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3.5 Correctness of Ĥ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.6 Example: Equilateral triangles in the plane . . . . . . . . . . . . . . . . 20

IV STOCHASTIC STABILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 Regular perturbed Markov processes . . . . . . . . . . . . . . . . . . . 24

4.2 Computing the stochastically stable states . . . . . . . . . . . . . . . . . 25

4.2.1 The resistance tree method . . . . . . . . . . . . . . . . . . . . . 26

v



4.2.2 Example: A three-state process . . . . . . . . . . . . . . . . . . 27

V ATOM-LEVEL INFORMATION PROCESS . . . . . . . . . . . . . . . . . . 29

5.1 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2 Statement of objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2.1 Graph isomorphism and subgraphs . . . . . . . . . . . . . . . . 31

5.2.2 The objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.3 The self-assembly process . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.3.1 The unperturbed dynamic process (P 0) . . . . . . . . . . . . . . 32

5.3.2 Absorbing states of P 0: . . . . . . . . . . . . . . . . . . . . . . 34

5.3.3 Perturbed dynamic process (P ε) . . . . . . . . . . . . . . . . . . 35

5.4 Stochastically stable states of P ε . . . . . . . . . . . . . . . . . . . . . . 36

5.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.5.1 Example 5.1: Stationary distribution . . . . . . . . . . . . . . . 42

5.5.2 Example 5.2: N = N̂ . . . . . . . . . . . . . . . . . . . . . . . 45

5.5.3 Cooling performance . . . . . . . . . . . . . . . . . . . . . . . 47

5.5.4 Example 5.3: N not an integer multiple of N̂ . . . . . . . . . . . 49

VI EXTENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.1 Error correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.2 Heterogeneous resistances . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.3 Feedback control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

VII CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

vi



LIST OF TABLES

1 Reduced order representation for Example 5.1 . . . . . . . . . . . . . . . . 43

2 Stationary distributions for Example 5.1 . . . . . . . . . . . . . . . . . . . 45

3 Data for Figure 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

vii



LIST OF FIGURES

1 (a) The parts move about randomly, forming structures according to local
interaction rules. (b) A specific arrangement of the parts is desired in the
long-run. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 A 1980’s cartoon of a self-replicating machine [7]. . . . . . . . . . . . . . 7

3 The glider gun in Game of Life is able to generate moving gliders perpetually. 8

4 (a) A part is an assembly of size one. (b) An assembly of size six, with stars
indicating the bonds. Notice that there is a pair of edges that are adjacent,
but do not share a bond. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 There are 13 assemblies obtainable by joining five or fewer equilateral tri-
angles along their sides. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6 The simulation reaches the desired state of twenty assemblies of type 8
from an initial condition of 103 assemblies of type 1. . . . . . . . . . . . . 22

7 A simple three-state Markov process, P 0. The system stays in its initial
state for all t. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

8 The perturbed process P ε has r(S1, S2) = 2, r(S3, S2) = 1, r(S2, S1) = 1. . 28

9 (a) An assembly involving squares in the plane, and (b) its representation
as a weighted graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

10 The states zm, m ∈ {8, 9, ..., 15} for the Ĝ introduced above, N = 30,
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SUMMARY

We present methods for distributed self-assembly that utilize simple rule-of-thumb

control and communication schemes providing probabilistic performance guarantees. These

methods represents a staunch departure from existing approaches that require more sophis-

ticated control and communication, but provide deterministic guarantees. In particular,

we show that even under severe communication restrictions, any assembly described by

an acyclic weighted graph can be assembled with a rule set that is linear in the number

of nodes contained in the desired assembly graph. We introduce the concept of stochastic

stability to the self-assembly problem and show that stochastic stability of desirable config-

urations can be exploited to provide probabilistic performance guarantees for the process.

Relaxation of the communication restrictions allows simple approaches giving determinis-

tic guarantees. We establish a clear relationship between availability of communication and

convergence properties. We consider Self-assembly tasks for the cases of many and few

agents as well as large and small assembly goals. We analyze sensitivity of the presented

process to communication errors as well as ill-intentioned agents. We discuss convergence

rates of the presented process and directions for improving them.

x



CHAPTER I

INTRODUCTION

It can be argued that the most advanced systems in existence, lifeforms, are constructed

in a manner vastly different from most engineered systems. Chemicals are created in ex-

treme quantities (a gram of water contains about 6.022 × 1023 molecules), and at absurd

levels of precision, in this manner. These systems self-assemble. Self assembly repre-

sents a paradigm shift in the way we build things. Self-assembly is the phenomenon of

an ordered structure emerging from the aggregate behavior of simpler constituent enti-

ties acting autonomously. Despite the obvious scalability, reliability, and, parallelizability

advantages inherent in self-assembly, the development of a theory of these dynamic pro-

cesses is nascent. Interest in self-assembly has increased in recent years though, alongside

the general spike in the investigation of distributed systems.

