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Summary

This dissertation introduces a new problem in the delivery of healthcare, which

could result in lower cost and a higher quality of medical care as compared to the

current healthcare practice. In particular, a framework is developed for sedation and

cardiopulmonary management for patients in the intensive care unit. A method is

introduced to automatically detect pain and agitation in nonverbal patients, specif-

ically in sedated patients in the intensive care unit, using their facial expressions.

Furthermore, deterministic as well as probabilistic expert systems are developed to

suggest the appropriate drug dose based on patient sedation level. This framework

can be used to automatically control the level of sedation in the intensive care unit

patients via a closed-loop control system. Specifically, video and other physiologi-

cal variables of a patient can be constantly monitored by a computer and used as a

feedback signal in a closed-loop control architecture. In addition, the expert system

selects the appropriate drug dose based on the patient’s sedation level.

Patients in the intensive care unit who require mechanical ventilation due to acute

respiratory failure also frequently require the administration of sedative agents. The

need for sedation arises both from patient anxiety due to the loss of personal control

and the unfamiliar and intrusive environment of the intensive care unit, and also due

to pain or other variants of noxious stimuli. While physicians select the agent(s) used

for sedation and cardiovascular function, the actual administration of these agents is

the responsibility of the nursing staff. If clinical decision support systems and closed-
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loop control systems could be developed for critical care monitoring and lifesaving

interventions as well as the administration of sedation and cardiopulmonary manage-

ment, the intensive care unit nurse could be released from the intense monitoring of

sedation, allowing her/him to focus on other critical tasks. One particularly attrac-

tive strategy is to utilize the knowledge and experience of skilled clinicians, capturing

explicitly the rules expert clinicians use to decide on how to titrate drug doses de-

pending on the level of sedation. In this dissertation, we develop a rule-based expert

system for cardiopulmonary management and intensive care unit sedation. Further-

more, we use probability theory to quantify uncertainty and to extend the proposed

rule-based expert system to deal with more realistic situations.

Pain assessment in patients who are unable to verbally communicate is a challeng-

ing problem. The fundamental limitations in pain assessment stem from subjective

assessment criteria, rather than quantifiable, measurable data. This often results

in poor quality and inconsistent treatment of patient pain management. Recent ad-

vancements in pattern recognition techniques using relevance vector machine learning

techniques can assist medical staff in assessing pain by constantly monitoring the pa-

tient and providing the clinician with quantifiable data for pain management. The

relevance vector machine (RVM) classification technique is a Bayesian extension of

the support vector machine (SVM) algorithm which achieves comparable performance

to SVM while providing posterior probabilities for class memberships and a sparser

model. If classes represent “pure” facial expressions (i.e., extreme expressions that an

observer can identify with a high degree of confidence), then the posterior probability

of the membership of some intermediate facial expression to a class can provide an

estimate of the intensity of such an expression. In this dissertation, we use the RVM

classification technique to distinguish pain from non-pain as well as assess pain inten-

sity levels. We also correlate our results with the pain intensity assessed by expert
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and non-expert human examiners.

Next, we consider facial expression recognition using an unsupervised learning

framework. Specifically, given a data set composed of a number of facial images of

the same subject with different facial expressions, the algorithm segments the data

set into groups corresponding to different facial expressions. Each facial image can be

regarded as a point in a high-dimensional space, and the collection of images of the

same subject resides on a manifold within this space. We show that different facial

expressions reside on distinct subspaces if the manifold is unfolded. In particular,

semi-definite embedding is used to reduce the dimensionality and unfold the manifold

of facial images. Next, generalized principal component analysis is used to fit a series

of subspaces to the data points and associate each data point to a subspace. Data

points that belong to the same subspace are shown to belong to the same facial

expression.

In clinical intensive care unit practice sedative/analgesic agents are titrated to

achieve a specific level of sedation. The level of sedation is currently based on clinical

scoring systems. Examples include the motor activity assessment scale (MAAS), the

Richmond agitation-sedation scale (RASS), and the modified Ramsay sedation scale

(MRSS). In general, the goal of the clinician is to find the drug dose that maintains

the patient at a sedation score corresponding to a moderately sedated state. This is

typically done empirically, administering a drug dose that usually is in the effective

range for most patients, observing the patient’s response, and then adjusting the

dose accordingly. However, the response of patients to any drug dose is a reflection

of the pharmacokinetic and pharmacodynamic properties of the drug and the specific

patient. In this research, we use pharmacokinetic and pharmacodynamic modeling

to find an optimal drug dosing control policy to drive the patient to a desired MRSS

score.
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Linear matrix inequalities provide a powerful design framework for linear control

problems. The dynamical models of many biological, pharmacological, and physio-

logical processes such as pharmacokinetics [7, 142], metabolic systems [27], epidemic

dynamics [83,84], biochemical reactions [34,95], endocrine systems [27], and lipopro-

tein kinetics [95] are derived from mass and energy balance considerations that involve

dynamic states whose values are nonnegative. Hence, it follows from physical consid-

erations that the state trajectory of such systems remains in the nonnegative orthant

of the state space for nonnegative initial conditions. Such systems are commonly

referred to as nonnegative dynamical systems. In this part of the dissertation, we

use linear matrix inequalities to develop H2 (sub)optimal estimators and controllers

for nonnegative dynamical systems. Specifically, we formulate a series of general-

ized eigenvalue problems subject to a set of linear matrix inequality constraints for

designing H2 suboptimal estimators, static controllers, and dynamic controllers for

nonnegative dynamical systems. The resulting H2 suboptimal controllers guarantee

that the closed-loop plant system states remain in the nonnegative orthant of the

state space.

Atrial fibrillation, a cardiac arrhythmia characterized by unsynchronized electrical

activity in the atrial chambers of the heart, is a rapidly growing problem in modern

societies. One treatment, referred to as catheter ablation, targets specific parts of

the left atrium for radio frequency ablation using an intracardiac catheter. Magnetic

resonance imaging has been used for both pre- and and post-ablation assessment of

the atrial wall. Magnetic resonance imaging can aid in selecting the right candidate for

the ablation procedure and assessing post-ablation scar formations. Image processing

techniques can be used for automatic segmentation of the atrial wall, which facilitates

an accurate statistical assessment of the region. As a first step towards the general

solution to the computer-assisted segmentation of the left atrial wall, we use shape

xvii



learning and shape-based image segmentation to identify the endocardial wall of the

left atrium in the delayed-enhancement magnetic resonance images.
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Chapter 1

Introduction

Modern control technology is having a revolutionary impact in modern medicine

through medical robotics (stereotactical brain surgery, implant fitting, and coronary

procedures), electrophysiological systems (pacemakers and automatic implantable

defibrillators), life support (ventilators and artificial hearts), and medical imaging

(image-guided surgery and therapy). An additional area of medicine that can benefit

enormously from systems and control oriented ideas is clinical pharmacology, in which

mathematical modeling plays a prominent role [3, 34, 58, 60, 61, 82, 123]. This is par-

ticularly true when dealing with critically ill patients in the intensive care unit (ICU)

or in the operating room. These patients often require administration of drugs to

regulate key physiological variables, such as level of consciousness, heart rate, blood

pressure, ventilatory drive, etc., within desired targets. The rate of administration

of these drugs is critical, requiring constant monitoring and frequent adjustments.

Open-loop control by clinical personnel can be tedious, imprecise, time-consuming,

and sometimes of poor quality. Hence, the need for closed-loop control (active con-

trol) in medical drug delivery systems is significant, with the potential for improving

the quality of medical care as well as curtailing the increasing cost of health care.

One of the main drawbacks in developing active control-based drug delivery sys-

tems is the lack of accurate mathematical models for characterizing the dynamic

1



behavior of drugs on physiological variables. System nonlinearities, model parameter

variations from patient to patient, as well as parameter variations within the same

patient under different conditions make it very challenging to develop models and

effective control law architectures for active drug delivery systems. Standard data-

driven system identification techniques may not be applicable to complex biological

system modeling involving in situ diagnostics.

Patients in the intensive care unit who require mechanical ventilation due to acute

respiratory failure also frequently require the administration of sedative agents. The

need for sedation arises from patient anxiety due to the loss of personal control and

the unfamiliar and intrusive environment of the intensive care unit. In addition, pain

or other variants of noxious stimuli frequently require administration of anxiolytic and

analgesic drugs for patient comfort. In particular, the interface between the patient

and the ventilator is typically an endotracheal tube passing through the oropharynx

and into the trachea. Due to the powerful gag reflex, this tube is very noxious.

Without sedation patients can become dangerously agitated, risking dislodgement

of life support devices in the worst case and, in any case, resulting in stress that

is ethically unacceptable and also physiologically unacceptable due to deleterious

increases in heart rate, blood pressure, and work of breathing.

The current clinical standard in the ICU for assessing the level of sedation in

adults is an ordinal scoring system, such as the motor activity and assessment scale

(MAAS) [40] or the Richmond agitation-sedation scale (RASS) [129], which includes

the assessment of the level of agitation of the patient as well as the level of conscious-

ness. For example, the MAAS system evaluates the level of sedation and agitation on

a score of 0-6 as follows: 0 - unresponsive; 1 - responsive only to noxious stimuli; 2 -

responsive to touch or name; 3 - calm and cooperative; 4 -restless and cooperative; 5

- agitated; and 6 - dangerously agitated.
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Assessment of the level of sedation and agitation of a patient is, therefore, subjec-

tive and limited in accuracy and resolution, and hence, prone to error in assessing the

level of sedation which in turn may lead to oversedation. Oversedation increases risk

to the patient since liberation from mechanical ventilation, one of the most common

life-saving procedures performed in the ICU, may not be possible due to a dimin-

ished level of consciousness and respiratory depression from sedative drugs resulting

in prolonged length of stay in the ICU. Prolonged ventilation is expensive and is as-

sociated with known risks, such as inadvertent extubation, laryngo-tracheal trauma,

and ventilator-associated pneumonia. Alternatively, undersedation leads to agita-

tion and can result in dangerous situations for both the patient and the intensivist.

Specifically, agitated patients can do physical harm to themselves by dislodging their

endotracheal tube which can potentially endanger their life.

Although a number of algorithms have been developed and implemented for the

problem of closed-loop control of general anesthesia [66, 71, 87, 124, 133,147,150], the

problem of closed-loop control of ICU sedation is undeveloped [60]. This is mainly

due to the inherent challenges in the problem of ICU sedation, where there is con-

siderable uncertainty in the environment (as opposed to the controlled environment

of an operating room) and the treatments are primarily based on subjective assess-

ments. While the bispectral index (BIS)—a derivatitive of the electroencephalo-

gram signal—is used for assessing the level of conciousness in general anesthesia, no

single objective measurement of sedation has been developed. In addition, several

studies have shown inconsistent results for using the BIS score for sedation assess-

ment [72, 111, 112, 122, 131, 132]. As a result, closing the loop in the ICU involves

developing a control architecture to reliably regulate a patient’s sedation level around

a desired state as well as designing patient monitoring systems to assess the level of

sedation and agitation, and provide the controller with a viable feedback signal.
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In this dissertation, we address problems in controller design as well as sedation

and agitation assessment for cardiopulmonary management and ICU sedation. In

particular, deterministic as well as probabilistic expert systems are developed to sug-

gest the appropriate drug dose based on patients sedation level. This framework can

be used to automatically control the level of sedation in intensive care unit patients

via a closed-loop control system. Specifically, video and other physiological variables

of a patient can be constantly monitored by a computer and used as a feedback signal

in a closed-loop control architecture. In addition, the framework is also applicable to

clinical decision support systems for cardiopulmonary management and ICU sedation.

Computer vision techniques offer the possibility to quantify agitation in sedated

ICU patients. In particular, such techniques can be used to develop objective agi-

tation measurements from patient motion. In the case of paraplegic patients, whole

body movement is not available, and hence, monitoring the whole body motion is

not a viable solution. In this case, measuring head motion and facial grimacing for

quantifying patient agitation and sedation in critical care can be a useful alternative.

Of course, patient occlusions due to medical equipment will need to be accounted for

within the machine learning algorithms.

Machine learning techniques can potentially be useful in assessing sedation and

agitation in the ICU. The fundamental limitations in sedation and agitation assess-

ment in the ICU stem from subjective assessment criteria, rather than quantifiable,

measurable data for ICU sedation. This often results in poor quality and incon-

sistent treatment of patient agitation. Advances in computer vision techniques can

potentially assist the medical staff in assessing sedation and agitation by constantly

monitoring the patient and providing the clinician with quantifiable data for ICU

sedation. An automatic sedation and pain assessment system can be used within a

decision support system which can also provide automated sedation and analgesia in

4



the ICU [60]. In order to achieve closed-loop sedation control in the ICU, a quantifi-

able feedback signal is required that reflects some measure of the patient’s agitation.

A non-subjective agitation assessment algorithm can be a key component in develop-

ing closed-loop control algorithms for ICU sedation. In this dissertation, a method is

introduced to automatically detect pain and agitation in nonverbal patients, specifi-

cally in sedated patients in the ICU, using their facial expressions.

In clinical intensive care unit practice sedative/analgesic agents are titrated to

achieve a specific level of sedation. In general, the goal of the clinician is to find the

drug dose that maintains the patient at a sedation score corresponding to a moderately

sedated state. This is typically done empirically, administering a drug dose that

usually is in the effective range for most patients, observing the patient’s response,

and then adjusting the dose accordingly. However, the response of patients to any

drug dose is a reflection of the pharmacokinetic and pharmacodynamic properties of

the drug and the specific patient.

As part of this research, we use pharmacokinetic and pharmacodynamic model-

ing to find an optimal drug dosing control policy to drive the patient to a desired

sedation score. Specifically, we model the pharmacokinetics and pharmacodynamics

of a general sedative agent using a hybrid deterministic-stochastic model involving

deterministic pharmacokinetics and stochastic pharmacodynamics. Then, using this

hybrid model, we consider the sedative drug propofol and use nonnegative and com-

partmental modeling to model the drug pharmacokinetics (drug concentration as a

function of time) and a stochastic process to represent the patient’s sedation score

and model drug the pharmacodynamics (drug effect as a function of concentration).

Next, we use the aforementioned hybrid deterministic-stochastic model to develop an

open-loop optimal control policy for ICU sedation.

Nonnegative dynamical systems involve dynamic states whose values are nonneg-
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ative [48,62,89,91]. A subclass of nonnegative dynamical systems are compartmental

systems [62,83,85]. Compartmental systems involve dynamical models that are char-

acterized by conservation laws (e.g., mass, energy, fluid, etc.) capturing the exchange

of material between coupled macroscopic subsystems known as compartments. These

models are widespread in biological, physiological, and ecological sciences as well as

engineering systems such as queuing, large-scale, telecommunications, transportation,

power, and network systems, to cite but a few examples (see [48,62] and the references

therein). Since nonnegative and compartmental systems have specialized structures,

special control law strategies need to be developed that guarantee that the trajecto-

ries of the closed-loop plant system states remain in the nonnegative orthant of the

state space for nonnegative initial conditions. In addition, for certain applications of

nonnegative systems, such as active control for clinical pharmacology, we require the

control (source) inputs to be nonnegative.

In this research, we use linear matrix inequalities to develop H2 and mixed-norm

H2/H∞ (sub)optimal estimators and controllers for nonnegative dynamical systems.

Specifically, we formulate a series of generalized eigenvalue problems subject to a

set of linear matrix inequality constraints for designing H2 suboptimal estimators,

static controllers, and dynamic controllers for nonnegative dynamical systems. The

resulting H2 suboptimal controllers guarantee that the closed-loop plant system states

remain in the nonnegative orthant of the state space.

Atrial fibrillation, a cardiac arrhythmia characterized by unsynchronized electrical

activity in the atrial chambers of the heart, is a rapidly growing problem in modern

societies. Electrical cardioversion and antiarrhythmic drugs are used to manage this

condition, but suffer from low success rates and involve major side effects [24, 39, 47,

52]. In an alternative treatment, known as catheter ablation, specific parts of the left

atrium are targeted for radio frequency ablation using an intracardiac catheter [86].
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Application of radio frequency energy to the cardiac tissue causes thermal injury

(lesions), which in turn results into scar tissue. Successful ablation can eliminate,

or isolate, the problematic sources of electrical activity and effectively cure atrial

fibrillation.

Magnetic resonance imaging (MRI) has been used for both pre- and and post-

ablation assessment of the atrial wall [106]. MRI can aid in selecting the right can-

didate for the ablation procedure and assessing post-ablation scar formations. Image

processing techniques can be used for automatic segmentation of the atrial wall, which

facilitates an accurate statistical assessment of the region. As a first step towards the

general solution to the computer-assisted segmentation of the left atrial wall, in this

dissertation we propose a shape-based image segmentation framework to segment the

endocardial wall of the left atrium.

1.1. Brief Outline of the Dissertation

The contents of the dissertation are as follows. In Chapter 2, we develop rule-

based as well as probabilistic expert systems for cardiopulmonary management and

intensive care unit sedation. In Chapter 3, we use the relevance vector machine clas-

sification technique to distinguish pain from non-pain as well as assess pain intensity

levels. Then, in Chapter 4, we consider facial expression recognition using an unsu-

pervised learning framework. Specifically, we show that different facial expressions

reside on distinct subspaces if the manifold of facial images is unfolded. In particular,

semi-definite embedding is used to reduce the dimensionality and unfold the mani-

fold of facial images. Next, generalized principal component analysis is used to fit a

series of subspaces to the data points and associate each data point to a subspace.

In Chapter 5, we use pharmacokinetic and pharmacodynamic modeling to find an

optimal drug dosing control policy to drive the patient to a desired sedation score.
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Next, in Chapter 6, we formulate a series of generalized eigenvalue problems sub-

ject to a set of linear matrix inequality constraints for designing H2 and mixed-norm

H2/H∞ suboptimal estimators, static controllers, and dynamic controllers for non-

negative dynamical systems. In Chapter 7, we use shape learning and shape-based

image segmentation to identify the endocardial wall of the left atrium in the delayed-

enhancement magnetic resonance images. Finally, in Chapter 8, we discuss ongoing

research and future extensions of the research.
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Chapter 2

Clinical Decision Support and Closed-Loop

Control for Cardiopulmonary Management

and Intensive Care Unit Sedation

Using Expert Systems

2.1. Introduction

Sedation of mechanically ventilated patients in the intensive care unit is an impor-

tant and challenging problem with ethical, clinical, and financial implications. At the

ethical level, we have a self-evident moral imperative to provide adequate anxiolysis

and analgesia for patients in the intensive care unit. From the clinical perspective,

it is important that this be done without either overdosage or underdosage as either

may have undesirable clinical effects. At the financial level, sedation of patients in

the intensive care unit requires large investments of health care provider time, with a

commensurate financial cost, while inefficient titration of sedation and analgesia may

prolong intensive care unit length of stay.

While physicians select the agent(s) used for sedation, the actual administration

of these agents is the responsibility of the nursing staff. The intensive care unit nurse

has one of the most task-laden jobs in medicine and titration of the sedative drug dose

to achieve the optimal levels of sedation can be a difficult and time consuming task. If

clinical decision support systems and closed-loop control systems could be developed
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for critical care monitoring and the administration of sedation, the intensive care unit

nurse could be released from the intense monitoring of sedation, allowing her/him to

focus on other critical tasks.

In clinical practice the dose of sedative agent is varied, or titrated, to achieve the

desired level of sedation. The level of sedation is currently based on clinical scoring

systems. One example is the Motor Activity Assessment Score (MAAS) [40] in which

patients are given an integer score of 0–6 as follows: 0 - unresponsive; 1 - responsive

only to noxious stimuli; 2 - responsive to touch or name; 3 - calm and cooperative; 4

- restless and cooperative; 5 - agitated; and 6 - dangerously agitated.

To implement closed-loop control in an acute environment, control of cardiovas-

cular function needs to also be addressed along with sedation since hemodynamic

management and control of consciousness are interrelated. For example, a major

side effect of cardiac surgery is that patients can become hypertensive [99], requiring

treatment to prevent cardiac dysfunction, pulmonary edema, myocardial ischemia,

stroke, and bleeding from fragile sutures. Although drugs are available for treating

postoperative hypertension, titration of these drugs to regulate blood pressure is often

difficult. Underdosing leaves the patient hypertensive, whereas overdosing can reduce

the blood pressure to levels associated with shock.

Although blood pressure control is important, cardiovascular function involves

several other important variables, all of which are interrelated [99]. The intensive care

unit clinician must ensure not only that blood pressure is within appropriate limits but

also that cardiac output (i.e., the amount of blood pumped by the heart per minute)

is acceptable and that the heart rate is within reasonable limits. Mean arterial blood

pressure is proportional to cardiac output, with the proportionality constant denoting

the systemic vascular resistance, in analogy with Ohm’s law. Cardiac output is equal

to the product of heart rate and stroke volume, the volume of blood pumped with each
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beat of the heart. Stroke volume, in turn, is a function of contractility, the intrinsic

strength of the cardiac contraction; preload, the volume of blood in the heart at the

beginning of the contraction; and afterload, the impedance to ejection by the heart.

The intensive care unit clinician must balance all of these variables. Inotropic

agent drugs, that is, drugs that increase the strength of contraction of the heart, also

have variable effects on heart rate and afterload. There are also vasopressor drugs,

which increase afterload, and vasodilator drugs, which decrease afterload. Finally,

stroke volume can be improved by giving the patient intravenous fluids and increas-

ing preload. However, too much fluid can potentially be deleterious by impairing

pulmonary function as fluid builds up in the lungs. The fact that closed-loop control

of blood pressure has not been widely adopted by clinicians is not surprising when

one considers the complex interrelationships among hemodynamic variables.

Since cardiovascular and central nervous system functions are critical in the acute

care environment, technologies have evolved for their measurements. The challenge

for extending feedback control technology to the problem of sedation of critically ill

patients, however, is finding the appropriate performance variable for control. Hence,

the first step in the development of closed-loop control of sedation is the discovery

of an objective, continuously-measurable parameter that correlates with clinician as-

sessment of the level of sedation. Once such a parameter is discovered and validated,

it then becomes necessary to use the measure of sedation for the titration of drug

dose. One particularly attractive strategy is to utilize the knowledge and experience

of skilled clinicians, capturing explicitly the rules expert clinicians use to decide on

how to titrate drug doses depending on the level of sedation. In this chapter, we

consider a rule-based expert system approach for cardiopulmonary management and

intensive care unit sedation. Furthermore, we use probability theory to quantify sys-

tem uncertainty and extend the proposed rule-based expert system to deal with more
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realistic situations.

The contents of the chapter are as follows. First, we begin with a description of

the closed-loop architecture of the sedation control system in Section 2.2. Next, in

Section 2.3, we give a brief discussion on instrumentation for clinical pharmacology.

In Section 2.4, we give a brief review of knowledge-based systems, and, in particular,

expert systems. A rule-based expert system for cardiopulmonary management and

ICU sedation control is given in Section 2.5. In Section 2.6, a rule-based expert sys-

tem for respiratory management of patients in the ICU is presented. In Section 2.7,

we develop a probabilistic expert system using Bayesian networks for cardiovascular

function and ICU sedation control. Next, in Section 2.8 we use the expert system

framework presented in Section 2.7 to design an alarm algorithm for agitation de-

tection in the ICU. Finally, in Section 2.9, an illustrative numerical example of a

probabilistic expert system for ICU sedation control is given.

2.2. Closed-Loop Sedation Control Architecture

In this section, we present a closed-loop feedback expert system architecture for

ICU sedation control. A feedback system consists of an interconnection of two sys-

tems, a forward loop system and a feedback loop system. The forward loop system is

driven by an input and produces an output that serves as the input to the feedback

loop system. The output of the feedback loop system, in turn, serves as the input to

the forward loop system. The closed-loop system is composed of the controller, the

plant (patient), and the plant output measurement block (i.e., sedation assessment

block). Within our sedation control framework, the plant (patient) is a dynamical

system with unknown dynamics, where the input is the sedative drug dose and the

output is the patient behavior. Patient behavior refers to patient’s level of sedation

and analgesia, manifested through facial expression, gross motor movement, pain, ag-
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Controller Plant (Patient)

Sedation Assessment

Desired Level of Sedation

Figure 2.1: Closed-loop sedation control architecture

itation, blood pressure, and heart rate. The goal of the sedation assessment feedback

block is to monitor the patient’s behavior, and objectively assess the sedation level

based on one of the clinical scoring systems (e.g., MAAS). The input to the controller

is the desired level of sedation, and the objective assessment of sedation provided by

the sedation assessment block. The closed-loop system is shown in Figure 2.1. The

current clinical practice in the ICU involves human expert assessment of patient’s

level of sedation (corresponding to the sedation assessment block), and titration of

the correct dose of sedatives (corresponding to the controller).

Closed-loop control of intensive care unit sedation is virtually nonexistent in the

literature. However, control algorithms have been developed, simulated, and imple-

mented for the related problem of closed-loop control of general anesthesia. The

first of these have focused on the control of inhalation anesthesia and several adap-

tive control algorithms have been proposed; see [66, 71, 87,124, 133,147,150] and the

references therein. These algorithms have been shown to provide superior control

of general inhalation anesthesia in simulations and animal studies. However, they

are not directly relevant to the specific problem of ICU sedation since the controlled

variable is the end-tidal anesthetic concentration. It is not possible with current

technology to rapidly measure the plasma concentration of the intravenously admin-

istered drugs commonly used for ICU sedation. Thus drug concentration is not a

viable control variable. Furthermore, drug concentration, even if it could be mea-
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sured rapidly, is not the best control variable. We are far more interested in drug

effect than concentration.

One approach to closed-loop control of sedation is to design a system that pro-

cesses the information currently used by the medical staff and mimics the human

process of decision making for ICU sedation. Such a system can be equipped with

various sensors, including the bispectral index (a derivative of the electroencephalo-

gram (EEG) signal) monitor [56, 128], actigraph (accelerometer for measuring hand

and leg movement) [57,149], and digital imaging (for measuring facial expression and

gross motor movement) [6,32,60]. In a recent study, machine learning methods have

been used to assess the level of pain in patients using facial expressions and analyze the

correlation between computer and human expert pain intensity assessments [53, 54].

With measurements provided by different viable sensors, an expert system can be

designed which mimics expert human actions and follows a similar decision making

process.

2.3. Instrumentation for Clinical Pharmacology

The sensors used in the intensive care unit to monitor patient status include

those that measure hemodynamic status, respiratory status, renal function, and cen-

tral nervous function. Hemodynamic status is most typically assessed by continuous

monitoring of heart rate and electrocardiograph (ECG). The ECG measures the elec-

trical potential difference between skin electrodes placed at various sites on the torso

and limbs, and can be analyzed to provide continuous heart rate measurement as well

as identify signs of cardiac dysfunction. Hemodynamic function is also assessed using

blood pressure measurements. While this may be done using noninvasive methods,

it is most typically done by placing a small plastic catheter directly into an artery

(most often the radial artery as it passed through the underside of the wrist) and
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then using a pressure transducer to convert the pulse pressure wave into an electrical

signal. In a similar fashion, catheters are also often placed into large central veins

(such as the internal jugular vein) so that their tips are situated close to the entry

of the main veins (superior vena cava or inferior vena cava) returning blood to the

heart. Pressure waves in these veins are then transduced into electrical signals to

provide the central venous pressure. This gives an indirect measure of the volume

of blood in the heart which is a major determinant of cardiac output, the volume of

blood pumped by the heart per minute.

In some situations in which there is more profound cardiac dysfunction, a pul-

monary artery catheter is placed. This is a catheter that runs through the heart

into the pulmonary artery (i.e., the artery going from the heart to the lungs) and

can measure pressures in the pulmonary artery (another indirect measure of volume

in the heart) as well as directly measure cardiac output. Finally, it is important to

monitor the adequacy of blood flow to the various tissues of the body. One common

technique is to measure the amount of oxygen in venous blood. If the delivery of

oxygen to tissue decreases, then there will be a greater relative extraction of oxygen

from the delivered blood by the tissue, and hence, the venous blood returning to the

heart will have less oxygen in it. This is most typically measured as the percentage

of hemoglobin molecules (the primary carrier of oxygen in the blood) that are bound

to oxygen (referred to as the venous saturation).

The purpose of respiration is to eliminate carbon dioxide from and deliver oxy-

gen to the blood. Hence, the most important monitors of respiratory function are

measures of carbon dioxide and oxygen in the blood. With the most commonly

used sensor technologies these are not directly measurable; however, it is possible to

continuously measure hemoglobin oxygen saturation, the percentage of hemoglobin in

arterial blood that is bound to oxygen, using absorbance spectroscopy and light emit-
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ting diode technology. In addition, many intensive care units use continuous analysis

of gas exhaled from the lungs to measure end-tidal carbon dioxide concentration, an

indirect and approximate measure of blood carbon dioxide concentrations. Further-

more, modern mechanical ventilators are equipped to measure the pressure used to

expand the lungs when the patient is undergoing mechanical ventilation, as well as

respiratory rate.

Assessment of renal function is not as sophisticated as either hemodynamic or

respiratory monitoring. Currently renal function is most typically assessed by the

continuous measurement of urine output. Sensors for assessment of central nervous

system function are currently in their infancy, at least as far as routine clinical use is

concerned.

2.4. A Brief Review of Expert Systems

In this section, we review knowledge-based systems, and, in particular, expert

systems. A knowledge-based system is a computer program that is capable of mak-

ing deductions based on the information provided by the user and the information

stored in its knowledge base. In other words, a knowledge-based system is a system

which applies a “rules of thumb” approach to a symbolic representation of knowl-

edge [80]. The main characteristic that distinguishes a knowledge-based system from

a conventional computer program is its structure [74]. In conventional computer pro-

grams, the knowledge and the computational/analytical components of the program

are coupled. Knowledge-based systems, however, have two main independent com-

ponents; namely, the knowledge base, which stores the information, and the inference

engine, which makes assertions based on the available knowledge. Expert systems

are a subclass of knowledge-based systems, where their objective is to emulate the

human expert behavior [29, 74].
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Expert systems in general deal with two different types of problems: deterministic

versus stochastic. As a result, expert systems belong to one of the two general classes

of i) deterministic expert systems and ii) stochastic expert systems. Deterministic

expert systems are also referred to as rule-based expert systems due to the fact that

in such systems the deduction process is based on a series of rules [29]. A more

challenging set of problems is that involving uncertainty in knowledge and in the

problem variables. Stochastic expert systems specifically deal with such problems

and different frameworks exist to address uncertainty including certainty factors [26],

fuzzy logic [154], theory of evidence [130], and, more recently, probability theory [29].

In the probabilistic approach, a joint probability distribution function over the set

of variables is defined and the inference is based on probability rules. Such expert

systems are referred to as probabilistic expert systems.

