
 

 

University of Warwick institutional repository  
This paper is made available online in accordance with 
publisher policies. Please scroll down to view the document 
itself. Please refer to the repository record for this item and our 
policy information available from the repository home page for 
further information.  
To see the final version of this paper please visit the publisher’s website. 
Access to the published version may require a subscription. 
 

 Author(s):  John E Reid, Sascha Ott and Lorenz Wernisch 

 Article Title:  Transcriptional programs: Modelling higher order 
structure in transcriptional control 

 Year of publication: 2009 
 Link to published version:  

http://dx.doi.org/
 

10.1186/1471-2105-10-218 
Publisher statement: None 

 

 

 
 
 
 
 
 
 
 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/47421?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/�


BioMed CentralBMC Bioinformatics

ss
Open AcceResearch article
Transcriptional programs: Modelling higher order structure in 
transcriptional control
John E Reid*1, Sascha Ott2 and Lorenz Wernisch1

Address: 1MRC Biostatistics Unit, Institute of Public Health, University Forvie Site, Robinson Way, Cambridge CB2 0SR, UK and 2Systems Biology 
Centre, Coventry House, University of Warwick, Coventry CV4 7AL, UK

Email: John E Reid* - john.reid@mrc-bsu.cam.ac.uk; Sascha Ott - S.Ott@warwick.ac.uk; Lorenz Wernisch - lorenz.wernisch@mrc-bsu.cam.ac.uk

* Corresponding author    

Abstract
Background: Transcriptional regulation is an important part of regulatory control in eukaryotes.
Even if binding motifs for transcription factors are known, the task of finding binding sites by
scanning sequences is plagued by false positives. One way to improve the detection of binding sites
from motifs is by taking cooperativity of transcription factor binding into account. We propose a
non-parametric probabilistic model, similar to a document topic model, for detecting transcriptional
programs, groups of cooperative transcription factors and co-regulated genes. The analysis results
in transcriptional programs which generalise both transcriptional modules and TF-target gene
incidence matrices and provide a higher-level summary of these structures. The method is
independent of prior specification of training sets of genes, for example, via gene expression data.
The analysis is based on known binding motifs.

Results: We applied our method to putative regulatory regions of 18,445 Mus musculus genes. We
discovered just 68 transcriptional programs that effectively summarised the action of 149
transcription factors on these genes. Several of these programs were significantly enriched for
known biological processes and signalling pathways. One transcriptional program has a significant
overlap with a reference set of cell cycle specific transcription factors.

Conclusion: Our method is able to pick out higher order structure from noisy sequence analyses.
The transcriptional programs it identifies potentially represent common mechanisms of regulatory
control across the genome. It simultaneously predicts which genes are co-regulated and which sets
of transcription factors cooperate to achieve this co-regulation. The programs we discovered
enable biologists to choose new genes and transcription factors to study in specific transcriptional
regulatory systems.

Background
Organisms ranging in complexity from bacteria to higher
eukaryotes are able to react and adapt to environmental
and cellular signals. These responses are often encoded as
complex gene regulatory networks. In these networks the
expression of a gene's products is regulated by the activity

of other genes. Although regulation can occur at many lev-
els, we focus on transcriptional regulation, one of the
most important and pervasive methods of regulation in
eukaryotes. Transcriptional regulation occurs when cer-
tain gene products, transcription factors (TFs), bind to the
DNA at binding sites (TFBSs) and affect the transcription
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of the regulated gene by modulation of the RNA polymer-
ase complex. TFBSs often appear in clusters or cis-regula-
tory modules (CRMs), presumably to enable interactions
between TFs binding there.

Combinatorics of transcriptional regulation
TFs do not work in isolation from each other. Particularly
in higher organisms, combinatorial operations are often
necessary for the response of a cell to external stimuli or
developmental programs. Such a response is frequently
implemented as a transcriptional switch where a combi-
nation of presence or absence of certain TFs regulates the
expression of a certain gene. Several well characterised
examples of the coordination of TFs are known. For
instance, a set of well studied TFs in Drosophila mela-
nogaster that govern spatial patterns of development in its
embryo is described in [1]; higher eukaryotes are known
to use CRMs to integrate cellular signalling information
[2]; the development of the anterior pituitary gland is reg-
ulated by combinatorial actions of specific activating and
restricting factors [3] which determine cell type.

