph Pass Filters

Drder Rand Limit
] 4 0
2 O 400
3 7 3090
A 7 1,300
7 1,000

™
~31

2,600

Rand Pass Filter

Drder Lower RBand Limit Upper Band Limit
! 4 O 400
2 2 400 300
3 5 300 1,300
4 e 1,300 1,900
g a 1,900 2,600
o 1 2,600 3,400

Ta®le 4.2.1.2-1. FILTER CHARACTERTSTICS FOR RECURSIVE
FILTERS USEND FOR FILTER DISTORTION
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(R T N ]

O W ~N O

10
11
12

P

¥eep Counstant

nr

Discard Constant

100 10
300 25
300 50
300 75
300 110
300 150
1,024 16
1,024 32
1,024 64
1,024 123
1,024 256
1,024 512

Table 4.2.1.3-1 YKEEPY AND "DROP' COMSTANTS

FOR TNTERRUPT DTSTORTION
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where the constant CL is called the clipping constant. The constant must

1

be compared to the "maximum average energy," MAE, for an utterance, given

by

MAE = MAYX[E(m) ] 4,2,1.4-2

where E(m) is given by

E(m) = (1-a)E(m-1)+ a x(m,s,9) 4.2.1.4-3

where ¢ is an exponential integration constant set to have a window length
~ 30 msec. For all the input sentences, the MAE was set to be .122 on a
scale -1 <x(m,s,d)<1. 1In these terms, the clipping constants for the

clipping distortions are shown in Table 4.2.1.4-1.

4.2.1.5 Center Clipping

The center clipping distortion is a non-linear distortion given by
x(m, %, ¢) lX(m,S, ¢)|->—CN
x(m,p,d) = ' 4.,2,1.5-1
0

| x(m,s,¢)|<CN

where CN 1s the '"center clipping constant.'" Table 4.2.1.5-1 gives the

parameters for the distortion on the same scale as for clipping.
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Cliprning Constant

1 152
2 .07A
3 .038
4 .0305
5 .0153
5 0076
Table 4,2.1.4~1 CLIPPING CONSTANTS TOR

CLIPPING DISTORTION

Center Clipping

Constant
1 .0019
2 0038
3 L0076
4 019
p .038
6 0746

Table 4.,2.1.5-1 CENTER CLIPPING CONSTANT FOR
CENTER CLIPPING DISTORTION
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4.2.1.6 Quantization Distortion

The quantization distortion is just a PCM system which is non-
adaptive and which uses relatively coarse quantization. The quantizers
used were always chosen to be linear and to cover a range of twice the
maximum energy (see 4.2.1.4). The quantization distortion is described in
terms of the number of levels in the quantizer and the associated bit rate

in Table 4.2.1.6-1.

4.,2,1.7 Echo Distortion

The Echo distortion was implemented by

[x(m,s, ¢)+x(m-EC,s, ¢)] 4.2.1,7

x(m,s,d) =%

This is clearly not the only way to implement an echo, but the result is
very clearly a subjective echo, The distortion is entirely characterized

by the "echo delay," EC, and is described in Table 4.2.1.7-1,

4,2.2 Frequency Variant Controlled Distortions

This study included a total of three types of frequency variant
controlled distortion. The first, the "additive colored noise,'" was
designed to approximate waveform coder distortions in a frequency variant

way. The second, called "pole distortion,"

was to approximate vocal tract
modeling distortions in vocoders and APC's in a frequency variant way.
Finally, the "banded waveform distortion'" was designed to approximate the

distortions found in ATC and adaptive subband coders in a frequency variant

way.
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Number of Levels

in Quantizer Rit Rate
1 64 48,Nn00
2 48 44,6707
3 32 40,000
4 24 36,570.7
5 16 32,000
6 12 28,5679.7

Table 4.2.1.6-1. QUANTIZATTON DISTORTION PARAMRTFRS

Echo Constant

1 10
2 50
3 100
4 200
5 500
A 1,000

Table 4.2.1.7-1. FCHO CONSTANT TOR
THE ECHO NISTORTIONM
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4.2.2.1 Additive Colored Noise

The additive colored noise system is 1illustrated in Figure
4.2.2.1-1. Vhite Gaussian noise is first bandpass filtered into six bands
giving an output signal Nb(m), where b is the band number and m is the time
index. Then the banded noise is added to the input speech using a noise

constant, NC, giving

x(m,s,d) = x(m,s,p )+NC Nb(m) 4,2.2.1-1

The bandpass filters were all eliptical with a unity gain in the passband
(see 4.2.1.2). Table 4.2.2.1-1 gives a summary of the additive colored

noise distortions.

4.2.2.2 The Pole Distortion

Figure 4.2.2.2-1 illustrates the implementation of the "pole dis-
tortion." The speech is first pre-emphasized using a second order filter,
and a framed LPC analysis is performed. The results of the LPC analysis is
then used to inverse filter the original speech, giving an approximation of
the glottal wave excitation [4.8].

The poles of the vocal tract functions are then found by factoring
the LPC polynomial. Then the pole distortion is applied by first identify-
ing all the poles within a fixed frequency range, and then moving them
slightly in both frequency and bandwidth. This "jittering" of the poles is
controlled by two uniform random number generators. The "frequency
range," FR, factor gives the range of frequency, in Hertz, in which the
poles are allowed to move. The "bandwidth factor', BF, is a multiplicative

factor controlling the bandwidth motion by
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Noise Constants

Bandpass

Filter 1 2 3 4 5 6
0-400 HZ .305 .152 .076 .038 .019 .009
400-800 HZ .305 .152 .076 .038 .019 .009
800-1300 HZ .305 .152 .076 .038 .019 .009
1300-1900 HZ .305 .152 .076 .038 .019 .009
1900-2600 HZ .305 .142 .076 .038 .019 .009
2600-3400 HZ .305 .152 .076 .038 .019 .009

Table 4.2.2.1-1. COLORED NOISE DISTORTIONS
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distorted radius = (undistorted radius)(1+BF-r) 4,2.2.2-1

where r is a uniform random variable which ranges between plus one and
minus one.

Once the pole locations are distorted, they are recombined to form a
new set of LPC coefficients, a'(k). These coefficients are used to imple-
ment a new vocal tract filter to create the distorted speech.

The pole distortions (PD) are summarized in Table 4.2.2.2-1.

4.2.2.3 The Banded Frequency Distortion

The operation of the banded frequency distortion is illustrated in
Figure 4.2.2.3-1. The speech is first windowed using overlapping Hamming
windows, where the window length is twice the frame interval, and the frame
interval is 128 points. The speech is then transformed using a 256 point
FFT. In the frequency domain, noise is then added to the samples in bands.
The noise is added with a random magnitude but with a phase equal to the
phase of the original speech. Then the samples are inverse transformed
back into the time domain and recombined using overlapped adds.

The parameters controlling the banded frequency distortion are the
band limits and the standard deviation of the added noise, which is white
and Gaussian. Table 4,2.2.3-1 summarizes the banded distortions used in

this study.
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Pole Distortion
Frequency Nistortion

Frequency Range (47)

Distortion

Band (HZ 1

200-400 20
400-300 20
300-1300 50
1300-1900 50
1900-2600 100
2600-3400 150

Distortion

Band 1

0-400 .025
400-800 .025
800-1300 .025
1300-1900 .025
1906-2600 .025
2600-3400 .N25

Table 4.2.2.2-1.

2 3
40 60
40 &0
20 130
20 130
150 200
200 250

Bandwidth Distortion

2 3
.05 .075
.05 .075
.05 075
.05 .075
.05 .075
.05 .075

POLE DISTORTION COMTROI, PARAMETERS
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3anded Distortion

Rand Standard Neviation
Limits of Moise

1 2 3 4 5 &
0-400 .1 2 N .6 2 i
400-800 .5 8 1.1 1.4 1.7 2.0
300-1300 2.0 2.2 2.4 2.4 2.3 3.0
1300~-1900 2.0 2.2 2.4 2.6 2.3 3.0
1900-2500 3.5 4.0 4.5 5.0 5.5 6.0
2500-3400 10. 13. 16, 19. 22. 25,

Table 4.2.2.3-1. CONTPOL PARAMETERS FOR BRANDED MOISE DISTORTION
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4.5.

4.6,

4.8.
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CHAPTER 5

EFFECTS OF SELECTED FORMS OF DEGRADATION ON SPEECH

ACCEPTABILITY AND ITS PERCEPTUAL CORRELATES

The primary purpose of this phase of the project was to provide
criterion measures for evaluating the predictive potential of the various
physical voice measures presently under consideration. For this purpose
it was essential that representatives of widely diverse forms of degrada-
tion be included among the conditions evaluated. Among the forms con-
sidered are those inherent in the simplest types of analog speech trans-
mission as well as those associated with the most elegant digital voice
coding and transmission techniques in use today. Only with such diversity
could any assurance be had that observed correlations between specific
physical voice measurements and various subjective criteria will obtain
for more than a narrow class of distortions.

A second purpose to be served by this phase of the project was the
cross validation of the DAM itself. Since the DAM was developed as the
result of a comprehensive examination of the effects of representative
types of degradation (including many of those treated in the present
investigation) on various subjective criteria of acceptability, the
results of the present investigation permit a rigorous test and possible
refinement of DAM administration and scoring procedures.

Finally, depending on the configurations of DAM scores produced byr
various novel forms of degradation, some insights may be gained which
permit improvements in current technology of acceptability prediction from
physical voice measurements. Conceivably, novel techniques may also be
suggested by these results in combination with results bearing on the
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efficiency of specific prediction techniques for specific classes of
degradation.
All of the above purposes are given consideration as appropriate in

the course of discussing the results presented in the following sections.

5.A Methods and Materials

5.A.A Listening Crews

Professional listening crews (young adults of both sexes) of eight
to ten members participated in all evaluation sessions conducted under the
project. On the basis of a retrospective criterion of self-consistency
within each testing session, one or more members were eliminataed such that
the data for the eight most self-consistent members were retained for

analysis.

5.A.B Speakers

Four speakers, three males and one female, were used for all evalua-
tions. The ordering of experimental system-conditions varied from one
speaker to the next in a systematic manner designed to minimize time-order
effects on the data for any system-condition. Twenty-four system-—
conditions, two anchors and four probes were evaluated in each testing
session. The anchors and probes were always presented at the beginning of
each series of system—conditions involving a given speaker. The ordering
of anchors and probes was randomly determined in each instance. Whenever
possible, several distinct types of degradation were represented in a
given session. System-conditions were effectively randomly ordered within
a session for one speaker, and then systematically reordered for the
remaining speakers to provide some amount of counterbalancing and, thus,

to soften the effects of any inter-condition influences.
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5.8 Experimental Results

Presented in the following sections are DAM score patterns for the
various forms of degradation. For each class of degradation the diagnostic
patterns are presented in separate sub-figures for male (average of three)
and female speakers. Except where pronounced sex differences are evident,
the discussion will be addressed primarily to the results for the male
speakers. Primary interest in these figures attaches to the Composite

Acceptability score (C-A) and the parametric score for acceptability,

(P-A), intelligibility (P-I), and pleasantness (P-P). Although it is one

of the components of C-A, the isometric acceptability score (I-A) is not
included in the graphic portrayals. The reason for this is that it has a
virtually perfect correlation (.994) with the average of the parametric
intelligibility and parametric pleasantness scores. Of considerable but

secondary interest are the 'diagnostic patterns'" of perceptual qualit
y F P 9 J

scores, Depending on the form of degradation involved, diagnostic score
patterns for experimental systems may provide insights of substantial
value for purposes of remedial action. Here, they serve primarily to
enhance our basic knowledge of the perceptual affective consequences of
speech degradation and to reveal further useful features of the DAM,

Two administrations of the DAM, separated by intervals of four to
six weeks, were performed for all the system-conditions except those
involving pole distortions and band distortions. With the exception of
these later cases, all results presented in the following sections are thus

averages based on response data from two administrations.