The most basic element of an expert system is knowledge. Knowledge, in general,

can be categorized into abstract and concrete. Abstract knowledge refers to the knowl-

edge stored in the permanent memory of the system (i.e., the knowledge base), which

includes rules and probability distributions. Concrete knowledge refers to information

particular to a specific case and situation, which is recorded in the working memory

of the system (e.g., a set of observed symptoms in a medical diagnosis problem, which

is different from patient to patient).

The components of a general expert system are outlined as follows.

i) Human component. In the design of an expert system, the subject-matter expert

(or simply, the expert) collaborates with a knowledge engineer, where the expert

provides the knowledge and the knowledge engineer transfers the knowledge into

a structured form which allows further processing by a computer.

ii) Knowledge base. The knowledge base consists of structured knowledge (i.e.,
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knowledge provided by the expert which is translated by the knowledge engineer

to a computer-friendly language), and the relationships among such structured

knowledge.

iii) Knowledge and information acquisition subsystem. This component is respon-

sible for the in-flow of information from the expert into the system, and solicits

knowledge if the initial knowledge is limited and no conclusion can be made.

It also has the capability to add new knowledge to the knowledge base. The

human user is usually the source of additional knowledge.

iv) Coherence control. This component, which has been included in expert systems

only recently, is responsible for maintaining consistency in the knowledge base

in order to avoid incoherence. Even human experts could provide contradictory

statements, especially when dealing with complex problems. To avoid absurd

conclusions (e.g., the probability of an event being greater than 1) resulting from

inconsistencies in the knowledge base, the coherence control component checks

the existing knowledge and the knowlege being added to the knowledge base for

any inconsistencies and informs the human user if a contradiction is found. It

is worth noting that a similar idea exists for identifying discrepancies in a soft-

ware implementation of a general control system. More specifically, dynamical

systems theory is used to identify the allowable domain of operation for each

state, and any violation of these constraints is regarded as an inconsistency. For

further details, see [49].

v) Inference engine. This is the main component of the expert system and serves

to apply abstract knowledge to concrete knowledge and draws conclusions.

vi) User interface. This component serves as the medium between the human user

and the expert system.
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vii) Action execution subsystem. This component is responsible for performing ac-

tions and executing commands specifically in expert systems which are designed

to take control actions.

viii) Explanation subsystem. This component explains the actions taken by the ac-

tion execution subsystem or conclusions reached by the inference engine. This

component clarifies the logical deduction process for the human user.

ix ) Learning subsystem. This component is responsible for acquiring new knowl-

edge (learning new rules, finding a better estimate of system parameters, etc.)

based on new data and exposure to new situations of the problem. As a result,

the performance of an expert system possessing this component is expected to

improve as the number of new situations to the system increases.

An expert system might possess only a subset of the aforementioned components.

For a more comprehensive discussion on expert systems, see [29].

Next, we introduce the rule-based expert system, which deals with deterministic

problems. In order to solve deterministic problems, a set of rules can be used to

define the relationships among a set of objects. A rule is defined as a logical state-

ment defining a relationship between the premise and the conclusion. The abstract

knowledge in rule-based expert systems is given by rules and concrete knowledge is

given by facts. A fact can be regarded as a special rule in which the premise is always

true. Different inference strategies are used in rule-based expert systems. In this

chapter, we use modus ponens, the most commonly used strategy, which is a basic

element of classical logic [29]. In classical logic, each statement is either true or false.

Based on the modus ponens strategy, given a set of facts, the premise of all the rules

is examined and the true value is assigned to the conclusion of a rule for which its

premise has the true value. A complementary inference strategy is the modus tollens,
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where the negation of the conclusions are examined, and if true, then the negation of

its premise is assigned the true value.

2.5. A Rule-Based Expert System for Cardiopulmonary Man-
agement and ICU Sedation Control

In this section, we introduce a simple rule-based expert system for cardiopul-

monary management and ICU sedation control. We assume a sedation protocol with

the drugs propofol (as the primary agent) and fentanyl (as the secondary agent) with

sedation assessment using the MAAS scale to illustrate a rule-based system for con-

trol of ICU sedation. Before stating the rules, we give a short description of the

drugs used in the ICU sedation and their effects. For complete details on the use of

sedatives and analgesics in the ICU, see [81]. In addition, we show how this expert

system can activate a secondary expert system to regulate patient hemodynamics.

Propofol, or 2,6-diisopropylphenol, is an intravenous hypnotic agent that in low

doses can produce anxiolysis and in higher doses, hypnosis (i.e., lack of responsiveness

and lack of consciousness). Propofol is widely used for ICU sedation because of this

spectrum of pharmacodynamic effects and also because of its pharmacokinetics. It is

typically administered as a continuous infusion and it is a short acting drug that can

be readily titrated, that is, if the infusion rate is increased the blood level increases

relatively quickly. Hence, the pharmacological effect of the drug can be quickly varied

by varying the infusion rate.

While propofol has primary pharmacodynamic and pharmacokinetic effects that

suit it well for ICU sedation, there are some serious side effects that may limit its

usefulness. It causes dilation of both arteries and veins, as well as mild depressant

effects on the heart, that can cause in turn excessive drops in blood pressure. Fur-

thermore, it does not have analgesic effects, and thus, is ineffective in treating pain.
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Since pain often results in increases in heart rate and blood pressure, propofol can be

paradoxically associated with either hypotension (at excessive doses) or hypertension

(when the patient has untreated pain).

Because of the hypotensive effects of propofol, and since it does not treat pain-

induced hypertension, our rule-based system also uses fentanyl as a secondary agent

for sedation. Fentanyl is a synthetic opioid and potent analgesic. It can be quite

effective in the treatment of pain-induced hypertension. At the same time, it has mild

sedative effects (although even in high doses it does not reliably produce hypnosis).

Since it does not have the pronounced hypotensive effects of propofol, it can be used

for its sedative effects in hypotensive patients. While it can be employed as a primary

agent for sedation, we will illustrate our rule-based system by assuming it is a second-

line agent. This is motivated largely by the fact that it is not quite as fast-acting as

propofol and not as easily titrated.

The rule base of a simple ICU sedation control expert system is summarized in

Table 2.1. The desired level of sedation corresponds to an MAAS score of 3. The

premise of each rule involves the current (M) and previous (M ′) MAAS scores, blood

pressure (BP), and heart rate (HR). The conclusion of each rule consists of primary

action and secondary action. The required dose of drugs, denoted by primary action

in the table, is given in the first part of the conclusion of each rule. The symbols “↑”

and “↓” denote increase and decrease in the infusion rate of the drug, respectively.

Furthermore, “+/ ↑ fentanyl” stands for “if the patient is already on fentanyl, then

increase the fentanyl infusion rate by 1 mcg/kg/hr after a 2 mcg/kg bolus dose and,

if not, then start fentanyl at 1 mcg/kg/hr after a 2 mcg/kn bolus dose.” Finally,

note that we have assumed that for a given MAAS score, the previous MAAS score

is within its ±1 range. This is not a limiting assumption if the sedation assessment

is performed frequently so that we capture the dynamics of the MAAS score.
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Table 2.1: The rule base of a simple ICU Sedation control expert system, which
involves the current MAAS score (M), previous MAAS score (M ′), and patient’s
blood pressure (BP) and heart rate (HR).

M M ′ BP/HR Primary Action Secondary Action

0 & 1 -
BP≥ 150 or HR≥ 120 discontinue fentanyl & propofol activate HDCES

90 <BP< 150 discontinue fentanyl & propofol -
BP≤ 90 discontinue fentanyl & propofol activate HDCES

2

1
BP≥ 150 or HR≥ 120 +/↑ fentanyl if on fentanyl activate HDCES

90 <BP< 150 - -
BP≤ 90 25% ↓ propofol -

2
BP≥ 150 or HR≥ 120 25% ↓ propofol, +/↑ fentanyl if on fentanyl activate HDCES

90 <BP< 150 25% ↓ propofol -
BP≤ 90 25% ↓ propofol -

3
BP≥ 150 or HR≥ 120 25% ↓ propofol, +/↑ fentanyl if on fentanyl activate HDCES

90 <BP< 150 25% ↓ propofol -
BP≤ 90 50% ↓ propofol -

3

2
BP≥ 150 or HR≥ 120 +/ ↑ fentanyl -

90 <BP< 150 - -
BP≤ 90 - activate HDCES

3
BP≥ 150 or HR≥ 120 +/ ↑ fentanyl -

90 <BP< 150 - -
BP≤ 90 - activate HDCES

4
BP≥ 150 or HR≥ 120 +/ ↑ fentanyl -

90 <BP< 150 - -
BP≤ 90 - activate HDCES

4

3
BP≥ 150 or HR≥ 120 50% ↑ propofol -

90 <BP< 150 25% ↑ propofol -
BP≤ 90 25% ↓ propofol, +/ ↑ fentanyl -

4
BP≥ 150 or HR≥ 120 50% ↑ propofol -

90 <BP< 150 25% ↑ propofol -
BP≤ 90 25% ↓ propofol, +/ ↑ fentanyl -

5
BP≥ 150 or HR≥ 120 +/ ↑ fentanyl -

90 <BP< 150 - -
BP≤ 90 - activate HDCES

5

4
BP≥ 150 or HR≥ 120 50% ↑ propofol, +/ ↑ fentanyl -

90 <BP< 150 50% ↑ propofol -
BP≤ 90 +/ ↑ fentanyl activate HDCES

5
BP≥ 150 or HR≥ 120 50% ↑ propofol, +/ ↑ fentanyl -

90 <BP< 150 50% ↑ propofol -
BP≤ 90 +/ ↑ fentanyl activate HDCES

6
BP≥ 150 or HR≥ 120 25% ↑ propofol, +/ ↑ fentanyl -

90 <BP< 150 25% ↑ propofol -
BP≤ 90 +/ ↑ fentanyl activate HDCES

6 -
BP≥ 150 or HR≥ 120 100% ↑ propofol, +/ ↑ fentanyl -

90 <BP< 150 100% ↑ propofol -
BP≤ 90 +/ ↑ fentanyl activate HDCES
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Table 2.2: The rule base of a simple hemodynamics control expert system, which
involves the patient’s blood pressure and heart rate.

BP HR Action

BP≥ 150
HR≥ 110 Beta-Blocker
HR< 110 Vasodilator

90 <BP< 150
HR≥ 110 Beta-Blocker
HR< 110 -

BP< 90 - See Hypotension Protocol

The second part of the conclusion of each rule, denoted by secondary action,

involves activating a secondary expert system, namely, the hemodynamic control

expert system (HDCES). Depending on the blood pressure and the heart rate of

the patient, the ICU sedation control expert system can activate the hemodynamic

control expert system to regulate patient cardiovascular function. The rule base of a

hemodynamic control expert system is summarized in Table 2.2.

The most obvious monitor of cardiovascular function in the intensive care unit

is blood pressure, and treatment of blood pressure is a very common activity in

the intensive care unit. The hemodynamic expert system we present is based on

the treatment of blood pressure. To a first approximation, the circulation can be

described as a very simple direct-current system conforming with a hemodynamic

version of Ohm’s law. Specifically, we can describe the relationship between mean

arterial blood pressure (the hemodynamic equivalent of voltage) and cardiac output

(the hemodynamic equivalent of current) by [2]

MAP(t) = CO(t) × SVR(t) + CVP(t), t ≥ 0, (2.1)

where MAP(t) is mean arterial blood pressure, CO(t) is cardiac output (the volume

of blood the heart pumps per minute), SVR(t) systemic vascular resistance (an index

of arteriolar compliance or constriction throughout the body), and CVP(t) is central

venous pressure (the venous pressure of the right atrium of the heart). Since CVP(t)
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is typically much less significant than CO(t) × SVR(t), we can see that any analysis

of blood pressure perturbation should focus on whether the change in blood pressure

is due to a change in cardiac output or a change in systemic vascular resistance.

For hypotensive patients (systolic blood pressure < 90 mm Hg or mean blood

pressure < 60 mm Hg) the expert system algorithm first entails an evaluation of

cardiac output. This can be done by direct measurement or by indirect means.

There are a number of technologies for the measurement of cardiac output, including

thermodilution, lithium dilution, and analysis of the contour of the arterial pulse

wave. Since these technologies are not that frequently employed, the adequacy of

cardiac output is often assessed by measurement of central venous hemoglobin oxygen

saturation as described in Section 2.3. In some situations it is necessary to assess the

adequacy of cardiac output using clinical findings such as poor peripheral circulation,

acidosis, or poor urine output.

Returning to the basic equation for hemodynamics (2.1), if cardiac output is

inadequate, then efforts to correct hypotension should be directed toward improving

cardiac output. Cardiac output equals stroke volume (i.e., the amount of blood

pumped by the heart each time it beats) multiplied by heart rate. If the heart rate

is exceptionally low, then one can administer drugs to speed up the heart. More

frequently, the focus is on increasing stroke volume. Stroke volume is determined by

preload, the term used in the hemodynamic literature to refer to the amount of blood

volume in the heart at the onset of each contraction, contractility, the strength of the

contraction, and, to a lesser degree, afterload, roughly the load the heart faces in order

to pump blood. The first step is to ensure adequate preload. This is evaluated by

consideration of the central venous pressure, or pulmonary artery wedge pressure if a

pulmonary artery catheter is in place, or by analysis of how the peak systolic arterial

pressure changes with inspiration if the patient is undergoing mechanical ventilation,
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Figure 2.2: Hypotension protocol flow chart.

by using echocardiography to visualize the heart, or by simply giving the patient a

bolus of intravenous fluids and observing the blood pressure response. If preload is

adequate but stroke volume is assessed as inadequate, then the only recourse is to

administer drugs (positive inotropes) that increase the contractility of the heart.

In many situations, especially in patients with infections, the cardiac output is

adequate or higher than normal but the blood pressure is still low. Referring again

to the basic equation of hemodynamics (2.1), one must conclude that systemic vas-

cular resistance is low. In this case, we administer drugs (vasopressors) that increase

systemic vascular resistance. The hypotension protocol flow chart is given in Figure

2.2.

The treatment of hyerptension (systolic blood pressure > 150 mm Hg) follow

somewhat similar considerations. If the patient has an elevated heart rate as well as

an elevated blood pressure, the usual cause is increased contractility. Since high heart

rates potentially can cause myocardial ischemia (i.e., inadequate matching of oxygen
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delivery to the heart to the demand) it is most appropriate to treat the patient with

beta-blockers, that is, drugs that decrease both heart rate and contractility. However,

if the heart rate is not elevated, then the most likely cause of the hypertension is

elevated systemic vascular resistance and the best treatment would be vasodilaotors,

that is, drugs that decrease systemic vascular resistance.

2.6. A Rule-Based Expert System for ICU Respiratory Man-
agement

In this section, we introduce a simple rule-based expert system for ICU respi-

ratory management. Note that the respiratory management expert system and the

cardiopulmonary management and ICU sedation control expert system are two in-

dependent control systems running concurrently. In respiratory management, the

goal is to control the arterial partial pressure of CO2 (carbon dioxide) denoted by

PaCO2(t) and the pH of arterial blood. The means to do this are embodied in two

equations; one relating PaCO2(t) to alveolar ventilation (i.e., the volume of gas ex-

change in the lungs in a given unit of time), and the other, the Henderson-Hasselbalch

equation [104], relating blood pH to PaCO2(t) and the concentration of bicarbonate

in the blood denoted by [HCO−3 ](t).

The relationship between PaCO2(t) and ventilation is given by [104]

PaCO2(t) = 0.863
V CO2

Va(t)
, t ≥ 0, (2.2)

where V CO2 is the total body production of CO2 per minute and is approximately

259 ml/min in healthy subjects, 0.863 is a constant to reconcile units, and Va(t) is

alveolar ventilation. In patients who are totally dependent on mechanical ventilation

(and not taking any independent breaths) Va(t) is given by [104]

Va(t) = (TV (t) − Vd)RR(t), t ≥ 0, (2.3)
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where TV (t) denotes the volume of each breath set on the ventilator, RR(t) denotes

the respiratory rate set on the ventilator, and Vd denotes the dead space of the lungs.

The product TV (t)RR(t) is referred to as the minute ventilation [104] and Vd is

approximately 1/3 of minute ventilation in healthy subjects. Note that changes in Va

and Vd are very gradual and these variables can be regarded as constants.

In actual practice, the clinical staff set the value of TV (t) ≡ TV and RR(t) ≡ RR

on the ventilator and, using (2.3), we can see that these are the only variables that

the clinician can manipulate to control PaCO2(t). In modern critical care practice,

TV is set to 6 ml/kg. As a result, the primary variable to control PaCO2(t) is RR(t).

The other variables in the above equation (i.e., Vd and V CO2) are specific to the

patient and her/his physiology, or rather, pathophysiology.

In addition to controlling PaCO2(t), the clinician can control blood pH levels. In

particular [104],

pH(t) = 6.1 + loge

(

[HCO−3 ](t)

0.03PaCO2(t)

)

, t ≥ 0, (2.4)

where [HCO−3 ](t) is the bicarbonate ion concentration in arterial blood and 0.03 is a

constant to reconcile units. This equation reflects the fact that dissolved carbon diox-

ide reacts with water to form carbonic acid, which will lower the pH of blood. Once

the desired PaCO2(t) is attained by manipulating RR(t) (or, less commonly, TV (t)),

control of the desired pH can only then be achieved by manipulating [HCO−3 ](t).

This is done by either administering bicarbonate in the case of acidosis or, less com-

monly, by administering an acidifying agent such as the drug acetazolamide or di-

lute hydrochloric acid. Since the deleterious effects of acidosis are more immediate

and readily apparent than alkalosis, most clinicians administer acidifying agents only

within specific clinical contexts.

The first step in respiratory management involves measuring the arterial gas.
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This is done intermittently by taking a small sample of blood from an artery and

sending it to a laboratory where the partial pressure of carbon dioxide in the blood

PaCO2(t) is measured using electrochemical methods. In many clinical settings, the

arterial PaCO2(t) can be approximated by end-tidal CO2, the concentration of CO2

in exhaled gas at the end of expiration. This is conveniently measured using near

infrared spectroscopy of exhaled gas collected by sampling from the endotracheal

tube, the interface between the patient and the mechanical ventilator. This can be

done on a breath-by-breath basis.

In most cases involving ventilation control the primary goal is to normalize pH so

that PaCO2(t) is controlled to facilitate achieving a normal pH . However, in the case

of increased intracranial pathology it is important to maintain a normal carbon dioxide

level as well as normal pH level. The brain is enclosed in a closed vault (i.e., the skull).

If the brain becomes edematous (i.e., excessive accumulation of serous fluid), then this

will increase the pressure (the intracranial pressure) inside this closed vault. If the

intracranial pressure becomes too great, then the brain will be compressed and this

can result in serious injury if not death. In cases of intracranial pathology (e.g.,

brain tumors, traumatic injury to the brain, and bleeding in the brain) there will be

increased edema, and hence, increased intracranial pressure. This is exacerbated by

increased carbon dioxide as this increases blood flow to the brain and increases the

edema fluid load.

On the other hand, a markedly decreased carbon dioxide can lower cerebral blood

flow and, if severe, can result in cerebral ischemia (i.e., inadequate blood flow to the

brain). Hence, it is important to not only control pH(t) but also PaCO2(t) in patients

with intracranial pathology who require mechanical ventilation. The rule base of a

simple respiratory management expert system is summarized in Table 2.3.
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Table 2.3: Rule base of a simple respiratory management expert system. (a) Absence
of intracranial pathology. (b) Presence of intracranial pathology.

(a)
pH Action

pH < 7.32 ↑ RR, wait 30 min., repeat arterial blood gas measurement
7.32 < pH < 7.45 -

pH > 7.45 ↓ RR, wait 30 min., repeat arterial blood gas measurement

(b)
pH PaCO2 Action

pH < 7.32
PaCO2 > 40 Increase RR, wait 30 min., repeat arterial blood gas measurement

30 ≤ PaCO2 ≤ 40 Administer [HCO−
3 ] per base deficit

PaCO2 < 30 ↓ RR, administer [HCO−
3 ]

7.32 ≤ pH ≤ 7.49
PaCO2 < 30 ↓ RR, wait 30 min., repeat arterial blood gas measurement

30 < PaCO2 < 40 No action
PaCO2 > 40 ↑ RR, wait 30 min., repeat arterial blood gas measurement

pH > 7.49
30 < PaCO2 ↓ RR, repeat arterial blood gas measurement

30 < PaCO2 < 40 consider acidifying agent, if given, repeat arterial blood gas measurement
PaCO2 > 40 ↑ RR, consider acidifying agent

2.7. A Probabilistic Expert System for Cardiopulmonary Man-

agement and ICU Sedation Control

One of the limitations of the rule-based expert systems proposed in Sections 2.5

and 2.6 is their inability to deal with uncertainty. More specifically, the rule-based

expert system in Section 2.5 assumes perfect accuracy in the measurement of present

and previous MAAS scores, blood pressure, and heart rate. While current technology

allows for high accuracy measurements of blood pressure and heart rate, the MAAS

score, which quantifies the level of sedation and agitation of the patient, is subjective

and can result in inconsistencies and variability in sedation administration. Moreover,

in a rule-based expert system there is no uncertainty associated with the rules. A more

general approach would allow for rules with multiple conclusions, where a different

level of uncertainty is associated with each conclusion.

In this section, we use probability theory to quantify uncertainty to extend the

rule-based expert system given in Section 2.5 to deal with more realistic situations.

The rule-based respiratory management expert system given in Section 2.6 mainly
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uses PaCO2 and blood pH data for decision making. The same framework can be

used to construct a probabilistic expert system for respiratory management.

In the Bayesian interpretation of probability, as opposed to the classical inter-

pretation, the probability of an event is an indication of the uncertainty associated

with the event rather than its frequency [15]. In the probabilistic approach to ex-

pert systems, the system variables are regarded as random variables and, in contrast

to rule-based expert systems, probabilistic expert systems do not possess “if-then”

rules but rather the relationship between the variables is defined using a joint prob-

ability distribution [29]. If the joint probability distribution of a probabilistic model

is known, probabilities associated with different situations can be computed using

marginalization and probability conditioning [108].

A drawback of the probabilistic approach to expert systems is computational

complexity. The computational complexity increases with the increase in the number

of random variables and the number of possible values they can take. This increase is

exponential in the number of random variables. Bayesian networks [50] (also known

as belief networks) is a graphical framework in machine learning which exploits the

conditional independence between variables to reduce the computational complexity

of the probabilistic model.

Before stating the main results of this section, we need the following definitions.

Definition 2.1 [65, 138]. A directed graph G is a pair (V, E), where V = {v1, v2,

. . . , vN} is the set of vertices and E = {e1, e2, . . . , eM} ⊆ V × V is the set of edges.

Every edge el ∈ E , l ∈ {1, . . . , M}, corresponds to an ordered pair of vertices (vi, vj) ∈

V × V, where vi and vj are the initial and terminal vertices of the edge el. In this

case, el is incident into vj and incident out of vi; vi is the parent of vj and vj is the

child of vi. Moreover, Πw , {v ∈ V : (v, w) ∈ E} is the set of all parents of w ∈ V.
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A directed path from vi1 to vik is a set of distinct vertices {vi1 , vi2 , . . . , vik} such that

(vij , vij+1
) ∈ E , j = 1, . . . , k − 1. A directed path is closed if vi1 = vik . A cycle is a

nontrivial closed path where all the vertices (except for the first and last) are distinct.

A directed acyclic graph is a directed graph containing no cycles.

For the next definition, p(·) and p(·|·) denote the probability density function and

the conditional probability density function operators, respectively.

Definition 2.2 [50]. Let V = {X1, X2, . . . Xn}, where Xi, i = 1, . . . , n, is a

random variable and takes on values from a set Xi ⊂ R, i = 1, . . . , n. A Bayesian

network B is an ordered pair (G, Θ), where G = (V, E) is a directed acyclic graph,

E ⊆ V × V is the set of edges, and Θ is the set characterizing the probabilistic

relationship between the vertices (random variables) and is defined by

Θ , {p (xi|Xi1 = xi1 , . . . , XiM = xiM ) : xi ∈ Xi, i = 1, . . . , n, i1, . . . , iM ∈ IXi
},(2.5)

where IXi
, {j : Xj ∈ ΠXi

} is the parent index set of Xi, M = card(ΠXi
), and

card(·) is the cardinality operator.

Note that a Bayesian network B = (G, Θ) defines a unique joint probability dis-

tribution over V given by

p(x1, x2, . . . , xn) =

n
∏

i=1

p (xi|xi1 , . . . , xiM ) , (2.6)

where i1, . . . , iM ∈ IXi
, and where, for simplicity of exposition, we denote the con-

ditional probability density function p (xi|Xi1 = xi1 , . . . , XiM = xiM ) by p (xi|xi1 , . . . ,

xiM ). Moreover, a Bayesian network represents the causal relationships between dif-

ferent random variables. More specifically, if Xj ∈ ΠXi
, i, j ∈ {1, . . . , n}, then Xj

directly influences (causes) Xi. This interpretation of an edge between two vertices
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is crucial in the construction of the Bayesian network. Each random variable is ei-

ther observed (i.e., its value is known), or hidden (i.e., its value is unknown). In

the graphical representation of a Bayesian network, the vertices corresponding to the

observed random variables are shaded. Given a Bayesian network and the set of

observed random variables, the inference involves finding the posterior probability

distribution of any set of random variables given the observed random variables by

marginalizing the joint probability distribution. An advantage of Bayesian networks

is that they reduce the computational complexity of the inference stage. For a more

comprehensive discussion on Bayesian networks, see [15, 50, 108].

In this section, we use a Bayesian network framework to design a probabilistic

expert system for cardiopulmonary management and ICU sedation control. We first

start by constructing a Bayesian network for ICU sedation control. Next, we extend

the Bayesian network to control patient hemodynamics. Let B = (G, Θ) represent

the Bayesian network and let the patient’s current MAAS score, previous MAAS

score, blood pressure, heart rate, and required drug dose for sedation be given by the

random variables M , M ′, B, H , and D, respectively, where range(M) = range(M ′) =

{0, 1, . . . , 6}, range(D) = {1, 2, . . . , 12}, range(B) = range(H) = R+, where R+

denotes the set of positive scalars, and, for a given function f : X → Y , range(f) , Y .

Note that there are 12 distinct actions (primary action) given in the first part of the

conclusion of each rule in Table 2.1, and hence, we have assigned a unique number to

each distinct action. The graph G for this Bayesian network is given in Figure 2.3. The

current and previous MAAS scores, blood pressure, and heart rate, which constitute

the inputs to the expert system and directly influence the required drug dose, are

observed and their corresponding vertices are shaded in Figure 2.3.

A potential problem associated with the Bayesian network given in Figure 2.3 is

its inability to capture the uncertainty associated with the measurement of the MAAS
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M M ′ B H

D

Figure 2.3: The graph of a Bayesian network capturing the relationships between
the current MAAS score (M), previous MAAS score (M ′), blood pressure (B), heart
rate (H), and required drug dose (D).

scores. In particular, in order to perform a meaningful inference, the exact values of

the current and previous MAAS scores should be known (observed). However, as dis-

cussed earlier, the assessment process is highly subjective, and the assessed scores can

involve a high degree of uncertainty. A closer examination of the current and previ-

ous MAAS scores reveals that these random variables are essentially hidden variables,

that is, they are “driven” by other factors. The MAAS score reflects the patient’s

agitation and sedation level, which can be observed through facial expressions, gross

motor movement, guarding (i.e., a response in which the patient withdraws from a

potentially noxious stimulus), heart rate and blood pressure stability, noncardiac sym-

pathetic stability, and nonverbal pain scale. These observed factors can be regarded

as random variables taking on values from appropriate sets. For example, machine

learning techniques can be used to classify photographs based on the patient’s facial

expressions into pain and non-pain classes, which in turn can be used to assess pain

intensity on a scale from 0 to 100 [53, 54]. Hence, a more complete model for the

probabilistic expert system should include these observed random variables as well.

Let the random variables U1, . . . , U6 represent the current objective assessment of

the facial expression, gross motor movement, guarding, heart rate and blood pressure

stability, noncardiac sympathetic stability, and nonverbal pain scale, respectively,
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and let U ′1, . . . , U
′
6 represent the previous objective assessment of these variables.

Moreover, let range(U1) = range(U ′1) = {0, 1, 2}, where 0, 1, and 2 denote, respec-

tively, a relaxed face, grimacing and moaning face, and grimacing and crying face;

range(U2) = range(U ′2) = {0, 1, 2}, where 0, 1, and 2 denote, respectively, lying qui-

etly, cautious movement, and restless withdrawal; range(U3) = range(U ′3) = {0, 1, 2},

where 0, 1, and 2 denote, respectively, lying quietly, splinting and tense, and rigid

and stiff; range(U4) = range(U ′4) = {0, 1, 2}, where 0, 1, and 2 denote, respectively,

stable, moderate change, and marked change; range(U5) = range(U ′5) = {0, 1, 2},

where 0, 1, and 2 denote, respectively, warm and dry skin, flushed and sweaty, and

pale and sweaty; and range(U6) = range(U ′6) = {0, . . . , 10}, where 0 and 10 denote,

respectively, no pain and extreme pain.

The graph of the Bayesian network which includes these new random variables

is given in Figure 2.4. Note that the current and previous MAAS scores are no

longer observed, and hence, are not shaded. It is worth noting here that the graph

represented in Figure 2.4 corresponds to a Bayesian network of a probabilistic expert

system and it is not aimed at modeling the interactions between the variables involved

in ICU sedation. The Bayesian network capturing the actual interaction of these

variables has a different dependency structure, and hence, its corresponding graph

would be different from the graph given in Figure 2.4.

The Bayesian network corresponding to the graph given in Figure 2.4 can be used

to determine the proper drug dose for ICU sedation. Specifically, the joint probabil-

ity distribution p(u1, . . . , u6, u
′
1, . . . , u

′
6, m, m′, b, h, d), where u1, . . . , u5, u

′
1, . . . , u

′
5 ∈

{0, 1, 2}, u6, u
′
6 ∈ {0, . . . , 10}, m, m′ ∈ {0, 1, . . . , 6}, b, h ∈ R+, and d ∈ {1, 2, . . . ,

12}, can be computed using the relationship given in (2.6); namely,

p(u1, . . . , u6, u
′
1, . . . , u

′
6, m, m′, b, h, d) =

(

5
∏

i=1

p(u′i)

)

p(u′6|u
′
1, . . . , u′5)p(b)p(h)
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Figure 2.4: A more general graph of a Bayesian network capturing the relationship
between the MAAS score and other observable factors; namely, current and previ-
ous objective assessments of facial expression U1, U ′1, gross motor movement U2, U ′2,
guarding U3, U ′3, heart rate and blood pressure stability U4, U ′4, non-cardiac sympa-
thetic stability U5, U ′5, and non-verbal pain scale U6, U ′6.

