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SUMMARY

In this thesis, we first show that the performance of ranking and selection

(R&S) procedures depends highly on the quality of the variance estimates that are

used. We study the performance of R&S procedures using three variance estima-

tors — overlapping area, overlapping Cramér–von Mises, and overlapping modified

jackknifed Durbin–Watson estimators — that show better long-run performance than

other estimators previously used in conjunction with R&S procedures for steady-state

simulations. We devote additional study to the development of the new overlapping

modified jackknifed Durbin–Watson estimator and demonstrate some of its useful

properties.

Next, we consider the problem of finding the best simulated system under a pri-

mary performance measure, while also satisfying stochastic constraints on secondary

performance measures, known as constrained ranking and selection. We first present

a new framework that allows certain systems to become dormant, halting sampling

for those systems as the procedure continues. Secondly, we develop general proce-

dures for constrained R&S that guarantee a nominal probability of correct selection,

under any number of constraints and correlation across systems. In addition, we

address topics critical to efficiency of the these procedures, namely the allocation of

error between feasibility check and selection, the use of common random numbers

(CRN), and the setup costs incurred when switching between systems. The use of

CRN within our procedures can result in degradation of the probability of correct

selection, so we also provide several new variance estimates to address this issue.

xiv



CHAPTER I

INTRODUCTION

In ranking and selection (R&S), we are concerned with the selection of the best

system out of a number, say k, of alternatives. In this context, the best system

is commonly one that has either the largest or smallest expected value of a specific

performance measure. We also require a certain probability of correct selection (PCS)

to be achieved by our procedures.

In this thesis, we contribute to two fields within simulation analysis methodology,

namely steady-state output analysis and ranking and selection. Since these fields are

already well-established, we will only review literature closely related to the research

of this thesis. Readers interested in a comprehensive backgrounds in steady-state

output analysis and ranking and selection may consult the chapters of Alexopoulos

and Seila [4] and Kim and Nelson [32], respectively.

Many R&S procedures have been developed assuming that the basic observations

are independent and identically distributed (i.i.d.) normal random variates. Algo-

rithms have been designed to determine the best system in simulations, for example,

the indifference-zone (IZ) methods of Dudewicz and Dalal [19], Rinott [43], Kim and

Nelson [30, 32], and Hong and Nelson [28], the optimal computing budget allocation

(OCBA) approaches of Chen [14] and Chen et al. [15], and the Bayesian methods of

Chick and Inoue [17, 18], and Chick [16].

Those R&S procedures can be used for steady-state simulation if the experimenter

is willing to use as basic observations the within-replication averages from multiple

replications (after deletion of initial, potentially biased, data) or the batch means

from a single replication. However, Goldsman et al. [24] and Kim and Nelson [31]
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found that both approaches could diminish the efficiency of fully sequential R&S

procedures in terms of the overall sample size requirements, and they proposed two

procedures that take individual observations (such as consecutive wait times) as the

basic observations from a single replication.

Given observations {Xi : i = 1, . . . , n} of a stationary stochastic output process,

we can estimate the long-run average mean � with the sample mean X̄n ≡ 1
n

n∑
i=1

Xi,

and we often compute an estimator of the quantity �2 ≡ lim
n→∞

nVar(X̄n), the variance

parameter. Unfortunately, it is well known that the sample variance is inappropriate

for use as an estimator in the current context, because the sample variance of station-

ary data can be severely biased for �2 when correlations exist among observations.

There have been several alternative estimators for �2 suggested in the literature,

some employing methods such as nonoverlapping batch means, overlapping batch

means, and standardized time series (STS) (Law and Kelton [33]). We are particularly

interested in STS estimators—specifically, the area estimator (Goldsman et al. [26]),

the Cramér von–Mises (CvM) estimator (Goldsman et al. [23]), and a combination of

the two estimators called the modified jackknifed Durbin–Watson (MJDW) estimator

(Batur et al. [6]).

Most selection procedures require estimates for the so-called variance parameters

of the competitors, which are unknown in many simulation applications. For instance,

the procedures due to Goldsman et al. [24] and Kim and Nelson [31] developed for

steady–state simulation — called ℛ+, KN+, and KN++ — use well-known variance

parameter estimators that happen to be asymptotically chi-squared distributed.
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In this thesis, we investigate the use of overlapping STS variance estimates within

steady-state R&S procedures and introduce our own variance estimator, called over-

lapping modified jackknifed Durbin–Watson (OM). Our study shows that the overlap-

ping estimators, namely overlapping area and overlapping CvM estimators of Alex-

opolous et al. [3] and our new OM estimator, can provide considerable savings. We

also show experimentally some useful properties of the OM estimator.

We next turn to the topic of constrained ranking and selection. There are many

R&S procedures available to determine the best system out of a number of simulated

alternatives, as stated earlier, but there are only a few that consider the added diffi-

culty of satisfying one or more stochastic constraints. These constraints can be placed

on any secondary performance measure, but as the performance measures must be

estimated by outputs from a simulation, we cannot be certain whether a system sat-

isfies them or not. The more complicated task of finding the best feasible system,

which we call constrained R&S, will require more computational overhead, additional

analysis, and possibly more observations than selecting a system according to just

one performance measure.

There has been recent interest in multiple objective R&S and constrained R&S.

A special case of this problem was introduced by Santner and Tamhane [44], namely,

to find the best system under a constraint on the system’s variance. Lee et al. [34, 35]

and Chen and Lee [12] consider the multi-objective problem, namely the sequential

selection of a Pareto set of systems that are non-dominated in terms of all perfor-

mance measures. Another multi-objective selection approach by Butler, Morrice, and

Mullarkey [11] uses utility and weighting functions to construct a two-stage proce-

dure to find the best system when tradeoffs between performance measures are known.

Morrice and Butler [37] utilized multiple attribute utility theory to develop a two-

stage procedure to select the best system with constraints. Pujowidianto et al. [42]

develop a procedure for constrained R&S under multiple constraints within the OCBA

3



approach, and Kabirian and Ólafsson [29] suggest an indifference-zone approach for

the selection of the best system while considering the probability that several stochas-

tic constraints are feasible. Andradóttir and Kim [5] propose several fully sequential

constrained R&S procedures for independent systems under one constraint.

We embrace the fully sequential IZ approach to R&S, as fully-sequential proce-

dures have been shown to reduce the number of necessary observations to reach a

decision while guaranteeing a nominal PCS, see Paulson [40], Hartmann [27], and

Kim and Nelson [30]. The approach utilizes an IZ parameter, which indicates the

smallest difference between systems worth detecting. Thus, we can be satisfied in

choosing any system with a mean inside an indifference zone of the best system’s

mean. Fully sequential procedures attempt to limit the number of necessary observa-

tions by determining which systems require additional observations after each stage

of sampling. Stages can consist of as little as one data point for each system in

contention, so decisions are made efficiently without compromising the desired PCS.

The constrained R&S part of the thesis is closely related to the work of An-

dradóttir and Kim (2010). Andradóttir and Kim (2010) introduce a fully sequential,

indifference-zone framework for constrained R&S consisting of two phases, i.e., feasi-

bility check and selection of the best (comparison). These phases may be addressed

either sequentially (the feasibility of each system is determined before comparison

begins) or simultaneously (the feasibility check and comparison screening occur si-

multaneously after each additional sample). Andradóttir and Kim [5] provide the

AK procedure as an example of a sequentially running procedure and the AK+ pro-

cedure as a simultaneously running procedure.

Simultaneously running procedures are particularly interesting, as they are sta-

tistically valid and efficient in many mean configurations, due to the feasibility check

and comparison screening after each stage of sampling. Simultaneous procedures keep
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systems in contention only while they have been found neither infeasible nor inferior

to a feasible system.

In this thesis, we present a new framework for fully sequential constrained R&S

based on the concept of dormancy, extending fully sequential constrained R&S pro-

cedures to incorporate both any number of constraints and any correlation across

systems (allowing for the use of CRN), and present a new procedure that minimizes

the number of switches (setup cost of starting and stopping simulations) between the

simulated alternatives.

The thesis is organized as follows: Chapter 2 introduces the new overlapping mod-

ified jackknifed Durbin–Watson variance estimator. Chapter 3 features our study of

overlapping variance estimators in steady-state R&S procedures. Chapters 4 through

6 focus on constrained R&S. In Chapter 4, we introduce the new dormancy frame-

work for comparison of constrained systems. Chapter 5 provides general procedures

for multiple constraints and any correlation across systems. We present our minimal

switching procedure in Chapter 6 and conclude with a summary of the contributions

of this thesis in Chapter 7.
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CHAPTER II

AN OVERLAPPING DURBIN–WATSON VARIANCE

ESTIMATOR FOR SIMULATIONS

The modified jackknifed Durbin–Watson (MJDW) estimator of Batur, Goldsman,

and Kim [6] has characteristics that we desire in a preferable estimator for �2, e.g.,

comparatively low bias and low variance. In particular, Batur, Goldsman, and Kim

[6] show analytically and empirically that the MJDW estimator outperforms the area

and Cramér von–Mises (CvM) estimators in terms of variance, while maintaining a

similar bias. Meanwhile, Alexopoulos et al. [3] show that overlapping batched versions

of the area and CvM estimators have significantly lower variance than the analogous

estimators incorporating nonoverlapping batches, again without increasing bias. The

current chapter combines the overlapping and MJDW methodologies, with the hope

that the resulting overlapping MJDW estimator will be superior to its nonoverlapping

counterpart. We would also like to see if the overlapping MJDW estimator has better

properties than do the overlapping area and overlapping CvM estimators.

This chapter is organized as follows: In Section 2.1, we give background, assump-

tions, and definitions needed for the discussion of our new estimator. In Section 2.2,

we introduce the overlapping MJDW variance estimator. Section 2.3 presents some

experimental results and points out a useful property of the overlapping MJDW es-

timator. We conclude the chapter in Section 2.4.

2.1 Background

In this section, we provide background material that will be needed to define our new

overlapping MJDW estimator in Section 2.2.
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2.1.1 Standardized Time Series

We assume that our sample of output data {Xi : i = 1, . . . , n} is from a stationary

stochastic process and that it satisfies a Functional Central Limit Theorem (FCLT)

(see, e.g., Glynn and Iglehart [21]):

Assumption 1. For the stationary process {Xi; i = 1, . . . , n}, there exist constants

� and � > 0 such that

Xn(t) ≡
⌊nt⌋ (X̄⌊nt⌋ − �)√

n
⇒ �W(t) for t ∈ [0, 1],

where ⌊⋅⌋ is the floor function; X̄ℓ ≡ 1
ℓ

ℓ∑
i=1

Xi, ℓ = 1, . . . , n; ⇒ denotes weak conver-

gence (as n → ∞) in the Skorohod space D[0, 1] of real-valued functions on [0, 1] that

are right-continuous with left-hand limits; and W(⋅) is a standard Brownian motion

process.

From here on, we divide the output into batches—either nonoverlapping or overlapping—

of size m, and we define the ratio b ≡ n/m. Thus, nonoverlapping batch j consists of

the observations {X(j−1)m+i : i = 1, . . . ,m}, for j = 1, . . . , b. The standardized time

series (STS) for nonoverlapping batch j is (Schruben [46])

Tj,m(t) ≡
⌊mt⌋(X̄j,m − X̄j,⌊mt⌋)

�
√
m

for t ∈ [0, 1] and j = 1, . . . , b,

where the ℓth cumulative mean of the jth nonoverlapping batch is X̄j,ℓ ≡ 1
ℓ

ℓ∑
p=1

X(j−1)m+p

for j = 1, . . . , b and ℓ = 1, . . . ,m.

Similarly, overlapping batch j consists of the observations {Xj+i : i = 0, . . . ,m−1}

for j = 1, . . . , n−m+ 1. The STS for the jth overlapping batch is

TO
j,m(t) ≡

⌊mt⌋(X̄O
j,m − X̄O

j,⌊mt⌋)

�
√
m

for t ∈ [0, 1] and j = 1, . . . , n−m+ 1,

where the ℓth cumulative mean of the jth overlapping batch is X̄O
j,ℓ ≡ 1

ℓ

ℓ−1∑
p=0

Xj+p for

j = 1, . . . , n−m+ 1 and ℓ = 1, . . . ,m.
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2.1.2 Area Estimators for �2

The area estimator from a particular batch of observations is computed as the square

of weighted area of the corresponding STS. One then averages the area estimators

from various individual batches to obtain an “overall” nonoverlapping or overlapping

batched area estimator.

2.1.2.1 Nonoverlapping Batched Area Estimator

We first consider the nonoverlapping batched version of the area estimator. The area

estimator from the jth nonoverlapping batch is defined by

Aj(f ;m) ≡
[
1

m

m∑

ℓ=1

f( ℓ
m
)�Tj,m(

ℓ
m
)

]2
for j = 1, . . . , b,

where f(⋅) is defined as a continuous weighting function on the interval [0, 1] and

normalized so that
∫ 1

0

∫ 1

0
f(s)f(t)(min(s, t)− st) ds dt = 1.

The nonoverlapping batched area estimator for �2 is

A(f ; b,m) ≡ 1

b

b∑

j=1

Aj(f ;m).

It can be shown (Schruben [46]) that A(f ; b,m) ⇒ �2�2
b/b, as m → ∞, where �2

b

denotes a �2 random variable with b degrees of freedom (d.f.). If we use the weighting

function f2(t) ≡
√
840(3t2 − 3t + 1/2)—which is known to elicit good performance

properties—we have (Aktaran-Kalaycı et al. [1])

E[A(f2; b,m)] = �2 +
7(�2 − 62)

2m2
+O(

1

m3
) (1)

and

lim
m→∞

Var[A(f2; b,m)] =
2�4

b
,

where j ≡
∞∑
i=1

ijRi for j = 1, 2, . . ., and Ri ≡ Cov(X1, X1+i) for i = 0, 1, . . ..
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2.1.2.2 Overlapping Batched Area Estimator

Now we consider the overlapping version of the area estimator. Alexopoulos et al. [2]

define the overlapping area estimator from the jth overlapping batch as

AO
j (f ;m) ≡

[
1

m

m∑

ℓ=1

f( ℓ
m
)�TO

j,m(
ℓ
m
)

]2
for j = 1, . . . , n−m+ 1

and the overlapping batched area (OA) estimator for �2 as

AO(f ; b,m) ≡ 1

n−m+ 1

n−m+1∑

j=1

AO
j (f ;m),

where b ≡ n/m. Moreover, Alexopoulos et al. [2] show that for b ≥ 2,

E[AO(f2; b,m)] = E[A(f2; b,m)], lim
m→∞

Var[AO(f2; b,m)] =
3514b− 4359

4290(b− 1)2
�4, (2)

and

AO(f2; b,m) ≈ �2�2
�eff

�eff
for large m and b,

where �eff is the effective d.f. calculated by the method of Satterthwaite [45],

�eff =

[[
2E2[AO(f2; b,m)]

Var[AO(f2; b,m)]

]]
=

[[
8580(b− 1)2

3514b− 4359

]]
, (3)

and [[⋅]] rounds to the nearest integer.

2.1.3 Cramér–von Mises Estimators for �2

The CvM estimator from a particular batch is the weighted area of the square of

the corresponding STS. As in Section 2.1.2, we can produce nonoverlapping and

overlapping versions of the “overall” batched CvM estimators.

2.1.3.1 Nonoverlapping Batched Cramér–von Mises Estimator

The CvM estimator for �2 from the jth nonoverlapping batch of data is

Cj(g;m) ≡ 1

m

m∑

ℓ=1

g( ℓ
m
)
[
�Tj,m(

ℓ
m
)
]2

for j = 1, . . . , b,
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where g(⋅) is a continuous weighting function on the interval [0, 1], and is normalized

so that
∫ 1

0
g(t)t(1− t) dt = 1.

The nonoverlapping batched CvM estimator for �2 is

C(g; b,m) ≡ 1

b

b∑

j=1

Cj(g;m).

Using g2(t) ≡ −24 + 150t − 150t2 as the weighting function, we have (Goldsman,

Kang, and Seila [23] and Aktaran-Kalaycı et al. [1])

E[C(g2; b,m)] = �2 +
4(�2 − 62)

m2
+O(

1

m3
) (4)

and

lim
m→∞

Var[C(g2; b,m)]
.
=

1.729

b
�4.

2.1.3.2 Overlapping Batched Cramér–von Mises Estimator

Alexopoulos et al. [3] define the CvM estimator for �2 from the jth overlapping batch,

CO
j (g;m) ≡ 1

m

m∑

ℓ=1

g( ℓ
m
)
[
�TO

j,m(
ℓ
m
)
]2

for j = 1, . . . , n−m+ 1,

along with the overlapping batched CvM (OC) estimator for �2,

CO(g; b,m) ≡ 1

n−m+ 1

n−m+1∑

j=1

CO
j (g;m).

For b ≥ 2, one can obtain

E[CO(g2; b,m)] = E[C(g2; b,m)] and lim
m→∞

Var[CO(g2; b,m)] =
10768b− 13605

13860(b− 1)2
�4.

(5)

Once again using Satterthwaite [45], we have

CO(g2; b,m) ≈ �2�2
�eff

�eff
for large m and b,

where

�eff =

[[
27720(b− 1)2

10768b− 13605

]]
. (6)
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2.2 Durbin–Watson Estimators for �2

The nonoverlapping batched Durbin–Watson estimator, first studied in Goldsman et

al. [22] and enhanced in Batur, Goldsman, and Kim [6], combines certain area and

CvM estimators. We review this estimator in Section 2.2.1 and then finally introduce

our new overlapping version in Section 2.2.2.

Before proceeding, we define the following quantity from the jth overlapping batch

of size m,

DO
j (m) ≡ 2CO

j (g0;m)− AO
j (f0;m) for j = 1, . . . , n−m+ 1,

where f0(t) ≡
√
12 and g0(t) ≡ 6 for t ∈ [0, 1].

2.2.1 Nonoverlapping Batched MJDW Estimator

The MJDW estimator for �2 from the jth nonoverlapping batch of the data is (cf.

Batur, Goldsman, and Kim [6], who give an equivalent definition with different nota-

tion)

D̃J,j(m) ≡ 2DO
(j−1)m+1(m)− 1

2
DO

(j−1)m+1(
m
2
)− 1

2
DO

(j−1)m+m
2
+1(

m
2
) for j = 1, . . . , b.

This allows us to construct the nonoverlapping batched MJDW estimator,

D̃J(b,m) ≡ 1

b

b∑

j=1

D̃J,j(m).

Batur, Goldsman, and Kim [6] demonstrate that

E[D̃J(b,m)] = �2 +
2(�2 − 122)

m2
+O(

1

m3
) (7)

and

Var[D̃J(b,m)] =
1.2

b
�4.

The nonoverlapping batched MJDW estimator performs well, with low bias and lower

variance than the nonoverlapping batched area and CvM estimators.
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2.2.2 Overlapping Batched MJDW Estimator

The overlapping modified jackknifed Durbin–Watson (OM) estimator is constructed

from MJDW estimators corresponding to all n − m + 1 overlapping batches of size

m. The MJDW estimator from the jth overlapping batch is

D̃O
J,j(m) ≡ 2DO

j (m)− 1

2
DO

j (
m
2
)− 1

2
DO

j+m
2
(m
2
) for j = 1, . . . , n−m+ 1.

The OM estimator for �2 is then

D̃O
J (b,m) ≡ 1

n−m+ 1

n−m+1∑

j=1

D̃O
J,j(m).

Since we know the expected value of the MJDW estimator, it follows that

E[D̃O
J (b,m)] = E[D̃J(b,m)]. (8)

The asymptotic variance of the OM estimator is much harder to compute analytically.

In the absence of theoretical computations of asymptotic variance, we have included

Monte Carlo estimates of the OM estimator’s variance for specific values of b = n/m

in the next section.

2.3 Experimental Results

To analyze the distribution and performance of the OM estimator, we present the

results of our Monte Carlo experiments.

2.3.1 Configurations and Experimental Design

We compare our variance estimators by testing them on a first-order autoregressive

(AR(1)) process. This process is defined by Xi = �i + �(Xi−1 − �i) + �i, i ≥ 1,

where X0 is a Nor(0,1) random variable and the �i’s are i.i.d Nor(0, 1 − �2). Since

the AR(1) has a simple covariance structure characterized by the lag-k covariance

Rk = �∣k∣, the asymptotic variance parameter for this process can easily be computed

to be �2 = (1+�)/(1−�). We concentrate our experiments on the case where � = 0.9

(so that �2 = 19), performing 100,000 macro-replications.
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2.3.2 Comparison of OM with Other Estimators

Table 1 gives the estimated expected values (E) and variances (V) of several variance

estimators — including OA, OC, and OM — as we set the number of observations

n = 4096, but change the value of b = n/m. We see that for any fixed (b,m),

the estimated expected values for the variance estimators are roughly the same. In

particular, for large batch sizem, the estimated expected values of all of the estimators

are nearly equal to �2; but as the batch size m decreases, all of the estimators become

more biased.

We can gain additional insight into the bias of the various estimators via a closer

examination of Equations (1), (2), (4), (5), (7), and (8). If we assume that �2 ≪ 2

(which Aktaran-Kalaycı et al. [1] show to be the case for the AR(1) with � = 0.9),

then the O(m−2) bias term of the OM estimator has slightly higher magnitude than

do those of the OA and OC estimators. But in any case, this bias term is evidently

quite small since m is itself fairly large.

We also find from Table 1 that the estimated variance of the OM estimator is

only about two-thirds that of its nonoverlapping counterpart, MJDW (which in turn

has lower variance than the nonoverlapping area and CvM estimators under study

here); and Figure 1 shows that the empirical probability distribution function (p.d.f.)

for OM is clearly less variable than that of MJDW. On the other hand, all of the

overlapping estimators have approximately the same variance. In fact, Figure 2 plots

the empirical p.d.f.’s of the OA, OC, and OM estimators based on the same 100,000

replications of the AR(1) with � = 0.9, m = 1000, and b = 20; and the three p.d.f.’s

are remarkably similar. Yet we see that the p.d.f. of OM seems to fall between those

of OA and OC, indicating that the variance of OM lies between the variances of OA

and OC. We will have more to say on this point in Section 2.3.3.
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Table 1: Estimated means and variances of the nonoverlapping and overlapping
batched area, CvM, and MJDW estimators for the variance parameter of an AR(1)
process with � = 0.9 and n = 4096 (�2 = 19).

b = 4 b = 8 b = 16
Estimator m = 1024 m = 512 m = 256

E V E V E V

A(f2; b,m) 18.84 176 18.76 89 18.13 41
AO(f2; b,m) 18.98 90 18.74 40 18.06 17
C(g2; b,m) 18.86 150 18.73 75 18.06 34
CO(g2; b,m) 18.97 85 18.72 38 18.00 17

D̃J(b,m) 18.88 104 18.70 51 17.96 23

D̃O
J (b,m) 18.97 89 18.74 38 17.94 17

0 10 20 30 40 50 60
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0.02

0.04

0.06

0.08

0.1

0.12

Nonoverlapping
Overlapping

Figure 1: Empirical p.d.f.’s for nonoverlapping MJDW and overlapping MJDW
based on 100,000 replications of an AR(1) process with � = 0.9, �2 = 19, m = 1000,
and b = 20.
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Figure 2: Empirical p.d.f.’s for OA, OC, and OM based on 100,000 replications of
an AR(1) process with � = 0.9, �2 = 19, m = 1000, and b = 20.

2.3.3 Approximate �2 Distribution of OM

Since OA and OC are both approximately �2 distributed, we conjecture that the OM

estimator is as well. Before presenting an example to test our conjecture, we will

conduct a preliminary Monte Carlo study to obtain the effective degrees of freedom

(d.f.) for the OM estimator for a variety of b values. By Satterthwaite [45] and

Equation (8), we have

�eff =

[[
2E2[D̃O

J (b,m)]

Var[D̃O
J (b,m)]

]]
≈
[[

2�4

Var[D̃O
J (b,m)]

]]
. (9)

Equation (9) holds for any stochastic process satisfying Assumption 1; so without

loss of generality, we can estimate Var[D̃O
J (b,m)], and hence �eff , using a simple i.i.d.

Nor(0,1) process (with �2 = 1). In particular, we ran 100,000 independent replications

of the OM estimators with batches of “asymptotic” size m = 128 and various choices
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of b to obtain estimates of Var[D̃O
J (b,m)] and �eff . Table 2 gives the resulting estimated

d.f. for the OA, OC, and OM estimators from, respectively, Equations (3) and (6)

and the Monte Carlo study carried out based on Equation (9). Generally speaking,

for fixed b, the effective d.f. for the OM estimator falls between those for OA and OC.

Table 2: Estimated d.f. for OA, OC, and OM estimators.

b OA OC OM b OA OC OM

2 3 3 3 27 64 68 66
3 6 6 6 28 67 70 69
4 8 8 8 29 69 73 71
5 10 11 11 30 71 75 74
6 13 14 13 31 74 78 76
7 15 16 16 32 76 80 78
8 18 19 18 33 79 83 82
9 20 21 21 34 81 86 84
10 23 24 23 35 84 88 87
11 25 26 26 36 86 91 89
12 27 29 28 37 88 93 91
13 30 32 31 38 91 96 94
14 32 34 33 39 93 99 96
15 35 37 36 40 96 101 99
16 37 39 39 41 98 104 101
17 40 42 41 42 101 106 104
18 42 44 43 43 103 109 107
19 45 47 46 44 106 111 106
20 47 50 49 45 108 114 112
21 49 52 51 46 110 117 113
22 52 55 53 47 113 119 117
23 54 57 56 48 115 122 118
24 57 60 58 49 118 124 121
25 59 62 61 50 120 127 125
26 62 65 64 51 123 129 126

With the estimated d.f. from Table 2 in hand, we finally conduct a Monte Carlo

experiment to check if the OM estimator is approximately �2. Figure 3 plots the

empirical and fitted p.d.f.’s for the OM estimator based on 100,000 replications of an

AR(1) process with � = 0.9 (�2 = 19), m = 2000, and b = 20 (�eff = 49). The fit

seems to be excellent, so that OM is indeed approximately �2 distributed.
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Figure 3: Empirical and fitted p.d.f.’s for OM based on 100,000 replications of an
AR(1) process with � = 0.9, �2 = 19, m = 2000, and b = 20.

2.4 Conclusion

In this chapter, we introduced a new estimator for the variance parameter of output

data from steady-state simulations. The OM estimator improves on the MJDW

estimator of Batur, Goldsman, and Kim [6] by incorporating MJDW into overlapping

batches.

The OM estimator exhibits characteristics of a good estimator — low bias and

low variance. In terms of variance, the OM estimator outperforms all of the nonover-

lapping estimators under consideration, and does about as well as the OA and OC

overlapping estimators.

We also showed that OM has an approximate �2 distribution with about the

same d.f. as OA and OC. This is a useful property and has been exploited in the next

chapter, which studies an application in ranking and selection.
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CHAPTER III

RANKING AND SELECTION TECHNIQUES WITH

OVERLAPPING VARIANCE ESTIMATORS FOR

SIMULATIONS

A number of new variance parameter estimators have recently been developed in the

literature. For example, Alexopoulos et al. [2] propose various overlapping standard-

ized time series (STS) estimators. These overlapping STS estimators have the same

bias as, but smaller asymptotic variance than, their nonoverlapping counterparts.

Thus, as better variance estimators are introduced, one might become interested in

determining whether these new variance estimators can be incorporated into R&S

procedures with beneficial results in terms of the required number of observations

and the attained PCS. In the current chapter, we investigate such issues. We also

discuss the choice of a batch size for overlapping STS estimators in R&S procedures.

This chapter is organized as follows: Section 3.1 defines notation and introduces

the variance estimators considered herein. Section 3.2 gives an overview of three

R&S procedures specifically designed for steady-state simulation. In Sections 3.3 and

3.4, we discuss our experimental setup and results, showing that the new overlapping

variance estimators do indeed yield improved R&S procedure performance. We give

conclusions in Section 3.5.

3.1 Variance Estimators

This section describes the notation used throughout the chapter and introduces the

variance estimators that we will implement in the selection procedures.
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3.1.1 Notation

Let Xi ≡ {Xi,j : j = 1, . . . , n} be a realization from a single run of a simulation of

system i, where, throughout the chapter, we assume that i = 1, . . . , k. For example,

Xi,j could be the jth individual waiting time in the ith queueing system under con-

sideration. After deleting some initial data during a carefully chosen warm-up period,

this process is believed to be stationary.

Throughout the chapter, we assume that Xi satisfies a Functional Central Limit

Theorem (FCLT):

Assumption 2.. For the process Xi, there exist constants �i and �i > 0 such that

Xi,n(t) ≡
⌊nt⌋ (X̄i,⌊nt⌋ − �i)√

n
⇒ �iWi(t) for t ∈ [0, 1]

where ⌊⋅⌋ is the floor function; X̄i,ℓ ≡ ∑ℓ
j=1Xi,j/ℓ, ℓ = 1, . . . , n; ⇒ denotes con-

vergence in distribution as n → ∞; and Wi stands for a standard Brownian motion

process.

For a stationary process, the FCLT holds using the steady-state mean �i and the

variance parameter �2
i ≡ limn→∞ nVar[X̄i,n] (see, for example, Glynn and Iglehart

[21]). Further, we make the following assumption concerning competing alternatives:

Assumption 3.. Xi and Xℓ for i ∕= ℓ are independent.

This assumption precludes use of certain simulation variance reduction techniques,

such as common random numbers.

As �2
i is unknown, it needs to be estimated from the data Xi. We consider four

STS variance estimators from the literature: the batched area, overlapping area,

overlapping Cramér–von Mises, and overlapping Durbin–Watson estimators.

3.1.2 Batched Area Estimator

To calculate a batched area estimator from a set of n observations Xi, we first split

the n data points into b adjacent batches of size m (where n = bm). The STS for
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nonoverlapping batch j of system i is (Schruben [46])

Ti,j,m(t) ≡
⌊mt⌋(X̄i,j,m − X̄i,j,⌊mt⌋)

�i

√
m

for t ∈ [0, 1] and j = 1, . . . , b,

where

X̄i,j,ℓ ≡
1

ℓ

ℓ∑

p=1

Xi,(j−1)m+p for j = 1, . . . , b and ℓ = 1, . . . ,m.

The area estimator from the jth batch from system i is

Ai,j(f ;m) ≡
[
1

m

m∑

ℓ=1

f( ℓ
m
)�iTi,j,m(

ℓ
m
)

]2
for j = 1, . . . , b,

where f(⋅) is a continuous weighting function on the interval [0, 1] and normalized so

that
∫ 1

0

∫ 1

0
f(s)f(t)(min(s, t)− st) ds dt = 1. Finally, the batched area (A) estimator

for �2
i is defined as

Ai(f ; b,m) ≡ 1

b

b∑

j=1

Ai,j(f ;m).

3.1.3 Overlapping Area Estimator

The overlapping area estimator is similar to the batched area estimator, but dif-

fers in that we now incorporate estimators from n − m + 1 overlapping batches of

size m, where the jth overlapping batch from system i consists of the observations

Xi,j , Xi,j+1, . . . , Xi,j+m−1. The STS for the jth overlapping batch from system i is

TO
i,j,m(t) ≡

⌊mt⌋(X̄O
i,j,m − X̄O

i,j,⌊mt⌋)

�i

√
m

for t ∈ [0, 1] and j = 1, . . . , n−m+ 1,

where

X̄O
i,j,ℓ ≡

1

ℓ

ℓ−1∑

p=0

Xi,j+p for j = 1, . . . , n−m+ 1 and ℓ = 1, . . . ,m.