5.1 Degradation by Coding

Treated in this section are cases of distortion which are intrinsic
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to various speech coding techniques and, in a sense, reflect the inade-
quacies of such techniques. 1In one category are various broadband wave
form-preserving techniques in which a major source of degradation is quan-
tization of the speech signal. 1In the second category are various, more

complex predictive coders.

5.1.1 Simple wave-form coders

The wave~-form coders treated in this investigation are CVSD, ADM,

APCM, and ADPCM which are described in section 4.1.1.

5.1.1.1 Effects of continuously variable-slope delta modulation (CVSD)

on DAM scores

Five realizations of CVSD technique, which differed only with
respect to data rate, were treated in this investigation. A control
condition involving essentially unprocessed speech was included within the
same DAM testing session. The DAM results are presented in Fig. 5.1.1.1.
In all major respects they are typical of previous DAM results for CVS3D
[5.1]. Except in the case of the lowest data rate, background quality is
negligibly affected by CVSD. Listeners evidently do not confuse quantiza-
tion ''moise" with true noise. Rather, they correctly perceive it as
distortion: the SD scale of the DAM is the most sensitive of the percep-
tual quality measures. The present results differ somewhat from those of
previous studies in that they show consistent, though not pronounced
reductions in scores on the SH, SL and SN scales as data rate is reduced.
Such results are most typical of conditions involving audio pass—-band

restriction and may, therefore, have a rational basis in the present case.
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For reasons that are not immediately obvious, scores for the
control case and for the case of 32K bps CVSD are generally somewhat lower
than those previously obtained for nominally comparable conditions, though
scores for the 16K bps case are very close to historical norms for this

condition.

5.1.1.2 Effects of adaptive delta modulation (ADM) on DAM scores

Figure 5.1.1.2 presents DAM results for the case of adaptive delta
modulation. Predictably, perhaps, they are quite similar to those for CVSD
at most corresponding data rates. An exception is the case of ADM at 8K
bps where a severely depressed score on the SI (signal interrupted) scale
can be observed. It is quite possible that this result can be attributed
to an experimental artifact, but further investigétion will be needed to
resolve this 1issue. This 1s not of great interest since no one has

seriously suggested using such a coding procedure at this rate.

5.1.1.3 Effects of adaptive pulse code modulation (APCM) on DAM scores

Figure 5.1.1.3 presents DAM results for the case of adaptive pulse
code modulation techniques. As in the two previous cases the subjective
consequences of this type of coding are confined almost exclusively to
signal quality. Here their general form is quite similar to those for the
cases of CVSD and ADM but for a small, though consistent, depression of
scores on the SI scale. However, the general level of scores for APCM is

substantially lower than for CVSD and ADM.

5.1.1.4 Effects of adaptive differential pulse (ADPCM) code modulation

on DAM scores

Figure 5.1.1.4 shows DAM scores for adaptive differential pulse

code modulation. The results for this condition are quite similar to those
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for APCM. It would appear that adaptive differential pulse code modulation
does not significantly improve acceptability over APCM at comparable
degrees of quantization, but may, however, at comparable transmission data
rates with optimal channel coding. Qualitatively, ADPCM would appear to

sound somewhat less distorted but more interrupted than APCM.

5.1.2 The effects of linear predictive coding on DAM scores

The linear predictive coder used in this investigation is described
in Section 4.1.2. Figure 5.1.2 shows that the present realization of LPC
in the range of 2-2.9K bps yields DAM score patterns and overall levels
very similar to those of the normative 2.4K bps LPC as reported by Voiers
[5.1]. Normative DAM results for the higher data rates are not available
for systems without error correction, so that comparisons are not possible
for the higher data rates. However, the present results indicate that
increasing the data rate to 3.9K bps significantly improves the quality of
LPC-processed speech, though further increases do not appear to be bene-
ficial. On the other hand, it appears that digitization at high data rates
does not significantly impair quality obtained with analog LPC techniques.

(LPC/Orig. in Figure 5.1.2)

5.1.3 The effects of adaptive predictive coding on DAM scores

Figure 5.1.3 shows the effects of APC on DAM scores. The parameter
in these graphs is bits/frame which is associated with data rates of from
13333 to 15867 bps.

Perceptual quality score patterns for APC are quite similar to
those for LPC. Though score levels are generally somewhat higher for APC,
this superiority is evidently achieved only at enormous cost in trans-

mission data rate. Listeners perceive significant amounts of signal and
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background "flutter" (SI scale) and raspiness (SD scale).

5.1.4 Effects of voice-excited vocoding (VEV) on DAM scores

The voice excited vocoding technique, described in Section 4.1.4 is
essentially a modification of the APC technique treated above. Two reali-
zations of VEV were examined here. In the first (Fig. 5.1.4.1) the voice
band had seven level quantization; in the second (Fig. 5.1.4.2), thirteen
level quantization. The parameter in each case is PARCOR frame rate.
Differences between the subjective effects of these two techniques are
very small. Listeners possibly perceive a slightly greater degree of
signal and background flutter with coarser quantization in the case of male
speakers, but this trend is absent in the case of the female speaker.
Generally, more background flutter is perceived in the case of VEV than in

the case of APC.

5.2 Controlled Degradation

Treated in this section are various basic types of speech degrada-
tion, one or several of which may be encountered in most speech-communica-
tion situations. They are distinguished from the coding distortions dealt
with in Section 4.1 by the fact that they are generally not deliberately
introduced but occur rather as by products of various coding techniques or

channel characteristics.

5.2.1 Simple forms of controlled degradation

Seven of the commonly encountered forms of degradation are dealt
with in the following sections. They include broad band-limited Gaussian
noise, frequency passband restriction, interruption, peak and center clip-

ping, coarse quantization and echo.
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5.2.1.1 Effects of additive broad-band noise on DAM scores

Noise is the most umbiquitous of all deterrents to efficient
communications. Accordingly, its effects on DAM scores merit special
consideration,

Figure 5.2.1.1 shows DAM diagnostic profiles for six conditions of
S/N ratio (4K Hz passband for the speech and noise). From the figure it is
clear that the SN scale is the most sensitive to additive Gaussian noise,
but the results again illustrate an important principle of the psycho-
physics of speech: In virtually no instances are the consequences of
degradation with respect to a single stimulus parameter confined to a
single stimulus elementary phychological parameter. It has long been
known, for example, that whereas the elementary psychological parameter,
pitch, depends primarily on stimulus frequency, it also varies with

stimulus intensity, duration, and complexity. 1In the present case, the

mechanism whereby values on the SL scale (normally most sensitive to high
frequency attenuation) also decreases with S/N ratio is easily specified:
The spectrum level of typical speech is highest in the region of 500 Hz but
decreases at approximately 9 dB per octave both above and below that
region. A secondary effect of uniform spectrum noise, therefore, is
generally that of passband restriction, particularly at the upper end of
the speech spectrum. Less readily predicted, but by no means contrain-
tuitive, is a slight reduction of the SD scale (the scale most sensitive to
amplitude distortion). With extremely unfavorable S/N ratios, listeners
are evidently not able to make the noise vs. distortion distinction with
the same ease that they accomplish this under less severe conditions of

degradation.
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5.2.1.2 Effects of frequency on DAM scores

The results of research leading to the development of the DAM served
in many instances to confirm the principle that even the simplest forms of
signal impoverishment have relatively complex subjective consequences:
Although the effects of a given form of distortion may be most pronounced
in one subjective dimension, they are usually evident in two or more
dimensions. On the other hand, many forms of degradation may have a common
perceptual effect, as well as unique perceptual consequences. In fact,
perceptual quality scales SH, SL, and SN were found to be sensitive in
varying degrees to the effects of three major forms of frequency distor-
tion.

All forms of passband restriction have previously been observed to
affect the SL scale, which is associated with the perceptual qualities of
muffledness, dullness, etc. The effects of high frequency attenuation
were found to be confined primarily to this DAM parameter, though some
depression of scores on the SH scale was observed with extremely severe
high frequency attenuation.

The effects of low frequency attenuation, i.e., high-pass filter-
ing, were observed to be most pronounced in the case of the SH scale, which
was in fact designed primarily to sense such effects. However, the SL
scale was also observed to be sensitive to high-pass filtering in lesser
degree. A third scale, (SN) which is concerned with the perceptual quality
of nasality, was fbund to be sensitive to passband width restriction more
or less without regard to the location of the passband. Present results
will be seen to provide strong confirmation of findings of the earlier
validation studies of the DAM, though sharper filtering was achieved here

than previously. 1In the present investigation frequency filtering was
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achieved by means of elliptic digital filters with 40 dB or less ripple and

transition bands equal to 5 percent of the nominal cutoff frequencies.

5.2.1.2-1 Effects of bandpass filering on DAM scores

Figure 5.2.1.2-1 shows the effects of bandpass filtering on DAM
diagnostic score patterns. Consistent with previous findings, three of
the primary perceptual quality scales (SH, SL, and SN) ére sensitive, but
in different ways, to this form of signal distortion. Differences between
the trends of the SH scores and SL scores are best rationalized in terms of
the character of the rejected band(s) associated with each condition. To
the extent that high frequency rejection predominates, SL scores suffer
greatest reduction, whereas SH scores reflect the predominance of low-
frequency rejection. Scores on the SN scale vary in a more complex manner
with the location of the passband, being highest for the high and low
extremes, lowest for those passbands near the middle of the frequency
scale, in particular those covering the frequency range of the second
format. Generally, the scales pertaining to background qualities are
little affected by passband restriction. The one case in which a back-
ground exhibits depression (BB scale in the case of the 2600-3400 Hz
condition) is quite possibly due to an increase in hum associated with the

higher gains needed for the high frequency bands.

5.2.1.2-2 Effects of low-pass filtering on DAM scores

From Figure 5.2.,1.2-2 it is evident that the effects of low-pass
filtering are confined primarily to the SL scale, a result coansistent with
the purpose for which this scale was designed. Although some variation in
other signal quality scales is evident, no consistent trends emerge. All

of the background quality scales are virtually "blind" to this form of
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degradation. It may be of some interest to note that neither the most
sensitive perceptual quality nor overall acceptability are substantially
affected until attenuation of frequencies below 2K Hz occurs. The fact
that the parametric scale for intelligibility is more uniformly affected
by high frequency attenuation is consistent with results on the effects of
high frequency attentuation on objectively measured intelligibility. It
1s perhaps consistent with common intuition that parametric pleasantness

1is generally the least affected of the higher order qualities.

5.2.1.2-3 Effects of high-pass filtering on DAM scores

Four perceptual quality scales appear sensitive to high-pass
filtering as shown in Figure 5.2.1.2-3. As expected, the SH scale ulti-
mately exhibits the greatest depression, but two other scales, SL and SN,
are more sensitive to moderate degrees of high-passs filtering. Only after
frequencies as high as 800 Hz are attenuated does the signal appear to
acquire the characteristic "high-pass quality."