Conversely, cellular processes often involve the coordi-
nated expression of sets of genes. Hence there is reason to
suppose that not only do particular sets of transcription
factors regulate particular genes but that these sets are also
reused across the genome: that is, co-regulated genes are
often targets of the same TFs. Genomic data commonly
available today, such as sequence data, expression data or
TF localisation data, do not permit direct inference of the
higher order structure in transcriptional regulation. Most
analyses of these data operate at the individual TF level.
When the data permit it and the biologist is interested in
this level of detail, it is certainly appropriate. However,
genomic data is often noisy or incomplete. In this case a
summary or view of higher order structure in transcrip-
tional regulation is easier to interpret.

Identification of binding sites by sequence analysis
The databases TRANSFAC [4] and JASPAR [5] hold the
most widely used collections of position specific scoring
matrices (PSSMs). Each PSSM is a probabilistic model of
the DNA binding specificities of a particular TF: given the
PSSM and a stretch of DNA the likelihood of that TF bind-
ing to different positions in the sequence can be compu-
tationally predicted. There are several problems with this
approach: algorithms that find putative binding sites are
known to generate many false positives; the regions in
which regulatory TFBSs are located are not normally
known in advance; and, unfortunately, JASPAR and
TRANSFAC do not contain PSSMs for all TFs of interest.
We chose to use the PSSMs in TRANSFAC for our analysis.

Our model
Our model aims to discover cooperative effects between
transcription factors in noisy sequence analysis data. We

use a model that has had success in the field of document
modelling where the task is to infer the latent topics that
best summarise a corpus of documents. Each document is
modelled as a mixture of several topics drawn from a
shared pool of unknown topics and each topic is mod-
elled as a collection of words. Only the documents are
given as input to the model.

To explain the use of this model in the context of tran-
scriptional regulation we draw an analogy: in our model a
document is analogous to a gene; a word is analogous to
a transcription factor and the occurrence of a word in a
document is analogous to a binding site in a gene's CRM.
To complete the picture, a topic is analogous to what we
term a transcriptional program (TP). A TP captures the
notion of a set of transcription factors that act in a coordi-
nated manner across a set of target genes. So in the same
way that a document's topics define its context, a gene's
transcriptional programs summarise its transcriptional
regulation. Figure 1 shows how transcriptional programs
can summarise regulatory relationships.

Hierarchical Dirichlet processes (HDPs) are a natural
framework to use in document-topic modelling and
hence for our work in transcriptional regulation. In our
framework, transcriptional programs are modelled as dis-
tributions over transcription factors. Each gene's transcrip-
tional regulation is modelled as a mixture of these
programs. Dirichlet process mixtures (DPMs) are a non-
parametric technique for modelling mixtures where the
number of components is unknown. We use DPMs to
model the mixture associated with each gene's transcrip-
tional regulation. In order to share transcriptional pro-
grams between genes we use a common base distribution
for the DPMs which is itself a DPM. This step makes our
model hierarchical. An extensive review of HDPs is given
in [6].

Previous work
Quite a few approaches have been suggested in the litera-
ture to identify groups of TFs that co-regulate genes, often
called transcriptional modules (TM). They all differ from
our approach in several respects. One major difference is
that our concept of transcriptional programs (TP) is
slightly more abstract than TMs. A TM is often defined as
a set of TFs that physically bind next to each other in the
vicinity of the regulated gene. Many approaches either
enumerate all possible combinations of TFs up to a certain
number (less than half a dozen or so) as potential TMs
and search for over-representation of TMs in various
groups of genes [7-10]. There is usually a computationally
intensive post-processing step involved in clustering TMs
according to ad hoc rules in these combinatorial
approaches to reduce the number of highly similar TMs.
Alternatively, an incidence matrix (or bipartite graph) is
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calculated linking each TF to the genes it regulates [11-13]
(see Figure 1 top).

In contrast, a transcriptional program, as we define it,
comprises TFs as well as genes (see Figure 1 bottom) and
does not necessarily require a physical vicinity of binding
sites for all the TFs in the program. For example, if two
transcriptional modules have some common TFs, not nec-
essarily sharing all of them, they might be merged into
one transcriptional program by our algorithm. Whether
this happens depends on the amount of overlap and the
number of co-occurrences of their TFs. In a way, transcrip-
tional programs generalise both transcriptional modules
and TF-gene incidence matrices and provide a higher-level
summary contained in these structures. To our knowl-
edge, the only other work defining transcriptional pro-
grams in a similar way is by Tanay et al. [14]. In contrast

to their work, where such programs are found by enumer-
ation, scoring and filtering, we model transcriptional pro-
grams explicitly within a comprehensive probabilistic
model.

