
GT-CS-10-15 1

Automatic Configuration of
CESM/CCSM4 on Amazon EC2 Cloud
GT-CS-10-15

By Sameer Ansari and Rocky Dunlap, September 7, 2010

Abstract
The goal is to develop a prototype configurator service that automatically creates Amazon EC2

machine instances running on the EC2 Cloud containing ready-to-run configurations of the

Community Earth System Model (CESM). The CESM Climate Configurator (C3) service takes in high-

level experimental configuration tasks as an XML specification. In the future this will be encapsulated

by a web-based graphical user interface. From the high-level configuration input C3 determines the

closest match from a list of preconfigured Amazon Machine Images (AMI), and starts an instance (a

running AMI on the EC2 cloud). C3 then creates and sends a shell script which finishes the

configuration of the instance to the requested experiment, and returns a link to the running instance

with the specified simulation ready to run.

Motivation
Configuration of CESM simulations is a highly complex task due to the need for CESM to support a

large number of scientific scenarios. Secondly, complexity of configuration and heterogeneous

hardware and software environments leads to an inability of scientists to easily share and reproduce

previous experimental configurations. This impedes scientific progress. The cloud computing

paradigm offers a potential answer to these problems by encapsulating complete configurations of

CESM inside virtual machines. This includes the entire software stack: the operating system,

compilers, software dependencies (such as MPI and NetCDF), the CESM source code itself, and

configuration files and scripts.

This prototype system shows the viability of configuring CESM to execute in a cloud computing

environment, and furthermore, that the configuration itself can be automated removing scientists

from the details of the underlying computational environment.

Background

Community Climate System Model (CCSM)
The Community Climate System Model (CCSM) was created by NCAR in 1983 as a freely available

global atmosphere model for use by the wider climate research community. It was initially called the

Community Climate Model (CCM) until 1996. The formulation of the CCSM has steadily improved

over the past two decades. Computers powerful enough to run the model have become relatively

inexpensive and widely available, and usage of the model has become widespread in the university

community, and at some national laboratories [8].

GT-CS-10-15 2

Computational Climate Modeling
The current process for climate modeling begins with Climate scientists who must take a high-level

hypothesis and determine an experiment which can be validated or refuted by a simulation.

Easterbrook found that Climate scientists build large, complex simulations, typically with little or no

formal software engineering training, and that they rely on self-organization of teams, extensive use

of informal communication channels, and developers who are also users and domain experts [5]. In

the Met Office – the UK’s national weather service – as the range of expertise needed to develop

climate models has grown; it has become increasingly hard to provide all the necessary expertise in-

house [5]. The software development process for the Met Office involves a layered approach often

seen in open source projects [5]. At the core, about 12 people from Met R&D and CR control the

acceptance of changes into the trunk of the Unified Model (UM), the numerical modeling system

developed and used at the Met Office [7]. Most have PhDs in numerical computing. Next, about 20

or more senior scientists act as code owners, each responsible for specific sections of the UM (e.g.

atmosphere, ocean, etc). Code owners are domain experts who keep up to date with the relevant

science and maintain oversight of developments to their sections of the model. In the outer layers

are the scientists who run the models as part of their research. A “configuration manager” is

appointed for each climate model, usually a more junior scientist. They become the local experts for

knowledge about how to configure the model for particular runs, and keep track of the experiments

performed with the model. Finally a broader group of scientists both within and outside the Met

Office make occasional use of the models [5].

Traditional Grid and Cluster resources
When two or more computers are used together to solve a problem, it is called a computer cluster.

Grid computing is similar to cluster computing; however the big difference is that a cluster is

homogenous while grids are heterogeneous. A grid makes use of the spare computing power of each

computer in the group, while all the machines in a cluster are dedicated to work as a single unit and

nothing else [6]. Grid computing is decentralized with distributed job management; a cluster

computer acts as one large computer, or supercomputer.

Typically, climate modeling scientists who wish to run numerical experimentsnon-virtualized cluster

computing resources to run simulations. The National Center for Atmospheric Research’s (NCAR)

Computational & Information Systems Laboratory (CISL) provides supercomputing and data

management services to its user community [3]. CISL operates and oversees computing facilities that

are both virtual and physical, using major supercomputers such as Bluefire, Frost and Lynx [3]. A

disadvantage of such local resources is that it costs large amounts to obtain and maintain the

hardware. The Met Office currently uses a £33 million supercomputing system for weather

predications, with a theoretical speed of 1 petaflop [2]. Not only does it occupy two halls each the

size of a football pitch, it also uses 1.2 megawatts of power, enough for a small town [2].

Cloud Computing
Cloud computing is a technology where an online repository of resources, software, and information

are provided to computers and other devices on demand, like the electricity grid. In the case of

modeling, cloud computing creates the possibility of renting processing power and storage. Using

cloud resources instead of local hardware resources brings the main advantage of flexibility. Instead

GT-CS-10-15 3

of spending large amounts to buy permanent physical assets, a user can rent as much processing

power and space as needed and change it on the fly. Cloud computing also gives scientists the ability

to do experiments outside of the limits of local resources and time, giving equal ability to small

groups or large institutions to run large-scale simulations at practical costs for brief and/or uncertain

lengths of time. Some major cloud computing providers include [9] the Google Apps Engine1,

Amazon Elastic Cloud 22, Microsoft Windows Live3, Symphony VPDC4, and Terremark Worldwide The

Enterprise Cloud5. In this paper Amazon’s Elastic Cloud 2 (EC2) is chosen for its straightforward API

and convenient web interface for managing cloud resources.

Amazon EC2
One such cloud resource is Amazon’s Elastic Cloud. The Amazon Elastic Compute Cloud (Amazon

EC2) is a web service that provides resizable compute capacity in the cloud [1]. In addition to the

cloud computing resources provided, it also provides a web service interface that allows one to

modify and transfer cloud resources with minimal user knowledge. The amount of time required to

obtain and boot new server instances is at most minutes, allowing one to quickly scale capacity, both

up and down, as computing requirements change. Amazon EC2 also provides developers the tools

to build failure resilient applications and isolate themselves from common failure scenarios. The

terms used in EC2 include the following [1]:

 Amazon Machine Image (AMI)

o An AMI is a computer file system which is packaged and can be deployed on a virtual

machine.