There are two streams of work in self-assembly, molecular and robotic. The molecular

self-assembly field is not expressly concerned with programmable dynamic system models

and is noted for its importance to the application of self-assembly theory. The robotics field

utilizes self-assembly in several different capacities. Sometimes, a robot is designed in a

modular fashion so that it can accomplish a wider variety of objectives by reconfiguring

its constituent parts. In other formulations, a machine utilizes a form of self-assembly to

automatically repair itself or generate locomotion.

In any event, few have considered self-assembly in a theoretical context, most prefer-

ring heuristic approaches to specific applications. Several theoretical formulations have

been advanced in recent years. These approaches have led to analytical results where a

wide range of different assemblies can be constructed. In some cases there is some global
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Figure 1: (a) The parts move about randomly, forming structures according to local inter-
action rules. (b) A specific arrangement of the parts is desired in the long-run.

information embedded in the process and in others there is extensive communication be-

tween the agents. In either case, the form of the performance guarantee is deterministic. A

specific, desirable result can be expected. The rule set employed by the agents can be very

complicated though and does not scale well with the complexity of the assembly desired.

We propose an approach to self-assembly where simple rules can be utilized to arrive at

probabilistic performance guarantees. This approach represents an important advancement

to the theory for several reasons:

• Many chemical self-assembly processes feature dynamic equilibria. Desirable as-

semblies that are themselves stochastic processes may be acceptable or even desir-

able in some situations

• Self-assembly is often relevant to processes involving huge numbers of simplistic

agents. Achieving a high yield of desired assemblies will often be preferable when a

marginally higher yield requires substantial increases in the capabilities of the indi-

vidual agents.

• Establishing benchmark performance results using very simple, generic, and easily

2



synthesizable control schemes provides insights into the more powerful convergence

results. How does agent memory, computational capability, sensor sophistication,

and communication capacity translate into better self-assembly performance?

Our work is the first to insist on simple rules and allow probabilistic guarantees. In par-

ticular, we introduce stochastic stability, an equilibrium concept from the game theory and

stochastic systems literature, as a useful tool for understanding dynamic systems whose

performance is related to a yield of desired sub-structures. Figure 1 illustrates our concept.

The import of developing an abstract theory of self-assembly can be understood by

analogy to integrated circuits. Modern integrated circuits can feature hundreds of millions

of transistors. Each of these devices is in and of itself a technological marvel. Precise

manufacturing tolerances must be met for each one of these elements to function properly.

The behavior of these devices is described by semiconductor physics. However, a software

developer or hardware engineer can use this technology with little or no understanding of

carrier drift or density of states. The wealth of clear and appropriate abstractions in inte-

grated circuits and computing at every hierarchical level allows tasks to be accomplished

with intuitive thinking.

Chemical interactions are governed by thermodynamics. Those who understand how

to arrive at complex structures through laboratory chemistry are often not the same peo-

ple who understand why certain structures are desirable for medical, industrial, or other

purposes. Dialog and collaboration between these different disciplines can be improved

through the development of a useful hierarchical decomposition of the relevant processes.

We focus on a relatively high level of abstraction. We consider individual agents, or

parts, which may represent molecules, macromolecules, or robots. We make simplifying

assumptions about the behavior of these agents that will be more appropriate to some dis-

ciplines than they will be to others. We strive to be as general as possible, but acknowledge

that there will be applications areas that will not correspond to our framework.