Some work, as discussed below, insists on clusters of co-
regulated genes or groups of co-regulating TFs to be dis-
joint. Our approach is open to the possibility that genes as
well as TFs can be members of several TPs simultaneously.
A further difference is that many approaches require a pos-
itive gene set, for example, by co-expression, as well as a
background, set to detect TMs that characterise one set
against the other. Our approach is essentially an unsuper-
vised one, where TPs are discovered from one sequence
set. This is a more challenging problem but it requires less
input from the user and avoids problems of mis-identifi-
cation of the positive set.

To our knowledge, our approach is the first application of
a document topic model to transcriptional regulation.
Such models have the distinct advantage of using very few
free parameters that need to be specified.

Being more specific about previous work, CREME [7] uses
a sliding window to look for combinations of transcrip-
tion factor binding sites that are over-represented in pro-
moters of the genes of interest. Only combinations whose
sites are physically close to one another can be detected in
this way. The user must specify the maximum number of
factors in a promoter. oPOSSUM2 [8] looks for pairs and
triplets of transcription factors that are over-represented in
the promoters of the genes. TREMOR [10] is similar but
uses the Mahalanobis distance to distinguish between
similar PSSMs that represent different members of the
same family of transcription factors. It also removes some
dependence on arbitrary p-value thresholds.

All of these methods discriminate between a positive user-
specified set of genes and a negative (background) set.
Our method differs in that it fits a model of the entire set
of genes at once.

Kreiman [9] looks for over-representation of combina-
tions of up to 4 TFs in co-expressed genes. Bluethgen et al.
[15] use Cluster-Buster [16] to identify groups of poten-
tially co-regulating TFs which are then further filtered by
statistical enrichment of classes of regulated genes in the
Gene Ontology (GO) catalogue [17]. There is some work
that integrates more than one data source. Some combi-
nation of ChIP-chip, binding site analysis (either de novo
or PSSM-based) and expression data are commonly used.
Heuristics or probabilistic models are used to search for
consistent structure amongst these data sources. Almost
all this work has been carried out in Saccharomyces cerevi-
siae. ReMoDiscovery [11] builds on the Apriori framework

Transcriptional programsFigure 1
Transcriptional programs. Two schematics of the same 
regulatory network. Both representations have 4 transcrip-
tion factors at the top and 7 genes at the bottom. The lower 
network uses latent transcriptional programs as intermediar-
ies to reduce its complexity. Note that the transcriptional 
programs can overlap, for example TF1 is in both programs 
and that the same gene can be targeted by multiple pro-
grams, for example G3 and G4.

TF0 TF1 TF2 TF3

G0 G1 G2 G3 G4 G5 G6

TF0 TF1 TF2 TF3

TP0 TP1

G0 G1 G2 G3 G4 G5 G6
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in a two-step procedure which examines expression pro-
files and ChIP-chip data. MOFA [18] combines binding
data with time-series microarray data to build transcrip-
tional modules and explicitly models which TFs up or
down-regulate which genes. SAMBA [14] is a biclustering
framework that analyses gene expression, protein interac-
tion, growth phenotype, and TF binding data. In COG-
RIM, Chen et al. [12] use Gibbs sampling in a Bayesian
hierarchical model to integrate expression data, PSSM
analyses and ChIP-chip data. They model uncertainty in
each data source independently but each module is asso-
ciated with exactly one transcription factor. As discussed
above most of this work is reconstructing pair relation-
ships of TFs and regulated genes.

Segal et al. [19] have integrated a motif search algorithm
and gene expression data to find motif profiles (analo-
gous to transcriptional programs) in Saccharomyces cerevi-
siae. Their model partitions the genes into a fixed number
of mutually exclusive sets which have the same expression
pattern across experiments. Each gene is the target of
exactly one motif profile, hence their model does not
allow so much structure in the latent profiles/programs.
Also, the number of partitions must be fixed somewhat
arbitrarily in advance by the user. They focus on Saccharo-
myces cerevisiae which has a simpler transcriptional code
than Mus musculus, the focus of our study.