·

(

5
∏

i=1

p(ui|u
′
i)

)

p(u6|u1, . . . , u5, u
′
6) p(m|u1, . . . , u6, m

′)

· p(m′|u′1, . . . , u′6) p(d|m, m′, b, h). (2.7)

The probability distribution of the drug dose suggested by the Bayesian network is

given by

p(d|u1, . . . , u6, u
′
1, . . . , u

′
6, b, h)

=
p(u1, . . . , u6, u

′
1, . . . , u

′
6, b, h, d)

p(u1, . . . , u6, u′1, . . . , u
′
6, b, h)

=

∑6
m=0

∑6
m′=0 p(u1, . . . , u6, u

′
1, . . . , u

′
6, m, m′, b, h, d)

∑6
m=0

∑6
m′=0

∑12
d=1 p(u1, . . . , u6, u

′
1, . . . , u

′
6, m, m′, b, h, d)

, (2.8)

where we use marginalization to eliminate m and m′, and m, m′, and d from the

probability density functions in the numerator and denominator of (2.8), respec-

tively. Note that p(d|m, m′, b, h), which captures the drug dosing pattern of the med-

ical staff, can be determined through statistical techniques (e.g., maximum likelihood

estimates [108]) and clinical data collection. In addition, the probability distribu-

tions p(m|u1, . . . , u6, m
′) and p(m′|u′1, . . . , u′6) capture the relationship between the
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facial expression, gross motor movement, guarding, heart rate and blood pressure

stability, noncardiac sympathetic stability, and nonverbal pain scale and the MAAS

score, which also requires clinical data collection. The prior probability distribu-

tions over U ′1, . . . , U ′5, B, and H denoted by p(u′i), i = 1, . . . , 5, p(b), and p(h),

respectively, as well as the conditional probability distributions p(ui|u
′
i), i = 1, . . . , 6,

p(u′6|u
′
1, . . . , u′5), and p(u6|u1, . . . , u5, u

′
6) can also be determined by statistical tech-

niques.

Given the probability distribution of the drug dose suggested by the Bayesian

network p(d|u1, . . . , u6, u
′
1, . . . , u

′
6, b, h), different strategies for choosing the drug dose

can be used. One such strategy is the maximum a posteriori (MAP) approach [15],

where the drug dose corresponding to the mode of the distribution is selected by

Dsuggested = argmaxd∈{1,...,12}p(d|u1, . . . , u6, u
′
1, . . . , u

′
6, b, h), (2.9)

where Dsuggested denotes the drug dose suggested by the Bayesian network.

Finally, note that the Bayesian network can also be used to compute the proba-

bility distribution of the drug dose (and hence, the suggested drug dose) when only

partial observations are available. In particular, the posterior probability distribution

on the drug dose can be computed when the observed variables are a subset of the

observed variables in Figure 2.4. Partial observation can result from sensor failure,

where a particular state of the patient is unavailable at the time of a decision. For

example, if only the blood pressure, heart rate, facial expression, and gross motor

movement data is available, p(d|u1, u2, u
′
1, u
′
2, b, h) gives the probability distribution

for the drug dose based on these partial observations. The graph of the Bayesian

network for this case is given in Figure 2.5.

The same probabilistic methodology can be used to account for the secondary

action in the Bayesian network. In this case, appropriate random variables have to
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Figure 2.5: A graph of a Bayesian network where only the current gross motor
movement U1, previous gross motor movement U2, blood pressure B, and heart rate
H are observable.

be defined and the graph given in Figure 2.4 should be modified accordingly. Al-

ternatively, a hybrid probabilistic-deterministic expert system can be defined, where

the primary actions given by the first part of the conclusions in Table 2.1 are de-

scribed by a Bayesian network and the secondary action is given by Table 2.2 and

the flowchart given in Figure 2.2. More specifically, define the switching random

variable S, where range(S) = {0, 1}. The random variable S acts as a switch, where

S = 0 denotes that the HDESC is off-line and S = 1 denotes that the HDESC is

activated. The activation could be probability-based where the HDCES is activated

if P (S = 1|u1, . . . , u6, u
′
1, . . . , u

′
6, b, h) > T , where 0 < T < 1, P (·|·) is the conditional

probability operator, and T is a threshold value. Note that based on Table 2.1, the

activation of the HDCES depends on the current and previous MAAS scores, blood

pressure, heart rate, and the required drug dose for ICU sedation. The graph of the

hybrid Bayesian network is shown in Figure 2.6.
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Figure 2.6: A graph of a hybrid probabilistic-deterministic Bayesian network where
the random variable S controls the activation of the hemodynamic control expert
system.

2.8. A Probabilistic Alarm Algorithm for Critical Care Mon-

intoring

A potentially key application of the probabilistic expert system developed in Sec-

tion 2.7 is its applicability to clinical decision support, critical care monitoring, and

lifesaving interventions. A clinical decision support system is a computer program

that can directly provide the medical staff with assessments and recommendations in

the clinical decision making process [75]. A clinical decision support system can be

coupled to a closed-loop control system to provide a hierarchical hybrid control archi-

tecture characterized by continuous-time control algorithms at the lower-level units

and logical decision-making units at the higher-level of the hierarchy. In particular,

a hybrid controller would involve the clinician evaluating the patient through a deci-

sion support system and an autonomous closed-loop controller adjusting the desired

regimen to maintain sedation at a desired level. This controller architecture allows

for the expert system to directly aid in clinical decision making as well as critical care

monitoring and lifesaving interventions.
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In this section, we use the framework presented in Section 2.7 to design an alarm

algorithm for agitation detection in ICU patients. An alarm system refers to an

automatic warning system that constantly monitors a specific state of the patient

and notifies the medical staff in case of an abnormality [78]. An agitation detection

alarm system can reduce the medical staff’s workload as well as safeguard against

life-threatening situations in the ICU.

To design an alarm algorithm for agitation detection, let the patients’s facial

expression, gross motor movement, guarding, heart rate and blood pressure stability,

noncardiac sympathetic stability, nonverbal pain scale, and patient agitation be given

by the random variables U1, . . . , U6, and A, respectively, where range(Ui) = {0, 1, 2},

i = 1, . . . , 5, range(U6) = {0, . . . , 10}, and range(A) = {0, 1}. Here, A = 0 and

A = 1 denote, respectively, absence of agitation corresponding to an MAAS score of

0–3 and presence of restlessness and agitation corresponding to an MAAS score of

4–6. The graph of the Bayesian network for the alarm algorithm is given by Figure

2.7. Note that the random variables U1, . . . , U6 are considered as observed variables,

and hence, are shaded.


 


A

U1 U2 U3 U4 U5

U6

Figure 2.7: A graph of a Bayesian network of an alarm algorithm for critical care
monitoring.

The joint probability distribution for this network is given by

p(u1, . . . , u6, a) = p(u1) . . . p(u5)p(u6|u1, . . . , u5)p(a|u1, . . . , u6), (2.10)
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where ui ∈ {0, 1, 2}, i = 1, . . . , 5, u6 ∈ {0, . . . , 10}, and a ∈ {0, 1}. In addition, the

posterior probability of the patient’s agitated state is given by

p(a|u1, . . . , u6) =
p(u1, . . . , u6, a)

p(u1, . . . , u6)
=

p(u1, . . . , u6, a)
∑1

a=0 p(u1, . . . , u6, a)
. (2.11)

The patient’s agitation state is based on the observation of facial expression, gross

motor movement, guarding, heart rate and blood pressure stability, noncardiac sym-

pathetic stability, and nonverbal pain scale and is given by

Apredicted = argmaxa∈{0,1}p(a|u1, . . . , u6), (2.12)

where we use the MAP approach to select the agitation state with the highest prob-

ability.

To elucidate the efficacy of our proposed approach we apply our framework to a

retrospective study involving recorded sedation and agitation data for 366 patients

admitted to the ICU in Northeast Georgia Medical Center, Gainesville, GA, over the

period of May 6, 2009 to April 27, 2010. The patient’s age ranged from 18 to 90

years. The length of stay in the ICU ranged from 1 to 93 days. In addition, the

available data set included 15,052 measurements of facial expressions, gross motor

movement, guarding, heart rate and blood pressure stability, noncardiac sympathetic

stability, nonverbal pain scale, and agitation state. We used the hold-out method [15]

for validation of the alarm algorithm, where 12,000 measurements of the random

variables U1, . . . , U6 and A were used to train the Bayesian network. The algorithm

was tested on the remaining 3,052 measurements of U1, . . . , U6.

We used the MATLABR© version R2008a and the Bayesian Network MATLABR©

Toolbox [109] to compute the posterior probability distributions of the patient’s ag-

itation state. In the training stage, we used the maximum likelihood estimates ap-

proach to estimate the probability distributions in (2.10) and used a uniform Dirichlet

prior to avoid zero conditional probabilities for cases not present in the training data
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Table 2.4: Comparison of the human-assessed patient agitation with the predicted
agitation state given by the alarm algorithm.

Patient Not Agitated Patient Agitated
Alarm On 48 206
Alarm Off 2628 125

set [108]. In addition, in the testing stage, we used the junction-tree inference al-

gorithm [15]. Table 2.4 gives the predicted agitation state Apredicted given by (2.12)

as compared to the human-assessed patient agitation. Based on the results, for any

given alarm, that is, when the algorithm predicts the presence of patient agitation,

the probability that the patient is not agitated (false positive) is 18.9% with a 95%

confidence interval of 14.4% to 24.4%. In addition, when no agitation is reported by

the algorithm the probability that the patient is experiencing agitation (false nega-

tive) is 4.5% with a 95% confidence interval of 3.8% to 5.4%. The confidence interval

is calculated based on the framework presented in [114]. In 45 cases out of a total

of 3,052 cases the algorithm was undecided; that is, the posterior probability of the

patient’s agitation state was uniform.

2.9. ICU Sedation Control

In this section, we present an illustrative numerical example of a probabilistic ex-

pert system for ICU sedation control based on the discussion given in Section 2.7. For

illustrative purposes, however, we consider a simplified probabilistic expert system to

control ICU sedation. Specifically, let the random variables U1 and U2 represent

the current objective assessment of the facial expression and gross motor movement,

respectively, and let U ′1 and U ′2 represent the previous objective assessment of the

facial expression and gross motor movement, respectively. Furthermore, let the pa-

tient’s current MAAS score, previous MAAS score, and required drug dose for seda-
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tion be given by the random variables M , M ′, and D, respectively. Moreover, let

range(U1) = range(U ′1) = {0, 1}, where 0 and 1 denote a relaxed face and grimacing

and moaning face, respectively, let range(U2) = range(U ′2) = {0, 1, 2}, where 0, 1,

and 2 denote lying quietly, cautious movement, and restless withdrawal, respectively,

let range(M) = range(M ′) = {1, 2, 3}, where 1, 2, and 3 denote MAAS scores 0,

3, and 6, respectively, and let range(D) = {1, 2, 3}, where 1, 2, and 3 denote de-

crease in propofol infusion, no action, and increase in propofol infusion, respectively.

It is important to note here that even though a simplified set of motor movements

and facial expressions, MAAS scores, and drug dosing requirements are used to de-

velop this expert system, this is made for simplicity of exposition and is not clinically

unrealistic.

The graph of the Bayesian network which includes these random variables is given

in Figure 2.8. The conditional probability distributions are given by Table 2.5. Here,

we assume a uniform prior probability distributions for the random variables U1, U2,

U ′1, and U ′2. Note that U1, U2, U ′1, and U ′2 are observed random variables, and hence,

their corresponding nodes in the graph given by Figure 2.8 are shaded. The condi-

tional probability distributions can be determined through statistical techniques and

clinical data collection which correspond to a classical interpretation of probability.

Alternatively, the conditional probabilities can also reflect the expertise of a human

expert which corresponds to a Bayesian interpretation of probability. As noted above,

this interpretation of probabilities can be used to quantify uncertainty.

We used the MATLABR© version R2008a and the Bayesian Network MATLABR©

Toolbox [109] to compute the posterior probability distributions of the required ac-

tion, where we used the junction-tree inference algorithm [15]. The posterior prob-

ability distributions of the required action D for the case where U1 = 0, U2 = 0,

U ′1 = 1, U ′2 = 1, and U1 = 1, U2 = 2, U ′1 = 0, U ′2 = 1 are given in Figures 2.9 and 2.10,
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Figure 2.8: The graph of a Bayesian network capturing the relationships between
the current MAAS score (M), previous MAAS score (M ′), current and previous
facial expressions (U1, U ′1), current and previous gross motor movement (U2, U ′2), and
required drug dose (D).

respectively. If a maximum a posteriori (MAP) strategy is used, then the action with

the highest posterior probability is selected. This corresponds to “decrease propofol

infusion” and “increase propofol infusion” for the examples given in Figures 2.9 and

2.10, respectively. The posterior probability distributions of the required action in

the case where only the random variable corresponding to the gross motor movement

is observed (i.e., U2 = 0 and U ′2 = 1) is given in Figure 2.11.

Comparing Figure 2.9 with Figure 2.11 it follows that the posterior probability

distribution of the required action D changes due to increase in uncertainty. The

Bayesian network can also be used to find the posterior probability distribution for

the hidden variables in the graph. The posterior probability distribution for the

current MAAS score M for the case U1 = 1, U2 = 2, U ′1 = 0, and U ′2 = 1 is given

in Figure 2.12. Finally, note that the posterior probability distribution reflects the

uncertainty associated with each value the random variable assumes. For example,

using Figure 2.12, the posterior probability of M reflects the fact that there is a

high likelihood that the patient is highly agitated, which justifies the required action

“increase propofol infusion.”
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Table 2.5: Conditional probability distributions for M , M ′, and D.

U1, U ′
1 U2, U ′

2 M, M ′ P
0 0 1 0.8
0 0 2 0.15
0 0 3 0.05
1 0 1 0.3
1 0 2 0.35
1 0 3 0.35
0 1 1 0.15
0 1 2 0.8
0 1 3 0.05
1 1 1 0.1
1 1 2 0.4
1 1 3 0.5
0 2 1 0.05
0 2 2 0.35
0 2 3 0.6
1 2 1 0.05
1 2 2 0.15
1 2 3 0.8

M M ′ D P
1 1 1 0.8
1 1 2 0.19
1 1 3 0.01
1 2 1 0.9
1 2 2 0.09
1 2 3 0.01
1 3 1 0.95
1 3 2 0.04
1 3 3 0.01
2 1 1 0.25
2 1 2 0.7
2 1 3 0.05
2 2 1 0.05
2 2 2 0.9
2 2 3 0.05
2 3 1 0.5
2 3 2 0.45
2 3 3 0.05
3 1 1 0.01
3 1 2 0.09
3 1 3 0.9
3 2 1 0.01
3 2 2 0.19
3 2 3 0.8
3 3 1 0.01
3 3 2 0.04
3 3 3 0.95
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Figure 2.9: Posterior probability distri-
bution of D for the case U1 = 0, U2 = 0,
U ′1 = 1, and U ′2 = 1.
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Figure 2.10: Posterior probability distri-
bution of D for the case U1 = 1, U2 = 2,
U ′1 = 0, and U ′2 = 1.
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Figure 2.11: Posterior probability dis-
tribution of D for the case U2 = 0 and
U ′2 = 1.
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Figure 2.12: Posterior probability distri-
bution of M for the case U1 = 1, U2 = 2,
U ′1 = 0, and U ′2 = 1.
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Chapter 3

Relevance Vector Machine Learning for Neonate

Pain Intensity Assessment Using

Digital Imaging

3.1. Introduction

Individuals in pain manifest their condition through “pain behavior” [94, 120],

which includes facial expressions. In [120], the significance of a facial expression

as an indicator of pain is discussed and advances in pain assessment using facial

expressions are reviewed. Clinicians regard the patient’s facial expression as a valid

indicator for pain and pain intensity [38]. Hence, correct interpretation of the facial

expressions of the patient and its correlation with pain is a fundamental step in

designing an automated pain assessment management system. Of course, other pain

behaviors including head movement and the movement of other body parts, along with

physiological indicators of pain, such as heart rate, blood pressure, and respiratory

rate responses should also be included in such a system.

Depending on the patient group (e.g., neonates, children, adults, etc.) pain as-

sessment criteria have been developed, and indicators of pain in each group might be

different. For example, while the behavioral pain scale for adults focuses on facial

expressions, upper limbs, and compliance with ventilation [118], the face, legs, ac-

tivity, cry, and consolability (FLACC) [107] behavioral pain scale focuses on slightly
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different set of indicators for postoperative young children. Similarly, the premature

infant pain profile (PIPP) [134] considers a special set of pain indicators including

physiological and behavioral indicators for pain assessment in premature infants.

Infants are unable to directly report their level of pain, and hence, medical staff are

responsible for pain assessment for neonates. Pain and distress behaviors in neonates

include facial expression, cry, and body movement, and a series of methods have

been suggested to objectively assess pain in neonates based on the aforementioned

behaviors [107,120,134]. In this chapter, we focus on the problem of pain assessment

in infants using facial expressions.

Although there is a vast potential for using computer vision for agitation and pain

assessment, there are very few articles in the computer vision literature addressing this

issue. The authors in [17] have used computer vision for pain assessment in demented

elderly patients. In [6], an agitation assessment scheme is proposed for patients in the

ICU. The approach of [6] is based on the hypothesis that facial grimacing induced by

pain results in additional “wrinkles” (equivalent to edges in the processed image) on

the face of the patient, and this is the only factor they use in assessing pain. Although

this approach is computationally inexpensive and especially appealing for a real-time

decision support system, it can be limiting since it does not account for other facial

actions (e.g., smiling, crying, etc.), which may not necessarily correspond to pain. The

authors in [20–23] use various face classification techniques including support vector

machines (SVM) and neural networks (NN) to classify facial expressions in neonates

into “pain” and “non-pain” classes. Such classification techniques were shown to have

reasonable accuracy.

In this chapter, we extend the classification technique addressed in [20–23] to dis-

tinguish pain from non-pain in neonates as well as assess their pain intensity using

a relevance vector machine (RVM) classification technique [139]. The RVM classifi-
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cation technique is a Bayesian extension of SVM which achieves comparable perfor-

mance to SVM while providing posterior probabilities for class memberships and a

sparser model. In a Bayesian interpretation of probability, as opposed to the classical

interpretation, the probability of an event is an indication of the uncertainty associ-

ated with the event rather than its frequency [15]. If data classes represent “pure”

facial expressions, that is, extreme expressions that an observer can identify with a

high degree of confidence, the posterior probability of the membership of some inter-

mediate facial expression to a class can provide an estimate of the intensity of such

an expression. This, along with other pain behaviors, can be translated into one of

the scoring systems currently being used for assessing pain (e.g., FLACC or PIPP).

The contents of the chapter are as follows. In Sections 3.2 and 3.3, we review the

SVM and RVM classification techniques for pain recognition using facial expressions.

Then, in Section 3.4, we present the results of these classification techniques applied

to the Infant Classification of Pain Expression (COPE) database [22]. The pain

intensity assessment given by the computer classifier shows a strong correlation with

the pain intensity assessed by expert and non-expert human examiners.

3.2. Support Vector Machines

As we see in Section 3.4, the problem of pain and pain intensity assessment using

facial images involves a standard problem in machine learning called data classifi-

cation [15]. Given a series of input variables x1, x2, . . . , xN in R
D and their corre-

sponding class labels C1, C2, . . . , Cp, where p ≤ N , the data classification problem

involves assigning the correct class label to a new input variable x. Kernel-based

methods are typically used for data classification and regression [15]. A key limita-

tion of many kernel-based learning algorithms is the computational intensity involved

in the training, prediction, and decision making stages of the algorithm. This is due
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to the fact that the kernel function, which adds a dimension to the data in order to

obtain an optimal classification, has to be computed for all pairs of data points. In

sparse kernel machine algorithms, however, only a subset of the training data is used,

providing a sparse solution. Sparse kernel machines are faster in the training, and

the prediction and decision making stages. In this chapter, we consider two sparse

kernel-based classification algorithms, namely, support vector machines and relevance

vector machines.

Support vector machines (SVM) [144] involve sparse kernel algorithms used in

classification and regression problems, and have their origin in statistical learning

theory. Here, we consider the classification problem involving two data classes,

namely, C1 and C2. The framework can be generalized to a multi-class label prob-

lem using a similar approach as outlined below [15]. Let the training set be given

by {x1, x2, . . . , xN}, with target values given by z1, z2, . . . , zN , respectively, where

xn ∈ R
D and zn ∈ {−1, 1}, n = 1, . . . , N , and with xn ∈ C1 if zn = −1, and xn ∈ C2

if zn = 1. To classify a new data point x ∈ R
D, define the classifier function

y(x) , wTφ(x) + b, (3.1)

where φ : R
D → R

M is a continuous fixed feature-space transformation, w ∈ R
M is a

weight vector, and b ∈ R is a bias parameter. The sign of the classifier function y(x)

determines the class of x. More specifically, for a new input variable x, the target

value is given by z = sgn(y(x)), where sgn y ,
y
|y| , y 6= 0, and sgn(0) , 0.

Next, assume that the training set is linearly separable in the feature space R
M ,

that is, there exist a weight vector w ∈ R
M and a bias parameter b ∈ R such that

y(xn) > 0 for xn ∈ R
D and zn = 1, and y(xn) < 0 for xn ∈ R

D and zn = −1; or,

equivalently, zny(xn) > 0 for all xn ∈ R
D and zn ∈ {−1, 1}. Later we will relax

the linear separability assumption and consider the more general case of overlapping
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classes.

Note that the classifier function y(·) separates the feature space R
M into two

disjoint regions characterized by y(x) > 0 and y(x) < 0 for x ∈ R
D. The affine

hyperplane separating the two disjoint regions, namely y(x) = 0, is called the decision

boundary and is denoted by D. Note that φ(·) can be a nonlinear transformation,

which would correspond to a nonlinear decision boundary in the original input space

R
D. The minimum distance between the training set and the decision boundary D

is called the margin. The distance of a point xn ∈ R
D to the decision boundary D is

given by

dist(φ(xn),D) =
|y(xn)|

‖w‖
=

zny(xn)

‖w‖
, (3.2)

where ‖·‖ denotes the Euclidean norm on R
M and dist(x,D) , infs∈D ‖x−s‖. Hence,

the margin is given by

min
n∈{1,...,N}

dist(φ(xn),D) = min
n∈{1,...,N}

zny(xn)

‖w‖
. (3.3)

As in all classification methods, the goal of the SVM algorithm is to classify a new

input variable x ∈ R
D based on the information provided by the training set and the

target values. The SVM framework addresses this problem by choosing the decision

boundary in such a way so that the margin is maximized. The following problem

presents the SVM algorithm as an optimization problem.

Maximum Margin Classification Problem. Consider the training set given

by {x1, x2, . . . , xN} ⊂ R
D and let the classifier function y : R

D → R be given by

(3.1). Find the weight vector w ∈ R
M and the bias parameter b ∈ R such that (3.3)

is maximized.

Theorem 3.1. w∗ ∈ R
M and b∗ ∈ R solve the Maximum Margin Classification
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Problem if and only if w∗ and b∗ are the solutions to the optimization problem

max
w∈RM , b∈R

{

1

‖w‖
min

n∈{1,...,N}

[

zn

(

wTφ(xn) + b
)]

}

. (3.4)

Proof. The proof is a direct consequence of the definition of a margin given by

(3.3).

The solution to the non-convex optimization problem (3.4) is not unique. To see

this, note that scaling the weight vector w ∈ R
M and the bias parameter b ∈ R by

a positive scalar does not change the value of the function to be maximized. The

following theorem presents an alternative characterization to the Maximum Margin

Classification Problem.

Theorem 3.2. w∗ ∈ R
M and b∗ ∈ R solve the Maximum Margin Classification

Problem if and only if w∗ and b∗ are the solutions to the optimization problem

min
w∈RM , b∈R

1

2
‖w‖2 (3.5)

subject to

zn

(

wTφ(xn) + b
)

≥ 1, (3.6)

where xn ∈ R
D, zn ∈ {−1, 1}, and n = 1, . . . , N .

Proof. Since rescaling the weight vector w ∈ R
M and the bias parameter b ∈ R in

(3.4) by a positive scalar does not change the value of the function to be maximized,

the optimization problem (3.4) has a continuum of solutions corresponding to the

same optimal value. Hence, introducing the new constraint

zn∗

(

wTφ(xn∗) + b
)

= 1, (3.7)

where n∗ = arg minn∈{1,...,N}dist(φ(xn),D), does not change the optimal value of

the optimization problem (3.4). Thus, the inequality constraint (3.6) holds for all
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xn ∈ R
D, zn ∈ {−1, 1}, and n = 1, . . . , N . The proof now follows by noting that the

optimization problem (3.4) subject to (3.7) is equivalent to the optimization problem

(3.5) subject to (3.6).

The constrained optimization problem given by (3.5) and (3.6) is convex and can

be solved using Lagrange multiplier methods. Specifically, introducing the Lagrange

multipliers λn ∈ R, n = 1, . . . , N , and forming the Lagrangian

L(w, b, λ) =
1

2
‖w‖2 −

N
∑

n=1

λn

[

zn

(

wTφ(xn) + b
)

− 1
]

, (3.8)

where λ = [λ1, λ2, . . . , λn]T, it follows from the first-order necessary conditions for

optimality that

w =

N
∑

n=1

λnznφ(xn), (3.9)

0 =
N
∑

n=1

λnzn. (3.10)

Note that (3.9) and (3.10) can be used to eliminate w and b from the Lagrangian

(3.8) leading to a dual representation of the optimization problem (3.4). Namely,

max
λ∈RN

L̃(λ) (3.11)

subject to

λn ≥ 0, n = 1, . . . , N, (3.12)
N
∑

n=1

λnzn = 0, (3.13)

where

L̃(λ) ,

N
∑

n=1

λn −
1

2

N
∑

n=1

N
∑

m=1

λnλmznzmk(xn, xm) (3.14)

and

k(x, x′) = φT(x)φ(x′) (3.15)
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is the kernel function. Here, we introduced an alternative formulation of the opti-

mization problem (3.4) in terms of the kernel function k : R
D×R

D → R, which allows

us to avoid working explicitly in the feature space. Note that the classifier function

(3.1) can be rewritten using the kernel function as

y(x) =
N
∑

n=1

λnznk(x, xn) + b. (3.16)

The Kuhn-Tucker (KT) necessary conditions for optimality for the constrained

optimization problem (3.11)–(3.13) are given by

λn ≥ 0, (3.17)

zny(xn) − 1 ≥ 0, (3.18)

λn (zny(xn) − 1) = 0, (3.19)

where n = 1, . . . , N . Now, it follows from (3.19) that either λn = 0 or zny(xn) = 1.

The input variables xn ∈ R
D, n = 1, . . . , N , for which the corresponding Lagrange

multiplier λn ∈ R vanishes do not contribute to the classifier function (3.16) and,

hence, can be omitted. The remaining input variables are called support vectors and,

by definition, lie on the maximum margin affine hyperplanes w∗Tφ(xn) + b∗ = ±1,

n = 1, . . . , N . Hence, only the support vectors play a role in the classification of the

new input variables and the rest of the training set can be discarded.

Next, we consider the case of overlapping classes. For this case, the SVM algorithm

considered above identifies the decision boundary so that the training set is separated

into two data classes with no input variables being misclassified. This results in poor

class assignments for new input variables. The SVM algorithm, however, can be

modified by allowing input variables in the training set to lie on the “wrong side”

of the margin boundary and penalizing such constraint violations. Specifically, for

every input variable xn ∈ R
D, n = 1, . . . , N , define the slack variable ξn ≥ 0 such
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that ξn = 0 if (3.6) is satisfied, that is, for n ∈ {1, . . . , N}, xn is on or inside the

correct margin boundary, and ξn = |zn − y(xn)| otherwise.

The modified SVM algorithm is given by the following optimization problem

min
w∈RM , b∈R, ξ∈RN

C
N
∑

n=1

ξn +
1

2
‖w‖2 (3.20)

subject to

zny(xn) ≥ 1 − ξn, n = 1, . . .N, (3.21)

ξn ≥ 0, (3.22)

where ξ = [ξ1, ξ2, . . . , ξN ]T and C > 0 is a complexity parameter controlling the

trade-off between the margin and the slack variable penalty. It can be shown that if

ξn = 0, then (3.21) reduces to (3.6) and the corresponding input variable xn ∈ R
D

will be correctly classified. Moreover, if 0 < ξn ≤ 1, then the input variable xn ∈ R
D

is correctly classified while lying inside the margin boundary, whereas if ξn > 1, then

the input variable is misclassified.

Lagrange multiplier methods can be used to solve the optimization problem (3.20)–

(3.22) by introducing the Lagrange multipliers λn ∈ R and µn ∈ R, n = 1, . . . , N ,

corresponding to the constraints (3.21) and (3.22), respectively. In this case, the

Lagrangian is given by

L(w, b, λ, ξ) =
1

2
‖w‖2 + C

N
∑

n=1

ξn −
N
∑

n=1

λn (zny(xn) − 1 + ξn) −
N
∑

n=1

µnξn, (3.23)

where λ = [λ1, λ2, . . . , λN ]T. Now, it follows from the first-order necessary conditions

for optimality that

w =

N
∑

n=1

λnznφ(xn), (3.24)

0 =

N
∑

n=1

λnzn, (3.25)

λn = C − µn, n = 1, . . . , N, (3.26)
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and the KT necessary conditions give

λn ≥ 0, (3.27)

zny(xn) − 1 + ξn ≥ 0, (3.28)

zn (zny(xn) − 1 + ξn) = 0, (3.29)

µn ≥ 0, (3.30)

ξn ≥ 0, (3.31)

µnξn = 0, (3.32)

where n = 1, . . . , N . The dual representation of the optimization problem (3.20)

subject to (3.21) and (3.22) is given by

min
λ∈RN

L̃(λ) (3.33)

subject to

0 ≤ λn ≤ C, n = 1, . . . , N, (3.34)
N
∑

n=1

λnzn = 0, (3.35)

where L̃(λ) is given by (3.14), the kernel function is given by (3.15), and where we

have used (3.24)–(3.32).

3.3. Sparse Bayesian Learning

The SVM framework is a powerful classifier but has a number of limitations. A

key deficiency of the approach is the fact that the output of the SVM is the binary

classification decision and not the class membership posterior probability. As will be

discussed in Section 3.4, methods which possess an inherent Bayesian structure are

more powerful and can provide more information. Such methods not only classify a

new input variable, but can also provide a degree of uncertainty (in terms of posterior
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probabilities) for such a classification. The relevance vector machine (RVM) [139],

which is a special case of the sparse Bayesian learning algorithm, can be regarded as

the Bayesian extension of the SVM approach.