Alexopoulos et al. [2] define the overlapping area estimator for �2
i from the jth

overlapping batch as

AO
i,j(f ;m) ≡

[
1

m

m∑

ℓ=1

f( ℓ
m
)�iT

O
i,j,m(

ℓ
m
)

]2
for j = 1, . . . , n−m+ 1,
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and the (overall) overlapping area (OA) estimator for �2
i as

AO
i (f ; b,m) ≡ 1

n−m+ 1

n−m+1∑

j=1

AO
i,j(f ;m),

where b = n/m (though b can no longer be interpreted as “the number of batches”).

3.1.4 Overlapping Cramér–von Mises Estimator

The Cramér–von Mises (CvM) estimator for �2
i , obtained from the jth overlapping

batch, is

CO
i,j(g;m) ≡ 1

m

m∑

ℓ=1

g( ℓ
m
)
[
�iT

O
i,j,m(

ℓ
m
)
]2

for j = 1, . . . , n−m+ 1,

where g(⋅) is a normalized weighting function on the interval [0, 1] such that
∫ 1

0
g(t)t(1 − t) dt = 1. Alexopoulos et al. [2] define the (overall) overlapping CvM

(OC ) estimator for �2
i as

CO
i (g; b,m) ≡ 1

n−m+ 1

n−m+1∑

j=1

CO
i,j(g;m).

3.1.5 Overlapping Modified Jackknifed Durbin–Watson Estimator

The Durbin–Watson (DW) estimator for �2
i , obtained from the jth overlapping batch,

is

DO
i,j(m) ≡ 2CO

i,j(g0;m)− AO
i,j(f0;m) for j = 1, . . . , n−m+ 1,

where g0(t) ≡ 6 and f0(t) ≡
√
12 for t ∈ [0, 1]. It can be shown that the DW estimator

has relatively low variance but suffers from high small-sample bias (Goldsman et al.

[22]). To overcome this bias problem at only a modest cost in variance, Batur,

Goldsman, and Kim [6] define the modified jackknifed DW estimator from the jth

overlapping batch,

D̃O
J,i,j(m) ≡ 2DO

i,j(m)− 1
2
DO

i,j(
m
2
)− 1

2
DO

i,j+m
2
(m
2
) for j = 1, . . . , n−m+ 1,

where we assume that m/2 is an integer.
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Chapter 2 defines the (overall) overlapping modified jackknifed Durbin–Watson

(OM ) estimator for �2
i as

D̃O
J,i(b,m) ≡ 1

n−m+ 1

n−m+1∑

ℓ=1

D̃O
J,i,ℓ(m).

Chapter 2 explained how to determine the degrees of freedom for each variance

estimator.

3.2 Selection Procedures

In this section, we elaborate on the details of three selection procedures, each of which

we will implement with the A, OA, OC , and OM estimators. Henceforth, let �̂2
i (b,m)

denote a generic estimator for �2
i using batch size m and sample-size-to-batch-size

ratio b = n/m.

3.2.1 Extended Rinott Procedure (ℛ+)

The following two-stage “indifference-zone” procedure is an extension for use in

steady-state simulation of Rinott’s [43] classic procedure, and was studied in Golds-

man and Marshall [25] and Goldsman et al. [24]. For more details on Rinott’s proce-

dure, see Mukhopadhyay [38].

1. Setup: Select a confidence level (nominal PCS) 1/k < 1 − � < 1, indifference-

zone parameter � > 0, first-stage sample size n0 ≥ 2, and batch size m0 < n0. The

indifference-zone parameter � is chosen as the smallest difference between systems

that the experimenter deems as “worth detecting” and is explained more fully in, for

example, Bechhofer, Santner, and Goldsman [8].

2. Initialization: Obtain Rinott’s constant ℎ = ℎ(�, k, 1− �) from, say, Bechhofer,

Santner, and Goldsman [8], where � is the degrees of freedom for the associated

variance estimator. For each system i = 1, . . . , k, take n0 observations Xi,j , j =

1, . . . , n0, and compute the estimator for �2
i , i.e., �̂

2
i (b0,m0) with b0 = n0/m0. Let

Ni = max

{
n0,

⌈
ℎ2�̂2

i (b0,m0)

�2

⌉}
,
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for i = 1, . . . , k, where ⌈⋅⌉ is the ceiling function.

3. Stopping Rule: If n0 ≥ maxi Ni, then stop and select the system with the

largest first-stage sample mean X̄i,n0
as the best. Otherwise, take Ni − n0 additional

observations Xi,n0+1, Xi,n0+2, . . . , Xi,Ni
from each system i for which Ni > n0. Select

the system with the largest overall sample mean X̄i,Ni
as the best.

3.2.2 Extended Kim and Nelson Procedure (KN+)

The next procedure, due to Kim and Nelson [31], is a sequential indifference-zone

procedure and is more efficient with observations than Rinott’s method. This savings

of observations is gained by screening out clearly inferior systems. Here we require

an estimator for the variance parameter of the difference between systems i and ℓ,

denoted �2
i,ℓ, which is equal to �2

i + �2
ℓ under Assumptions 2 and 3. Given the initial

sample size n0, batch size m0, and b0 = n0/m0, we denote the estimator of �2
i,ℓ as

�̂2
i,ℓ(b0,m0), which we calculate using the estimators in Section 3.1 with the data

points of the difference Zi,ℓ,j ≡ Xi,j −Xℓ,j for j = 1, . . . , n0.

1. Setup: Select a confidence level 1/k < 1 − � < 1, indifference-zone parameter

� > 0, first-stage sample size n0 ≥ 2, and batch size m0 < n0. Calculate the constant

ℎ2 ≡ �
(
[2(1− (1− �)1/(k−1))]−2/� − 1

)
,

where the degrees of freedom � is determined by which variance estimator is used.

2. Initialization: Let I = {1, . . . , k} be the set of systems in contention. For each

system i = 1, . . . , k, obtain n0 observations Xi,j , j = 1, . . . , n0, and compute the

first-stage sample mean X̄i,n0
. In addition, for all i ∕= ℓ, use the first n0 observations

to compute the estimator �̂2
i,ℓ(b0,m0) for �

2
i,ℓ. Set the observation counter r = n0 and

go to Screening.

3. Screening: Set Iold = I. Let

I ≡
{
i : i ∈ Iold and X̄i,r ≥ X̄ℓ,r −Wi,ℓ(r), ∀ℓ ∈ Iold, ℓ ∕= i

}
,
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where

Wi,ℓ(r) ≡ max

{
0,

�

2r

(
ℎ2�̂2

i,ℓ(b0,m0)

�2
− r

)}
.

4. Stopping Rule: If the cardinality ∣I∣ = 1, then stop and select the system whose

index is in I as the best. Otherwise, take one additional observation Xi,r+1 from each

system i ∈ I, set r = r + 1, and go to Screening.

3.2.3 Extended Kim and Nelson Procedure with Updates (KN++)

Goldsman et al. [24] and Kim and Nelson [31] present another selection procedure

similar to KN+, but one that updates the variance estimator according to a batching

sequence (br,mr), where mr and br denote the batch size and ratio r/mr, respectively.

Both mr and br are non-decreasing functions of the number of observations, r. Golds-

man et al. [24] present three batching sequences; we consider here only the sequence

that takes mr = br = ⌊√r⌋, but with more-frequent updates of br when r is small.

1. Setup: Same setup as KN+.

2. Initialization: Let I = {1, . . . , k} be the set of systems in contention. Obtain n0

observations Xi,j , j = 1, . . . , n0, from each system i = 1, . . . , k. Set the observation

counter r = n0 and mr = m0.

3. Update: If mr has changed since the last update, then for all i ∕= ℓ, i, ℓ ∈ I,

recalculate the estimator �̂2
i,ℓ(br,mr), �, and ℎ2.

4. Screening: Set Iold = I. Let I be updated as in procedure KN+, where we now

use

Wi,ℓ(r) ≡ max

{
0,

�

2r

(
ℎ2�̂2

i,ℓ(br,mr)

�2
− r

)}
.

5. Stopping Rule: If ∣I∣ = 1, then stop and select the system whose index is in I as

the best. Otherwise, take one additional observation Xi,r+1 from each system i ∈ I,

set r = r + 1, and go to Update.
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3.3 Experimental Setup

At this point, we are interested in the performance of the R&S procedures when they

incorporate the new variance estimators. We follow the same experimental setup that

Goldsman et al. [24] used. In particular, we take system 1 as the best system, i.e., the

system with the largest mean. For all of the experiments, we set the nominal PCS

to 0.95. For purposes of conducting our experiments, we set the indifference-zone

parameter � = �1/
√
n0, where �1 is the square root of the variance parameter of the

best system.

We tested two different configurations for the mean performance measure: the

slippage configuration (SC) and the monotone decreasing means (MDM) configura-

tion. For the SC, all inferior systems are separated from the best system by a distance

of �. For example, �1 = �, while �2 = ⋅ ⋅ ⋅ = �k = 0. For the MDM configuration,

we have �i = �1 − (i − 1)�, i = 2, . . . , k. The MDM configuration tests a proce-

dure’s ability to discard clearly inferior systems quickly, while the SC configuration

is a “difficult” scenario where the means of all inferior systems are equal and very

close to that of the best system (and is often used to test the statistical validity of

the procedure).

For our analysis, we concentrate on two key measures: the observed PCS and the

sample average number of total raw observations. All experimental results are based

on 1000 independent replications.

In our testing, we rank on the mean values of two common processes: the means of

AR(1) processes and the mean waiting times for customers in a steady-state M/M/1

queue.

AR(1) processes Xi for i = 1, . . . , k, are defined as

Xi,j = �i + �(Xi,j−1 − �i) + �i,j ,
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where �i,j , j = 1, 2, . . ., are i.i.d. Norm(0,1−�2) random variables with � ∈ (−1, 1). In

this chapter, we chose a fairly high value for the serial correlation coefficient, � = 0.9.

For AR(1) processes, larger �i is better.

The waiting times, Xi, for customers of alternative i of an M/M/1 queuing system

are given by

Xi,j = max{0, Xi,j−1 + Si,j−1 − Ti,j},

where the service times Si,j−1 are i.i.d. exp(�i) and the interarrival times Ti,j are i.i.d.

exp(�). For each system, the utilization �i ≡ �/�i, so that the true expected waiting

time wi = �2i /�(1 − �i). For M/M/1 queueing systems, smaller wi is better. We

wanted the waiting times to have significant correlation, so we used a high starting

value for the utilization, �1 = 0.9. It should be noted that as the expected waiting

time increases, so does the variance of the expected waiting time. This makes the

M/M/1 case somewhat more interesting than the AR(1) process.

3.4 Results

Goldsman et al. [24] tested the performance of R&S procedures when nonoverlapping

batch means, overlapping batch means, and A estimators were considered. Their

experimental results show that the R&S procedures generally achieve at least the

nominal PCS when a large enough batch size is used for a particular variance estima-

tor. In addition, they found that the A estimator often produces the best performance

in terms of the number of total observations when compared to implementations of

batch means and overlapping batch means variance estimators. So, we are interested

here in comparing the performance of the R&S procedures incorporating the OA,

OC , and OM estimators with that of the A estimator.

Our experiments show that overlapping variance estimators provide a substantial

improvement in observations required, without sacrificing correct selections. The

savings in observations garnered with the use of the OA, OC , or OM estimators
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(compared to the A estimator) depend on the choice of batch size and selection

procedure, but typically range from 10% to 50%.

We illustrate our results in pairs of tables, which show the sample average of the

total number of raw observations and the estimated PCS, over the 1000 replications,

for various choices of the initial batch size m0 with a fixed n0. Tables 3 and 4 display

results when AR(1) processes are tested with k = 2 under the SC configuration,

while Tables 5 and 6 are devoted to AR(1) processes with k = 10 under the SC

configuration. Tables 7 and 8 give results for M/M/1 queue-waiting-time processes

with k = 2 under the SC configuration. Results under the MDM configuration are

provided in Tables 9 and 10 for AR(1) processes with k = 10 and in Tables 11 and

12 for M/M/1 queue-waiting-time processes with k = 5.

3.4.1 Slippage Configuration

Experiments under the SC configuration are usually performed to test a procedure’s

ability to handle difficult scenarios. Kim and Nelson [31] point out that the observed

PCS does not always meet the nominal PCS for the A estimator, and there is some

degradation in the observed PCS from the nominal level at small initial batch sizes

m0. However, they show that (i) such degradation is not significant, (ii) a large m0

helps satisfy the PCS requirement, and (iii) the coverage problem goes away either

with large k or under the MDM configuration.

We observe precisely the same tendencies when the OA, OC , and OM estimators

are used. In particular, in most cases, the actual PCS with the OA, OC , and OM

estimators is at least that of the A estimator for all three R&S procedures; see Tables

3, 5, and 7.

The non-normality of observations from the M/M/1 queue-waiting-time processes

affects PCS adversely — but not too significantly as long as m0 is large — as shown

in Table 7.
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We notice that a large m0 helps achieve the nominal level of PCS, but at the

cost of more observations. The good news is that the new overlapping variance esti-

mators dramatically decrease the number of observations needed to reach a decision

— especially for the large-m0 case — as shown in Tables 4, 6, and 8. For example,

Table 6 reveals a 65% savings in the number of observations from 1,457,600 for the A

estimator to 516,500 for the OA estimator when the ℛ+ procedure is implemented

on AR(1) processes with k = 10 and m0 = 500 under the SC configuration.

3.4.2 MDM configuration

As one would expect, the estimated PCS values under the MDM configuration tend

to be higher than those under the SC. For instance, for k = 10 AR(1) processes,

Table 5 for the SC case shows that a number of estimated PCS values are lower

than the nominal 0.95, while Table 9 for the MDM configuration shows that all PCS

values are substantially larger than the nominal level. As the coverage problem is

less problematic with the MDM configuration, we focus on discussing the efficiency

of the R&S procedures in terms of sample size.

The advantages of implementing the overlapping estimators are most clearly seen

with respect to the ℛ+ and KN+ procedures. For instance, we notice in Table 4

that, for k = 2 AR(1) processes, procedures ℛ+ and KN+ using any of our new

overlapping variance estimators record savings of roughly up to 40% over the A esti-

mator, especially when the procedures use relatively large m0 sizes. Table 10 shows

that we obtain even more savings by using the overlapping estimators for ℛ+ and

KN+ when k = 10 — up to 65%. This demonstrates that variance estimates with

good statistical properties (low bias and low variance) can improve the efficiency of

R&S procedures significantly.
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Table 3: Estimated PCS when AR(1) processes are tested with the SC configuration,
k = 2, � = 0.9, n0 = 1000, 1− � = 0.95, and � = �1/

√
n0.

ℛ+ KN+ KN++
m0 A OA OC OM A OA OC OM A OA OC OM

500 0.966 0.970 0.969 0.966 0.964 0.953 0.953 0.957 0.935 0.934 0.936 0.942
250 0.943 0.939 0.945 0.944 0.942 0.936 0.936 0.943 0.925 0.927 0.931 0.925
200 0.951 0.940 0.943 0.945 0.949 0.949 0.943 0.943 0.942 0.941 0.942 0.940
125 0.939 0.934 0.938 0.943 0.946 0.924 0.923 0.925 0.929 0.931 0.931 0.925
100 0.938 0.937 0.932 0.930 0.919 0.914 0.912 0.913 0.926 0.931 0.932 0.923

Table 4: Sample average of total number of raw observations when AR(1) processes
are tested with the SC configuration, k = 2, � = 0.9, n0 = 1000, 1 − � = 0.95, and
� = �1/

√
n0. Entries are shown in units of 104.

ℛ+ KN+ KN++
m0 A OA OC OM A OA OC OM A OA OC OM

500 4.08 2.35 2.35 2.32 2.54 1.48 1.47 1.45 0.74 0.67 0.67 0.67
250 1.74 1.24 1.22 1.23 1.10 0.77 0.77 0.77 0.64 0.60 0.60 0.60
200 1.51 1.14 1.11 1.09 0.97 0.72 0.69 0.69 0.63 0.57 0.57 0.57
125 1.09 0.92 0.91 0.90 0.72 0.58 0.58 0.56 0.55 0.51 0.51 0.50
100 0.94 0.83 0.82 0.79 0.59 0.52 0.51 0.49 0.48 0.46 0.46 0.44

Table 5: Estimated PCS when AR(1) processes are tested with the SC configuration,
k = 10, � = 0.9, n0 = 1000, 1− � = 0.95, and � = �1/

√
n0.

ℛ+ KN+ KN++
m0 A OA OC OM A OA OC OM A OA OC OM

500 0.964 0.988 0.992 0.987 0.972 0.987 0.990 0.981 0.901 0.943 0.947 0.942
250 0.956 0.963 0.968 0.967 0.957 0.951 0.958 0.950 0.923 0.943 0.947 0.942
200 0.963 0.964 0.953 0.959 0.945 0.948 0.947 0.951 0.929 0.954 0.953 0.951
125 0.957 0.964 0.941 0.940 0.949 0.933 0.931 0.928 0.909 0.922 0.920 0.916
100 0.932 0.947 0.923 0.920 0.919 0.917 0.917 0.908 0.896 0.902 0.900 0.892

Table 6: Sample average of total number of raw observations when AR(1) processes
are tested with the SC configuration, k = 10, � = 0.9, n0 = 1000, 1− � = 0.95, and
� = �1/

√
n0. Entries are shown in units of 104.

ℛ+ KN+ KN++
m0 A OA OC OM A OA OC OM A OA OC OM

500 145.76 51.65 51.54 51.27 90.83 32.45 33.06 32.92 7.20 6.52 6.56 6.48
250 31.03 17.92 17.86 17.76 18.51 9.78 9.78 9.73 6.34 5.95 5.96 5.92
200 24.04 15.83 15.30 15.15 13.95 8.48 8.05 7.98 6.07 5.79 5.75 5.69
125 15.98 12.26 12.08 11.91 8.46 6.22 6.12 6.05 5.32 5.12 5.09 4.96
100 13.34 10.94 10.86 10.42 7.02 5.45 5.39 5.20 4.85 4.74 4.71 4.52
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Table 7: Estimated PCS when M/M/1 processes are tested with the SC configura-
tion, k = 2, � = 0.9, n0 = 24000, 1− � = 0.95, and � = �1/

√
n0.

ℛ+ KN+ KN++
m0 A OA OC OM A OA OC OM A OA OC OM

12000 0.938 0.930 0.937 0.942 0.952 0.949 0.952 0.950 0.924 0.928 0.922 0.935
8000 0.926 0.923 0.912 0.919 0.930 0.923 0.931 0.926 0.923 0.915 0.915 0.917
6000 0.900 0.910 0.914 0.906 0.938 0.922 0.923 0.921 0.920 0.912 0.914 0.919
4800 0.909 0.908 0.903 0.902 0.932 0.914 0.912 0.919 0.903 0.902 0.901 0.898
4000 0.911 0.893 0.900 0.905 0.914 0.912 0.910 0.908 0.915 0.912 0.906 0.906
3000 0.904 0.899 0.897 0.897 0.901 0.899 0.900 0.905 0.909 0.911 0.910 0.905
2400 0.900 0.898 0.902 0.891 0.911 0.902 0.904 0.902 0.891 0.893 0.892 0.889

Table 8: Sample average of total number of raw observations when M/M/1 processes
are tested with the SC configuration, k = 2, � = 0.9, n0 = 24000, 1− � = 0.95, and
� = �1/

√
n0. Entries are shown in units of 105.

ℛ+ KN+ KN++
m0 A OA OC OM A OA OC OM A OA OC OM

12000 14.01 8.23 8.20 8.21 7.26 4.25 4.23 4.25 2.01 1.79 1.78 1.80
8000 7.81 5.09 5.08 5.02 4.43 2.67 2.66 2.67 1.81 1.60 1.59 1.60
6000 5.99 4.42 4.41 4.36 3.28 2.36 2.34 2.31 1.65 1.48 1.48 1.47
4800 5.00 4.04 3.94 3.86 2.89 2.12 2.07 2.04 1.63 1.51 1.50 1.49
4000 4.44 3.68 3.63 3.56 2.39 1.93 1.91 1.88 1.51 1.42 1.40 1.40
3000 3.62 3.23 3.18 3.09 1.95 1.69 1.67 1.64 1.39 1.30 1.30 1.26
2400 3.24 2.86 2.85 2.70 1.73 1.54 1.53 1.47 1.30 1.24 1.23 1.18
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We observe similar trends in our M/M/1 waiting-time experiments, with savings

for the implementations with overlapping variance estimators of up to 40% as in

Table 8 for k = 2 and 60% as in Table 12 for k = 5.

The relative savings are much more modest when using OA, OC , or OM in proce-

dureKN++, mainly because the procedure is already extremely efficient. Specifically,

the updating procedure of KN++ quickly recovers from a poor variance estimate by

allowing us to recalculate variance estimates as the procedure progresses from much

larger collections of data than the initial sample. So the OA, OC , OM , and A es-

timators can all eventually produce good variance estimates. Nevertheless, we still

can save up to 10% by implementing the OA, OC , or OM estimators over the A

estimator.

3.4.3 Batch Size

As we decrease the initial batch sizem0, fewer observations are needed until a decision

is made, and the percentage savings of observations required by the overlapping esti-

mators compared to the A estimator tends to decrease for all three R&S procedures.

This is because as the batch size decreases for a given n0, the number of batches

increases and the �2-like empirical distributions of the various estimators seem to

approach each other. This in turn implies similar statistical properties (including the

mean and variance) of the four estimators. A side effect of a small batch size is that

the procedures often require a smaller-than-necessary number of observations until a

decision; and this may result in PCS falling below the nominal level. For example,

we see this effect in the observed PCS of Table 3 with m0 ≤ 250.

We recommend an initial batch size that is roughly one-quarter of the initial

sample. This guarantees that the degrees of freedom of any variance estimator is

not too small, ensuring estimated PCS close to (or above) the nominal level and

significant savings in observations compared to the A estimator.
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Table 9: Estimated PCS when AR(1) processes are tested with the MDM configu-
ration, k = 10, � = 0.9, n0 = 1000, 1− � = 0.95, and � = �1/

√
n0.

ℛ+ KN+ KN++
m0 A OA OC OM A OA OC OM A OA OC OM

500 0.994 0.995 0.998 0.997 0.995 0.999 0.997 1.000 0.995 0.992 0.993 0.993
250 0.995 0.993 0.994 0.992 0.995 0.992 0.993 0.991 0.987 0.990 0.990 0.987
200 0.995 0.993 0.992 0.992 0.996 0.992 0.992 0.992 0.990 0.994 0.994 0.992
125 0.989 0.985 0.987 0.988 0.986 0.987 0.990 0.986 0.982 0.985 0.984 0.982
100 0.983 0.983 0.985 0.988 0.987 0.984 0.984 0.984 0.990 0.986 0.986 0.980

Table 10: Sample average of total number of raw observations when AR(1) processes
are tested with the MDM configuration, k = 10, � = 0.9, n0 = 1000, 1 − � = 0.95,
and � = �1/

√
n0. Entries are shown in units of 104.

ℛ+ KN+ KN++
m0 A OA OC OM A OA OC OM A OA OC OM

500 143.49 51.33 51.26 51.21 40.10 14.25 14.28 14.30 4.11 3.47 3.51 3.47
250 31.35 18.02 17.96 17.83 8.19 4.32 4.31 4.28 3.28 2.88 2.88 2.86
200 24.00 15.88 15.35 15.19 6.02 3.74 3.58 3.53 3.08 2.74 2.61 2.70
125 15.90 12.28 12.09 11.90 3.75 2.77 2.75 2.72 2.66 2.44 2.43 2.37
100 13.35 10.92 10.86 10.39 3.16 2.49 2.46 2.39 2.43 2.25 2.24 2.17

Table 11: Estimated PCS when M/M/1 processes are tested with the MDM config-
uration, k = 5, � = 0.9, n0 = 24000, 1− � = 0.95, and � = �1/

√
n0.

ℛ+ KN+ KN++
m0 A OA OC OM A OA OC OM A OA OC OM

12000 0.958 0.994 0.995 0.990 0.983 0.994 0.994 0.993 0.960 0.960 0.961 0.961
8000 0.972 0.979 0.987 0.982 0.989 0.982 0.979 0.982 0.968 0.968 0.968 0.968
6000 0.963 0.984 0.985 0.986 0.978 0.974 0.975 0.969 0.968 0.968 0.967 0.967
4800 0.964 0.987 0.987 0.987 0.975 0.963 0.966 0.960 0.962 0.962 0.960 0.960
4000 0.966 0.988 0.988 0.988 0.967 0.958 0.963 0.962 0.961 0.961 0.960 0.960
3000 0.976 0.990 0.989 0.987 0.959 0.954 0.954 0.955 0.955 0.955 0.957 0.957
2400 0.976 0.988 0.987 0.984 0.956 0.948 0.949 0.945 0.961 0.961 0.958 0.958
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Table 12: Sample average of total number of raw observations when M/M/1 pro-
cesses are tested with the MDM configuration, k = 5, � = 0.9, n0 = 24000, 1 − � =
0.95, and � = �1/

√
n0. Entries are shown in units of 105.

ℛ+ KN+ KN++
m0 A OA OC OM A OA OC OM A OA OC OM

12000 215.55 97.14 96.81 95.31 75.07 30.74 30.67 30.36 7.46 6.51 6.51 6.50
8000 89.69 46.14 46.00 45.60 29.30 13.31 13.30 13.14 6.51 5.63 5.46 5.45
6000 61.69 38.24 38.12 37.47 18.56 10.60 10.56 10.39 6.08 5.39 5.38 5.37
4800 47.78 33.49 32.51 31.57 14.28 9.08 8.70 8.48 5.62 4.99 4.91 4.88
4000 39.82 29.62 29.04 28.33 11.49 7.82 7.62 7.48 5.33 4.83 4.81 4.79
3000 30.32 24.62 24.52 23.09 8.46 6.35 6.29 5.97 4.84 4.45 4.34 4.34
2400 25.01 21.11 21.10 19.46 6.46 5.38 5.37 4.98 4.30 4.07 3.98 3.96

3.4.4 Variance Estimators

The newly implemented variance estimators, OA, OC , and OM , performed similarly

under all configurations and conditions. All three perform substantially better than

the benchmark A estimator, by saving observations without degrading PCS. We at-

tribute the savings over A to the additional degrees of freedom possessed by the three

overlapping variance estimators. However, little separates the degrees of freedom of

OA, OC , and OM , and in fact we have seen that their performance results do not

differ much. Among the three new estimators, there is perhaps a slight advantage in

using the OM estimator, as our Monte Carlo results seem to indicate that it is often

a bit more parsimonious in terms of observations.

3.5 Conclusion

We have shown through our experiments that implementing any of the three new

overlapping variance estimators can provide a significant savings over the vanilla area

estimator in terms of observations needed until a decision is made. This savings is

gained without sacrificing the probability of finding the correct system. Our results

show the overlapping variance estimators, OA, OC , and OM , should be preferred

over the area estimator and thus over other previously studied estimators, including

nonoverlapping batch means and overlapping batch means. For the best performance
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in terms of observations needed, we give a slight nod to use of the OM estimator in

the KN++ algorithm with one-quarter of the initial sample as the initial batch size.
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CHAPTER IV

A DORMANCY FRAMEWORK FOR EFFICIENT

COMPARISON OF CONSTRAINED SYSTEMS

We present a framework that improves on simultaneously-running procedures for

constrained ranking and selection (R&S) in that it additionally allows the procedure

to pause a system’s sampling when it is found inferior to any system still in contention.

We cannot eliminate such systems until their superior system’s feasibility is verified,

but rather we keep them “dormant.” If the superior system is indeed found to be

feasible, then we have achieved some savings over the original procedure. Otherwise,

we allow the dormant system to return to contention. If the feasibility check phase

requires a good deal more observations than the selection phase, an algorithm with

dormancy can be much more efficient than the original procedure. A case displayed

in our experimental study shows that dormancy can save many samples, presumably

by saving almost every system from completing a feasibility check.

The implementation of the dormancy framework does face a challenge, namely

comparison between unevenly sampled systems. If a dormant system returns to the

set of contending systems, that system will most likely have fewer observations than

the other contending systems. This complicates the selection phase of the algorithm.

The three proposed dormancy approaches in this chapter use different rules to han-

dle comparison of systems under uneven samples sizes. We will elaborate on these

differences in the following sections, providing results to demonstrate the efficiency

of each of our approaches.

To summarize, in this chapter we introduce our framework for the general con-

strained R&S problem, provide three approaches for implementing this framework,
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elaborate on how to apply the dormancy framework to improve upon a specific algo-

rithm, AK+, for one constrained performance measure, and compare the experimen-

tal results of AK+, with or without dormancy, with those of the sequentially-running

AK. However, the dormancy framework is not limited to this case, as it can be

applied to simultaneous procedures considering any number of constrained perfor-

mance measures. For additional information on procedures for multiple constraints,

see Chapter 5.

The chapter progresses as follows: Section 4.1 provides notation, assumptions, and

modeling formulations needed to properly present and analyze the framework. Sec-

tion 4.2 outlines the general dormancy framework and provides three implementation

approaches that fall within the framework, including one provably valid approach.

In Section 4.3, we combine the framework with AK+ to generate three new proce-

dures, and suggest some additional heuristic modifications. Then we compare the

performance of our new procedures with that of AK and AK+ through experiments

in Section 4.4. We conclude the chapter in Section 4.5.

4.1 Background

In this section, we define our problem and present assumptions that govern our frame-

work. We first describe the nature of constrained R&S in Section 4.1.1. We then turn

to notation and assumptions needed to achieve a statistically valid selection in Section

4.1.2.

4.1.1 Problem Formulation

We are concerned with the selection of the best system with respect to the mean of

a primary performance measure in the presence of constraints on s secondary perfor-

mance measures. Let Xin be the nth observation of the ith system for the primary

performance measure. Similarly, let Yiℓn be the nth observation of the ℓth secondary
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performance measure of the ith system. We consider k systems or configurations, so

the set S of all possible systems ranges from 1 to k.

We let xi = E[Xin] and yiℓ = E[Yiℓn] be the mean values of the primary and

secondary performance measures for each system i ∈ S. Therefore, the objective is

to determine which system has the largest primary performance measure, while also

having mean secondary performance measure ℓ less than qℓ for ℓ = 1, 2, . . . , s:

argmax
i∈S

xi (10)

s.t. yiℓ ≤ qℓ for all ℓ = 1, 2, . . . , s.

This objective is accomplished through simulation and use of the IZ approach. The

IZ approach applies to both types of performance measures, as statistically validity

is required for both the comparison and feasibility check phases.

We let the IZ parameter, �, be the smallest distance that we consider significant

for the primary performance measure. We are essentially indifferent among the fea-

sible systems whose primary performance measures are within � of each other. For

the remainder of the chapter, if xi is found to be greater than xj, then we use the

terminology that system i is superior to system j (or equivalently system j is inferior

to system i).

