
RESTRICTIONS

See Attached Gov't . 	Supplemental Information Sheet for Additional Requirements.

COMMENTS:

ADMINISTRATIVE DATA 	 OCA Contact
1) Sponsor Technical Contact:

Dr. David W. Mizell

Information Sciences Division

ONR Code 433

800 North Quincy Street

Arlington, VA 22217-5000

(818) 795-5971

R. Dennis Farmer 	 x-4820
2) Sponsor Admin/Contractual Matters:

Mr. Thomas A. Bryant

Office of Naval Research

Resident Representative

206 O'Keefe Building

Georgia Institute of Technology

Atlanta, GA 30332-0490 (404)881-4374

Defense Priority Rating: 	DO—C9 	Military Security Classification: 	

a 	 (or) Company/Industrial Proprietary: 	

Travel: Foreign travel must have prior approval • Citact OCA in each case. Domestic travel requires sponsor

approval where total will exceed greater of $500 or 125% of approved proposal budget category.

Equipment: Title vests with 	Georgia Tech is less than $5,000 with prior ACO approval,

if greater than $5,000 as determined by the ACO.

<4 <;*
- 	 t")

 ts.,,3 	.1/45) 	0(.)77

% e 	

GEORGIA INSTITUTE OF TECHNOLOGY • 	 OFFICE OF CONTRACT ADMINISTRATION

•
PROJECT ADMINISTRATION DATA SHEET

Project Director: 	T. P. Barnwell

ORIGINAL 111 REVISION NO. 	

GT RCKX2C 	DATE 10 / 22 / 85

School/UK 	EE

Project No. E-21-606 R6031-0A0

Sponsor:

Office of Naval Repearch. 800 North Quincy Street.

Arlington, VA 22217-5000

Type Agreement: 	Contract No. N00014-85—C-0811

3
(Performance) 	34/31/87 	(Reports)

Award Period: From 	9/1/85 	To 	t/31/87

Sponsor Amount:

Estimated: $

Funded: $ 200,000

Cost Sharing Amount: $ 	 Cost Sharing No: 	

Title: 	A Synchronous Multiprocessor Architecture for Digital Signal Processing

This Change Total to Date

$ 1,176,417

$ 	200,000

COPIES TO:

Project Director
Research Administrative Network
Research Property Management
Accounting

SPONSOR'S I. D. NO. 	02.103.016.85.R01

Procurement/GTRI Supply Services
	

GTRC

Research Security Services
	

Library
xRepottsleobbliiiiitikAOCAY'

	
Project File

Research Communications (2)
	

Other 	A. Jones

GEORGIA INSTliVit OF TECHNOLOGY OFFICE OF CONTRACT ADMINISTRATION

SPONSORED PROJECT TERMINATION/CLOSEOUT surr

Date 	10/5/88

.Project.No. 	E-21-606 / R6031-0A0

School/LAW EE

Includes Subproject No.(s) G-36-649 / LeBlanc / ICS

Project Director(s) 	T. P. Barnwell GTRC /RXX

Sponsor 	 Office of Naval Research

Title* 	A Synchronous Multiprocessor Architecture for Digital Signal

41.110111/0100111MIIIMINIMISMINI
Processing

Effective Completion Date: 1/31/87 (Performance) 1/11/g7

(Reports)

Grant/Contract Closeout Actions Remaining:

U

None

Final Invoice or Copy of Last Invoice Serving as Final

Release and Assignment

Final Report of Inventions and/or Subcontract: MSubmitted
Patent and Subcontract Questi onnaire Y
sent to Project Director

[I] Govt. Property Inventory A Related Certificate

U Classified Material Certificate

U
U

U Other
Continues Project No. 	 Continued by Project No. 	

COPIES TO:

Project Director
Research Administrative Network
Research Property Management
Accounting
Procurement

tReiyrwrgor4inator (OCA) A

Contract Support Division (2)

Ya2220WOCHNfifteditffeCEOERE
Library
GTRC
Project File
Other

A SYNCHRONOUS MULTIPROCESSOR ARCHITECTURE

FOR DIGITAL SIGNAL PROCESSING

Final Report Submitted to the

Office of Navel Research

by

The Digital Signal Processing Laboratory

School of Electrical Engineering

Georgia Institute of Technology

Atlanta, Georgia 30332

September 19, 1988

Contents

1 Background 	 2
1.1 Algorithm Descriptions 	3
1.2 Fully Specified Flow Graph Bounds 	4
1.3 Systolic Processors 	5
1.4 SSIMD Implementations 	6
1.5 Cyclo-Static Implementations 	8

2 The OSCAR Research Program 	 9

3 The OSCAR Architecture 	 11

4 The Hardware Architecture 	 12

5 Discussion 	 17

6 Commentary 	 17

1

1 Background

This is the final report for a research project which was selected for funding
in 1985 by DARPA under the Strategic Research Initiative. The program
was initiated in September of 1985, and was successfully pursed until it was
terminated in August of 1986 for "lack of funds" at DARPA.