In this section, we consider a classification problem involving two data classes,

namely C1 and C2, using the sparse Bayesian learning approach. The framework can be

generalized to a multi-class classification problem using a similar approach as outlined

below [139]. Consider the Laplace approximation method [15] involving the random

variable v ∈ R
M with associated probability density function given by p : R

M → R.

Assume that p(v) = f(v)
V

, where f : R
M → R is a function defined on v ∈ R

M and

V =
∫

RM f(v)dv is the normalization coefficient. The probability density function

p(v) is approximated by a multivariate Gaussian (normal) distribution N (v; v0, Σ)

with mean v0 ∈ R
M and covariance matrix Σ ∈ R

M×M , where v0 = arg maxv∈RM p(v)

and Σ = − ∂2

∂v2 ln f(v)|v=v0 . The normalization coefficient V can be approximated

by [15]

V ≃ f(v0)
(2π)M/2

(det Σ)
1
2

, (3.36)

where det(·) denotes the determinant operator.

Next, let the training set be given by {x1, x2, . . . , xN} ⊂ R
D, with target values

given by z1, z2, . . . , zN , respectively, where xn ∈ R
D and zn ∈ {0, 1}, n = 1, . . . , N , and

with xn ∈ C1 if zn = 1, and xn ∈ C2 if zn = 0. For a new input variable x ∈ R
D, we pre-

dict the associated class membership posterior probability distribution p(Ck|x, X, Z),

k = 1, 2, where p(Ck|x, X, Z) is the class membership conditional probability of the

data class Ck given x ∈ R
D, X = [x1, x2, . . . , xN ], and Z = [z1, z2, . . . , zN ]T. Note

that, in contrast to the SVM approach, the sparse Bayesian learning method sepa-

rates the prediction stage (i.e., finding the posterior class membership probabilities

for the new input variable x) from the decision making stage (i.e., assigning the new
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input variable x to the appropriate class). This separation is particularly useful when

dealing with asymmetric classification costs, where misclassification of input variables

belonging to a certain class is more costly [139]. For example, for the problem involv-

ing the classification of facial images of patients to pain and non-pain classes discussed

in Section 3.4, the cost of misclassification of a patient in pain to the non-pain class

(false negative) is higher than that of a patient with no pain to the pain class (false

positive). One of the key advantages of the sparse Bayesian learning approach is its

ability to deal with such asymmetric costs.

Define the classifier function

y(x) , wTφ(x), (3.37)

where φ : R
D → R

M is a continuous feature-space transformation and w = [w1, w2,

. . . , wM ]T ∈ R
M is a weight vector. Note that the RVM algorithm is a special case

of the sparse Bayesian learning method. Specifically, in the RVM, wTφ(x) in (3.37)

has the special form (similar to the SVM algorithm) given by
∑N

n=1 wnk(x, xn) + b,

where k(·, ·) is the kernel function. In the sequel, we consider the general formulation

(3.37).

Following standard statistical practice, we assume that the posterior probability

of the target value of an input variable corresponding to the class C1 is given by

p(z = 1|xn, w) = σ(y(xn)), n = 1, . . . , N , where σ(·) is the logistic sigmoidal function

defined by σ(s) , 1
1+e−s [15, 139]. Note that, since there are only two classes, p(z =

0|xn, w) = 1 − σ(y(xn)). Assuming that the input variables xn, n = 1, . . . , N , are

independent, the likelihood function is given by

p(Z|X, w) =

N
∏

n=1

p(z|xn, w) =

N
∏

n=1

σ (y(xn))
zn (1 − σ (y(xn)))1−zn . (3.38)

Each weight parameter wn, n = 1, . . . , M , in (3.37) is assumed to have a zero-mean
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Gaussian distribution, and hence, the weight prior distribution is given by

p(w|α) =

M
∏

n=1

N (wn; 0, α
−1
n ), (3.39)

where αn, n = 1, . . . , M , is the precision (inverse of the variance of the Gaussian

distribution) corresponding to wn and α = [α1, α2, . . . , αM ]T ∈ R
M . The parameters

αn, n = 1, . . . , M , in the prior distribution (3.39) are called the hyperparameters.

Note that, in contrast to other Bayesian classifiers, each weight parameter wn, n =

1, . . . , M , has a separate hyperparameter αn.

Given a new input variable x ∈ R
D, the corresponding target value z ∈ {0, 1} can

be predicted using the predictive distribution p(z|x, X, Z). The predictive distribution

is given by

p(z|x, X, Z) =

∫ ∞

−∞

∫ ∞

−∞

p(z|x, X, Z, w, α)p(w|x, X, Z, α)p(α|x, X, Z)dwdα, (3.40)

where the distribution is marginalized with respect to the weight vector w ∈ R
M

and the hyperparameters α ∈ R
M . Since σ(·) is nonlinear, no closed-form solution

exists for (3.40) [139]. Here, we use the type 2 maximum likelihood [8]—also known

as the evidence approximation [101]—to approximate (3.40) by replacing α ∈ R
M

with a constant value α∗ ∈ R
M corresponding to the mode (i.e., the maximizer) of

the marginal likelihood function p(Z|X, α). In particular, an approximation to the

predictive distribution p(z|x, X, Z) is given by

p(z|x, X, Z) ≃ p(z|x, X, Z, α∗) =

∫ ∞

−∞

p(z|x, X, Z, w, α∗)p(w|x, X, Z, α∗)dw. (3.41)

The value of α∗ is found via an iterative process. After initializing α, the posterior

distribution p(w|x, X, Z, α) is approximated by a Gaussian distribution using the

Laplace approximation method. The mean of the Gaussian distribution corresponds

to the mode (maximizer) of p(w|x, X, Z, α), which we denote by w∗. The maximizer

is found using the iterative reweighted least squares (IRLS) method [15], which uses
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sequential quadratic approximations to find the maximizer. Taking the log of the

identity [15]

p(w|x, X, Z, α) =
p(Z|x, X, w, α)p(w|x, X, α)

p(Z|x, X, α)
=

p(Z|X, w)p(w|α)

p(Z|X, α)
,

the maximization problem is equivalent to

max
w∈RM

{ln (p(Z|X, w)p(w|α))− ln p(Z|X, α)} , (3.42)

or, equivalently,

max
w∈RM

{

N
∑

n=1

(zn ln yn + (1 − zn) ln(1 − yn)) −
1

2
wTAw + c

}

, (3.43)

where yn = σ (y(xn)) ∈ R, A = diag[α] ∈ R
M×M , c ∈ R is a variable independent of z

(and hence, plays no role in the optimization), and where we have used (3.38). Note

that the covariance matrix of the Gaussian approximation to the posterior distribution

p(w|x, X, Z, α) is equal to the negative Hessian of ln p(w|x, X, Z, α) evaluated at the

maximizer w∗. The mean and covariance of the Gaussian approximation are given by

w∗ = A−1ΦT(Z − Y ), (3.44)

Σ =
(

ΦTBΦ + A
)−1

, (3.45)

where Φ = [Φ(i,j)] ∈ R
N×M with Φ(i,j) = φj(xi) for i = 1, . . . , N and j = 1, . . . , M ,

B = diag[b1, b2, . . . , bN ] ∈ R
N×N with bn = yn(1 − yn) ∈ R, n = 1, . . . , N , and

Y = [y1, y2, . . . , yN ]T ∈ R
N .

Next, using (3.36), we approximate the marginal likelihood function as

p(Z|X, α) =

∫ ∞

−∞

p(Z|X, w, α)p(w|X, α)dw

=

∫ ∞

−∞

p(Z|X, w)p(w|α)dw

≃ p(Z|X, w∗)p(w∗|α)(2π)N/2(det Σ)
1
2 . (3.46)
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Table 3.1: Sparse Bayesian Learning Algorithm

Step 1. Initial parameter computation.

a. Set Φ(i,j) = φj(xi), i = 1, . . . , N , j = 1, . . . , M .

b. Set Φ = [Φ(i,j)] ∈ R
N×M .

c. Set bn = yn(1− yn), n = 1, . . . , N .
d. Set B = diag[b1, b2, . . . , bN ].

Step 2. Initialize the hyperparameters α = [α1, α2, . . . , αM ]T.

Step 3. Find the Gaussian approximation N (w;w∗,Σ) to the posterior distribution
p(w|x,X, Z, α).

a. Set A = diag[α].
b. Set w∗ = A−1ΦT(Z − Y ).

c. Set Σ =
(

ΦTBΦ + A
)−1

.

Step 4. Compute the approximate marginal likelihood function using

p(Z|X, α) ≃ p(Z|X,w∗)p(w∗|α)(2π)N/2(det Σ)
1

2 .

Step 5. Set γn = 1− αnΣnn, n = 1, . . . , M .

Step 6. Update α using

αn ←
γn

(w∗

n
)2

, n = 1, . . . , M.

Step 7. If ‖∆α‖ > Tol1 or ‖∆w∗‖ > Tol2, where ∆α and ∆w∗ are the changes in the
values of α and w∗ in the current iteration, respectively, and Tol1 and Tol2
are some pre-specified tolerances, then go to Step 3.

Step 8. Set α∗ = α.

Following the discussion on the type 2 maximum likelihood method, the value of α∗

is found by maximizing the approximate marginal likelihood function given by (3.46).

Hence, differentiating (3.46) with respect to αn, n = 1, . . . , M , and setting the result

to zero yields

−
1

2
(w∗n)2 +

1

2αn

−
1

2
Σ(n,n) = 0, n = 1, . . . , M. (3.47)

Solving (3.47) for αn, n = 1, . . . , M , gives the updated estimate for αn as

αnew
n =

γn

(w∗n)2
, n = 1, . . . , M, (3.48)

where γn = 1 − αnΣ(n,n), n = 1, . . . , M . Now, using the updated estimate αnew =

[αnew
1 , αnew

2 , . . . , αnew
M ]T ∈ R

M for α, the above steps are repeated until a given con-

vergence criterion is met. The algorithm is summarized in Table 3.1.

As a result of the maximization of the marginal likelihood function, a number of
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hyperparameters αn approach infinity, and hence, the corresponding weight param-

eter wn will be centered at zero with zero variance. Therefore, the corresponding

component of the feature space transformation φn(·) plays no role in the prediction,

resulting in a sparse predictive model. In the case of the RVM, the input variables xn

belonging to the training set {x1, x2, . . . , xN}, which have a non-zero weight wn, are

called relevance vectors. Only the relevance vectors play a role in the classification of

new input variables and the rest of the training set can be discarded.

Finally, we note that the posterior probability for the membership of a new input

variable x to the class C1 represented by p(C1|x, X, Z) can be approximated by the

logistic sigmoidal function σ(y(x)) using the calculated value of the weight vector w∗.

This approximatation becomes exact as the number of input variables in the training

set approaches infinity [14, 139].

3.4. Pain and Pain Intensity Assessment in Neonates

In this section, we use the classification techniques described in Sections 3.2 and

3.3 in order to assess pain and pain intensity in infants using their facial expressions.

For our data set we use the Infant Classification of Pain Expressions (COPE) database

[22]. As was shown in [22], the SVM can classify facial images into two groups of

“pain” and “non-pain” with an accuracy between 82% to 88%. Here we extend

the results of [22] to additionally assess pain intensity using the class membership

posterior probability. Note that although we consider infants, studies have shown that

the pain-induced facial expressions in newborns are similar to those observed in older

children and adults [37]. However, neonatal facial expressions are characterized by

some unique features that are not found in adults such as “primal face of pain” [126].

In addition, adults can control nonverbal expressions of pain [64].
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Figure 3.1: Four different expressions of a subject. The 2 left images correspond to
non-pain, whereas the 2 right images correspond to pain.

Before applying the classification techniques to the facial images, we give a brief

description of the infant COPE database used in our experimental results.

3.4.1. Infant COPE Database

The infant COPE database is composed of 204 RGB color photographs of 26 Cau-

casian neonates (13 boys and 13 girls) with a resolution of 120× 100 per photograph

and an infant age range of 18 hours to 3 days. The photographs were taken after a

series of stress-inducing stimuli were administered by a nurse. The stimuli consist of

the following [22]:

i) Transport from one crib to another.

ii) Air stimulus, where the infant’s nose was exposed to a puff of air.

iii) Friction, where the external lateral surface of the heel was rubbed with a cotton

wool soaked in alcohol.

iv) Pain, where the external surface of the heel was punctured for blood collection.

The facial expressions induced by the first three stimuli are classified as non-pain.

Four photographs of a typical subject are given in Figure 3.1. One of the challenges

in the recognition of pain, even for clinicians, is the ability to distinguish an infant’s

cry induced by pain and some other non-painful stimulus.
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3.4.2. Pain Recognition using Sparse Kernel Machine Algorithms

The classification techniques discussed in Section 3.2 were used to identify the fa-

cial expressions corresponding to pain. A total of 21 subjects from the infant COPE

database were selected such that for each subject at least one photograph corre-

sponded to pain and one to non-pain. The total number of photographs available

for each subject ranged between 5 to 12, with a total of 181 photographs considered.

We applied the leave-one-out method for validation [15]. In particular, the classifier

is trained on all photographs of the subject except for one test photograph which is

used to validate the algorithm. The test photograph corresponds to either a pain or

non-pain condition.

In the preprocessing stage, the faces were standardized for their eye position using

a similarity transformation. Then, a 70×93 window was used to crop the facial region

of the image and only the 8-bit grayscale values were used. For each image, a 6510-

dimensional vector was formed by column stacking the matrix of intensity values.

We used the MATLABR© version R2008a and the OSU SVM MATLABR© Tool-

box [116] to run the SVM classification algorithm. The classification accuracy for

the SVM algorithm with a linear kernel was 90%, where, as suggested in [22], we

chose the complexity parameter C = 1. The number of support vectors averaged

5. Applying the RVM algorithm with a linear kernel to the same data set resulted

in an almost identical classification accuracy, namely, 91%; whereas the number of

relevance vectors was reduced to 2. However, in 5 out of the 21 subjects considered,

the RVM algorithm did not converge. This is due to the fact that, in contrast to the

SVM algorithm, the RVM algorithm involves a non-convex optimization problem [15].
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3.4.3. Pain Intensity Assessment

In addition to classification, the RVM algorithm provides the posterior probability

of the membership of a test image to a class. As discussed in the introduction, using a

Bayesian interpretation of probability, the probability of an event can be interpreted

as the degree of the uncertainty associated with such an event. This uncertainty can

be used to estimate pain intensity. In particular, if a classifier is trained with a series

of facial images corresponding to pain and non-pain, then there is some uncertainty

for associating the facial image of a person experiencing moderate pain to the pain

class. The efficacy of such an interpretation of the posterior probability was validated

by comparing the algorithm’s pain assessment with that assessed by several experts

(intensivists) and non-experts.

In order to compare the pain intensity assessment given by the RVM algorithm

with human assessment, we compared the subjective measurement of the pain inten-

sity assessed by expert and non-expert examiners with the uncertainty in the pain

class membership (posterior probability) given by the RVM algorithm. Actual pain

modes for each infant were used to train the RVM classifier. We chose all 16 in-

fants (out of the total 21) from the COPE database for which the RVM algorithm

converged, and for each subject two photographs of the face corresponding to the

non-pain and pain conditions were selected. In the selection process, two training

photographs were selected where the infant’s facial expression truly reflected the pain

intensity condition—calm for non-pain and distressed for pain—and a score of 0 and

100, respectively, was assigned to these photographs to give the human examiner a

fair prior knowledge for the assessment of the pain intensity.

Ten data examiners were asked to provide a score ranging from 0 to 100 for each

test photograph (i.e., non-training photograph) of the same subject, using a multiple
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of 10 for the scores. Five examiners with no medical expertise and five examiners

with medical expertise in critical care and pain management were selected for this

assessment. The medical experts were members of the clinical staff at the intensive

care unit of the Northeast Georgia Medical Center, Gainesville, GA, consisting of

one medical doctor, one nurse practitioner, and three nurses. The medical doctor

has 10 years experience as an anesthesiologist and intensivist in pediatric hospitals.

The nurse practitioner and nurses have 6 months to 1 year pediatric floor experience

in large community hospitals and are also mothers. They were asked to assess the

pain for a series of random photographs of the same subject, with the criterion that

a score above 50 corresponds to pain, and with an increasing score corresponding to

a higher pain intensity. Analogously, a score below 50 corresponds to non-pain, and

with a decreasing score corresponding to a lower level of discomfort. The posterior

probability given by the RVM algorithm with a linear kernel for each corresponding

photograph was rounded off to the nearest multiple of 10.

The pain scores for 5 infant subjects are given in Figures 3.2 – 3.6, where the

average score of the expert and non-expert human examiners are compared to the

score given by the RVM algorithm. In order to measure the agreement between the

human examiners and the RVM algorithm, we need to quantify the agreement between

two raters classifying an observation into different classes. The kappa coefficient [35]

is used to measure the agreement between two raters classifying the same observation

into two classes. A kappa coefficient of 0 represents chance agreement and a coefficient

of 1 represents a perfect agreement between the two raters. The weighted kappa

coefficient is an extension of the kappa coefficient to the case where there are more

than two classes and the classes are ordered [36]. In this case, a smaller difference

between the chosen classes by the two raters indicates less disagreement between

them. The pain intensity assessment can be regarded as a classification process in
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Table 3.2: Qualitative evaluation of the observed κ-values [96]

κ Strength of agreement
0.00 Poor
0.00–0.20 Slight
0.21–0.40 Fair
0.41–0.60 Moderate
0.61–0.80 Substantial
0.81–1.00 Almost perfect

which a facial expression of a subject is classified into 10 ordered classes, where Class

1 corresponds to a pain intensity score of 0 – 9, Class 2 corresponds to a pain intensity

score of 10 – 19, and so on. A qualitative evaluation of the observed kappa values is

given in Table 3.2 [46].

We used the weighted kappa coefficient to measure the agreement in the pain

intensity assessment between the human examiners and the RVM algorithm. This

coefficient is 0.47 for human expert examiners (with a 95% confidence interval of

0.37 to 0.57) and 0.46 for non-expert examiners (with a 95% confidence interval of

0.36 to 0.55) as compared with the RVM for the 16 subjects considered in the study.

This shows a moderate agreement between the human expert examiners and human

non-expert examiners as compared with the RVM algorithm based on the qualitative

evaluation of the observed kappa values given by Table 3.2. It is interesting to note

that the weighted kappa coefficient measuring the agreement between human experts

and human non-experts is 0.78 with a 95% confidence interval of 0.73 to 0.82, which

indicates a substantial agreement based on Table 3.2. It is important to note, however,

that proxy ratings of pain is a highly subjective process [59].

The results show an almost identical classification accuracy for a binary classifi-

cation (with a score above 50 corresponding to pain). In particular, the non-expert

human examiner, the expert human examiner, and the RVM classification accuracy is
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Figure 3.2: Pain score for Subject 1
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Figure 3.3: Pain score for Subject 2

given by 79%, 87%, and 91%, respectively. Moreover, the results show that the expert

human examiners tend to be more accurate in the binary classification compared to

the human non-experts.

It is worth noting that Figure 3.4 shows a poor correlation between the scores given

by the RVM algorithm and the data examiners in the first three photographs. The

data examiners assessed a high level of pain for Subject 3, whereas the subject was not

in pain. This highlights the challenge in distinguishing between pain from discomfort,

even for human experts. In this case, the RVM algorithm correctly assessed that the

67



1 2 3 4 5 6 7 8
0

20

40

60

80

100

Image Number

P
ai

n 
In

te
ns

ity
 

 

Non−Expert Human
Expert Human
Computer

Figure 3.4: Pain score for Subject 3

1 2 3 4 5 6
0

20

40

60

80

100

Image Number

P
ai

n 
In

te
ns

ity

 

 

Non−Expert Human
Expert Human
Computer

Figure 3.5: Pain score for Subject 4

infant has some level of discomfort but is not in pain.

Finally, in a repeatability study, the same human expert and non-expert examiners

were asked to assess the intensity of pain for the 5 subjects considered in Figures 3.2

– 3.6 after a period ranging from 2 weeks to 4 months. Again, we used the weighted

kappa coefficient to measure the agreement between two observations by the same

rater. The weighted kappa coefficient in this case can be regarded as a measure of the

ability of the human examiner to reproduce his or her own pain scores. The weighted

kappa coefficient is 0.79 (with a 95% confidence interval of 0.74 to 0.84) for the human
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Figure 3.6: Pain score for Subject 5

expert examiners and 0.73 (with a 95% confidence interval of 0.68 to 0.78) for the

human non-expert examiners. Based on this analysis, the human expert examiners

tend to be slightly more reliable in assessing the pain intensity for the same subjects

under the same pain conditions.

69



Chapter 4

An Unsupervised Learning Approach for Facial

Expression Recognition using Semi-Definite

Programming and Generalized Principal

Component Analysis

4.1. Introduction

The human face is a rich medium through which people communicate their emo-

tions. Researchers have identified six basic human expressions, namely, happiness,

sadness, anger, disgust, fear, and surprise [45]. Automatic facial expression recogni-

tion algorithms can be used in systems involving human-computer interaction [117].

An emerging field of application for facial expression recognition algorithms involves

clinical decision support systems [22, 60]. Specifically, the authors in [53, 54] present

a framework for assessing pain and pain intensity in neonates using digital imaging.

Among different approaches proposed for facial expression recognition are manifold-

based methods [30]. In these methods, the facial image can be regarded as a point in

a D-dimensional space (which is referred to as the ambient space), where D is the

number of pixels in the image or the number of parameters in a face model. The

underlying assumption in manifold-based methods is that a set of facial images of a

subject, which are represented by a set of points in a high-dimensional ambient space,

resides on an intrinsically low-dimensional manifold. Hence, an important part of the
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facial expression recognition algorithm in such methods involve finding the manifold

of facial expressions.

In this chapter, we propose an unsupervised learning approach to facial expres-

sion recognition, where we show that different facial expressions reside on distinct

subspaces if the manifold of facial images is unfolded [148]. Specifically, we introduce

a new manifold-based method, where we use a maximum variance unfolding (MVU)

approach [148] to identify the low-dimensional manifold of facial images and unfold

it. Next, generalized principal component analysis is used to fit a series of subspaces

to the data points and associate each data point to a subspace. Data points that

belong to the same subspace are shown to belong to the same facial expression.

The contents of the chapter are as follows. First, we review the MVU dimension

reduction technique, which involves semi-definite programming and convex optimiza-

tion. In Section 4.3, we review the generalized principal component analysis (GPCA).

This framework uses algebro-geometric concepts to address the problem of data seg-

mentation and subspace identification for a given set of data points. Finally, in

Section 4.4, the MVU and GPCA methods are used to recognize facial expressions

from a given set of images within an unsupervised learning framework.

The notation used in this chapter is fairly standard. Specifically, Z+ denotes the

set of positive integers, R denotes the set of real numbers, (·)T denotes transpose,

and (·)† denotes the Moore-Penrose generalized inverse. Furthermore, we write tr(·)

for the trace operator, N (·) for null space, ‖ · ‖ for the Euclidean norm, and dim(S)

for the dimension of a set S ⊂ R
D, where D ∈ Z+.
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4.2. Manifold Unfolding and Dimension Reduction

In this section, we introduce the method of maximum variance unfolding (MVU),

which involves a dimension reduction technique that uses semi-definite programming

and convex optimization. Given a set of points sampled from a low-dimensional

manifold in a high-dimensional ambient space, this technique unfolds the manifold

(and hence, the points it contains) while preserving the local geometrical properties

of the manifold [148]. This method can be regarded as a nonlinear generalization of

the principal component analysis (PCA) [148].

Given a set of points in a high-dimensional ambient space, principal component

analysis identifies a low-dimensional subspace such that the variance of the projec-

tion of the points on this subspace is maximized. More specifically, the basis of the

subspace on which the projection of the points has the maximum variance is the eigen-

vectors corresponding to the non-zero eigenvalues of the covariance matrix [88]. In

the case where the data is noisy, the singular vectors corresponding to the dominant

singular values of the covariance matrix are selected [145,146].

Given the set of N input points X = {x1, x2, . . . , xN} ⊂ R
D, where D is

the dimension of the ambient space, we seek to find the set of N output points

Y = {y1, y2, . . . , yN} ⊂ R
d such that d < D, X and Y are equivalent, and points

sufficiently close to each other in the input data set X remain sufficiently close in the

output data set Y . Recall that two sets X and Y are equivalent if and only if there

exists a bijective (one-to-one and onto) map f : X → Y . To address this problem, the

concept of isometry for a set of points is needed [136,148]. In particular, an isometry

is a diffeomorphism defined on a manifold such that it admits a local translation and

rotation. The next definition extends the notion of isometry to data sets.

Definition 4.1 [148]. Let X = {x1, x2, . . . , xN} ⊂ R
D and Y = {y1, y2, . . . ,
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yN} ⊂ R
d be equivalent. Then X and Y are k-locally isometric if there exists a

continuous map T : R
D → R

d such that if T (xi) = yi, then T (Nxi
(k)) = Nyi

(k),

i = 1, . . . , N , where Nxi
(k) (resp., Nyi

(k)) is the set of k-nearest neighbors of xi ∈ X

(resp., yi ∈ Y).

Before stating the MVU method, we introduce the following maximization prob-

lem.

Maximum Variance Unfolding Problem. Given a set of input data points

X = {x1, x2, . . . , xN} ⊂ R
D find the set of output data points Y = {y1, y2, . . . , yN} ⊂

R
d, where d ≤ D, such that the sum of pairwise square distances between the outputs

in Y given by

Φ =
1

2N

N
∑

i=1

N
∑

j=1

‖yi − yj‖
2, (4.1)

is maximized, and X and Y are k-locally isometric for some k ∈ Z+.

Without loss of generality, we assume that
∑N

i=1 xi = 0. Moreover, we require

∑N
n=1 yn = 0 to remove the translational degree of freedom in the output points

contained in Y . Note that a data set (e.g., X ) can be represented by a weighted graph

G [138], where each node represents a point and the k-nearest points are connected by

edges, where k is a given parameter. The weights of G represent the distance between

the nodes. In addition, we assume that the graph G is connected [138]. In the case

of a disconnected graph, each connected component should be analyzed separately.

The k-local isometry condition in the Maximum Variance Unfolding Problem requires

that the distances and the angles between the k-nearest neighbors are preserved. This

constraint is equivalent to preserving the distances between neighboring points in a

modified graph G
′, where, for each node, all the neighboring nodes of G

′ are connected

by an edge. More precisely, each node of G
′ and the k-neighboring nodes of G

′ form

a clique of size k + 1 (see Figure 4.1) [138].
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G G
′

Figure 4.1: Original and modified graphs for k = 2.

The next theorem gives the solution to Maximum Variance Unfolding Problem

for the case where d = D.

Theorem 4.1 [148]. Consider the Maximum Variance Unfolding Problem with

d = D. The output data points in Y = {y1, y2, . . . , yN} ⊂ R
D are given by the

solution to the optimization problem

max
y1,y2,...,yN∈RD

Φ, (4.2)

subject to

N
∑

i=1

yi = 0, (4.3)

‖yi − yj‖
2 = Dij , if η(i,j) = 1, i, j = 1, . . . , N, (4.4)

where Φ is defined in (4.1), η = [η(i,j)] ∈ R
N×N is the adjacency matrix of the modified

graph G
′, and

Dij = ‖xi − xj‖
2, i, j = 1, . . . , N, xi, xj ∈ X . (4.5)

The optimization problem (4.2)–(4.4) is not convex. The following convex opti-

mization problem, however, is equivalent to the optimization problem given in The-

orem 4.1. Moreover, the following result also addresses the case where d ≤ D.
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Theorem 4.2 [148]. Consider the Maximum Variance Unfolding Problem with

d = D and let G and G
′ denote the weighted graph and modified graph corresponding

to the data set X , respectively. The output data points in Y = {y1, y2, . . . , yN} ⊂ R
D

are given by

yji =
√

λjVji, j = 1, . . . , N, i = 1, . . . , D, (4.6)

where Vji, j = 1, . . . , N , i = 1, . . . , D, is the ith component of the jth eigenvector

of K∗ given by Vj = [Vj1, Vj2, . . . , VjD]T, λj is the associated eigenvalue, yji, j =

1, . . . , N , i = 1, . . . , D, is the ith component of the vector yj = [yj1, yj2, . . . , yjD]T,

and K∗ is the optimal solution to the optimization problem

max
K∈K

tr(K), (4.7)

subject to

K ≥ 0, (4.8)
N
∑

i=1

N
∑

j=1

K(i,j) = 0, (4.9)

K(i,i) − 2K(i,j) + K(j,j) = Dij , if η(i,j) = 1, i, j = 1, . . . , N, (4.10)

where K ⊂ R
N×N denotes the cone of nonnegative definite matrices, η = [η(i,j)] ∈

R
N×N , and Dij is defined as in (4.5). Moreover, if K∗ has d < D non-zero eigen-

values, then the set of reduced dimension output data points is given by Y =

{yred
1 , yred

2 , . . . , yred
N } ⊂ R

d, where yred
i , i = 1, . . . , N , is found by removing the zero

elements of yi.

Remark 4.1. When the data is noisy, all the eigenvalues of K are typically non-

zero, and hence, one has to choose the dominant eigenvalues of K∗ [145, 146]. If the

eigenvalues of K are sorted in descending order, then the first d components of yi,

i = 1, . . . , N , form a d-dimensional data set that is approximately k-locally isometric

to X = {x1, x2, . . . , xN} ⊂ R
D [148].
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4.3. Data Segmentation and Subspace Identification

In this section, we address the problem of data segmentation and subspace iden-

tification for a given set of data points. First, we define the multiple subspace seg-

mentation problem.

Data Segmentation and Subspace Identification Problem [145,146]. Given

the set Y = {y1, y2, . . . , yN} ⊂ R
D, where yi, i = 1, . . . , N , are drawn from a set of

distinct subspaces Sj , j = 1, . . . , n, of unknown number and dimension, find i) the

number of subspaces n, ii) their dimensions dim(Sj), and iii) the basis for each

subspace. Furthermore, associate each point to the subspace it belongs to.

GPCA uses algebro-geometric concepts to address this problem. First, we present

the GPCA algorithm followed by a more robust version of GPCA to deal with noisy

data. For a detailed discussion, see [145, 146].

4.3.1. Generalized Principal Component Analysis

In this subsection, we present the GPCA algorithm, where we assume that the

data points are noise-free. The GPCA algorithm consists of three main steps; namely,

polynomial fitting, polynomial differentiation, and polynomial division. The following

definitions are needed.

Definition 4.2 [44, 51, 135, 145]. Let R be a commutative ring and let I be an

additive subgroup of R. I is called an ideal if r ∈ R and s ∈ I, then rs ∈ I.