3



We will concern ourselves exclusively with scenarios where the agents’ general mo-

tion is stochastic. Our analysis will actually abstract away the agents’ motion and will

be valid whenever certain bounds on the probability of two agents coming into proximity

can be assumed. An agent’s action in response to stimuli, described by its rules of opera-

tion, represent perturbations to the agent’s otherwise random behavior. This conception of

the dynamics as essentially stochastic with limited actuation can be seen as analogous to

chemical assembly processes. In that context, the motion of the particles can be ascribed to

thermal motion or the motion (as by mixing) of the solution. Assembly is achieved via the

long-run statistical propensity for certain bonds to be created or severed. This decreased

number of degrees of freedom available for control design for these processes is an essen-

tial characteristic. This phenomenon has some intersect with the study of under-actuated

systems. Stochastic self-assembly can be thought of as an entirely different discipline from

deterministic self-assembly procedures, often relevant to robotics. In robotics it is often

possible or even necessary for the constituent robot parts to behave in very predictable

ways throughout the process— something we will not be concerned with.

It should be noted that it is difficult to conceive of any immediate limit to the capabilities

of self-assembling systems. Human beings self-assemble from simplistic embryos floating

in raw materials. However, despite the lofty possibilities, the field is yet to produce a defin-

ing “killer app”. As such, there is nothing resembling a definitive framework for validating

models of self-assembly processes. We therefore urge the reader to understand that in what

follows, we consider our primary contribution to be the identification of stochastic stability

as a relevant and useful concept in the analysis of self-assembling systems. We will pro-

pose models that illustrate how desirable yields in a stochastic self-assembly process can

be related to stochastically stable states. We provide justifications for our system models,

but in no way assert that the relevance of stochastic stability is limited to the models we

propose. In the same vein, the techniques we utilize in providing rigorous mathematical

proof of our claims can be modified to establish similar results for different models of the

4



underlying processes.

The remainder of this thesis is organized as follows: In chapter 2 we survey the existing

work in stochastic self-assembly. In chapter 3 we propose a self-assembly process that

relies on severe assumptions about information available to each sub-assembly. In chapter 4

we provide a brief review of stochastic stability. In chapter 5 we utilize the ideas of chapter

4 in the presentation of a self-assembly process that does not depend on the aforementioned

assumptions. In chapter 6 we explore several extensions to the process presented in chapter

5 and then chapter 7 concludes.
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CHAPTER II

PREVIOUS WORK

2.1 History

Since almost all chemical and biological systems self-assemble, there is no specific origin

of the scientific investigation of self-assembly. However, we will henceforth consider self-

assembly as referring to processes with the following two features:

• Lack of a regular pattern

• A unique terminal structure

These two qualities differentiate the study of certain forms of crystallization and polymer-

ization from the study of self-assembly as presented in this work. While the term self-

assembly is certainly applicable even when these qualities are absent, we will henceforth

restrict ourselves to these type of problems.

The first to utilize mathematics to describe these processes in abstract terms was John

Von Neumman, who saw tremendous potential for technological advancement through cre-

ating machines that could replicate themselves. Von Neumann first envisioned a kinematic

self-replicating machine . In this model, a complete machine moves about a “sea” of parts

and builds a copy of itself according to preloaded instructions. It then copies the instruc-

tions onto the new machine, and it in turn repeats the process. Von Neumann later devel-

oped a more abstract model using cellular automata (CA). A cellular automaton is a system

in which rules are applied to cells in a regular grid. Von Neumann originally proposed his

ideas in 1948 [1], [2], but they were not widely disseminated until they appeared in a 1955

issue of Scientific American [3].

Von Neumman’s results have had some applicability limitations, due in no small part

to the state of the art of computing in the 1950’s. Very much like Richard Feynman’s now
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Figure 2: A 1980’s cartoon of a self-replicating machine [7].

famous lecture that is often credited with ushering in the interest in nanotechnology, Von

Neumman is frequently credited with bringing attention to the area of self-assembly, but his

work is almost entirely of historical interest in the present day. Usage of notation consistent

with CA can be found in [4], but the algorithms for synthesizing decision procedures are

novel. CA is also used in [5] to model DNA-based self-assembly. Von Neumman’s exis-

tence results in some ways created and destroyed at once the interest in abstract modeling

and analysis for self-assembly. Von Neumman’s tessellation model was a 29 state per cell

CA and he was able to show that it could make endless copies of itself. He termed it a

universal constructor.