For the past ten years, the problem of implementing digital signal pro-
cessing (DSP) algorithms on synchronous multiprocessors has been studied
at Georgia Tech [1-15] under the sponsorship of the Joint Services Elec-
tronics Program (JSEP) and the Army Research Office (ARO). A recent
result from that ongoing research program is the development of a set of
formal techniques for the automatic realization of optimal synchronous mul-
tiprocessor implementations of a large class of digital signal processing al-
gorithms on cyclo-static processors [14,16]. The resulting multiprocessor
compiler operated from a graphical representation of the algorithm to be
implemented, and generated synchronous multiprocessor implementations
which are provably optimal in the sense that there exists no other imple-
mentation for the specified algorithm on the specified multiprocessor which
is either faster or more efficient. In addition, the resulting implementations
belong to the most efficient class of solutions in which the intrinsic syn-
chrony of the system maintains the data precedence relations, and in which
no cycles of any of the processors are used for system control.

In 1985, much of the recent work in the area of multiprocessor imple-
mentations of DSP algorithms focused on systolic processors. Unfortu-
nately, systolic processors, as formally defined [17], often suffer from low
procesEsor efficiency and for many problems they cannot fully exploit the
maximum inherent para(Ellelism of the algorithm [11]. Skewed single in-
struction multiple data (SSIMD) and parallel skewed instruction multiple
data (PSSIMD), processors [8-10] overcome many of the weaknesses of sys-
tolic implementations. Like systolic implementations, they are implemented
on synchronous arrays of identical processors with highly constrained com-
munication structures and no broadcast modes. Unlike systolic processors,
however, SSIMD and PSSIMD are always optimally efficient and, for recur-
sive systems, they may be optimally fast as well. In addition, it is often

2

possible to automatically generate optimal SSIMD implementations [15].
However, optimal SSIMD and PSSIMD solutions do not exist for all prob-
lems of interest.

Cyclo-static processor solutions overcome the weaknesses of systolic pro-
cessors and of SSIMD and PSSIMD solutions for the class of algorithms
that can be described by cyclic shift-invariant flow graphs. Cyclo-static
solutions are a broad family of processor (efficiency) optimal, synchronous,
multiprocessor realizations that, by the application of appropriate design
choices, can also be rate optimal, input-output delay optimal and commu-
nications optimal. For a given algorithm the cyclo-static family of solutions
contains many classes which includes rate optimal SSIMD and PSSIMD
solutions as special cases, when they exist.

1.1 Algorithm Descriptions

For the purposes of the past research, all algorithms have been specified as
shift-invariant flow graphs (SIFG) [11]. A SIFG is defined as a directed
graph in which all operations are specified at the nodes, and in which
the branches are directed paths which specify the flow of data between
nodes. The shift-invariant constraint requires that shifting the (set of) in-
put sequences results only in a corresponding shift in the (set of) output
sequences.

SIFG's are capable of representing a very large class of interesting DSP
algorithms. Of course, they can easily represent all those systems which
are representable by signal flow graphs. Hence, they can represent a large
class of linear and non-linear as well as time-varying systems. In particu-
lar, they are capable of representing digital filters, DFT structures, FFT
structures (indeed all fast discrete transform algorithms), correlation, con-
volution, homomorphic analysis, matched filtering, linear predictive analy-
sis, LMS adaptive filter structures, direct form recursive least squares, and
lattice form least squares, to name just a few. In addition, SIFG can also
represent many algorithms which are not typically DSP algorithms, includ-
ing a very large class of matrix operations as well as algorithms specified
in terms of low level logic operations (e.g. a digital multiplier structure).
In brief, SIFG's can represent all algorithms which do not include any data

3

dependent branch operations. Clearly, the vast majority of DSP algorithms,
as well as other equivalent algorithms, belong to this class.

A fully specified flow graph (FSFG) is a SIFG in which the nodal op-
erations are additionally constrained to be the atomic (kernel) operations
of the underlying constituent processors which are to be used in the real-
ization. Thus the atomic operations represent the smallest granularity at
which possible parallelism may be exploited [11]. The name generic flow
graph is used to distinguish between those SIFG's that are also FSFG's and
those SIFG's whose nodes are not all atomic operations.