Furthermore, an ideal is said to be generated by a set S if, for all t ∈ I, t =
∑n

i=1 risi,

ri ∈ R, si ∈ S, i = 1, . . . , n, for some n ∈ Z+. Let F[x] be the set of polynomials

of D variables, where x = [x1, x2, . . . , xD]T, xi ∈ F, i = 1, . . . , D, and F is a field.

Then F[x], with polynomial addition and multiplication, forms a commutative ring.
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A product of n variables x1, x2, . . . , xn is called a monomial of degree n (counting

multiplicity). The number of distinct monomials of degree n is given by

Mn(D)
△
= C(D + n − 1, n), (4.11)

where C(p, q) denotes the combination of p objects taken q at a time. A polynomial

with all of its terms being the same degree is called a homogenous polynomial. An

ideal that is generated by homogenous polynomials is called a homogenous ideal.

Finally, the Veronese Map of degree n is a mapping νn : F
D → F

Mn(D) that assigns

to the variables x1, x2, . . . , xD all the possible monomials of degree n; namely,

νn([x1, x2, . . . , xD]T) = [u1, u2, . . . , uMn(D)]
T, (4.12)

where ui = xni1
1 xni2

2 · · ·xniD
D , i = 1, . . . , Mn(D), and where ni1 + ni2 + . . . + niD = n,

nij ∈ Z+, j = 1, . . . , D, and ni1, . . . , niD are in lexicographic order.

Let A = {S1,S2, . . . ,Sn}, ZA = S1 ∪ S2 ∪ . . . ∪ Sn, where Sj ⊂ R
D, j = 1, . . . , n,

is a linear subspace, dim(Sj) = dj, and n ∈ Z+. A is referred to as a subspace ar-

rangement. In addition, let Y = {y1, y2, . . . , yN} ⊂ R
D be a set of a sufficiently large

number of points sampled from ZA. In this chapter, we assume that the number of

subspaces n is known. However, the GPCA algorithm, in its most general form, gives

the solution for the case where n is unknown [145, 146]. In order to algebraically

represent ZA, we need to find the vanishing ideal of ZA, denoted by I(ZA). The van-

ishing ideal of ZA is the set of polynomials which vanish on ZA. It can be shown that

the homogenous component of I(ZA), denoted by In, uniquely determines I(ZA).

Hence, to find the vanishing ideal I(ZA) it suffices to determine the homogenous

component In.

If pn(x) is a polynomial in In, then pn(x) = cT
nνn(x), where cn ∈ R

Mn(D), νn(x) :

F
D → F

Mn(D) is the veronese map given by (4.12), x = [x1, x2, . . . , xD]T for some
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D ∈ Z+, and Mn(D) is given by (4.11). Therefore, every point yi, i = 1, . . . , N ,

satisfies pn(x) = 0, and hence, Vn(D)cn = 0, where

Vn(D) ,











νT
n (y1)

νT
n (y2)

...
νT

n (yN)











(4.13)

is called the embedded data matrix. A one-to-one correspondence between the null

space of Vn(D) and the polynomials in In exists if

dim(N (Vn(D))) = dim(In) = hI(n), (4.14)

or, equivalently,

rank Vn(D) = Mn(D) − hI(n), (4.15)

where the Hilbert function hI(n) is the number of linearly independent polynomials of

degree n that vanish on ZA. The singular vectors of Vn(D) denoted by cni ∈ R
Mn(D),

i = 1, . . . , hI(n), corresponding to the zero singular values of Vn(D) can be used to

compute a basis for In, namely

In = span{pni(x) = cniνn(x), i = 1, . . . , hI(n)}.

In the case where the data set Y is corrupted by noise, the singular vectors corre-

sponding to the hI(n) smallest singular values of Vn(D) are used to compute the basis

for In.

The following theorem shows how polynomial differentiation can be used to find

the dimensions and bases of each subspace Sj , j = 1, . . . , n.

Theorem 4.3 [145, 146]. Let Y = {y1, y2, . . . , yN} ⊂ R
D be a set of points sam-

pled from ZA = S1∪S2∪ . . .∪Sn, where, for j = 1, . . . , n, Sj is a subspace of unknown

dimension dj. Furthermore, assume that for every subspace Sj , j = 1, . . . , n, there
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exists wj ∈ Sj such that wj 6∈ Si, i 6= j, i = 1, . . . , n, and condition (4.14) holds.

Then

S⊥j = span

{

∂

∂x
cT
nνn(x)|x=wj

: cn ∈ N (Vn(D))

}

, j = 1, . . . , n, (4.16)

where Vn(D) is the embedded data matrix of Y given by (4.13). Furthermore, dj =

D − rank∇Pn(wj), j = 1, . . . , n, where Pn(x) = [pn1(x), pn2(x), . . . , pnhI(n)(x)]T ∈

R
1×hI(n) is a row vector of independent polynomials in In, composed of the singular

vectors corresponding to the zero singular values of Vn(D), and ∇Pn = [∇Tpn1(x),

∇Tpn2(x), . . . ,∇TpnhI(n)(x)] ∈ R
D×hI(n).

To select a point wj, j = 1, . . . , n, for each subspace such that wj ∈ Sj , wj 6∈ Si,

i 6= j, i = 1, . . . , n, without loss of generality, let j = n. One can show that the first

point wn, where wn ∈ Sn and wn 6∈ Si, i = 1, . . . , n − 1, is given by [145,146]

wn = argminy∈Y :∇Pn(y)6=0Pn(y)(∇TPn(y)∇Pn(y))†PT
n (y). (4.17)

Furthermore, a basis for Sn can be found by applying PCA to ∇Pn(wn). To find the

rest of the points wi ∈ Si, i = 1, . . . , n−1, we can use polynomial division as outlined

in the next theorem.

Theorem 4.4 [145, 146]. Let Y = {y1, y2, . . . , yN} ⊂ R
D be a set of points sam-

pled from ZA = S1∪S2∪ . . .∪Sn, where, for j = 1, . . . , n, Sj is a subspace of unknown

dimension dj. Assume (4.14) holds, S⊥n is known, and a point wn ∈ Sn is given. Then,

the set
⋃n−1

j=1 Sj is characterized by the set of homogenous polynomials given by

{

cT
n−1νn−1(x) : Vn(D)Rn(bn)cn−1 = 0, bn ∈ S⊥n , cn−1 ∈ R

Mn−1(D)
}

,

where Rn(bn) ∈ R
Mn(D)×Mn−1(D) is the matrix of coefficients of cn−1 when (bT

nx)

(cT
n−1νn−1(x)) ≡ cT

nνn(x) is rearranged to have the form Rn(bn)cn−1 = cn.
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Once the homogenous polynomials {cT
n−1νn−1(x)} given by Theorem 4.4 are ob-

tained, an identical procedure can be repeated to find wn−1 and the homogenous

polynomials characterizing
⋃n−2

j=1 Sj .

4.3.2. Subspace Estimation Using a Voting Scheme

The GPCA framework given in Subsection 4.3.1 works well in the absence of noise.

In practice, however, noise is always present and efficient statistical methods need to

be incorporated with the GPCA. In this subsection, we present one such statistical

method where a voting scheme is combined with the GPCA. Here, we assume that the

number of the subspaces and their dimensions are known. For details, see [145, 146].

Let Y = {y1, y2, . . . , yN} ⊂ R
D be the set of data points sampled from the

set ZA = S1 ∪ S2 ∪ . . . ∪ Sn, where, for j = 1, . . . , n, Sj is a subspace of di-

mension dj and co-dimension cj = D − dj. As noted in Subsection 4.3.1, the

homogenous component of degree n of the vanishing ideal I(ZA), denoted by In,

uniquely defines I(ZA) and dim(In) = hI(n), where hI(n) is the Hilbert function.

Let P = {p1(x), p2(x), . . . , phI(n)(x)} be the set of polynomials forming a basis for

In. This set is obtained by selecting the hI(n) smallest singular values of Vn(D),

where Vn(D) is the embedded data matrix given by (4.13). Let y1 ∈ Y and define

∇PB(y1) ,
[

∇Tp1(y1), ∇Tp2(y1), . . . , ∇TphI(n)(y1)
]

. Note that in the noise-free case,

if y1 ∈ Sj , then rank∇PB(y1) = cj.

In the case where the data is corrupted by noise, a more efficient method for com-

puting the basis is desired. Suppose the co-dimension of the subspaces S1, S2, . . . , Sn

take q distinct values c′1, c
′
2, . . . , c

′
q, respectively. Given the fact that the membership

of y1 to one of the subspaces Sj , j = 1, . . . , n, is unknown, a set of basis candidates

for the orthogonal complement of subspaces of all possible dimensions c′i, i = 1, . . . , q,

is calculated by choosing the c′i principal components of ∇PB(y1). This results in
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q matrices Bi ∈ R
D×c′i, i = 1, . . . , q, each of which is a basis candidate for S⊥i ,

i = 1, . . . , n.

The main idea of the voting scheme is to count the number of repetitions of each

basis candidate for all points in the data set Y = {y1, . . . , yN}. The n basis candidates

with the most votes are chosen to be the basis for S⊥i , i = 1, . . . , n, and each point

is assigned to its closest subspace. In our criterion for counting the repetition of

the basis candidates, two basis candidates are considered to be the same if the angle

between the subspaces spanned by them is less than τ , where τ > 0 is a given tolerance

parameter.

4.4. Unsupervised Learning of Facial Expressions

The MVU and GPCA methods presented in Sections 4.2 and 4.3 can be used

to recognize facial expressions from a given set of images within an unsupervised

learning framework. Specifically, given a set of images of a person with two different

facial expressions (e.g., neutral and happy), we show that the two facial expressions

reside on two distinct subspaces if the manifold is unfolded. In particular, semi-

definite embedding is used to reduce the dimensionality and unfold the manifold of

facial images. Next, generalized principal component analysis is used to fit a series

of subspaces to the data points and associate each data point to a subspace. Data

points that belong to the same subspace are claimed to belong to the same facial

expression. The algorithm is summarized in Table 4.1.

In our experiment, 30 photographs were taken for each human subject, where the

subject starts by a neutral expression, transitions to a happy expression, and goes

back to a neutral expression with each part containing 10 photographs. An example

set of images is given in Figure 4.2. These images were taken in a sequence, each
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Table 4.1: Facial Expression Recognition Algorithm

Step 1. Preprocess of the grayscale image data I1, . . . , IN .

a. Compute xj ∈ R
D′

by column stacking the matrix of Ij , j = 1, . . . , N .
b. Set the number of neighbors k.
c. Form the weighted graph G.
d. Form the modified graph G

′ and the adjacency matrix η = [η(i,j)].

Step 2. Manifold unfolding and dimension reduction.

a. Set the dimension of the reduced space D.
b. Find K∗, the maximizer of (4.7) subject to (4.8)–(4.10).
c. Compute the eigenvectors and the associated eigenvalues of K∗; denote by

Vj = [Vj1, Vj2, . . . , VjD′ ]T and λj , j = 1, . . . , N .
d. Reorder Vj and λj such that λj , j = 1, . . . , N are in decreasing order.
e. Compute yji =

√

λjVji, j = 1, . . . , N, i = 1, . . . , D′.
f. Compute yj = [yj1, yj2, . . . , yjD′ ]T, j = 1, . . . , N .
g. Compute yred

j = [yj1, . . . , yjD]T, j = 1, . . . , N.

h. Compute Y = {yred
1 , . . . , yred

N }.

Step 3. Subspace estimation using a voting scheme.
a. Set the subspace angle tolerance parameter τ > 0.
b. For the subspaces S1, S2, . . . , Sn, compute the distinct value of their co-dimension

c′1, c′2, . . . , c′q.
c. Initialize the arrays U1 = [ ], . . ., Uq = [ ] and the counters C1 = [ ], . . ., Cq = [ ]
d. for j = 1 : N
e. for i = 1 : q
f. Compute the c′i principal components of ∇PB(yred

j ).

g. Form the orthogonal matrix Bi ∈ R
D×c′

i using outputs of Step 3f.

h. if there exists k such that the angle ∠subspace(Bi,Ui(k)) < τ , then

i. Ci(k)← Ci(k) + 1.
j. else

k. Ui ← [Ui, Bi].
l. Ci ← [Ci, 1].

m. end for

n. end for

o. Select basis candidates from U1, . . . ,Uq corresponding to the n highest values of
C1, . . . , Cq . Denote basis by B1, . . . , Bn.

p. Use B1, . . . , Bn (basis for S⊥1 , . . . , S⊥n ) to find the B′
1, . . . , B′

n (basis for S1, . . . , Sn).
q. Use results in Step 3p to assign each yred

1 , . . . , yred
N , to the closest subspace.

200 × 240 pixels, and in total there were 4 subjects.

Each image can be considered as a vector of dimension 48000 by column stacking

the grey scale image intensity matrix. In this case, each image is a point in a 48000-

dimension space. In order to segment the images, the dimension is reduced to D = 5

using the MVU algorithm. Then, the resulting points in the D = 5-dimensional

ambient space are used to identify 2 subspaces of dimension d = 1, 2, 3, 4, where in

the GPCA voting algorithm two subspaces are considered to be the same if the angle

between the two subspaces is less than τ = 0.4 [152]. The segmentation error for each
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case is given in Table 4.2, where it is noted that the best results correspond to d = 3

and 4. In order to visualize the subspace identification, the segmentation for the case

D = 2 and d = 1 is given in Figure 4.3. Although these parameters result in a poor

segmentation performance, it graphically conveys the main idea of the algorithm.

Figure 4.2: A sequence of pictures, where the subject starts with a neutral expres-
sion, smiles, and resumes to a neutral expression.

Table 4.2: Segmentation Results for D = 5

Subject Number of Images Segmentation Error

d = 1 d = 2 d = 3 d = 4
1 29 3 2 2 3
2 31 13 13 3 7
3 31 6 15 2 4
4 32 13 15 1 1
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Figure 4.3: Facial expression segmentation with D = 2 and d = 1. The catego-
rization error is 6/30. The solid and dashed lines are the subspaces corresponding
to the neutral and happy expressions, respectively. The points associated with the
solid line and the dashed line are depicted by “+” and “×”, respectively. The points
depicted by “◦” are points associated with the wrong expression. Note that although
these parameters result in a poor segmentation performance, it graphically conveys
the main idea of the algorithm.
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Chapter 5

Optimal Drug Dosing Control for Intensive Care

Unit Sedation Using a Hybrid Deterministic-

Stochastic Pharmacokinetic and

Pharmacodynamic Model

5.1. Introduction

The clinical management of critically ill patients requiring mechanical ventilation

due to respiratory failure is complex. Mechanical ventilation is intrinsically uncom-

fortable to the patient due to both the introduction of an artificial airway that is the

interface between the patient and the ventilator, and also because of lack of synchro-

nization between the patient’s own spontaneous efforts to breathe and the action of

the ventilator to breath for the patient. This can lead to the patient “fighting the

ventilator” which is not only uncomfortable for the patient but can also have dele-

terious physiological effects. For this reason, patients often require administration of

sedative and analgesic agents in ICUs.

In clinical ICU practice sedative/analgesic agents are titrated to achieve a spe-

cific level of sedation. The level of sedation is currently based on clinical scoring

systems. Examples include the motor activity assessment scale (MAAS) [40], the

Richmond agitation-sedation scale (RASS) [129], and the modified Ramsay sedation

scale (MRSS) [121]. Specifically, in the MRSS scoring system patients are given an
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integer score of 0–6 as follows: 0 - paralyzed, unable to evaluate; 1 - awake; 2 - lightly

sedated; 3 - moderately sedated, follows simple commands; 4 - deeply sedated, re-

sponds to nonpainful stimuli; 5 - deeply sedated, responds only to painful stimuli; and

6 - deeply sedated, unresponsive to painful stimuli. In this chapter, we specifically

consider the MRSS scoring system; however, the framework presented herein can be

adopted to any other sedation scoring system. In addition, we assume that the pa-

tient’s sedation level can always be evaluated, that is, the patient’s MRSS sedation

score of 1 to 6 can be assessed.

The goal of the clinician is to find the drug dose that maintains the patient at a

sedation score of 3. This is typically done empirically, administering a drug dose that

usually is in the effective range for most patients, observing the patient’s response,

and then adjusting the dose accordingly. However, the response of patients to any

drug dose is a reflection of the pharmacokinetic and pharmacodynamic properties

of the drug and the specific patient. In this chapter, we use pharmacokinetic and

pharmacodynamic modeling to find an optimal drug dose, as a function of time, to

drive the patient to an MRSS score of 3. This framework is developed for a general n-

compartment mammillary phamacokinetic model and the methodology can be applied

to any sedative agent.

Although pharmacokinetics of sedative and anesthetic drugs can be adequately

modeled by nonnegative and compartmental dynamical systems [61], the pharmaco-

dynamics of these drugs are not well understood and drug effect predictions usually

involve probabilities [4, 5, 60]. Specifically, when considering sedative agents, drug

effect is closely related to patient sedation level. As discussed in [4, 5], the corre-

sponding sedation level of the ICU patient is related to drug concentration in the

effect-site compartment using an empirical probabilistic model.

In this chapter, we model the pharmacokinetics and pharmacodynamics of a gen-
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eral sedative agent using a hybrid deterministic-stochastic model involving determin-

istic pharmacokinetics and stochastic pharmacodynamics. Then, using this hybrid

model, we consider the sedative drug propofol and use nonnegative and compartmen-

tal modeling to model the drug pharmacokinetics (drug concentration as a function of

time) and a stochastic process to represent the patient’s sedation score and model drug

the pharmacodynamics (drug effect as a function of concentration). The first-order

distribution of the stochastic process is a function of the states of the compartmental

dynamical system.

Next, we use the aforementioned hybrid deterministic-stochastic model to develop

an open-loop optimal control policy for ICU sedation. Specifically, we first find the

optimal effect-site drug concentration corresponding to a high probability for the

desired sedation score (i.e., MRSS score of 3) and a low probability for all other

sedation scores. Then, we use optimal control theory to drive the effect-site drug

concentration to the optimal value found in the previous step while minimizing a

given cost functional. The cost functional captures control effort constraints as well

as probability constraints associated with different sedation scores. The proposed

methodology is then applied to a three-compartment mammillary model describing

the disposition of propofol to find an optimal drug dosing control policy to drive the

patient to a desired MRSS score.

5.2. Notation and Mathematical Preliminaries

In this section, we introduce notation, several definitions, and some key results

concerning nonlinear nonnegative dynamical systems [61] that are necessary for de-

veloping the main results of this chapter. Specifically, for x ∈ R
n we write x ≥≥ 0

(resp., x >> 0) to indicate that every component of x is nonnegative (resp., posi-

tive). In this case, we say that x is nonnegative or positive, respectively. Likewise,
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A ∈ R
n×m is nonnegative1 or positive if every entry of A is nonnegative or positive,

respectively, which is written as A ≥≥ 0 or A >> 0, respectively. In addition, R
n

+

and R
n
+ denote the nonnegative and positive orthants of R

n, that is, if x ∈ R
n, then

x ∈ R
n

+ and x ∈ R
n
+ are equivalent, respectively, to x ≥≥ 0 and x >> 0. Finally, we

write (·)T to denote transpose, ‖ · ‖ for a vector norm in R
n, Z to denote the set of

integers, dist(x,M) to denote the distance of a point x ∈ R
n to the set M ⊆ R

n in

the norm ‖ · ‖ (that is, dist(x,M) , infp∈M ‖x−p‖), and e to denote the ones vector

of order n, that is, e , [1, . . . , 1]T.

The following definition introduces the notion of a nonnegative (resp., positive)

function.

Definition 5.1. Let T > 0. A real function u : [0, T ] → R
m is a nonnegative

(resp., positive) function if u(t) ≥≥ 0 (resp., u(t) >> 0) on the interval [0, T ].

The following definition introduces the notion of essentially nonnegative and com-

partmental vector fields [61].

Definition 5.2. Let f = [f1, . . . , fn]T : D ⊆ R
n

+ → R
n. Then f is essentially

nonnegative if fi(x) ≥ 0, for all i = 1, . . . , n, and x ∈ R
n

+ such that xi = 0, where xi

denotes the ith component of x. f is compartmental if f is essentially nonnegative

and eTf(x) ≤ 0, x ∈ R
n

+.

Note that if f(x) = Ax, where A ∈ R
n×n, then f is essentially nonnegative if and

only if A is essentially nonnegative, that is, A(i,j) ≥ 0, i, j = 1, ..., n, i 6= j, where

A(i,j) denotes the (i, j)th entry of A. Similarly, f is compartmental if and only if A

is essentially nonnegative and
∑n

i=1 A(i,j) ≤ 0, j = 1, . . . , n.

1In this dissertation, it is important to distinguish between a square nonnegative (resp., positive)
matrix and a nonnegative-definite (resp., positive-definite) matrix.
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In this chapter, we consider controlled nonlinear dynamical systems of the form

ẋ(t) = f(x(t)) + G(x(t))u(t), x(0) = x0, t ≥ 0, (5.1)

where x(t) ∈ R
n, t ≥ 0, u(t) ∈ R

m, t ≥ 0, f : R
n → R

n is locally Lipschitz continuous

and satisfies f(0) = 0, G : R
n → R

n×m is continuous, and u : [0,∞) → R
m is

piecewise continuous.

The following definition and proposition are needed for the main results of the

chapter.

Definition 5.3. The nonlinear dynamical system given by (5.1) is nonnegative

if, for every x(0) ∈ R
n

+ and u(t) ≥≥ 0, t ≥ 0, the solution x(t), t ≥ 0, to (5.1) is

nonnegative.

Proposition 5.1 [61]. The nonlinear dynamical system given by (5.1) is non-

negative if f : R
n → R

n is essentially nonnegative and G(x) ≥≥ 0, x ∈ R
n

+.

It follows from Proposition 5.1 that if f(·) is essentially nonnegative, then a non-

negative input signal G(x(t))u(t), t ≥ 0, is sufficient to guarantee the nonnegativity

of the state of (5.1).

Finally, the following theorem and definition are needed for the main results of

the chapter.

Theorem 5.1 [19]. Let x ∈ R
n, M ⊆ R

n be a closed set, and ‖ · ‖ be a norm in

R
n. Then there exists ax ∈ M such that ‖x − ax‖ = dist(x,M). Furthermore, if M

is closed and convex, and ‖ · ‖ : R
n → R+ is strictly convex, then ax is unique.

Definition 5.4. Let x ∈ R
n, M ⊆ R

n be a closed set, and ‖ · ‖ be a norm in R
n.

The projection of x on M is given by

projM(x) , {a ∈ M : ‖x − a‖ = dist(x,M)} , (5.2)
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where projM : R
n → P(M) and P(M) denotes the power set of M.

Note that it follows from Theorem 5.1 and Definition 5.4 that if p ∈ projM(x),

then p = argmina∈M‖x − a‖. Finally, we note that if for every x ∈ R
n there exists a

unique p ∈ projM(x), then M is closed and convex [19].

5.3. Nonlinear Compartmental Mammillary Systems

Drug dosing can be made more precise by using pharmacokinetic and pharmaco-

dynamic modeling [55]. Pharmacokinetics is the study of the concentration of drugs

in tissue as a function of time and dose schedule, while pharmacodynamics is the

study of the relationship between drug concentration and drug effect. By relating

dose to resultant drug concentration (pharmacokinetics) and concentration to effect

(pharmacodynamics), a model for drug dosing can be generated.

Pharmacokinetic compartmental models typically assume that the body is com-

prised of multiple compartments. Within each compartment the drug concentration

is assumed to be uniform due to perfect, instantaneous mixing. Transport to other

compartments and elimination from the body occur by metabolic processes. For sim-

plicity, the transport rate is often assumed to be proportional to drug concentration.

Although the assumption of instantaneous mixing is an idealization, it has little effect

on the accuracy of the model as long as we do not try to predict drug concentrations

immediately after the initial drug dose.

In this section, we consider a nonlinear compartmental mammillary dynamical

system to model the pharmacokinetics of a sedative drug. The nonlinear mammillary

model is comprised of a central compartment from which there is outflow from the

system and which exchanges material reversibly with one or more peripheral compart-

ments. In an n-compartment mammillary model, the central compartment, which is
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Figure 5.1: n-compartment mammillary model.

the site for drug administration, is generally thought to be comprised of the intravas-

cular blood volume (i.e., blood within arteries and veins) as well as highly perfused

organs (i.e., organs with high ratios of blood flow to weight) such as the heart, brain,

kidneys, and liver. The central compartment exchanges drug with the peripheral

compartments comprised of muscle, fat, and other organs and tissues of the body,

which are metabolically inert as far as drug is concerned (see Figure 5.1).

The pharmacokinetic model of an n-compartment nonlinear mammillary model

with a control input drug dose needed to achieve and maintain a target drug concen-

tration is given by

ẋ1(t) = −

(

n
∑

j=1

aj1(c(t))

)

x1(t) +

n
∑

j=2

a1j(c(t))xj(t) + u(t), x1(0) = x10, t ≥ 0,

(5.3)

ẋi(t) = ai1(c(t))x1(t) − a1i(c(t))xi(t), xi(0) = xi0, i = 2, . . . , n, (5.4)

where c(t) = x1(t)/V c, V c is the volume of the central compartment (about 15 l for

a 70 kg patient), aij(c), i 6= j, is the rate of transfer of drug from the jth compart-

ment to the ith compartment, a11(c) is the rate of drug metabolism and elimination

(metabolism typically occurs in the liver), and u(t), t ≥ 0, is the infusion rate of the

sedative drug into the central compartment.

Although the concentration of the sedative agent in the blood is correlated with

91



lack of responsiveness [92], the concentration cannot be measured in real time. Since

we are more interested in drug effect rather than drug concentration, we consider a

model involving pharmacokinetics and pharmacodynamics for controlling conscious-

ness. We use the sedation score to access the effect of anesthetic compounds on the

brain. In Section 5.6, we utilize the modified probabilistic Hill equation [4] to model

the relationship between the sedation score and the effect-site concentration. The

effect-site compartment concentration is related to the concentration in the central

compartment by the first-order model [127]

ċeff(t) = aeff(c(t) − ceff(t)), ceff(0) = c(0), t ≥ 0, (5.5)

where aeff in min−1 is a positive time constant. In reality, the effect-site compartment

equilibrates with the central compartment in a few minutes.

5.4. Hybrid Pharmacokinetic-Pharmacodynamic Model and

Optimal Drug Dosing Policy

In this section, we model the pharmacokinetics and pharmacodynamics of a seda-

tive agent as a hybrid deterministic-stochastic model involving the deterministic

pharmacokinetic model developed in Section 5.3, and a stochastic pharmacodynamic

model. Next, we use this model to develop an open-loop optimal drug dosing control

policy for ICU sedation.

To develop our optimal control policy for ICU sedation, we rewrite the pharma-

cokinetic system (5.3), (5.4), and (5.5) as

ẋ(t) = f(x(t)) + Bu(t), x(0) = x0, t ≥ 0, (5.6)
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where x = [x1, . . . , xn, ceff ]T, B = [1, 01×n]T, and

f(x) ,

















−
(

∑n
j=1 aj1(c)

)

x1 +
∑n

j=2 a1j(c)xj

a21(c)x1 − a12(c)x2
...

an1(c)x1 − a1n(c)xn

aeff(c − ceff)

















. (5.7)

Next, let the output y(t) of the dynamical system (5.6) be given by a stochas-

tic process. Specifically, for every t ≥ 0, y(t) = S(t) is a random variable with

range(S(t)) = S, where S , {1, . . . , 6}. Let the first-order distribution of the

stochastic process S(t), t ≥ 0, be given by FS(s, ceff) = P (S(t) ≤ s), where s ∈ R,

FS : S × C → R, and C ⊂ R+ is a set of feasible drug concentrations in the effect-

site compartment. The first-order distribution FS(s, ceff) is identified using experi-

ments and statistical techniques, and provides a probabilistic relationship between the

effect-site drug concentration ceff and the sedation score. Finally, define the mapping

F : C → R
6 by

F (ceff) , [FS(1, ceff), . . . , FS(6, ceff)]T. (5.8)

Our proposed approach for optimal drug dosing consists of two stages. In the first

stage, the set of appropriate values of the drug concentration in the effect-site com-

partment denoted by C∗ is identified such that the resulting probability distributions

have desirable properties. More specifically, it is desirable to increase the probability

associated with a desired sedation score (e.g., MRSS score of 3) and decrease the

probabilities associated with all other levels of sedation. Ideally, we would like to

target a cumulative distribution function for S(t), t > 0, given by

Fstep,S(s) =

{

0, s < 3,
1, s ≥ 3,

, (5.9)

where s ∈ R. Define Fstep , [0, 0, 1, 1, 1, 1]T and note that in general Fstep 6∈ F ,

where F , F (C) is the image of C ⊂ R+ under F : C → R
6 defining the set of feasible
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probability distributions given by

F (C) , {v : v = F (c) for some c ∈ C} . (5.10)

The following theorem and corollary provide a framework for identifying C∗ given

by

C∗ , F−1 (projF(Fstep)) , (5.11)

where F−1(B) , {c ∈ C : F (c) ∈ B}, B ⊂ R
6, and projF(Fstep) is the projection of

Fstep on F .

Theorem 5.2. Assume that the set of feasible drug concentrations C ⊂ R+ is

closed and the mapping F : C → R
6 is continuous. Then, C∗ given by (5.11) is not

empty. Furthermore, if F is convex, F is one-to-one, and ‖ · ‖ : R
6 → R+ is strictly

convex, then C∗ is a singleton.

Proof. Since C is closed and F is continuous, F is closed. Furthermore, it follows

from Theorem 5.1 that there exists G ∈ F such that ‖Fstep−G‖ = dist(Fstep,F), and

hence, G ∈ projF(Fstep). Since G ∈ F , there exists c∗ ∈ C such that F (c∗) = G, and

hence, c∗ ∈ C∗, which proves that C∗ is not empty. If F is convex and ‖ · ‖ : R
6 → R+

is strictly convex, then it follows from Theorem 5.1 that projF(Fstep) = {G}. Now,

since F is one-to-one, C∗ = {c∗}.

Corollary 5.1. Assume that the set of feasible drug concentrations C ⊂ R+ is

closed and the mapping F : C → R
6 is continuous. Then,

F−1 (projF(Fstep)) = {c∗ ∈ C : c∗ = argminc∈C‖Fstep − F (c)‖} . (5.12)

Proof. ‘⊆’. Let c∗ ∈ F−1 (projF (Fstep)). Then, it follows that ‖Fstep − F (c∗)‖ =

dist(Fstep,F), where F = F (C). Thus,

F (c∗) = argminF∈F‖Fstep − F‖ = argminc∈C‖Fstep − F (c)‖, (5.13)
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and hence, c∗ ∈ {c∗ ∈ C : c∗ = argminc∈C‖Fstep − F (c)‖}, which proves ‘⊆’.