John Conway’s two-dimensional, two-state CA called Game of Life [6] became popu-

lar in the 1970’s. Life is a simple CA that exhibits a very wide range of behaviors. A fa-

vorite pastime of curious mathematicians— and a notorious consumer of after-hours CPU

time, Life ignited interest in the possibility of emergence and self-organization allowing for

simple processes to create sophisticated results. Many patterns have been studied in Life

7



Figure 3: The glider gun in Game of Life is able to generate moving gliders perpetually.

including gliders (simple perpetual motion machines), guns (patterns producing gliders),

and breeders (patterns producing guns). It was soon realized that these patterns could be

arranged to realize combinational logic elements and even a Turing complete computer.

Figure 3 (available: http://en.wikipedia.org/wiki/Conway’s Game of Life) shows a popu-

lar form in “Life”, the glider gun. We recommend visiting the webpage provided for the

image to observe the fully animated representation of the glider gun’s behavior.

Von Neumman also discussed probabilistic self-assembly although it was not very well-

defined. This approach involves stochastic state transitions by the agents so that the phe-

nomenon of evolution is potentially exploitable. This method has not received much at-

tention prior to this work. We will consider stochastic behavior of the agents (learning).

However, the learning is implemented as noise, or perturbation of an underlying determin-

istic process that does not change over time. In actual biological evolution, the agents’

underlying rule-set changes over time allowing the cells to self-assemble while in the long-

run simultaneously mutating and undergoing natural selection. Investigation of the latter

process requires a clearly defined environmental influence as well as a dynamic process

over a space of dynamic processes.

In the 1970’s, robotic manipulators in machining centers utilized a common interface

for multiple attachable appendages. In the late 1980’s [8] applied this idea to the entire

robot. Modular robotics is an active area of research. Generic algorithms [4], [10], [11]

relevant to modular robots as well as some robots [9], [12], [11] have been developed.

Some modular robots [12] can actually operate independently, but can combine to achieve

8



better modes of locomotion. Stochastic state transition is becoming more relevant to this

branch of self-assembly as the scale becomes smaller and the number of modules in a robot

grows. The desire for reliable, high-performance robot functionality has typically kept this

field focused on achieving quality performance with a small number of robots operating

and switching between a small number of configurations of the modules. In this context,

the need for stochastic behavior of the individual robotic agents has been minimal.

2.2 Related work

In recent years a theory of self-assembly has been advanced [13] utilizing a form of stochas-

tic behavior that is not unlike our own approach. The agent motion is random and only the

formation and severance of bonds is controllable. Many different problems in this area

have been studied including algorithms for estimation of parameters over a time-varying

communication network [14] (consensus) as well as optimal distributions of products of

a severance decision [13]. The theory has been demonstrated with a programmable parts

testbed (an air-table with modular robots). The problem of synthesizing control policies

for general assemblies has been addressed [15], but the results have relied on exhaustive

search and storage of all possible sub-assemblies of a desired assembly and require commu-

nication and consensus algorithms. Alternatively, in [16] a simpler procedure is presented,

but it is assumed that infinitely many agents are present. To circumvent issues arising

in the case of finitely many agents, [16] suggests augmenting the process with additional

communication in the form of intra-assembly consensus algorithms. Our work addresses

these obstacles. We seek a simplistic method of synthesizing control procedures for any

assembly from a very general class. We find that a dramatic reduction in the complexity

of agent communication and decision making can be realized if we allow for probabilistic

performance guarantees.

Agent complexity is an important feature for biomolecular and other microscale self-

assembly processes that utilize agents whose communication, computation, and memory

9



capabilities are not easily augmented. A prime example are DNA tiles [5]. These devices

have been shown to be capable of performing simple computations such as XOR and there-

fore can produce simple forms using those computations, e.g. Sierpinski triangles. At this

scale and below, themes such as agent communication and knowledge must be understood

figuratively. In this setting, the agent’s state and the rules governing its behavior are purely

thermodynamic. The agents have none of the memory, processing, or motor capabilities

of modular robots. The usage of anthropomorphic language is intended in a general and

figurative sense. That said, in order to enable substantial advance in self-assembly it is

advantageous to continually lower the complexity that theoretical models assume to be

available when creating algorithms.

Self-assembly is in fact a very broad field that encompasses many different techniques,

scales, and approaches. We have made certain important distinctions related to our work:

stochastic, theoretical, low-complexity, and probabilistic guarantees. Another classifica-

tion is that of formal vs. functional self-assembly. We focus on formal self-assembly. That

is, we desire the outcome of the parts arranged in a specific geometric arrangement (some-

times described abstractly by a weighted graph). Other approaches have sought assemblies

accomplishing specified functions as opposed to forms. Functional assemblies such as self-

healing materials and passive electronic components have been studied [17]. This work

also has the distinction of implementation alongside existing top-down manufacturing pro-

cesses such as photo-lithography. Our work, as is common in formal self assembly, utilizes

a one-pot approach. This is desirable for any such synthesis, as separation and purification

can be costly and time consuming.