 Instance

o An instance is a running server, it is a virtual computer in the sense that it is located

in the cloud, and can be accessed and utilized like any normal server. An instance is

created by running an AMI, and it is connected to an EBS volume for data storage.

 Elastic Block Storage (EBS) Volume

o An EBS volume starts at 10GB, and expands as the data needing to be stored

increases; it connects to an instance as if it were a physical storage device.

 Amazon Web Services (AWS)

o A convenient, straightforward web-interface for managing cloud resources.

As of July 29, 2010, the pricing of Amazons EC2 services are 34 cents an hour for a large instance [1],

which has the following properties:

 Linux/UNIX Usage

 7.5 GB memory

 4 EC2 Compute Units (2 virtual cores with 2 EC2 Compute Units each)

 850 GB instance storage (2×420 GB plus 10 GB root partition)

 64-bit platform

1
 http://code.google.com/appengine/

2
 http://aws.amazon.com/ec2/

3
 http://www.microsoft.com/cloud/

4
 http://www.savvisknowscloud.com/

5
 http://www.terremark.com/services/cloudcomputing.aspx

http://code.google.com/appengine/
http://aws.amazon.com/ec2/
http://www.microsoft.com/cloud/
http://www.savvisknowscloud.com/
http://www.terremark.com/services/cloudcomputing.aspx

GT-CS-10-15 4

One EC2 Compute Unit provides the equivalent CPU capacity of a 1.0-1.2 GHz 2007 Opteron or 2007

Xeon processor [1].

Amazon EC2 Cluster Cloud Computing
On July 13, 2010, Amazon introduced the High Performance Computing (HPC) instance type[1] which

is used for cluster cloud computing, combating the major arguments against utilizing virtual

computers, namely bandwidth bottlenecks, by designing for parallel processing between multiple

cloud computer instances. As stated directly by Amazon:

“Cluster Compute Instances provide similar functionality to other Amazon EC2 instances but

have been specifically engineered to provide high-performance compute and network

capability. Cluster Compute Instances provide more CPU than any other Amazon EC2

instance. Customers can also group Cluster Compute Instances into clusters allowing

applications to get the low-latency network performance required for tightly coupled, node-

to-node communication (typical of many HPC applications). Cluster Compute Instances also

provide significantly increased network throughput making them well suited for customer

applications that need to perform network-intensive operations. Depending on usage

patterns, applications can see up to 10 times the network throughput of the largest current

Amazon EC2 instance types.”

The advantages of Cluster Compute Instances can be applied directly to global climate model

simulations which are typically run in parallel.

Software expertise and configuration complexity
Without cloud resources, climate modeling scientists must have working knowledge of the

Community Earth System Model (CESM) modeling software to be able to install and utilize it on

computing resources, keep abreast of changes in the software, and have local knowledge of all the

models’ configuration options and what they do. Complexity in model configuration impedes

scientific progress.

This research is focused on creating an interface between scientists and CESM simulations on cloud

computers. C3’s technical details and source code are provided in the appendix. The system creates

virtual cloud computer instances with a configured copy of the CESM software based on user

specifications. This removes the burden of learning how to not only install and use the CESM

software, but to learn and build Amazon EC2 cloud instances and then install experimental setups on

them. The input is currently through and XML file containing simulation setup specifications. This

can easily be overlaid with a visual user interface which asks only for simulation specifications,

sending the data to the interface which determines the type of computing resources needed,

obtains it from the cloud resources, sets up the experiment, and returns a link to a computer image

which can be run at any time, or shared easily.

Distribution of experiments
A major disadvantage of utilizing traditional computing resources is that experiment configurations

are unique to the user, and rarely well-documented enough to be transferrable to interested outside

parties. Scientists wishing to compare experiments and notes must first communicate the complex

process of setting up the same environment to repeat or modify the experiments.

GT-CS-10-15 5

With AMIs of experiments stored on the EC2 cloud, archiving of important runs is possible. A new

possibility arises with the storage of the experiments themselves rather than just the output data. A

few advantages of storing the model rather than the output include being able to modify the input,

sharing modifiable models with colleagues, and simplifying the recreation of the experiment when

referred to by future sources. The usage of the C3 automatically creates a standardized type of

computer, based on the cloud paradigm (currently Amazon EC2), thereby entirely avoiding the

difficulty of recreating unique experimental setups. Re-creation of an experiment becomes as simple

as passing an AMI id string and running an instance of that AMI. The distribution of AMIs becomes a

matter of choice then, as it can be private to the scientist, spread to colleagues and other

institutions securely via privacy controls, or publicly available to anyone.

Earth System Curator

“The Earth System Curator is a National Science Foundation sponsored project developing a

metadata formalism for describing the digital resources used in climate simulations. The

primary motivating observation of the project is that a simulation/model’s source code plus

the configuration parameters required for a model run are a compact representation of the

dataset generated when the model is executed. The end goal of the project is a convergence

of models and data where both resources are accessed uniformly from a single registry” [4].

One direct possibility that arises from experiments as AMIs is storage of AMI ids inside the Earth

System Curator database. If experiments are saved as AMIs on the Amazon EC2 cloud as persistent

copies, it becomes possible to link such experiments directly to a single registry simply as string AMI

ids, which can be accessed publicly or privately according to the scientists’ will.

CESM/CCSM4 Configuration
The normal process for configuring and running a CESM simulation requires a Linux-based computer

with the following installed: Intel Fortran, Intel C, MPI, and NetCDF. The CESM/CCSM4 software

must also be installed. The following process is based on the CESM/CCSM documentation [9].

In CESM, each experiment is run as a ‘case’, which details the specifics of a simulation and the type

of machine(s) it will be run on. To create a CESM case, using terminal in the scripts directory of the

CESM/CCSM software a new case is created with the command create_newcase; a non-generic

machine description stores environment variables for a specific machine. The case is configured

using the command configure. It is then built and run using the commands <case_name>.build

and <case_name>.run [9].