1.2 Fully Specified Flow Graph Bounds

The distinguishing characteristic of all this work is the underlying use of
bounds on the optimal performance of an algorithm in the generation of
the multiprocessor implementations. These bounds are characteristics of
the cyclic graph defining the algorithm, not of the mechanism or type of re-
alization. In all, three different bounds are used: the iteration period bound
(previously called the sample period bound [11-13]), which is the minimum
possible time between iterations of the algorithm; the delay bound, which is
the minimum time between the availability of an input (set) and the avail-
ability of the corresponding output (set); and the processor bound, which is
the minimum number of processors required to achieve the specified itera-
tion period. Implementations which achieve the iteration period bound are
said to be rate-optimal. Implementations which achieve the delay bound
are called delay-optimal. Implementations which use the minimum pos-
sible number of processors for a specified iteration period are said to be
processor-optimal. In addition, if an implementation is constrained to use
only nearest-neighbor communications, it is said to be communications-
optimal.

The concept of bounds on the multiprocessor realization of flow graphs
was first introduced in the context of signal flow graphs by Fettweis [18]
and later extended by Renfors and Neuvo [19] and Schwartz and Barnwell
[12-14]. The basic assumptions are that the algorithm to be implemented
is represented as a FSFG, and that the algorithm is to be implemented
on a synchronous multiprocessor. It is also assumed that the computation

4

times for all the nodal operations are known. This condition is easily met
in a homogeneous multiprocessor in which all the processing elements are
the same. Nothing is assumed about the communications structure, I/O
constraints, or the details of the realization. Hence, the resulting bounds
reflect the absolute limits on computation rate and delay based on the
atomic structure of the constituent processors.

Of course, many things besides the structure of the algorithm and the
fundamental operational capability of the processors may limit DSP im-
plementations. Clearly, things such as I/O bandwidths, external resource
availability, the number of available processors, and the communications ar-
chitecture may impact the achievable rate, delay, and processor efficiency of
an algorithm. But in their own way, each of these aspects can be addressed
and corrected. For a particular multiprocessor system and a particular
FSFG, the above bounds are fundamental. Hence, if total implementations
can be developed which achieve these bounds, then it is clear that no other
implementations exist which can operate at a higher rate, with less delay,
or with higher efficiency. It is this class of optimal implementations which
are automatically generated by the cyclo-static compiler.

1.3 Systolic Processors

The area of systolic processors has attracted the attention of many re-
searchers in parallel processing for scientific and signal processing tasks.
The term systolic is assumed to mean a regular iterated array of compu-
tational elements with strict nearest neighbor communications. There is a
global clock, and on every clock cycle each processor inputs data, operates
on the data and outputs data at the end of the cycle. No information can
flow further than one processor in one system clock cycle. Systolic pro-
cessors are a special case of a static pipeline. Until very recently the area
was dominated by systolic solutions to specific problems, presented without
verification or derivation. However, a number of systematic and rigorous
approaches to systolic implementations have now appeared, including one
from our research program [12].

The development of the cyclo-static compiler really grew out of an at-
tempt to understand why SSIMD and PSSIMD implementations could

5

be rate-optimal, processor-optimal, and communications-optimal while the
systolic implementations for the same algorithms could not. There are re-
ally two separate reasons for the shortcomings of systolic arrays. The first
is the fact that systolic processors are static pipelines. This means that any
particular operation in an algorithm is assigned to a particular processor
in the systolic array, and that operation is performed by that processor on
every iteration. Hence, the operations are static and only the data moves
through the multiprocessor. In contrast, SSIMD, PSSIMD, and cyclo-static
processors are dynamic pipelines in which both the operations and the data
move through the multiprocessor. The second reason is the global transfer
clock. Indeed, this global transfer clock was the basic characteristic for
which systolic arrays were named, giving the whole system it's "pumping"
action [17]. The point is that there is no fundamental requirement that all
the pipeline registers in the system be clocked simultaneously. Stated an-

other way, there is no reason that each processor must perform I/O on every

clock cycle. In contrast, the input-output operations in SSIMD, PSSIMD,
and cyclo-static implementations move in parallel, non-overlapping wave
front [16].

1.4 SSIMD Implementations

Historically, skewed single instruction multiple data (SSIMD) implemen-
tations were the first class of solutions which could overcome the systolic
constraints and consistently achieve rate-optimal, processor-optimal imple-
mentations with nearest neighbor communications for a large class of inter-
esting algorithms [8-10]. In SSIMD, exactly the same program is executed
on each of the processors in the multiprocessor, and that program realizes
exactly one iteration of the flow graph. In an SSIMD program, all of the
aritMEmetic operations appear as ex(Eplic(Eit inCEstructions, but the de-
lay nodes are transcEformed into input-output pairs. In this way, the delay
structure in the flow graph becomes the communications structure in the
SSIMD realization [8-10].

For any given program and any given constituent processor, it is possible
to compute a sampling period bound for the SSIMD realization [6]. This
SSIMD bound for programs is equivalent to the iteration period bound for

6

fully specified flow graphs. Hence, if a program can be generated such that
the SSIMD bound is equal to the iteration period bound, then the SSIMD
realization is rate-optimal.