We employ a similar approach for the secondary performance measures. We desig-

nate �ℓ as the tolerance level associated with constraint ℓ. Any system with yiℓ ≤ qℓ−�ℓ

for all ℓ is considered desirable (and clearly feasible). The set of desirable systems is

denoted SD. Systems that satisfy yiℓ < qℓ + �ℓ for all ℓ, but are not in SD, fall within

the tolerance level of the constraints. These systems are declared acceptable and are

placed in the set SA. The other systems have at least one ℓ with yiℓ ≥ qℓ + �ℓ and are

unacceptable and infeasible, placing them in the set SU .

Let [b] be the index of the best desirable system. We let CS denote the event

that we make a correct selection of the best feasible (desirable or acceptable) system
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whose mean is greater than x[b] − � (i.e., that a system in the set SCS is selected,

where SCS = {i : i ∈ SD ∪ SA with xi > x[b] − �}). Given the stochastic nature of the

problem in (10), we cannot always choose the best feasible system. Hence, we seek

procedures that choose the best system with a nominal probability P (CS) ≥ 1− �.

4.1.2 Assumptions

To analyze our dormancy framework and specific implementations thereof, we need

the following assumptions:

Assumption 4. The original simultaneous procedure guarantees P (CS) ≥ 1 − �

by ensuring that with probability no smaller than 1 − �, a particular system in SCS

is declared feasible and all other systems in S would eventually be either declared

infeasible or eliminated by that particular system (if they are not eliminated by another

system first).

Assumption 5. If a feasibility decision is made for the dormancy procedure, then the

same decision would have been made at the same sample size for the original procedure

(if the system in question were not eliminated by another system first). Similarly, if

a comparison decision is made for the dormancy procedure, then the same decision

would have been made at the same sample size for the original procedure (if both

systems were still in contention).

Assumption 6. Observation n of system i (i.e., Xin and Yiℓn for ℓ = 1, . . . , s) should

not depend on the order the systems are sampled.

Assumption 7. The parameters for feasibility check and comparison in the origi-

nal procedure (namely the IZ parameters, variance estimates, and other parameters

necessary for validity) depend only on first-stage samples for each system and do not

change as a function of the systems remaining in contention.
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Assumption 4 concerns the validity of the original simultaneous procedure and

how that validity is established. Assumption 5 ensures the validity of the feasibility

and comparison phases of the new procedure we will create by applying the dormancy

framework. It makes sure that decisions are made in an identical, valid manner in

both procedures. Finally, Assumptions 6 and 7 are used to verify Assumption 5.

We note that the AK+ procedure of Andradóttir and Kim [5] satisfies Assump-

tions 4 and 7. Moreover, Assumption 6 is satisfied if seeds for each system are kept

separately.

While Assumption 5 maintains identical decision criteria for the two procedures,

the procedures with and without dormancy may eliminate systems at different times

and in different orders. We will show in the following section that this does not affect

the validity of procedures utilizing dormancy.

4.2 Dormancy Framework

We introduce the dormancy framework and three specific approaches for imple-

menting it. The framework utilizes the feasibility check and comparison steps of

simultaneously-running procedures for constrained selection.

Simultaneously-running procedures as described in Andradóttir and Kim [5] keep

F , the set of systems found feasible, M , the set of systems whose feasibility is yet to

be determined, and perform two steps after each stage of sampling. First, feasibility

screening is performed for undetermined systems in M , eliminating systems that are

infeasible. Second, the procedure compares systems in contention. If a system i is

found inferior to a feasible system, the inferior system i is eliminated. If a system is

found inferior to a system in M , the procedure cannot eliminate the inferior system.

Sampling from the inferior system continues until the inferior system is declared

infeasible, the superior system is declared feasible, or the inferior system is either

eliminated by another feasible system or selected as the best. Thus, we always obtain
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additional samples for all surviving systems. In general, systems are sampled only

while they are not infeasible and not found inferior to another feasible system.

With dormancy, we seek to make simultaneous procedures more efficient, by intro-

ducing D, the set of dormant systems, in addition to F and M . We now specify our

dormancy framework, which maintains the set D and directs sampling non-dormant

systems. In particular, the original simultaneously-running procedure should be mod-

ified in the following ways:

General Dormancy Framework

Entering Dormancy: If system j ∈ M is found superior to system i,

make i dormant and add it to D.

Exiting Dormancy: If superior system j is found infeasible, remove

system i (and other systems inferior to j) from D. If superior system j

is eliminated by a superior feasible system, remove system i (and other

systems inferior to j) from D.

Elimination: If superior system j is found feasible, remove i from

both D and M ∪ F .

Sampling: Do not obtain additional samples from system i, while i ∈

D. If system i returns from dormancy, it may have fewer observations

than other contending systems. Take observations from systems with

the lowest number of samples first.

This dormancy framework operates under the assumption that a system can be

inferior to only one system at a time. Variations of the general framework can be con-

structed to consider multiple superior systems, so that systems return from dormancy

if all of their superior systems are eliminated.
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The use of dormancy creates a definite shift in the order that systems are simu-

lated. By halting sampling of inferior systems, we systematically collect observations

from the systems still in contention with the highest probable primary performance

measure first. This framework will be more aggressive than simultaneous procedures

that do not highlight superior systems until their feasibility is confirmed. We expect

our procedures with dormancy to perform no worse than the original simultaneous

procedures, which we confirm in our experimental results in Section 4.4, and to pro-

vide a good PCS, which will be addressed next.

Proposition 1. If the general dormancy framework is combined with a valid

simultaneously-running procedure that satisfies Assumption 4 and the framework is

applied in a way that satisfies Assumption 5, then the resulting dormancy procedure

guarantees P (CS) ≥ 1− �.

Proof: Let E be the event, in the original procedure, that a particular system in

SCS is declared feasible and all other systems in S would eventually be either declared

infeasible or eliminated by that particular system. Then P (E) ≥ 1−� by Assumption

4. Let ! ∈ E and let j∗! ∈ SCS be the system returned as best by the original

procedure under the sample path !. We will show that the procedure with dormancy

will also return j∗! as best.

Note that Assumption 4 implies that the procedure with dormancy does not elim-

inate system j∗! due to infeasibility (because system j∗! is declared feasible and is not

eliminated by another system in the original algorithm). Suppose now that the algo-

rithm with dormancy selects a system in S ∖ {j∗!} as best. But then there must exist

a system i ∈ S ∖{j∗!} that is declared feasible and eliminates j∗! in the procedure with

dormancy. Assumption 5 implies that system i would eventually be declared feasible

and superior to j∗! in the original procedure (if it were not eliminated first by another

system). This contradicts the definition of !, and concludes the proof. □
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The general framework does not specify how we plan to ensure that Assumption 2

holds under the application of dormancy. Dormancy does not affect feasibility check,

so half of Assumption 5 is easy to verify under Assumptions 6 and 7. Moreover, when

all systems are active with equal sample sizes and Assumptions 6 and 7 hold, a pro-

cedure with dormancy runs exactly the same comparison as the original simultaneous

procedure. However, uneven sample sizes often arise. We will focus the following

subsections on how comparison of systems with uneven sample sizes can be handled.

In Section 4.2.1, we provide a statistically valid procedure that fits within our frame-

work, namely the dormancy approach with recall, with proof. We also present two

heuristic approaches in Section 4.2.2, which utilize the dormancy framework with

different strategies to handle sample size discrepancies.

4.2.1 Dormancy with Recall Approach

In our first approach to handle dormancy and the differing sample sizes it causes,

we keep track of the number of observations, ri, for each system i, and when there

are dormant systems, we store some past observations for the primary performance

measure of all active systems. Thus, the algorithm can “recall” sums from previous

sampling stages. The storage of primary performance measure samples enables the

comparison of systems at equal sample sizes throughout the entire procedure.

Dormancy with Recall Approach

Utilize the general dormancy framework and handle comparison of sys-

tems as follows:

Comparison: When comparing contending systems i and j with ri

and rj samples, compute the statistic for comparison of both systems

using samples up to time r = min(ri, rj) only, even in the presence of

additional samples for one of the systems.
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Theorem 1. If a simultaneously-running procedure satisfies Assumptions 4, 6, and

7, the dormancy with recall approach applied to the simultaneous procedure guarantees

P (CS) ≥ 1− �.

Proof: As Assumption 4 is assumed to hold, we seek to show that Assumption 5

is satisfied, and thus Proposition 1 applies. The key point to observe is that due

to the recall of data and Assumptions 6 and 7, the feasibility check and comparison

decisions for each pair of systems are based on the exact same data and criteria for

the procedure with and without dormancy. Thus, we will reach the same decisions

at the same sample sizes. The result now follows from Proposition 1. □

4.2.2 Heuristic Dormancy Approaches

We also present two heuristic approaches with dormancy, namely dormancy with

catch-up and dormancy with averages. These two approaches attempt to capture

the efficiency of dormancy without the required storage for recall and store only the

summary statistics of the observations of the primary performance measure for each

system. When a dormant system returns to the set of contending systems, the two

approaches will handle comparison differently.

The dormancy with catch-up approach compares systems with equal sample sizes

only. To remove the need for the selection procedure to handle uneven sample sizes,

we gather additional observations from the lagging system until it catches up to the

other contending systems in terms of number of observations. During this catch-up

process, we will test the system’s feasibility (if needed). However, comparison will

only resume once all contending systems have the same number of observations. The

dormancy with catch-up approach does not require storage of past observations, but

can be conservative compared to dormancy with recall, because comparison decisions

can be delayed.
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Dormancy with Catch-up Approach

Utilize the general dormancy framework and handle comparison of sys-

tems as follows:

Comparison: When two contending systems i and j have equal sample

sizes ri = rj, compare the systems. Otherwise, wait until sample sizes

become equal to compare the systems.

In our third approach, dormancy with averages, comparison among newly returned

systems and other contending systems is performed by weighing summary statistics

(i.e., partial sums) as in Pichitlamken et al. [41]. In particular, for two systems with

different sample sizes, we compare summary statistics scaled by the number of samples

available (like an average). Similar to dormancy with catch-up, this approach does

not require storage of individual samples. Dormancy with averages should require

fewer observations than dormancy with catch-up, though, as comparison decisions

can be made at uneven sample sizes.

Dormancy with Averages Approach

Utilize the general dormancy framework and handle comparison of sys-

tems as follows:

Comparison: When comparing two contending systems i and j with

ri and rj samples, let r = min(ri, rj) and compute summary statistics

for both systems considering all samples. Then weigh the statistics

by r/ri and r/rj for systems i and j, respectively, and compare the

systems.

When considering validity, these two approaches do not meet the requirements of

Assumption 2. The use of catch-up or averages changes the way the procedure com-

pares systems. While comparison in these approaches may be valid in some cases, the
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difficulty lies in comparing two systems when the sample sizes may be pegged at times

specified by the completion of a feasibility check or a comparison. The completion

of the feasibility check may be a poor time to observe the primary performance mea-

sure due to correlation between primary and secondary performance measure samples.

This correlation can induce bias, forcing the summary statistic well above or below its

true mean value. Similarly, the primary performance measure may be biased at the

time when a system returns from dormancy, as the system inevitably had previously

been deemed inferior. Dormancy with catch-up and averages commonly compare sys-

tems at random times determined by the end of the feasibility check and comparison

steps, inviting bias to occur. This bias violates the validity assumptions for many

comparison procedures.

To illustrate the bias in the primary performance measure at the time of comple-

tion of the feasibility check, we consider a system with one primary and one secondary

performance measure (so that s = 1), where both measures are normally distributed

with means x1 = 0 and y11 = −� = −1/
√
20 and equal variances �2

x1
= �2

y11
= 1. The

first stage sample size equals 20. We test for the feasibility of the secondary perfor-

mance measure, y11 ≤ q1 = 0. In Table 13, we observe the sum of samples X1n under

different levels of correlation � = Cov(X1n, Y11n)/
√

�2
x1
�2
y11

when the feasibility check,

Algorithm I of Andradóttir and Kim [5], is completed at time Tf = 70. We choose

Tf = 70 to show how conditioning on the completion of the feasibility check results in

E
[

1
Tf

∑Tf

n=1 X1n∣Tf = T
]
∕= x1 = 0 for some values of T , where the average is taken

over all sample paths regardless of whether the system is found feasible or infeasible.

Table 13 shows that the sample mean of the primary performance measure can be

considerably biased at the time when feasibility is determined. This issue affects not

only the dormancy with catch-up and dormancy with averages approaches, but also

sequentially-running procedures such as AK.
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Table 13: Estimated expected value of X1n when Tf = 70 after 5,000 replications
for each level of correlation.

� −0.9 −0.5 0.0 0.5 0.9
Estimated Expected Value of X1n 0.53 0.34 0.00 -0.32 -0.55

Standard Error 0.0023 0.0025 0.0024 0.0025 0.0020

We also present an example of how systems can be biased at the end of comparison.

In this case, we consider two systems with x1 = 0, x2 = � = 1/
√
20 ≈ 0.2236, equal

variances �2
x1

= �2
x2

= 1, and first stage sample size n0 = 20. We take samples

X1n and X2n from systems 1 and 2, respectively, and compare the two systems with

the fully-sequential KN procedure of Kim and Nelson [30], the basis for even-sample

comparison in the procedures detailed in Section 4.3. Table 14 shows the observed

expected value of primary performance measure averages for systems 1 and 2 at the

completion time of comparison, Tc, regardless of the comparison decision.

Table 14: Estimated expected value of X1n and X2n for comparisons ending at time
Tc after 5,000 replications for each completion time.

Tc = 40 Tc = 50 Tc = 60 Tc = 80 Tc = 120 Tc = 160
Estimated Expected Value of X1n -0.1206 -0.0906 -0.0602 -0.0240 0.0167 0.0425

Standard Error 0.0021 0.0018 0.0016 0.0014 0.0011 0.0009
Estimated Expected Value of X2n 0.3014 0.3014 0.2816 0.2528 0.2095 0.1822

Standard Error 0.0041 0.0041 0.0034 0.0030 0.0024 0.0012

Table 14 shows statistically significant bias for both systems in this case. In par-

ticular, for the inferior system that should go dormant when comparison is completed,

the bias ranges from a strong negative bias at low sample sizes to a positive bias at

large sample sizes. Thus, for small sample size eliminations, the inferior system is

more likely to be undervalued. At large sample size eliminations, the inferior system

average must be reasonably close to the superior system average, or it would have

been eliminated earlier. The positive bias at large completion times suggests that the

procedure may be more likely to select the inferior system as the best at such times.

We will now investigate this issue further.
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Figure 4 displays the percentage of completed comparisons occurring at a given

sample size, along with the estimated PCS of the completed comparison, for our two

system case with the KN procedure and nominal PCS = 0.95. It is interesting to

note that KN does not guarantee constant PCS for all completion times, Tc. In

particular, the PCS first increases and then decreases in Tc, and is smaller than the

nominal PCS for both small and large Tc.
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Figure 4: Empirical plot of PCS and percentage of comparisons as a function of the
comparison completion time Tc after 10

8 total replications.

The observation that the PCS is smaller for large Tc than for moderate Tc may be

counterintuitive in light of the Law of Large Numbers, but may be explained by the

fact that the stopping time Tc depends on the sample paths of the two systems being

compared. When the inferior system survives for a long time, its sample path may

be biased high. Moreover, the KN comparison approach uses a triangular continua-

tion region and hence smaller differences in sample means are sufficient to complete

comparison for larger values of Tc. Indeed, the impact of the triangular shape of

the continuation region is confirmed by showing that when the continuation region is

specified by two parallel lines and the variances �2
x1

and �2
x2

are known, the PCS does

not depend on Tc (see equations (2.3.0.2) and (2.3.0.6(b)) of Borodin and Salminen,

[10]). By contrast, numerical results not included here for reasons of brevity show

that the version of KN with known variances �2
x1

and �2
x2

has PCS that decreases
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with Tc. An implication of this latter result is that it is the use of estimated variances

in KN that explains why the PCS increases with Tc for small values in Figure 4.

This is reasonable because when such variance estimates are too small, comparison

decisions may be made prematurely, resulting in incorrect selection.

We have documented bias in the primary performance measure at times when

feasibility check or comparison is completed. This bias implies that the validity

of comparison between systems anchored at these points will be difficult to prove.

However, we will show empirically in Section 4.4 that procedures implemented with

these approaches can still produce good PCS results.

4.3 Example Procedures for One Constraint

As mentioned earlier, the dormancy framework is flexible enough to be applied to

many types of simultaneous procedures with any number of constraints. For this

chapter, we evaluate the performance of our dormancy approaches when applied to

the simultaneously-running AK+ procedure of Andradóttir and Kim [5] for a single

constraint (we only consider the case where the parameter c of AK+ equals one).

This will give us a chance to provide detailed implementations in a specific setting

and allow us to compare the new dormancy framework with established procedures.

Consideration of multiple constraints falls outside the scope of this chapter, but the

reader is referred to Chapter 5 for an in-depth discussion of efficient implementation

of procedures for multiple constraints.

In Section 4.3.1, we discuss necessary notation and assumptions to ensure validity

and proper implementation of the new procedures. Section 4.3.2 outlines the Dor-

mant with Recall, DR, procedure and includes a proof of validity. Sections 4.3.3 and

4.3.4 contain the Dormant with Catch-up, DC , and Dormant with Averages, DA, al-

gorithms, respectively. We finish with some useful heuristic modifications in Section

4.3.5.
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4.3.1 Additional Notation and Assumptions

Before presenting the algorithms, we provide some additional notation. Note that

because we have only one constraint, we now require fewer subscripts for the samples

of the secondary performance measure:

n0 ≡ the initial sample size;

S2
Yi
≡ the sample variance of {Yi1, . . . , Yin0

};

S2
Xij

≡ the sample variance of the difference of {Xi1, . . . , Xin0
} and {Xj1, . . . , Xjn0

};

SSi ≡ the set of systems superior to system i in terms of xi;

R(r; a, b, c) ≡ max{0, bc
2a

− a
2
r}, for a, b, c ∈ ℝ

+ and a ∕= 0;

g(�, d) ≡ 1
2
(1 + 2�)−(d−1)/2 .

We also need additional assumptions for the validity of AK+.

Assumption 8. For each i = 1, 2, . . . , k,
⎡
⎢⎣

Xin

Yin

⎤
⎥⎦ iid∼ BN

⎛
⎜⎝

⎡
⎢⎣

xi

yi

⎤
⎥⎦ ,Σi

⎞
⎟⎠n = 1, 2, . . .

where
iid∼ denotes independent and identically distributed, BN denotes bivariate nor-

mal, and Σi is the 2 × 2 positive definite covariance matrix of the vector (Xin, Yin).

Also, (Xin, Yin) is independent of (Xjn′ , Yjn′) for (i, n) ∕= (j, n′), which rules out the

use of common random numbers.

Assumption 9. For any i ∈ SD ∪ SA with i /∈ [b], xi ≤ x[b] − �.

The assumption of normality in the observations can be satisfied through use of

within-replication averages or batch means (see, e.g., Law and Kelton [33]). The

second assumption allows only one possible best feasible system (i.e., SCS = {[b]}).

4.3.2 The DR Procedure

We present the DR procedure created by combining the dormancy with recall ap-

proach with AK+.
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Procedure [Dormant with Recall DR]

Setup: Select the overall confidence level 1/k ≤ 1−� < 1. Choose �, q, �, and n0 ≥ 2.

Find �, a solution to the equation g(�, n0) = �, where � is the solution to the

equation � + 2[1− (1− �)(k−1)/2] = �.

Initialization: Let M = S be the set of undetermined systems, F = ∅ be the set of

feasible systems, and D = ∅ be the set of dormant systems. Also, let SSi = ∅ be

the set of systems superior to system i in terms of xi. Let ℎ
2 = 2�(n0 − 1).

Obtain n0 observations Xin and Yin from each system i = 1, 2, . . . , k.

For all i and j ∕= i, compute the estimators S2
Yi

and S2
Xij

.

Set the observation counters ri = n0 for all i and r = n0.

Feasibility Check: For i ∈ M ∖D and ri = r, if

ri∑

n=1

(Yin − q) ≤ −R(ri; �, ℎ
2, S2

Yi
),

move i from M to F . For all j ∈ M ∪ F with i ∈ SSj, eliminate j from M or F ,

delete SSj , and remove j from D, if applicable. Else if

ri∑

n=1

(Yin − q) ≥ +R(ri; �, ℎ
2, S2

Yi
),

eliminate i from M and any existing SSj and delete SSi. If i ∈ SSj and j ∈ D,

remove j from D and let r = min{r, rj}.

Comparison: For each i, j ∈ (M ∪F ) ∖D such that i ∕= j, ri or rj is equal to r, and

r∑

n=1

Xin ≤
r∑

n=1

Xjn −R(r; �, ℎ2, S2
Xij

),

if j ∈ F , then eliminate i from M or F , delete SSi, and for all j′ ∈ D ∖ {i, j}

with i ∈ SSj′ , eliminate i from SSj′ , remove j′ from D, and let r = min{r, rj′};

otherwise if j /∈ F , then add index j to SSi and i to D.

Stopping Rule: If ∣M ∣ = 0 and ∣F ∣ = 1, then stop and select the system whose

index is in F as the best. If ∣M ∣ = 0 and ∣F ∣ = 0, then stop and report that

there is no feasible system. Otherwise, for all systems i ∈ (M ∪ F ) ∖D such that
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ri = r, take one additional observation Xi,ri+1 and Yi,ri+1 and set ri = ri + 1. Set

r = r + 1. Then go to Feasibility Check.

We comment that it may be more efficient to let r = minj∈(M∪F )∖D rj when i is

eliminated in Feasibility Check or Comparison (e.g., if ri ≪ rj, ∀j ∕= i). This

would prevent a situation where ri ∕= r, ∀i ∈ (M ∪F ) ∖D. We next prove the validity

of the DR.

Theorem 2. Under Assumptions 6, 8, and 9, the DR procedure guarantees P (CS) ≥

1− �.

Proof: Under Assumptions 8 and 9, Theorem 4 of Andradóttir and Kim [5] and its

proof show that AK+ guarantees P (CS) ≥ 1−�, in a manner satisfying Assumption

4. Moreover, AK+ clearly satisfies Assumption 7. The result now follows from

Theorem 1. □

4.3.3 The DC Procedure

The DC procedure is formed by applying the dormancy with catch-up framework to

AK+. This procedure is heuristic.

Procedure [Dormant with Catch-up DC]

Setup: Same as in DR.

Initialization: Same as in DR.

Feasibility Check: Same as in DR.

Comparison: For each i, j ∈ (M ∪ F ) ∖D such that i ∕= j, ri = rj = r, and

r∑

n=1

Xin ≤
r∑

n=1

Xjn −R(r; �, ℎ2, S2
Xij

),

if j ∈ F , then eliminate i from M or F , delete SSi, and for all j′ ∈ D ∖ {i, j}

with i ∈ SSj′ , eliminate i from SSj′ , remove j′ from D, and let r = min{r, rj′};

otherwise if j /∈ F , then add index j to SSi and i to D.

Stopping Rule: Same as in DR.
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4.3.4 The DA Procedure

The DA procedure is formed by applying the dormancy with averages framework to

AK+. This procedure is also heuristic.

Procedure [Dormant with Averages DA]

Setup: Same as in DR.

Initialization: Same as in DR.

Feasibility Check: Same as in DR.

Comparison: For each i, j ∈ (M ∪F ) ∖D such that i ∕= j, ri or rj is equal to r, and

r

ri

ri∑

n=1

Xin ≤ r

rj

rj∑

n=1

Xjn −R(r; �, ℎ2, S2
Xij

),

if j ∈ F , then eliminate i from M or F , delete SSi, and for all j′ ∈ D ∖ {i, j}

with i ∈ SSj′ , eliminate i from SSj′ , remove j′ from D, and let r = min{r, rj′};

otherwise if j /∈ F , then add index j to SSi and i to D.

Stopping Rule: Same as in DR.

4.3.5 Heuristic Modifications

We also introduce four types of heuristic modifications which can use any of the

dormant procedures, DR, DC , or DA, as a basis.

DT hopes to improve the efficiency of dormant algorithms by expanding elimina-

tions past simple pairwise comparisons. In this algorithm, if system i is eliminated by

a feasible system, we also eliminate all systems inferior to system i. Thus, we achieve

a transitive effect. As most selection procedures are based on pairwise comparisons

only, this is a heuristic step. Even under Assumption 5, the best system might be

found inferior to an infeasible system i and then be eliminated with system i.

DI modifies the continuation regions of the feasibility check and compari-

son steps to adjust for differences in means larger than the tolerance level or

indifference-zone parameters. In particular, we use an adjusted tolerance level,
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�i ≡ max(�, ∣ 1
n0

∑n0

n=1(Yin−q)∣) for each system i. We also adjust the indifference-zone

parameter �ij ≡ max(�, ∣ 1
n0

∑n0

n=1(Xin−Xjn)∣). These modifications let us utilize first

stage sample means to aid in the decision making process, an idea highlighted in Chen

and Kelton [13]. These new tolerance level or indifference-zone parameters will allow

the procedure to make decisions quicker, at some expense of observed PCS.

DI′ is a more conservative variant of DI . The tolerance levels and indifference-zone

parameters are adjusted slightly, so that �i ≡ max(�, ∣ 1
n0

∑n0

n=1(Yin − q)∣ − 2
√

S2
Yi
/n0)

and �ij ≡ max(�, ∣ 1
n0

∑n0

n=1(Xin − Xjn)∣ − 2
√

S2
Xij

/n0). By including the standard

error in the indifference-zone computations, we hope to gain savings while preserving

PCS.

The final modification, D+, utilizes the variance updating strategy of Kim and

Nelson [31]. At fixed intervals, the procedure recomputes all variance estimates, S2
Yi

for feasibility check and S2
Xij

for comparison, utilizing all available samples. This

recalculation also requires the modification of procedural parameters � and ℎ2 to

account for the additional samples, due to more degrees of freedom.

We can also consider combinations of DT , DI or DI′ , and D+. The resulting

modifications will feature the transitive property, sample-mean adjusted tolerance

levels and indifference zones, and/or updates (for variance and possibly tolerance

level and indifference zone means).

For our experimental study, any procedure featuring one or more modifications

will be noted through the application of superscripts. For example, the dormant with

averages procedure DA combined with the conservative indifference-zone modifica-

tion, DI′ , and featuring updating of both mean and variance estimates, D+, will be

expressed as DA +DI′ +D+ = DI′+
A .
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4.4 Experiments and Results

In this section, we illustrate the performance of our dormancy framework under var-

ious configurations. We describe our experimental setup in Section 4.4.1, followed by

an exposition and analysis of our experimental results in Section 4.4.2.

The results were obtained based on 10,000 replications, while seeking a PCS of

1 − � = 0.95. For each setup, we consider k different systems. Of the k possible

systems, we let b of them be desirable (clearly feasible), while a systems are acceptable.

We also set � = 1/
√
n0 and � = 1/

√
n0, so that both the indifference-zone parameter

and tolerance level will be equivalent to the first-stage standard deviation of a system

with variance equal to 1 for both primary and secondary performance measures. We

let n0 = 20.

In addition to providing numerical results for AK+ with or without dormancy,

we include experimental results for the AK procedure of Andradóttir and Kim [5],

which considers feasibility check and comparison in sequence. First, the algorithm

determines each systems feasibility. Then, the algorithm selects the best among the

feasible systems. This approach works well if the feasibility check is not difficult

compared to the selection of the best system, but is heuristic. Still, AK achieves the

nominal PCS in experiments and at times is more efficient than AK+, so we include

it in our analysis.

4.4.1 System Mean and Variance Configurations

We consider two configurations of means and three configurations of variances. These

configurations are described in Sections 4.4.1.1 and 4.4.1.2, respectively.

4.4.1.1 Means Configurations

We use the difficult means (DM) configuration to test the validity of the algorithms.

In the DM configuration, we make both selection and feasibility determination hard,

by creating some slightly infeasible, but far superior systems. In addition, the inferior

54



feasible systems will all be less favorable by only a slight amount. The DM configura-

tion was considered previously by Andradóttir and Kim [5], and involves structuring

the means as follows:

xi = E[Xin] =

⎧
⎨
⎩

0, i = 1, 2, . . . , b− 1,

�, i = b,

0 i = b+ 1, . . . , b+ a,

(i− 1)�, i = b+ a+ 1, . . . , k,

and

yi = E[Yin] =

⎧
⎨
⎩

−�, i = 1, 2, . . . , b,

0, i = b+ 1, . . . , b+ a,

� i = b+ a+ 1, . . . , k,

where again � is the indifference-zone parameter and � is the tolerance level. We set

the constraint level, q, to zero.

The monotone increasing means (MIM) configuration tests an algorithm’s ability

to quickly distinguish clearly inferior and/or infeasible systems. Since many of the sys-

tem means are located a good distance away from the indifference zone, the algorithm

should be able to make a decision more quickly. The following MIM configuration is

also used by Andradóttir and Kim [5] with q = 0:

xi = E[Xin] =

⎧
⎨
⎩

(i− 1)�, i = 1, 2, . . . , b,

(b− 2)�, i = b+ 1, . . . , b+ a,

(i− 1)�, i = b+ a+ 1, . . . , k,

and

yi = E[Yin] =

⎧
⎨
⎩

−(b− i+ 1)�, i = 1, 2, . . . , b,

0, i = b+ 1, . . . , b+ a,

(i− b)� i = b+ a+ 1, . . . , k,
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Once again, we have a setup where infeasible systems have attractive primary perfor-

mance measures. However, in this case, infeasible systems are not necessarily close

to the constraint.

For all of our experiments (except Table 15), we set a = 0 and b =
⌈
k+1
2

⌉
, where

⌈⋅⌉ is the ceiling function. Andradóttir and Kim [5] show that these choices of a and

b result in the smallest possible PCS for AK+.

4.4.1.2 Variance Configurations and Correlation

To illustrate trends, we also consider several variance configurations for both the

primary performance measure and the secondary constrained performance measure,

denoted by �2
xi
and �2

yi
, respectively. We generalize the variance setups of Andradóttir

and Kim [5] and Kim and Nelson [30].

We let the factor f be a measure of the relative difficulties of feasibility check

and comparison. The difficulties will be controlled through the values of �2
xi

and

�2
yi
, as high values �2

xi
will indicate a hard comparison, while similarly high values

for �2
yi

signal a hard feasibility check. We utilize the factor f , so that when f > 1

feasibility check is generally harder than comparison and when f < 1 comparison is

more difficult.

In particular, for the primary performance measure, a configuration with constant

(CONST) variance has �2
xi

= 1
f
for all i. For increasing (INC) variance, �2

xi
= 1

f
(1 +

(i− 1)�) for all i. And in the decreasing (DEC) variance setup, �2
xi
= 1

f
/(1+ (i− 1)�)

for all i. A similar pattern is used for the variances of the secondary performance

measure, except � and 1
f
are replaced by � and f . For each mean configuration, we

consider as many as five variance configurations, namely CONST �2
xi
/CONST �2

yi
,

INC �2
xi
/INC �2

yi
, INC �2

xi
/DEC �2

yi
, DEC �2

xi
/INC �2

yi
, and DEC �2

xi
/DEC �2

yi
.
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In practice, there may be some correlation (positive or negative) between the

primary and secondary performance measures. We induce several different values of

correlation, denoted �, with � ∈ {−0.9, −0.6, −0.3, 0, 0.3, 0.6, 0.9}.