Again, a decrease in BB scores with increased high-pass filtering
is possibly an experimental artifact. The fact that no comparable trend in
BB scores 1s evident in the case of the female speaker adds credibility to

such an explanation.

5.2.1.3 Effects of periodic interruption on DAM scores

Two interruption rates, each with six signal-duty factors were
treated in this investigation. In the first case, the signal was inter-
rupted once every 300 samples or 26.6 times a second. The duration of each
interruption was then varied from 10 to 150 samples, i.e., from 1.25 milli-

seconds to 18.75 milliseconds. In the second case, the signal was
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interrupted once every 1024 samples or 7.8125 times a second. Duration of
these interruptions was varied from 2 milliseconds to 64 milliseconds.
Figure 5.2.1.3-1 shows that the predominant perceptual quality
associated with the movre rapid interruption rate is 'signal flutter,"
which quality becomes increasingly pronounced as signal duty factor
decreases. Listeners perceive the signal to be interrupted with increas-
ing duration of interruption, but the interrupted quality is less salient
than the fluttering of quality. Figure 5.2.1.3-2 shows the effects of less
frequent interruption. The fluttering quality is still pronounced but the
interruption is now more apparent and in fact predominates in the case of
the lowest signal duty factor (.50). Moreover, listeners appeared less
inclined in this case to perceive the background as fluttering than they

did in the case of more rapidly interrupted speech.

5.2.1.4 Effects of Peak Clipping on DAM scores

Two forms of amplitude distortion are potentially present in many
voice communications channels. They can be simply described as '"peak

' (as might result from inter-

clipping" (clamping) and "center clipping,’
modulation distortion). It was out of concern for the first of these that
the SD scale of the DAM was developed. However, no special provision for
the latter was made in the design of the DAM.

Figure 5.2.1.4 shows the effects of six levels of peak clipping on
DAM score patterns. The values associated with each condition indicate
levels at which peak clipping occurred on a scale where the rms amplitude
of the unclipped speech signal was approximately 1350. Two perceptual
quality scales SD and BB appear sensitive to this form of degradation.

However, an experimental artifact is possibly involved in the case of the

latter scale. As noted earlier, the BB scale is quite sensitive to 60 Hz
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hum, which might have been expected to increase as audio gain was increased

to compensate for the effects of clipping on signal level,.

5.2.1.5 Effects of center clipping

The effects of peak clipping and center clipping on speech intel-
ligibility have long been known, but no attempt has thus far been made to
quantify their effects on acceptability. Licklider [5.2 ] observed that
peak clipping can actually enhance intelligibility under certain circum-—
stances but that center clipping is detrimental to intelligibility under
all circumstances. The reasons for this are readily found in the fact that
the low energy segments of the speech signal that are removed by center
clippings are generally those involving consonant sounds, which are, in
turn, the major carriers of useful speech information.

Since the low energy components of speech are also those involving
the upper range of the speech spectrum, one would predict the perceptual
effects of center clipping to be considerably more complex than those of
peak clipping. Fig. 5.2.1.5 shows this to be the case. From the figure it
appears first that the perceptual consequences of center clipping are
confined completely to perceived signal qualities. Listeners perceive
virtually no background effects. Among the six signal qualities, however,
the effects of center clipping are quite diverse. All but one (SH) of the
signal quality scales appear highly sensitive to this form of degradation.
The reasons for this diversity of effects are easily determined, moreover,
once it is recalled that removing the low energy components of speech

serves at once to interrupt and to low-pass the speech.
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5.2.1.6 Effects of signal quantization on DAM scores

Amplitude quantization is an essential step in a number of modern
speech coding techniques, though the ultimate effect in most cases 1is
extremely fine quantization. Because the SD scale was originally designed
for sensitivity to these techniques it is of some interest to know how the
DAM generally and the SL scale in particular respond to relatively coarse
quantization.

Figure 5.2.1.6 shows that the SL scale 1s in fact extremely sensi-
tive to this form of distortion, but that several other scales are also
somewhat sensitive. Perceptually, quantized speech has some of the
quality of band-pass filtered speech, lowband-passed speech in particular.
A moderate buzz quality is also evident. ©Possibly of additional interest
is the difference between scores for the higher order qualities, intel-
ligibility and pleasantness. Listeners perceive quantized speech to
possess relatively high intelligibility but apparently find it unaccept~
able on aesthetic grounds, as evidenced by the low ratings they give it on

pleasantness.

5.2.1.7 Effects of echo on DAM scores

As noted in Section 4.2.1.7 the echoic conditions treated here were
somewhat unrealistic but were selected to ensure a clear subjective
effect. As observed elsewhere the DAM in its present version does not make
explicit provision for echo: no single rating scale pertains unequivocal-
ly to this phenomenon. From Figure 4.2.1.7, however, listeners were evi-
dently able to find the means of distinguishing between the various delays
through a combination of perceptual quality scales. It appears, moreover,

that listeners experienced no uncertainty as to whether echo should be
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characterized as a signal distortion or a background disturbance. They
agreed that it should be the former and indicated their perceptions primar-
ily via the SL and SI scales, with the result that all of the higher order

perceptual quality scales '"tracked" in a consistent manner.

5.2.2 Effects of frequency-variant controlled distortions on DAM scores

Three classes of degradation fall in this category: additive

colored noise (Section 4.2.2.2), pole distortion (Section 4.2.2.2), and

banded frequency distortion (Section 4.2.2.3).

5.2.2.1 Effects of additive colored noise on DAM scores

Figure 5.2.2.1 permits a comparison of the effects of noise bands in
six different frequency regions on DAM score patterns. The six bands are

designated in the figure as follows:

Nl - 0- 400 Hz
N2 - 400- 800 Hz
N3 -  800-1300 Hz
N4 - 1300-1900 Hz
N5 - 1900-2600 Hz
N6 - 2600-3400 Hz

Figure 5.2.2.1M-N1 shows the pattern of DAM scores which results
from speech masking by a low-frequency band of noise. Depressed scores on
the BN (background noise) and BR (background rumble) scales conform with
intuitive expectations, and otherwise serve to provide additional valida-
tion of these two scales. Not immediately clear is the reason for somewhat
depressed scores on several perceived signal quality scales and on the

scale for total signal quality.
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As shown in Figure 5.2.2.1M-N2, the quality, background rumble,

decreases significantly as the noise band is raised above the 0-400 Hz
region,

As the frequency region of the noise band is increased beyond the
800-1300 Hz frequency region, the perceptual consequences of the noise
undergo several qualitative changes. The noise is perceived to have less
"rushing-roaring" quality (BN) but more of a "buzzing-humming" quality as
reflected in scores on the BB scale. At the highest noise levels listeners
also tend to perceive an increasing raspy (8D scale) quality which is most

typical of amplitude-distorted speech.

5.2.2.2 Effects of Pole Distortion on DAM scores

Two types of pole distortion, as described in Section 4.2.2.2, are
examined in this section. The first of these involves distortion of pole
frequencies within a given frequency band, the second, involves "radial

distortion" and, hence, band-width distortion.

5.2.2.2.1 Effects of pole frequency distortion

Figure 5.2.2.2-1 shows the effects of pole distortion in each of six

frequency bands:

200- 400 Hz
400- 800 Hz
800-1300 Hz

1300-1900 Hz

1900-2600 Hz

2600-3400 Hz
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The parameter within each sub-figure is range of frequency distortion

(rms). Values of this parameter are as follows:

BAND
0-400 400-800 800-1300 1300-1900 1900-2600 2600-3400
20 20 50 50 100 150
40 40 90 90 150 200
60 60 130 130 200 250
30 80 170 170 250 300
100 100 210 210 300 350
120 120 250 250 350 400

From Figure 5.2.2.2-1, it appears that the subjective effects of
pole frequency distortion are expressed primarily via the SF (signal
flutter) and BF (background flutter) scales. The remaining perceptual
quality scales are virtually unaffected by this form of degradation. Tt
appears, farther, that the perceptual consequences of pole distortion are
generally neglible in the upper end lower extremes of the 3.4K Hz band

involved here.

5.2.2.2-2 Effects of radial pole distortion

Figure 5.2.2.2-2 shows the effects of radial pole distortion. In
this case the frequency bands involved were as indicated above except for
the lowest band which was 0-400 Hz instead of 200-400 Hz. The parameter in

all sub-figures is relative "'radius jitter." The values being:
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.025
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.075
.100
.200

.300

in all cases. From the figure it is evident pole-bandwidth distortion has
qualitatively different perceptual consequences than pole-frequency dis-
tortion. The perceptual effects of radial or bandwidth distortion are
confined primarily to the background and are quite pronounced in all but

the highest frequency band.

5.2.2.3 Banded frequency distortion

Banded frequency distortion is of interest in relation to transform
‘coding techniques where noise may be a factor at the power spectral level,
In the present case six levels of noise were produced in each of six
spectral bands (See Section 4.2.2.3).

From Figure 5.2.2.3 it appears that banded frequency distortion in
the range treated here has relatively minor subjective consequences. In
all but the lowest frequency band involved, perceived background flutter
is the most pronounced effect.

Some amount of signal flutter (SF scale) and raspiness (SD scale) is
evident in the cases of the 400-800 Hz and 800-1300 Hz bands, but these

qualities are negligible in the remaining bands.
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CHAPTER 6. THE EXPERIMENTAL RESULTS

6.1 Introduction

This chapter gives both a detailed description of the experiments
performed as part of this study and a complete analyses of the experimental
results. In all cases, the experiments performed were based on correlation
analyses, and the figure-of-merit used for each objective quality measure
studied was either the estimated correlation coefficient,; , or the esti-
mate standard deviation of error when the objective measure is used to
estimate the subjective measure,;e (see Chapter 1).

This chapter is divided into five additional sections. The first
describes the standard analysis techniques used in this study. The second
describes the results of the spectral distance measure studies. The third
describes the results from the parametric measure studies. The fourth

describes the results from the frequency variant measure studies. The

fifth describes the results from the composite measures.

6.2 Analysis Procedures

Every correlation experiment performed as part of this study
resulted in an estimated correlation coefficient, ; , and an associated
estimated standard deviation of error,;e . To describe each experiment
exactly, one must therefore know four things: exactly what objective
measure(s) was used; exactly what analysis method was used; exactly what

subjective parameter was used; and exactly what set of distortions was used

in the correlation analyses. The first three items will be discussed in
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this section. The objective measures will be discussed in the following

sections.

6.2.1 The Estimation Procedures

The three estimation procedures used in this study were linear
regression, non-linear regression, and linear multi-regression. In linear

regression, the subjective result is estimated from the objective result

by

S(s,d) = B(1) 0(s,d) + B(0) 6.2.1-1

~

where S(s,d) is the estimate of the subjective result for speaker s and
distortion d, 0(s,d) is the objective measure for speaker s and distortion
d, and B(l) and B(0) are constants. The solution which gives a minimum

squared error between S(s,d) and S(s,d) is given by

PPN

PO
B(1) = -5_3 6.2.1-2
0
and
B(0) =S - 0 = 6.2.1-3
90

where O is the estimated standard deviation over the subjective data, o,

A

is the estimated standard deviation over the objective data, p is the
estimated correlation coefficient, S is the average subjective result, and

O is the average objective result.