The SSIMD approach to flow graph realizations is very attractive for
many reasons. First, for all SSIMD realizations in which the number of
processors is less than the processor bound, the implementations are per-
fectly efficient and the use of N processors always increases the throughput
by a factor of exactly N. Second, when the SSIMD iteration period bound
is equal to the iteration period bound, as is the case for the majority of
recursive digital filter structures, then there exists no multiprocessor solu-
tion using the same constituent processor which is faster or more efficient.
Third, although the sample-period-bound concept is not involved, SSIMD
realizations work equally well for non-recursive structures. Finally, and
most importantly, the all-important communications architecture for the
final implementation is completely specified by the delay node structure of
the flow graph. In particular, by constraining all the delay nodes to be
first order, all single-time-index (one-dimensional) SSIMD solutions can be
realized with a nearest-neighbor unidirectional ring. A similar result ap-
plies to two-dimenEsional flow graphs, [8-10]. However, if a more complex
communications mechanism is available, then the flow graph can be defined
to take advantage of it [6].

An SSIMD compiler has been demonstrated [15] which generates full
multiprocessor implementations for a laboratory multiprocessor [5]. This
compiler finds a rate-optimal SSIMD implementation, if it exists, and the
best SSIMD implementation, if it it does not. SSIMD implementations
are always processor-optimal and communications-optimal. Two important
points should be made concerning this SSIMD compiler. First, its applica-
tion is by no means limited to the laboratory multiprocessor around which
it was developed, and it can quite easily be used in top-down design sys-
tems using microprocessors, signal processing chips, or VLSI realizations.
Second, and more important, is the result that if a rate-optimal SSIMD
solution exists, it is very easy to find. Stated another way, the informa-
tion available from the computation of the flow graph bounds defines so
precisely the character of a rate-optimal solution that it is very simple to

7

test whether an optimal SSIMD solution exists and to find it if it does. In
contrast, finding the best sub-optimal solution is much more computation-
ally intense. Hence we have the paradox that the most desirable optimal
solutions are the easiest to find, but they may not always exist.

1.5 Cyclo-Static Implementations

A cyclo-static system is a synchronous multiprocessor system that is deter-
ministically scheduled. The schedule (or program) is characterized by its
periodicity, with period related to the iteration interval. The term cyclo-
static connotes an idea similar to cyclo-stationarity of random processes.

Since the schedule of the processors is deterministic, the schedule au-
tomatically handles all precedence requirements, eliminating the need for
synchronization or semaphore mechanisms. In cyclo-static systems the pro-
cessors are only performing direct operations of the defining algorithm, or
FSFG.

To understand the character of cyclo-static processors, it is illuminating
to consider the program for the complete computation of one iteration as a
pattern in the processor-time space (P X T). The processor space may be
multidimensional, with the indexing of processors within a single dimension
being a cyclic ring. For a one dimensional processor space, this diagram is
a reservation table or Gantt chart. The principle lattice vector is a vector
which connects a particular operation in one iteration to the same opera-
tion in the next iteration in (P X T). In this context, systolic processors
and other static pipelines support implementations for which the principal
lattice vector has only a time component. In contrast, cyclo-static schedules
are distributed in both space and time, with principal lattice vectors that
have both space and time components.

While any problem that iterates forever (or for a long enough time to ren-
der the effects of setup and flush negligible) and has a deterministic periodic
program can be considered cyclo-static, this research has taken a narrower
view. In addition to the above properties, there is an additional constraint
that the solution be processor-optimal. It is the existence and ability to
find processor-optimal solutions to problems with periodic programs that
makes cyclo-static solutions unique.

8

Finding processor optimal solutions is significantly easier than finding
suboptimal solutions. In fact, the more optimallity constraints imposed,
(i.e. processor, rate, delay and communications optimal) the easier it is
to find a solution, if it exists. Cyclo-static processor and rate optimal
solutions exist for all recurrence systems defined by shift-invariant FSFG's.
The existence of solutions meeting other combinations of optimallity criteria
may not exist, and are problem dependent.

The cyclo-static compiler [16] fundamentally performs a highly constrained
tree search in order to find rate-optimal, processor-optimal, communications-
optimal, and sometimes delay-optimal cyclo-static solutions. The basic
scheduling problem addressed by the cyclo-static compiler is well known
to be NP-complete, and might hence normally be addressed using a heuris-
tic rather than an optimal approach. One of the most surprising results
of our research thus far is that the optimal cyclo-static scheduling problem
is tractable for most recursive problems of interest. This is because the
optimallity criteria impose powerful constraints on the size of the solution
search space. The resulting problem is still NP-complete, but the order of
the problem has been dramatically reduced. It is the loop structure of the
graph, rather than the size of the graph, which fundamentally determines
the computational complexity of the compilation procedure. Hence, it is
often possible to compile very large graphs very quickly.