4.4.2 Results

We now present selected results of our experiments. In Section 4.4.2.1, we identify rel-

atively favorable and unfavorable configurations for the performance of our dormancy

approaches, showing how dormancy can provide substantial savings when feasibility

check is difficult. We include an analysis of different correlation structures in Section

4.4.2.2, display our algorithms’ observed PCS and efficiency under favorable and un-

favorable configurations in Sections 4.4.2.3 and 4.4.2.4, respectively, and discuss the

usefulness of our heuristic modifications in Section 4.4.2.5.

4.4.2.1 Difficult Feasibility Check or Comparison

Depending on the number of observations needed for feasibility check or compari-

son, the effectiveness of our new framework can vary considerably. To illustrate this

characteristic, we include two figures that compare the performance of all five proce-

dures AK, AK+, DR, DC , and DA as the measure f of the difficulty of the feasibility

check varies while � = 0. Figure 5 displays the number of required observations for

the procedures under the DM configuration with CONST/CONST variance. Figure

6 shows the the number of required observations for all procedures under the MIM

configuration with the same variance structure.

The figures show that when the variance of the secondary performance measure

is much higher than the variance of the primary performance measure, the savings

from dormancy are substantial. For example, when f = 10, we see up to 30% savings

over AK+, and the savings over AK are greater. Thus, the dormancy framework is

a promising approach to handle hard feasibility check configurations.
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Figure 5: Number of needed observations as a function of f in a DM configuration
with CONST �2

xi
/CONST �2

yi
, k = 101, b = 51, and a = 0.
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/CONST �2

yi
, k = 101, b = 51, and a = 0.
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When comparison is relatively harder than feasibility check, as when f ≤ 1, we

see that all algorithms exhibit similar performance and differ by no more than 1%, so

that they are indistinguishable in our figures. We note that while dormancy does not

improve on AK under hard comparison, the small difference shows that dormancy

is generally capable of good performance for a wide range of scenarios. Dormancy

outperforms AK+ in all cases.

From now on, we will let f = 1 and f = 5 be indicative of difficult comparison

and difficult feasibility check, respectively. For difficult comparison, we choose f = 1

since all values of f less than one produce similar results among the procedures and

f = 1 requires fewer overall observations.

In Table 15, we present the required number of samples and observed PCS for

k = 101 systems where all systems are feasible (b = k) under DM and differing

variance configurations with f = 5 and � = 0. Table 15 shows how the savings over

AK and AK+ from implementing dormancy can be almost limitless, if we evaluate

a setup where many inferior systems are feasible, but feasibility check is hard. In

particular, in the DEC/INC variance setup, we find 98% savings over AK and 80%

savings over AK+. Results for the MIM configuration are not included here, but

similarly we can find large savings (up to 75%) with an implementation of dormancy

over AK and AK+.

Table 15: Average number of needed observations and observed PCS under the DM
configuration with k = 101, b = 101, a = 0, and f = 5.

�2
xi

�2
yi

�2
xi

�2
yi

�2
xi

�2
yi

�2
xi

�2
yi

�2
xi

�2
yi

CONST CONST INC INC INC DEC DEC INC DEC DEC
REP PCS REP PCS REP PCS REP PCS REP PCS

AK 79357 1.000 968506 1.000 72179 0.986 967779 1.000 11675 1.000
AK+ 24800 0.987 215966 0.989 59544 0.986 93448 0.999 2258 0.996
DR 6487 0.988 113926 0.993 59226 0.980 18120 0.999 2067 0.998
DC 14509 0.994 155666 0.991 59518 0.980 18394 0.999 2069 0.997
DA 6447 0.991 108205 0.992 59302 0.980 18137 0.999 2067 0.996
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4.4.2.2 Performance under Correlation

We have seen that the difficulty of comparison and feasibility check plays a large

part in the efficiency of applying dormancy, but this is not the case with correlation

between performance measures. Tables 16 and 17 display the average number of

needed observations to select a best system under varying correlation for the MIM

configuration with constant variances and f = 1 or f = 5, respectively. These results

are consistent with the results displayed in Andradóttir and Kim [5] for the underlying

simultaneous procedure, AK+. In particular, the algorithms perform equally well

under all levels of correlation, and the percentage savings we gain with the dormancy

remains roughly the same. The PCS values were also similar, satisfying the nominal

PCS under all correlations. Therefore, the remainder of our experiments will feature

� = 0.

Table 16: Average number of needed observations under the MIM configuration with
CONST �2

xi
, CONST �2

yi
, k = 101, b = 51, a = 0, f = 1, and varying correlation, �.

� = −0.9 � = −0.6 � = −0.3 � = 0 � = 0.3 � = 0.6 � = 0.9
AK 20417 20706 20638 20625 20592 20396 20038
AK+ 18360 18761 18731 18940 19074 19075 18891
DR 18185 18496 18308 18451 18483 18494 18245
DC 18197 18519 18351 18499 18542 18546 18273
DA 18186 18498 18312 18455 18490 18498 18246

Table 17: Average number of needed observations under the MIM configuration with
CONST �2

xi
, CONST �2

yi
, k = 101, b = 51, a = 0, f = 5, and varying correlation, �.

� = −0.9 � = −0.6 � = −0.3 � = 0 � = 0.3 � = 0.6 � = 0.9
AK 79355 79277 79496 79201 79142 79625 79031
AK+ 49067 50380 51047 51089 51132 51063 49767
DR 37481 37486 37512 37407 37440 37610 37224
DC 40751 41227 41542 41624 41458 41388 40539
DA 37455 37486 37508 37383 37434 37582 37204
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4.4.2.3 Probability of Correct Selection

Tables 18 and 19 show the observed PCS of our new procedures under the DM

configuration in the unfavorable setting f = 1 and the favorable setting f = 5,

respectively. As k increases, the PCS of the procedures generally increases, probably

due to the conservative nature of the bounds that ensure validity, so we discuss PCS

for a relatively small number of systems, k = 5. These tables show that our algorithms

display almost identical PCS results to AK+. This is not surprising, as the algorithms

feature similar elimination decisions. While we know AK+ and DR are valid, DC and

DA perform equally well, always meeting the nominal PCS of 0.95.

Table 18: Average number of needed observations and observed PCS under the DM
configuration with k = 5, b = 3, a = 0, and f = 1.

�2
xi

�2
yi

�2
xi

�2
yi

�2
xi

�2
yi

�2
xi

�2
yi

�2
xi

�2
yi

CONST CONST INC INC INC DEC DEC INC DEC DEC
REP PCS REP PCS REP PCS REP PCS REP PCS

AK 576 0.969 805 0.970 586 0.968 670 0.971 433 0.971
AK+ 555 0.956 778 0.960 593 0.961 616 0.956 417 0.960
DR 545 0.957 760 0.961 591 0.961 580 0.957 412 0.960
DC 548 0.956 770 0.960 592 0.961 586 0.957 413 0.960
DA 545 0.956 762 0.960 591 0.961 581 0.957 412 0.960

Table 19: Average number of needed observations and observed PCS under the DM
configuration with k = 5, b = 3, a = 0, and f = 5.
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CONST CONST INC INC INC DEC DEC INC DEC DEC
REP PCS REP PCS REP PCS REP PCS REP PCS

AK 2001 0.987 2887 0.986 1450 0.986 2879 0.987 1444 0.985
AK+ 1421 0.963 2170 0.959 942 0.957 2157 0.964 938 0.962
DR 1032 0.963 1695 0.959 661 0.958 1662 0.964 639 0.962
DC 1058 0.963 1780 0.957 703 0.958 1676 0.958 646 0.962
DA 1032 0.964 1695 0.959 661 0.959 1661 0.963 639 0.962

We also present Tables 20 and 21, which display the PCS and number of required

observations to find the best system under 101 systems with 51 feasible for unfavorable

and favorable difficulty ratios f under the MIM configuration. In this configuration,

we expect PCS will be much higher due to the use of the IZ approach. Our results
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show that the three dormant algorithms provide an observed PCS much higher than

0.95 under MIM, but these results are consistent with previous works and similar to

the observed PCS of AK and AK+.

Table 20: Average number of needed observations and observed PCS under the
MIM configuration with k = 101, b = 51, a = 0, and f = 1.
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CONST CONST INC INC INC DEC DEC INC DEC DEC
REP PCS REP PCS REP PCS REP PCS REP PCS

AK 3328 1.000 31484 0.999 18703 1.000 22491 0.999 2031 1.000
AK+ 3591 0.999 33947 0.999 18695 1.000 18686 0.999 2032 1.000
DR 3322 0.999 29686 0.999 18696 1.000 14527 0.999 2032 1.000
DC 3520 0.999 33500 0.999 18695 1.000 14619 0.999 2032 1.000
DA 3327 0.999 29851 0.999 18695 1.000 14527 0.999 2032 1.000

Table 21: Average number of needed observations and observed PCS under the
MIM configuration with k = 101, b = 51, a = 0, and f = 5.
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CONST CONST INC INC INC DEC DEC INC DEC DEC
REP PCS REP PCS REP PCS REP PCS REP PCS

AK 9332 0.999 116274 0.999 4467 0.994 116585 0.998 2189 0.999
AK+ 7587 0.999 98107 0.998 5034 0.999 97106 0.997 2134 0.999
DR 5834 0.999 75121 0.998 4982 0.999 70831 0.997 2115 0.999
DC 6261 0.999 86147 0.998 5020 0.999 71544 0.998 2115 0.999
DA 5849 0.999 75161 0.998 4983 0.999 70931 0.997 2115 0.999

4.4.2.4 Number of Required Observations

In this section, we discuss the performance of the dormancy approaches in both

favorable and unfavorable settings in terms of required samples. As shown in Tables

15 through 21, the three dormancy algorithms show at least a small amount of savings

over AK+ in most cases. The only exceptions are two configurations in Table 20 with

DEC �2
yi
where the performance of AK+, DR, DC , and DA is virtually identical. The

size of the savings is usually much larger when f = 5 than when f = 1, and also when

�2
yi
is CONST or INC, but the performance of dormant approaches tends to vary for

different mean and variance configurations and number of systems considered.
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DC often requires more observations than DR or DA, since comparison cannot

occur until the lagging system reaches the same number of observations as every

other contending system. Thus, DR and DA are preferable to DC in most situations.

Due to the ability to compare systems at uneven sample sizes, DR and DA perform

similarly.

While the dormant algorithms outperform AK+ in most cases, we must also

compare the performance of our new algorithms against the performance of AK.

When f = 5, we see savings in all configurations except MIM with INC �2
xi
/DEC �2

yi
.

In the unfavorable case, f = 1, DR and DA improve on AK in all configurations except

DM with INC �2
xi
/DEC �2

yi
and MIM with DEC �2

xi
/DEC �2

yi
. These cases require

just a small number observations for the feasibility check. For the MIM and DEC

�2
xi
/DEC �2

yi
configuration, the procedures require barely more than the first-stage

samples to make decisions, allowing little room for improvement. The configurations

with DEC �2
yi
are where AK performs best, quickly removing infeasible systems. In a

heuristic step, AK recalculates all parameters after the feasibility check, so reducing

the number of contending systems after a fast feasibility check allows it to complete

comparison efficiently. However, in these variance configurations, the extra required

observations for procedures with dormancy is small, while ensuring validity in the

case of DR.

4.4.2.5 Performance of Additional Heuristic Modifications

In this subsection, we demonstrate the performance of six heuristic treatments within

the DA algorithm. DA is an appealing choice of a heuristic, combining good perfor-

mance with limited storage requirements. We see similar results when the other

procedures are applied with the heuristic modifications. The performance of the

heuristics for the DM and MIM configurations can be seen in Tables 22 and 23, re-

spectively, along with results for DA, as we seek to improve performance under the
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unfavorable configuration of f = 1. Not surprisingly, our experiments under f = 5,

omitted here to conserve space, showed a larger benefit from the use of dormancy,

but reached similar savings and PCS conclusions. We prefer including the results for

f = 1 to document the ability of the heuristics to improve worst-case performance.

Table 22: Average number of needed observations and observed PCS under the DM
configuration with k = 25, b = 13, a = 0, and f = 1.
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CONST CONST INC INC INC DEC DEC INC DEC DEC
REP PCS REP PCS REP PCS REP PCS REP PCS

DA 3671 0.960 12650 0.960 6827 0.969 7436 0.964 1378 0.968
DT

A 3666 0.960 12639 0.960 6827 0.969 7439 0.961 1377 0.968
DI

A 2494 0.833 4991 0.403 3355 0.737 3383 0.507 1142 0.948

DI′

A 3631 0.958 12339 0.944 6659 0.961 7324 0.955 1373 0.968

D+

A
2988 0.958 10244 0.967 5736 0.968 5830 0.961 1156 0.962

DI+
A

1925 0.848 4592 0.564 2907 0.806 3067 0.655 947 0.943

DI′+
A

2810 0.948 9364 0.946 5264 0.959 5435 0.947 1124 0.959

Table 23: Average number of needed observations and observed PCS under the
MIM configuration with k = 25, b = 13, a = 0, and f = 1.
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�2
xi

�2
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�2
xi

�2
yi

CONST CONST INC INC INC DEC DEC INC DEC DEC
REP PCS REP PCS REP PCS REP PCS REP PCS

DA 1347 0.994 4746 0.993 3173 0.995 2446 0.996 614 0.994
DT

A 1346 0.994 4738 0.993 3173 0.995 2445 0.996 614 0.994
DI

A 902 0.970 2015 0.866 1490 0.919 1180 0.917 573 0.993

DI′

A 1201 0.994 3951 0.991 2805 0.994 2010 0.995 606 0.994

D+

A
1143 0.994 3836 0.995 2647 0.995 1980 0.994 583 0.993

DI+
A

777 0.976 1610 0.921 1232 0.952 948 0.944 550 0.992

DI′+
A

973 0.993 2666 0.993 1990 0.993 1393 0.991 573 0.992

The first heuristic, DT
A, does not provide much of an advantage in either the DM

or MIM configurations, so therefore we do not consider combining it with any other

modifications. The other heuristics show more promise. The two indifference-zone

treatments, featured in DI
A and DI′

A , show good improvement over DA. The aggressive

DI
A displays up to 60% savings in observations under DM and MIM over DA, but also

exhibits a severe decay of PCS in most DM configurations. The more conservative

DI′

A posts modest improvements in DM configurations and 1% to 18% gains in MIM

configurations over DA, while retaining a PCS close to or better than nominal.
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The variance updating modification provides additional efficiency. Our implemen-

tation performs updating after every stage of sampling. A procedure utilizing only

dormancy and variance-updating, D+
A , features consistent savings of about 20% over

DA (except for MIM with DEC �2
xi
/DEC �2

yi
), while experiencing better than nominal

PCS for all configurations.

The combination of indifference-zone and variance updating modifications leads to

the attractive heuristics, DI+
A and DI′+

A . Tables 22 and 23 show that variance updating

provides at least 10% savings when combined with other heuristics. In addition to the

savings, variance updating achieves similar PCS results when the original approach

had good PCS and significantly better PCS when the original procedure did not have

good PCS. DI+
A is the most efficient heuristic, but its PCS remains poor in the DM

configuration. DI′+
A improves on its non-updating counterpart, without significant

PCS degradation. We note two trends in the relative performance of the heuristics

across different variance configurations. Under DEC �2
xi
/DEC �2

yi
, the savings is

limited, as all decisions are made almost immediately after the first stage and not

much improvement is possible. Under a configuration with INC �2
xi

or INC �2
yi

(or

both), the procedures featuring the indifference-zone modifications perform relatively

better.

As heuristics, both DI+
A and DI′+

A are the promising options. The choice between

the two falls to the user, as DI′+
A provides overall efficiency and good PCS in DM,

while DI+
A trades PCS for quick decisions and efficiency in MIM.

4.5 Conclusion

We have introduced a new framework for simultaneous procedures in constrained R&S

that select the best simulated system according to a primary performance measure

while secondary performance measures satisfy constraints. Our dormancy framework

involves the pausing of sampling for systems dominated (in terms of the primary
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performance measure) by any other system whose feasibility is undetermined. This

modification saves simultaneously-running procedures from taking unnecessary obser-

vations, including observations used to determine the feasibility of inferior systems.

We present three approaches for implementing the dormancy framework, namely

one that was proved statistically valid (dormant with recall) and two heuristics (dor-

mant with catch-up and dormant with averages). These three approaches differ in the

way they compare systems with uneven sample sizes, a situation that occurs when

systems return from dormancy and must be compared again to contending systems.

These dormancy approaches are combined with a known procedure for selection with

one constraint to test the validity of the new framework and compare our new pro-

cedures to previously studied algorithms.

Our numerical results show that the percentage of observations saved by using

dormancy can be very large when the feasibility determination is difficult. The three

dormant procedures almost always outperform previously studied algorithms in the

number of required observations, while displaying similar observed PCS. We recom-

mend the use of dormancy with recall in almost all situations, while dormancy with

averages is an apt alternative if storage is an issue. Dormancy may also be imple-

mented with heuristic treatments that improve the efficiency of the overall procedure,

with some possible loss of nominal PCS.
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CHAPTER V

FULLY-SEQUENTIAL SELECTION PROCEDURES IN

SIMULATIONS WITH MULTIPLE CONSTRAINTS

This chapter is most closely related to the work of Andradóttir and Kim [5] and

Chapter 4. Andradóttir and Kim [5] introduced a fully-sequential, indifference-zone

framework for constrained R&S consisting of two phases, i.e., feasibility check and

selection of the best (comparison). These phases may be addressed either sequentially

(the feasibility of each system is determined before comparison begins) or simultane-

ously (the feasibility check and comparison screening occur simultaneously after each

additional sample). Andradóttir and Kim [5] and Chapter 4 proposed and analyzed

several fully-sequential indifference-zone R&S procedures within this framework for

independent systems with one constraint.

In this chapter, we elaborate on the framework of Andradóttir and Kim [5] and

extend fully-sequential procedures to select the best system under any number of con-

straints and correlation across systems. This is a substantial extension of previous

research that has only provided valid and heuristic procedures for independent sys-

tems and one constraint. Our procedures are combinations of valid feasibility check

techniques for multiple constraints (e.g., Batur and Kim [7]) and valid comparison

techniques. We show how to bring such techniques together to achieve statistically

valid R&S procedures for multiple constraints.

R&S procedures should not allow the handling of multiple constraints to shift

emphasis unduly towards feasibility verification. Thus, we consider how error should

be allocated between the feasibility check and the comparison phases of the pro-

cedures. With the support of experimental results, we devise general, robust, and
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efficient error allocation rules as functions of the number of constraints for both

simultaneously-running and sequential-running constrained selection procedures.

One topic of interest is the impact of multiple constraints on computational ef-

ficiency. Valid procedures for constrained R&S may require more observations to

select the best feasible system than standard R&S due to a lengthy feasibility ver-

ification and the splitting of error between feasibility check and comparison. But

within constrained R&S, there has been no study that we know of concerning the

difficulty of satisfying multiple constraints. For example, what is the difference in the

number of samples needed to find the best feasible system under one constraint or

five constraints? We conduct an experimental study and show how many more (or

less, somewhat surprisingly) observations a constrained R&S procedure can require

when considering multiple constraints, while still guaranteeing a nominal PCS.

Our extension to allow correlation across systems is also significant, because it

allows for the use of common random numbers (CRN). CRN have been shown to

reduce the number of required samples in R&S procedures, see for example, Nelson

and Matejcik [36], Chick and Inoue [18], and Kim and Nelson [30], and we seek to

analyze the implementation and performance of CRN in constrained R&S. We will

investigate when and how CRN should be used within constrained R&S procedures to

reduce the observations necessary to make valid selection of the best feasible system,

due to a more efficient comparison phase.

The chapter is organized as follows. Section 5.1 provides necessary background

material, namely the formulation, notation, assumptions, and feasibility check ap-

proaches vital to our procedures. In Section 5.2, we present our procedures for mul-

tiple constraints and prove their validity in Section 5.3. In Section 5.4, we discuss

issues associated with efficient implementation and provide analysis for the design

of the procedures, specifically appropriate error allocation and the use of CRN. We
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discuss experiment setup and analyze experimental results in Section 5.5, and finally

conclude the chapter in Section 5.6.

5.1 Background

This section details the background needed to formulate and analyze the general

constrained R&S problem and procedures for solving it. In Section 5.1.1, we describe

the problem formulation and indifference-zone approach to finding the best feasible

system. Sections 5.1.2 and 5.1.3 detail notation and assumptions necessary for the

feasibility check and comparison phases of our constrained R&S procedures and their

validity. We also include two feasibility check procedures for multiple constraints in

Section 5.1.4 that will be implemented in our general R&S procedures.

5.1.1 Formulation

Constrained R&S attempts to select the best system with respect to the mean of a

primary performance measure in the presence of constraints on one or more secondary

performance measures. Let (Xin, Yi1n, . . . , Yisn) be the nth observation of the ith

system for the primary performance measure and s secondary performance measures.

The set of all possible systems is denoted S = {1, . . . , k}.

We let xi = E[Xin] and yiℓ = E[Yiℓn] be the expected values of the primary and

secondary constrained performance measures for each system i ∈ S and constraints

ℓ = 1, . . . , s. Our objective is to select the system with the best primary performance

measure that also satisfies all of the constraints:

argmax
i∈S

xi

s.t. yiℓ ≤ qℓ for all ℓ = 1, . . . , s.

This objective is accomplished through the indifference-zone (IZ) approach. The

IZ approach is extended to include both the comparison of primary performance

measures and feasibility check of multiple secondary performance measures.
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For the primary performance measure, we denote �, the IZ parameter, to be the

smallest distance that we consider significant. We are essentially indifferent among

the feasible systems whose primary performance measures are within � of each other.

If xi is found to be greater than xj, then we say that system i is superior to system

j (or equivalently system j is inferior to system i).

We also employ the IZ approach for each of the secondary performance measures,

but in this case, the smallest significant distance is �ℓ, the tolerance level associated

with the constraint ℓ. Any system with yiℓ ≤ qℓ − �ℓ for all ℓ = 1, . . . , s is considered

desirable. The set of all desirable systems is denoted SD. Systems that have at

least one mean secondary performance measure greater than qℓ (i.e., yiℓ ≥ qℓ + �ℓ for

some ℓ) are unacceptable and infeasible, placing them in the set SU . Systems that

fall within the tolerance level of qℓ for some ℓ, so that qℓ − �ℓ < yiℓ < qℓ + �ℓ, and

below the tolerance level for the remaining constraints are acceptable and are placed

in the set SA. The goal is to identify a desirable or acceptable system whose primary

performance measure value is no worse than an indifference zone away from that of

the best desirable system.

5.1.2 Notation

To accurately ensure validity of the overall procedures, some notation must be de-

scribed before we advance:

n0 = the first stage sample size;

S2
Xij

= the sample variance of {Xi1 −Xj1, . . . , Xin0
−Xjn0

};

S2
Yiℓ

= the sample variance of {Yiℓ1, . . . , Yiℓn0
} (the ℓth constraint of system i);

� = (�1, �2, . . . , �s)
T , �ℓ ∈ ℝ

+;

q = (q1, q2, . . . , qs)
T , qℓ ∈ ℝ;

a = (a1, a2, . . . , as)
T , aℓ ∈ ℝ

+;

Y in = (Yi1n, Yi2n, . . . , Yisn)
T ;
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qa = aTq;

�a = aT�;

Y a
in = aTY in;

S2
Y a
i
= the sample variance of {Y a

i1, . . . , Y
a
in0

};

R(r; b, c, d) = max{0, cd
2b
− b

2
r}, for b, c, d ∈ ℝ

+ and b ∕= 0;

CS = the event that correct selection is made of the best feasible system, x[b], if a

feasible system exists, given x[b] ≥ xi + � for all i ∈ SD ∪ SA; if no feasible systems

exist, all systems should be eliminated;

CSi = the event that a good selection is made in comparison between inferior system

i and the best feasible system, given x[b] ≥ xi + � for all i ∈ SD ∪ SA;

CDi = the event that a correct feasibility decision is made on system i ∈ S (when

i ∈ SA a feasible or infeasible decision are both correct);

�1 = the nominal error of an individual feasibility check for one performance measure

of one system;

�2 = the nominal error of an individual comparison between two systems.

5.1.3 Assumptions for Validity

We need some assumptions about the data, the systems, and the feasibility check and

comparison procedures.

Assumption 10. For each i = 1, 2, . . . , k,

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Xin

Yi1n

...

Yisn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

iid∼ MN

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

xi

yi1
...

yis

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,Σi

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

n = 1, 2, . . .

where
iid∼ denotes independent and identically distributed, MN denotes multivari-

ate normal, and Σi is the (s + 1) × (s + 1) covariance matrix of the vector

(Xin, Yi1n, . . . , Yisn).
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Normally-distributed data is a common, not particularly restrictive, assump-

tion. Law and Kelton [33] explain how normality can be achieved through within-

replications averages or batch means. Commonly, primary and secondary performance

measures will be correlated. Moreover, if CRN are used to simulate different systems,

(Xin, Yi1n, . . . , Yisn) and (Xjn, Yj1n, . . . , Yjsn) will typically be correlated. Therefore,

we allow correlation across systems and across performance measures.

Assumption 11. For any i ∈ SD ∪ SA with i /∈ [b], xi ≤ x[b] − �.

This assumption allows only one possible best feasible system, as all systems that

could be deemed feasible are inferior to [b].

Assumption 12. If the systems are simulated independently, the feasibility check

phase guarantees Pr{∩i∈S′ CDi} ≥ (1 − s�1)
t for any 1 ≤ t ≤ k and any subset

S ′ ⊆ S with cardinality t.

Assumption 13. If the systems are simulated under CRN, the feasibility check phase

guarantees Pr{∩i∈S′ CDi} ≥ (1− ts�1) for any 1 ≤ t ≤ k and any subset S ′ ⊆ S with

cardinality t.

We assume that the feasibility check procedure can correctly determine the feasi-

bility of any number of systems with s constraints with a certain probability. Systems

simulated under CRN require different bounds than independently-simulated systems.

Assumption 14. If the systems are simulated independently, the comparison phase

guarantees Pr{∩i∈S′ CSi} ≥ (1 − �2)
t for any 1 ≤ t ≤ k − 1 and any subset S ′ of

{i ∈ {1, . . . , k} : xi ≤ x[b] − �} with cardinality t.

Assumption 15. If the systems are simulated under CRN, the comparison phase

guarantees Pr{∩i∈S′ CSi} ≥ (1 − t�2) for any 1 ≤ t ≤ k − 1 and any subset S ′ of

{i ∈ {1, . . . , k} : xi ≤ x[b] − �} with cardinality t.
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Given that we start with a set of systems inferior to system [b], we require that

pairwise comparison of this set with [b] concludes with a selection of [b] as the best

with a certain probability. Again, the use of CRN requires different bounds than when

considering independent systems. Several IZ-based comparison procedures, such KN

of Kim and Nelson [30], satisfy Assumptions 14 and 15, but not all procedures are

valid under CRN.

Assumption 16. Observation n of system i (i.e., Xin and Yiℓn for ℓ = 1, . . . , s)

should not depend on the order the systems are sampled.

This assumption is critical to the proof of any procedure that implements the

dormancy framework (Chapter 4). This makes sure procedures with and without

dormancy produce identical results.

5.1.4 Feasibility Check Procedures for Multiple Constraints

For the feasibility check phase under multiple constraints, we feature the fully-

sequential procedures, ℱℐ
ℬ and ℱℐ

A, of Batur and Kim [7]. ℱℐ
ℬ is a fully–sequential

feasibility check procedure for one or more constraints whose validity is established

through the use of Bonferroni bounds. The ℱℐ
A procedure features an artificial con-

straint, obtained by aggregation (or linear combination) of all secondary performance

measures and their constrained levels. These procedures share a common setup,

with additional steps to accommodate the aggregation in ℱℐ
A. To account for every

system’s status during the feasibility check, we utilize a set M of systems with unde-

termined feasibility, a set F of feasible systems, a set Ki that tracks the individual

performance measures that have been deemed feasible for system i, for all i ∈ S, and

a set A containing all systems whose feasibility according to the aggregate constraint

has not been determined. We also denote the cardinality of a set as ∣ ⋅ ∣.

Section 5.1.4.1 provides a detailed implementation of ℱℐ
ℬ . Section 5.1.4.2 features

a similar description of ℱℐ
A and a proof that the procedure satisfies Assumption 12.
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5.1.4.1 Basic Feasibility Check for Multiple Constraints – ℱℐ
ℬ

This approach involves sequential screening on every constrained performance mea-

sure. If a constraint is found to be violated, the system is declared infeasible. A system

is declared feasible only if all constraints have been deemed feasible. Batur and Kim

[7] proved that with �1 = �/(ks) for correlated systems and �1 = (1−(1−�)1/k)/s for

independent systems, ℱℐ
ℬ guarantees the event that SD ⊂ F ⊂ SD ∪ SU occurs with

probability at least 1−� when Assumption 10 holds. It also satisfies Assumptions 12

and 13 in this situation, a result of the proofs of Lemma 1 and Corollary 1 of Batur

and Kim [7]. We present an instance of ℱℐ
ℬ when the continuation region parameter

is set to c = 1.

Procedure [ℱℐ
ℬ ]

Setup: Select a first–stage sample size, n0 ≥ 2. Choose �ℓ and qℓ for ℓ = 1, 2, . . . , s.

Let �1 =
1
2
((2�1)

−2/(n0−1) − 1) and ℎ2
1 = 2�1(n0 − 1).

Initialization: Obtain n0 observations from each constrained performance measure

ℓ = 1, 2, . . . , s from every system i = 1, 2, . . . , k. For all i and ℓ, compute the

estimators S2
Yiℓ
. Set the observation counter ri = n0 and Ki = ∅ for i = 1, 2, . . . , k.

Let M contain all systems and F = ∅.

Feasibility Check: For all i ∈ M and any ℓ /∈ Ki, if

ri∑

n=1

(Yiℓn − qℓ) ≥ R(ri; �ℓ, ℎ
2
1, S

2
Yiℓ
),

then remove i from M . Else if

ri∑

n=1

(Yiℓn − qℓ) ≤ −R(ri; �ℓ, ℎ
2
1, S

2
Yiℓ
),

then add ℓ to Ki. If ∣Ki∣ = s, remove i from M and add i to F .

Stopping Rule: If ∣M ∣ = 0, then stop and return the set F as feasible systems.

Otherwise, for all systems i ∈ M , take one additional observation Y i,ri+1 and set

ri = ri + 1. Then go to Feasibility Check.
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5.1.4.2 Accelerated Feasibility Check for Multiple Constraints – ℱℐ
A

If two or more constrained performance measures are involved in the feasibility check,

then it is possible to accelerate the feasibility determination for systems that are

infeasible for multiple constraints. In particular, Batur and Kim [7] introduce an

artificial, aggregate constraint to the feasibility check. This aggregate constraint adds

some complexity, but can quickly eliminate systems that violate multiple constraints.