In non-linear regression analysis, the subjective estimate is given

- K Kk
S(s,d) = ) B(k) 0°(s,d) 6.2.1-4
k=0
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where K is the order of the regression. HNote that for K=1, this equation
becomes the linear regression equation. To find g(k), the subjective

error, given by

E2(s,d) = (S(s,d)-8(s,d))? 6.2.1-5

is minimized with respect toB(k). This leads to a set of linear equations

of the form

EB=12 6.2.1-6
where

8T = 80,81, . . ., W] 6.2.1-7

T k
Z = [ 2 s(s,d), Z 0(s,d)s(s,d), . . . , 2 0 (s,d)s(s,d) ]
s,d s,d s,d
6.2.1-8

and

E(k,0) = ) 0% (s, ) 6.2.1-9

s,d

where E(k,f) is the k and £ entry to the matrix E. Once E is inverted, p is

obtained from

K k
1 .T - )
=—=[g  ERB~-N ) gk)D ] 6.2.1-10
N-1 = =— k=0
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6.2.1-11

where N is the total number of points in the sample.
Linear multiregression is in many ways similar to non-linear
regression. In this procedure, it is desired to estimate the subjective

results from several (K) different objective measures by

K
§(s,d) = ) B (k)0(s,d,k) 6.2.1-12
k=0
where the extra index "k" has been added to the objective measure to

differentiate the different measures. To find 8(k), the squared subjec-

tive error

I e(s,d) = 1 (s(s,d)-5(s,d))> 6.2.1-13
s,d s,d
is minimized, giving

epg =12 6.2.1-14
where
T . . . T . .
B 1s given, as before, by equation 6.2.1-7, Z" is given by

2T =[ ) s(s,d), Y S8(s,d)0(s,d, 1), . . .») S(s,d)0(s,d,k)]
N s,d s,d
6.2.1-15

and

e(k,) = J 0(s,d,k)0(s,d,L) 6.2.1-16
s,d

After § is computed by inverting e, 5 may be computed from
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K

6" =—=[B =28 -N )} B(k)0(s,d,k)]
s N-1 2 2 F : ’
s = ko0 6.2.1-17
and 1 T K -________
N-1[8 Z-NS ) B(k)O(s,d,k)]
o = =0 6.2.1-18
O~ Oa
S S

where 0(s,d,0) = 1.

6.2.2 The Distorted Data Sets

In Chapter 4, a detailed description of the distorted data base was
given. This data base contained coding distortions, wideband controlled
distortions, and frequency variant controlled distortions. There are
several points which should be made about this data base. First, it was
heavily loaded with frequency variant distortions because it was felt that
considerable improvement in objective quality measures might be achieved
by better understanding the frequency variant perceptual effects., Hence,
measures tested over the set of all distortions, called ALL, is of consid-
erable interest, and represents a lower limit on the performance of any
measure.

However, an ensemble of distortions which contains as many fre-
quency variant distortions as this data base does not represent a good
estimate of a true coding environment. Hence, a second major distortion
set was identified, called WBC (wide band distortions) which, in the
opinion of the researchers, gives a better estimate of the true behavior of
the measures in a true coding environment. A description of the distortion
set WDB 1s given in Table 6.2.2-1.

In addition to WDB, a total of seven additional data subsets were

identified and used. These were WFC (waveform coders), CODE (coding
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Coding
Distortions

ADPCM
APCM
Cvsp
ADM
APC
LPC
VEV
ATC

Controlled
Distortion

Additive Noise
Low pass filter
High pass filter
Band pass filter
Interruption
Clipping

Center clipping
Quantization
Echo

Frequency
Variant

Additive colored
noise

Banded pole
distortion

Banded frequency
distortion

Table 6.2.2-1.

# of
Cases WBD WFC CODE CON WBN NBN BD PD ND

6 X X X

6 X X X

6 X X X

6 X X X

6 X X X

6 X X

12 X X

6 X X X

6 X X X X X
6 X X

6 X X

6 X X

12 X X

6 X X

6 X X

6 X X X X

6 X

36 X X X
78 X X

36 X X

SUBCLASSES OF DISTORTIONS USED AS PART OF THIS RESEARCH
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distortions), CON (controlled distortion), WBN (wide band noise), NBN
(narrow band noise), BD (band distortion), and PD (pole distortions). The

contents of these various sets are also shown in Table 6.2.2-2.

6.2.3 The Subjective Data Set

In all, the subjective data base contains 20 subjective results per
distortion. Although 18 of these were used in the total data analysis of
this study, the emphasis in on the results on only a few. This includes CA
(composite acceptability), TBQ (total background quality), and TSO (total
system quality) for the isometric measures, and all the parametric results
for the parametric measures. Of these, CA was considered most important,

and most major isometric results are based on this measure.

6.2.4 Non-parametric Rank Statistics

An important part of this study was the comparison of different
analysis methods and parameterizations for their ability to better predict
subjective results. Based on our figures-of-merit, correlation coeffic-
ients and standard deviation of error, it is easy to rank these methods
with respect to one another. The problem is that the specific statistical
environment for our tests, namely correlation coefficient estimates with
non-zero centered correlation coefficients across correlated sample sets,
has not been widely treated in the literature.

In order to get some statistical handle on this problem, non-
parametric pairwise rank statistics were used. 1In this approach, treat-
ments are always treated in pairs, so that the question being asked is
always if one treatment is better than the other. The data base is then
scanned to find all cases where two measures differ only in that one of the

measures has received treatment 1 and the other has received treatment 2.
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The null hypothesis is that the treatments make no difference. If this
were true, then each of the treatments would be ranked first in the pairs
in about one-half of the cases. Let there be N such cases, and let the rank
of the first treatment (either 1 or 2) be given by RK(1,n), 1< n £ N. Then

the rank statistic which is formed, called RS, is given by

b=A e

RS RK(1,n) 6.2.4-1

| 122

=1

This statistic varies between 1 and 2. If it is equal to 1, then the first
treatment was always ranked first. If it is equal to 2, then the first

treatment 1s always ranked second.

‘N N+1

RS can only take on a finite set of values, namely TRt
ZNQI, Z% . The probability is that RS takes on a value ﬁ%ﬁ is given by
N!
— !
prob (%) - ot (N-a)! 6.2.4-2
N 2N

Hence, the probability that RS takes on a value of (§§2) or less is given

o
N+a 1 z

N!
£ 2) = = -
prob (RK n N Lo T 6.2.4-3

From this relationship, it is always easy to compute the significance of a
ranking in the usual sense.

For multiple values of the same parameter (i.e., multiple treat-—
ments of the same type), all possible pairwise rankings were done. An
example of the results of such an analysis for four parameter values is

given in Table 6.2.4-1. Above the diagonal in the matrix is placed the
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SL12(N12)

SL13(N13)

SL14(N14)

RSXY

SLXY

NXY =

PARAMETERS

2 3 4

RS12 RS13 RS14
- RS23 RS24
SL23(N23) —— RS 34
SL24(N24) SL34(N34) —

Rank statistic between parameters
X & Y (equ. 6.2.4-1)

Significance limit (in the probability domain)
for the X-Y rank statistic

Number of samples available for computing RSXY

Table 6.2.4~-1. EXAMPLE LAYOUT FOR THE RESULTS OF A

FOUR PARAMETER PAIRED RANKING TEST
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pairwise values for RS. Below the diagonal is placed the one-sided proba-
bility limit. For significance at the .01 level, this number must be below
.01, and for significance at the .05 level, it must be below .05.

The pairwise ranking test described here is a relatively weak
statistical test, It has been adopted because it does give some statisti-
cal insight into the significance of the test results, and because many of

the results reported here are very strong.

6.3 The Spectral Distance Measure Results

A total of 192 wvariations of the spectral distance measures
described in Chapter 3 were included as part of this study. Any of these
spectral distance measures can be described by four conditions. First, the
spectral distance measure may be between linear spectra, log spectra, or a
spectrum taken to the § power. If the latter case is used, the value of §
must be specified. Second, between frames, the measures are weighted by
the energy of the original signal taken to the g power., If 0=0, then there
is no energy weighting. Third, the measures always involve an Lp norm, and
the value of p is important. Fourth, within frames, the distance measure
may be spectrally weighted by V(n,s,d,BK)Y. If y=0, there 1s no spectral
welghting. In these terms, Table 6.3-1 summarizes the 192 spectral
distance measures studied here.

The total analysis performed on the 192 spectral distance measures
was linear, 3rd order nonlinear and 6th order nonlinear regression. These
analyses were performed across all nine of the distortion subsets (ALL,
WBD, WFC, CODE, CON, WBN, NBN, BD, PD) for nine subjective parameters (CA,
TBQ, TSQ, P, A, I, PP, PA, PI). 1In all, there were therefore 192 x 3 x 9 x

9 = 46,656 analyses. Obviously, it is unreasonable to even print this
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SUMMARY OF SPECTRAL DISTANCE MEASURES

Linear Spectral Distance Measures

i~

Energy Weighting (a¢) O .5
Lp Norm (P) 1 2 4

N o

Spectral Weighting (y) 0

Total cases = 48

Log Spectral Distance Measures

Energy Weighting (a) O .5 1 2
Lp Norm (P) 1 2 4 8 10 12 14
Spectral Weighting (v) 0 1 2

Total cases = 64

Spectral Distance Measures

Energy Weighting (a) O

Lp Norm (P) 1 2 4 8 10 12 14
Spectral Weighting (Y) 0 1 2
Nonlinearity (§) .2 .3 N2 .6 .8

Total cases = 90

16

16

Table 6.3-1. SUMMARY OF THE 192 SPECTRAL DISTANCE MEASURES STUDIED
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number of results. What is done, instead, is to use this new data base of
results to answer specific questions of interest about the utility of
sample spectral distance measures and the optimality of the controlling

parameters.

6.3.1 The Best Spectral Distance Measures

The first question of interest is what are the best spectral
distance measures and how good are they. Table 6.3.1-1 gives a list of the
five best spectral distance measures for CA, TSQ, and TBQ for ALL and WBD.

Several points should be noted here, First the best measure for the

spectral distance measure overall distortions for CA uses the | non-

linearity and uses neither energy weighting nor spectral weighting. The

range, and indeed, two log measures are included in the top five.

nonlinearity is very close to the log nonlinearity over much of its

The maximum correlation coefficient is -.6020, corresponding to a
standard deviation of error of 7.86. This is not very good, and even
though this is one of the better simple measures, it does not do very well.
This is a general result and clearly indicates that composite measures are
necessary if effective objective measures are to be designed.

The results over TSQ are similar, though slightly lower, than those
for CA. Here, the log measures are consistently better than those using
the | ]6 nonlinearity.

By comparison, the results for TBQ are very poor, with a maximum
correlation of only .135. Note that these correlations are all positive,
as would be expected. Since all the spectral distance measures explicitly
measure signal distortion, it is not surprising that they do a poor job on

background qualities.
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CcA (ALL)

CA(WBD)

TSQ(ALL)

TSQ(WBD)

TBQ(ALL)

TBQ(WBD)

.60
.60
.60
.59
.59

.63
.63
.63
.63
.63

.57
.57
.57
.57
.57

.64
.64
.64
.64
.64

14
.13
.13
.13
.13

.23
.23
.23
.23
.22

Table 6.3.1-1.