CESM Climate Configurator (C3)
A user will interact with the CESM Cloud Configurator (C3) system via a web interface, choosing

experiment options such as grid resolution, model components (atmosphere, land-ice, etc.), number

of virtual cores, memory size, etc. C3 receives from the interface an XML file with the specifications.

It then determines the closest ‘base’ AMI (preconfigured AMI) to use, instantiates the number of

cloud instances required, configuring them to the experiment, and depending on the option, either

begins the simulation, returning to the user the instance id’s for overview, or returns an AMI id for

future usage.

GT-CS-10-15 6

As of August, 2010, the C3 system takes in an XML specification list containing the same CESM

create_newcase parameters in addition to Amazon Web Services (AWS) security information. It

creates an instance of a preconfigured Ubuntu Linux installation with CESM/CCSM4 alpha02

software installed on it. It then automatically creates a new case, configures, builds and runs the

case using the same scripts as a manual configuration.

C3 automates the creation of cloud instances configured with CESM simulations. Through C3,

experiments can be repeated and modified easily by others, and accessed through the web via

Amazon Web Services. The experiments are saved as AMI’s with a CESM model ready to be run, or

ready for further refinement.

Use Case
Clarissa’s research has begun to show the possibility of mitigating the effects of global warming, but

she needs to run a few minor simulations to test her hypothesis. Unfortunately, the simulations are

too large to run in a reasonable amount of time on anything she has access to personally.

GT-CS-10-15 7

Clarissa goes online to the C3 website, where she inputs her simulation parameters and a timeframe

of within 24 hours. C3 determines that the simulation will require at least 10,000 instances, the web

interface tells her roughly how much it will cost her overall, creates the instances on EC2, configures

and runs the experiment, returning a link for her to check any of the instances remotely. She is

emailed by C3 when the simulation finishes, with the data accessible online. She decides to

correspond with Jane about the data results, passing the link from which Jane is able to not only

access the raw output data, but also the simulation instances itself. If Jane wanted to counter-

examine Clarissa’s research with the same experiment or with modified parameters, she would be

able to configure the experiment from Clarissa’s exact setup via the link.

Architecture
The architecture of C3 consists of two primary components, the launcher component which creates

an instance (running virtual machine on EC2 Cloud), and the configurator component which sets up

the climate modeling experiment on the instance.

Launcher

The launcher takes input in the form of XML specifications containing input climate modeling

parameters such as year, grid size, and simulation type, and determining the ‘base AMI’ (pre-built

Amazon Machine Image (AMI) with CESM software installed on it) that most closely matches the

user’s specifications. It then starts an instance of the chosen base AMI on the Amazon EC2 service.

Configurator

The configurator accesses the launched instance of the base AMI and submits shell scripts that

complete the configuration determined by user-specified experimental parameters.

Packager

The packager communicates with the EC2 cloud to take the configured instance and convert it into a

new AMI. It then returns the AMI id, where the AMI is a ready-to-instantiate image of a virtual Linux

machine with a CESM model configured and ready to run.

GT-CS-10-15 8

Current Results
As of August 31, 2010, the C3 prototype is able to run an instance of an AMI, configure the instance

based on input xml specifications, and return an instance id for the running instance. This involves

the use of a limited launcher which chooses the closest AMI from a set of preconfigured base AMIs,

which is currently just a single base AMI. This base AMI is currently an Ubuntu machine with

CCSM4alpha2, it is able to create, configure, and build a case; however, it does not successfully finish

a run yet, this is possibly due to differences in software prerequisite versions, and is found to be

GT-CS-10-15 9

unrelated to the cloud via testing on a local machine. The C3 system is written using the Ruby

language as a set of procedural scripts, which read in from an XML specification file which contains

locations of key pair information as well as new case configuration information. The system then

creates a script to run on the instance that creates a new case, configures it accordingly, and finally

builds and runs it, with all output being piped back to the host.

Conclusions and Future Work
The current C3 prototype system shows the viability of running climate model simulations virtually

and sharing virtual instances containing ready-to-run simulations. Using the Amazon EC2 API C3 is

able to automatically refine a preconfigured AMI, create a new CESM case on the cloud instance and

configure the case based on an XML specification, build the case, and run the case.

The C3 system is still a prototype and can be expanded upon in myriad ways. Some major future

goals include rebuilding the system with separate classes defining launcher, configurator, and

packager, designing a separate web-based user interface, running C3 completely on the cloud,

utilizing the newly introduced EC2 Cluster Compute Instances, and abstracting the configuration

knowledge to an outside explicit knowledge base.

Appendix

Technologies Used
Amazon EC2 - The Amazon Elastic Compute Cloud (Amazon EC2) is a web service that provides

resizable compute capacity in the cloud6. EC2 is used to create virtual computers set up with working

experiments.

Ruby – A dynamic, open-source programming language7. This is the language used to write the

CESM Cloud Configurator (C3) system. It utilizes an XML Parser library to read in an XML instruction

set. The scripts also run shell commands to access the Amazon API for cloud access.

CESM/CCSM4 – The Community Earth System Model (CESM) is a fully-coupled, global climate model

that provides state-of-the-art computer simulations of the Earth's past, present, and future climate

states [8]. The CESM/CCSM4 system is installed on cloud instances to run climate models.

Process
The first step is to create the base AMIs that will be used by the C3 system, this only needs to be

done once. After that, the set of base pre-configured AMIs can be shared to be used by any running

C3 system. Second, a computer running Linux is set up that will run the C3 system. This host

computer will take in XML instructions from the user. Once a new cloud computer instance is

created by the C3 system, and the link is returned, the user can access the system via SSH from their

local machine.

6
 http://aws.amazon.com/ec2/

7
 http://www.ruby-lang.org/en/

http://aws.amazon.com/ec2/
http://www.ruby-lang.org/en/

GT-CS-10-15 10

Creation of base AMIs

Setting up an Amazon EC2 Cloud Instance (Linux 64bit)
To use Amazon EC2, an Amazon Web Services (AWS) account is required. New accounts can be

created by going to http://aws.amazon.com . Once an account is setup the user signs into the AWS

Management Console and creates a base instance from the community AMIs. The AMI used in the

prototype system is Ubuntu 9.04 Jaunty 64 bit running on an m1.large type system, with an AMI ID

ami-49c72920.