Various other probabilistic models that require specifica-
tion of the number of modules by the user have been
implemented. Xu et al. [20] build on the module net-
works of Segal et al. [21]. These models also partition the
gene set to find transcriptional modules. Our model
allows genes to be the target of more than one transcrip-
tional program.

Other algorithms also use non-parametric probabilistic
models to obviate the need to specify the number of mod-

ules. Gerber et al. [22] use hierarchical Dirichlet processes
to discover expression programs in human microarrays.
They use a similar model to ours, except their data are dis-
cretised expression levels rather than putative TFBSs. They
use a Markov chain Monte Carlo (MCMC) method for
inference which takes an order of magnitude longer than
our variational approach. The MCMC method produces a
posterior distribution over the unknowns in their model.
One of the latent variables in their model is the structure
of the gene hierarchy. Identifiability issues force them to
use a complex set of heuristics to summarise this hierar-
chy. Liu et al. [23] use a Bayesian hierarchical model to
examine yeast gene expression and ChIP-chip data. Their
extension of an infinite mixture model limits each pro-
gram to represent binding data for at most one transcrip-
tion factor. It is difficult to see how cooperative effects are
estimated by the model.

Results and discussion
We analysed the promoter regions of 18,445 Mus musculus
genes using PSSMs from TRANSFAC. This generated
78,085 putative TFBSs of 149 TFs which scored above a
stringent threshold (see Methods). We ran our model on
these putative TFBSs and it discovered 68 latent transcrip-
tional programs.

The number of TFBSs explained by each of the 68 pro-
grams varied considerably. Most of the TFBSs were
explained by the largest 10 programs (Figure 2). As dem-
onstrated in the GO enrichment validation (Table 1) our
model was able to find significant signals in those pro-
grams that accounted for many TFBSs as well as those that
accounted for few.

As the model associates each TFBS with a program, even
those TFBSs for which co-operative effects cannot be
found must be associated with a program. The model uses
the largest two programs (programs 0 and 1) for these

Table 1: Interesting transcriptional programs. 

TP # Targets Factors

2 669 Nkx2-1 Dbp Ahr Srebf1 Egr2 Tcfap2a Sp1 Egr1
3 1474 Rest Pparg Pax6 Creb1 Vdr Ets1 Hivep1 Pbx1 Dmrt2 Hand1 Dmrta1 Irf8 Atf2 Ar
4 1419 Gabpa Gzf1 Ppara Stat3 Hoxa5 Ikzf1 Hnf4a Srf Pax5
5 1510 Atf4 Dmrt1 Lhx3 Nkx6-1 Stat5a Runx2 Irf2 Pax4 Pax1
12 198 Nfya E2f1 Mtf1
13 372 Foxo3 Foxj2 Dmrt3 Nr2f1
15 230 Pbx1 Nr5a1 Sry Rora
18 268 Pou1f1 Pax2 Ets2 Cux1 Tbp
25 275 Srf T CT025657.12-201 Pou5f1
28 167 Cebpa Gabpa Cebpg Dbp Tgif1 Atf3 Rela Hes1 CT025657.12-201
53 111 Gzf1 Atf2
55 54 Klf4 Prdm1 Atf3

We present the factors of the transcriptional programs highlighted in the validation section of the results.
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TFBSs: their distribution over factors is vague and they tar-
get many genes. To some extent, the programs that explain
more binding sites are less likely to represent true cooper-
ative effects. We looked at the number of target genes of
the programs in this context. That is, we analysed the total
number of target genes of all programs smaller than a
given size (Figure 3). Including the first two vague pro-
grams, a total of over 10,000 genes are associated with our
programs. Most of the binding sites are explained by the
first 10 programs and using this as a cut-off we can see that
the remainder of the programs still target over 4,000
genes. This is a sizable proportion of the genome that can
be strongly associated with the cooperative combinations
of factors defined by our programs.

In general, we found a good separation between the pro-
grams, in that any given TF or gene is unlikely to be asso-
ciated with many programs and conversely that most
programs were associated with a small number of TFs and
genes (Figure 4). This was confirmed by our analysis of
the intersection between pairs of programs' TFs and the
overlap between their target genes (Figure 5).

Validation
In order to test whether the transcriptional programs cap-
ture real biological structure we validated the TPs using an
analysis of enrichment for GO terms [17], signalling path-
ways from the KEGG database [24], tissue specific co-

expressed genes from SymAtlas [25], and groups of
known interacting TFs from the literature. We present
those transcriptional programs that were noteworthy in
the validation in Table 1. All of the factors and targets
associated with all the programs are presented as Addi-
tional File 1.