Lp Spectral Energy

>

SR Nonlinearly WNorm Weighting Weighting
(&) (» (v) (a)
7.9 11 .2 2 0.0 0.0
7.9 11 .2 2 0.0 0.5
7.9 log 4 0.0 0.0
7.9 log 2 1.0 0.0
7.9 11 .2 4 0.0 0.0
7.0 log 2 1.0 1.0
7.0 log 4 2.0 1.0
7.0 log 8 2.0 1.0
7.0 log 4 1.0 1.0
7.0 log 2 1.0 0.5
8.8 log 2 1.0 2,0
8.8 log 2 1.0 1.0
8.8 log 1 1.0 2.0
8.8 log 1 2.0 1.0
8.8 log 1 1.0 2.0
7.5 log 8 2.0 2.0
7.5 log 4 2.0 2.0
7.5 log 4 1.0 2.0
7.5 log 8 2,0 1.0
7.5 log 4 2.0 1.0
7.2 linear 1 0.0 2.0
7.2 linear 2 0.0 2.0
7.2 linear 2 1.0 2.0
7.2 linear 1 1.0 2.0
7.2 linear 4 2.0 2.0
6.2 11 .6 1 0.0 2.0
6.2 11 .4 1 0.0 2.0
6.2 11 .8 1 0.0 2.0
6.2 11 .6 1 0.0 1.0
6.2 11 .8 1 0.0 1.0

Best Five Spectral Distance Measures for CA, TSQ,
and TBQ Across ALL and WEBD.
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The correlations of all the measures over the WBD set show about a
.03-.08 point improvement over the ALL set. This, of course, is a more
realistic estimate of how these parameters would perform on true coding
distortions. Here, the best result for CA is 5 = -.6345 withé;e= 7.086 and
for TSQ is 6 = .6427 with ;e= 7.67, with the log nonlinearity always the

best. The results for TBQ are once again very poor, though significantly

better than for ALL,

6.3.2 The Effect of Energy Weighting

The effect of energy weighting was tested for spectral distance
measures using the ALL and WBD data sets, for four groupings: all spectral
distance measures; log spectral distance measures; linear spectral
distance measures; and | |6 spectral distance measures. The composite
rank analyses for this test 1is shown in Table 6.3.2.

The results for energy weighting here are very clear. Energy
weighting does not help. The ranking for @ is 0 - .5 - 1 - 2, where 0 or no
weighting is best. This is a very strong result for all the spectral
distance classes. Note also that the only deviation from this strong (in
fact, perfect) result occurs in the linear spectral distance case. How-
ever, linear spectral distance measures consistently perform poorly, so

these deviations are of little interest.

6.3.3 The Effects of Spectral Weighting

The effects of weighting the spectral distance measure in the
frequency domain by ‘V(n,s,d,e)\Y was tested for ALL and WBD for y = 0,1,
and 2 across the same for groups of spectral distance measure used in

section 6.3.3. The results of this study are shown in Table 6.3.3-1,
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Group Tested

All spectral
distance

measures

Log spectral
distance

measures

Linear spectral
distance

measures

|-| spectral
distance

measures

Table 6.3.2.

N = O N o= O

.
N = W O

Energy Weighting Parameter (a)

0
4x107 1 (48)
-12
.2x10 (48)
.4x10-14(48)

0
10"6(20)
10"6(20)
10“6(20)

0

.2x10_5(l6)
.2x10—5(l6)

. .2x107°(16)

0
.019(12)
.003(12)
.002(12)

Each frame was weighted by the energy in

.5
1.04

.4x10714(48)
4x10” M (48)

107%(20)
10'6(20)

.5
1.00

.2x107°(16)
.2x10°

5(16)

.5
1.67

.002(12)

.002(12)

1
1.02
1.00

.4x10 14 (48)

1.00
1.00

100 ¢20)

1
1.00
1.00

.2x107°(16)

1
1.08
1.00

.002(12)

RANK TEST RESULTS FOR ENERGY WEIGHTING

.00
.00
.00

.00
.00
.00

.00
.00
.00

.00
.00
.00

the undistorted speech frame to the g power.
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Spectral Weighting Parameter (y)

0 1 2

All spectral 0 - 1.84 1.50
distance 1 .5x107%(32) - 1.28
measures 2 .57(32) .01(32) -
Log spectral 0 1 2
distance 0 - 2.00 1.31
measures 1 .15x107%(16) — 1.06
2 .10(16) .2x1072(16) -

0 1 2

Linear spectral 0 - \ 1.68 1.68
distance 1 .10(16) - 1.50
measures 2 .10(16) .59(16) -

Table 6.3.3-1. RANK TEST RESULTS FOR SPECTRAL WEIGETING BY
V(m,p,d,8) FOR SPECTRAL DISTANCE MEASURES.
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The consistent result here is that the second case, y=1, is signifi-
cantly better than Y=0 at both the .05 and .0l level, but is significantly
better than y=2 at only the .1 level. Once again, this result is weaker
for the case of linear spectral distance measures. So the basic result is

that y=1 should be used, but this is a weak statement.

6.3.4 The Effects of Lp Averaging

The effects of Lp averaging in the frequency domain for p = 1,2,4,
8,10,12,14, and 16 were tested for ALL and WBD across the same spectral
distances groups as in the last two tests. The results of the study are
given in Table 6,3.4-1.

When viewed across all the spectral distance measures, the results
are mixed, with p=1 best, but not significantly so. However, the individ-
ual results here show a very different picture. The linear spectral
distance measures, the ranking is p = 1-2-4-8, where every result is
significant at the .01 level. Since linear spectral distance does not
perform well, this 1s not an interesting result. For the log spectral
distance measure, the ranking is p =4 - 8 - 2 -11 - 10 - 12 - 14 - 16,
where the only non-significant results occur between the 4 and 8 levels,
(Note that the lack of significance generally associated with the 10 - 12 -
14 - 16 levels is due to the lack of samples.) This is a very powerful and
interestingresult since most researchers have used p=1 or p=2 in utilizing
log spectral distance measures. These results clearly show that a value of
p between 4 and 8 will work better.

The results for | |Yspectral distance measure are mixed. This is

clearly expected since this measure, in a sense, forms a bridge of non-

linearities between the linear (§=1) and the log (§%.33) nonlinearity.
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991

All

Spectral
Distance
Measures

Log

Spectral
Distance
Measures

® b~ N

10
12
14
16

o N

10
12
14
16

1

.08(44)
.005(44)

L 3x107° (44)

.06 (4)
.06(4)
.06(4)
.06(4)

2x1073(12)
L2x1073(12)
.38(12)
.06 (4)
.06(4)
.06(4)
.06(4)

Table 6.3.4-1(a)

Lp NORM PARAMETER (p)

.1x10‘4(44)
5x1070 (44)

.06 (4)
.06(4)
.06(4)
.06(4)

2.00
.19(12)
.61(12)
L06(4)
.06 (4)
.06(4)
.60(4)

.8x10'8(44)
.06(4)
.06 (4)
.06 (4)
.06 (4)

2.00

1.67
.19(12)
.06 (4)
.06(4)
.06(4)
.06(4)

1.15

1.18

.06 (4)
.06 (4)
.06(4)
.06 (4)

1.58
1.5
1.33

.06 (4)
.06(4)
.06 (4)
.06 (4)

10
1.00

1.36

.06 (4)
.06 (4)
.06(4)

1.00
1.00
1.00
1.00

.06(4)
.06(4)
.06(4)

12
1.00

1.00

1.09

.06(4)
.06 (4)

1.00
1.00
1.00
1.00
1.00

L06(4)
L06(4)

14
1.00

1.00

1.00

.06(4)

.00
.00
.00
.00
.00
.00

[ I = T =

.06 (4)

RANK TEST RESULTS FOR Lp NORM FOR SPECTRAL DISTANCE MEASURES

16
1.00

1.00

1.00

1.00

1.00
1.00
1.00
1.00
1.00
1.00
1.00



Linear

Spectral
Distance
Measures

|18
Spectral

o B~ N

o M~ N

.2xlO_3(12)
.2x10‘3(12)
.2xlO_3(12)

.02(20)
.2xlO_4(20)
10'6(20)

Table 6.3.4-1(b).

.2x10'3(12)
.2x10'3(12)

1.25

10'6(20)
107020

1.00
1.00

.2xlO_3(l6)

1.05
1.00

1078 ¢20)

RANK TEST RESULTS FOR Lp NORM
FOR SPECTRAL DISTANCE MEASURES
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6.3.5 The Effect of the Pointwise Nonlinearity

In the study of the effects of the pointwise nonlinearities, the
cases considered were | 'dfor §=1,.2,.3,.4,.6, and .8 plus log. The
results are shown in Table 6.3.5-1.

The basic result here is that the ranking is .2 - log - .3 - .4 - .6
-.8 - 1 where there is no significant difference between the §=.2 case and
the log, but all other differences are significant at the .01 level. This
means that (1) a nonlinearity should be used (linear was ranked lowest),
and (2) the log, ||'2, and }]'3 give very similar results. These three

functions are indeed very similar over most of their ranges.

6.3.6 The Effects of Other Subjective Measures

Table 6.3.6-1 shows the maximum correlation value found for
spectral distance measures over ALL and WBD for nine different isometric
subjective quality measures available from the DAM; Composite Acceptabil-
ity, CAj; Total System Quality, TSQ; Total Background Quality, TBQ; para-
metric Pleasantness, PP; Parametric Intelligibility, PI; Parametric
Acceptability, PA; raw Pleasantness, P; raw Intelligibility, I; and raw
acceptability, A. The maximum values are given here, since they were
fairly representative of the overall results for the entire subjective
parameter.

Several things are noteworthy here. First, note, as before, TBQ is
not tracked well by the objective measures. Second, note that the behavior
is similar over all the measures, but with intelligibility measures (PI and
I) being tracked better than the rest. The worst tracking of a system
quality was for pleasantness (PP and P), with acceptability showing inter—

mediate behavior.
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69T

log

. . . . .
= o o S~ w N

log

.01(16)
.22(16)
.15x10"4(16)
.15x10_4(16)
.15x10‘4(16)
-12
.9x10° ~°(40)

Table 6.3.5-1.

.04(16)

.15x10—4(l6)
.15x107% (16)
.15x10_4(l6)

10'6<20)

PATRWISE RANK TEST FOR § ON THE |

NONLINEARITY PARAMETER

1.38
1.25
-4
.15x10  (16)
.15x10‘4(16)

.15x10_4(16)

107%20)

1.25
1.00
1.00

4

L15x10 (16)

.15x10_4(16)
4(')(\\

------- VLW

5
|

1.00
1.00
1.00
1.00

.15%10”%(16)
4

15v10
.15

P; RV

(20)

1.00
1.00
1.00
1.00
1.00

e e

NONLINEARITY PLUS THE LOG NONLINEARITY

.00
.00
.00
.00
.00
.00



0LT

DTSTORTION

SET
CA TSQ TBQ PP PI PA P I A
ALL p -.60 -.57 .14 -.53 -.64 -.53 -.51 -.66 ~-.61
O 7.8 8.8 6.0 8.5 8.2 8.3 7.8 6.8 8.3
WBD p -.63 -.64 .23 -.50 -.69 -.62 -.47 -.71 -.64
o 7.0 7.7 6.0 7.3 8.2 6.9 6.5 6.9 7.0

Table 6.3.6-1, MAXIMUM CORRELATION OVER ALL SPECTRAL DISTANCE
MEASURES FOR DIFFERENT SUBJECTIVE MEASURES



6.3.7 The Effects of Different Distorted Data Bases

Table 6.3.7-1 shows the results for the best spectral distance
measures for CA, TSQ, and TBQ over all the distorted data base subsets (see
section 6.2.2). There are several surprising features of this data.
First, the performance of the individual measures of many of the subsets is
surprisingly uniform. This suggests there is only a slight gain to be
expected from these measures if there is a preclassification step in the
analysis. Another interesting result is the measures performance on wide
band noise vs. narrow band noise. It does outstandingly on narrow band
noise, and not very well on wide band noise. This is probably due to the
fact that no energy measurement is included in these spectral distance

measures.