Security – Private Key, Certificate, Public Key

Before creating the instance, the user creates a new RSA keypair and saves the public key to their

local machine. To get the X.509 Certificate and private key go to the AWS ‘Account’ and then to

‘Security’. Down the page there is a tab with X.509 Certificates. Inside that box, click on create a new

X.509 Certificate and download both the private key and X.509 Certificate. To create a public key go

to the ‘Key Pairs’ tab in the AWS EC2 Console, and creates and downloads a new key-pair from

there. The name of the keypair is used whenever creating new instances from the terminal.

Setting permissions

All the keys and certificates should be set using chmod 700 so that most Secure Shell (SSH) clients

will willingly use them.

Connecting to instance
The terminology for shell/terminal commands is $> signifies the command prompt. To connect to

the instance using Linux, SSH is used with the following terminal command:

$> ssh -i <key.pem> root@<Public DNS>

Where key.pem is the public key saved on the computer, and Public DNS is the address of the

instance obtainable from the AWS Console. On a Windows machine, the instance can be connected

using an SSH client (such as SecureCRT) using the public DNS as the hostname, 22 for the port, ‘root’

for the username, and the downloaded public keypair file.

Install Prerequisites on an empty Community Cloud Instance
A Base AMI is created by first taking an empty Community cloud instance and installing the pre-

requisite software needed to run a CESM/CCSM4 scientific experiment. A community Ubuntu AMI is

selected using the Amazon Web Service (AWS). Then an instance of it is created and connected to

from the user’s local machine. First the pre-requisite software is installed and then the CESM/CCSM4

software is installed. After that, the scripts required to communicate with the C3 system are added.

Finally, the instance is saved as a new AMI; this is one of the preconfigured ‘base’ AMIs that the C3

system will use for future cloud instance creation.

Starting from fresh Ubuntu machine instance

Using terminal type:
$> apt-get update

$> apt-get install csh

CCSM uses gmake, which has been replaced by make in newer Ubuntu installations, to create a link
between make and gmake, type:

$> ln -s /usr/bin/make /usr/bin/gmake

http://aws.amazon.com/

GT-CS-10-15 11

Installing libstdc++5 library
$> wget http://fr.archive.ubuntu.com/ubuntu/pool/universe/g/gcc-

3.3/libstdc++5_3.3.6-17ubuntu1_amd64.deb

$> dpkg -i libstdc++5_3.3.6-17ubuntu1_amd64.deb

Installing Intel C Compiler, Intel 64 bit

Download file, unpack, go to folder and install
$> tar xvzf l_cproc_p_11.1.072_intel64

$> cd l_cproc_p_11.1.072_intel64

$> ./install.sh

Then follow typical install, providing serial as needed, there should be no missing prerequisites.

Installing Intel Fortran Compiler, Intel 64 bit

Download file, unpack, go to folder and install
$> tar xvzf l_cprof_p_11.1.072_intel64

$> cd l_cprof_p_11.1.072_intel64 % go to it's folder

$> ./install.sh

Then follow typical install, providing serial as needed, there should be no missing prerequisites.

Install NetCDF 4.0.1

Download from http://www.unidata.ucar.edu/downloads/netcdf/netcdf-4_0_1/index.jsp
Download the source code: netcdf-4.0.1.tar.gz - Latest stable release of netCDF as a
gzipped tar file. Unzip to folder, go to folder in terminal and type the following:

$>

export CC=/opt/intel/Compiler/11.1/072/bin/intel64/icc

export CXX=/opt/intel/Compiler/11.1/072/bin/intel64/icpc

export F77=/opt/intel/Compiler/11.1/072/bin/intel64/ifort

export FC=/opt/intel/Compiler/11.1/072/bin/intel64/ifort

export CPPFLAGS="-fPIC -DpgiFortran"

export CFLAGS="-i-static"

export FFLAGS="-i-static"

Then configure with the following options

$> ./configure --prefix=/opt/netcdf4.1-intel --disable-netcdf-4

Then make

$> make

Check the make, it should pass with no errors

$> make check

Finally install

$> make install

Install OpenMPI 1.4.2

Download from http://www.open-mpi.org/software/ompi/v1.4/
Download the source code: openmpi-1.4.2.tar.bz2
Unzip, go to folder in terminal:

$>

tar xvjf openmpi-1.4.2.tar.bz2

cd openmpi-1.4.2.tar.bz2

Type the following:

$> export LD_LIBRARY_PATH=/opt/intel/Compiler/11.1/072/lib/intel64

$> ./configure --prefix=/opt/openmpi-1.4.2-intel \

 CC=/opt/intel/Compiler/11.1/072/bin/intel64/icc \

 CXX=/opt/intel/Compiler/11.1/072/bin/intel64/icpc \

http://fr.archive.ubuntu.com/ubuntu/pool/universe/g/gcc-3.3/libstdc++5_3.3.6-17ubuntu1_amd64.deb
http://fr.archive.ubuntu.com/ubuntu/pool/universe/g/gcc-3.3/libstdc++5_3.3.6-17ubuntu1_amd64.deb
http://www.unidata.ucar.edu/downloads/netcdf/netcdf-4_0_1/index.jsp
http://www.open-mpi.org/software/ompi/v1.4/

GT-CS-10-15 12

 F77=/opt/intel/Compiler/11.1/072/bin/intel64/ifort \

 FC=/opt/intel/Compiler/11.1/072/bin/intel64/ifort

Then make

$> make

Check the make, it should pass with no errors

$> make check

Finally install

$> make install

Installing CESM/CCSM4 alpha 2 on Cloud Instance
- We will be following the instructions on

http://www.cesm.ucar.edu/models/ccsm4.0/ccsm_doc/x367.html [9]

- First, to be able to use subversion, type:

$> apt-get install subversion

- Then, to get CCSM model version, type:

$> svn list https://svn-ccsm-release.cgd.ucar.edu/model_versions

- type 'p' to accept certificate permanently

- When asking for password for your username, enter to skip

- type 'guestuser' for username

- type 'friendly' for password

- You will see a list of types of CCSM, in this case we will use ccsm4_0_a02/

- Type to move files to ~/ccsm4 (in your home directory):

$> svn co https://svn-ccsm-

release.cgd.ucar.edu/model_versions/ccsm4_0_a02 ccsm4

- CCSM is now installed in your home directory as ~/ccsm4

Making a Custom CESM/CCSM Machine type
A custom CESM/CCSM machine is the machine specifications detailing things ranging from which

compilers are used to the type of processor, defining what type of hardware will be interacting with

the CESM/CCSM installation. A new custom machine should be made for the newly created base

AMI and all its software, to simplify the running of experiments. The adding of a new custom

machine to the CCSM4 system is as follows:

- Following instructions on
http://www.ccsm.ucar.edu/models/ccsm4.0/ccsm_doc/c2151.html#port_adding_mach [9]

- Go to ~/ccsm4 in terminal and type

$> mkdir inputdata

- Go to ~/ccsm4/scripts, and type

./create_newcase -case test1 \

 -res f19_g16 \

 -compset X \

 -mach generic_linux_intel \

 -scratchroot /ptmp/ccsm4usr \

 -din_loc_root_csmdata ~/ccsm4/inputdata \

 -max_tasks_per_node 8

http://www.cesm.ucar.edu/models/ccsm4.0/ccsm_doc/x367.html
http://www.ccsm.ucar.edu/models/ccsm4.0/ccsm_doc/c2151.html#port_adding_mach

GT-CS-10-15 13

- Go to ~/ccsm4/scripts/test1 in terminal and type:
 $> cp env_mach_specific

../ccsm_utils/Machines/env_machopts.samubuntu

Replace 'samubuntu' with any name of choice for specific machine, keeping consistent with that
name in future commands and scripts.
- Then

$> cp Macros.generic_linux_intel

../ccsm_utils/Machines/Macros.samubuntu

- Then edit the ~/ccsm4/scripts/ccsm_utils/Machines/Macros.samubuntu file and delete (from
the start forward) everything up to the lines:

$

$

$#==

==

$ # The following always need to be set

$

- That first section of the Macros file is added automatically when a case is configured so should not
be included in the machine specific setting.
- Then continue editing the Macros.samubuntu file:
- Changing from:

FC := mpif90

CC := mpicc

NETCDF_PATH := /usr/local/netcdf-3.6.3-intel-3.2.02

MPICH_PATH := /usr/local/mpich-1.2.7p1-intel-3.2.02

MPI_LIB_NAME := mpich

- To:
FC := /opt/openmpi-1.4.2-intel/bin/mpif90

CC := /opt/openmpi-1.4.2-intel/bin/mpicc

NETCDF_PATH := /opt/netcdf4.1-intel

MPICH_PATH := /opt/openmpi-1.4.2-intel

MPI_LIB_NAME := mpi_f90

- Create a mkbatch.samubuntu file in ccsm4/scripts/ccsm_utils/Machines.

$> cd ~/ccsm4/scripts/ccsm_utils/Machines

$> cp mkbatch.generic_linux_intel mkbatch.samubuntu

- Then edit the file mkbatch.samubuntu (terminal in ~/ccsm4/scripts/ccsm_utils/Machines) on
the 2nd line:
- Changing from:

set mach = generic_linux_intel

- To:
set mach = samubuntu

- Add '/opt/openmpi-1.4.2-intel/bin/mpirun -np ${maxtasks} ./ccsm.exe >&!
ccsm.log.\$LID' below these lines:

#mpiexec -n ${maxtasks} ./ccsm.exe >&! ccsm.log.\$LID

#mpirun -np ${maxtasks} ./ccsm.exe >&! ccsm.log.\$LID

- , resulting in:

#mpiexec -n ${maxtasks} ./ccsm.exe >&! ccsm.log.\$LID

#mpirun -np ${maxtasks} ./ccsm.exe >&! ccsm.log.\$LID

/opt/openmpi-1.4.2-intel/bin/mpirun -np ${maxtasks} ./ccsm.exe >&!

ccsm.log.\$LID

- Then edit the env_machopts.samubuntu file:
- Changing from:

#--- set paths

GT-CS-10-15 14

#setenv INTEL_PATH /usr/local/intel-cluster-3.2.02

#setenv MPICH_PATH /usr/local/mpich-1.2.7p1-intel-3.2.02

#setenv PATH

${INTEL_PATH}/fc/11.0.074/bin/intel64:${INTEL_PATH}/cc/11.0.074/bi

n/intel64:${MPICH_PATH}/bin:${PATH}

#setenv LD_LIBRARY_PATH

${INTEL_PATH}/cc/11.0.074/lib/intel64:${INTEL_PATH}/fc/11.0.074/li

b/intel64:${LD_LIBRARY_PATH}

#--- set env variables for Macros if needed

#setenv NETCDF_PATH something

- To:

#--- set paths

setenv INTEL_PATH /opt/intel/Compiler/11.1/072

setenv MPICH_PATH /opt/openmpi-1.4.2-intel

setenv PATH

${INTEL_PATH}/bin/intel64/ifort:${INTEL_PATH}/bin/intel64/icc:${MP

ICH_PATH}/bin:${PATH}

setenv LD_LIBRARY_PATH ${INTEL_PATH}/lib/intel64:${MPICH_PATH}/lib

#--- set env variables for Macros if needed

setenv NETCDF_PATH /opt/netcdf4.1-intel

- Then edit the config_machines.xml file, placing between the following two lines:

 <config_machines>

 <machine MACH="bluefire"

- put the following below ' <config_machines>' and above '<machine MACH="bluefire"'
<machine MACH="samubuntu"

 DESC="Sam's Ubuntu Setup for Cloud Instance"

 EXEROOT="~/ccsm4/tmp/$CASE"

 OBJROOT="$EXEROOT"

 LIBROOT="$EXEROOT/lib"

 INCROOT="$EXEROOT/lib/include"

 DIN_LOC_ROOT_CSMDATA="~/ccsm4/inputdata"

 DOUT_S_ROOT="~/ccsm4/tmp/archive/$CASE"

 CCSM_BASELINE="~/ccsm4/ccsm_baselines"

 GMAKE_J="2"

 MAX_TASKS_PER_NODE="8"

 PES_PER_NODE="1"

 OS="Linux" />

Setting up a Host Computer (Linux)
The host Linux computer which will host the C3 system (in this case the scripts that interact with

EC2) needs access to the Internet to be able to connect to the cloud, and the following Amazon API

tools installed:

$> apt-get install ec2-api-tools

$> apt-get install ec2-ami-tools

The API tools package is used for launching instances, and the AMI tools package is used for

packaging instances into AMIs. The host computer does not need the CESM/CCSM4 software

installed, as that will already be installed in the base AMIs.