GO term enrichment
Each program is associated with a set of transcription fac-
tors and a set of target genes. We tested the genes and the
factors in each program for enrichment of terms in the
biological process GO ontology. We used a standard
hypergeometric test in conjunction with the weight
method implemented in the top GO R-package [26] as a
significance test. Table 2 shows the result of the GO
enrichment analysis.

KEGG pathway enrichment
We tested the genes and the factors in each program for
enrichment in signalling pathways defined in the KEGG
database. After Bonferroni correction for multiple testing,
we found no significant results. However, we did find a
significant result in conjunction with our analysis of
known interacting TFs from the literature.

SymAtlas enrichment
We tested the target genes in each program for enrichment
in tissue-specific co-expressed genes from the SymAtlas

Program sizesFigure 2
Program sizes. We show how many TFBSs are generated by each transcriptional program in our model and relate this to the 
number of target genes and TFs associated with each program. On the left, the number of binding sites that our model predicts 
are explained by each program is shown on a log-scale. A by-product of our algorithm is that the programs are sorted by the 
number of TFBSs they are responsible for. The most frequently used transcriptional program accounted for almost 30,000 and 
15.000 binding sites respectively and the smallest just for a handful. The largest programs are composed predominantly of com-
mon transcription factors and in general the smaller programs explain occurrences of rarer transcription factors. The right is a 
scatter plot of the programs showing the number of TFs against target genes. The area of each scatter point is proportional to 
the number of binding sites it is responsible for. Note the first two programs do not have any genes or targets associated with 
them, their distributions over TFs are very similar to the genomic distribution and they are ubiquitous.
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dataset. Genes over-expressed in embryonic tissues were
significantly enriched in the targets of transcriptional pro-
gram 53. Program 53 accounts for fewer than 100 binding
sites out of the 78,085 sites, yet was strongly predictive of
membership of the group of over-expressed genes. This
demonstrates the ability of our method to find small sig-
nals in large datasets.

Literature
We took well known sets of interacting transcription fac-
tors from the literature and looked for programs that con-
tained them. We looked for sets of TFs associated with the
liver, muscle development, and the cell cycle. The three
factors in transcriptional program 12 (E2F, NFY, MTF1)
contain two of the three transcription factors in our anal-
ysis that are known to regulate the cell cycle (E2F, CREB,
NFY [27]).

When we tested the targets of program 12 for enrichment
in the KEGG cell cycle pathway (without correcting for
multiple testing) we obtained a p-value of 9e-4. The extra
TF in program 12 that is not in our literature derived set,
MTF1, has been implicated in the cell cycle [28] and as a
co-regulator with E2F [29].

Biological interpretation
Several of the discovered programs have well defined bio-
logical meanings. Not many of the factors of the transcrip-

tional programs were significantly enriched for GO terms.
However, program 28 did contain 5 of 7 TFs that are
annotated with the term "liver development" in its nine
factors.

Several of the target sets of the programs were strongly
associated with different GO terms. In particular, program
12 was particularly enriched for genes with nuclear prod-
ucts and those that are involved in nucleosome assembly.
Program 18 appears to be associated with the sense of
smell as it has strong enrichment for "olfactory receptor
activity" and "sensory perception of smell".

Conclusion
Discovering structure in sequence analyses is a difficult
task. We are limited by the set of PSSMs available, our ina-
bility to predict regulatory genomic regions and the high
false positive rate of PSSM scanning. Out of the three sets
of interacting TFs that are most cited in the literature, we
only recovered one of them. However, our method is
looking for structure in a much larger dataset than other
methods and does not have a positive set and a negative
set of genes with which to discriminate.

Our model does find significant structure in these analy-
ses and it is reasonable to suppose that this structure
underlies some mechanisms of transcriptional regulation.
This is to be expected given our understanding of the
underlying biology. A valuable property of our method is
that it finds structure at both large and small scales.

We are working on expanding our model to include other
data sources. We anticipate using ChIP-seq and ChIP-chip
data when it is available for enough TFs, either in conjunc-
tion with sequence analyses or other data sources related
to regulation such as expression data.