6.3.8 The Effects of Nonlinear Regression Analysis

In order to study the effects of using higher order regression
analysis, the CA, TSQ and TBQ subjective measures were tested for third and
sixth degree regression analysis across the ALL and WBD distorted data
base. Table 6.3.8-1 gives a compilation of these results for the best
measures observed. In both the CA and TSQ cases, it would appear that one
obtains remarkable improvements by going to higher order regression
analysis. In the most remafkable case, sixth order WBD across CA gives a
correlation of .98 and a Se on only 1.7. One must be very careful in
analyzing these results. Clearly, the more parameters in the nonlinear
approximation which are set optimally, the better the results will be.
This, of course, is a mathematical certainty. As we allow larger higher
order regressions, at some point we begin to track the noise in the system.

In this sense, the numbers presented here should be considered approximate
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DISTORTION

SET
CA TSQ TBQ
ALL P -.60 -.57 .13
a 7.8 8.8 7.2
(S
WBD ] .63 .64 .23
a 7.0 7.7 6.0
(S
CODE P .65 -.04 -.30
g 6.1 6.8 6.6
(S
CON P .63 -.64 .21
o] 8.3 8.6 7.5
(S
WBN P .58 -.57 .29
a 6.2 7.1 6.5
(S
NBN p -.92 -.83 -.87
g 3.6 3.4 3.8
e
BD p .65 -.67 .50
o 5.6 7.6 4.1
(S
PD P -.67 -.67 .30
o 6.0 6.2 7.4

Table 6.3.7-1. MAXIMUM CORRELATION VALUES FOR SPECTRAL
DISTANCE MEASURES FOR CA, TSQ, AND TBOQ
OVER THE DIFFERENT SUBSETS OF THE DISTORTED
DATA BASE.
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ALL

WBD

ALL

WBD

ALL

WBD

Q>T > QT »

1st
Order

Qro »
.
o
~

Qro >
h
~

1st
Order

Qo >
—
~

Qo >
.
N
w

Table 6.3.8-1.

CA

3rd
Order

TSQ

3rd
Order

TBQ

3rd
Order
.28

6.9

5.5

éth
Order

6th
Order

.75

.88
4.61

6th
Order

A4
6.4

THE EFFECTS OF NON-LINEAR

REGRESSION ANALYSIS ON

SPECTRAL DISTANCE MEASURES.

ONLY MAXIMUM RESULTS ARE

SHOWN.
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upper limits on the performance of measures based on higher order regres-
sion models.

In spite of the above warning, these results are very promising.
Certainly, the third order effects are probably attainable in a real
system. Because of the apparent improvement attainable from these poly-
nomial pointwise nonlinearities, it would be of great interest to investi-
cate other forms of this nonlinearity.

For the case of TBQ, the improvements are equally remarkable. How-
ever, as before, the spectral distance measures are relatively ineffective

at predicting the subjective background quality.

6.4 Simple Noise Measures

The simple noise measures studied, as described in Section 3.3.3,
include both the ordinary SNR and the ''short time' SNR. In this study,
only four measures were studied: the ordinary SNR and the short time SNR
with 6 = .5, 1, and 2. 1In all the short time studies, the frame interval
was taken to be 256 points. Previous researchers [6.1] have indicated that
this measure 1is relatively insensitive to the frame interval. This
measure, of course, 1s only meaningful over the waveform coders amd those
controlled distortions which can be thought of as being additive noise.
Hence, these measures were only tested across WFC (waveform coders) and ND
(noise distortions). Table 6.4-1 shows the results of these experiments.

The first obvious point here is that the traditional SNR is not a
very good objective measure. By comparison, all forms of the short time
SNR always perform better. The performances of all the measures are
comparable over the WFC and ND distortion sets, and this should be a good

estimate of their expected performance in real coding tests. The best
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SNR .24
Short time SNR (§=.5) .76
Short time SNR (d=1) .77
Short time SNR (8=2) .75

Table 6.4-1.

RESULTS FOR SNR AND SHORT TIME

WFC

8.8

5.6

5.7

5.5

ND

.31

.77

.78

77

SNR FOR CA ACROSS WFC AND ND
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8.8

6.0

5.9



value of § was found to be 1, though the differences between the three
values were small.
The clear point here is that the short time SNR is clearly superior

to the traditional SNR, and should replace this measure whenever possible.

6.5 The Parametric Distance Measures

The parametric distance measures, as discussed in Section 3.3.2,
can be divided into seven classes; feedback coefficient distance measures;
log feedback coefficient distance measures; PARCOR distance measures; log
PARCOR distance measures; area ratio distance measures; log area ratio
distance measures; and the energy ratio measure. In the experimental
study, the first six measures were studied as a group, while the energy
ratio measure, because of its wide use, was studied separately. In all, 38
forms of the energy ratio measure and 72 forms of the other measures were
studied. The overall experimental philosophy was the same for these
measures as for the spectral distance measures, and a similar set of
experiments were conducted. These are isometric measures, so, as before,
the ALL and WBD distortion subsets are used to predict their effectiveness.

Within each of the seven classes of parametric distance measure,
the particular distance measure may be described by two conditions: the
value of p in the Lp norm; and the energy weighting parameter, o. In terms
of these parameters, Table 6.5-1 describes the measures tested for each of

the seven classes.

6.5.1 The Best Parametric Distance Measures

The best parametric distance tested was found to be thelj_log area
ratio measure without energy weighting., This measure has a correlation

coefficient of -.62 for CA across ALL, and a correlation coefficient of
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Energy

Lp Norm (P) Weighting(a) Total
Linear feedback 1, 2, 4 0, 1, 2 9
Log feedback 1, 2, 4 0, 1, 2 9
Linear PARCOR 1, 2, 4 0, 1, 2 9
Log PARCOR 1, 2, 4 0, 1, 2 9
Linear area ratio 1, 2, 4 0, 1, 2 9
Log area ratio 1, 2, 4 0, 1, 2 9

Energy ratio measure .25,.5,1,2,4,8 0,.25,.5,1,2,4,8 38

Table 6.5-1. SUMMARY OF PARAMETERS FOR
PARAMETRIC DISTANCE MEASURES
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-.65 for CA across WBD. This is a very important result, for it says that

this parametric distance measure performed better than any of the spectral

distance measures. Since this measure is an order of magnitude more

compact to compute, this is a very important result.

Tables 6.5.1-1 through 6.5.1-7 give the best six measures for each
of the seven categories for CA across ALL and WBC. The only two of these
measures which show any promise are the log area ratio distance measure and
the energy ratio distance measure. The results for these two measures will

be presented in more detail.

6£.5.2 The Log Area Ratio Measure

The results for the log area ratio measure tests are summarized in
Table 6.5.2-1, which gives the results of all the log area ratio measures
studied for CA, TSQ, and TBQ across CA and WBD. In each case, the log area
rafio measure performs comparable to but better than the corresponding
spectral distance measure. Like the spectral distance measure, perfor-
mance was relatively poor for TBQ.

Table 6.5.2-2 shows the maximum results for the log area ratios
across the other distortion subsets for CA. Here, once again, the results
are comparable to but better than those from the spectral distance
measures,

Table 6.5.2-3 shows the effects of third order and sixth order
nonlinear regression. Improvements here are also comparable to those from
spectral distance measures.

Examination of the data also shows other similarities to the spec-—
tral distance results. For the log area ratio, no energy weighting is

best, followed by energy weighting to the first, then second power.
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cA (ALL)

>

Y e P a
.06 9.8 1 0
.06 9.8 2 0
.04 9.8 1 1
.03 9.8 2 1
.03 9.8 1 2
.03 9.8 2 2

CA (WBD)

A Ae , .
.14 8.9 2 0
.14 8.9 1 0
.12 8.9 2 1
.12 8.9 1 1
.11 8.9 2 2
.08 8.9 1 2

Table 6.5.1-1. BEST SIX RESULTS FOR LINEAR
FEEDBACK PARAMETRIC DISTANCE MEASURE
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cA (ALL)

P o p o
.11 9.8 1 0
.10 9.8 2 0
.05 9.8 1 1
.05 9.8 2 1
.04 9.8 1 2
.04 9.8 2 2
CA (WBD)

; 3 ’ .
.32 8.5 2 0
31 8.6 1 0
.29 8.6 2 1
.28 8.6 1 1
.26 8.6 2 2
.25 8.7 1 2

Table 6.5.1-2. BEST SIX RESULTS FOR LOG PARCOR
PARAMETER DISTANCE MEASURE
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CA (ALL)

e P @
L1 9.8 1 0
.11 9.8 2 | 0
.06 9.8 1 ' 1
.06 9.8 2 1
.05 9.8 1 2
.05 9.8 2 2
. Ae . )
.33 8.5 2 0
.32 8.5 1 0
.31 8.5 2 1
.30 8.6 1 1
.28 8.6 2 2
.27 8.6 1 2

Table 6.5.1-3. BEST SIX RESULTS FOR LOG FEEDBACK
COEFFICIENT PARAMETRIC DISTANCE MEASURE
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CA (ALL)

e P ¢
.24 9.6 1 0
.22 9.6 1 1
.21 9.6 1 2
.20 9.6 2 0
.19 9.7 2 1
.18 9.7 2 2
R . ca (WBD)
Y e P )
.32 8.5 1 0
.30 8.6 2 0
.28 8.6 1 1
.28 8.6 1 2
.27 8.6 2 1
.26 8.7 2 2

Table 6.5.1-4. BEST SIX RESULTS FOR LINEAR AREA
RATIO PARAMETRIC DISTANCE MEASURE
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CA (ALL)

e P a
46 8.7 1 0
.30 9.3 2 0
.29 9.4 1 1
.21 9.6 1 2
.16 9.7 2 1
.12 9.8 2 2

CA (WBC)

- Ae ) )
43 8.1 1 0
.31 8.5 2 0
.30 8.6 1 1
.24 8.7 1 2
.21 8.8 2 1
.18 8.8 2 2

Table 6.5.1-5. SIX BEST RESULTS FOR THE LINEAR
PARCOR PARAMETRIC DISTANCE MEASURE
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CcA ( ALL)

e P o
.62 7.7 1 0
.62 7.7 2 0
.62 7.8 1 1
.61 7.8 2 1
.60 7.9 1 2
.59 7.9 2 2

CA (WsC)

; Ae p o
.65 6.8 1 0
.64 6.9 2 0
.64 6.9 1 1
.64 6.9 2 1
.64 6.9 1 2
.62 7.0 2 2

Table 6.5.1-6. BEST SIX RESULTS FOR LOG AREA
RATIO PARAMETRIC DISTANCE
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.60

.58

.53

.51

.49

49

.65

.63

.62

.62

.61

.61

Table 6.5.1-7.