The constraint is a linear function of all secondary performance measure samples, with

weights a1, a2, . . . , as for each constraint 1, 2, . . . , s, respectively, and can only be used

to declare systems infeasible. Batur and Kim [7] suggest the values aℓ =
∏s

�=1,� ∕=ℓ �� ,

for ℓ = 1, 2, . . . , s, to minimize the area where systems may be infeasible for all

constraints, but still not be found infeasible due by the aggregate constraint.

Batur and Kim [7] show that when �1 = �/(k(s+ 1)), ℱℐ
A for correlated systems

guarantees that the event SD ⊂ F ⊂ SD ∪ SU occurs with probability at least 1− �

when Assumption 10 holds. The proof of Lemma 2 of Batur and Kim [7] shows that

ℱℐ
A satisfies Assumption 13 in this situation. At the end of the section, we strengthen

Corollary 2 of Batur and Kim [7] whose proof shows ℱℐ
A satisfies Assumption 12

for independently-simulated systems. Note that Batur and Kim [7] recommended

defining �1 heuristically, in terms of s instead of s+1 constraints (so that �1 = �/(ks)),

to ensure that ℱℐ
A performs more efficiently than ℱℐ

ℬ , while showing only a small,

practically insignificant loss in PCS. Our experiments will feature this aggressive

definition of �1. We present an instance of ℱℐ
A when the continuation region parameter

is set to c = 1.

Procedure [ℱℐ
A]

Setup: Same as in ℱℐ
ℬ .

Initialization: Same as in ℱℐ
ℬ , except for the following addition: Compute the

estimator S2
Y a
i
for all i and let A = S.
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Feasibility Check: Same as in ℱℐ
ℬ except for the following addition: If i ∈ M ∩ A

and
ri∑

n=1

(Y a
in − qa) ≥ R(ri; �

a, ℎ2
1, S

2
Y a
i
),

the remove i from M and A. For i ∈ M ∩ A with

ri∑

n=1

(Y a
in − qa) ≤ R(ri; �

a, ℎ2
1, S

2
Y a
i
),

remove i from A.

Stopping Rule: Same as in ℱℐ
ℬ , except for the following addition: If taking an

additional observation from system i ∈ M ∩ A, calculate Y a
i,ri+1.

We conclude this section on ℱℐ
A with a short proof that shows ℱℐ

A satisfies Assump-

tion 12. Let CDiℓ and ICDiℓ denote the events of a correct and an incorrect decision

of the feasibility of constraint ℓ of system i, respectively. Similarly, let CDia and

ICDia denote the events of a correct and an incorrect decision of the feasibility of the

aggregate constraint of system i, respectively. Andradóttir and Kim [5] have shown

that Pr{CDiℓ} = 1− Pr{ICDiℓ} ≥ 1− �1 and Pr{CDa
i } = 1− Pr{ICDa

i } ≥ 1− �1.

Batur and Kim [7] show that if systems are simulated independently and �1 satisfies

(1− s�1)
k + (1− �1)

k = 1− �, then Pr{∩i∈SCDi} ≥ 1− �. We now strengthen this

result and show that if �1 = (1− (1− �)1/k)/(s+ 1), Assumption 12 is satisfied.

Theorem 3. If the systems are simulated independently and 0 < �1 <
1

s+1
is chosen

such that (1− (s + 1)�1)
k = 1− �, then ℱℐ

A satisfies Pr{∩i∈S′CDi} ≥ 1− � for any

1 ≤ t ≤ k and any subset S ′ ⊆ S with cardinality t.
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Proof: We have

Pr{∩i∈S′CDi} ≥ Pr{(∩t
i=1 ∩s

ℓ=1 CDiℓ) ∩ (∩t
i=1CDa

i )}

= Pr{∩t
i=1(∩s

ℓ=1CDiℓ ∩ CDa
i )}

=
t∏

i=1

Pr{∩s
ℓ=1CDiℓ ∩ CDa

i }

≥
t∏

i=1

(1−
s∑

ℓ=1

Pr{ICDiℓ} − Pr{ICDa
i })

≥
t∏

i=1

(1− (s+ 1)�1) since 1− (s+ 1)�1 ≥ 0

= (1− (s+ 1)�1)
t

≥ 1− �,

where the second equality is due to the systems being simulated independently, the

second inequality is due to the Bonferroni inequality, and the third inequality is due

to the definition of �1.

5.2 General Constrained R&S Procedures

In this section, we present three procedures for constrained R&S with multiple con-

straints. The procedures generalize approaches of Andradóttir and Kim [5] and Chap-

ter 4 that were originally formulated to compare independent systems with a single

constrained performance measure. Our generalized algorithms incorporate a fully-

sequential feasibility check for any number of constraints, and two of them allow for

the valid incorporation of CRN.

In Section 5.2.1, we describe a sequentially-running procedure. Sections 5.2.2 and

5.2.3 feature simultaneously-running procedures.

5.2.1 A Sequentially-running Procedure – ℋAK

In this section, we extend the AK procedure of Andradóttir and Kim [5]. This

procedure performs feasibility check and comparison in sequence, first completing the
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feasibility check for all systems and constraints, then proceeding to select the best out

of the surviving feasible systems. This procedure can be very efficient if feasibility

is quickly determined and several infeasible systems are eliminated. Since feasibility

check may be completed at different sample sizes for each system, the SSℳ procedure

of Pichitlamken et al. [41] is used to perform comparison.

While the AK procedure is heuristic, Andradóttir and Kim [5] show that any

degradation in PCS is very limited and its performance can be competitive. Therefore,

it is a useful algorithm to extend to multiple constraints. Andradóttir and Kim [5]

present a similar, less efficient sequentially-running procedure that utilizes restarting

to make a valid selection of the best feasible system. This procedure can also be

extended to include multiple constraints for independent and correlated systems, but

the details fall outside the scope of this chapter.

Our ℋAK procedure for multiple constraints is described next.

Procedure [ℋAK]

Setup: Select the overall confidence level 1/k ≤ 1−� < 1 and choose the confidence

levels for feasibility check 1−�1 and comparison 1−�2, where �1+�2 = �. Use the

Setup of the chosen feasibility check procedure, specifying �1 = (1−(1−�1)
1/k)/s

for independent systems and �1 = �1/(ks) for correlated systems.

Initialization: Use the Initialization of the chosen feasibility check procedure. In

addition, obtain n0 observations Xin from each system i = 1, 2, . . . , k. For all i

and j ∕= i, compute the estimator S2
Xij

.

Feasibility Check: Same as in the chosen feasibility check procedure.

Feasibility Stopping Rule: Same as in the chosen feasibility check procedure. In

addition, for any system i receiving an additional sample, take Xi,ri+1.

Setup for Comparison: If ∣F ∣ = 0, conclude that there exist no feasible systems.

If ∣F ∣ = 1, then stop and select the system whose index is in F as the best.

Otherwise, select � > 0. Let �2 =
1
2
((2�2)

−2/(n0−1) − 1), where �2 = �2/(∣F ∣ − 1),
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and ℎ2
2 = 2�2(n0 − 1). Let M = F now be the systems available for comparison.

Set r = n0.

Comparison: Considering any i, j ∈ M such that i ∕= j, if

r

ri

ri∑

n=1

Xin ≤ r

rj

rj∑

n=1

Xjn −R(r; �, ℎ2
2, S

2
Xij

),

then eliminate i from M .

Comparison Stopping Rule: If ∣M ∣ = 1, then stop and select the system whose

index is in M as the best. Otherwise, for each system i ∈ M with ri = r, take

one additional observation Xi,ri+1, set ri = ri + 1 and r = r + 1. Then go to

Comparison.

When representing the use of ℱℐ
ℬ or ℱℐ

A with ℋAK, we will denote the procedure as

ℋAK(ℬ) or ℋAK(A), respectively. The other combinations of procedures studied

in this chapter (i.e., ℋAK+ and ℳDR with ℱℐ
ℬ and ℱℐ

A) are similarly denoted with

this feasibility check marking.

5.2.2 A Simultaneously-running Procedure – ℋAK+

Andradóttir and Kim [5] introduced the AK+ procedure that performs feasibility

check and comparison simultaneously after each additional stage of sampling. Thus

systems are eliminated from contention after being found either infeasible or inferior

to a feasible system. We now present our extension ℋAK+. This simultaneously-

running approach will show an improvement over ℋAK in configurations where fea-

sibility check is slow to finish relative to comparison.

Procedure [ℋAK+]

Setup: Select the overall confidence level 1/k ≤ 1− � < 1 and �. Use the Setup of

the chosen feasibility procedure. Let �2 =
1
2
((2�2)

−2/(n0−1) − 1).

Initialization: Use the Initialization of the chosen feasibility procedure. Also, let

SSi = ∅ be the set of superior systems to system i in terms of xi. Let ℎ2
2 =
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2�2(n0 − 1). Obtain n0 observations Xin from each system i = 1, 2, . . . , k. For all

i and j ∕= i, compute the estimator S2
Xij

. Set the observation counter r = n0.

Feasibility Check: Same as in the chosen feasibility procedure. If found feasible,

move i from M to F , and for all j ∈ (M ∪ F ) with i ∈ SSj, eliminate j from M

or F and delete SSj .

If found infeasible, eliminate i from M and any existing SSj and delete SSi.

Comparison: For each i, j ∈ (M ∪ F ) such that j ∕= i, j /∈ SSi, i /∈ SSj, and

r∑

n=1

Xin ≤
r∑

n=1

Xjn −R(r; �, ℎ2
2, SX2

ij
),

if j ∈ F , then eliminate i from M or F , delete SSi, and remove i from any SSj′ ;

otherwise, if j /∈ F , then add index j to SSi.

Stopping Rule: If ∣M ∣ = 0 and ∣F ∣ = 1, then stop and select the system whose

index is in F as the best. If ∣M ∣ = 0 and ∣F ∣ = 0 then stop and report that

there is no feasible system. Otherwise, for all systems such that i ∈ M ∪ F and

either i ∈ M or ∣SSi∣ < ∣M ∣, take one additional observation (Xi,ri+1,Y i,ri+1), set

r = r + 1, and then ri = r. Then go to Feasibility Check.

In Section 5.3, we will prove ℋAK+ to be valid for independently simulated

systems and correlated systems. The approach for choosing valid values of �1 and �2

is different for the two types of sampling, as we will detail further in Section 5.3 (see

equations (13) and (15), as well as Remark 1 below).

5.2.3 A Simultaneously-running Procedure with Dormancy – ℳDR

The dormant with recall procedure, DR, of Chapter 4 is a more aggressive simulta-

neous constrained R&S procedure. Like AK+, it can safely eliminate a system if it

is found infeasible or inferior to another feasible system. The dormancy framework

adds an additional condition, halting sampling from all systems found inferior to any

system in contention with feasibility yet undetermined. This allows the procedure to
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avoid sampling from inferior systems and to compare and test for feasibility of the

most promising systems first. A dormant system returns to contention if its superior

system is eliminated.

The starting and stopping of sampling for dormant systems creates uneven sample

sizes during the procedure, a difficulty overcome in DR by storing past observations.

The recall of past data allows the procedure to compare systems at an equal number

of samples via the comparison procedure KN of Kim and Nelson [30]. In this section,

we extend the statistically valid DR procedure to multiple constraints, resulting in the

ℳDR procedure. While using summary statistics may save computational overhead

(particularly memory needed for storage and time necessary to recall data), concerns

about the validity of dormant algorithms with summary statistics were presented by

Chapter 4. The heuristic procedures featuring dormancy, namely the dormant with

catch-up and dormant with averages algorithms, can be extended in a similar fashion

as DR, but this falls outside the scope of the current chapter.

Procedure [ℳDR]

Setup: Same as in ℋAK+.

Initialization: Same as in ℋAK+, except we also set D = ∅, where D denotes the

set of dormant systems.

Feasibility Check: Same as in the chosen feasibility check procedure except feasi-

bility is only checked for i ∈ M ∖D with ri = r. If i is feasible, move i from M

to F . For all j ∈ M ∪ F with i ∈ SSj, eliminate j from M or F , delete SSj, and

remove j from D, if applicable. Else, if i is found infeasible, eliminate i from M

and any existing SSj and delete SSi. If i ∈ SSj and j ∈ D, remove j from D and

let r = min{r, rj}.

Comparison: For each i, j ∈ (M ∪F ) ∖D such that j ∕= i, ri or rj is equal to r, and

r∑

n=1

Xin ≤
r∑

n=1

Xjn −R(r; �, ℎ2
2, S

2
Xij

),
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if j ∈ F , then eliminate i from M or F , delete SSi, and for all j′ ∈ D ∖ {i, j}

with i ∈ SSj′ , eliminate i from SSj′ , remove j′ from D, and let r = min{r, rj′};

otherwise if j /∈ F , then add index j to SSi and i to D.

Stopping Rule: If ∣M ∣ = 0 and ∣F ∣ = 1, then stop and select the system whose

index is in F as the best. If ∣M ∣ = 0 and ∣F ∣ = 0, then stop and report that there

is no feasible system. Otherwise, for all systems i ∈ (M ∪F ) ∖D such that ri = r,

take one additional observation (Xi,ri+1,Y i,ri+1) and set ri = ri+1. Set r = r+1.

Then go to Feasibility Check.

As for ℋAK+, we will prove ℳDR to be valid for both independently simulated

systems and correlated systems. Valid choices of �1, �2 are discussed in Section 5.3

(see equations (13) and (15), as well as Remark 1 below).

5.3 Validity of Algorithms

We present ℋAK+ and ℳDR as statistically valid algorithms for general constrained

R&S of independent or correlated systems. Sections 5.3.1 and 5.3.2 feature validity

proofs for these two simultaneously-running procedures with independent and corre-

lated systems, respectively. The proofs are presented while implementing ℱℐ
ℬ as the

feasibility check procedure.

Remark 1. The use of ℱℐ
A only requires an additional constraint within the proofs

(i.e., s + 1 constraints rather than s constraints), as is clear from from Theorem 3

for independently simulated systems and from Lemma 2 of Batur and Kim [7] for

correlated systems. Thus, Lemmas 1 and 2 and Theorems 4 through 7 hold for ℱℐ
A,

as long as s is replaced by s+ 1 in the statement of these results.

5.3.1 Validity of ℋAK+ and ℳDR for Independent Systems

To prove the validity of ℋAK+ and ℳDR, we begin with the following lemma.
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Lemma 1. Under Assumptions 10, 11, 12, and 14, a simultaneously-running proce-

dure for independently simulated systems guarantees

Pr{CS} ≥ (1− s�1)
j + (1− s�1) + (1− �2)

k−j−1 − 2 (11)

when ∣SU ∣ = j < k and

Pr{CS} ≥ (1− s�1)
k

when SU ∣ = k.

Proof: This proof is similar to the proof of Lemma 2 of Andradóttir and Kim [5].

Let A∗ be the event that all systems i ∈ SU will eventually be eliminated by being

declared infeasible. Let B∗ be the event that system [b] is declared feasible and all

systems i ∈ (SD ∪ SA) ∖ {b} will be eventually eliminated by being declared inferior

to system [b]. Then

Pr{CS} = Pr{all i ∈ SU and all i ∈ (SD ∪ SA) with xi ≤ x[b] − � are eliminated}

≥ Pr{A∗ ∩ B∗}

≥ Pr{A∗}+ Pr{B∗} − 1.

Now,

Pr{A∗} = Pr{CDi for all i ∈ SU}

≥ (1− s�1)
j (by Assumption 12).

This proves the results when ∣SU ∣ = k. If j = ∣SU ∣ < k, then

Pr{B∗} = Pr{CD[b] ∩ (CSi for all i ∈ (SD ∪ SA) with i ∕= [b])} (by Assumption 11)

≥ Pr{CD[b]}+ Pr{∩i∈(SD∪SA)∖{b}CSi} − 1

≥ (1− s�1) + Pr{∩i∈(SD∪SA)∖{b}CSi} − 1 (by Assumption 12)

≥ (1− s�1) + (1− �2)
k−j−1 − 1 (by Assumptions 11 and 14).
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All together, we have

Pr{CS} ≥ (1− s�1)
j + (1− s�1) + (1− �2)

k−j−1 − 2

when j = ∣SU ∣ < k, which concludes the proof.

Lemma 1 does not specify how to choose �1 and �2 for our procedure. There are

many valid values of �1 and �2 that cause the right-hand side (RHS) of equation (11)

to be greater than 1 − �, but we would prefer the largest possible values for �1 and

�2 to make our procedures efficient. Since ∣SU ∣ may not be known at the time of

initialization, we must also address how the RHS of equation (11) changes in j.

Remark 2. The lower bound (1−s�1)
k on Pr{CS} in Lemma 1 when ∣SU ∣ = k satisfies

(1− s�1)
k = (1− s�1)

k−1 − (1− s�1)
k−1s�1

≥ (1− s�1)
k−1 − s�1,

and (1 − s�1)
k−1 − s�1 is the value of the RHS of equation (11) when j = k − 1.

Therefore, the smallest lower bound on Pr{CS} in Lemma 1 is always achieved for

j = ∣SU ∣ < k.

We provide one method that could be used to choose non-dominated values �1

and �2. The key to this approach is the choice of a parameter, e, that is the ratio

of error for a complete feasibility check for one system to the error of a comparison

between two systems, so that e = s�1/�2. For any choice of e, we can simplify the

RHS of (11) and find a valid value of �2. In particular, equation (11) now yields

Pr{CS} ≥ (1− e�2)
j + (1− e�2) + (1− �2)

k−j−1 − 2, (12)

for j ∈ ∣SU ∣ < k. Since j = ∣SU ∣ is unknown, we must find values of �2 ∈

[0,min{1, 1/e}] such that the RHS of equation (12) is no smaller than 1 − � for

all j ∈ {0, 1, . . . , k − 1}. Note that for a fixed value of j ∈ {0, 1, . . . , k − 1}, the

RHS of (12) monotonically decreases from 1 to below 0 as �2 increases from 0 to
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min(1, 1/e). Thus, for any value of j ∈ {0, 1, . . . , k − 1}, there exists a value of �2

such that the RHS of (12) is equal to 1− �, which can be solved numerically.

Given that for all j ∈ {0, 1, . . . , k− 1}, a value of �2 can be found to set the RHS

of (12) equal to 1−�, one can iterate through all values of j ∈ {0, 1, . . . , k−1} to find

the minimum �2. The minimum �2 would ensure that the lower bound on Pr{CS}

exceeds 1− � for all j ∈ {0, 1, . . . , k}, and then �1 is calculated via the ratio e. This

is one approach to supply values of �1 and �2 that satisfy Theorems 4 and 5. The

choice of the parameter e will be addressed in Section 5.4.1 below.

We note that if e = 1, then s�1 = �2 and the value of j ∈ [0, k−1] that minimizes

the RHS of (12) is j∗ = (k − 1)/2. Therefore, a value of �2 that guarantees the

nominal PCS can be found by solving the equation �2 + 2[1 − (1 − �2)
(k−1)/2] = �

(note that the left-hand side of this equation increases from 0 to 3 as �2 increases

from 0 to 1, so there is always a solution).

Theorem 4. Under Assumptions 10 and 11 with independently simulated systems,

ℋAK+ implemented with ℱℐ
ℬ guarantees

Pr{CS} ≥ 1− �

when

(1− s�1)
j + (1− s�1) + (1− �2)

k−j−1 − 2 ≥ 1− � for all j ∈ {0, 1, . . . , k − 1}. (13)

Proof: If the feasibility check procedure ℱℐ
ℬ is implemented under Assumption 10,

Assumption 12 is satisfied as shown in the proof of Corollary 1 of Batur and Kim

[7]. ℋAK+ utilizes the KN procedure of Kim and Nelson [30] for comparison, so

independence of the primary performance measure observations across systems, As-

sumptions 10 and 11, and the proof of Theorem 2 of Kim and Nelson [30] are sufficient

to show that ℋAK+ satisfies Assumption 14.

Since ℋAK+ satisfies Assumptions 12 and 14, the result now follows from Lemma

1, Remark 2, and the fact that ∣SU ∣ is unknown. .
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Theorem 5. Under Assumptions 10, 11, and 16 with independently simulated sys-

tems, ℳDR implemented with ℱℐ
ℬ guarantees

Pr{CS} ≥ 1− �

when equation (13) is satified.

Proof: Theorem 1 of Chapter 4 shows that when dormancy with recall is applied to

a valid simultaneously-running procedure for constrained R&S and three conditions

are satisfied, the resulting procedure with dormancy is also valid.

The first condition is that the validity of the original simultaneous procedure is

proved by ensuring that with probability no smaller than 1 − �, the best system [b]

is declared feasible and all other systems in S would eventually be either declared

infeasible or eliminated by that particular system (if they are not eliminated by

another system first). This is true of ℋAK+, see Theorem 4 and the proof of Lemma

1.

The second condition is identical to Assumption 16, so this condition is met.

The third condition is that feasibility check and comparison parameters for both the

original procedure and the new procedure under dormancy, such as indifference-zone

parameters and variance estimates depend only on first-stage samples for each system

and do not change as a function of the systems remaining in contention. ℋAK+ with

ℱℐ
ℬ satisfies this condition as well. Thus ℳDR is valid and Pr{CS} ≥ 1− �.

5.3.2 Validity of ℋAK+ and ℳDR for Correlated Systems

Correlation of data across systems requires a slightly different proof approach. While

the feasibility check procedures of Batur and Kim [7] guarantee a desired probability

of correct feasibility decision under correlation, the same is not true of all comparison

techniques under correlation. Fortunately, the underlying comparison procedure of

ℋAK+ and ℳDR is KN of Kim and Nelson [30], which is valid under correlation

with certain parameter adjustments.
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We present a lemma that will help prove the validity of ℋAK+ and ℳDR.

Lemma 2. Under Assumptions 10, 11, 13, and 15, a simultaneous procedure for

correlated systems under s constraints guarantees

Pr{CS} ≥ 1− (j + 1)s�1 − (k − j − 1)�2 (14)

when ∣SU ∣ = j < k and

Pr{CS} ≥ 1− ks�1

when ∣SU ∣ = k.

Proof: Let A∗ and B∗ be defined as in the proof of Lemma 1. As in the proof of

Lemma 1, we have

Pr{CS} ≥ Pr{A∗}+ Pr{B∗} − 1,

and when j = ∣SU ∣ < k, then

Pr{B∗} ≥ Pr{CD[b]}+ Pr{∩i∈(SD∪SA)∖{[b]}CSi} − 1.

Moreover,

Pr{A∗} = Pr{CDi for all i ∈ SU}

≥ (1− js�1) (Assumption 13).

This proves the result when ∣SU ∣ = k. When j = ∣SU ∣ < k, then

Pr{B∗} ≥ (1− s�1) + Pr{∩i∈(SD∪SA)∖{[b]}CSi} − 1 (Assumption 13)

≥ 1− s�1 − (k − j − 1)�2 (Assumptions 11 and 15).

Now, we have

Pr{CS} ≥ (1− js�1) + (1− s�1 − (k − j − 1)�2)− 1,

≥ 1− (j + 1)s�1 − (k − j − 1)�2

when j = ∣SU ∣ < k, which concludes the proof.
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Remark 3. The lower bound 1−ks�1 on Pr{CS} in Lemma 2 when ∣SU ∣ = k satisfies

1− ks�1 ≥ 1− (k + 1)s�1,

and 1 − (k + 1)s�1 is the value of the RHS of (14) when j = k − 1. Therefore, the

smallest lower bound on Pr{CS} in Lemma 2 is always achieved for j = ∣SU ∣ < k.

Since j = ∣SU ∣ may be any integer between 0 and k, we must ensure Pr{CS} ≥

1 − � for any j ∈ {0, 1, . . . , k − 1}. Recall that e = s�1/�2. We assume e is given.

Then one can see easily that the value, j∗ ∈ {0, 1, . . . , k−1}, that minimizes 1− [(j+

1)e+ (k − j − 1)]�2 depends on e:

j∗ =

⎧
⎨
⎩

k − 1, if e ≥ 1,

0, if e < 1.

Note that for e = 1, the RHS of (14) does not depend j ∈ {0, 1, . . . , k − 1}. Thus, to

achieve Pr{CS} ≥ 1− � for all values of j, a simultaneous procedure would require:

�1 =

⎧
⎨
⎩

e�/(sk), if e ≥ 1,

e�/(se+ s(k − 1)), if e < 1,

and

�2 =

⎧
⎨
⎩

�/(ek), if e ≥ 1,

�/(e+ (k − 1)), if e < 1.

This is one approach to provide values of �1 and �2 to satisfy Theorems 6 and 7

below.

Theorem 6. Under Assumptions 10 and 11 with correlated systems such that

(X1n, X2n, . . . , Xkn) are iid multivariate normal with a positive definite covariance

matrix, ℋAK+ implemented with ℱℐ
ℬ guarantees

Pr{CS} ≥ 1− �

when

(j + 1)s�1 + (k − j − 1)�2 ≤ � for all j ∈ {0, 1, . . . , k − 1}. (15)
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Proof: If the feasibility check procedure ℱℐ
ℬ is implemented under Assumption 10,

Assumption 13 is satisfied as shown in the proof of Lemma 1 of Batur and Kim

[7]. While independence is no longer assumed, KN can still be used to make valid

decisions. The proof of Theorem 1 of Kim and Nelson [30] shows that Assumption 15

is met under Assumptions 10 and 11 in the presence of a positive definite covariance

matrix. Since Assumptions 13 and 15 hold, the result now follows from Lemma 2,

Remark 3, and the fact that ∣SU ∣ is not known.

Theorem 7. Under Assumptions 10, 11, and 16 with correlated systems such that

X1n, X2n, . . . , Xkn are iid multivariate normal with a positive definite covariance ma-

trix, ℳDR implemented with ℱℐ
ℬ guarantees

Pr{CS} ≥ 1− �

when equation (15) is satisfied.

Proof: Again, we show ℳDR and ℋAK+ satisfy the conditions for Theorem 1 of

Chapter 4. Theorem 6 and the proof of Lemma 2 ensure the statistical validity of

ℋAK+ and the first condition of Theorem 1. The second condition is satisfied by

Assumption 16. The last condition holds as in Theorem 5. Thus, ℳDR is statistically

valid, and hence Pr{CS} ≥ 1− �.

5.4 Efficient Design of Procedures for Constrained R&S

In this section, we consider some issues that directly affect the efficiency of ℋAK,

ℋAK+, and MDR, namely the choice of error parameters and use of CRN to induce

a positive correlation between systems. These issues are addressed in Sections 5.4.1

and 5.4.2, respectively.

5.4.1 Error Allocation

The choice of parameters that govern the allowable error in the comparison and

feasibility check phases of a constrained R&S procedure can be critical to efficiency.
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For sequential procedures, the user chooses the parameters �1 and �2 as the total

amount of error for the feasibility check and comparison phases, respectively. For

simultaneous procedures, �1 and �2 equal the error of individual feasibility checks

and comparisons, respectively. In this section, we provide experimental results that

suggest efficient choices for �1 and �2 in sequentially-running procedures and �1 and

�2 in simultaneously-running procedures.

If the relative difficulties of feasibility check and comparison were known, some

efficiency could be gained by tuning the error allocation correctly. However, since

details about the means and variances of the primary and secondary performance

measures are often not known, robust strategies for error allocation are useful.

For our analysis of error allocation, we consider two procedures,ℋAK andℋAK+,

as representatives of sequential and simultaneous constrained R&S procedures, respec-

tively. ℳDR is an application of the dormancy framework to ℋAK+, so we expect

these two procedures to produce similar results. Andradóttir and Kim [5] suggest

an allocation for the procedures under one constraint, namely �1 = �2 = �/2 for

sequentially-running procedures and �1 = �2 for simultaneously-running procedures.

However, when s > 1, it is unclear how this strategy should be extended. In partic-

ular, two reasonable choices are equal error allocation between feasibility check and

comparison and equal error allocation for each (primary or secondary) performance

measure tested (giving more error to the feasibility check phase to handle multiple

constraints).

We use the ℱℐ
ℬ procedure for feasibility check, because it is a simple and valid

approach. We discuss the advantages of ℱℐ
A in Section 5.5, but do not want to add

its complexity to the analysis of our results.

Section 5.4.1.1 details the setup featured in all of our numerical experiments.

Section 5.4.1.2 provides the study of error allocation within sequential procedures.

Section 5.4.1.3 investigates error allocation within simultaneous procedures.
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5.4.1.1 Experimental Setup

To evaluate the relative performance of the allocations and our procedures, we tested

the procedures under differing ratios of errors (�1/�2 or �1/�2) for various config-

urations of means and variances. These mean and variance configurations attempt

to provide analogous results and analysis to the experimental studies of similar R&S

studies, for example, Kim and Nelson [30] and Andradóttir and Kim [5] among others.

We test the procedures for several combinations of means and variances under 10,000

macro-replications.

We set the first-stage sample size, n0, to 20 and indifference-zone parameters and

tolerance levels to � = �ℓ = 1/
√
20 for all ℓ = 1, 2, . . . , s, equal to the sample standard

deviation of the initial average when samples have a variance of 1. We set a nominal

PCS of 1 − � = 0.95. We include no acceptable systems, so that SA = ∅, because

Andradóttir and Kim [5] show that the presence of such systems does not significantly

affect the experimental results. Finally, we set the constraint levels, qℓ, to zero.

We introduced an additional consideration for multiple constraints, specifically the

number of violated constraints v for an infeasible system. The value of v is crucial

to how quickly a feasibility check completes. For our tests, we will feature a varying

number of constraints s and v ∈ {1, s}, with v = 1 implying a hard feasibility check

and v = s creating an easier feasibility check.

We now describe our mean configurations. The following monotone increasing

configuration (MIM) of means, which emulates a common situation when many sys-

tems are either infeasible or inferior, was used:

xi = E[Xij ] = (i− 1)�, i = 1, 2, . . . , k,
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and

yiℓ = E[Yiℓj] =

⎧
⎨
⎩

−(b− i+ 1)�, i = 1, 2, . . . , b,

(i− b)� i = b+ 1, . . . , k, and ℓ = 1, 2, . . . , v,

−(i− b)� i = b+ 1, . . . , k, and ℓ = v + 1, v + 2, . . . , s,

where b is the number of feasible systems.

In some of the experiments, we include the difficult means configuration (DM),

which attempts to test the validity of the procedures by assigning system means in

a challenging setup. In this configuration, there are b − 1 feasible systems that are

only slightly inferior (by an indifference-zone parameter) to the best system and the

remaining superior systems are only slightly infeasible (by a tolerance level). More

specifically, in the DM configuration,

xi = E[Xin] =

⎧
⎨
⎩

0, i = 1, 2, . . . , b− 1,

�, i = b,

(i− 1)�, i = b+ 1, . . . , k,

and

yiℓ = E[Yiℓn] =

⎧
⎨
⎩

−�ℓ, i = 1, 2, . . . , b,

�ℓ, i = b+ 1, . . . , k and ℓ = 1, 2, . . . , v,

−�ℓ i = b+ 1, . . . , k and ℓ = v + 1, v + 2, . . . , s,

where again � is the indifference-zone parameter and �ℓ is the tolerance level.