Saving Instance to AMI
On the Amazon AWS web interface, a running instance can be turned into an AMI by right clicking

and choosing “Turn into an Image (EBS AMI).” Then, once an AMI is made, the AMI ID can be

used in the future for creating new instances.

GT-CS-10-15 15

Automated instance saving to AMI

To automatically turn an instance into an AMI, such as when a new instance is made and the setup

for running a test is done and ready to go, the command used is ec2-create-image. Documentation

can be found at http://docs.amazonwebservices.com/AWSEC2/latest/CommandLineReference/ .

To create an AMI from an instance, the following command is used:

$> ec2-create-image <instance id>

where <instance id> is something of the form i-######. This AMI can then be used to create as

many instances as needed.

XML input syntax
The C3 system will take input via an XML configuration file, separate from the CESM/CCSM software.

Eventually the XML file will be populated via a GUI rather than manually. The XML configuration file

used by the C3 system is setup with the following hierarchy:

<ccsm4>

 <create_newcase>

 <keypairs>

The first section is the create_newcase directory, which holds the configuration setup for an

experimental run, including things like the computer setup, the machine used, the case name, and

the resolution acronym. The options that can be added here include all that are allowed the by

CCSM4 create_newcase script. The second major directory is the keypairs directory, which holds

both the keypair name created on the Amazon Web Services EC2 Cloud, as well as the directory

locations of the private key, X509 Certificate, public key, and the AMI id of the pre-configured base

AMI to be launched as an instance.

Example XML configuration file ccsm4_samubuntu.xml

<?xml version="1.0"?>

<ccsm4>
 <create_newcase>

 <case>test2</case>

 <res>f19_g16</res>

 <compset>X</compset>

 <mach>samubuntu</mach>
 </create_newcase>

 <keypairs>

 <!-- keypair_name is the name of the keypair as known on the AWS
keypair tab, not a location -->

 <keypair_name>key2</keypair_name>

 <public_key>~/Documents/Keys/key2.pem</public_key>

 <private_key>~/Documents/Keys/pk-

T7NUKMNPGWFDQDYJ2QYXNYTAX6ERL6WJ.pem</private_key>

 <certificate>~/Documents/Keys/cert-

T7NUKMNPGWFDQDYJ2QYXNYTAX6ERL6WJ.pem</certificate>
 <!-- This ami_id corresponds to the base 64bit Ubuntu private
AMI, with CCSM4 already made -->

 <ami_id>ami-52e2093b</ami_id>
 </keypairs>

</ccsm4>

Automatically creating new instance from AMI
The script ‘ReadXML_CreateNewInstance.rb’ reads in a set of XML instructions detailing a scientific

simulation (i.e., a particular CESM case) as well as the keypair and base AMI id information, and uses

http://docs.amazonwebservices.com/AWSEC2/latest/CommandLineReference/

GT-CS-10-15 16

that to create a new cloud instance from the base AMI on the Amazon EC2 cloud, returning an

instance id link which can be used to connect to the instance. This file is a procedural script written

using the Ruby language, which interacts with Amazon EC2 via the Amazon API through the Linux

terminal.

#!/usr/bin/env ruby

This file needs to be located in same folder as key to be used

require 'net/http'

require 'rexml/document'

require 'time'

include REXML

security = "SSHonly" # Premade security on AWS for new instances,

allows only SSH ports

Input XML Filename

xml_filename = "ccsm4_samubuntu.xml"

xml_filename = ARGV[0] if ARGV.length == 1

##

puts "---"

puts "-- READING XML : #{xml_filename}"

puts "---"

ami_id = nil

doc = Document.new(File.new(xml_filename))

XPath.each(doc, "//ami_id") { |element| ami_id = element.text }

if ami_id == nil

 raise "No ami_id given, need <ami_id>something</ami_id> in xml

inside <keypairs>"

end

##

#####################

Start up an instance

If private key tag or certificate is given, append it to the

ec2run script

keypair_name = nil

private_key = nil

certificate = nil

public_key = nil

XPath.each(doc, "//keypair_name") {|element| keypair_name =

element.text}

XPath.each(doc, "//public_key") {|element| public_key =

element.text}

XPath.each(doc, "//private_key") {|element| private_key =

element.text if element.text }

XPath.each(doc, "//certificate") {|element| certificate =

element.text if element.text }

raise "No Keypair Name provided" unless keypair_name

raise "No Public Key location provided" unless public_key

raise "No Private Key location provided." if private_key == nil

raise "No Certificate location provided." if certificate == nil

##

#~ puts "---"

#~ puts "-- EXPORTING KEY TO ENVIRONMENT "

#~ puts "---"

#~ # Update environment variables

GT-CS-10-15 17

#~ system "echo BEGINNING EXPORTS..."