2 The OSCAR Research Program

Even though all of the research prior to 1985 was done in the context of
a working laboratory multiprocessor computer system [5], the work has
been primarily of a theoretical nature. Thus at the start of this program,
it was fair to say that the fundamental approach had been validated and
it appeared to have great promise for optimal implementation of massively
computationally intense DSP algorithms on large, synchronous multiproces-
sor machines. The purpose of this research program was to extend and test
these results on large, realistic algorithms in the context of large, powerful
multiprocessor machines.

The proposed research was to have two major components. The first

component was the expansion and extension of the theoretical results. In
addition to the work already in progress, this new work was to concentrate
on the problem of extending the existing formalism to a broader class of
problems, and to contexts in which more than one algorithm is being im-
plemented simultaneously. The issues of the complexity of the compilation
process for large problems would be addressed, as would the questions of
data availability and buffering, and algorithm initiation and termination.

The second component was the development and utilization of a proto-
type for a synchronous multiprocessor computer specifically designed for
cyclo-static implementations. The multiprocessor architecture which was
designed as part of this program was not itself a radical departure from
previously proposed architectures. It was rather an extension of traditional
techniques which would allow for a radically new approach to programming
and realizing digital signal processing algorithms. The final system was to
be a 64 processor floating point machine which would operate with a peak

arithmetic rate of 1.024 GIGAFOPS and a communications bandwidth of
64 Mbytes/second. Despite its impressive specifications, this is not a partic-
ularly expensive machine. Fundamentally, sophisticated compilation tools
are used to generate provably optimal implementations for a relatively sim-
ple multiprocessor architecture to give an order-of-magnitude improvement
in the cost/performance ratio.

The overall development of a working prototype multiprocessor was to
be realized in a four phase effort. The first phase was the design and
implementation of a single prototype processor. The second phase was the
PC layout, construction, and testing of a two processor prototype. The
third phase was the implementation of a 16 processor system, configured
as a 4 X 4 square array. The multiprocessor compilers developed in the
parallel research effort were to be integrated in the third phase. The fourth
phase was the construction of a full 64 (or larger) processor system. The first
three phases was to be performed in the digital signal processing laboratory
at Georgia Tech, while the last phase was probably to be performed in
conjunction with an outside contractor.

Before the termination of the program, all of phase one and most of
phase two was complete. At the time of its termination, the contract was

1 0

on-schedule and on-budget. The multiprocessor which was designed was
called the Optimal Synchronous Cyclo-Static ARray or OSCAR.

3 The OSCAR Architecture

It is desired that a realization should be processor optimal, rate optimal, and
communications optimal. In order to meet these goals several constraints
are implied by the cyclo-static compiler. Note that realizations that meet
these criteria may exist without these constraints, for a given algorithm.
However, the constraints make possible a practical compiler that can find
solutions. Without these constraints, the problem of finding a schedule of
operations (solution) becomes computationally intractable (NP-hard in the
strong sense).

Thus the OSCAR was designed to meet the following constraints.
Constraints for Cyclo -Static

• All processors are homogeneous.

• The system is fully synchronous.

• The computational delay of all operations are data independent.

• The computational delay of all operations (measured in system clock
units) are relatively non-prime.

• For a given operation, all operands can be fetched from adjacent pro-
cessor or locally and result stored locally (dual: all operands fetched
locally and result can be stored in adjacent processors or locally) with
computational delay independent of local vs. adjacent processor loca-
tion.

• Interprocessor communications between adjacent processor pairs is in-
dependent (w.r.t delay, conflict, etc.) of all other adjacent processor
communications. If a processor has four adjacent processors, it can
output to all four adjacent processors (dual: it can input from all four
adjacent procesEsors) simultaneously and without conflict.

11

A 	BCD

REGISTER REGISTER REGISTER REGISTER
FILE 	FILE 	FILE 	FILE

FAU

	e-)
211

CROSSBAR
MEMORY/

REGISTERS

211

C

> 211

Figure 1: The system architecture for one of the OSCAR processors.

4 The Hardware Architecture

OSCAR is basically a regular square array (4 x 4) of 32 bit processors.
Each processor consists of five fully parallel communications ports, a 32
bit floating point arithmetic unit (FAU), partitioned local memory, address
generation unit, general purpose 32 bit integer processor, micro-controller
with writable control store and a debugger/monitor microprocessor. The
OSCAR system architecture is illustrated in Figure 1. In many ways, in-
terprocessor communications is the true heart of the machine, so it will be
discussed in the most detail.

Communications ports Each processor has five communication ports. Four
of the ports are connected to the four nearest neighbors. The fifth port
is cable pluggable and can be connected as a system input port, system

12

output port, or connected to another processor. This extra uncommitted
communications link allows for the possibility of link fault tolerance as
well as embedding other communications structure in the rectangular mesh
(i.e. a binary tree, hexagonal mesh or a perfect shuffle [9]). Note that the
input and output links are separate 32 bit parallel links and thus data can
concurrently flow bi-directionally on all links.