-

cA (ALL)

.25

2.5
1.0

1.0

CA (WBD)

.25
.50
.50
.25
.50

.25

Energy
Weighting(a)

0.0

0.0
.25
.25

1.0

.50

Energy
Weighting(a)

0.0

0.0

1.0
.25
.50

.50

BEST SIX RESULTS FOR THE ENERGY
RATIO PARAMETRIC DISTANCE MEASURE
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. Lp ENERGY
NORM WEIGHTING
p (a)
cA (ALL) .62 7.7 1 0
.62 7.7 2 0
.62 7.8 1 1
.61 7.8 2 1
.60 7.9 1 2
.59 7.9 2 2
cA (WBD) .65 6.8 2 1.0
.64 6.9 2 2.0
.64 6.9 1 1.0
.64 6.9 2 0.0
.64 6.9 1 2.0
.62 7.0 1 0.0
TSQ (ALL) .58 8.7 1 2.0
.58 8.8 1 1.0
.57 8.8 2 1.0
.57 8.8 2 0.0
.54 9.0 1 0.0
.52 9.1 2 0.0
TSQ (WBD) .62 7.0 2 1.0
.61 7.1 2 2.0
.61 7.1 1 2.0
.60 7.2 1 1.0
.59 7.2 2 0.0
.58 7.3 1 0.0
TBQ (ALL) .11 7.2 1 0.0
.11 7.2 2 0.0
.03 7.2 1 1.0
.2 7.2 2 1.0
.006 7.2 2 2.0
.0006 7.2 1 2.0
TBQ (WBD) .15 6.1 2 2.0
.15 6.1 1 2.0
14 6.1 2 1.0
.13 6.1 1 1.0
.10 6.1 2 0.0
.10 6.1 1 0.0

Table 6.5.2-1. TOTAL RESULTS FOR LOG AREA RATIO PARAMETRIC
MEASURE FOR CA, TSQ, AND TBQ FOR ALL AND WBD
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Distortion R R

Subset e

ALL .62 7.7
WBD .65 6.8
WFC .64 6.9
CODE .62 6.2
CON .65 8.2
WBN <40 7.0
NBN .91 3.8
BD .58 6.0
PD .53 6.9

Table 6.5.2-2, THE MAXIMUM VALUES FOR CA FOR THE
LOG AREA RATIO MEASURE ACROSS
DIFFERENT DISTORTION SUBSETS
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cA (ALL)
CA (WRD)
TSQ (ALL)
TSQ (WBD)
TBQ (ALL)

TBQ (WBD)

.62

.65

.58

.62

.11

.15

ANALYSIS ORDER

1st 3rd 6th
Order Order Order

e e e

7.7 .64 7.5 .69 7.1

6.8 .66 6.7 .79 5.5

8.7 .59 8.7 .72 7.4

7.0 .63 7.0 .72 6.1

7.2 .24 7.0 42 6.6

6.1 .35 8.4 924 3.1

Table 6.5.2-3. THE EFFECTS OF HIGHER ORDER REGRESSION ANALYSIS

ON THE LOG AREA RATIO DISTANCE MEASURE
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6.5.3 The Energy Ratio Distance Measure

The results for the energy ratio distance measure are summarized in
Tables 6.5.3-1, 6.5.3-2, and 6.5.3-3. The fi;st table gives maximum
results for CA, TSQ, and TBQ over CA and WBD. - The second table gives
maximum results for CA over the other distortion subsets, The third table
shows the results of nonlinear regression analysis.

The energy ratio distance measure does quite well in all tests, but
it is not able to quite match the performance of either the log area ratio
measure or the best spectral distance measure. The general performance of
all three of these measures is very similar, with the energy ratio measures
being the poorest of the three. This is probably because these measures

are measuring very similar features of the speech distortions.

6.6 Frequency Variant Measures

There are two basic classes of frequency variant measures studied
as part of this research: frequency variant spectral distance measures;
and frequency variant noise measurement. For both cases, the frequency
range 200-3200 Hz is divided into six bands, as shown in Table 6.6-1. The
individual measures for each of the bands is then computed, and the overall
objective measure is formed as an optimally weighted sum of the subband

results.

6.6.1 The Frequency Variant Spectral Distance Measures

The parameters controlling the frequency variant spectral distance
measures are the same as those controlling the spectral distance measures,
These include four conditions. First, the distance measure may be between

linear spectra, log spectra, or spectra taken to the & power. Second, the
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CA WBD

e O’e
cA 59 7.9 .65 6.9
TSQ 54 9.0 .62 7.0
TBQ A2 7.1 24 6.8

Table 6.5.3-1. MAXIMUM RESULTS FROM THE
ENERGY RATIO DISTANCE MEASURE
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Distortion A

Subset ;e
ALL .59 7.9
WBD .61 6.9
WFC .58 6.7
CON .59 8.7
CODE .53 6.7
WBN 47 6.7
NBN .80 5.5
BD .60 5.9
PD .57 6.7

Table 6.5.3-2. THE MAXIMUM VALUE OF CA FOR THE
ENERGY RATIO MEASURE ACROSS
DIFFERENT DISTORTION SUBSET
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ANALYSIS CODE

lst 3rd 6th
Order Order Order
Oe P e e

CA(ALL) .59 7.9 .64 7.6 .64 7.5
CA(WBD) .65 6.9 .66 6.7 .68 6.6
TSQ(ALL) .54 9.0 .38 8.8 .60 8.6
TBQ(ALL) .62 7.0 .63 7.0 .65 6.8
TBQ(ALL) .12 7.1 .24 7.0 .69 5.2
TBOQ(WBD) .24 6.8 .30 6.7 .36 6.4

Table 6.5.3-3. THE EFFECTS OF HIGHER ORDER REGRESSION
ANALYSIS ON THE ENERGY RATIO DISTANCE MEASURE

192



BAND NUMBER RANGE (HZ)

1 200-400
2 400-800
3 800-1300
4 1300~1900
5 1900-2600
6 2600~3400

Table 6.6-1. FREQUENCY BANDS USED FOR THE FREQUENCY
VARIANT OBJECTIVE MEASURES
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distance measure may be frequency weighted by the energy spectrum,
V(n,s,d,S)Y. Third the measure may be time weighted by the energy of the
frame taken to the o power. And finally, of course, an Lp norm is evolved,
and the value of p is an important parameter. In all, a total of 96
variations of these measures were studied. These measures are summarized
in Table 6.6.1-1.

Table 6.6.1-2 shows the results for the five best log spectral
distance measures. As can be seen, the use of frequency weighting improves
the spectral distance results by about .1 points in the correlation
measure. Also, it was found that the same log spectral distance measures
which did well in the non-frequency-variant cases did well in the frequency
variant cases as well.

Table 6.6.1-3 shows the results for the five best linear spectral
distance measures. Here, the improvement from the non-frequency-variant
case is remarkable. ©Not only is the frequency variant linear spectral
distance measure better than the non-frequency-variant case, it is better
than the log measure also., This is an important result.

An important point about these frequency variant measures is that
they are "tunable" for parametric as well as isometric subjective quality
measures. Hence, correlation analyses were performed for the parametric
subjective categories of SF,SH,SD,SL,SI,SN,BN,BB,BF, and BR across ALL and
WBC. Table 6.6.1-4 shows some results from that study.

Qualitatively, these results are relatively easy to understand.
Basically, the frequency variant spectral distance measures did well on
frequency variant parametric subjective measures (SF,SH,SL,SN,BN, and BB)

and poorly on the non-spectrally-related subjective measures (sp,SI,BF,

194



Linear Spectral Distance Measure

Spectral weighting parameter (Y) 0, .5, 1, 2
Energy weighing parameter (&) 0, 1, 2
Lp Norm (p) 1, 2, 4, &
TOTAL 48

Log Spectral Distance Measure

Spectral weighting parameter (Y) 0, .5, 1, 2
Energy weighting parameter (&) 0, 1, 2
Lp Norm (p) 1, 2, 4, 8
TOTAL 48

Table 6.6.1-1. SUMMARY OF 96 FREQUENCY VARIANT
SPECTRAL DISTANCE MEASURES TESTED
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LOG FREQUENCY VARIANT SPECTRAL DISTANCE MEASURES

Condition

cA (ALL)

CA (WBD)

TSQ (ALL)

TSQ (WBD)

TBO (ALL)

TBQ (WBD)

Table 6.6.1-2.

.68
.68
.68
.67
.67

.72
.72
.71
.71
.70

.61
.61
.61
.60
.60

.64
.64
.64
.64
.64

.23
.23
.22
.22
.22

.35
.34
.34
.33
.32
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BEST FIVE SYSTEMS FOR EACH CATEGORY FOR LOG
FREQUENCY VARIANT SPECTRAL DISTANCE MEASURES
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LINEAR FREQUENCY VARIANT SPECTRAL DISTANCE MEASURE

Condition

cA (ALL)

cA (WBD)

TSQ (ALL)

TSQ (WBD)

TBQ (ALL)

TBQ (WBD)

Table 6.6.1-3.

.68 7.2
.68 7.2
.68 7.2
.68 7.2
.68 7.2
.72 6.2
.71 6.3
.70 6.4
.70 6.4
.70 6.4
.61 8.5
.61 8.5
.61 8.5
.61 8.5
.61 8.5
.68 7.3
.67 7.4
.67 7.4
.67 7.4
.67 7.4
.24 7.0
.24 7.0
.23 7.0
.23 7.0
.22 7.1
.38 5.7
.38 5.7
.38 5.7
.38 5.7
.38 5.7

Spectral

Weighting Weighting

(v)

[=Ne e el o O O OO — OO =0 [eNeNe NN [= Nl =i RNol
. *® e o 2 @ *« ® & @ @ e 8 e 8 e e & o e+ @ * & e @
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(e NeNeNe)
[= N e el i)

Energy

(o)

N = N =N —_NNNN — = NN N == NN N = NN

— NN~ O

Lp
Norm

(p)

PN — N N = —_— N = — N = N S N

— PN

BEST FIVE SYSTEMS FOR EACH CATEGORY FOR LINEAR
FREQUENCY VARIANT SPECTRAL DISTANCE MEASURES
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ALL WBD

Parametric

Sub jective R R R )

Measure P 9 P 9
SF .61 3.8 .74 4,2
SH .63 3.9 .73 3.9
SD 42 6.3 .26 6.7
SL .72 3.6 .81 3.6
ST .17 5.6 .19 7.9
SN 45 3.8 .55 4,2
BN 48 5.1 .23 4.0
BB .43 4.0 .26 3.5
BF .18 6.5 .38 5.4
BR .27 2.8 .21 1.8

Table 6.6.1-4. SAMPLE OF RESULTS FOR FREQUENCY VARTIANT
SPECTRAL DISTANCE MEASURES USED FOR
PREDICTING PARAMETRIC SUBJECTIVE RESULTS
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and BR). The performance on several of the measures (SF,SH,SL) can be said

to be very good, while the performance on the others is moderate or poor.