We have shown that non-parametric probabilistic models
are useful tools for unsupervised learning in this context.
Techniques for genomic data integration are just starting
to be applied with success to higher eukaryotes and we
believe HDPM models are useful non-parametric tools for
this task.

Methods
Binding site analyses
We extracted 1,000 repeat-masked base pairs upstream of
the mouse transcriptional start sites (assembly July 2007)
as defined in the UCSC Genome browser [30]. After
removing strongly repeat-masked sequences we were left
with 18,445 sequences for analysis.

We extracted a set of PSSMs from TRANSFAC version 11.4
for which we could map the factors they represent onto
Ensembl gene identifiers [31]. From each promoter we

Number of target genes of programs by sizeFigure 3
Number of target genes of programs by size. We plot 
how many genes are targeted by the programs smaller than a 
given size. The programs that account for more binding sites 
are less interesting in terms of cooperative effects, so we 
plot the size of the set of all targets of all programs smaller 
than a given size. The size cut-off varies along the x-axis 
(indexed by program) and the y-axis represents the total 
number of genes targeted by those programs. For example, 
excluding the first 10 programs, just over 4,000 distinct genes 
are targeted by the remainder of the programs.
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need an estimate of the number of times there is a binding
site for that PSSM in the CRM as input to our HDPM.

A PSSM of length K induces a distribution over K-mers
that models binding sites for the transcription factor(s) it
represents. Each position is modelled independently in
this distribution. We can represent the PSSM as a matrix,
P, where Pk, brepresents the probability of seeing base b at
position k in the PSSM.

Given a K-mer, W = w1...wK, and using a simple uniform

background model we can calculate the log odds ratio L(W)
between the binding site model (the PSSM) and the back-

ground model, ,

where V is a prior on how likely we believe binding to be.

In this work we used a threshold of -1.3 and a V of -4.7 (all
logarithms to base 10). Our experience working with biol-
ogists has shown us that this is a reasonable threshold to
use. Our model does allow for noisy data and should
accommodate false positives in the large vague transcrip-
tional programs that do not model cooperative effects. We
were constrained by our computational resources from
lowering this threshold significantly.

Up to this point we have been dealing with each PSSM
independently. Unfortunately they are not independent

L W K P Vk w
k

K

k
( ) log log ,= + +

=∑4
1

DPM summariesFigure 4
DPM summaries. Each transcriptional program is associated with a set of TFs and a set of target genes. We examined the 
relationships between the programs and their targets and factors. The top left figure shows that most programs have fewer 
than 7 factors associated with them. The top right illustrates that most factors are in fewer than 5 programs. The bottom left 
shows that a few programs target many genes but most programs have fewer than 200 targets and the bottom right demon-
strates most genes are targeted by 2 or fewer programs.
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Program intersectionsFigure 5
Program intersections. The intersection of all the programs' factors and targets. On the left, we show how much the fac-
tors of the programs overlap. This is represented as the ratio of the size of the intersection between the factors to the size of 
one of the sets of factors. The right is the same analysis of the programs' targets. The overlap between targets and factors is 
negligible in almost all cases. The sets of factors that do overlap to some extent are those that are not responsible for many 
TFBSs. The first two programs do not have any factors or targets associated with them.
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Table 2: GO enrichment. 

TP Factors GO term GO description annotated p-value

28 9 GO:0001889 BP liver development 5/7 4.7e-06

TP Targets GO term GO description annotated p-value

2 669 GO:0004842 MF ubiquitin-protein ligase activity 16/121 8.7e-06
2 669 GO:0051216 BP cartilage development 12/71 9.0e-06
3 1474 GO:0005550 MF pheromone binding 11/27 2.8e-06
4 1419 GO:0005132 MF interferon-alpha/beta receptor binding 7/8 1.2e-07
5 1510 GO:0005132 MF interferon-alpha/beta receptor binding 6/8 7.3e-06
12 198 GO:0000786 CC nucleosome 14/136 4.2e-10
12 198 GO:0005634 CC nucleus 84/4115 8.2e-08
12 198 GO:0003677 MF DNA binding 54/1993 4.0e-07
12 198 GO:0003697 MF single-stranded DNA binding 6/37 4.2e-06
12 198 GO:0006334 BP nucleosome assembly 14/147 1.9e-09
12 198 GO:0006260 BP DNA replication 16/151 2.4e-06
13 372 GO:0004984 MF olfactory receptor activity 50/1001 5.4e-09
13 372 GO:0007186 BP G-protein coupled receptor protein signa... 81/1968 1.4e-09
15 230 GO:0034097 BP response to cytokine stimulus 5/15 1.0e-06
18 268 GO:0004984 MF olfactory receptor activity 43/1001 6.0e-11
18 268 GO:0007166 BP cell surface receptor linked signal tran... 74/2606 2.4e-08
18 268 GO:0007608 BP sensory perception of smell 10/90 7.9e-07
25 275 GO:0004556 MF alpha-amylase activity 4/5 2.1e-07
28 167 GO:0007186 BP G-protein coupled receptor protein signa... 38/1968 4.1e-06
55 54 GO:0032183 MF SUMO binding 2/2 1.0e-05