In order to provide the concurrency and the high bandwidth of the ports,
they are realized by a separate multiported register file with a parallel
bypass latch for each port. The multiport allows for the a link input,
a link output and a local processor read or write to the port to occur
simultaneously. Within a processor, the five ports are interconnected by a
full crossbar switch. This allows the ports to act as a fast general purpose,
five in, five out, network communications switch. The communications
switch is fully concurrent with internal processing in the processor node.
The bypass latch is required to support the switch network function due to
the lack of register files that are sufficiently fast. Data that is consumed (or
generated) locally is placed in the register file for fast processor access.

Associated with each word of storage in the register file is a semaphore
(full/empty) flag bit. Writing a word sets the flag and reading clears the flag.
In the cyclo-static and systolic mode, attempting to read a word that has
not been written yet generates a I/O fault exception that transfers control
to the debugger/monitor. In data driven modes, attempting to write to a
non-empty word puts the sender in the wait-until-empty state. Similarly,
attempting to read an empty word puts the receiver in the wait-until-full
state. In either wait state, a timer is activated. If the timer times out before
exiting the wait state a deadlock fault exception is generated. Additionally,
in the data driven mode, microcode can be used to control the register
file so that it implements a FIFO buffer for data queuing. This allows for
wavefront or data flow type machines.

Due to the high speed of the machine the different modes of operation
have different system timings. In the cyclo-static mode, an I/O fault ex-
ception is handled after the fact on the next succesEive instruction. In data
driven mode the system must be slowed down enough so that the semaphore
can be tested and wait states inserted as appropriate.

13

In the cyclo-static or systolic mode, the fifth port contains an additional
mechanism that allows wait stating the entire machine through a similar
semaphore. This allows for simple synchronization to external input or
output data streams. Thus, the OSCAR will support multiple concurrent
tasks, in this case the semaphore of the fifth port will only wait state those
processors that belong it's associated task group.

In the cyclo-static mode all operations have a major cycle time of 200
ns. The major cycle is subdivided into four minor cycles. Each 50 ns
minor cycle is a communications cycle. The first three minor cycles are
dedicated to three communications network switching slots, which are con-
current with a floating point operation execution. The fourth minor cycle
is dedicated to allowing the result of the completed operation to be written
to any subset of the five output ports (adjacent processors). Therefore each
processor executes at 5 MFLOPS and there is a communications bandwidth
per processor of (5 ports)*(4 bytes/port)/(50 ns), or 400 Mbytes/s. Since a
processor can only consume two operands per operations, this would conven-
tionally suggest that the peak communications bandwidth should only equal
(2 words/operation)*(4 bytes/word)/(200 ns/oper(Eation) which equals 40
Mbytes/s.

Note that this suggests that there is a factor of 10 excess communica-
tions bandwidth. Recalling the list of constraints that make it possible to
find cyclo-static solutions, it can be seen that there is a requireCEment of (5
ports)*(4 bytes/port)/(200 ns), or 100 Mbytes/s. Only one of the commu-
nications slots is strictly required. However, it may be that the particular
algorithm to be realized requires more than four/five nearest neighbors. It
is more flexible and economical to provide more communication bandwidth
per port than to increase the number of ports. By allowing three extra
communication cycles, it is possible to communicate with all processors
with a city block metric distance of two (twelve neighbors vs. four), by
requiring that they transfer on a minor cycle during the previous major
cycle. Thus adjacent communication distance is a linear function of time.
While all of the implications in terms of designing a compiler that can take
maximum advantage of this communication structure have not been deter-
mined, preliminary results show it to be extremely flexible and powerful.

14

The other major need for the communication bandwidth is for algorithms
that partition a large amount of data over the set of processors (i.e. image
processing, matrix inversion, etc.). In these algorithms there is usually a
need to shuffle back and forth moderate to large sets of data to handle cases
such as overlapped boundaries. It is more effective to increase communica-
tions bandwidth so that these data transfers can be concurrent with other
operations, then to dedicate machine cycles for only data movement.

Floating point arithmetic unit (FAU) The floating point arithmetic unit is de-
signed around an Am29325 32 bit floating point processor chip. The FAU
can perform floating point addition, subtraction, multiplication and com-
parison as well as convert from integer to floating point and floating point
to integer. Iterative reciprocal and square root approximations are being
studied for inclusion.

It should be noted that the Am29325 is non-pipelined and has a "gate
delay" of i 150 ns. This is significant when compared to alternate chips
such as the Weitek which are five stage pipelines with a stage time of 200
ns. Pipelined arithmetic units are very difficult to keep full and introduce
significant computational latencies.