‘⊇’. Let c∗ = argminc∈C‖Fstep − F (c)‖. Then, it follows that

‖Fstep − F (c∗)‖ = min
c∈C

‖Fstep − F (c)‖ = min
F∈F

‖Fstep − F‖ = dist(Fstep,F), (5.14)

and hence, c∗ ∈ F−1 (projF(Fstep)), which proves ‘⊇’.

Note that once C∗ is identified, an element of C∗, denoted by c∗eff , can be selected.

The selected value c∗eff ∈ C∗ serves as the target drug concentration in the effect-site

compartment. Using Corollary 5.1, c∗eff can be identified by solving the optimization

problem

min
c∈C

‖Fstep − F (c)‖. (5.15)

Note that since it is desirable to reduce the probabilities associated with underseda-

tion and oversedation, a specific norm can be used which enforces these properties.

Specifically, we can choose the norm ‖ · ‖Q, where Q ∈ R
6×6 is a positive-definite

weighting matrix and ‖z‖2
Q , zTQz, z ∈ R

6. The weighting matrix Q can be used to

assign weights (penalty) to different sedation levels. In particular, larger weighting

values are assigned to sedation scores associated with undersedation and oversedation.

The second-stage of the proposed optimal drug dosing policy involves an open-loop

optimal control problem whose solution is given by the following theorem.

Theorem 5.3. Consider the pharmacokinetic model (5.6) with initial condition

x0 = [x10, . . . , xn0, ceff,0]
T. Let the optimal sedative drug infusion rate u∗(t), t ≥ 0,

be given by the solution to the minimization problem

min
u(·)∈U

∫ T

0

L(x(t), u(t))dt, (5.16)

subject to

g(x, u) ≤≤ 0, x ∈ R
n+1, u ∈ R, (5.17)

ceff(T ) = c∗eff , (5.18)
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where

L(x, u) , ‖F (ceff) − F (c∗eff)‖2
R1

+
1

2
r2u

2, (5.19)

g(x, u) , [g1(x, u), g2(u)]T, (5.20)

g1(x, u) , (ceff − cmax)u, (5.21)

g2(u) , −u, (5.22)

c∗eff ∈ C∗, C∗ is given by (5.11), U = {u : [0, T ] → R : u(·) is piecewise continuous},

R1 ∈ R
6×6 is a given positive-definite matrix, and r2 > 0 and cmax > 0 are given

scalars. Then u∗(t), t ≥ 0, is given by

u∗(t) =
1

r2
[−λ1(t) − (ceff − cmax)µ(t) + ν(t)] , (5.23)

where λ1(t), µ(t), and ν(t), t ≥ 0, are the solutions to

λ̇1(t) =

{(

n
∑

j=1

∂aj1(c)

∂c

)

x1(t)

Vc
+

n
∑

j=1

aj1(c) −
n
∑

j=2

∂a1j(c)

∂c

xj(t)

Vc

}

λ1(t)

−
n
∑

j=2

(

∂aj1(c)

∂c

x1(t)

Vc

+ aj1(c) −
∂a1j(c)

∂c

xj(t)

Vc

)

λj(t) −
aeff

Vc

λn+1,(5.24)

λ̇i(t) = −a1i(c) [λ1(t) − λi(t)] , i = 2, . . . , n, (5.25)

λ̇n+1(t) = aeffλn+1(t) − 2 [F (ceff(t)) − F (c∗eff)]T R1
∂F (ceff)

∂ceff

−µ(t)
1

r2

[−λ1(t) − (ceff − cmax)µ(t) + ν(t)] , (5.26)

with boundary conditions

x(0) = x0, (5.27)

ceff(T ) = c∗eff , (5.28)

λi(T ) = 0, i = 1, . . . , n, (5.29)

and x(t), t ≥ 0, satisfying (5.6), µ(t) ≥ 0, t ≥ 0, if g1(x(t), u(t)) = 0, µ(t) = 0 if

g1(x(t), u(t)) < 0, ν(t) ≥ 0, t ≥ 0, if g2(u(t)) = 0, and ν(t) = 0 if g2(u(t)) < 0, t ≥ 0.

Furthermore, u∗(t) ≥ 0, t ≥ 0, and x(t) ≥≥ 0, t ≥ 0, for all x0 ∈ R
n+1

+ .
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Proof. Equations (5.23)–(5.26) are a direct consequence of the first-order neces-

sary conditions for optimality of the optimization problem (5.16)–(5.18). Now, since

g(x, u) ≤≤ 0, (x, u) ∈ R
n+1 × R, it follows that u∗(t) ≥ 0, t ≥ 0. Finally, since

f(x) given by (5.7) is essentially nonnegative, it follows from Proposition 5.1 that

x(t) ≥≥ 0, t ≥ 0, for all x0 ∈ R
n+1

+ .

Note that the cost functional given by (5.16) penalizes the control effort as well

as the deviations from the cumulative distribution function F (c∗eff). In addition, the

inequality constraint (5.17) ensures that the control input u(t), t ≥ 0, is nonnega-

tive and the drug concentration in the effect-site compartment does not exceed the

maximum concentration cmax. Furthermore, the equality constraint (5.18) ensures

that the drug concentration in the effect-site compartment reaches the target drug

concentration c∗eff in finite time T . Finally, note that since r2 > 0, it follows from the

Legendre-Clebsch condition [25] that u∗(t), t ≥ 0, given by (5.23) is a minimizer.

5.5. Nonlinear Pharmacokinetic Model for Disposition of

Propofol

In this section, we use nonnegative and compartmental modeling to model the

pharmacokinetics of the sedative agent propofol. Propofol, or 2,6-diisopropylphenol,

is an intravenous hypnotic agent that in low doses can produce anxiolysis and in

higher doses hypnosis (i.e., lack of responsiveness and lack of consciousness). Propofol

is widely used for ICU sedation because of this spectrum of pharmacodynamic effects

and also because of its pharmacokinetics. It is typically administered as a continuous

infusion and it is a short acting drug that can be readily titrated, that is, if the

infusion rate is increased the blood level increases relatively quickly. Hence, the

pharmacological effect of the drug can be quickly varied by varying the infusion rate.

Propofol is a myocardial depressant, that is, it decreases the contractility of the
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heart and lowers cardiac output (i.e., the volume of blood pumped by the heart per

unit time). As a consequence, decreased cardiac output slows down redistribution

kinetics, that is, the transfer of blood from the central compartment (heart, brain,

kidneys, and liver) to the peripheral compartments (muscle and fat). In addition, de-

creased cardiac output could increase drug concentrations in the central compartment,

causing even more myocardial depression and further decrease in cardiac output. This

instability can lead to oversedation.

Oversedation increases risk to the patient since liberation from mechanical venti-

lation, one of the most common life-saving procedures performed in the ICU, may not

be possible due to a diminished level of consciousness and respiratory depression from

sedative drugs resulting in prolonged length of stay in the ICU. Prolonged ventila-

tion is expensive and is associated with known risks, such as inadvertent extubation,

laryngo-tracheal trauma, and ventilator-associated pneumonia. Alternatively, under-

sedation leads to agitation and can result in dangerous situations for both the patient

and the intensivist. Specifically, agitated patients can do physical harm to themselves

by dislodging their endotracheal tube which can potentially endanger their life.

The pharmacokinetics of propofol are described by the three-compartment model

[61, 103] shown in Figure 5.2, where x1 denotes the mass of drug in the central com-

partment, which, as discussed in Section 5.3, is the site for drug administration and is

generally thought to be comprised of the intravascular blood volume as well as highly

perfused organs such as the heart, brain, kidneys, and liver. These organs receive a

large fraction of the cardiac output. The remainder of the drug in the body is as-

sumed to reside in two peripheral compartments, one identified with muscle and one

with fat; the masses in these compartments are denoted by x2 and x3, respectively.

These compartments receive less than 20% of the cardiac output.
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Figure 5.2: Pharmacokinetic model for disposition of propofol.

A mass balance of the three-state compartmental model yields

ẋ1(t) = −[a11(c(t)) + a21(c(t)) + a31(c(t))]x1(t)

+a12(c(t))x2(t) + a13(c(t))x3(t) + u(t), x1(0) = x10, t ≥ 0, (5.30)

ẋ2(t) = a21(c(t))x1(t) − a12(c(t))x2(t), x2(0) = x20, (5.31)

ẋ3(t) = a31(c(t))x1(t) − a13(c(t))x3(t), x3(0) = x30, (5.32)

where c(t) = x1(t)/V c, V c is the volume of the central compartment (about 15 l for

a 70 kg patient), aij(c), i 6= j, is the rate of transfer of drug from the jth compart-

ment to the ith compartment, a11(c) is the rate of drug metabolism and elimination

(metabolism typically occurs in the liver), and u(t), t ≥ 0, is the infusion rate of the

sedative drug propofol into the central compartment. The transfer coefficients are

assumed to be functions of the drug concentration c since it is well known that the

pharmacokinetics of propofol are influenced by cardiac output [143] and, in turn, car-

diac output is influenced by propofol plasma concentrations, both due to venodilation

(pooling of blood in dilated vains) [110] and myocardial depression [79].

Experimental data indicate that the transfer coefficients aij(·) are nonincreasing

functions of the propofol concentration [79, 110]. The most widely used empirical

models for pharmacodynamic concentration-effect relationships are modifications of

the Hill equation [73]. Applying this almost ubiquitous empirical model to the rela-
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tionship between transfer coefficients implies that

aij(c) = AijQij(c), Qij(c) = Q0C̃
αij

50,ij/(C̃
αij

50,ij + cαij ), (5.33)

where, for i, j ∈ {1, 2, 3}, i 6= j, C̃50,ij is the drug concentration associated with

a 50% decrease in the transfer coefficient, αij is a parameter that determines the

steepness of the concentration-effect relationship, and Aij are positive constants. Note

that both pharmacokinetic parameters are functions of i and j, that is, there are

distinct Hill equations for each transfer coefficient. Furthermore, since for many

drugs the rate of metabolism a11(c) is proportional to the rate of transport of drug

to the liver we assume that a11(c) is also proportional to the cardiac output so that

a11(c) = A11Q11(c). Finally, the relationship between the effect-site and the central

compartment is given by (5.5).

5.6. Optimal Drug Dosing Policy for Propofol

The framework presented in Section 5.4 is applicable to sedative agents for which

a valid compartmental model capturing the pharmacokinetics and an associated prob-

abilistic model capturing drug concentration and sedation score exist. In this section,

we use the framework developed in Section 5.4 to model the pharmacokinetics and

pharmacodynamics of propofol as a hybrid deterministic-stochastic model. Specifi-

cally, we use the deterministic pharmacokinetic model developed in Section 5.5. Next,

we use this model to develop an open-loop optimal drug dosing control policy for ICU

sedation.

In [4] the authors investigate the relationship between drug concentration and

the ICU patient’s sedation score. Specifically, the sedation score is modeled as a

random variable and an empirical cumulative distribution function for this random

variable is developed and validated for propofol-based sedation where the cumulative
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distribution function is a function of drug concentration at the effect site.

To develop our optimal control policy for ICU sedation, we rewrite the pharma-

cokinetic system (5.5), (5.30)–(5.32) as

ẋ(t) = f(x(t)) + Bu(t), x(0) = x0, t ≥ 0, (5.34)

where x = [x1, x2, x3, ceff ]T, B = [1, 0, 0, 0]T, and

f(x) ,









− (a11(c) + a21(c) + a31(c))x1 + a12(c)x2 + a13(c)x3

a21(c)x1 − a12(c)x2

a31(c)x1 − a13(c)x3

aeff(c − ceff)









. (5.35)

Next, let the output y(t) of the dynamical system (5.34) be given by a stochas-

tic process. Specifically, for every t ≥ 0, y(t) = S(t) is a random variable with

range(S(t)) = S, where S , {1, . . . , 6}. The first-order distribution of the stochastic

process S(t) is given by [4]

FS(s, ceff) = P (S(t) ≤ s) =











0 s < 1,

1 −
cγ
eff(t)

cγ
eff (t)+Cγ

50,⌊s⌋+1
, 1 ≤ s < 6,

1, s ≥ 6,

(5.36)

where s ∈ R, FS : S × C → R is a first-order distribution function of the stochastic

process S(t), C ⊂ R+ is a closed set of feasible drug concentrations in the effect-site

compartment, ⌊·⌋ denotes the floor function defined by ⌊s⌋ , maxz∈Z z ≤ s, and

γ > 0 is a factor determining the steepness of the concentration-effect relationship.

Finally, note that F : C → R
6 given by (5.8) is continuous.

The second-stage of the proposed optimal drug dosing policy involves an open-loop

optimal control problem. Specifically, it follows from Theorem 5.3 that the optimal

propofol infusion rate u∗(t), t ≥ 0, is given by the solution to the minimization

problem (5.16) subject to (5.17)–(5.18), where c∗eff ∈ C∗, and C∗ is given by (5.11). In

particular, u∗(t), t ≥ 0, is given by

u∗(t) =
1

r2
[−λ1(t) − (ceff − cmax)µ(t) + ν(t)] , (5.37)
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where λ1(t), µ(t), and ν(t), t ≥ 0, are the solutions to

λ̇1(t) =

[(

∂a11(c)

∂c
+

∂a21(c)

∂c
+

∂a31(c)

∂c

)

x1(t)

Vc
+ a11(c) + a21(c) + a31(c)

−
∂a12(c)

∂c

x2(t)

Vc
−

∂a13(c)

∂c

x3(t)

Vc

]

λ1(t) +

[

−
∂a21(c)

∂c

x1(t)

Vc
− a21(c)

+
∂a12(c)

∂c

x2(t)

Vc

]

λ2(t) +

[

−
∂a31(c)

∂c

x1(t)

Vc
− a31(c) +

∂a13(c)

∂c

x3(t)

Vc

]

λ3(t)

−
aeff

Vc

λ4(t), (5.38)

λ̇2(t) = −a12(c)λ1(t) + a12λ2(t), (5.39)

λ̇3(t) = −a13(c)λ1(t) + a13(c)λ3(t), (5.40)

λ̇4(t) = aeffλ4(t) − 2 [F (ceff(t)) − F (c∗eff)]T R1
∂F (ceff)

∂ceff

−µ(t)
1

r2
[−λ1(t) − (ceff − cmax)µ(t) + ν(t)] , (5.41)

where

∂aij(c)

∂c
=

−αijc
αij−1AijQ0C̃

αij

50,ij

(C̃
αij

50,ij + cαij )2
, i = 1, j = 1, and i, j ∈ {1, 2, 3}, i 6= j, (5.42)

∂F (ceff)

∂ceff
=
[

−
γcγ−1

eff Cγ
50,2

(cγ
eff+Cγ

50,2)2
, −

γcγ−1
eff Cγ

50,3

(cγ
eff+Cγ

50,3)2
, −

γcγ−1
eff Cγ

50,4

(cγ
eff+Cγ

50,4)2
, −

γcγ−1
eff Cγ

50,5

(cγ
eff+Cγ

50,5)2
, −

γcγ−1
eff Cγ

50,6

(cγ
eff+Cγ

50,6)2
, 0
]T

,

(5.43)

with boundary conditions (5.27), (5.28), and λ1(T ) = λ2(T ) = λ3(T ) = 0, and

x(t), t ≥ 0, satisfying (5.34), µ(t) ≥ 0, t ≥ 0, if g1(x(t), u(t)) = 0, µ(t) = 0 if

g1(x(t), u(t)) < 0, ν(t) ≥ 0, t ≥ 0, if g2(u(t)) = 0, and ν(t) = 0 if g2(u(t)) < 0, t ≥ 0.

Furthermore, u∗(t) ≥ 0, t ≥ 0, and x(t) ≥≥ 0, t ≥ 0, for all x0 ∈ R
4

+.

Remark 5.1. The framework in this chapter can be used for other sedative agents

for which a valid compartmental model capturing the pharmacokinetics and an as-

sociated probabilistic model capturing drug concentration and sedation score exist.

For example, the pharmacokinetics of midazolam (an alternative intravenous seda-

tive agent used as a hypnotic) is described by a two-compartment model [67]. The
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empirical relationship between drug concentration and sedation score for midazolam

is developed in [5]. Using an identical procedure as outlined above, the optimal drug

dosing policy for the midazolam infusion rate can be found.

5.7. Illustrative Numerical Example

In this section, we present a numerical example to demonstrate the efficacy of the

proposed framework. For simplicity of exposition and to provide a nonlinear model to

illustrate implementation of our open-loop optimal controller, we assume that C̃50 and

α in (5.33) are independent of i and j [61]. Furthermore, since decreases in cardiac

output are observed at clinically utilized propofol concentrations, we arbitrarily assign

C̃50 a value of 4 µg/ml since this value is in the mid-range of clinically utilized values.

We also arbitrarily assign α a value of 3 [93]. This value is within the typical range

of those observed for ligand-receptor binding (see the discussion in [43]). Note that

these assumptions on C̃50 and α (both the independence from i and j and the assumed

values) are done to provide a numerical framework for simulation. Even if these

assumptions are incorrect, the basic Hill equations relating the transfer coefficients

to propofol concentration are consistent with standard pharmacodynamic modeling.

For our simulation we assume V c = (0.228 l/kg)(M kg), where M = 70 kg is

the mass of the patient, A21Q0 = 0.112 min−1, A12Q0 = 0.055 min−1, A31Q0 =

0.0419 min−1, A13Q0 = 0.0033 min−1, A11Q0 = 0.119 min−1, α = 3, and C̃50 =

4 µg/ml [93, 103]. Note that the parameter values for α and C̃50 probably exagger-

ate the effect of propofol on cardiac output. They have been selected to accentuate

nonlinearity but they are not biologically unrealistic. Furthermore, in (5.36) we as-

sume C50,2 = 0.13 µg/ml, C50,3 = 0.50 µg/ml, C50,4 = 0.74 µg/ml, C50,5 = 1.48 µg/ml,

C50,6 = 2.34 µg/ml, and γ = 1.7 [4]. In addition, we assume T = 5 min, Q =

R1 = diag[17, 2, 1, 2, 17, 82], and r2 = 0.01. Using (5.15) the optimal effect-site
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drug concentration was found to be c∗eff = 0.60294 µg/ml.

For our simulation we choose the diagonal matrix R1 with diagonal entries given

by R1(i,i) = (i − 3)4 + 1, i = 1, . . . , 6. This ensures that a larger weight (penalty) is

assigned to sedation scores associated with undersedation and oversedation. The drug

concentration of the central compartment and the effect-site compartment as well as

control input as a function of time are shown in Figures 5.3 and 5.4, respectively. The

probability mass function of the sedation score is given in Figure 5.5 for t = 0, 1, 3,

and 5 min. Note that at t = 5 min the probability that the patient has an MRSS

sedation score of 2, 3, or 4 (i.e., the patient is lightly sedated, moderately sedated

and follows simple commands, or deeply sedated and responds to nonpainful stimuli)

is 75%.
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Figure 5.3: Drug concentration c(t) = x1(t)
Vc

and ceff(t) as a function of time.
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Chapter 6

H2 and Mixed-norm H2/H∞ Suboptimal Estimation

and Control for Nonnegative Dynamical Systems

6.1. Introduction

Nonnegative dynamical systems involve dynamic states whose values are nonneg-

ative [48,62,89,91]. A subclass of nonnegative dynamical systems are compartmental

systems [62,83,85]. Compartmental systems involve dynamical models that are char-

acterized by conservation laws (e.g., mass, energy, fluid, etc.) capturing the exchange

of material between coupled macroscopic subsystems known as compartments. These

models are widespread in biological, physiological, and ecological sciences as well as

engineering systems such as queuing, large-scale, telecommunications, transportation,

power, and network systems, to cite but a few examples (see [48,62] and the references

therein). Since nonnegative and compartmental systems have specialized structures,

special control law strategies need to be developed that guarantee that the trajecto-

ries of the closed-loop plant system states remain in the nonnegative orthant of the

state space for nonnegative initial conditions. In addition, for certain applications of

nonnegative systems, such as active control for clinical pharmacology, we require the

control (source) inputs to be nonnegative.

Even though nonnegative systems are often encountered in numerous application
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areas, nonnegative orthant stabilizability and holdability has received little atten-

tion in the literature. Notable exceptions include [9, 98]. In addition, fixed-structure

control for linear nonnegative dynamical systems, and adaptive and neuroadaptive

control of nonnegative and compartmental systems have been recently developed

in [63,68–70,113]. In this chapter, we use linear matrix inequalities (LMIs) to develop

H2 and mixed-norm H2/H∞ (sub)optimal estimators and controllers for nonnegative

dynamical systems. Linear matrix inequalities provide a powerful design framework

for linear control problems [18, 42, 115, 125]. Since LMIs lead to convex or quasicon-

vex optimization problems, they can be solved very efficiently using interior-point

algorithms. An intersting feature of nonnegative orthant stabilizability is that it can

be formulated as a solution to an LMI problem. However, H2 optimal nonnegative

orthant stabilizability cannot, in general, be formulated as an LMI problem. In this

chapter, we formulate a series of generalized eigenvalue problems subject to a set

of LMI constraints for designing H2 suboptimal estimators, static controllers, and

dynamic controllers for nonnegative dynamical systems.

6.2. Notation and Mathematical Preliminaries

In this section, we introduce notation, several definitions, and some key results

concerning linear nonnegative dynamical systems [9, 10, 13, 62] that are necessary for

developing the main results of this chapter. Specifically, spec(A) denotes the spectrum

of A, (·)T denotes transpose, (·)−1 denotes inverse, σmax(·) denotes maximum singular

value, and E denotes expectation.

The following definition introduces the notion of essentially nonnegative, compart-

mental, and M-matrices.

Definition 6.1 [13, 62]. Let A ∈ R
n×n. A is essentially nonnegative if A(i,j) ≥ 0,
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i, j = 1, . . . , n, i 6= j. A is compartmental if A is essentially nonnegative and ATe ≤≤

0. A is an M-matrix (resp., nonsingular M-matrix ) if −A is essentially nonnegative

and all the principal minors of A are nonnegative (resp., positive).

Next, consider the linear nonnegative dynamical system

ẋ(t) = Ax(t), x(0) = x0, t ≥ 0, (6.1)

where x(t) ∈ R
n, t ≥ 0, and A ∈ R

n×n is essentially nonnegative. The solution to

(6.1) is standard and is given by x(t) = eAtx(0), t ≥ 0. The following proposition

proven in [13] (see also [62]) shows that A is essentially nonnegative if and only if the

state transition matrix eAt is nonnegative on [0,∞).

Proposition 6.1 [13, 62]. Let A ∈ R
n×n. Then A is essentially nonnegative if and

only if eAt is nonnegative for all t ≥ 0. Furthermore, if A is essentially nonnegative

and x0 ≥≥ 0, then x(t) ≥≥ 0, t ≥ 0, where x(t), t ≥ 0, denotes the solution to (6.1).

The following theorem gives necessary and sufficient conditions for asymptotic

stability of a linear nonnegative dynamical system using a quadratic component de-

coupled Lyapunov function.

Theorem 6.1 [62]. Consider the linear dynamical system G given by (6.1) where

A ∈ R
n×n is essentially nonnegative. Then G is asymptotically stable if and only if

there exist a positive diagonal matrix P ∈ R
n×n and an n×n positive-definite matrix

R such that

0 = ATP + PA + R. (6.2)

Remark 6.1. Note that it follows from Theorem 6.1 that the linear dynamical

system G is asymptotically stable if and only if there exists a positive diagonal matrix
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P ∈ R
n×n such that the following LMI holds

0 > ATP + PA. (6.3)

Finally, in this chapter we consider controlled dynamical systems of the form

ẋ(t) = Ax(t) + Bu(t), x(0) = x0, t ≥ 0, (6.4)

where x(t) ∈ R
n, t ≥ 0, u(t) ∈ R

m, t ≥ 0, A ∈ R
n×n, and B ∈ R

n×m. The following

definition and proposition are needed for the main results of the chapter.

Definition 6.2 [62]. The linear dynamical system given by (6.4) is nonnegative

if for every x(0) ∈ R
n

+ and u(t) ≥≥ 0, t ≥ 0, the solution x(t), t ≥ 0, to (6.4) is

nonnegative.

Proposition 6.2 [62]. The linear dynamical system given by (6.4) is nonnegative

if and only if A ∈ R
n×n is essentially nonnegative and B ∈ R

n×m is nonnegative.

It follows from Proposition 6.2 that the weighted control input signal Bu(t), t ≥ 0,

needs to be nonnegative to guarantee the nonnegativity of the state of (6.4). This

is due to the fact that when the initial state of (6.4) belongs to the boundary of the

nonnegative orthant, a negative input can destroy the nonnegativity of the state of

(6.4). Alternatively, however, if the initial state is in the interior of the nonnegative

orthant, then it follows from continuity of solutions with respect to system initial

conditions that, over a small interval of time, nonnegativity of the state of (6.4)

is guaranteed irrespective of the sign of each element of the weighted control input

Bu(t) over this time interval. However, unlike open-loop control wherein lack of

coordination between the input and the state necessitates nonnegativity of the control

input, a feedback control signal predicated on the system state variables allows for
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the anticipation of loss of nonnegativity of the state. Hence, state feedback control

signals can take negative values while ensuring nonnegativity of the system states.

For further discussion of the above fact see [98].

6.3. H2 Suboptimal Control for Nonnegative Dynamical Sys-
tems

In this section, we present a suboptimal control framework for minimizing the H2

cost of a linear nonnegative dynamical system while constraining the system states

to the nonnegative orthant of the state space. First, however, we recall the following

standard results.

Theorem 6.2 [41]. Let A ∈ R
n×n. A is Hurwitz if and only if there exists an

n × n matrix P > 0 such that ATP + PA < 0.

Next, consider the linear dynamical system G given by

ẋ(t) = Ax(t) + Dw(t), x(0) = x0, t ≥ 0, (6.5)

z(t) = Ex(t), (6.6)

where A ∈ R
n×n, D ∈ R

n×d, E ∈ R
p×n, and w(t) ∈ R

d is a standard white noise

process.

Theorem 6.3 [41]. Consider the linear dynamical system G given by (6.5) and

(6.6). Then A is Hurwitz and |||G|||22 < λ if and only if there exists Q > 0 such that

trEQET < λ and

0 > AQ + QAT + DDT, (6.7)

where |||G|||2 denotes the H2 norm of the transfer function G(s) = E(sIn − A)−1D.
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Remark 6.2. Recall that the H2 norm of G(s) is given by

|||G|||22 = lim
t→∞

E

{

1

t

∫ t

0

zT(s)z(s)ds

}

. (6.8)

Next, we consider the static H2 optimal regulator problem and present the solution

to this problem using LMIs.

Problem 6.1 (Static H2 Optimal Regulator Problem). Given the linear con-

trolled system

ẋ(t) = Ax(t) + Bu(t) + Dw(t), x(0) = x0, t ≥ 0, (6.9)

where A ∈ R
n×n, B ∈ R

n×m, D ∈ R
n×d, x(t) ∈ R

n, u(t) ∈ R
m is the control input,

w(t) ∈ R
d is a standard white noise process, and (A, B) is stabilizable, determine

a static state feedback control law u(t) = Kx(t), where K ∈ R
m×n, that satisfies

the following design criteria: i) the closed-loop system matrix given by A + BK is

Hurwitz; and ii) the H2 performance criterion

J(K) = lim
t→∞

E

{

1

t

∫ t

0

zT(s)z(s)ds

}

(6.10)

is minimized, where the performance variable z(t) ∈ R
p is given by

z(t) = E1x(t) + E2u(t), (6.11)

and where E1 ∈ R
p×n and E2 ∈ R

p×m are such that ET
1 E2 = 0.

Theorem 6.4 [41]. Consider the Static H2 Optimal Regulator Problem given

by Problem 6.1. Then the optimal control gain and optimal H2 cost are given by

K∗ = Z∗X∗−1 and J(K∗) = tr W ∗, respectively, where X∗ = X∗T ∈ R
n×n, W ∗ =

W ∗T ∈ R
p×p, and Z∗ ∈ R

m×n are the optimal solutions to the generalized eigenvalue

problem (GEVP)

inf
X∈Rn×n, Z∈Rm×n, W∈Rp×p

trW (6.12)
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subject to

0 > AX + XAT + BZ + ZTBT + DDT, (6.13)

0 <

[

X (E1X + E2Z)T

(E1X + E2Z) W

]

. (6.14)

It is important to note that the generalized eigenvalue problem formulated in

Theorem 6.4 is a convex optimization problem, and hence, the infimum (6.12) is

attained. Similar remarks hold for all the theorems in this chapter. Before stating

the main theorem of this section we need the following definitions and proposition.

Definition 6.3 [9]. Consider the linear dynamical system given by (6.4). Then

the pair (A, B) is nonnegative orthant holdable if there exists a control input u :

[ 0,∞) → R
m such that, with initial condition x0 ∈ R

n

+, x(t) ∈ R
n

+ for all t ≥ 0.

Definition 6.4 [9]. Consider the linear dynamical system given by (6.4). Then

the pair (A, B) is nonnegative orthant feedback holdable if there exists a feedback

control law of the form u(t) = Kx(t) such that, for every initial condition x0 ∈ R
n

+,

x(t) ∈ R
n

+ for all t ≥ 0.

Recall that the linear dynamical system (6.4) is stabilizable if and only if there

exists an n × n matrix Y > 0 such that

0 > (A + BK)TY + Y (A + BK). (6.15)

Note that (6.15) is not an LMI in K and Y . However, there exist an n × n matrix

Y > 0 and a matrix K ∈ R
m×n such that (6.15) holds if and only if there exist an

n × n matrix X > 0 and a matrix K ∈ R
m×n such that

0 > (A + BK)X + X(A + BK)T. (6.16)
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Now, defining Z
△
= KX, it follows that there exist an n × n matrix X > 0 and a

matrix Z ∈ R
m×n such that

0 > AX + XAT + BZ + ZTBT (6.17)

if and only if there exist an n × n matrix X > 0 and a matrix K ∈ R
m×n such that

(6.16) holds. Hence, the stabilizabiliy condition (6.15) holds if and only if the LMI

condition (6.17) holds.

Definition 6.5 [9]. Consider the linear dynamical system given by (6.4). Then

the pair (A, B) is stabilizable-nonnegative orthant feedback holdable if there exists a

feedback control law of the form u(t) = Kx(t) such that the closed-loop system is

asymptotically stable and, for every initial condition x0 ∈ R
n

+, x(t) ∈ R
n

+ for all t ≥ 0.

Proposition 6.3. Consider the linear dynamical system (6.4). Then the follow-

ing statements are equivalent:

i) The pair (A, B) is stabilizable-nonnegative orthant feedback holdable.

ii) There exists K ∈ R
m×n such that −(A + BK) is a nonsingular M-Matrix.

iii) There exist a diagonal n × n matrix Y > 0 and a matrix K ∈ R
m×n such that

A + BK is essentially nonnegative and (A + BK)TY + Y (A + BK) < 0.