#~ system "export EC2_PRIVATE_KEY=#{private_key}"

#~ system "export EC2_CERT=#{certificate}"

#~ system "echo EXPORTS DONE"

##

puts "---"

puts "-- CREATING NEW CLOUD INSTANCE "

puts "---"

run_cmd = "ec2run #{ami_id} --instance-type m1.large --group

\"#{security}\""

run_cmd << " --key #{keypair_name}"

run_cmd << " --private-key #{private_key} --cert #{certificate}"

puts "Creating new instance and running with following command:"

puts "$> #{run_cmd}"

run_output = `#{run_cmd}`

puts run_output

re = /i-\w{8}/

instance_id = re.match(run_output)

raise "Unable to start instance" unless instance_id

puts "INSTANCE SUCCESSFULLY MADE"

puts

puts "Instance ID : #{instance_id}"

puts

puts "---"

puts "-- CONNECTING TO INSTANCE"

puts "---"

Get ssh info

desc_instance_command = "ec2din #{instance_id}"

puts "Getting DNS info using command:\n#{desc_instance_command}"

pends = /pending/

pending = true

public_dns = nil

start = Time.now

i=0

while pending

 i+=1

 puts

 puts "Attempt #{i}: #{Time.now-start}s"

 desc_instance = `#{desc_instance_command}`

 puts "Output from command: "

 puts desc_instance

 pending = pends.match(desc_instance)

 raise "Instance taking too long to get running" if (Time.now -

start) > 60 # If it takes more than a minute give up

end

re = /ec2-\S+/

public_dns = re.match(desc_instance)

puts "INSTANCE RUNNING..."

puts "Public DNS: #{public_dns}"

puts

ssh_prefix= "ssh -i #{public_key} root@#{public_dns} "

ssh_cmd = ssh_prefix + "ls -l"

puts "Testing connection via 'ls -l' command..."

puts "Connecting via SSH using following:"

puts ssh_cmd

GT-CS-10-15 18

output = `#{ssh_cmd}`

puts "BEGIN OUTPUT"

puts output

puts "END OUTPUT"

puts

Converting input XML into configuration instructions
The script ‘ReadXML_MakeConfig.rb’ is used to read in a set of XML instructions detailing a scientific

simulation (i.e., a particular CESM case), and convert that into a shell script that creates and

configures a CCSM4 case. The shell script is saved as a file to be transferred to a respective cloud

instance with the script ‘ConnectToInstance.rb’. This Ruby file also interacts with EC2.

#!/usr/bin/env ruby

This file needs to be located in same folder as key to be used

require 'net/http'

require 'rexml/document'

require 'time'

include REXML

Input XML Filename

xml_filename = "ccsm4_samubuntu.xml"

xml_filename = ARGV[0] if ARGV.length == 1

##

puts "---"

puts "-- READING XML : #{xml_filename}"

puts "---"

Output script name

out_script = "ccsm4_make_simulation_script.txt"

commands = "#!/bin/bash\n\n"

commands << "cd ~/ccsm4/scripts/\n\n"

commands << "echo \"Creating new case...\"\n"

create_newcase_cmd = "./create_newcase "

case_name = nil

mach_name = nil

doc = Document.new(File.new(xml_filename))

doc.root.each_element("create_newcase/*") { |element|

 create_newcase_cmd << "-#{element.name} #{element.text} "

}

XPath.each(doc, "//case") { |element| case_name = element.text }

XPath.each(doc, "//mach") { |element| mach_name = element.text

}raise "No case name given, need <case>something</case> in xml

inside <create_newcase>" unless case_name

raise "No machine name given, need <mach>something</mach> in xml

inside <create_newcase>" unless mach_name

commands << create_newcase_cmd + "\n"

commands << "cd ~/ccsm4/scripts\/#{case_name}/\n\n"

commands << "\necho \"Configuring case...\"\n"

commands << "./configure -case\n\n"

BUILD CASE

commands << "\necho \"Building case...\"\n"

commands << "./#{case_name}.#{mach_name}.clean_build\n"

commands << "./#{case_name}.#{mach_name}.build\n"

RUN CASE

GT-CS-10-15 19

commands << "\necho \"Running simulation...\"\n"

commands << "./#{case_name}.#{mach_name}.run\n"

commands << "\necho \"Run complete.\""

puts "Outputting following commands to file '#{out_script}'...\n"

puts "###"

puts commands

File.open(out_script,'w'){|f| f.write(commands)}

puts "###"

puts "Finished writing to '#{out_script}'"

Sending configuration instructions to new instance
The script ConnectToInstance.rb connects to a running cloud instance created using the script

‘ReadXML_CreateNewInstance.rb’. To connect it reads in the same initial XML C3 system

configuration file for the key and certificate information. It then transfers the shell script created by

‘ReadXML_MakeConfig.rb’ to the cloud instance, and runs the script, which causes the machine to

create and configure a climate model case, and run the model, piping all output back to the local

machine. These files are procedural scripts written using the Ruby language, which interact with

Amazon EC2 via the Amazon API through the Linux terminal.

#!/usr/bin/env ruby

This file connects to a previously known instance, sends the

config file to it, and runs the config file

Which in essence creates and runs a climate model on the

instance

require 'net/http'

require 'rexml/document'

require 'time'

include REXML

instance_id = "i-c102a7ab"

instance_id = ARGV[0] if ARGV.length == 1

security = "SSHonly" # Premade security on AWS for new instances,

allows only SSH ports

Input XML Filename

xml_filename = "ccsm4_samubuntu.xml"

##

READ XML

puts "---"

puts "-- READING XML : #{xml_filename}"

puts "---"

doc = Document.new(File.new(xml_filename))

keypair_name = nil

private_key = nil

certificate = nil

public_key = nil

XPath.each(doc, "//keypair_name") {|element| keypair_name =

element.text}

XPath.each(doc, "//public_key") {|element| public_key =

element.text}

XPath.each(doc, "//private_key") {|element| private_key =

element.text if element.text }

XPath.each(doc, "//certificate") {|element| certificate =

element.text if element.text }

raise "No Keypair Name provided" unless keypair_name

raise "No Public Key location provided" unless public_key

GT-CS-10-15 20

raise "No Private Key location provided." if private_key == nil

raise "No Certificate location provided." if certificate == nil

##

INSTANCE INFO

puts "Instance ID : #{instance_id}"

puts

CONNET TO INSTANCE

puts "---"

puts "-- CONNECTING TO INSTANCE"

puts "---"

Get ssh info

desc_instance_command = "ec2din #{instance_id}"