We also examine a combination of variance configurations to test the robustness

of the procedures when the relative difficulty of feasibility check and comparison

varies. These configurations involve low (L) and high (H) variances �2
xi

and �2
yiℓ

of the primary and secondary performance measures. For simplicity, all secondary

performance measures ℓ = 1, 2, . . . , s are assigned identical variances. High variance

results in either �2
xi
= 5 or �2

yiℓ
= 5, whereas low variance causes �2

xi
= 1 or �2

yiℓ
= 1.

For our experiments, we consider three variance configurations, i.e., low �2
xi

and low
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�2
yiℓ

(L/L), high �2
xi

and low �2
yiℓ

(H/L), and low �2
xi

and high �2
yiℓ

(L/H). Variances

lower than 1 produce valid decisions quickly, for both feasibility check and comparison.

For the sake of space, we do not consider other variance configurations.

Practically, correlation across primary and secondary performance measures

should be expected, but Andradóttir and Kim [5] show that such correlation will

not significantly affect the results of valid procedures. Hence, we will not revisit

the topic in this chapter, and obtain primary and secondary performance measure

samples independently for all systems.

Similarly, Batur and Kim [7] show that correlation across only secondary per-

formance measures does not largely affect the performance of the feasibility check

procedure ℱℐ
ℬ . However, strong negative correlation across secondary performance

measures can induce faster completion times in ℱℐ
A, while strong positive correlation

reduces the effectiveness of the aggregate constraint. We expect similar conclusions

would be found here. Therefore, we do not address this topic, and assume that

secondary performance measure samples are independent of one another.

Additionally, the effects of correlation across systems should be considered. Unless

expressed explicitly, we will consider independent systems, but CRN will be examined

in Section 5.5.4 below.

5.4.1.2 Error Allocation for Sequential Procedures

We provide two tables addressing error allocation for ℋAK(ℬ) in the MIM config-

uration with k = 10 and v = 1. Table 24 displays the average number of required

observations for different error allocations for ℋAK(ℬ) as we change the number of

feasible systems b, while holding all other configuration settings steady. We consider

a set of allocations, expressed by the ratio of �1 to �2. Table 24 shows that in a

sequential procedure, as more systems are found feasible, more comparisons are nec-

essary, requiring more error in the form of a higher �2 to perform efficiently. In the
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L/H case where the feasibility check is relatively difficult, additional error should be

shifted towards �1 for best performance. While the best allocation changes, the 1:1

allocation always appears to have performance close to the best, especially in the L/L

and H/L configurations.

Table 24: Average number of required observations under the MIM configuration
with k = 10 systems, s = 2 constraints, b feasible systems, and v = 1 infeasible
constraints for the ℋAK(ℬ) procedure with the given ratio of �1 to �2. (The best
allocation is shown in bold and the recommended allocation is shown in a box.)

L/L Variance Config. H/L Variance Config. L/H Variance Config.

�1/�2 b = 1 b = 5 b = 9 b = 1 b = 5 b = 9 b = 1 b = 5 b = 9

4 484 919 1018 762 922 1030 2330 2947 2578

3 491 892 979 747 895 988 2367 2991 2612
2 502 865 930 730 867 940 2434 3069 2681
3/2 513 852 904 727 853 912 2494 3144 2743

1 532 841 875 726 845 883 2597 3276 2858
2/3 557 844 860 740 846 868 2727 3439 3000
1/2 578 874 857 754 856 864 2838 3577 3121
1/3 611 896 862 783 878 868 3015 3800 3313
1/4 638 916 872 808 899 876 3155 3975 3467

We present Table 25 where the number of feasible systems and parameters are

fixed, but the number of constraints, s, varies. In this table, the larger numbers of

constraints s tend to require more error devoted to feasibility check (�1) for best per-

formance. In the L/H configuration, it is advisable to allow more error for feasibility

check. As in Table 24, we see that a 1:1 ratio is clearly advisable for low numbers

of constraints, especially in the L/L and H/L variance configurations, but is still ef-

ficient for all cases. Table 25 also illustrates that the cost of additional constraints,

measured by the number of required observations, grows sub-linearly with respect to

s within each variance configuration and �1/�2 ratio.

Our experimental results suggest that for sequential procedures, an allocation

rule that distributes error evenly between the feasibility check and comparison works

well. While it makes sense to focus on L/L results as one may not know in advance
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Table 25: Average number of required observations under the MIM configuration
with k = 10 systems, s constraints, b = 5 feasible systems, and v = 1 infeasible
constraints for the ℋAK(ℬ) procedure with the given ratio of �1 to �2. (The best
allocation is shown in bold and the recommended allocation is shown in a box.)

L/L Variance Config. H/L Variance Config. L/H Variance Config.
�1/�2 s = 1 s = 2 s = 4 s = 8 s = 1 s = 2 s = 4 s = 8 s = 1 s = 2 s = 4 s = 8
4 860 919 974 1091 867 922 980 1092 2291 2947 3729 4671

3 831 892 954 1077 839 895 961 1079 2318 2991 3781 4731
2 797 865 936 1067 804 867 942 1072 2377 3069 3878 4840
3/2 780 852 930 1069 784 853 937 1074 2435 3144 3966 4938

1 765 841 933 1085 768 845 940 1089 2544 3276 4113 5112

2/3 759 844 949 1114 763 846 956 1119 2678 3439 4300 5332
1/2 762 853 968 1143 763 856 974 1147 2788 3577 4458 5515
1/3 773 874 1004 1194 773 878 1011 1197 2973 3800 4713 5811
1/4 787 896 1036 1234 787 899 1042 1239 3121 3975 4916 6052

the relative difficulty of feasibility check versus comparison, the 1:1 rule is fairly

robust to differing numbers of constraints, numbers of feasible systems, and variance

configurations. We observe similar results for v = s and in the DMmean configuration

when v ∈ {1, s}, but omit these results. All displayed choices of allocation depart no

more than 15% from the best.

5.4.1.3 Error Allocation for Simultaneous Procedures

In this section, we consider the simultaneously-running ℋAK+(ℬ) procedure. Here

we seek efficient and robust choices of �1 and �2. As in Section 5.4.1.2, we focus on

performance, measured by the number of required observations, as the ratio of the

two parameters changes.

Table 26 shows the average number of needed observations for a configuration

with k = 10 systems, two constraints, one infeasible constraint for infeasible systems,

and a varying number of feasible systems. We see that a ratio of �1/�2 = 1/2 is the

best or close to the best for most scenarios. This result is analogous to our findings

for ℋAK(ℬ), as �1 = �2/s corresponds to approximately equivalent error allocation

for feasibility check and comparison.
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Table 26: Average number of required observations under the MIM configuration
with k = 10 systems, s = 2 constraints, b feasible systems, and v = 1 infeasible
constraints for the ℋAK+(ℬ) procedure with the given ratio of �1 to �2. (The best
allocation is shown in bold and the recommended allocation is shown in a box.)

L/L Variance Config. H/L Variance Config. L/H Variance Config.

�1/�2 b = 1 b = 5 b = 9 b = 1 b = 5 b = 9 b = 1 b = 5 b = 9

4 475 1171 1264 1003 1177 1281 2213 3018 2819
3 474 1126 1211 967 1132 1225 2213 2987 2774
2 473 1067 1136 884 1071 1150 2211 2943 2711
3/2 473 1026 1020 919 1029 1097 2212 2913 2670
1 472 971 957 841 974 1029 2211 2874 2615
2/3 473 920 917 800 924 964 2210 2828 2565

1/2 473 890 944 773 892 922 2215 3049 2538

1/3 507 924 969 804 927 949 2412 3223 2719
1/4 534 953 989 831 955 972 2563 3369 2868

To test the performance of �1 = �2/s as the number of constraints increases, again

we use k = 10 systems, five feasible systems, and one infeasible constraint for each

infeasible system. Table 27 shows that for s constraints, the appropriate allocation

is �1/�2 = 1/s, except for the L/H variance configuration and s = 8 where it is

close to optimal. So, again, even allocation between feasibility check and comparison

is preferable. As for ℋAK(ℬ), we see sublinear growth in the number of required

observations as the number of constraints increases. The ℋAK+(ℬ) procedure’s

performance depends heavily on the correct choice of error allocation ratio, however,

the observed best allocation does not stray much from �1/�2 = 1/s. Again, we

observe similar results in the DM mean configuration and when v ∈ {1, s}, but omit

these results.

The sequential algorithm ℋAK(ℬ), with poor choices of error allocation requiring

10% more samples than optimal in Table 24 appears to be less robust to poor error

allocation than the simultaneous procedure, ℋAK+(ℬ), where poor choices cost at

most 33% more observations than the optimal in Table 26. However, if we were

to translate the ratios of �1 and �2 into the scope of �1 and �2 (complete error of
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Table 27: Average number of required observations under the MIM configuration
with k = 10 systems, s constraints, b = 5 feasible systems, and v = 1 infeasible
constraints for the ℋAK+(ℬ) procedure with the given ratio of �1 to �2. (The best
allocation is shown in bold and the recommended allocation is shown in a box.)

L/L Variance Config. H/L Variance Config. L/H Variance Config.
�1/�2 s = 1 s = 2 s = 4 s = 8 s = 1 s = 2 s = 4 s = 8 s = 1 s = 2 s = 4 s = 8
3/2 837 1026 1208 1459 847 1029 1216 1459 2261 2913 3667 4550

1 787 971 1153 1401 793 974 1161 1401 2222 2874 3635 4523

2/3 812 920 1102 1346 818 924 1111 1344 2399 2843 3605 4500

1/2 834 890 1067 1308 840 892 1077 1308 2546 2828 3585 4487

1/3 869 924 1023 1259 875 927 1031 1259 2757 3049 3565 4471

1/4 896 953 994 1226 901 955 1004 1225 2914 3223 3560 4462

1/5 919 978 1016 1201 923 980 1026 1200 3044 3369 3702 4456
1/6 939 998 1036 1181 942 1000 1048 1181 3153 3491 3830 4452
1/7 956 1016 1055 1164 958 1019 1067 1165 3207 3597 3946 4449

1/8 971 1032 1072 1153 974 1034 1084 1154 3291 3694 4041 4454

1/9 984 1047 1088 1166 987 1050 1099 1167 3366 3778 4130 4537

feasibility check and comparison), the ratios of �1 and �2 correspond with much larger

ratios of the overall feasibility check and comparison phases, �1 and �2. In particular,

the overall error for each phase can be approximated by the values of �1 = ks�1 and

�2 = (k − 1)�2. Thus with k = 10 and s = 2, �1/�2 ratios from 4 to 1/4 correspond

to �1/�2 ratios from roughly 80/9 to 5/9.

Ultimately, without knowing any properties of the systems ahead of time, the

efficiency of an allocation that splits error evenly between feasibility check and com-

parison is relatively robust to the various possible configurations of feasible systems

and number of constraints. This allocation takes slightly different forms in sequential

and simultaneous procedures, but is either optimal or close to optimal in all of our

experiments, especially in the L/L variance configuration. When implementing the

recommended ratio into our simultaneous procedures, we also note that �1 = �2/s

corresponds to e = 1, a special case that leads to easily solvable valid values of �1

and �2 (see Section 5.3).
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5.4.2 Considering Common Random Numbers

In this section, we discuss the use of CRN in constrained R&S procedures to improve

the efficiency of comparison. CRN could be useful with our procedures, particularly

ℋAK+ and ℳDℛ, proven to be valid under correlation across systems. This section

also suggests why the implementation of CRN within procedures such as ℋAK that

compare systems with unequal sample sizes may not provide valid PCS.

In Section 5.4.2.1, we take a closer look at a difficulty in comparing correlated

systems with uneven sample sizes. Section 5.4.2.2 provides an analysis of the required

correlation to make CRN advantageous in constrained R&S with comparison at even

sample sizes.

5.4.2.1 Decisions under Correlation

While the independent simulation of systems is suitable for many problems, just a

small amount of positive correlation can significantly improve the efficiency of fully-

sequential R&S procedures. This positive correlation will reduce the variance of the

difference of samples from two systems, allowing the comparison of the systems to

be completed sooner. Usually, this positive correlation is created through the use

of CRN (Law and Kelton [33]). The increase in efficiency comes at a cost, in that

some comparison procedures may not make valid decisions for correlated systems,

and Bonferroni bounds are used in setting up the procedures to ensure validity of the

selection (see Theorems 6 and 7).

Two of the constrained R&S procedures for multiple constraints, i.e., ℋAK+ and

ℳDR, are valid with correlation across systems, as is shown in Section 5.3. The

reason for this is that ℋAK+ and ℳDR always compare systems at equal sample

sizes, and do so with the KN procedure. The KN procedure makes statistically valid

decisions for both independent and correlated systems, as proven in Kim and Nelson

[30], and thus satisfies Assumption 15.
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However, procedures that compare systems at unequal sample sizes, likeℋAK and

its underlying selection procedure SSℳ of Pichitlamken et al. [41], may not provide

adequate PCS results. While SSℳ was proven to be statistically valid for comparison

of independent systems, it does not ensure valid decisions under correlation.

The problem lies with obtaining good variability estimates of the process observed

by SSℳ under correlation. Fully-sequential procedures, like SSℳ, use the quantity

S2
Xij

=
1

n0 − 1

n0∑

n=1

(Xin −Xjn − [X̄i − X̄j])
2 (16)

as an estimate of the variance of the difference between two systems, i and j, where X̄i

and X̄j are the first-stage sample means for system i and j, respectively. This variance

estimate allows the procedure to utilize the benefits of positive correlation, but only

accurately represents the variability of the difference of sums under a common sample

size r:
r∑

n=1

(Xin −Xjn). (17)

However, under unequal sample sizes ri < rj with r = min(ri, rj) and high correlation,

the statistic

r

ri

ri∑

n=1

Xin −
r

rj

rj∑

n=1

Xjn (18)

used by SSℳ can have a much higher variance than computed by S2
Xij

, as the

variability is driven by the lagging system’s data points.

Let �x denote the correlation across primary performance measure samples. Figure

7 draws sample paths of the difference of sums with equal sample sizes (17) and

unequal sample sizes (18) under a high correlation, namely �x = 0.95. It is clear that

the unequal sums experience a much higher variability. The underestimation in S2
Xij

of the variability of the unequal sums (18) could lead to incorrect decisions. Thus,

without adjustments to the comparison algorithm within ℋAK, it is unclear that one

can use this procedure to compare correlated systems. Further study of this topic

falls outside the scope of this chapter.

99



Figure 7: Sample paths of the difference of equal sums
∑r

n=1(X1n−X2n) and unequal

sums
∑r

n=1 X1n − r
100

100∑
n=1

X2n under �x = 0.95.

5.4.2.2 Required Correlation

Having shown that ℋAK+ and ℳDR make valid decisions under correlation, we

now look at the correlation necessary to overcome the conservative Bonferroni bound

required for proving the validity of these procedures. The main difference between

the independent and correlated cases in ℋAK+ and ℳDR lies in the selection of �1

and �2 and thus �1 and �2 (see equations (13) and (15)). If the positive correlation

is not strong enough, our valid procedures with correlated systems may require more

observations than with independently-simulated systems.

To analyze the difference between the independent and correlated systems, we

consider the simple case of equal variances across systems for primary and secondary

performance measures. We let the means be in the DM configuration with b = k (so

that yiℓ = −�ℓ for all i = 1, . . . , k and ℓ = 1, . . . , s and xk = xi+� for i = 1, . . . , k−1).

We also set the variance of the difference Xin−Xjn to the same value �2
X for all pairs
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of systems i ∕= j and set an equal variance �2
Yℓ

across systems for all secondary

performance measures Yiℓn. Thus, comparison and feasibility check will be based

on the same expected continuation regions, and we can focus on two systems. One

measure of the relative difficulty of constrained R&S would be a weighted sum of

the expected maximum number of samples required to complete feasibility check and

comparison, respectively, as a smaller sum would associate with quicker completion

times than a larger sum.

Kim and Nelson [30] compute the expected maximum number of samples to be

2�2(n0 − 1)
(

�2
X

�2

)
for comparison with a first-stage sample size of n0. Similarly, we

feature the average of the expected maximum number of samples required to deter-

mine the feasibility of the individual constraints, as 2�1(n0 − 1)

(
1
s

∑s
ℓ=1

�2
Yℓ

�2
ℓ

)
, as a

measure of the difficulty of the feasibility check. Therefore, when the measure of

difficulty of feasibility check and comparison are averaged we obtain:

(n0 − 1)

(
�2
�2
X

�2
+

�1
s

s∑

ℓ=1

�2
Yℓ

�2ℓ

)
. (19)

Using equal weights for feasibility check and comparison is reasonable light of the

results in Section 5.4.1.

If we let �1 and �2 be the values for independent systems and �′1 and �′2 be the

values for correlated systems, then we can compute both values (the independent case

can only be calculated numerically for general �1 and �2, see Section 5.3.1), and the

ratio of the weighted averages of the expected sums of maximum number of required

samples is

Weighted average for independent systems

Weighted average for correlated systems
=

(
�2

�2
X

�2
+ �1

s

∑s
ℓ=1

�2
Yℓ

�2
ℓ

)

(
�′2

�2
X

�2
(1− �x) +

�′
1

s

∑s
ℓ=1

�2
Yℓ

�2
ℓ

) .

We desire to have a smaller value in the correlated case, so we need

�x >

⎛
⎜⎝1− �2

�′2
−

�1−�′1
s

∑s
ℓ=1

�2
Yℓ

�2
ℓ

�′2
�2
X

�2

⎞
⎟⎠ . (20)
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For example, if we let n0 = 20, 1 − � = 0.95, k = 5, s = 2, �1 = �2/s, and

�2
X

�2
=

�2
Yℓ

�2
ℓ

for ℓ = 1, 2, then the resulting �1, �2, �
′
1, �

′
2 can be found. Using these

settings, equation (20) shows that the weighted average of the expected maximum

number of required samples under correlation becomes smaller than the weighted

average of the expected maximum number of required samples under independent

sampling with just �x > 0.002. Thus, very little correlation may be needed to produce

quicker overall completion times for our ℋAK+ and ℳDR procedures under CRN.

The relative difficulty of feasibility check and comparison is critical to this anal-

ysis, as CRN can only improve the efficiency of the comparison phase. Moreover,

the above analysis uses the metric (19) to measure the difficulty of our constrained

R&S procedures, and different results will be obtained for other measures. Neverthe-

less, this section suggests that even a small amount of correlation can overcome the

conservative bounds required to ensure validity under CRN.

5.5 Experimental Evaluation and Comparison of Proce-

dures

We now present experimental results to illustrate the comparative performance of

our constrained R&S procedures. The experimental setup is as described in Section

5.4.1.1. The choice of b = (k + 1)/2 was shown to minimize PCS of simultaneously-

running procedures in Andradóttir and Kim [5], so we feature b = (k+1)/2 through-

out. For the purpose of our experiments, we choose the ratios �1 = �2 and �1 = �2/s

as our error allocations, as featured in the previous section, selecting valid values of

�2 or �2.

To demonstrate the validity of our procedures empirically, we discuss the observed

PCS of the procedures in Section 5.5.1. Section 5.5.2 compares the procedures in

terms of the number of required observations for multiple variance configurations.

Section 5.5.3 shows how the number of required observations changes as the number

of constrained performance measures increases. Finally, we provide results that show
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the effectiveness of CRN when coupled with a simultaneously-running procedure in

Section 5.5.4.

5.5.1 PCS

We are interested in inspecting the PCS for both valid and heuristic procedures with

both types of feasibility checks, ℱℐ
ℬ and ℱℐ

A. In Table 28, we present PCS results for

a small number of systems (k = 5) with five constraints. We choose v = 1, because

the feasibility check is easier when v is higher. Also, as k increases, the PCS of R&S

procedures usually increase, so a setup with a small number of systems k and violated

constraints v promises to be challenging in terms of validating PCS. We cover both

the DM and MIM configurations with L/L, H/L, and L/H variances.

Table 28: Observed PCS for k = 5 systems with s = 5 constraints, b = 3 feasible
systems, and v = 1 violated constraints.

DM MIM
L/L H/L L/H L/L H/L L/H

ℋAK(ℬ) 0.983 0.973 0.994 0.990 0.996 0.995
ℋAK(A) 0.981 0.973 0.993 0.990 0.996 0.994
ℋAK+(ℬ) 0.975 0.973 0.972 0.983 0.995 0.980
ℋAK+(A) 0.973 0.971 0.970 0.982 0.995 0.978
ℳDR(ℬ) 0.975 0.973 0.974 0.984 0.995 0.980
ℳDR(A) 0.974 0.971 0.971 0.982 0.995 0.979

We note that the observed PCS for all procedures, valid or heuristic, lies above

the nominal 0.95. The heuristic ℋAK can be conservative for both DM and MIM

configurations. The simultaneously-running procedures, ℋAK+ and ℳDR, tend to

be a little less conservative, except in the H/L case where the additional samples

ℋAK takes for feasibility check are dominated by hard comparison. There is a small

decrease in PCS between the valid feasibility check ℱℐ
ℬ and the heuristic version of ℱℐ

A,

but not enough to discourage use. In fact, the observed PCS of all of our remaining

configurations will lie above 0.95, so we will not feature PCS any further.
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5.5.2 Required Number of Observations

We wish to compare the effectiveness of our procedures and feasibility check options

in terms of the required number of observations. In Tables 29 and 30, we display

the average number of required observations for all combinations of our procedures

considering a large number of systems, k = 101, with s = 5 constraints. The number

violated constraints for each infeasible system is v = 1 for Table 29 and v = 5 for

Table 30.

Table 29: Average number of required observations for k = 101 systems with s = 5
constraints, b = 51 feasible systems, and v = 1 violated constraints.

DM MIM
L/L H/L L/H L/L H/L L/H

ℋAK(ℬ) 27560 68856 131026 3769 9713 14845
ℋAK(A) 27536 68835 130921 3768 9713 14843
ℋAK+(ℬ) 23552 67236 92782 4298 10343 13515
ℋAK+(A) 23523 67208 92631 4298 10343 13514
ℳDR(ℬ) 21208 67146 60506 3563 9667 8639
ℳDR(A) 21179 67118 60360 3562 9667 8637

Table 30: Average number of required replications for k = 101 systems with s = 5
constraints, b = 51 feasible systems, and v = 5 violated constraints.

DM MIM
L/L H/L L/H L/L H/L L/H

ℋAK(ℬ) 23524 64905 110256 3457 9295 12593
ℋAK(A) 19467 60836 90012 3217 9057 10293
ℋAK+(ℬ) 19975 63773 74080 4039 9957 11508
ℋAK+(A) 16438 60226 56403 3858 9763 10556
ℳDR(ℬ) 17740 63709 42150 3292 9290 6650
ℳDR(A) 14204 60162 24476 3095 9095 4692

Tables 29 and 30 show that ℳDR outperforms ℋAK and ℋAK+ in all cases,

documenting the desirable effects of dormancy. Moreover, ℋAK+ performs better

than ℋAK in all cases, except for the MIM mean configuration under the L/L and
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H/L variance configurations where feasibility check is relatively easy. The biggest

difference in performance is seen when feasibility check is hard, where ℳDR outper-

forms ℋAK and ℋAK+ by at least 30%, sometimes more. When comparison is hard,

ℳDR and ℋAK again are the most promising, with one configuration that favors

ℋAK (v = 5 and MIM).

The relative performance of the individual feasibility check options does not de-

pend heavily on our general procedures, ℋAK, ℋAK+, and ℳDR, but is highly

dependent on the number of violated constraints. Under v = 1, we see that the

performance of procedures with ℱℐ
ℬ is similar to that of procedures with ℱℐ

A. This

is expected, as aggregation is not very helpful when only one or two constraints are

violated. This changes in Table 30. ℱℐ
A is significantly superior in all cases when

v = 5, and the savings over ℱℐ
ℬ ranges from 5% to 40%, depending on the relative

difficulty of the feasibility check.

The performance of the procedures across the tables also indicates that a con-

strained R&S problem with v = 5 is easier than when v = 1, requiring at least 5%

less observations. When the feasibility check is relatively more difficult than compar-

ison, this effect is more pronounced with, with v = 5 requireing at least 19% fewer

observations for ℋAK, 8% fewer observations for ℋAK+, and 30% fewer observa-

tions for ℳDR. When the infeasible systems violate v = 5 constraints, the feasibility

check ends as soon as the first of these constraints is found infeasible (the minimum

of the five screening completion times). If all but one of the measures is feasible,

the feasibility check can be ended only by the one infeasible constrained performance

measure.

5.5.3 Cost of Additional Constraints

In this section, we would also like to investigate the cost of additional constraints,

as users may be interested in learning how many more (or less) observations would
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be needed to consider extra performance measures. In Section 5.4.1, a sublinear

increasing trend in observations was seen as the number of constraints increases.

Also, Section 5.5.2 indicates that a spectrum of results can be found, depending

on the number of violated constraints, v, where large v usually indicates a quicker

completion time than small v.

Therefore, our experiments consider the two cases, v ∈ {1, s}, for each number of

constraints, s ∈ {1, . . . , 5}, so that either all infeasible systems violate only one con-

strained performance measure, or and all infeasible systems violate every constrained

performance measure. It is reasonable that most results will fall between these two

cases. To increase the difference between the cases, we will implement ℱℐ
ℬ when v = 1

and ℱℐ
A when v = s, as Table 30 shows ℱℐ

A to be particularly efficient when v is high.

Figures 8 and 9 plot the required number of samples for each of our three pro-

cedures in the DM mean and L/L variance configuration and MIM mean and L/L

variance configuration, respectively, where comparison and feasibility check have sim-

ilar difficulties. The two lines plotted show the necessary observations under the

favorable case where v = s and ℱℐ
A is implemented and the more difficult case where

v = 1 and ℱℐ
ℬ is implemented. In the case when v = 1, we observe an increase in the

number of required observations as s increases, but this increase is sublinear, as in

Section 5.4.1.

Significantly, when v = s, for all of the procedures and configurations (except

ℋAK+ in MIM), we actually see an initial decrease in the number of observations.

This is due to a much faster feasibility check, as screening stops once the first infea-

sible performance measure is identified. Figures 8 and 9 feature a growing difference

between the cases (up to 20%) as the number of constraints grows. Thus, he in-

troduction of additional constraints can influence the performance of the algorithms

significally, but more constraints do not necessary mean more samples.
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Figure 8: Required number of observations as a function of the number of constraints
for the DM with L/L configuration considering k = 101 systems with b = 51. The
top line corresponds to ℱℐ

ℬ under v = 1, while the bottom line corresponds to ℱℐ
A

under v = s.
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Figure 9: Required number of observations as a function of the number of constraints
for the MIM with L/L configuration considering k = 101 systems with b = 51. The
top line corresponds to ℱℐ

ℬ under v = 1, while the bottom value corresponds to ℱℐ
A

under v = s.
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5.5.4 Common Random Numbers

The last topic for our experiments involves the savings experienced through the use of

CRN. As the positive correlation induced by CRN reduces the variances involved in

our comparison phase and not the feasibility check, we expect to see significant savings

in the number of required samples, albeit smaller than that observed in the pure

comparison of Kim and Nelson [30]. We inspect of use of CRN in the simultaneously

running ℳDR procedure, which has been shown to be valid under CRN.

Recall that �x denotes the correlation across systems’ primary performance mea-

sure samples, which we will test at varying levels to measure the effects of CRN.

We let the secondary performances measure samples be independent across systems.

Practically, correlation will occur and the values of �1 will be different when consid-

ering independent or correlated systems, but the magnitude of correlation should not

have a major impact as feasibility check procedures run separately for each system.

We present Table 31 as the experimental performance of the valid procedures

ℳDR under varying levels of correlations across systems. The configuration tested

in Table 31 features s = 5 constraints with v = 1 violated constraints for infeasi-

ble systems, corresponding to a difficult feasibility check. We seek to show in this

setup that CRN can provide considerable savings, but the presence of the feasibility

check will limit the savings. The first line for each procedure indicates the number of

required observations when systems are independent under valid parameters chosen

according to equation (13), while all other procedures experience some level of corre-

lation �x as represented by a superscript, ℳD�x
R , and operate under valid parameters

chosen as in equation (15) to account for possible correlation.

Table 31 clearly shows that as �x increases, the number of required observations

for ℳDR decreases. The amount of savings over the independent case are highly

influenced by the difficulty of the comparison. Utilizing CRN can provide substantial

savings under high correlation, reducing the number of required samples by 50%
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Table 31: Average number of required replications for k = 101 systems with s = 5
constraints, b = 51 feasible systems, v = 1 violated constraints, and differing levels of
correlation, �x, across systems. All procedures utilize ℱℐ

ℬ for feasibility check.

DM MIM
ℳDR(ℬ)�x L/L H/L L/H L/L H/L L/H
ℳDR(ℬ) 21208 67146 60506 3564 9667 8638

ℳDR(ℬ)0.00 21308 68423 60616 3571 9834 8649

ℳDR(ℬ)0.10 20260 62255 59494 3445 9162 8609

ℳDR(ℬ)0.25 19018 52086 57496 3299 7645 8330

ℳDR(ℬ)0.50 15794 37080 53647 3022 5659 8147

ℳDR(ℬ)0.75 13110 24254 50141 2855 3873 7852

ℳDR(ℬ)0.90 10860 15985 47500 2776 3060 7772

to 75% under hard comparison. We cannot save almost all observations for high

correlation as standard comparison procedures may be able to (see Kim and Nelson

[30]) because some samples must be used for feasibility check.

While ℳDR(ℬ)0.00 performs worse than ℳDR in Table 31 due to the use of valid

parameters values for correlated systems being applied to independent systems, the

observed positive correlation required to provide savings in the number of required

samples is low, less than �x = 0.1 for all configurations we considered. This is

consistent with our results in Section 5.4.2.2. Thus, CRN is an effective approach to

improve the efficiency of simultaneously-running constrained R&S procedures.

5.6 Conclusion

In this chapter, we present and analyze three fully-sequential ranking and selection

(R&S) procedures for finding the best simulated system that also satisfies constraints

on multiple secondary performance measures. These procedures are combined with

two valid feasibility check approaches, leading to six difference methods for solving

the general constrained R&S problem. We show that two of the procedures, ℋAK+

andℳDR, are statistically valid considering independent or correlated systems, while

the third procedure ℋAK may be a good heuristic option for independent systems.
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With regards to experimental design and implementation, we identify two major

issues, namely error allocation and use of common random numbers (CRN). In our

experimental results, we find that allocating error evenly between feasibility check and

comparison performs well in many configurations. We also show that CRN can effec-

tively reduce the number of observations required for comparison for procedures that

compare systems with equal sample sizes, even under a small amount of correlation.

Our experimental results also show that the number of required observations grows

at most sub-linearly as the number of constraints increases, but in some cases, the

number of observations could decrease due to an easier feasibility check. While all

procedures have their advantages, we find the ℳDR implemented with the ℱℐ
A feasi-

bility check is the best choice in many configurations.
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CHAPTER VI

A MINIMAL SWITCHING PROCEDURE FOR

CONSTRAINED RANKING AND SELECTION UNDER

INDEPENDENT OR COMMON RANDOM NUMBERS

The procedures for constrained R&S discussed in the previous chapters of this thesis

aim for efficiency in terms of observations required to find the best feasible system,

but there are none that we know of that address the cost of switching between systems

explicitly. While it is common to compare procedures based on the required number

samples to achieve a nominal PCS, the possibly high cost (in both time and storage)

of stopping and restarting complex simulations should also be considered. Hong and

Nelson [28] and Osogami [39] present two fully-sequential procedures that perform

valid comparison while limiting the number of switches.