We tested each of the factors and target genes associated with each of the 68 transcriptional programs for enrichment of GO terms across the 
three GO ontologies: biological process (BP), molecular function (MF) and cellular component (CC). The number of factors (resp. targets) 
associated with the program is displayed followed by information about the GO term. 'Annotated' shows the number of factors (resp. targets) 
annotated with the term in the program compared to the total numbers of factors (resp. targets) annotated with the term. The p-values are not 
corrected for multiple testing. Based on a bootstrap analysis described in the Methods section any p-value below 1e-04 might be deemed significant 
at the 0.01 level.
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as, for instance, there are many factors for which TRANS-
FAC has more than one PSSM. Two PSSMs for the same
factor are very likely to represent TFBSs at the same loca-
tion in a promoter. We do not wish our model to learn
this strong correlation instead of true transcriptional pro-
grams. We therefore reduce our set of TFBSs by taking the
highest scoring set of non-overlapping TFBSs.

Topic document model
In the field of information retrieval HDPs [6] are often
used to model latent topics in documents. We apply them
to TFBSs in promoters to infer latent transcriptional pro-
grams.

Our model is best described generatively, that is, we
describe how to sample a suitable transcription factor
from our model given a target gene. We follow the
description in [32]. A gene g is linked to a distribution
over transcriptional programs, which is represented by a

(possibly infinite) vector θg = (θg1, θg2,...,θgk,...), where θgk

is the contribution of program k to gene g. All θgk sum up

to one for each g. A program k in turn is linked to a similar
distribution over transcription factors, that is, program k

is represented by a vector ϕk = (ϕk1...ϕkJ), where ϕkj is the

contribution of transcription factor j to program k assum-

ing there are J transcription factors in total. All ϕkj sum up

to one for each k. To sample a random transcription factor
for binding site i upstream of gene g, we first sample a

multinomial random variable variable zig ~ Mult(θg)

which indicates the transcriptional program the factor is
drawn from. Next, we sample a second multinomial ran-

dom variable  taking the selected tran-

scriptional program zig into account. Sample xig specifies

which transcription factor binds at binding site i upstream
of gene g.

When calibrating the model using data, the task is to infer
posterior distributions for parameters θg and ϕk. In order
to do this, we place conjugate Dirichlet priors on the
parameter vectors and use a variational approach to
approximate their posterior distribution (for details see
[32]). More specifically, we set θg ~ Dir(απ) and ϕk ~
Dir(βτ). α and β are scalar strength parameters that con-
trol the variances of the θg and ϕk respectively. π and τ are
vectors and represent their respective means.

We do not wish to constrain our model to use a fixed
number of transcriptional programs. Instead, we use a
non-parametric approach where we allow a countably
infinite number of transcriptional programs. Now θg and
π are infinite dimensional vectors. πg is modelled using an

explicit stick-breaking construction [33] where γ controls
how many transcriptional programs are used. Formally,
the stick-breaking model is defined by

Intuitively, probabilities πk are obtained by starting with a

stick of length 1, and continuing to break pieces off it,

their lengths representing the probabilities πk. Even if con-

tinued indefinitely the pieces all sum up to one, the total
length of the stick, forming a proper probability distribu-
tion over the natural numbers. The size of piece k is deter-

mined as a fraction  of the remaining stick, whose

length is , where  is a random number

from the interval [0.1] distributed according to a Beta dis-
tribution. We also place priors on all the other hyperpa-
rameters of the model,

Our model is presented graphically in Figure 6.

Inference
We implemented the collapsed variational inference tech-
nique described in [32] complete with the Gaussian
approximation for non-zero counts.