The FAU is connected in what is effectively a partial crossbar to all of the
port register files, the integer processor and the local memory. Operands
and results can be sourced and sinked to most combinations of these re-
sources.

Local processor memory The local processor memory is partitioned into a
fast and slow 32 bit word memory. The fast memory is 64 Kwords of static
RAM with a 50 ns cycle time. To achieve this speed, address generation
is pipelined one minor cycle ahead. The slower memory is 256 Kwords (or
greater) of dynamic RAM with a 150 ns cycle time.

Address generation unit (AGU) The address generation unit has not been
fully designed at this time. However it generates an address for the local
memory every 50 ns. This high speed limits the flexibility of the AGU.
The design includes a 4K RAM table of 16 bit words (sufficient to address

15

the fast local memory). Addresses are generated by sequentially fetching
the addresses from the address table. In addition there is a generator that
supports address generation for traversing multidimensional arrays along a
principal direction with a fixed stride, and for ring buffering multidimen-
sional data.

Integer processor The integer processor is for the MIMD and data driven
MIMD modes. In the cyclo-static and systolic modes it is not accessible.
This is to support coarse grain parallelism, and is for the support of general
purpose computing. The integer processor can use the FAU as a copro-
cessor, but at the penalty of lower floating point performance then in the
cyclo-static and systolic modes. The integer processor will probably be a
minimum configured M68020 32 bit microprocessor. The slow portion of
the local memory is for program space for the integer processor. The choice
of the M68020 was strongly influenced by its very high performance and
the wide availability of existing software support.

Since there is no global memory, the integer processor communicate with
adjacent processors through message passing or by a strict data driven
mode. The semaphores flag of the ports are used for inter-process synchro-
nization.

Micro-controller The micro-controller is implemented with a TI microse-
quencer and a writable control store. The controller is nanocoded with a
highly horizontal nanocode.

Debugger/monitor . The debugger/monitor is a 80188 microprocessor sys-
tem. Each processor's debugger is tied together on a common low speed
address/data bus on the system backplane. It will serve three primary func-
tions: 1) it will provide and load the bootstrap microcode into the writable
control store in order to initiate processing, 2) it will set and detect a
number of fault and control bits and communicate that information to the
system level control software on the host and 3) it will load and execute
diagnostic, debugging and monitoring software.

16

5 Discussion

OSCAR represents a different approach to building a multiprocessor sys-
tem. For any synchronous multiprocessor, any algorithm and any criterion
of optimallity, there exists one or more optimal implementations. How-
ever, the complexity of the task of determining the bounds on performance
and of automatically finding the corresponding optimal implementations is
prohibitive for most architectures. Hence, we are typically reduced to la-
boriously generating a few ad hoc implementations which may or may not
be optimal.

OSCAR was a multiprocessor system with a few special features. These
features do not make the OSCAR architecture a dramatic departures from
traditional architectures, and the performance specifications of OSCAR are
similar to those of many other multiprocessors. But because of these few
features, optimal implementations for a very broad class of important al-

gorithms can be automatically generated for OSCAR, whereas such imple-
mentations are very hard to find for other machines. This would have made
OSCAR a uniquely usable multiprocessor.

6 Commentary

It would not be appropriate to complete this report without commenting
on the program management for this project. This contact was obtained
through a response to an open RFP from DARPA and ONR. The required
proposal was technically very detailed, and explained explicitly and com-
pletely the goals of the research program. When we received the contract,
we were told that our work was very important and we were told that the
project was fully funded. We were pressured to move as quickly as possible.

This proposal came from a very healthy research program within the
Digital Signal Processing Laboratory at Georgia Tech. At the start of the
program, all of the key staff were already at Georgia Tech, but new staff had
to be added handle their previous functions. Thus, this contract represent
an ambitious undertaking for our research group. Nonetheless, our actual
performance was outstanding. All of the start-up problems were solved,

17

and the project was always on-schedule and on-budget.
The project never had a technical monitor either at ONR or DARPA.

A technical monitor was assigned before the contract started, but when he
resigned from ONR, he was not replaced. We were never able to get any
sort of technical review by anyone after the contract started. We found this
very disturbing, since we felt we had many important things to say.

When the contract was canceled, it was done so for "lack of funds" at

DARPA. This was done even though DARPA was simultaneously starting
new contracts.

The total effect of all of this was very negative. DARPA offered, through
an RFP, a chance to extend our research. It took great effort to respond
to that RFP. Then, even though we accomplished every stated goal of our
proposed research, our project was canceled without technical review. As a
result of the shocking behavior of DARPA in this regard, several key people
left Georgia Tech. Thus, by responding in good faith to a DARPA initiative,

the result was great damage to a previously healthy program. In addition,
of course, while wasting our time, DARPA also wasted the $350,000 spent
on this contract.