#desc_instance_command << " --key #{keypair_name}"

desc_instance_command << " --private-key #{private_key} --cert

#{certificate}"

puts "Getting DNS info using command:\n#{desc_instance_command}"

pends = /pending/

pending = true

public_dns = nil

start = Time.now

i=0

while pending

 i+=1

 puts

 puts "Attempt #{i}: #{Time.now-start}s"

 desc_instance = `#{desc_instance_command}`

 puts "Output from command: "

 puts desc_instance

 pending = pends.match(desc_instance)

 raise "Instance taking too long to get running" if (Time.now -

start) > 60 # If it takes more than a minute give up

end

re = /ec2-\S+/

public_dns = re.match(desc_instance)

puts

puts "FOUND INSTANCE"

puts

puts "Public DNS: #{public_dns}"

puts

raise "Not pending, but no Public DNS either, can't connect "

unless public_dns

ssh_prefix= "ssh -i #{public_key} root@#{public_dns} "

ssh_cmd = ssh_prefix + "ls -l"

puts "Testing connection via 'ls -l' command..."

puts "Connecting via SSH using following:"

puts ssh_cmd

output = `#{ssh_cmd}`

puts "BEGIN OUTPUT"

puts output

puts "END OUTPUT"

puts

Send config file to instance

puts "---"

puts "-- SENDING CONFIG FILE TO INSTANCE"

puts "---"

config_filename = "ccsm4_make_simulation_script.txt"

scp -i key from_loc server:to_loc

puts "Sending #{config_filename} via scp using command: "

GT-CS-10-15 21

scp_cmd = "scp -i #{public_key} #{config_filename}

root@#{public_dns}:~/"

puts scp_cmd

output = `#{scp_cmd}`

puts output

puts "---"

puts "-- RUNNING CONFIG FILE ON INSTANCE"

puts "---"

#`echo -ne '\015'`

cmd1 = "chmod 700 #{config_filename}; "

cmd2 = "./#{config_filename}"

puts "Changing permissions of config file and running config file"

ssh_cmd = ssh_prefix + "-t \""+cmd1+cmd2+ "\""

puts "Running following command on instance: #{ssh_cmd}"

system ssh_cmd

#puts output

Running model on new instance

Create New Case

- Following instructions on http://www.ccsm.ucar.edu/models/ccsm4.0/ccsm_doc/x444.html

and http://www.ccsm.ucar.edu/models/ccsm4.0/ccsm_doc/c2151.html [9]

- If folder doesn't already exist, go to ~/ccsm4 in terminal and type

$> mkdir inputdata

- Go to ~/ccsm4/scripts in terminal and type the following (replace samubuntu with machine name

chosen):

$>

./create_newcase -case test1 -res f19_g16 -compset X -mach

samubuntu

- A folder /test1 is made in current directory, going there in terminal and typing

$> ./configure -case

Build Case

- Then, run:

$> ./test1.generic_linux_intel.build

which on a first run will download missing input data over an extended period of time (Also possibly

requiring reentry of CCSM login information).

- If it is not the first run, type:

$> ./test1.generic_linux_intel.clean_build

The output rm : no match is normal

Run

- Then, run:

$> ./test1.generic_linux_intel.run

References
[1] Amazon. Amazon Elastic Compute Cloud. Retrieved June 2010, from Amazon EC2.

<http://aws.amazon.com/ec2/>

http://www.ccsm.ucar.edu/models/ccsm4.0/ccsm_doc/x444.html
http://www.ccsm.ucar.edu/models/ccsm4.0/ccsm_doc/c2151.html
http://aws.amazon.com/ec2/

GT-CS-10-15 22

[2] S. de Bruxelles. Met Office says new super-computer will give more accurate forecasts. The
Times. May 22, 2009.
<http://www.timesonline.co.uk/tol/news/weather/article6338014.ece>

[3] Computational & Information Systems Laboratory (CISL). CISL: a computing laboratory.
Retrieved September, 2010, from CISL. <http://www2.cisl.ucar.edu/cisl-computing>

[4] R. Dunlap, Mark, L., Rugabear, S., Balaji, V., Chastang, J., Cinquini, L., et al. Earth system
curator: metadata infrastructure for climate modeling. Earth Science Informatics, Vol 1 (3-4),
pp131-149. March 2008. < http://www.springerlink.com/content/t781174802510364/>

[5] S. M. Easterbrook and T. Johns, Engineering the Software for Understanding Climate Change.
IEEE Computing in Science and Engineering, Vol 11 (6), pp65-74. November 2009.
<http://www.cs.toronto.edu/~sme/papers/2008/Easterbrook-Johns-2008.pdf>

[6] Journal of Theoretical and Applied Information Technology (JATIT). Comparison of Grid
Computing vs. Cluster Computing. Retrieved September, 2010, from JATIT.
<http://www.jatit.org/research/introduction_grid_computing.htm>

[7] Met Office. Met Office Unified Model. Retrieved September, 2010, from Met Office Beta.
<http://www.metoffice.gov.uk/research/modelling-systems/unified-model>

[8] National Center for Atmospheric Research (NCAR). Community Earth System Model.
Retrieved May 2010, from Community Earth System Model. <http://ccsm.ucar.edu/>

[9] M. Verstenstein, T. Craig, A. Middleton, D. Feddema, and C. Fischer. CCSM4.0 User’s Guide.
Community Earth System Model (CESM). Retrieved on July, 2010.
<http://www.cesm.ucar.edu/models/ccsm4.0/ccsm_doc/book1.html>

[10] WikiInvest. Cloud Computing. Retrieved September, 2010.
<http://www.wikinvest.com/concept/Cloud_Computing>

http://www.timesonline.co.uk/tol/news/weather/article6338014.ece
http://www2.cisl.ucar.edu/cisl-computing
http://www.springerlink.com/content/t781174802510364/
http://www.cs.toronto.edu/~sme/papers/2008/Easterbrook-Johns-2008.pdf
http://www.jatit.org/research/introduction_grid_computing.htm
http://www.metoffice.gov.uk/research/modelling-systems/unified-model
http://ccsm.ucar.edu/
http://www.cesm.ucar.edu/models/ccsm4.0/ccsm_doc/book1.html
http://www.wikinvest.com/concept/Cloud_Computing