Thresholding the posterior
In our model each transcriptional program is represented
as a distribution over factors, ϕk, and each gene can be
summarised as a distribution over programs, θg. In order
to examine the programs we have learnt, we thresholded
these distributions to discover which programs are over-
represented in which genes and which factors are over-
represented in which programs. However, due to the col-
lapsed nature of the inference algorithm we do not
directly obtain a posterior over them as they have been
integrated out. The inference algorithm does infer which
factors have binding sites in which genes due to which
transcriptional programs. These inferences are summa-
rised as the expectations of various counts and these allow
us to estimate the θg and ϕk and hence associate transcrip-
tional programs with genes and with transcription factors.

More formally, in an analogous notation to [32], we
define ngkf as the number of binding sites for factor f
drawn from transcriptional program k in the promoter of
gene g. A'.' in the subscript indicates summation over that
index. For example n.kf is the number of binding sites of
factor f drawn across all genes from program k. Now we
make point estimates:

xig zig
~ ( )Mult f

p p p p gk k l

l

k

k k= − =
=

−

∏% % %( ) ~ ( , ) , ,...1 1 1 2
1

1

Beta for 

%p k

( )1
1

1 −
=
−∏ %p ll

k
%p k

a b g ta a b b g g t~ ( , ) ~ ( , ) ~ ( , ) ~ ( )Gamma Gamma Gamma Dira b a b a b a
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We define  to be the empirical distribution of

factors. Now we associate with transcriptional program k

all those factors, f, for which . Likewise we define

 and associate those genes, g, with transcrip-

tional programs, k, for which . We found our

method was insensitive to the actual choice of threshold:
when we varied it between 1.5 and 10 the results were not
affected significantly.

Validation
Correcting for multiple testing in a GO ontology is diffi-
cult due to its hierarchical nature. To validate the strength
of our results we generated random samples from the
same populations of genes and transcription factors to test

for enrichment. We choose sample sizes to cover the range
of sizes in the discovered transcriptional programs. For
each size we sampled 100 independent sets and calculated
the exponent of the best p-value found in an GO term
enrichment analysis.

Significance of p-values
To assess the significance of the results from the GO
enrichment analysis, we generated random samples of
factors and genes. Each sample was analysed for GO
enrichment using the same procedure as for the transcrip-
tional programs that our model predicts. For each sample
we take the best uncorrected p-value and refer to its base
10 logarithm as the p-score. In Figure 7 we show box-plots
of the p-scores for the randomly sampled factors and tar-
get genes. We sampled 100 times at each of 50 different
sample sizes for the factors and the targets. The sizes were
chosen to reflect the range of sizes of the actual transcrip-
tional programs. Hence each diagram represents 50 * 100
= 5000 independent samples. The sample size does not
appear to affect the extreme value distribution of the best
p-scores' exponents. From 10,000 independent samples,
the lowest p-score is around -6. Plotting the sorted p-scores

ˆ ( .)

..
ˆ ( . )

( . .)
q fgk kf

ngk
ng

n kf
n k

= =
E E

E

Φ f
n f
n= ..

...

f̂kf

fΦ > 2

ˆ ( . .)

...
Θk

n k
n= E

ˆ

ˆ
qkf

kΘ
> 2

HDPM modelFigure 6
HDPM model. We present our model graphically. The shaded nodes represent observed variables (or equivalently from the 
model's perspective, fixed hyper-parameters). The clear nodes are the latent variables in the model. The boxes are called 
plates. If a node is inside a plate, its corresponding variable has a multiplicity equal to the size of the plate. For example there 
are G instances of the θg variable as its node is inside the g = 1,...,G plate. See the text for a description of the variables.
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against the base 10 logarithm of the proportion that are
equal or better gave us a good linear fit. This fit has an
intercept very close to -2 which together with the linear
relationship suggest adding 2 to the p-score to obtain a
multiple testing corrected p-value exponent. That is a p-
score of -6 would be equivalent to a p-value of 10 -4.
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BootstrapFigure 7
Bootstrap. Assessment of the significance of the results from the GO enrichment analysis by random samples of factors and 
genes. We show a boxplot of the p-scores for the randomly sampled factors on the top left and the targets on the top right. 
The x-axes are the sample sizes and the y-axes are the p-scores. We sampled 100 times at each of 50 different sample sizes for 
the factors and the targets. The lower plot shows the sorted p-scores plotted against the base 10 logarithm of the proportion 
that are equal or better.
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