Clearly, this kind of management cannot be in the national interest.

References

[1] 	T.P. Barnwell, C.J.M. Hodges, and S. Gaglio, "Efficient Implemen-
tations of One and Two Dimensional Digital Signal Processing Algo-
rithms on a Multi Processor Architecture," 1979 International Con-
ference on Acoustics, Speech, and Signal Processing, Washington, DC,
April 1977.

T.P. Barnwell, S. Gaglio, and R.M. Price, "A Multi-Microprocessor
Architecture for Digital Signal Processing," Proceedings of the 1978
International Conference on Parallel Processing, August 1978.

C.J.M. Hodges, T.P. Barnwell, and D. McWhorter, "Implementation
of an All Digital Speech Synthesizer Using a Multimicroprocessor
Architecture," 1980 International Conference on Acoustics, Speech,

18

and Signal Processing, Denver, Colorado, April 1980.

[4] T.P. Barnwell, III, "Optimal Implementation of Recursive Signal
Flow Graphs on Synchronous Multiprocessor Architectures," IEEE
Workshop on Digital Signal Processing and VLSI, Santa Barbara,
CA, Sept. 1981.

[5] T.P. Barnwell and C.J.M. Hodges, "A Synchronous Multi-
Microprocessor System for Implementing Digital Signal Process-
ing Algorithms," Professional Program Session Record 21 of South-
con/82, pp. 21/4/121/4/6, March 1982 (invited).

[6] T.P. Barnwell, III, C.J.M. Hodges, and M. Randolf, "Optimum Imple-
mentation of Single Time Index Signal Flow Graphs on Synchronous
Multiprocessor Machines," Proceedings of ICASSP '82, Paris, France,
pp. 687-690, May 1982.

T.P. Barnwell, III, and C.J.M. Hodges, "Optimal Implementation of
Signal Flow Graphs on Synchronous Multiprocessors," Professional
Program Sessions Record 22 of Electro/82, June 1982 (invited).

T.P. Barnwell, III, "Synchronous Techniques for Signal Flow Graph
Implementation," NSF Workshop on Digital Signal Processing,
Washington, DC, June 1982.

T.P. Barnwell and C.J.M. Hodges, "Optimal Implementation of Sig-
nal Flow Graphs on Synchronous Multiprocessors," Proceedings of the
1982 International Conference on Parallel Processing, Belaire, MI,
August 1982.

[10] T.P. Barnwell, III, and C.J.M. Hodges, "Optimal Implementation of
DSP Algorithms on Synchronous Multiprocessors," Proc. of Work-
shop on Algorithmically Specialized Computer Organizations, Oct.
1982.

[11] T. P. Barnwell HI and D. A. Schwartz, "Optimal Implementation of
Flow Graphs on Synchronous Multiprocessors," Proc. 1983 Asilomar
Conf. on Circuits and Systems, Pacific Grove, CA, Nov. 1983.

19

[12] D. A. Schwartz and T. P. Barnwell III, "A Graph Theoretic Technique
for the Generation of Systolic Implementations for Shift-Invariant
Flow Graphs," Proc. of the International Conference on Acoustics,
Speech and Signal Processing, San Diego, CA, March 1984.

[13] D. A. Schwartz and T. P. Barnwell III, "Increasing the Parallelism
of Filters Through Transformation to Block State Variable Form,"
Proc. of the International Conference on Acoustics, Speech and Signal •
Processing, San Diego, CA, March 1984.

[14] D. A. Schwartz and T. P. Barnwell III, "Cyclo-static Multiproces-
sor Scheduling for the Optimal Realization of Shift-Invariant Flow
Graphs," Proc. of the International Conference on Acoustics, Speech
and Signal Processing, Tampa, FL, March 1984.

[15] S. H. Lee, C. J. M. Hodges, and T. P. Barnwell III, "An SSIMD Com-
piler for the Implementation of Linear Shift-Invariant Flow Graphs,"
Proc. of the International Conference on Acoustics, Speech and Signal
Processing, Tampa, FL, March 1984.

[16] D. A. Schwartz, "Multiprocessor Techniques for the Realization of
Shift Invariant Flow Graphs", Ph.D. Thesis, School of Electrical En-
gineering, Georgia Institute of Technology, June, 1985.

[17] C. E. Leiserson, Area-Efficient VLSI Computation, 1983, MIT Press,
Cambridge, MA.

[18] Alfred Fettweis, "Realizability of Digital Filter Networks," Arch.
Elek. Ubertragung, Vol. 30, Feb. 1976, pp. 90-96.

[19] Markku Renfors and Yrjo Neuvo, "The Maximum Sampling Rate of
Digital Filters Under Hardware Speed Constraints," IEEE Trans. on
Circuits and Systems, Vol. CAS-28, No. 3, March 1981, pp. 196-202.

20

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23