As pointed out by Hong and Nelson [28] and Osogami [39], fully-sequential R&S

procedures, such as the KN procedure of Kim and Nelson [30], may become ineffi-

cient if the penalties for switching are large. These costs would also be incurred by

any constrained R&S procedure utilizing similar fully-sequential algorithms for com-

parison. Simulating systems in parallel could reduce switching costs, however, this is

not always advisable as parallel computing involves its own complexities (including

coordination among processors). Thus, we present a new fully-sequential indifference-

zone procedure, named the Constrained Minimal Switching (CℳS) procedure, that

addresses the concern of switching costs, while identifying the best feasible system.

Minimal switching procedures reduce the cost of stopping and restarting simula-

tions, but often require extra samples to ensure that the number of switches in the

comparison phase does not exceed the number of systems. We investigate the use of
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common random numbers (CRN), a variance reduction technique, to reduce the num-

ber of required samples for CℳS. Chapter 5 studied the use of CRN in constrained

R&S. We proved the validity of two procedures that always compare systems with

equal sample sizes, but expressed concerns about the validity of comparing systems

with unequal sample sizes under CRN. In this chapter, we provide experimental re-

sults that show that PCS can be significantly degraded under high correlation. Since

unequal sample sizes commonly occur within our new minimal switching procedure

(and other procedures), we present four variance estimate modifications and show

that their use within CℳS under CRN captures savings, while still providing good

PCS.

This chapter is organized as follows. Section 6.1 outlines the problem of con-

strained R&S, details notation, and sets assumptions for the validity of our proce-

dure. Section 6.2 introduces the CℳS procedure and includes a proof of its validity

for independently simulated systems. In Section 6.3, we motivate the use of CRN,

discuss its effects within our CℳS procedure, and propose modifications to address

its challenges. Section 6.4 features experimental results, followed by conclusions in

Section 6.5.

6.1 Background

The goal of constrained R&S is the selection of the best system according to a primary

performance measure out of a fixed number of alternatives, k, with constraints on

s secondary performance measures. We outline the problem in Section 6.1.1, and

introduce notation necessary for our algorithm and its proof in Section 6.1.2.

6.1.1 Problem Formulation

Let (Xin, Yi1n, . . . , Yisn) be the nth observation of the ith system for the primary

performance measure and s secondary performance measures. We consider the set of

all possible systems S = {1, . . . , k}. We let xi = E[Xin] and yiℓ = E[Yiℓn] be the mean
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values of the primary and secondary performance measures for each system i ∈ S and

constraint ℓ = 1, . . . , s. Therefore our objective is to determine which system has the

best primary performance measure, while also satisfying all constraints:

argmax
i∈S

xi

s.t. yiℓ ≤ qℓ for all ℓ = 1, . . . , s.

We let �2
xi

= Var[Xin] for all i and �2
yiℓ

= Var[Yiℓn] for all i and ℓ. Moreover, the

relationship between performance measures is governed by the following assumption.

Assumption 17. For each i = 1, 2, . . . , k,
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Xin

Yi1n

...

Yisn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

iid∼ MN

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

xi

yi1
...

yis

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,Σi

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

n = 1, 2, . . .

where
iid∼ denotes independent and identically distributed, MN denotes multivari-

ate normal, and Σi is the (s + 1) × (s + 1) covariance matrix of the vector

(Xin, Yi1n, . . . , Yisn).

The normality of data is a common assumption within ranking and selection,

achieved through within-replication averages or batched means (Law and Kelton [33]).

Furthermore, data points can be correlated across systems due to CRN and across

performance measures.

The procedure detailed in this chapter utilizes the indifference-zone method for

both the feasibility check and comparison phases. For all systems involved in the

simulation, we designate the indifference-zone parameter, �, as the smallest significant

difference between systems’ primary performance measures. So, we are “indifferent”

between systems that have means within � of each other.

Likewise, we consider the tolerance level �ℓ to be the smallest significant difference

between yiℓ and qℓ. Therefore, we can place all systems into three sets in terms of
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feasibility. If system i is in SD, the set of desirable systems, then yiℓ ≤ qℓ − �ℓ for

all ℓ = 1, . . . , s. SU is the set of undesirable systems where at least one secondary

performance measure, yiℓ, is infeasible, so that yiℓ > qℓ + �ℓ. All systems not in SD or

SU fall into SA, the set of acceptable systems.

Assumption 18. Let x[b] ≥ xi + � for all i ∈ SD ∪ SA ∖ {[b]}, where [b] is the index

of the best feasible system.

Under Assumption 18, we let CS be the correct selection event that system [b]

is declared feasible and all systems in S ∖ {[b]} are eliminated. If all systems are

infeasible, then CS is the event that all systems in S are eliminated. We desire to

ensure a nominal PCS at least 1− �.

6.1.2 Notation and Assumptions

We present the following notation:

n0 = the first-stage sample size;

S2
Xij

= the sample variance of the paired difference of {Xi1, . . . , Xin0
} and

{Xj1, . . . , Xjn0
};

S2
Xi

= the sample variance of {Xi1, . . . , Xin0
}.

S2
Yiℓ

= the sample variance of {Yiℓ1, . . . , Yiℓn0
} the ℓth constraint of system i);

Y in = (Yi1n, Yi2n, . . . , Yisn)
T ;

R(r; a, b, d) = max{0, bd
2a

− a
2
r}, for a, b, d ∈ ℝ

+ and a ∕= 0;

CSi = the event that a good selection is made in pairwise comparison of systems i

and [b], for any i ∈ SD ∪ SA with x[b] ≥ xi + �;

CDi = the event that correct decision is made on the feasibility of system i ∈ S

(when i ∈ SA, CDi can be infeasible or feasible);

�1 = the error of an individual feasibility check for one performance measure of one

system;

�2 = the error of an individual comparison between two systems.
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With this notation, we now present two assumptions that govern good feasibility

check and comparison phases. Assumptions 19 and 20 ensure that feasibility check

and comparison are handled in a valid manner.

Assumption 19. The systems are simulated independently, and the feasibility check

phase guarantees Pr{∩i∈S′ CDi} ≥ (1−s�1)
t for any 1 ≤ t ≤ k and any subset S ′ ⊆ S

with cardinality t, (i.e., ∣S ′∣ = t) under s constraints.

Assumption 20. The systems are simulated independently, and the comparison

phase guarantees Pr{∩i∈S′ CSi} ≥ (1 − �2)
t for any 1 ≤ t ≤ k − 1 and any sub-

set S ′ of {i ∈ {1, . . . , k} : xi ≤ x[b] − �} with cardinality t (i.e., ∣S ′∣ = t).

6.2 Constrained Minimal Switching Procedure – CℳS

In this section, we present a new approach for constrained R&S, namely CℳS, that

minimizes the cost of switching from one system to another. This cost is often not

factored into R&S studies, but it can comprise a large portion of the computation

time.

We chose to feature two fully-sequential procedures for the feasibility check and

comparison phases in CℳS, although many procedures satisfy Assumptions 19 and

20, including some two-stage procedures. Fully-sequential procedures have been

shown to be efficient in many configurations, as comparison and feasibility check can

be reevaluated after every stage of sampling, possibly with as little as one additional

observation.

The feasibility check phase of CℳS is performed by the ℱℐ
ℬ procedure of Batur

and Kim [7] (with c = 1), a general, fully-sequential, and valid method for determining

feasibility of multiple constrained performance measures. The comparison phase of

CℳS is performed by the ℳSS procedure of Hong and Nelson [28], modified as de-

scribed in their Remark 3. While Hong and Nelson [28] proposed two fully-sequential

R&S procedures that minimize the number of switches, utilizing the continuation
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region of the SSℳ method of Pichitlamken et al. [41], we chose the valid ℳSS

procedure for implementation into our CℳS switching procedure.

Our new constrained R&S procedure will retain the fully-sequential approaches

of the feasibility check and comparison procedures, but requires an additional step

to ensure minimal switching while also performing feasibility checks. The procedure

will visit each system at most once after the first stage. To achieve this, at least

one system must receive a large number of samples, the maximum necessary to com-

plete comparison with all other systems. Therefore, we expect this algorithm to be

conservative in terms of observations, but a good choice if switching costs are high.

The CℳS procedure consists of three steps, namely sorting the systems by pri-

mary performance measure after the first-stage of sampling, performing feasibility

check on systems according to their sorted order to find the initial guess for the best

feasible system (B), and then comparing the current guess for the best feasible sys-

tem (B) with the next best available system (A), until no systems remain. Sampling

occurs for only the next best available system A. Each successive system A is simul-

taneously tested for feasibility and compared to B. System A can become the current

guess for best feasible system only if it is found feasible and superior to system B. If

one of these conditions is found not to be true, A is eliminated, a new A is chosen to

be the next available system, and sampling shifts to the new system A. This proceeds

until all available systems are eliminated by comparison or feasibility check.

Procedure [CℳS for Multiple Constraints]

Setup: Select the overall confidence level 1/k ≤ 1 − � < 1 and first–stage sample

size, n0 ≥ 2. Choose �, �ℓ, and qℓ for ℓ = 1, 2, . . . , s. Let �1 =
1
2
((2�1)

−2/(n0−1)−1)

and �2 =
1
2
((2�2)

−2/(n0−1) − 1), where �1 = �2/s and �2 is the unique solution to

the equation �2 + 2[1− (1− �2)
(k−1)/2] = �.

Initialization: Let ℎ2
1 = 2�1(n0 − 1) and ℎ2

2 = 2�2(n0 − 1). Obtain n0 observations

Xin and Y in from each system i ∈ S. For all i and ℓ, compute the estimators S2
Yiℓ
.
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Similarly, for all i and j ∕= i, compute the estimator S2
Xij

. Also compute Nij for

all i, j ∈ S and i ∕= j, where

Nij = max

{
n0,

⌈
ℎ2
2S

2
Xij

�2

⌉}

and ⌈⋅⌉ is the ceiling function. Let SIi = ∅ be the set of systems inferior to system

i ∈ S in terms of the primary performance measure. Let Ki = ∅ be the set of

constraints found to be feasible for system i ∈ S and let the set of contending

systems include all systems, M = S. The procedure will require the calculation

of the maximum number of samples required for system i to complete comparison

with all systems remaining in contention:

Ni = max
j∈M∖(SIi∪{i})

Nij. (21)

Set the observation counters ri = n0 for all i ∈ S.

Finding a Feasible System:

Initial Sorting: Sort the systems in M based on the first-stage sample means

X̄i =
1
n0

n0∑
n=1

Xin. Let B and A be the systems in M with the best and second-best

first stage sample means.

Initial Screening for Comparison: Compare all systems i ∕= j in M based on

n0 samples. If
n0∑

n=1

Xin ≥
n0∑

n=1

Xjn +R(n0; �, ℎ
2
2, S

2
XBj

),

then add j to SIi. Compute NB using (21).

Initial Feasibility Check: For system B and ℓ /∈ KB, if

rB∑

n=1

(YBℓn − qℓ) ≥ R(rB; �ℓ, ℎ
2
1, S

2
YBℓ

),

declare B to be infeasible. Else if

rB∑

n=1

(YBℓn − qℓ) ≤ −R(rB; �ℓ, ℎ
2
1, S

2
YBℓ

),

add ℓ to KB. If ∣KB∣ = s, declare B to be feasible, remove all systems in SIB

from M , and update A, if necessary.
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Stopping Rule: If B is feasible and ∣M ∣ = 1, declare B as the best feasible

system. If B is infeasible and ∣M ∣ = 1, then no feasible systems exist. If B is

feasible and ∣M ∣ > 1, proceed to Feasibility and Comparison of A with B.

If B is infeasible and ∣M ∣ > 1, then remove B from M , set B = A, compute NB

using (21), let A be the best system in M ∖ {B} if M ∖ {B} ∕= ∅, and proceed to

Initial Feasibility Check. Otherwise, take an additional sample from system

B, XB,rB+1 and Y B,rB+1, and set rB = rB + 1. If rB = NB, store
NB∑

n=n0+1

XBn. Go

to Initial Feasibility Check.

Feasibility and Comparison of A with B

Sampling for Comparison: Find NA using (21). If rB < NB, take an addi-

tional NB − rB observations from system B and set rB = NB.

Comparison: If B /∈ SIA and

rA − n0

NB − n0

NB∑

n=n0+1

XBn +

n0∑

n=1

XBn ≥
rA∑

n=1

XAn +R(rA; �, ℎ
2
2, S

2
XBA

),

then remove A from M and go to Stopping Rule.

If B /∈ SIA,

rA − n0

NB − n0

NB∑

n=n0+1

XBn +

n0∑

n=1

XBn ≤
rA∑

n=1

XAn −R(rA; �, ℎ
2
2, S

2
XBA

), (22)

and A is feasible, then remove B from M . If B /∈ SIA, (22) is true, and A’s

feasibility is undetermined, add B to SIA.

Feasibility: If the feasibility of A is unknown, use the same procedure as Initial

Feasibility Check, except substitute A for B. If A is feasible, remove all system

in SIA from M . If A is infeasible, eliminate system A from M .

Stopping Rule: If ∣M ∣ = 1, stop and declare the remaining system as the best.

If B /∈ M , then set B = A, update A, and go to Sampling for Comparison.

If A /∈ M , update A and go to Sampling for Comparison. Otherwise, take an
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additional sample from system A, XA,rA+1 and Y A,rA+1, and set rA = rA + 1. If

rA = NA, store
NA∑

n=n0+1

XAn. Go to Comparison.

The step of taking NB samples for the current guess for the best feasible system al-

lows the procedure to make statistically valid decisions, while minimizing the number

of switches. Each system is sampled at most twice, once for first-stage sampling and

sorting and once for feasibility check and comparison. The procedure utilizes only NB

samples for comparison, even if more samples are obtained in a long feasibility check.

This is desirable because Chapter 4 show that primary performance measure sample

means may be biased at the completion of feasibility check if primary and secondary

performance measures are correlated, so observations past NB are possibly harmful.

To prove the validity of CℳS, we first require the following lemma for proving

the validity of procedures for constrained R&S that perform feasibility check and

comparison simultaneously:

Lemma 3. (Chapter 5) Under Assumptions 17, 18, 19, and 20, a simultaneous

procedure guarantees

Pr{CS} ≥ (1− s�1)
j + (1− s�1) + (1− �2)

k−j−1 − 2

when the number of undesirable systems is less than k, and Pr{CS} ≥ (1 − s�1)
k

when the number of undesirable systems is equal to k.

Lemma 3 allows us to present the main result in this section. Note that for fixed

k and �, 2(1− �2)
(k−1)/2 − �2 − 1 monotonically decreases from 1 to -2 as � increases

from 0 to 1, guaranteeing a unique solution to equation (23) below.

Theorem 8. When the systems are simulated independently and Assumptions 17 and

18 hold, CℳS guarantees

Pr{CS} ≥ 1− �
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when

2(1− �2)
(k−1)/2 − �2 − 1 ≥ 1− �. (23)

Proof: We show that CℳS satisfies the conditions of Lemma 3. ℱℐ
ℬ is proven to

satisfy Assumption 19 under Assumption 17, see the proof of Corollary 1 of Batur

and Kim [7]. Assumption 20 follows from the proof of validity of ℳSS using Fabian’s

bound, see Hong and Nelson [28] and Pichitlamken et al. [41].

As CℳS satisfies Assumptions 19 and 20, we apply Lemma 3 and the fact that

�1 = �2/s, and obtain that CℳS guarantees

Pr{CS} ≥ (1− s�1)
j + (1− s�1) + (1− �2)

k−j−1 − 2

= (1− �2)
j + (1− �2) + (1− �2)

k−j−1 − 2 (24)

when the number, j, of undesirable systems is less than k and Pr{CS} ≥ (1− s�1)
k

when j = k. Remark 2 of Chapter 5 shows that the lowest Pr{CS} occurs when

j < k, so any �1 that guarantees Pr{CS} ≥ 1− � for j < k also guarantees Pr{CS}

when j = k.

Since j = (k − 1)/2 minimizes the right-hand side of (24), the definition of �2

yields

Pr{CS} ≥ 2(1− �2)
(k−1)/2 − �2 − 1

= 1− �,

which concludes the proof.

6.3 CRN and Two-Sample Comparison

In our new switching procedure, we require the current best system B to take NB

samples, the maximum samples necessary to make a decision against any remaining

system. To reduce this large number of observations, we turn to a popular variance

technique, namely common random numbers (CRN), which Nelson and Matejcik [36],
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Chick and Inoue [18], Kim and Nelson [30], and Chapter 5 among others, show can

be used to improve efficiency of both original and constrained R&S procedures.

Proper implementation of CRN can result in quicker decisions by inducing pos-

itive correlation across systems. Since S2
Xij

is defined as the sample variance of the

difference of paired samples from systems i and j, positive correlation across systems

can reduce the value of S2
Xij

significantly. In procedures that compare systems at even

sample sizes, such as KN of Kim and Nelson [30], only a simple parameter adjustment

to �2 is needed make valid selection under CRN. Unfortunately, we cannot make valid

decisions under CRN for two-sample procedures that compare systems with unequal

sample sizes (ℳSS was proven valid for comparison of independent systems only).

We show how variance estimates in CℳS under CRN negatively impact the va-

lidity of the procedure in Section 6.3.1, and propose four modifications to correct the

estimates in Section 6.3.2.

6.3.1 Comparison with Positive Correlation

Two-sample procedures that estimate variance with S2
Xij

can underestimate the vari-

ability of the screening process observed. In our minimal switching procedure, screen-

ing is performed and a decision to continue sampling is based on a function of

rA − n0

NB − n0

NB∑

n=n0+1

XBn +

n0∑

n=1

XBn,

rA∑

n=1

XAn,

and an estimate of the variance of the difference of these two sums. If rB = rA = r,

rS2
XBA

is an estimator of

Var

[
r∑

n=1

XBn −
r∑

n=1

XAn

]
= r(�2

xB
+ �2

xA
− 2�x

√
�2
xB
�2
xA
), (25)

where �x is defined as the correlation between XBn and XAn.

However, if we assume that rA ≪ rB = NB, we create a situation commonly

addressed in the CℳS procedure. Here, the sum for system B is pegged at the

121



random time NB, a sample size many times larger than rA. Thus, as we increment

rA

Var

[
rA − n0

NB − n0

NB∑

n=n0+1

XBn +

n0∑

n=1

XBn −
rA∑

n=1

XAn

]

≈ Var

[
n0∑

n=1

(XBn −XAn)

]
+Var

[
rA∑

n=n0+1

XAn

]

= n0(�
2
xB

+ �2
xA

− 2�x

√
�2
xB
�2
xA
) + (rA − n0)�

2
xA
. (26)

When �x is large, the quantity estimated by rAS
2
XBA

in (25) could be smaller than

the variability observed by the process in (26). This underestimation of variability

can cause premature decisions, hurting Pr{CSi}. The poor variance estimate creates

a continuation region, R(r; �, ℎ2
2, S

2
XBA

), that is too small to make a valid decision.

We present an empirical study where we compare two systems, separated by the

distance of the indifference-zone, �, with system 1 being the preferable choice. Table

32 shows the observed Pr{CS2} of a two-sample comparison under varying correlation

�x ∈ {0.0, 0.5, 0.6, 0.7, 0.8, 0.9} and initial sample size differences. The two-sample

procedure implemented for Table 32 is the SSℳ procedure of Pichitlamken et al. [41],

the underlying approach for the more efficient version of ℳSS incorporating Fabian’s

bound that is implemented within CℳS. To simulate two-sample comparison, let

r1 ∈ {20, 30, 45, 70, 120, 200, 300, 500} and r2 = 20, so that we give system 1 more

samples than system 2. Comparison is performed until a system is eliminated with a

nominal Pr{CS2} of 0.95.

Table 32 shows that for correlation, �x, greater than 0.5, we can see degradation of

Pr{CS2} from the independent, even-sample case (�x = 0 and r1 = r2 = 20). We also

note that when �x > 0.5 and the gap between the initial sample sizes or �x increases,

we observe even worse Pr{CS2} values. For �x ≥ 0.7, we can no longer expect the

Pr{CS2} to meet nominal levels.
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Table 32: Observed Pr{CS2} with x1 = � = 1/
√
20, x2 = 0, �2

x1
= �2

x2
= 1, r2 = 20,

and varying correlation, �x after 10, 000 replications.

�x = 0 �x = 0.5 �x = 0.6 �x = 0.7 �x = 0.8 �x = 0.9

r1 = 20 0.976 0.978 0.981 0.981 0.985 0.991
r1 = 30 0.977 0.978 0.978 0.974 0.965 0.949

r1 = 45 0.976 0.976 0.974 0.970 0.951 0.910

r1 = 70 0.979 0.977 0.974 0.963 0.935 0.894

r1 = 120 0.981 0.978 0.972 0.955 0.923 0.879

r1 = 200 0.988 0.981 0.968 0.948 0.918 0.870

r1 = 300 0.990 0.979 0.967 0.947 0.913 0.868

r1 = 500 0.994 0.981 0.969 0.945 0.910 0.867

6.3.2 Heuristic Modifications

We introduce four heuristic modifications to attempt to provide the desired Pr{CSi}

for two-sample comparisons. We will test the modifications within the CℳS proce-

dure and the ℋAK procedure of Chapter 5, but the modifications should also prove

useful for any general R&S or constrained R&S procedure that utilizes a two-sample

comparison. In Section 6.3.2.1, we describe a simple, but conservative modification.

In Sections 6.3.2.2, 6.3.2.3, and 6.3.2.4, we introduce variations that will allow for

the possibility to significantly benefit from CRNs, while still maintaining the nominal

PCS within the constrained R&S procedures.

The approaches require the computation of the first-stage marginal sample vari-

ances for each system. Recall that for system i, this quantity is S2
Xi
. Also note that

when incorporated in CℳS, these approaches will not only change variance estimates

in comparison screening, but also the Nij values that represent the maximum number

of samples needed to complete comparison of systems i and j.

6.3.2.1 Two-Sample Modification 1: TS1

The main concern with fully-sequential two-sample procedures under CRN lies in the

underestimation of the variability of the comparison. Under positive correlation, we
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do have an upper bound for the variability, namely S2
Xi

+ S2
Xj
. Therefore, for TS1,

we will replace S2
Xij

with

Ŝ2
Xij

= S2
Xi

+ S2
Xj

throughout the entire procedure. The savings due to the decrease in the variability of

the even-sample process described in equation (25) is almost all lost, as the variance

estimate is overly conservative. This modification restores the observed PCS, but will

perform similarly to the case when systems are simulated independently.

6.3.2.2 Two-Sample Modification 2: TS2

While TS1 provides a valid decision, it does not utilize the positive correlation. Our

second modification benefits from the reduction of variance CRN can provide, but

only when sample sizes are equal. If sample sizes are not equal, we make decisions

based on the conservative estimate of S2
Xi

+ S2
Xj
. Thus, for TS2, we will replace S2

Xij

with

Ŝ2
Xij

=

⎧
⎨
⎩

S2
Xi

+ S2
Xj
, if ri ∕= rj,

S2
Xij

, otherwise.

Unfortunately, when CℳS is implemented, ri ∕= rj for almost all samples. There-

fore, the results obtained for TS1 and TS2, applied within CℳS, will be virtually

identical. However, for other procedures such as ℋAK, this may still be a desirable

modification as shown in Section 6.4.2.2.

6.3.2.3 Two-Sample Modification 3: TS3

The discussion in Section 6.3.1 suggests that the continuation region is corrupted

when S2
Xij

< S2
Xi

and ri < rj. Instead of reverting to the conservative estimate of

variability when sample sizes are not equal, we use S2
Xi

as a bound on variability,
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when ri is less than rj. Therefore, for TS3, we will replace S2
Xij

with

Ŝ2
Xij

=

⎧
⎨
⎩

max
{
S2
Xi
, S2

Xij

}
, if ri < rj,

max
{
S2
Xj
, S2

Xij

}
, if ri > rj,

S2
Xij

, otherwise.

6.3.2.4 Two-Sample Modification 4: TS4

In a more aggressive modification, we note that when rj is large and ri ≈ 0, S2
Xi

would

dominate the variability of the process in equation (26). However, when ri and rj

are close, we would see variance closer to S2
Xij

. This suggests that when ri < rj, the

variance estimate Ŝ2
Xij

should be close to S2
Xi

for small ri, and Ŝ2
Xij

should approach

S2
Xij

as ri approaches rj. Hence, in TS4, we will replace S2
Xij

with

Ŝ2
Xij

=

⎧
⎨
⎩

max
{rj − ri

rj
S2
Xi

+
ri

rj
S2
Xij

, S2
Xij

}
, if ri < rj

max
{ri − rj

ri
S2
Xj

+
rj

ri
S2
Xij

, S2
Xij

}
, if ri > rj

S2
Xij

, otherwise.

Of all the proposed modifications, it is reasonable to expect TS4 to approximate the

variability of (26) the best, making it the most promising heuristic (i.e., we expect

TS4 to require the least number of observations to produce the desired PCS). We

will present experimental results for all four modifications under differing levels of

correlation �x in Section 6.4.2.2 below.

6.4 Experimental Results

In this section, we evaluate the performance of our new CℳS procedure compared

to the performance of other constrained R&S procedures, namely ℋAK, ℋAK+,

and ℳDR of Chapter 5, in terms of the number of switches, number of required

observations, and observed PCS. In Section 6.4.1, we discuss the experimental setup
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for all of our tests. We provide an analysis of CℳS with and without the heuristic

modifications to incorporate CRN in Section 6.4.2.

6.4.1 Setup

The mean and variance configurations for our experiments attempt to provide anal-

ogous results and analysis to the experimental studies of previous, related fully-

sequential indifference-zone R&S studies, namely Kim and Nelson [30], Hong and

Nelson [28], Pichitlamken et al. [41], Andradóttir and Kim [5], and Chapters 4 and 5.

Our experiments will test the procedures in several different combinations of means

and variances with 10,000 macro-replications. For all tests, we set n0 = 20, and � and

�ℓ equal to the sample standard deviation 1/
√
20 of the average when samples have

a variance of 1 for all ℓ = 1, 2, . . . , s. We set a nominal PCS of 1− � = 0.95. We set

the number of acceptable system in SA to be zero, as Andradóttir and Kim [5] show

the existence of acceptable systems does not affect results significantly.

The difficult means configuration (DM) attempts to test the validity of the proce-

dures by assigning system means in the most challenging setup. Systems are placed

into two groups with respect to the best feasible system: some systems are only

slightly inferior, but also feasible by a small amount, and some systems are vastly

superior and also only slightly infeasible. In this setup, we define a slightly inferior

system to be a distance of the indifference-zone parameter, �, away from x[b]. We

also define slightly feasible (infeasible) to imply that a system’s mean secondary per-

formance measure ℓ lies a tolerance-level, �ℓ, below (above) the constraint, qℓ, for

ℓ = 1, 2, . . . , s.

As an added consideration for multiple constraints, we recognize that the number

of infeasible constraints of an infeasible system is important. Thus, in addition to

considering the number of total systems, k, and the number of feasible systems, b,
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we will also look at the number of violated constraints, v ∈ {1, . . . , s}, for infeasible

systems. Hence, in the DM configuration,

xi = E[Xin] =

⎧
⎨
⎩

0, i = 1, 2, . . . , b− 1,

�, i = b,

(i− 1)�, i = b+ 1, . . . , k,

and

yiℓ = E[Yiℓn] =

⎧
⎨
⎩

−�ℓ, i = 1, 2, . . . , b,

�ℓ, i = b+ 1, . . . , k and ℓ = 1, 2, . . . , v,

−�ℓ i = b+ 1, . . . , k and ℓ = v + 1, v + 2, . . . , s.

We set the constraint levels, qℓ, to zero.

We also consider the MIM configuration, which will allow us to determine the effi-

ciency at which the procedures determine the feasibility of clearly infeasible or feasible

systems and compare substantially distant systems. In the MIM configuration,

xi = E[Xij ] = (i− 1)�, i = 1, 2, . . . , k,

and

yiℓ = E[Yiℓj] =

⎧
⎨
⎩

−(b− i+ 1)�ℓ, i = 1, 2, . . . , b,

(i− b)�ℓ, i = b+ 1, . . . , k, and ℓ = 1, 2, . . . , v,

−(i− b)�ℓ, i = b+ 1, . . . , k, and ℓ = v + 1, v + 2, . . . , s,

where again we set qℓ = 0.

For the experiments, we examine a combination of variance configurations to test

the procedures under different difficulty of feasibility check and comparison. We

consider a similar setup to Chapter 5, as we include low (L) and high (H) variances for

the primary and secondary performance measures, �2
xi

and �2
yiℓ
, respectively, but the

H variance is larger than in Chapter 5 while the low variance remains the same. For
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simplicity, all secondary performance measures ℓ = 1, 2, . . . , s are assigned identical

variances. High variance results in either �2
xi
= 10 or �2

yiℓ
= 10 and low variance sets

�2
xi
= 1 or �2

yiℓ
= 1.

As in Section 6.3, we let �x be the correlation across systems primary performance

measure samples. We will consider both independently simulated systems and sys-

tems with induced �x > 0, modeling CRN. Andradóttir and Kim [5] and Chapter 4

present empirical results that show that the correlation across primary and secondary

performance measures does note have a major impact on performance, so we will not

revisit the topic in this chapter.

Similarly, Batur and Kim [7] show that correlation across only secondary per-

formance measures does not largely affect the performance of the feasibility check

procedure ℱℐ
ℬ . We expect similar conclusions would be found here, and hence im-

plement our procedures with independent secondary performance measure samples.

Finally, we assume the constrained performance measures are not correlated across

systems under CRN. In practice, secondary performance measures will likely be cor-

related across systems, but this correlation is unlikely to have a major impact on

performance, since feasibility check is performed separately for individual systems.

6.4.2 Results

In our experimental results, we display the effectiveness of multiple constrained R&S

procedures, with respect to observed PCS, average number of required samples, and

average number of switches. We define a switch to be the initialization and resuming

of sampling for a system. A two-stage procedure for k systems (all feasible) requires at

most 2k switches, two sets of sampling for each system (one to gather first-stage sam-

ples and one to complete comparison). Fully-sequential procedures register a switch

after each stage of sampling for every system remaining in contention. In Section

6.4.2.1, we will consider independent systems. We show how the use of CRN affects
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the performance of ℋAK of Chapter 5 and CℳS in Section 6.4.2.2. We conclude

Section 6.4.2.2 with an analysis of how our heuristic modifications can produce good

PCS for procedures with high correlation.

6.4.2.1 Systems under Independent Sampling

To evaluate the performance of CℳS under independent sampling of systems, we

compare it to three procedures for constrained R&S, namely the ℋAK, ℋAK+, and

ℳDR procedures. ℋAK is a sequentially-running procedure, performing a complete

feasibility check of all systems and then a comparison on the systems found feasible.

This procedure is most efficient when feasibility check is quick to finish. ℋAK+ and

ℳDR are simultaneously-running procedures that perform both feasibility check and

comparison on all systems remaining in contention after each stage of sampling. These

simultaneously-running procedures are preferable in cases when feasibility check is

relatively difficult.