6.6.2 Frequency Variant Noise Measurements

The frequency variant noise measures studied include both the
frequency variant form of the ordinary SNR and the frequency variant form
of the short time SNR. Only the one form of the frequency variant SNR was
tested. However, 49 versions of the short time frequency variant SNR were
tested., These different measures are characterized by two parameters. The
first parameter, the energy weighting parameter &, controls the time
domain weighting by the energy of the original speech. The second,d ,
controls the power to which the log of the measure is taken (see 3.4.2).
In terms of these parameters, the 49 cases studied are shown in Table
6.6.2-1.

Of course these noise measures, like all noise measures, cannot be
used across the whole distorted data base. Hence, these tests were only
run across WFC, WBN, NBN, BD, and PD. The most important of these is WFC
(wave form coders), since it represents an estimate of the measures' per-
formance in a real coding environment.

Table 6.6.2-2 shows the results for WFC. The first noteworthy point
is that these are outstanding results, with the best measure having a
correlation coefficient of .93 and a ;e of only 3.28. Note also that this
is not an isolated measure, but that several forms of the measure come
close to this performance.

In order to test the best values for the various parameters, a rank
order study was done on both a and §. The results of these studies are

shown in Tables 6.6.2-3 and 6.6.2-4., As can be seen, the ranking for § is
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Banded Short Time SNR

Energy Weighting (a) 0,.25,.5,1,2,4,8
Power of log (8) 0,.25,.5,1,2,4,8
TOTAL 49

Table 6.6.2-1. SUMMARY CF 49 SHCORT TIME BANDED
SIGNAL-TO-NOISE RATIO MEASURE
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Energy Power
Weighting  Parameter

>
>

o o §
e
CcA (WFC) .93 3.3 0.0 .25
.93 3.3 0.0 .50
.93 3.3 .25 .25
.93 3.3 .25 .50
.93 3.3 .50 .25
TSQ (WFC) .81 3.6 0.0 .25
.81 3.6 0.0 .50
.81 3.6 .25 .25
.81 3.6 .25 .50
.81 3.6 0.0 1.00
TBQ (WFC) .93 2.9 0.0 .25
.93 2.9 .25 .25
.93 2.9 0.0 .50
.93 2.9 .25 .50
.93 3.0 .50 .25

Table 6.6.2-2. BEST FIVE RESULTS FOR BANDED
SHORT TIME SNR MEASURE ACROSS WFC
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.008(7)
.008(7)
.008(7)
.008(7)
.008(7)

Table 6.6.2-3.

Energy Weighting Parameter (o)

.25
1.0

.008(7)
.008(7)
.008(7)
.008(7)
.008(7)

.50
1.0
1.0

.008(7)
.008(7)
.008(7)
.008(7)

1.0
1.0
1.0
1.0
.008(7)
.008(7)
.008(7)

2.0
1.0
1.0
1.0
1.0

.008(7)

.008(7)
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.008(7)
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RESULTS OF THE PAIRWISE RANKING TEST FOR THE ENERGY

WEIGHTING PARAMETER, @ , FOR THE SHORT TIME SIGNAL-

TO-NOISE RATIO
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Table 6.6.2-4.

Power Parameter

.008(7)
.008(7)
.008(7)
.008(7)
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1.0

1.0

1.0
.0608(7)
.008(7)
.008(7)
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1.0
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.008(7)
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RESULTS OF THE PAIRWISE RANKING TEST FOR THE POWER

PARAMETER FOR THE BANDED SHORT TIME SIGNAL-TO-

NOISE RATIO
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.25-.5-1-2-4-8, with .25 and .5 giving similar results. The ranking for @
is 0-.25-,5-1-2-4-8. So, as before, the best energy weighting is no energy

weighting.

6.7 The Composite Distance Measures

The composite distance measures studied in this research were
alwavs taken to be linear sums of up to six of the simple or frequency
variant measures already discussed. Basically, there were two types of
composite measures studied: measures without preclassification and
measures with preclassification., In the measures without preclassifica-
tion, exactly the same composite objective measure was applied to all the
distortions under study. In the measures with preclassification, each of
the distortions was assigned a class, and a different composite measure was
applied to each class. The preclassification technique was not exten-
sively explored in this study, but was only used to differentiate the
spectral coders, such as vocoders, from those coders which could be consid-
ered as signal plus noise.

The composite measures were used in two ways in this study. The
first use was to determine if different single measures were really measur-
ing the same quantity or were measuring some different quantity. If they
measure the same quantity, then the correlation coefficient based on their
composite measure show only slight improvement. If they measure a differ-
ent quantity, then the correlation coefficient show more improvement.

The second use for the composite measure was to search for a reason-
able measure to be used in an objective quality testing system which
attempts to predict the subjective results from the objective results. Two

points should be made about this study. First, since the optimization of
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the composite measure involves the setting of certain of the parameters
based on the data, the results found here are limits on the performance of
these measures, and other tests need to be made concerning their rcbustness
Second, the composite measure technique used here is essentially a "bulk"
technique which allows the automated study of a number of combinations
rather easily. It is undoubtedly true that some additional gain might be
obtained from studying the measures 'by hand", using interactive graphics,
and making appropriate pragmatic changes in the definitions of the objec-

tive measures.

6.7.1 The Composite Measure Used to Measure Mutual Information

In this part of the study, a large number of six wide composite
measures were designed to- find to what extent the correlation coefficient
could be improved by combining the results of specific groups. For
example, composite measures were made from all log spectral distance
measures. This would answer the question of whether all the log spectral
distance measures really contained similar information, or if some con-
tained different information. Similarly, composite measures between log
spectral distance measures and log area ratio measures would determine if
they measured different information. By no means are these tests all
inclusive, but they do represent a reasonable sampling of the effects,
Table 6.7.1-1 gives a summary of the maximum results for the classes
studied for CA across WBC and, where appropriate, WFC.

The results here can be summarized as follows. First, from line 1,
all the log spectral distances contain similar information. This is true
to a lesser extent (line 2) of all classes of spectral distance measures.

From line 3, the best parametric measures, the log area ratio, and the best
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OBJECTIVE
QUALITY
MEASURES

10,11
8,9,10,11
6,7,10,11

Log Spectral Distance
Linear Spectral Distance
Spectral Distance

SNR

Short Time SNR

Linear Feedback Distance
Log Feedback Distance
Linear Parcor Distance

MAXTMUM
SINGLE
RESULT

-

p

.63
.63
.65
.65
.65
.72
.77
.93
.93
.65
.65
.65

0]

AN LWL o,
. N
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9.
10.
11.
12.
13.
14.

15,

MAXTIMUM DISTORTION

COMPOSITE SUBSET
RESULT
p Oe

.64 6.9 WBD
.67 6.7 WBD
.69 6.6 WBD
.75 6.0 WBD
.67 6.7 WBD
.74 6.0 WBD
.78 5.7 WFC
.93 3.3 WFC

WBD
.69 6.6 WBD
.70 6.5 WBD
.70 6.6 WBD

Log Parcor Distance

Linear Area Ratio

Log Area Ratio

Energy Ratio

Frequency Variant SNR
Frequency Variant Short Time
SNR

Frequency Variant Spectral
Distance

Table 6.7.1-1., RESULTS OF THE COMPOSITE DISTANCE MEASURE TESTS
TO MEASURE MUTUAL INFORMATION AMONG DIFFERENT
DISTANCE MEASURES
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spectral distance measures contain some separate information, but are
really also quite similar.

In studying the parametric measures, we see that the whole para-
metric set when combined with the whole spectral distance set (recall 6
systems from this group is still all that is involved) a reasonagble
improvement 1is obtained. This illustrates a more or less general phenom-
enom which was observed. That is that often more improvement was obtained
by combining a good measure with a bad measure of a vastly different type
than from combining two or more similar good measures. Evidently, the
better parametric measures are measuring similar information as the
spectral distance measures (line 3), and likewise, the better parametric
measures contain similar information (line 5). However, when some of the
less good parametric measures are included (lines 4, 10, 11, 12), better
overall results are obtained.

In the non-frequency-variant noise measures (line 7), the addition
of the SNR to the short time SNR adds little. Similarly, in the frequency
variant case (line 8), the addition of the frequency variant SNR adds
little to the frequency variant short time SNR. In fact, including all
these measures together (line 11) adds little to the frequency variant
short time SNR.

Finally, it should be noted that the addition of simple spectral
distance measures to frequency variant spectral distance measures (line 6)
adds little information not available from the frequency variant case

above,
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6.7.2 Composite Measures for Maximum Correlation

Because the study of the composite measures was a very time consum-—
ing task, it was impossible to study a large number of them in detail
Basically, the results from all of the correlation studies plus the results
from section 6.7.1 were used to guess at what might be good measures. In
all, 12 measures without preclassifications and 8 measures with preclassi-
fication were studied. Table 6.7.2-1 describes the best of each of these
types of measures and shows their results across ALL and WBD for CA, TSQ,
and TBQ.

Several points should be made about these results, First, these are
maximum obtainable results, and the robustness of these measures has not
been tested. Second, the remarkable gain obtained from the preclassified
version was almost solely due to the action of the short time frequency
variant signal-to-noise ratio measure. However, with these reservations,
these results are clearly quite good.

In a real, fieldable system for objective quality testing, it is not
clear how close to the limits observed in this study the results would be.
However, this was done across a very large data base with many degrees of
freedom, and the results here are the best estimates available at this

time.
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BEST COMPOSITE MEASURE WITH PRECLASSIFICATION

CLASS: SYSTEMS WHICH ARE SIGNAL + NOISE

MEASURE
#
1. SHORT TIME BANDED SNR [§=1]
2. LOG AREA RATIO [a=0; p=1]
3. FREQUENCY VARIANT LOG SPECTRAL [a=0; y=1.0; p=4]
4, PARCOR [a=0; p=1]
5. LINEAR SPECTRAL DISTANCE [§=1; o =23 y=0; p=2]
6. ENERGY RATIO [a=0; §=,25]

CLASS: ALL OTHER SYSTEMS

MEASURE
#
1. LOG AREA RATIO [o=0; p=1]
2., TFREQUENCY VARIANT SPECTRAL DISTANCE [0=0j; Y=1.0; p=4l
3. PARCOR [0=0; p=1]
4., TFEEDBACK [a=0; p=1]
5. ENERGY RATIO [a=0; &=.25]
6. SPECTRAL DISTANCE [6=1; a=2; yv=0; p=2]
RESULTS
CA TSQ TBQ
p Oq p 04 p 0.
ALL .89 3.5 .88 4.0 41 6.1
WBD .90 3.5 .90 3.9 .32 3.8
BEST COMPOSITE MEASURE
WITHOUT PRECLASSIFICATION
1. LOG AREA RATIO [a=0; p=1]
2. TFREQUENCY VARIANT SPECTRAL DISTANCE [0=0; y=1.0; p=4]
3. PARCOR [a=0; p=1]
4. SPECTRAL DISTANCE [8=1; a=2; y=0; p=2]
5. ENERGY RATIO [0=0; §=.25]
6. FEEDBACK [a=0; p=1I
RESULTS
ca TSQ TBQ
p cye p Ue P Ue
ALL .84 4.6 .82 4.9 .38 6.2
WBD .86 4,2 .86 4.6 .48 6.0

TABLE 6.7.2-1. THE BEST COMPOSITE MEASURES DISCOVERED DURING THIS STUDY
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