Proof. The equivalence of statements i) and ii) follows from Theorem 4.1 of [9,

p. 133]. Next, note that statement i) holds if and only if there exists K ∈ R
m×n such

that A + BK is Hurwitz and essentially nonnegative or, equivalently, if and only if

there exist a positive diagonal matrix Y ∈ R
n×n and a matrix K ∈ R

m×n such that

A + BK is essentially nonnegative and (6.15) holds. This proves the equivalence of

statements i) and iii), and hence, statements ii) and iii).
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Next, we present an optimal control framework for minimizing an H2 norm bound

of a nonnegative dynamical system while constraining the system states to the non-

negative orthant of the state space.

Problem 6.2(Static Compensation for Nonnegative Systems). Consider

the linear dynamical system (6.9) with performance variables (6.11) where (A, B) is

stabilizable-nonnegative orthant feedback holdable, A is essentially nonnegative, and

B and x0 are nonnegative. Determine K such that A+BK is essentially nonnegative

and Hurwitz, and the feedback control law u(t) = Kx(t) minimizes the quadratic

performance criterion (6.10).

The H2 optimal regulator problem for nonnegative dynamical systems given in

Problem 6.2 is computationally intractable as an LMI. Specifically, if the solution to

the GEVP (6.12)–(6.14) is such that A + BK (with K = ZX−1) is essentially non-

negative, then such a solution solves Problem 6.2. However, in general, A+BK is not

guaranteed to be essentially nonnegative for Problem 6.1, and the optimization prob-

lem (6.12)–(6.14) does not remain an LMI if the essential nonnegativity constraint

on A + BK is enforced. As noted above, the stabilizability condition (6.15) may be

checked using the LMI condition (6.17). If we further require the essential nonnega-

tivity of A + BK or, equivalently, (AX + BZ)X−1, the stabilizability condition will

no longer remain an LMI. However, if X is positive and diagonal, then AX + BZ is

essentially nonnegative if and only if (AX + BZ)X−1 = A + BK is essentially non-

negative. It follows from Proposition 6.3 that there exist a positive diagonal matrix

X ∈ R
n×n and a matrix Z ∈ R

m×n such that (6.17) holds and AX +BZ is essentially

nonnegative, that is,

(AX + BZ)(i,j) ≥ 0, i 6= j, i, j = 1, 2, . . . , n,
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if and only if (A, B) is stabilizable-nonnegative orthant feedback holdable. Based on

this observation we propose the following H2 suboptimal control design framework

for Problem 6.2.

Theorem 6.5. Consider the Static Compensation for Nonnegative Systems Prob-

lem given by Problem 6.2. Assume there exist matrices X ∈ R
n×n, Z ∈ R

m×n,

W ∈ R
p×p, where X is diagonal and W = WT, such that (6.13) and (6.14) hold, and

0 ≤ (AX + BZ)(i,j) , i 6= j, i, j = 1, 2, . . . , n. (6.18)

Then K = ZX−1 is such that A + BK is Hurwitz and essentially nonnegative. Fur-

thermore,

J(Kopt) ≤ J(K) < tr W, (6.19)

where Kopt denotes the solution to Problem 6.2. Finally, the sharpest H2 bound

satisfying (6.19) is given by

J(Kopt) ≤ J(K∗) ≤ trW ∗, (6.20)

where K∗ = Z∗X∗−1 and X∗, Z∗, and W ∗ are the optimal solutions to the GEVP

(6.12) subject to (6.13), (6.14), and (6.18).

Proof. Note that (6.13) can be equivalently written as

0 > (A + BK)X + X(A + BK)T + DDT. (6.21)

Hence, since X > 0 it follows that A + BK is Hurwitz. Furthermore, since X

is diagonal it follows from (6.18) that A + BK = (AX + BZ)X−1 is essentially

nonnegative. Next, using Schur complements, (6.14) holds if and only if X > 0 and

W > (E1X + E2Z)X−1(E1X + E2Z)T = (E1 + E2K)X(E1 + E2K)T. (6.22)
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Now, with A replaced by A + BK and E replaced by E1 + E2K it follows from

Theorem 6.3 that |||G̃|||22 < tr W , where G̃(s) = (E1 + E2K) (sIn − (A + BK))−1 D is

the closed-loop system transfer function. Hence, J(K) = |||G̃|||22 < tr W . Next, (6.19)

follows trivially since K is a feasible controller gain satisfying all of the constraints of

Problem 6.2. Finally, (6.20) follows by noting that the minimal cost of (6.12) subject

to (6.13), (6.14), and (6.18) with X diagonal will be higher than the minimal cost of

(6.12) subject to (6.13), (6.14), and A + BZX−1 essentially nonnegative without the

restriction on X being diagonal.

Remark 6.3. Problem 6.2 considered in Theorem 6.5 requires that the pair

(A, B) is stabilizable-nonnegative orthant feedback holdable. Necessary and suffi-

cient conditions for stabilizability and holdability in the nonnegative orthant via the

feedback controller u = Kx are given in Chapters 7 and 8 of [9].

Remark 6.4. Although stabilizable-nonnegative orthant feedback holdability is

equivalent to an LMI condition with diagonal X, the computation of the H2 norm

(and hence the optimal regulator control problem) of a nonnegative system cannot

be formulated as an LMI.

Remark 6.5. Note that J(K̄) ≤ J(Kopt) ≤ J(K∗), where K̄ and Kopt correspond

to the solution to Problem 6.1 and Problem 6.2, respectively, and K∗ is the optimal

solution given in Theorem 6.5. This follows directly from Theorem 6.4 by noting

that the minimal cost of (6.12) subject to (6.13), (6.14), and (6.18) will be higher

than the minimal cost of (6.12) subject to (6.13) and (6.14) due to the additional

constraint (6.18) and restriction on X being diagonal. Hence, Theorem 6.5 gives a

framework for minimizing an upper bound on the H2 norm of the closed-loop system

while preserving closed-loop system nonnegativity.
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Remark 6.6. To develop static control laws for nonnegative systems with a non-

negative control input, it suffices to solve the optimization problem stated in Theorem

6.5 with the additional LMI constraint Z ≥≥ 0. To see this, note that u(t) ≥≥ 0,

t ≥ 0, if and only if K ≥≥ 0. Since X > 0 is diagonal, K ≥≥ 0 if and only if

Z = KX ≥≥ 0.

Remark 6.7. The closed-loop dynamics for the system described in Problem 6.2

using the design method in Theorem 6.5 is nonnegative (whether or not A is essentially

nonnegative and B is nonnegative) provided that x(0) = x0 ≥≥ 0. In this case, it

follows from Proposition 6.1 that x(t) ≥≥ 0, t ≥ 0, with w(t) ≡ 0.

It is important to note that if w(t) is a standard white noise disturbance signal,

then w(t) can take arbitrary large negative values, and hence, subvert the nonnegativ-

ity of the states of (6.9). To guarantee the nonnegativity of the state variables for the

case where w(t) 6≡ 0, the disturbance model Dw(t) in (6.9) needs to be nonlinear with

w(·) ∈ D ⊂ L2. To further elucidate this, recall that an equivalent characterization

of the H2 norm of G(s) is given by

|||G|||22 =
1

2π

∫ ∞

−∞

||G(ω)||2Fdω,

where || · ||F denotes the Frobenius matrix norm. In addition the following theorem is

needed.

Theorem 6.6. Consider the linear dynamical system (6.5) and (6.6) where w(·) ∈

L2. Then |||z|||∞ ≤ |||G|||2|||w|||2, where ||| · |||∞ and ||| · |||2 denote the L∞ and L2 norms,

respectively.

Proof. It follows from ii) of Corollary 3.1 of [33] that |||z|||2∞ ≤ σmax(EQET)|||w|||22,

where Q ∈ R
n×n is the solution to the Lyapunov equation

0 = AQ + QAT + DDT.
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Now, since σmax(X) ≤ tr(X), X ∈ R
p×p, it follows that

|||z|||2∞ ≤ σmax(EQET)|||w|||22 ≤ tr(EQET)|||w|||22 = |||G|||22|||w|||22.

This completes the proof.

To present an optimal control framework for minimizing an H2 norm bound of a

nonnegative dynamical system while constraining the system states to the nonneg-

ative orthant of the state space in the presence of system disturbances, we consider

controlled dynamical systems of the form

ẋ(t) = Ax(t) + Bu(t) + DG(x(t))ŵ(t), x(0) = x0, t ≥ 0, (6.23)

where A ∈ R
n×n, B ∈ R

n×m, D ∈ R
n×d, G : R

n → R
d×q, x(t) ∈ R

n, u(t) ∈ R
m is

the control input, and ŵ(t) ∈ R
q is an L2 disturbance. Furthermore, we assume that

G(x) is such that supx∈Rn σmax(G(x)) ≤ 1 and for every i ∈ {1, 2, . . . , n}, if xi = 0,

then rowi(DG(x)) = 0, where rowi(X) denotes the ith row of X ∈ R
p×q. Note that if

u = Kx is such that A+BK is essentially nonnegative, then the solution to (6.23) is

nonnegative for all ŵ(·) ∈ L2 and x0 ∈ R
n

+. In addition, note that if ŵ(·) ∈ L2, then

w(t)
△
= G(x)ŵ(t) ∈ L2 for all x ∈ R

n. Hence, (6.23) can be rewritten as (6.9) with

w(·) ∈ D ⊂ L2, where

D
△
= {w(·) ∈ L2 : w(t) = G(x(t))ŵ(t), ŵ(·) ∈ L2,

and x(t) is the solution to (6.23) for some x0 ∈ R
n

+}.

Now, it follows from Theorem 6.6 that |||G̃|||2 is an upper bound to the induced

operator norm from D to L∞, where G̃(s) is the closed-loop transfer function from

L2 disturbances w(t) to L∞ performance variables z(t). In this case, Theorem 6.5

solves Problem 6.2 for the case where w(·) ∈ D ⊂ L2 in (6.9).
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6.4. Suboptimal Estimation for Nonnegative Dynamical Sys-
tems

In this section, we present a suboptimal estimation framework for minimizing

the H2 norm of the error dynamics of a linear dynamical system while constraining

the estimated states to the nonnegative orthant of the state space. Note that if the

nonnegativity constraint on the estimated states is relaxed, the H2 optimal solution

is given by the least squares Kalman filter problem. Before stating the main theorem

of this section, we state the standard least squares estimation problem and present a

solution to this problem using LMIs.

Problem 6.3 (H2 Optimal Estimation Problem). Consider the linear dynam-

ical system given by

ẋ(t) = Ax(t) + D1w(t), x(0) = x0, t ≥ 0, (6.24)

y(t) = Cx(t) + D2w(t), (6.25)

where A ∈ R
n×n, D1 ∈ R

n×d , D2 ∈ R
l×d, C ∈ R

l×n, x(t) ∈ R
n, y(t) ∈ R

l is the

output measurement, and w(t) ∈ R
d is a standard white noise process. Furthermore,

assume that (A, C) is detectable and D1D
T
2 = 0. Design an estimator of the form

ẋe(t) = Aexe(t) + Bey(t), xe(0) = xe0, t ≥ 0, (6.26)

ye(t) = Cexe(t), (6.27)

where xe(t) ∈ R
n, Ae ∈ R

n×n, Be ∈ R
n×l, and Ce ∈ R

n×n, that satisfies the following

design criteria: i) x(t) − xe(t) → 0 as t → ∞ when w(t) ≡ 0; and ii) the H2 error

performance criterion

J(Be) = lim
t→∞

E

{

1

t

∫ t

0

zT(s)z(s)ds

}

(6.28)

is minimized, where the weighted error z(t) is given by z(t)
△
= E (x(t) − xe(t)).
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As in the standard Kalman filter design, we set Ae = A − BeC and Ce = In

so that the only free parameter in Problem 6.3 is the Kalman gain Be. Note that

the constraint Ae = A − BeC automatically satisfies criterion i) in Problem 6.3 by

requiring that A − BeC be Hurwitz. In this case, the error state e(t) → 0 as t → ∞

for w(t) ≡ 0, where e(t)
△
= x(t) − xe(t).

Theorem 6.7. Consider the H2 Optimal Estimation Problem given by Problem

6.3. Then the optimal Kalman gain and the optimal H2 cost are given by B∗e =

−Y ∗−1V ∗T and J(B∗e ) = tr U∗, respectively, where Y ∗ = Y ∗T ∈ R
n×n, U∗ = U∗T ∈

R
d×d, and V ∗ ∈ R

l×n are the optimal solutions to the GEVP

inf
Y ∈Rn×n, V ∈Rl×n, U∈Rd×d

tr U (6.29)

subject to

0 > ATY + Y A + CTV + V TC + ETE, (6.30)

0 <

[

Y (Y D1 + V TD2)
(Y D1 + V TD2)

T U

]

. (6.31)

Proof. The proof is dual to the proof of Theorem 6.4 and, hence, is omitted.

Next, we present the optimal nonnegative estimator design problem for nonnega-

tive systems.

Problem 6.4 (Optimal Estimation for Nonnegative Systems). Consider

the linear dynamical system given by (6.24) and (6.25), and assume that (AT,−CT)

is stabilizable-nonnegative orthant feedback holdable, A is essentially nonnegative,

C and x0 are nonnegative, and D1D
T
2 = 0. Determine Be such that A − BeC is

essentially nonnegative and Hurwitz, Be is nonnegative, and the dynamic estimator

(6.26) and (6.27) minimizes the least square error criterion (6.28).
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Note that (6.24)–(6.26) can be rewritten as
[

ẋ(t)
ẋe(t)

]

=

[

A 0
BeC Ae

] [

x(t)
xe(t)

]

+

[

D1

BeD2

]

w(t),

[

x(0)
xe(0)

]

=

[

x0

xe0

]

, t ≥ 0.

(6.32)

Now, to guarantee that (6.32) is a nonnegative dynamical system with w(t) ≡ 0,

we require that Ae = A − BeC is essentially nonnegative, Be ≥≥ 0, x0 ∈ R
n

+, and

xe0 ∈ R
n

+.

Theorem 6.8. Consider the Optimal Estimation for Nonnegative Systems Prob-

lem given by Problem 6.4. Assume there exist matrices Y ∈ R
n×n, V ∈ R

l×n, and

U ∈ R
d×d, where Y is diagonal and U = UT, such that (6.30) and (6.31) hold, and

(

Y A + V TC
)

(i,j)
≥ 0, i 6= j, i, j = 1, 2, . . . , n, (6.33)

V ≤≤ 0. (6.34)

Then Be = −Y −1V T is such that A − BeC is Hurwitz and essentially nonnegative,

and Be ≥≥ 0. Furthermore,

J(Be,opt) ≤ J(Be) < trU, (6.35)

where Be,opt denotes the solution to Problem 6.4. Finally, the sharpest H2 bound

satisfying (6.35) is given by J(Be,opt) ≤ J(B∗e ) ≤ trU∗, where B∗e = −Y ∗−1V ∗T and

Y ∗, U , and V ∗ are the optimal solutions to the GEVP (6.29) subject to (6.30), (6.31),

(6.33), and (6.34).

Proof. Note that (6.30) can be equivalently written as

0 > (A − BeC)TY + Y (A − BeC) + ETE. (6.36)

Hence, since Y > 0 it follows that A − BeC is Hurwitz. Furthermore, since Y

is diagonal it follows from (6.33) that A − BeC = Y −1(Y A + V TC) is essentially

nonnegative. Next, Be = −Y −1V T is nonnegative if and only if (6.34) holds. The

remainder of the proof now follows as in the proof of Theorem 6.5.
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6.5. H2 Suboptimal Dynamic Controller Design for Nonneg-
ative Dynamical Systems

In this section, we present a suboptimal dynamic controller design framework for

minimizing the H2 norm of a linear dynamical system while constraining the plant

states to the nonnegative orthant of the state space. The standard H2 dynamic

compensation problem is given by the following problem.

Problem 6.5 (H2 Optimal Dynamic Compensation). Consider the linear dy-

namical system given by

ẋ(t) = Ax(t) + Bu(t) + D1w(t), x(0) = x0, t ≥ 0, (6.37)

y(t) = Cx(t) + D2w(t), (6.38)

with performance variables (6.11), where A ∈ R
n×n, B ∈ R

n×m, C ∈ R
l×n, D1 ∈ R

n×d,

D2 ∈ R
l×d, E1 ∈ R

p×n, E2 ∈ R
p×m, x(t) ∈ R

n is the system state vector, u(t) ∈ R
m

is the control input, y(t) ∈ R
l is the output measurement, and w(t) ∈ R

d is a

standard white noise process. Furthermore, assume that (A, B) is stabilizable, (A, E1)

is detectable, ET
1 E2 = 0, and D1D

T
2 = 0. Design a full-order dynamic compensator

of the form

ẋc(t) = Acxc(t) + Bcy(t), xc(0) = xc0, t ≥ 0, (6.39)

u(t) = Ccxc(t), (6.40)

where xc(t) ∈ R
n, Ac ∈ R

n×n, Bc ∈ R
n×m, and Cc ∈ R

l×n, that satisfies the following

design criteria: i) the undisturbed (i.e., w(t) ≡ 0) closed-loop system (6.37)–(6.40) is

asymptotically stable; and ii) the H2 performance criterion

J(Ac, Bc, Cc) = lim
t→∞

E

{

1

t

∫ t

0

zT(s)z(s)ds

}

(6.41)

is minimized.
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Theorem 6.9. Consider the H2 Optimal Dynamic Compensation Problem given

by Problem 6.5. Then the optimal compensator gains are given by A∗c = A + BC∗c −

B∗cC, B∗c = −Y ∗−1V ∗T, and C∗c = Z∗X∗−1, where X∗ = X∗T ∈ R
n×n, W ∗ = W ∗T ∈

R
p×p, Y ∗ = Y ∗T ∈ R

n×n, U∗ = U∗T ∈ R
d×d, V ∗ ∈ R

l×n, and Z∗ ∈ R
m×n are

the optimal solutions to the GEVP’s (6.12) and (6.29) subject to (6.13), (6.14), and

(6.30), (6.31), respectively.

Proof. The proof is a direct consequence of Theorems 6.4 and 6.7 by reducing the

H2 Optimal Dynamic Compensation Problem to a combination of a full information

problem and an output estimation problem.

Next, we present the optimal dynamic compensation problem for nonnegative

systems.

Problem 6.6 (Dynamic Compensation with Sign-Indefinite Input). Co-

nsider the linear dynamical system given by (6.37) and (6.38) where (A, B) and

(AT, −CT) are sta- bilizable-nonnegative orthant feedback holdable, A is essentially

nonnegative, B, C, and x0 are nonnegative, D1D
T
2 = 0, and ET

1 E2 = 0. Determine

the controller gains (Ac, Bc, Cc) of (6.39) and (6.40) such that the undisturbed (i.e.,

w(t) ≡ 0) closed-loop system (6.37)–(6.40) is asymptotically stable, the plant state

x(t) ∈ R
n

+, t ≥ 0, for w(t) ≡ 0, and the quadratic performance criterion (6.41) is

minimized.

Theorem 6.10. Consider the Dynamic Compensation with Sign-Indefinite Input

Problem given by Problem 6.6. Let xc0 = 0 and assume there exist matrices X ∈

R
n×n, Z ∈ R

m×n, W ∈ R
p×p, Y ∈ R

n×n, V ∈ R
l×n, and U ∈ R

d×d, where X and Y

are diagonal and W = WT and U = UT, such that (6.13), (6.14), (6.30), (6.31) hold,
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and

(AX + BZ)(i,j) ≥ 0, i 6= j, i, j = 1, 2, . . . , n, (6.42)

BZ ≤≤ 0, (6.43)

(

Y A + V TC
)

(i,j)
≥ 0, i 6= j, i, j = 1, 2, . . . , n. (6.44)

Then Ac = A + BCc − BcC, Bc = −Y −1V T, and Cc = ZX−1 are such that the

undisturbed (i.e., w(t) ≡ 0) closed-loop system (6.37)–(6.40) is asymptotically stable

and plant state x(t) ∈ R
n

+ for all x0 ∈ R
n

+ and t ≥ 0. Furthermore,

J(Ac,opt, Bc,opt, Cc,opt) ≤ J(Ac, Bc, Cc), (6.45)

where Ac,opt, Bc,opt, and Cc,opt denote the solution to Problem 6.6. Finally, the

sharpest H2 bound satisfying (6.45) is given by

J(Ac,opt, Bc,opt, Cc,opt) ≤ J(A∗c , B
∗
c , C

∗
c ), (6.46)

where A∗c = A + BC∗c − B∗cC, B∗c = −Y ∗−1V ∗T, and C∗c = Z∗X∗−1, and X∗, Z∗, Y ∗,

V ∗, W ∗, and U∗ are the optimal solutions to the GEVP’s (6.12) and (6.29) subject

to (6.13), (6.14), (6.42), and (6.43), and (6.30), (6.31), and (6.44), respectively.

Proof. Note that the undisturbed (w(t) ≡ 0) closed-loop system (6.37)–(6.40) is

given by

˙̃x(t) = Ãx̃(t), x̃(0) = x̃0, t ≥ 0, (6.47)

where

x̃
△
=

[

x
xc

]

, x̃0
△
=

[

x0

xc0

]

, Ã
△
=

[

A BCc

BcC Ac

]

,

or, equivalently,

[

ẋ(t)
ė(t)

]

=

[

A + BCc −BCc

0 A − BcC

] [

x(t)
e(t)

]

,

[

x(0)
e(0)

]

=

[

x0

x0

]

, t ≥ 0,(6.48)
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where e(t)
△
= x(t) − xc(t). Next, note that (6.13) and (6.30) can be equivalently

written as

0 > (A + BCc)X + X(A + BCc)
T + DDT,

0 > (A − BcC)TY + Y (A − BcC) + ETE.

Since X > 0 and Y > 0 it follows that A+BCc and A−BcC are Hurwitz, and hence,

Ã is Hurwitz. Furthermore, since X and Y are diagonal A + BCc = (AX + BZ)X−1

and A − BcC = Y −1(Y A + V TC) are essentially nonnegative. Moreover, BCc ≤≤ 0

holds if and only if (6.43) holds. Hence, it follows from (6.48) that x(t) ∈ R
n

+ for all

x0 ∈ R
n

+ and t ≥ 0. The remainder of the proof follows using similar arguments as in

the proof of Theorem 6.5.

Remark 6.8. Note that in Problem 6.6, we only require that the plant states be

nonnegative. Specifically, in the proof of Theorem 6.10 we show that the state x(t)

and the error state e(t) = x(t) − xc(t) are nonnegative for w(t) ≡ 0, and hence, the

compensator state xc(t) = x(t)−e(t) need not be nonnegative. However, if x(t) ≥≥ 0

and e(t) is “small,” then xc(t) is nonnegative.

In certain biological applications, control (source) inputs are usually constrained

to be nonnegative as are the system states. Hence, next we develop dynamic control

laws for nonnegative systems with nonnegative control inputs.

Problem 6.7 (Dynamic Compensation with Nonnegative Input). Consid-

er the linear dynamical system given by (6.37) and (6.38), where (A, B) and (AT,−CT)

are stabilizable-nonnegative orthant feedback holdable, A is essentially nonnegative,

B, C, and x0 are nonnegative, D1D
T
2 = 0, and ET

1 E2 = 0. Determine the controller

gains (Ac, Bc, Cc) of (6.39) and (6.40) such that the undisturbed (i.e., w(t) ≡ 0)
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closed-loop system (6.37)–(6.40) is asymptotically stable, x(t) ∈ R
n

+ and u(t) ∈ R
m

+

for all t ≥ 0 and w(t) ≡ 0, and the quadratic performance criterion (6.41) is mini-

mized.

To guarantee the nonnegativity of the control input u(t), t ≥ 0, it follows from

(6.40) that Ccxc(t) should be nonnegative. Here, we consider two different cases,

namely, i) Cc and xc0 are nonnegative, and ii) Cc and xc0 are non-positive.

Theorem 6.11. Consider the Dynamic Compensation with Nonnegative Input

Problem given by Problem 6.7. Let xc0 ≥≥ 0 and assume there exist matrices X ∈

R
n×n, Z ∈ R

m×n, W ∈ R
p×p, Y ∈ R

n×n, V ∈ R
l×n, U ∈ R

d×d, where X and Y are

diagonal and W = WT and U = UT, such that (6.13), (6.14), (6.30), (6.31) hold, and

BZ ≥≥ 0, (6.49)

(

Y A + V TC
)

(i,j)
≥ 0, i 6= j, i, j = 1, 2, . . . , n, (6.50)

V TC ≤≤ 0. (6.51)

Then Ac = A + BCc − BcC, Bc = −Y −1V T, and Cc = ZX−1 are such that the

undisturbed (i.e., w(t) ≡ 0) closed-loop system (6.37)–(6.40) is asymptotically stable,

and x(t) ∈ R
n

+ and u(t) ∈ R
m

+ for all x0 ∈ R
n

+ and t ≥ 0. Furthermore,

J(Ac,opt, Bc,opt, Cc,opt) ≤ J(Ac, Bc, Cc), (6.52)

where Ac,opt, Bc,opt, and Cc,opt denote the solution to Problem 6.7. Finally, the

sharpest H2 bound satisfying (6.52) is given by

J(Ac,opt, Bc,opt, Cc,opt) ≤ J(A∗c , B
∗
c , C

∗
c ), (6.53)

where A∗c = A + BC∗c − B∗cC, B∗c = −Y ∗−1V ∗T, and C∗c = Z∗X∗−1, and X∗, Z∗, Y ∗,

V ∗, W ∗, and U∗ are the optimal solutions to the GEVP’s (6.12) and (6.29) subject

to (6.13), (6.14), and (6.49), and (6.30), (6.31), (6.50), (6.51), respectively.
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Proof. As in the proof of Theorem 6.10, it follows from (6.13) and (6.30) that

A + BCc and A − BcC are Hurwitz, and hence, Ã is Hurwitz. Next, since Y > 0

is diagonal, (A − BcC) = Y −1(Y A + V TC) is essentially nonnegative, and BCc and

BcC are nonnegative if and only if (6.49) and (6.51) hold. Hence, Ã is essentially

nonnegative. Thus, x̃(t) ∈ R
2n

+ , t ≥ 0, and hence, x(t) and xc(t) are nonnegative for

all t ≥ 0 and w(t) ≡ 0. Furthermore, (6.49) implies that u(t) ∈ R
m

+ for all t ≥ 0.

The remainder of the proof now follows using similar arguments as in the proof of

Theorem 6.5.

Theorem 6.12. Consider the Optimal Dynamic Compensation with Nonnega-

tive Input Problem given by Problem 6.7. Let xc0 ≤≤ 0 and assume there exist

matrices X ∈ R
n×n, Z ∈ R

m×n, W ∈ R
p×p, Y ∈ R

n×n, V ∈ R
l×n, U ∈ R

d×d, where

X and Y are diagonal and W = WT and U = UT, such that (6.13), (6.14), (6.30),

(6.31) hold, and

(AX + BZ)(i,j) ≥ 0, i 6= j, i, j = 1, 2, . . . , n, (6.54)

BZ ≤≤ 0, (6.55)

V TC ≥≥ 0. (6.56)

Then Ac = A + BCc − BcC, Bc = −Y −1V T, and Cc = ZX−1 are such that the

undisturbed (i.e., w(t) ≡ 0) closed-loop system (6.37)–(6.40) is asymptotically stable,

and x(t) ∈ R
n

+ and u(t) ∈ R
m

+ for all x0 ∈ R
n

+ and t ≥ 0. Furthermore,

J(Ac,opt, Bc,opt, Cc,opt) ≤ J(Ac, Bc, Cc), (6.57)

where Ac,opt, Bc,opt, Cc,opt denote the solution to Problem 6.7. Finally, the sharpest

H2 bound satisfying (6.57) is given by

J(Ac,opt, Bc,opt, Cc,opt) ≤ J(A∗c , B
∗
c , C

∗
c ), (6.58)
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where A∗c = A + BC∗c − B∗cC, B∗c = −Y ∗−1V ∗T, and C∗c = Z∗X∗−1, and X∗, Z∗, Y ∗,

V ∗, W ∗, and U∗ are the optimal solutions to the GEVP’s (6.12) and (6.29) subject

to (6.13), (6.14), (6.54), and (6.55) and (6.30), (6.31), and (6.56).

Proof. The proof is identical to the proof of Theorem 6.11 and, hence, is omit-

ted.

6.6. Mixed H2/H∞ Suboptimal Control for Nonnegative Dy-

namical Systems

In this section, we present a mixed-norm H2/H∞ suboptimal control framework for

nonnegative dynamical systems. Specifically, we introduce a static H2 state feedback

control problem for nonnegative dynamical systems with constrained H∞ disturbance

attenuation between the plant disturbances and performance variables. First, how-

ever, we consider the standard mixed-norm H2/H∞ control problem [11] and present

the solution to this problem using LMIs.

Problem 6.8(Mixed H2/H∞ Optimal Regulator Problem). Given the lin-

ear controlled system (6.9) with performance variables (6.11) where (A, B) is sta-

bilizable, determine a static state feedback control law u(t) = Kx(t) that satisfies

the following design criteria: i) the closed-loop system matrix given by A + BK is

Hurwitz; ii) the H∞ norm of the closed-loop system from L2 disturbances w(t) to L2

performance variables z(t) satisfies

|||G̃(s)|||∞ ≤ γ, (6.59)

where |||G̃(s)|||∞ , supω∈R
σmax[G̃(ω)] and γ > 0; and iii) the H2 performance

criterion (6.10) is minimized.

128



The key step in enforcing the disturbance attenuation constraint (6.59) is to re-

place the Lyapunov inequality (6.13) by a Riccati inequality which overbounds X

given by (6.13). The justification for this technique is provided by the following

result.

Lemma 6.1 [11]. Consider the linear dynamical system G given by (6.5) and

(6.6). Assume there exists Q = QT ∈ R
n×n satisfying Q > 0 and

0 >

[

AQ + QAT + DDT (EQ)T

EQ −γ2In

]

. (6.60)

Then A is Hurwitz, |||G(s)|||∞ ≤ γ, and Q ≤ Q, where Q satisfies (6.7), γ > 0, and

G(s) = E(sIn − A)−1D. Consequently, trEQET ≤ trEQET.