We operate the four procedures under similar setups. For example, we choose

�1 = �2 in ℋAK and �1/s = �2 in ℋAK+, ℳDR, and CℳS, so that error is

allocated equally between feasibility check and comparison. This allocation was shown

experimentally to be a robust choice in Chapter 5. All procedures are implemented

with the feasibility check procedure, ℱℐ
ℬ , although there are other methods that could

be utilized (see, e.g., Batur and Kim [7]).

Tables 33, 34, and 35 display the observed PCS, average number of observations,

and average number of switches, respectively, for 15 systems with 8 feasible and

101 systems with 51 feasible, in addition to three constraints and a combination of

various mean and variance configurations. Each infeasible system violates only one

of the constraints. We choose b = ⌈k+1
2
⌉ to minimize the PCS of our procedures.

This setup challenges the PCS of the procedures, as shown by Andradóttir and Kim

[5] and in Chapter 5. Half of the systems must be eliminated by comparison and
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half must be eliminated by feasibility check. The feasibility check is also difficult, as

screening must catch the single violated constraint.

Table 33: Observed PCS for procedures with k independent systems, s = 3 con-
straints, b feasible systems, and v = 1 infeasible constraints.

DM (�2
xi
/�2

yiℓ
) MIM (�2

xi
/�2

yiℓ
)

k = 15, b = 8 L/L L/H H/L H/H L/L L/H H/L H/H

ℋAK 0.985 0.998 0.977 0.977 0.994 0.999 0.992 0.996
ℋAK+ 0.980 0.981 0.979 0.963 0.990 0.993 0.990 0.992
ℳDR 0.980 0.985 0.979 0.963 0.990 0.993 0.990 0.992
CℳS 0.993 0.994 0.994 0.989 1.000 1.000 1.000 1.000

k = 101, b = 51

ℋAK 0.999 0.993 0.981 0.999 1.000 1.000 0.999 1.000
ℋAK+ 0.999 0.995 0.980 0.999 0.999 0.999 0.999 0.998
ℳDR 0.999 0.995 0.980 0.999 0.999 0.999 0.999 0.998
CℳS 1.000 0.996 0.999 0.999 1.000 1.000 1.000 0.998

Table 34: Average number of required samples for procedures with k independent
systems, s = 3 constraints, b feasible systems, and v = 1 infeasible constraints.

DM (�2
xi
/�2

yiℓ
) MIM (�2

xi
/�2

yiℓ
)

k = 15, b = 8 L/L L/H H/L H/H L/L L/H H/L H/H

ℋAK 2662 23684 14762 26607 1159 9753 7370 11654
ℋAK+ 2392 17416 14829 23734 1270 8279 7427 12646
ℳDR 2217 10775 14828 22101 1062 5600 7424 10633
CℳS 3472 12264 31645 38342 1833 6100 19163 22275

k = 101, b = 51

ℋAK 24695 225314 123517 246082 3566 25555 17470 29427
ℋAK+ 23097 152777 126224 232750 3986 22059 17873 34422
ℳDR 21783 99735 126193 220442 3425 13883 17545 26326
CℳS 30804 107019 281492 354863 5232 14717 43317 51674

Since CℳS was proven valid, the performance in Table 33 is expected to be better

than the nominal 0.95. We observe this to be true in all cases. Moreover, CℳS

commonly provides a higher PCS than the other procedures, which is a result of the

extra samples needed to limit switches during the procedure’s comparison phase. The

observed PCS is much higher for k = 101 than when k = 15, for all four procedures.
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The comparison phase of CℳS can make this procedure less attractive than the

other procedures in terms of the number of required observations. Still, Table 34

shows this is not always the case. When comparison and feasibility check phases

are equally difficult (L �2
xi
/L �2

yiℓ
and H �2

xi
/H �2

yiℓ
), CℳS will require as much as

110% more observations. Under hard comparison (H/L), this extra percentage rises

to about 160%. However, when only feasibility check is difficult (L/H), CℳS can be

relatively efficient, bettering the totals of all procedures exceptℳDR. By determining

feasibility only for systems with the most attractive primary performance measures,

our switching procedure CℳS spends fewer observations on the feasibility check. The

results under k = 15 and k = 101 are similar, besides the larger number of required

observations for k = 101.

Table 35 shows why CℳS is a competitive procedure when the cost of switches is

counted. For every configuration, CℳS requires 2k or less switches when simulating

k systems, including first-stage samples and the following feasibility checks and com-

parison. At times, systems will not require additional samples past the first-stage,

resulting in less than 2k switches. The other simultaneously-running procedures,

ℋAK+ and ℳDR, can require thousands of switches, as every stage of sampling

consists of as little as one observation from each system in contention. ℋAK is a

special exception. When feasibility check is difficult and no additional samples are

needed to complete comparison (L/H), ℋAK can also achieve the minimum num-

ber of possible switches. However, this performance is not seen in hard comparison

configurations, where CℳS clearly outperforms ℋAK.

To illustrate the combined cost of sampling and switching for our systems, we

present Tables 36 and 37 as the combined cost of observations in Table 34 and switches

in Table 35. Hong and Nelson [28] perform an analysis of total costs when switch-

ing costs a factor of 1, 10, 100, and 1000 times larger than the sampling costs per

observation. We feature experimental results for the first two factors, 1 and 10; the
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Table 35: Average number of required switches for procedures with k independent
systems, s = 3 constraints, b feasible systems, and v = 1 infeasible constraints.

DM (�2
xi
/�2

yiℓ
) MIM (�2

xi
/�2

yiℓ
)

k = 15, b = 8 L/L L/H H/L H/H L/L L/H H/L H/H

ℋAK 320 30 12415 2934 213 30 6417 1904
ℋAK+ 2107 17131 14544 23449 985 7994 7142 12361
ℳDR 1726 2415 14535 19678 702 1578 7137 9515
CℳS 30 30 30 30 29 30 29 30

k = 101, b = 51

ℋAK 2350 202 101139 21311 451 201 14353 4131
ℋAK+ 21178 150858 104305 230831 2067 20140 15954 12393
ℳDR 17862 23473 103617 197744 1385 5350 15591 9547
CℳS 202 202 202 202 134 173 163 202

other two factors will yield results that are more favorable to CℳS. When switches

and samples are weighted equally, Table 36 shows that the relative efficiency of CℳS

improves compared to the other procedures. In fact, even in this extreme case, our

switching procedure is the best performer for the (L/H) variance configuration when

feasibility check is hard.

Table 37 displays the resulting cost if the time switching between simulated sys-

tems takes ten times as long as obtaining an observation from a system. As costs tip

towards switching, the results favor our switching procedure substantially. CℳS is

clearly the efficient choice under these conditions for all mean and variance config-

urations, significantly improving on the other procedures in all cases, and featuring

as little as a quarter of the combined sampling and switching costs in the best case

(H/L). Even when ℋAK requires 2k switches, we still find CℳS to be the best per-

former, as CℳS requires fewer samples in these cases. As the switching costs are

multiplied by an even larger factor, we expect to see an even wider advantage in using

CℳS with any number of systems.
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Table 36: Average total cost of switches and samples for procedures with k indepen-
dent systems, s = 3 constraints, b feasible systems, and v = 1 infeasible constraints
when switches and samples are equally costly.

DM (�2
xi
/�2

yiℓ
) MIM (�2

xi
/�2

yiℓ
)

k = 15, b = 8 L/L L/H H/L H/H L/L L/H H/L H/H

ℋAK 2982 23714 27177 29541 1372 9783 13787 13558
ℋAK+ 4499 34547 29373 47183 2255 16273 14569 25007
ℳDR 3943 13190 29363 41779 1764 7178 14561 20148
CℳS 3502 12294 31675 38372 1862 6130 19192 22305

k = 101, b = 51

ℋAK 27045 225516 224656 267393 4017 25756 31823 33558
ℋAK+ 44275 303635 230529 463581 6053 42199 33827 46815
ℳDR 39645 123208 229810 418186 4810 19233 33136 35873
CℳS 31006 107221 281694 355065 5366 14890 43480 51876

Table 37: Average total cost of switches and samples for procedures with k inde-
pendent systems, with s = 3 constraints, b feasible systems, and v = 1 infeasible
constraints when switches are ten times as costly as samples.

DM (�2
xi
/�2

yiℓ
) MIM (�2

xi
/�2

yiℓ
)

k = 15, b = 8 L/L L/H H/L H/H L/L L/H H/L H/H

ℋAK 5862 23984 138912 55947 3289 10053 71540 30694
ℋAK+ 23462 188726 160269 258224 11120 88219 78847 136256
ℳDR 19477 34925 160178 218881 8082 21380 78794 105783
CℳS 3772 12564 31945 38642 2123 6400 19453 22575

k = 101, b = 51

ℋAK 48195 227334 1134907 459192 8076 27565 161000 70737
ℋAK+ 234877 1661357 1169274 2541060 24656 223459 177413 158352
ℳDR 200403 334465 1162363 2197882 17275 67383 173455 121796
CℳS 32824 109039 283512 356883 6572 16447 44947 53694
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6.4.2.2 Systems under CRN

In this section, we examine the performance of ℋAK and CℳS with our new mod-

ified variance estimates under CRN. Tables 38, 39, 40, and 41 display the observed

PCS and the average number of required observations for k ∈ {15, 101}, respectively,

for a similar system setup as in Section 6.4.2.1, but with differing levels of induced

correlation. We compare ℋAK and CℳS applied to independent systems, with ver-

sions of ℋAK and CℳS modified for correlated systems with induced correlation

�x ∈ {0, 0.1, 0.25, 0.5, 0.75, 0.9} and adjusted parameters �2 = s�1 = �/k, the pa-

rameters required for valid selection of the best feasible system under correlation in

Lemma 2 in Chapter 5. We denote the procedures with these parameters as ℋAK(�x)

and CℳS(�x). The parameter adjustment produces slightly higher PCS and number

of required observations than the independent case, but allows for valid feasibility

check under correlation.

Table 38: Observed PCS for procedures with k = 15 systems, with s = 3 constraints,
b = 8 feasible systems, and v = 1 infeasible constraints with induced correlation (�x).
PCS below 1− � = 0.95 marked in bold.

DM (�2
xi
/�2

yiℓ
) MIM (�2

xi
/�2

yiℓ
)

L/L L/H H/L H/H L/L L/H H/L H/H

ℋAK 0.985 0.998 0.975 0.983 0.997 0.998 0.995 0.997
ℋAK(0) 0.990 0.999 0.978 0.988 0.995 0.998 0.998 0.994
ℋAK(0.1) 0.990 0.999 0.980 0.986 0.994 1.000 0.997 0.998
ℋAK(0.25) 0.987 0.998 0.971 0.994 0.995 0.998 0.995 0.998
ℋAK(0.5) 0.991 0.998 0.981 0.987 0.998 0.998 0.997 0.997
ℋAK(0.75) 0.995 0.999 0.983 0.993 0.997 0.999 0.994 0.993
ℋAK(0.9) 0.996 1.000 0.940 0.994 0.993 1.000 0.979 0.994

CℳS 0.993 0.994 0.994 0.989 1.000 1.000 1.000 1.000
CℳS(0) 0.994 0.997 0.995 0.997 1.000 1.000 1.000 1.000
CℳS(0.1) 0.996 0.997 0.993 0.993 1.000 1.000 1.000 1.000
CℳS(0.25) 0.991 0.991 0.992 0.992 1.000 1.000 0.999 1.000
CℳS(0.5) 0.988 0.995 0.979 0.982 1.000 1.000 0.998 1.000
CℳS(0.75) 0.986 0.980 0.939 0.978 1.000 1.000 1.000 1.000
CℳS(0.9) 0.984 0.981 0.748 0.868 1.000 1.000 0.970 0.999
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Table 39: Observed PCS for procedures with k = 101 systems, with s = 3 con-
straints, b = 50 feasible systems, and v = 1 infeasible constraints with induced
correlation (�x). PCS below 1− � = 0.95 marked in bold.

DM (�2
xi
/�2

yiℓ
) MIM (�2

xi
/�2

yiℓ
)

L/L L/H H/L H/H L/L L/H H/L H/H

ℋAK 0.999 0.993 0.981 0.999 1.000 1.000 0.999 1.000
ℋAK(0) 0.993 1.000 0.985 0.990 0.999 0.999 0.999 1.000
ℋAK(0.1) 0.990 1.000 0.984 0.991 0.999 1.000 1.000 1.000
ℋAK(0.25) 0.993 0.999 0.986 0.996 1.000 1.000 0.998 0.997
ℋAK(0.5) 0.994 1.000 0.990 0.994 1.000 1.000 0.999 0.999
ℋAK(0.75) 0.995 0.999 0.987 0.995 0.998 0.999 1.000 1.000
ℋAK(0.9) 0.998 0.999 0.910 0.998 0.995 1.000 0.996 0.998

CℳS 1.000 0.996 0.999 0.999 1.000 1.000 1.000 0.998
CℳS(0) 1.000 0.999 0.999 1.000 0.999 0.999 1.000 1.000
CℳS(0.1) 0.998 1.000 1.000 0.999 0.999 1.000 1.000 1.000
CℳS(0.25) 0.997 0.999 0.996 0.999 1.000 0.999 1.000 1.000
CℳS(0.5) 0.997 1.000 0.992 0.998 0.999 1.000 0.999 0.997
CℳS(0.75) 0.994 0.984 0.932 0.985 0.995 1.000 0.994 0.998
CℳS(0.9) 0.977 0.975 0.717 0.891 0.991 1.000 0.940 0.984

For most values of induced correlation, we see higher than nominal PCS for both

procedures. However, PCS suffers in configurations with correlation over 0.9 in ℋAK

and over 0.75 in CℳS when comparison is difficult (H/L). In addition, we see de-

graded PCS for CℳS with H/H variances and �x = 0.9. In H/L, we see similar PCS

results for CℳS as for the SSℳ comparison procedure in Table 32. As comparison

becomes relatively less difficult, Tables 38 and 39 show that the degradation in PCS

for the constrained R&S becomes much less pronounced. Since the PCS is split be-

tween feasibility check and comparison, small losses in PCS due to poor comparison

can be hidden by strong performance in the feasibility check. Also, since only small

gaps in sample size develop in most configurations, due to low and equal variances,

this effectively eliminates the worst cases seen in Table 32. Still, high correlation can

cause poor selection when comparison is hard.

In terms of sampling, Tables 40 and 41 shows that CRN significantly reduce the

number of observations needed. The new values of �1 and �2 used for correlated
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Table 40: Average number of required samples for procedures with k = 15 systems
with s = 3 constraints, b = 8 feasible systems, and v = 1 infeasible constraints with
induced correlation (�x).

DM (�2
xi
/�2

yiℓ
) MIM (�2

xi
/�2

yiℓ
)

L/L L/H H/L H/H L/L L/H H/L H/H

ℋAK 2675 23716 14739 26504 1165 9773 7174 11565
ℋAK(0) 2679 23676 14686 26580 1177 9779 7179 11638
ℋAK(0.1) 2601 23799 13343 25734 1119 9802 6454 11165
ℋAK(0.25) 2496 23702 11254 24778 1064 9781 5588 10611
ℋAK(0.5) 2403 23667 7765 23787 992 9750 3749 9914
ℋAK(0.75) 2381 23663 4445 23627 980 9757 2097 9717
ℋAK(0.9) 2373 23645 2640 23711 972 9759 1153 9760

CℳS 3472 12264 31645 38342 1833 6100 19163 22275
CℳS(0) 3524 12290 32860 38967 1861 6084 19715 22389
CℳS(0.1) 3297 12167 28867 36641 1722 6001 17300 20743
CℳS(0.25) 2840 11763 24121 31391 1481 5885 14125 17413
CℳS(0.5) 2105 11216 15978 22858 1100 5688 9326 12296
CℳS(0.75) 1435 10576 8196 15381 774 5438 4406 7768
CℳS(0.9) 1181 9923 3743 11875 685 5304 1942 5948

Table 41: Average number of required samples for procedures with k = 101 systems
with s = 3 constraints, b = 50 feasible systems, and v = 1 infeasible constraints with
induced correlation (�x).

DM (�2
xi
/�2

yiℓ
) MIM (�2

xi
/�2

yiℓ
)

L/L L/H H/L H/H L/L L/H H/L H/H

ℋAK 24695 225314 123517 246082 3566 25555 17470 29427
ℋAK(0) 24718 225297 124372 246004 3578 25583 17606 29570
ℋAK(0.1) 24119 224838 112493 239726 3476 25547 15874 28435
ℋAK(0.25) 23354 224854 95304 232397 3379 25618 13589 27110
ℋAK(0.5) 22705 224589 66965 226104 3262 25605 9616 25893
ℋAK(0.75) 22598 224696 38525 224828 3247 25580 5537 25573
ℋAK(0.9) 22589 224992 24229 224680 3239 25572 3557 25564

CℳS 30804 107019 281492 354863 5232 14717 43317 51674
CℳS(0) 31276 107486 282612 358029 5293 14777 43980 52432
CℳS(0.1) 28825 105086 252079 338199 4929 14659 38478 47759
CℳS(0.25) 25136 102662 217250 294009 4492 14324 32018 40428
CℳS(0.5) 18708 97771 148440 219979 3716 13982 21048 29535
CℳS(0.75) 13179 92258 78773 142697 3074 13581 10805 19122
CℳS(0.9) 10530 88502 41223 105488 2809 13230 5347 14638
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systems cause the procedures to perform slightly worse when applied to truly inde-

pendent systems than procedures designed for independent systems. Discrepancies

to this rule occur in Tables 40 and 41, but these results are well within the stan-

dard error of estimates. As correlation increases, the procedures exploiting CRN will

require fewer observations. Even at modest levels of correlation, we can see signif-

icant improvement over the independent case. Savings due to CRN are restricted

to the comparison phase, so (L/H) configurations feature only a small advantage

for implementing CRN, while other variance configurations display larger savings.

Not surprisingly, H/L configurations feature the largest savings. Difficult feasibility

check configurations also require higher levels of correlation (�x > 0.25) to see im-

provements. Percentage savings are similar for k = 15 and k = 101 systems. Since

comparison dominates sampling for CℳS, we observe larger percentage gains under

CRN for CℳS than for ℋAK.

Even with large possible savings under CRN, the PCS degradation for ℋAK and

CℳS may still cause concern. Tables 42 through 45 present the effectiveness of our

heuristic variance modifications under three levels of correlation, �x ∈ {0.1, 0.5, 0.9}

for k = 15 systems. Table 42 displays the observed PCS for our procedures with

and without the heuristic modifications, for �x = 0.9. Tables 43, 44, and 45 display

the average number of required samples for our procedures, with and without the

heuristic modifications, for �x = 0.9, �x = 0.5, and �x = 0.1, respectively. The original

procedures with independent systems are denoted ℋAK and CℳS, while correlation

of �x is induced in ℋAK(�x) and CℳS(�x). ℋAK(�x) + TSi and CℳS(�x) + TSi

denote an implementation of ℋAK and CℳS with the variance modification TSi for

i = {1, 2, 3, 4}. For the sake of brevity, we feature only configurations with k = 15

systems, but similar results were found for k = 101 systems.
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Table 42 shows that all four variance modifications display a marked improvement

in PCS, raising observed values above 0.988 in all configurations. The TS4 modifica-

tion tends to provide the smallest PCS, which experimentally confirms it to be the

most aggressive modification.

Table 42: Observed PCS for procedures with k = 15 systems, with s = 3 constraints,
b = 8 feasible systems, and v = 1 infeasible constraints with induced correlation
�x = 0.9.

DM (�2
xi
/�2

yiℓ
) MIM (�2

xi
/�2

yiℓ
)

L/L L/H H/L H/H L/L L/H H/L H/H

ℋAK 0.985 0.998 0.975 0.983 0.997 0.998 0.995 0.997
ℋAK(0.9) 0.996 1.000 0.940 0.994 0.993 1.000 0.979 0.994
ℋAK(0.9) + TS1 0.997 1.000 0.998 0.996 0.997 1.000 0.998 0.996
ℋAK(0.9) + TS2 0.997 1.000 0.989 0.996 0.997 1.000 0.998 0.996
ℋAK(0.9) + TS3 0.997 1.000 0.989 0.996 0.997 1.000 0.998 0.996
ℋAK(0.9) + TS4 0.996 1.000 0.988 0.996 0.997 1.000 0.998 0.996

CℳS 0.993 0.994 0.994 0.989 1.000 1.000 1.000 1.000
CℳS(0.9) 0.984 0.981 0.748 0.868 1.000 1.000 0.970 0.999
CℳS(0.9) + TS1 0.996 0.998 0.998 0.996 1.000 1.000 1.000 1.000
CℳS(0.9) + TS2 0.996 0.998 0.998 0.996 1.000 1.000 1.000 1.000
CℳS(0.9) + TS3 0.996 0.998 0.996 0.996 1.000 1.000 1.000 1.000
CℳS(0.9) + TS4 0.996 0.998 0.988 0.992 1.000 1.000 1.000 1.000

While the PCS results in Table 42 may seem similar, we see in Tables 43, 44, and

45 that the additional observations required to secure PCS depends highly on the

modifications implemented. We now discuss the results in more detail.

In ℋAK, we notice two patterns. First, in almost all configurations, TS4 is the

most efficient, followed by TS3, TS2, and TS1, in that order. In the special case (L/H)

with difficult feasibility check, no additional observations are required for comparison.

Therefore, all approaches perform equally well.

For CℳS, we observe different behavior. Since systems almost never reach equal

sample sizes in CℳS, we see that the estimates TS1 and TS2 produce equivalent

results. These modifications are very conservative, sometimes requiring five times the

number of samples in Table 43 as the other adjustments. Under the low correlations
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of Tables 44 and 45, TS1 and TS2 do not require substantially more samples, but

still are not preferable. Even though these modifications are conservative, they still

outperform the independently sampled case in all instances, except for ℋAK with

the TS1 modification under the H/L variance configuration.

TS3 and TS4 fair much better than the first two modifications, but TS4 is the

superior choice of the variance estimate modifications for all configurations in Tables

43, 44, and 45. For only as little as 0.15% in Table 45 and at most 54% additional

samples in Table 43 than the original procedure for correlated systems, TS4 provides

efficiency and good PCS. TS4 is the most efficient modification for both ℋAK and

CℳS. Utilizing this modification sacrifices only a small amount of samples to provide

a good PCS and still significantly outperforms the independently sampled case.

Table 43: Average number of observations for procedures with k = 15 systems,
with s = 3 constraints, b = 8 feasible systems, and v = 1 infeasible constraints with
induced correlation �x = 0.9.

DM (�2
xi
/�2

yiℓ
) MIM (�2

xi
/�2

yiℓ
)

L/L L/H H/L H/H L/L L/H H/L H/H

ℋAK 2675 23716 14739 26504 1165 9773 7174 11565
ℋAK(0.9) 2373 23645 2640 23711 972 9759 1153 9760
ℋAK(0.9) + TS1 2591 23645 14992 25953 1158 9759 7456 11645
ℋAK(0.9) + TS2 2434 23645 2789 24327 1062 9759 1402 10652
ℋAK(0.9) + TS3 2380 23645 2787 23780 985 9759 1401 9895
ℋAK(0.9) + TS4 2373 23645 2735 23714 974 9759 1351 9778

CℳS 3472 12264 31645 38342 1833 6100 19163 22275
CℳS(0.9) 1181 9923 3743 11875 685 5304 1942 5948
CℳS(0.9) + TS1 2717 11050 24328 31137 1527 5722 12893 15839
CℳS(0.9) + TS2 2717 11050 24328 31137 1527 5722 12893 15839
CℳS(0.9) + TS3 1825 10450 12913 19908 1000 5462 6991 10046
CℳS(0.9) + TS4 1435 10414 5110 14796 773 5452 2983 7507

6.5 Conclusions

We present a procedure, CℳS, for constrained R&S that minimizes the number of

switches between simulated systems while finding the best constrained system. This
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Table 44: Average number of observations for procedures with k = 15 systems,
with s = 3 constraints, b = 8 feasible systems, and v = 1 infeasible constraints with
induced correlation �x = 0.50.

DM (�2
xi
/�2

yiℓ
) MIM (�2

xi
/�2

yiℓ
)

L/L L/H H/L H/H L/L L/H H/L H/H

ℋAK 2675 23716 14739 26504 1165 9773 7174 11565
ℋAK(0.5) 2403 23667 7765 23787 992 9750 3749 9914
ℋAK(0.5) + TS1 2633 23667 15259 26076 1160 9750 7447 11600
ℋAK(0.5) + TS2 2476 23667 7771 24520 1090 9750 3807 10893
ℋAK(0.5) + TS3 2410 23667 7769 23854 1001 9750 3788 10013
ℋAK(0.5) + TS4 2404 23667 7767 23802 996 9750 3767 9955

CℳS 3472 12264 31645 38342 1833 6100 19163 22275
CℳS(0.5) 2105 11216 15978 22858 1100 5688 9326 12296
CℳS(0.5) + TS1 3183 11880 27956 35526 1663 5936 15873 19105
CℳS(0.5) + TS2 3183 11880 27956 35526 1663 5936 15873 19105
CℳS(0.5) + TS3 2266 11330 17436 24597 1185 5727 10191 13271
CℳS(0.5) + TS4 2176 11316 16498 23491 1130 5725 9615 12614

Table 45: Average number of observations for procedures with k = 15 systems,
with s = 3 constraints, b = 8 feasible systems, and v = 1 infeasible constraints with
induced correlation �x = 0.10.

DM (�2
xi
/�2

yiℓ
) MIM (�2

xi
/�2

yiℓ
)

L/L L/H H/L H/H L/L L/H H/L H/H

ℋAK 2675 23716 14739 26504 1165 9773 7174 11565
ℋAK(0.1) 2601 23799 13343 25734 1119 9802 6454 11165
ℋAK(0.1) + TS1 2697 23799 15893 26779 1188 9802 7634 11856
ℋAK(0.1) + TS2 2614 23799 13342 25891 1149 9802 6462 11466
ℋAK(0.1) + TS3 2602 23799 13343 25749 1120 9802 6456 11179
ℋAK(0.1) + TS4 2602 23799 13343 25738 1120 9802 6455 11170

CℳS 3472 12264 31645 38342 1833 6100 19163 22275
CℳS(0.1) 3297 12167 28867 36641 1722 6001 17300 20743
CℳS(0.1) + TS1 3531 12366 31254 39142 1842 6075 18470 21955
CℳS(0.1) + TS2 3531 12366 31254 39142 1842 6075 18470 21955
CℳS(0.1) + TS3 3301 12173 28913 36705 1724 6003 17320 20765
CℳS(0.1) + TS4 3301 12172 28911 36666 1724 6003 17316 20759

140



is desirable, as the cost of switching can be expensive. We prove the validity of this

procedure, guaranteeing a nominal probability of selecting the best feasible system

for independently sampled systems.

To improve the efficiency of the procedure, we also wish to utilize common ran-

dom numbers (CRN) to reduce variance within comparison. We show how strong

positive correlation can adversely affect the probability of correct selection (PCS) for

procedures, such as CℳS, that use two-sample comparison, because of the underes-

timation of the variance during the comparison. To achieve the nominal PCS while

still increasing efficiency, we propose four variance modifications.

Our experiments show that CℳS is an efficient option, if the cost of switching is

larger than the cost of sampling or the feasibility check phase is difficult. Ensuring

a minimal number of switches requires extra observations, but CRN can reduce the

number of necessary samples. Our experiments show that PCS under high correlation

is a concern, but the heuristic variance modifications provide good PCS, and some of

them also preserve a large portion of the savings due CRN.
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CHAPTER VII

CONTRIBUTIONS AND FUTURE RESEARCH

This thesis aims to advance the fields of steady-state output analysis and constrained

ranking and selection (R&S), by providing new methods and procedures that improve

efficiency. In this chapter, we summarize the main contributions of the thesis in

Section 7.1 and present future research possibilities in Section 7.2.

7.1 Contributions

In Chapter 2, we introduce the overlapping modified jackknifed Durbin–Watson (OM)

estimator and show that the OM estimator has several advantageous properties, in-

cluding low bias, low variance, and an approximate �2 distribution. In Chapter 3,

we investigate the use of overlapping variance estimators within steady-state R&S

procedures. In our experimental study, we show that these variance estimators, in-

cluding our new OM estimator, result in significant savings in the number of samples

required to reach a decision.

In Chapter 4, we present a new framework for constrained R&S that allows certain

systems to become dormant, halting sampling for those systems as the procedure

continues. A system goes dormant when it is found inferior to another system whose

feasibility has not been determined, and returns to contention only if its superior

system is eliminated. This framework greatly reduces the number of required samples

to choose the best feasible systems, especially when feasibility check is difficult. We

provide three approaches to implement this framework within simultaneously-running

procedures and show that one of them is statistically valid.

Chapter 5 presents three general procedures for constrained R&S. While previ-

ous procedures have been designed for one constraint, the three new procedures can
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incorporate any number of constrained performance measures. In addition, we show

that the two simultaneously-running procedures can be extended to select the best

feasible system under correlation. This extension allows the use of common random

numbers (CRN), which have never been presented within constrained R&S, but are

shown to be useful at improving the efficiency of the procedures.

In Chapter 6, we develop another procedure for constrained R&S with a different

goal, namely minimizing the number of switches between simulated systems. We

prove its validity for independently-simulated systems and demonstrate its usefulness

when sampling plus switching costs are considered. However, we also show that CRN

cannot be safely utilized within the procedure due to degradation of the probability of

correct selection (PCS) (without substantial modification). To address this problem,

we present four variance modifications, which preserve PCS in exchange for additional

observations.

7.2 Future Research

There are a few topics that could be pursued within the subject areas of this thesis.

1. In Chapter 2, additional configurations of the overlapping area and overlap-

ping CvM estimators should be inspected (analytically or experimentally) to

find other configurations that provide good bias and low variance, besides the

Durbin–Watson approach.

2. Error allocation strategies could be developed based on first-stage estimates

of the relative difficulty of feasibility check and comparison for use within our

procedures developed in Chapters 5 and 6.

3. In Chapter 5, a thorough investigation of the correlation required for ℋAK+

and ℳDR with CRN to improve on the independently sampled versions of the
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same procedures would demonstrate the usefulness of CRN within our proce-

dures.
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[5] Andradóttir, S., and Kim, S.-H. “Fully sequential procedures for compar-
ing constrained systems via simulation,” to appear in Naval Research Logistics,
2010.

[6] Batur, D., Goldsman, D., and Kim, S.-H. “An improved standardized
time series Durbin–Watson variance estimator for steady-state simulation,” Op-
erations Research Letters, vol. 34, pp. 285–289, 2009.

[7] Batur, D., and Kim, S.-H. “Procedures for feasibility check when the num-
ber of systems or constraints is large,” to appear in ACM Transactions on
Modeling and Computer Simulation, 2010.

[8] Bechhofer, R. E., Santner, T. J., and Goldsman, D. Design and Anal-
ysis of Experiments for Statistical Selection, Screening, and Multiple Compari-
son. John Wiley & Sons, New York, 1995.

[9] Billingsley, P. Convergence of Probability Measures. John Wiley & Sons,
New York, 1968.

[10] Borodin, A.N., and Salminen, P. Handbook of Brownian Motion – Facts
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