Theorem 6.13. Consider the Mixed H2/H∞ Optimal Regulator Problem given

by Problem 6.8. Assume there exist matrices X ∈ R
n×n, Z ∈ R

m×n, W ∈ R
p×p,

where X = XT and W = WT, such that

0 <

[

X (E1X + E2Z)T

(E1X + E2Z) W

]

, (6.61)

0 >

[

AX + XAT + BZ + ZTBT + DDT (E1X + E2Z)T

E1X + E2Z −γ2In

]

. (6.62)

Then K = ZX−1 is such that A+BK is Hurwitz and (6.59) is satisfied. Furthermore,

J(K) ≤ J (K) < trW, (6.63)

where J (K)
△
= (E1 +E2K)X (E1 +E2K)T. Finally, the sharpest H2 bound satisfying

(6.63) is given by

J(K∗) ≤ J (K∗) ≤ trW∗, (6.64)

where K∗ = Z∗X ∗−1 and X ∗, Z∗, and W∗ are the optimal solutions to the GEVP

inf
X∈Rn×n, Z∈Rm×n,W∈Rp×p

trW (6.65)

subject to (6.61) and (6.62).
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Proof. Using Schur complements, (6.61) holds if and only if X > 0 and

W > (E1X + E2Z)X−1(E1X + E2Z)T = (E1 + E2K)X (E1 + E2K)T. (6.66)

Furthermore, (6.62) can be equivalently written as

0 >

[

(A + BK)X + X (A + BK)T + DDT X (E1 + E2K)T

(E1 + E2K)X −γ2In

]

. (6.67)

Now, with A replaced by A+BK and E replaced by E1+E2K it follows from Lemma

6.1 that A+BK is Hurwitz, (6.59) holds, and tr (E1 +E2K)X(E1 +E2K)T ≤ J (K),

where X satisfies (6.13). Moreover, it follows from (6.66) and Theorem 6.3 that

J(K) = |||G̃(s)|||22 ≤ J (K) = tr (E1 + E2K)X (E1 + E2K)T < trW, (6.68)

which proves (6.63). Finally, (6.64) is immediate.

Next, we present an optimal control framework for minimizing an H2 norm bound

of a nonnegative dynamical system while constraining the H∞ norm of the closed-loop

system and guaranteeing that the closed-loop system states remain in the nonnegative

orthant of the state space.

Problem 6.9(Mixed H2/H∞Compensation for Nonnegative Systems).

Consider the linear dynamical system (6.9) with performance variables (6.11) where

(A, B) is stabilizable-nonnegative orthant feedback holdable, A is essentially nonneg-

ative, and B and x0 are nonnegative. Determine K such that A + BK is essentially

nonnegative and Hurwitz, (6.59) holds, and the feedback control law u(t) = Kx(t)

minimizes the quadratic performance criterion (6.10).

Theorem 6.14. Consider the Mixed H2/H∞ Compensation for Nonnegative Sys-

tems Problem given by Problem 6.9. Assume there exist matrices X ∈ R
n×n,

Z ∈ R
m×n, W ∈ R

p×p, where X is diagonal and W = WT, such that (6.61) and
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(6.62) hold, and

0 ≤ (AX + BZ)(i,j) , i 6= j, i, j = 1, 2, . . . , n. (6.69)

Then K = ZX−1 is such that A + BK is Hurwitz and essentially nonnegative.

Furthermore,

J(Kopt) ≤ J(K) ≤ J (K) < trW, (6.70)

where Kopt denotes the solution to Problem 6.9 and J (K) = (E1 + E2K)X (E1 +

E2K)T. Finally, the sharpest H2 bound satisfying (6.70) is given by J(Kopt) ≤

J(K∗) ≤ J (K∗) ≤ trW∗, where K∗ = Z∗X ∗−1 and X ∗, Z∗, and W∗ are the optimal

solutions to the GEVP (6.65), subject to (6.61), (6.62), and (6.69).

Proof. The proof follows from Theorem 6.13 using similar arguments as in the

proof of Theorem 6.5 and, hence, is omitted.

The suboptimal H2 estimation and dynamic compensation frameworks for non-

negative dynamical systems considered in Sections 6.4 and 6.5 can be extended to the

mixed-norm H2/H∞ case using similar techniques as presented above and the results

given in [11, 12].

6.7. Illustrative Numerical Examples

In this section, we present two numerical examples for H2 suboptimal estimation

and control for nonnegative dynamical systems.

Example 6.1. Consider the nonnegative dynamical system (6.9) with

A =





−10 1 5
2 −1 1
10 1 −1



 , B =





0
0
1



 , D =





0
0
1



 . (6.71)
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Here, we design a suboptimal H2 controller for Problem 6.2. For our numerical

simulation we take x(0) = [2, 1, 1]T, E1 = [I3 03×1]
T, and E2 = [03×1 1]. The

YALMIP [100] and SeDuMi [137] MATLAB toolboxes are used to solve the LMI

optimization problem given in Theorem 6.5. The H2 suboptimal control gain is given

by K = [−7.1440, −1, −8.4763]. Figures 6.1–6.4 show the controlled states and con-

trol input versus time for an LQR design and the controller design given by Theorem

6.5. Clearly, the controlled states x1(t) and x3(t) take on negative values in the LQR

design whereas all states remain nonnegative for the controller design given by The-

orem 6.5. The optimal H2 cost is J(Kopt) = 6.9897, whereas the H2 cost for the

controller given by Theorem 6.5 is J(K∗) = 8.4763.

0 2 4 6 8
−0.5

0

0.5

1

1.5

2

time

x 1

Nonnegative LQR
LQR

Figure 6.1: Comparison of x1(t) using the nonnegative LQR design and the LQR
design

Example 6.2. In this example, we consider an estimation problem for the four

compartment model for the disposition of the anesthetic drug propofol shown in

Figure 6.5. This model was originally studied in [113]. A mass balance for the

compartmental system yields a linear system of the form (6.24) and (6.25) (see [113]
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Figure 6.2: Comparison of x2(t) using the nonnegative LQR design and the LQR
design
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−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time

x 3

Nonnegative LQR
LQR

Figure 6.3: Comparison of x3(t) using the nonnegative LQR design and the LQR
design

for the details) where

A =









−3.4657 0.3114 0 0
0 −0.3990 0.0920 0.0048
0 0.2070 −0.0920 0
0 0.0400 0 −0.0048









, C =









1
0
0
0









T

. (6.72)

Here, we assume that the system states as well as system measurements are driven

by a standard white noise process so that D1 =
[

I4 04×1

]

and D2 =
[

01×4 1
]

.

For our numerical simulation we take x(0) = [0.5, 0.5, 0.5, 0.5]T, xe(0) = [1, 1, 1, 1]T,

and a weighting matrix E = I4. The YALMIP [100] and SeDuMi [137] MATLAB
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Figure 6.4: Comparison of u(t) using the nonnegative LQR design and the LQR
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a11x1 ≡ Elimination

a12x2

a21x1

a31x1

a13x3

aeffx1

Effect Site

Compartment

y(t)

Figure 6.5: Four-compartment model for disposition of propofol

toolboxes are used to solve the LMI optimization problem given by Theorem 6.8. The

estimator parameters are given by

Ae =









−3.6974 0.3114 0 0
0 −0.3990 0.0920 0.0048
0 0.2070 −0.0920 0
0 0.0400 0 −0.0048









, Be =









0.2317
0
0
0









. (6.73)

Figures 6.6–6.9 show the actual states and estimated H2 optimal Kalman filter

and H2 suboptimal nonnegative filter states of the system for the case where w(t) ≡ 0.

Note that the estimated Kalman filter states take on negative values whereas all states

remain nonnegative for the estimator design given by Theorem 6.8. The optimal H2

estimator error is J(Kopt) = 137.01, whereas the H2 estimator error for the estimator

given by Theorem 6.8 is J(K∗) = 563.1.

134



0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

time

x
1

x
e1

x
e1

(Kalman)

Figure 6.6: Comparison of x1(t) and xe1(t) of the undisturbed system using standard
and nonnegative Kalman filter design
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Figure 6.7: Comparison of x2(t) and xe2(t) of the undisturbed system using standard
and nonnegative Kalman filter design
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Figure 6.8: Comparison of x3(t) and xe3(t) of the undisturbed system using standard
and nonnegative Kalman filter design
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Figure 6.9: Comparison of x4(t) and xe4(t) of the undisturbed system using standard
and nonnegative Kalman filter design
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Chapter 7

Segmentation of the Endocardial Wall of the Left

Atrium using Local Region-Based Active

Contours and Statistical Shape Learning

7.1. Introduction

A powerful approach in medical image segmentation is active contour modeling

wherein the boundaries of an object of interest are captured by minimizing an energy

functional [16, 28]. The segmentation of the endocardial wall of the left atrium in

delayed-enhancement magnetic resonance images (DE-MRI) using active contours is a

challenging problem mainly due to the absence of clear boundaries. This usually leads

either to contour “leaks,” where the contour expands beyond the desired boundary,

or partial segmentation, where the contour only captures the desired area partially. A

shape-based segmentation approach can overcome this problem by using prior shape

knowledge in the segmentation process. In this chapter, we use shape learning and

shape-based image segmentation to identify the endocardial wall of the left atrium in

the delayed-enhancement magnetic resonance images.

The outline of the chapter is as follows. In Section 7.2, we present the shape

learning and shape-based image segmentation framework. Finally, in Section 7.3,

this framework is applied to the problem of segmentation of the endocardial wall of

the left atrium.
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7.2. Shape Learning and Shape-Based Image Segmentation

In this section, we propose a shape-based image segmentation framework using the

work of [141] and [97] to segment the endocardial wall of the left atrium. Our proposed

approach involves two steps; namely, shape learning and image segmentation. To

elucidate this, let the training set be composed of N binary images Bi : Ω → {0, 1},

i = 1, . . . , N , where Ω ⊂ R
3 is the image domain. The binary image Bi corresponds to

the segmentation of the endocardial wall of the left atrium for the image Ii : Ω → R,

i = 1, . . . , N , performed by a human expert. For i = 1, . . . , N , Bi(x) = 1 if x falls

inside the left atrial chamber and Bi(x) = 0 otherwise.

The first step in shape learning involves image registration. The goal in image reg-

istration is to align two given images, namely, the fixed image and the moving image,

by finding a homeomorphism that maps the points in the moving image to the corre-

sponding points in the fixed image. One of the most widely used techniques in image

segmentation is the energy-based technique, where an energy functional describing

the similarity between the two images is maximized (or, equivalently, an energy func-

tional describing the discrepancy between the the two images is minimized) subject to

a regularization constraint [140]. Here, we consider a special class of energy-based reg-

istration techniques, namely, the mean-square-error affine registration scheme, which

is implemented in the insight segmentation and registration toolkit (ITK) [77]. While

we consider binary images in this chapter, the mean-square-error affine registration

scheme is applicable to any gray-scale image and is not limited to binary images.

Mean-Square-Error Affine Registration. Given the fixed image Bf : Ω →

{0, 1} and the moving image Bm : Ω → {0, 1}, where Ω ⊂ R
3, the goal of the mean-

square-error affine registration scheme is to find an affine transformation M : Ω → Ω
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such that the cost functional

J(A, T ) ,

∫

Ω

(Bm(M(x)) − Bf(x))2 dx (7.1)

is minimized, where M(x) , Ax + T with A ∈ R and T ∈ R
3 denoting a rotation

matrix and translation vector, respectively, and R ⊂ R
3×3 denoting the set of rotation

matrices.

The mean-square-error affine registration scheme is an optimization problem which

can be used to register the training images. Specifically, given the training set

{B1, . . . , BN} with Bi : Ω → {0, 1}, i = 1, . . . , N , the mean-square-error affine

registration scheme is used to register all binary images in the training set to an

arbitrary binary image from the training set denoted by Bk, k ∈ {1, . . . , N}. Hence,

for k ∈ {1, . . . , N}, Bk is regarded as the fixed image and Bi, i = 1, . . . , N , i 6= k, is

regarded as the moving image. This results in N − 1 mean-square-error registration

problems given by

min
(Ai,Ti)∈R×R3

Jk
i (Ai, Ti), Ai ∈ R

3×3, Ti ∈ R
3, i = 1, . . . , N, i 6= k, (7.2)

where

Jk
i (Ai, Ti) ,

∫

Ω

(Bi(Aix + Ti) − Bk(x))2 dx.

We denote the registered binary moving images by B̂i(x) , Bi(A
∗
i x + T ∗i ), i =

1, . . . , N , i 6= k, and the binary fixed image by B̂k(x) , Bk(x), x ∈ Ω, where A∗i

and T ∗i , i = 1, . . . , N , i 6= k, denote the optimal solutions to the optimization prob-

lem given by (7.2).

Next, we use principal component analysis (PCA) [88] to learn the registered

shapes and create a statistical model for the shape. We need the following definition

before stating the shape learning algorithm.

Definition 7.1. Given a closed surface C (which could correspond to the bound-
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ary of a region of interest), the signed distance function φ : Ω → R is the mapping

defined by

φ(x) ,

{

dist(x, C), x 6∈ V,
−dist(x, C), x ∈ V,

(7.3)

where V is the volume enclosed by the closed surface C and dist(·, ·) is the distance

operator defined by dist(x, C) , infy∈C ‖x − y‖, x ∈ Ω.

In [141], the authors use the signed distance function to implicitly represent the

training shapes, where the boundary of the training shape B̂i(x), x ∈ Ω, i = 1, . . . , N ,

is given by the zero-level set of the signed distance function. In this chapter, we use a

specific discrete approximation to the signed distance function, referred to as sparse

field level sets (SFLS) [151], for the numerical implementation. Let Ωs ⊂ R
3 denote

the sampled image domain, where we use the N1 × N2 × N3 image grid to sample Ω

with Nj , j = 1, 2, 3, denoting the number of grid points in the j-th coordinate. In

this case, the SFLS function Ψi : Ωs → R, i = 1, . . . , N , associated with the binary

image Bi satisfies

Ψi(x) > 0, if x 6∈ Ai, (7.4)

Ψi(x) = 0, if x ∈ ∂Ai, (7.5)

Ψi(x) < 0, if x ∈ Ai, x 6∈ ∂Ai, (7.6)

where Ai , {x ∈ Ωs : Bi(x) = 1} and ∂Ai denotes the boundary of Ai. Sparse

field level sets, which can be regarded as a variation of narrow-band methods [1], are

an approximation to signed distance functions where the SFLS function assumes the

same value as the signed distance function in the vicinity of the zero-level set. For

points x 6∈ Ai (resp., x ∈ Ai, x 6∈ ∂Ai) which are sufficiently far from the zero-level

set ∂Ai, Ψi(x) = 3 (resp., Ψi(x) = −3).

Although the SFLS method was originally proposed in [151] to reduce the compu-

tational complexity of solving the partial differential equation governing the evolution
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of the level set, we use SFLS for shape representation in the shape learning stage to

control the variability of the level sets for points far from the zero-level set. Using

SFLS to implicity represent the shape, as opposed to the more traditional signed dis-

tance function, is particularly important in PCA shape learning. Among all possible

subspaces of a fixed dimension, PCA identifies the subspace in which the projection

of the data has the maximum variance. Since we are only interested in the shape

represented by the zero-level set, it is desired that PCA only reflect the variations in

the zero-level set and not be influenced by the variations of the level set function at

points far from the zero-level set. The SFLS function reduces this variability in the

value of the level set functions Ψ1, . . . , ΨN by assigning a constant value to points far

from the level set. Note that SFLS representation is also used in the implementation

of the localized region-based active contour described later in this section to reduce

the computational complexity of the level set evolution.

We use the shape-learning framework proposed in [141] using PCA. First, the

mean shape given by Φ̄ , 1
N

∑N
i Ψi is computed. Then, the mean-offset function

is defined by Ψ̃i , Ψi − Φ̄, i = 1, . . . , N . Note that Ψ̃i : Ωs → R, i = 1, . . . , N ,

where Ωs is obtained by sampling Ω using the image grid. The N1 × N2 × N3 image

grid can be used to label each point in Ωs, and hence, Ψ̃i can be transformed into

an array of the size N1 × N2 × N3. Next, we construct si ∈ R
M , i = 1, . . . , N , by

forming a vector from the elements of the N1×N2×N3 array associated with Ψ̃i, where

M = N1×N2×N3 is the number of voxels in the binary image Bi, i = 1 . . . , N . Define

S , [s1, . . . , sN ] ∈ R
M×N and W , 1

N
STS. Finally, we use the Schur decomposition

to obtain

W = QTΛQ, (7.7)

where Q , [q1, . . . , qN ], qi ∈ R
N , and Λ , diag[λ1, . . . , λN ]. The normalized eigen-

shapes Φi, i = 1, . . . , N , are given by Φi = 1
‖Sqi‖

Sqi ∈ R
M , where we assume that
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their corresponding eigenvalues λi, i = 1, . . . , N , are in decreasing order, Sqi 6= 0,

i = 1, . . . , N , and ‖ · ‖ denotes the Euclidean norm on R
M .

In the framework proposed in [141], given a new image I : Ω → R, it is assumed

that the segmenting surface represented by a level-set function can be written as a

weighted sum of the eigenshapes. Due to the complexity of the optimization prob-

lem and the presence of local minima, the initial guess in the optimization problem

affects the optimal solution provided by the numerical algorithm. In this chapter, we

introduce an intermediate step in which we use localized region-based active contours

proposed in [97] to provide a better initialization to the optimization problem.

The localized region-based active contours provide a framework for segmenting

heterogenous objects, where both global region-based and local edge-based methods

fail [97]. The contour is implicitly represented by the signed distance function φ :

Ω → R, where in our implementation we use the SFLS to represent φ due to its

computational efficiency. Although we consider the Chan-Vese energy functional [31]

within the localized region-based active contour framework, other energy functionals

can be used [97].

For a given signed distance function φ define the smoothed Heaviside function

Hφ : Ω → R by

Hφ(x) ,











1, φ(x) < −ǫ,
0, φ(x) > ǫ,
1
2

[

1 + φ
ǫ

+ 1
π

sin
(

πφ(x)
ǫ

)]

, otherwise.
(7.8)

In this case, the derivative δφ : Ω → R of the smoothed Heaviside function with

respect to x ∈ Ω is given by

δφ(x) ,

{

0, |φ(x)| > ǫ,
1
2ǫ

[

1 + cos
(

πφ(x)
ǫ

)]

, otherwise.
(7.9)

Moreover, for a given r > 0, define

Br(x, y) ,

{

1, ‖x − y‖ < r,
0, otherwise.

(7.10)
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The contour C segmenting the region of interest for a given image I : Ω → R is given

by

C = {x ∈ Ω : φ∗(x) = 0}, (7.11)

where φ∗ : Ω → R is the solution of the minimization problem

min
φ∈F

Elrac(φ), (7.12)

where F , {φ : Ω → R : φ is a signed distance function},

Elrac ,

∫

Ω

δφ(x)

∫

Ω

Br(x, y)F (I(y), φ(y))dydx + α

∫

Ω

δφ(x)‖∇φ(x)‖dx, α > 0,

(7.13)

F (y) , Hφ(y)(I(y)− ux)
2 + (1 −Hφ(y))(I(y)− vx)

2, (7.14)

ux ,

∫

Ω
Br(x, y)Hφ(y)I(y)dy
∫

Ω
Br(x, y)Hφ(y)dy

, (7.15)

vx ,

∫

Ω
Br(x, y)(1 −Hφ(y))I(y)dy
∫

Ω
Br(x, y)(1 −Hφ(y)dy

, (7.16)

where ‖ · ‖ denotes the Euclidean norm on R
3, ∇ denotes the gradient operator, and

α is a regularization parameter. Here, we use the mean shape Φ̄ as the initialization

for the localized region-based active contour.

Next, the result of the segmentation process is considered as an initial condition

for the shape-based segmentation given in [141]. Specifically, define a new level set

function Φw,Tp : Ω → R by

Φw,Tp(x) = Ψ̄ (Tp(x)) +

e
∑

i=1

√

λiwiΦi (Tp(x)) , (7.17)

where w = [w1 . . . , we]
T, wi ∈ R, i = 1, . . . , e, e ∈ Z+, e < N , is the number of

selected eigenshapes, and Tp : Ω → Ω is an affine transformation with parameter

vector p ∈ R
7 which includes translation, rotation, and magnification. Here we use

the binary mean model [153] for the shape-based segmentation. Finally, note that the

143



segmented region is given by the zero-level set of the function Φ∗w,Tp
, where Φ∗w, Tp

is

the optimal solution of the optimization problem given by

min
(w,p)∈Rk×R7

Ebinary(Φw,Tp), (7.18)

where

Ebinary(Φw, Tp) , −
1

2

(

Su

Au
−

Sv

Av

)2

, (7.19)

Au ,

∫

Ω

ĤΦw, Tp
(y)dy, (7.20)

Av ,

∫

Ω

(1 − ĤΦw, Tp
(y))dy, (7.21)

Su ,

∫

Ω

I(y)ĤΦw, Tp
(y)dy, (7.22)

Sv ,

∫

Ω

I(y)(1 − ĤΦw, Tp
(y))dy, (7.23)

ĤΦw, Tp
(y) ,

{

1, Φw, Tp(y) ≤ 0,
0, Φw, Tp(y) > 0.

(7.24)

7.3. Application to Endocardial Wall Segmentation

In this section, we apply the framework of Section 7.2 to the problem of segmen-

tation of the endocardial wall of the left atrium. Our data set includes 20 DE-MRI,

namely {I1, . . . , I20}, and their associated hand segmentations of the endocardial wall

of the left atrium B1, . . . , B20. These images are obtained from patients having un-

dergone catheter ablation three months prior to the scan time. In our study, we use a

hold-out method for cross-validation [15]. More specifically, the training set consists

of the binary human-expert segmentations B6, . . . , B20 and the test set consists of the

DE-MR images I1, . . . , I5. The segmentation results provided by the algorithm can

be compared to the human-expert segmentations B1, . . . , B5.

In the first step of the algorithm, the binary images in the training set {B6, . . . , B20}

are registered to an arbitrary binary image, e.g., B6. Next, the SFLS representation
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described in the previous section is used to implicitly represent the training shapes.

After subtracting the mean shape from all the training shapes, PCA learning is used

to find the first 8 eigenshapes and their associated eigenvalues. This concludes the

training phase of the algorithm.

Next, the trained algorithm is used for the segmentation of the endocardial wall

of the left atrium by applying it to the test set {I1, . . . , I5}. We assume that the

human user can provide the algorithm with an approximate estimate of the centroid

coordinates of the left atrium by a mouse click. Next, a translation transformation is

applied to the mean shape so that its centroid coincides with the approximate cen-

troid coordinates of the left atrium provided by the human user. The translated mean

shape is used as an initialization for the localized region-based active contour algo-

rithm. In the last step of the algorithm, the segmentation provided by the localized

region-based active contour algorithm is used as an initialization for the shape-based

segmentation algorithm described in the previous section. Table 7.1 outlines the

proposed algorithm. The 3-dimensional and 2-dimensional view of the segmented

endocardial wall of the left atrium for Patient 1 are given in Figure 7.1 and Figure

7.2, respectively.
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Table 7.1: Endocardial Wall Segmentation Algorithm

Step 1. Shape Learning.
a. Register binary images B7, . . . , B20 to B6 using the mean-square-error affine

registration scheme. Denote the registered training images by B̂6, . . . , B̂20.

b. Use SFLS to represent B̂6, . . . , B̂20. Denote by Ψ6, . . . , Ψ20.

c. Compute the mean shape Φ̄. Compute the mean-offset functions Ψ̃6, . . . , Ψ̃20.

d. Construct s6, . . . , s20 by forming a vector from the elements of Ψ̃6, . . . , Ψ̃20.
e. Compute S = [s1, . . . , sN ] and W = 1

N
STS.

f. Use the Schur decomposition to obtain W = QTΛQ, where Q = [q1, . . . , qN ]
and Λ = diag[λ1, . . . , λN ].

g. Compute the normalized eigenshapes Φi = 1
‖Sqi‖

Sqi.

h. Select the first e eigenshapes corresponding to the largest eigenvalues. Denote
by Φ1, . . . , Φe.

Step 2. Image Segmentation.
a. for j = 1 : 5
b. Initialize the localized region-based active contour evolution for DE-MR

image Ij using the mean-shape Φ̄ found in Step 1c.
c. Evolve the segmenting surface C until some convergence criterion is met.
d. Solve the optimization problem (7.18). Use the result of Step 2c as an

initial guess for the optimization problem.
e. end for

Figure 7.1: 3-dimensional view of the segmentation of the endocardial wall of the
left atrium.
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Figure 7.2: 2-dimensional view of the segmentation of the endocardial wall of the
left atrium.
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Chapter 8

Concluding Remarks and Recommendations for

Future Research

8.1. Conclusion

In this dissertation, we presented an approach for designing clinical decision sup-

port and closed-loop control systems for cardiopulmonary management and sedation

control in an intensive care unit using expert systems. It is important to note that

expert systems are already in widespread use in other branches of medicine, more

prominently in disease diagnosis, where the system inputs are the patient’s details

and symptoms, and the system outputs are probable diagnoses, recommended treat-

ments or drugs which may be prescribed. Such systems are typically open-loop and

may be regarded as rule-based search engines to help the clinician in his/her mapping

of a given set of symptoms to a possible cause (disease).

Here, we are proposing to close the loop in a very specific sedation and cardiovascu-

lar function scenario using a set of heuristics in combination with Bayesian networks.

A major challenge is the system identification aspect of the problem, that is, identi-

fying a reasonable system model in case the plant is the patient. In contrast to more

conventional identification techniques (e.g., sine sweeps), here the result must be more

subjective but still very useful. Nevertheless, putting problems in drug administra-
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tion in a closed-loop control framework has the strong potential of robustifying the

therapies and making them much less amenable to human error.

Next, the problems of pain and pain intensity assessment using facial expressions

in neonates were addressed. Sparse kernel machine algorithms were used to classify

the images into pain and non-pain classes. The class membership posterior probability

given by the relevance vector machine algorithm was interpreted as an estimate of

the pain intensity, and this hypothesis was validated by comparing the results with

expert and non-expert human assessments of pain. The results provided by the RVM

algorithm can potentially be useful in decision support systems for ICU analgesia,

where a reliable objective pain assessment measure is required.

We then considered facial expression recognition within an unsupervised learning

framework. Specifically, given a data set composed of a number of facial images

of the same subject with different facial expressions, the algorithm introduced in

this dissertation segments the data set into groups corresponding to different facial

expressions. Each facial image can be regarded as a point in a high-dimensional space,

and the collection of images of the same subject resides on a manifold within this

space. Our results show that different facial expressions reside on distinct subspaces

if the manifold is unfolded. In particular, semi-definite embedding was used to reduce

the dimensionality and unfold the manifold of facial images. Generalized principal

component analysis was used to fit a series of subspaces to the data points and

associate each data point to a subspace. Data points that belong to the same subspace

were shown to belong to the same facial expression.

Next, we modeled the pharmacokinetics and pharmacodynamics of a general

sedative agent using a hybrid deterministic-stochastic model involving deterministic

pharmacokinetics and stochastic pharmacodynamics. Specifically, we used nonnega-

tive and compartmental modeling to model the pharmacokinetics of propofol and a
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stochastic process to represent the patient’s sedation score and model the pharmaco-

dynamics of propofol. Next, we used this deterministic-stochastic model to develop

an open-loop optimal control policy for ICU sedation. Specifically, we first found the

optimal effect-site drug concentration corresponding to a high probability for the de-

sired sedation score (i.e., MRSS score of 3) and a low probability for all other sedation

scores. Then, we used optimal control theory to drive the effect-site drug concentra-

tion to the optimal value found in the previous step while minimizing a given cost

functional.

H2 suboptimal controllers using LMIs were developed for nonnegative dynamical

systems. In particular, a series of generalized eigenvalue problems subject to a set

of LMI constraints for designing H2 and mixed-norm H2/H∞ suboptimal estimators,

static controllers, and dynamic controllers were formulated for nonnegative dynamical

systems. The proposed approach goes beyond nonnegative stabilization results in the

literature by additionally addressing optimality considerations. Although the stability

and optimality sufficient conditions presented in the dissertation are not necessary,

our numerical simulations show that the performance of the suboptimal controller is

close to that of the optimal controller while additionally ensuring nonnegativity of

the plant states.

Finally, we proposed a shape-based image segmentation framework to segment the

endocardial wall of the left atrium. The segmentation of the endocardial wall of the

left atrium in delayed-enhancement magnetic resonance images using active contours

is a challenging problem mainly due to the absence of clear boundaries. It was shown

that a shape-based segmentation approach can overcome this problem by using prior

shape knowledge in the segmentation process. Our proposed approach involved shape

learning and image segmentation.
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8.2. Recommendations for Future Research

The clinical decision support and closed-loop control framework presented in this

dissertation will greatly benefit from advances in objective assessment of sedation

and agitation. In future research, we propose to investigate the use of digital imaging

and digital video of a patient’s entire body movement as well as facial expressions to

assess agitation and sedation in the ICU. In addition, using other sensor technologies

such as an actiphraph and the bispectral index, as well as patient-ventilator interac-

tion can allow for a more accurate and reliable assessment of patient’s sedation and

agitation condition. Correlations between the objective measurements for sedation

and agitation using digital imaging and these other sensors, and a clinical standard

assessment (e.g., MAAS or RASS score) needs to be investigated.

The open-loop optimal drug-dosing policy presented in this dissertation serves as a

first step towards a general optimal closed-loop drug-dosing control policy to maintain

a patient at a desired sedation state. We propose to extend the presented open-loop

approach by closing the loop using the receding horizon control (RHC) [105]. In the

RHC framework, closed-loop stability is acheived through the solution of a sequence

of open-loop optimal control problems. Finding the corresponding sedative drug

concentration in the effect-site compartment given the current measurement of the

sedation score plays a key role in closing the loop. In addition, such an algorithm

should guarantee stability given imperfect estimation of the drug concentration in

the effect-site compartment. In addition, the drug dosage suggested by the algorithm

should be compared to the drug dose prescribed by various experienced clinicians.

Markov chains are a powerful tool for modeling problems with a stochastic nature.

Markov chains have been used in modeling, simulation, and also guideline and policy

selection in a variety of disciplines, ranging from the value of maintenance within
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a reliability theory framework [102] to medicine [90, 119]. The authors in [90, 119]

have used Markov chains to model the severity of conditions of patients in ICU’s

and pediatric ICU’s and used the model to calculate the expected duration of stay of

patients.

Markov decision processes [76] are a theoretical framework for decision making in

an uncertain and stochastic environment. In future research, we propose to model

the sedation score evolution using Markov chains. The process of sedative drug con-

centration level selection will be modeled as a Markov decision process, where we can

use drug concentration as a control (action) variable to regulate the sedation score

around a desired predetermined score. Once such drug concentration levels are de-

termined, the appropriate drug dosing policy (in terms of drug infusion rates) can be

found using the theory of compartmental dynamical systems [61].

Finally, we propose to extend the approach presented in this dissertation to seg-

ment the epicardial wall, and ultimately, the automatic segmentation of the atrial

wall. In addition, the enhanced regions in the DE-MRI can be assessed using com-

puter aided statistical techniques. This can greatly benefit the study of ablation

therapy for atrial fibrillation patients.
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