10



CHAPTER III

ASSEMBLY-LEVEL INFORMATION PROCESS

3.1 Atoms and assemblies

Throughout this thesis, we will introduce control policies that, when applied to a system

model, result in a dynamic process with desirable asymptotic behavior. That is, we desire

that these processes reach and remain in a desirable state. In all processes considered, we

will have N identical agents, or atoms. These atoms should be understood as abstractions

that represent two- or three-dimensional geometric shapes. We will illustrate examples

using specific geometric definitions, but the results will be presented in a general manner

applicable to a very wide range of atom types. The state of the system will always be

the arrangement of these atoms. In some circumstances the atoms will store additional

information in the form of internal states that may not be functions of the physical state of

the system. This information will influence the future decisions of the agents and therefore

the future physical state of the system. Performance goals will always be related to the

physical state of the system alone. The procedures for updating the internal states of the

atoms will be available to the control designer.

Furthermore, the state of the system corresponds to the spatial arrangement of the parts

and can be thought of as a non-unique representation. This is because the labeling of the

parts will be arbitrary due to their being identical atoms. We will not be interested in any

absolute coordinates of the parts, only their orientation with respect to neighboring parts.

We will understand two parts as adjacent (in contact) whenever they are connected (share a

bond), but adjacent parts are not necessarily bonded. A set of parts such that there exists a

path of connected parts between any two parts is called an assembly. A single atom can be

thought of as an assembly of size one. Our performance goal will always be to maximize
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(a)

(b)

Figure 4: (a) A part is an assembly of size one. (b) An assembly of size six, with stars
indicating the bonds. Notice that there is a pair of edges that are adjacent, but do not share
a bond.

the number of a given assembly present. Figure 4 illustrates these ideas with hexagonal

parts in the plane.

We will explore stochastic self-assembly from the perspective of the assembly and the

atom separately. The difference is one of information. Operating from the standpoint of

the assembly assumes that the atoms participating in an assembly can share information

accurately and act in unison. This severe assumption allows a simple algorithm to con-

verge to the maximum number of desirable assemblies almost surely. In addition, we can

demonstrate this result using very simple notation since we need not represent the role of

each atom in our description of the state of the system, rather we need only indicate the

concentrations of the various assembly types at each time instant. The results that follow

are not extremely novel given that a similar approach has been taken by [13] with explicit

intra-assembly communication procedures for the atoms to coordinate their actions. What

is novel however is that we abstract away the communication problem and show that when a

suitable communication procedure can be assumed, the assembly procedure can be accom-

plished with minimal difficulty. The procedure is quite general and immediately applies to

a very broad class of atom and assembly types. This format is inspired by group-based de-

cision processes in the game theory literature. In that context, at each time instant, several

players select an action from a group action set. Since this specific scenario is simpler than

the general case of group-based decision (as their are no utility functions to speak of), we

12



do not introduce that concept formally or use related notation.

Additionally, treating the case of self-assembly with severe communication assump-

tions will highlight the impact of dropping these assumptions in the next chapter. In par-

ticular, we will see a much weaker convergence result that is not obviously improvable

without significant augmentation of agent communication capabilities.

The problem and solution are presented in abstract terms in the next four sections. We

provide an example in the last section of this chapter.

3.2 Problem formulation

3.2.1 Preliminaries

There are N atoms of one fixed type of polygon or polyhedron. Two atoms can form to

create a new assembly. Two assemblies can form to create a still larger assembly. An as-

sembly made of two or more atoms can break up back into atoms. We will not be concerned

with breakups into assemblies larger than individual atoms. There are P possible assembly

types forming a set P = {1, 2, 3, ..., P}. The atoms are assigned to 1 as a convention. The

size of a polygon p ∈ P denoted by size(p) is defined as the number of atoms in p. Clearly

∀ p ∈ P, size(p) ≤ N .

Let � be the space of probability distributions over P . A reaction is a map

R : {(i, j) ∈ P × P : size(i) + size(j) ≤ N} → �.

If i, j ∈ P and f = R(i, j) then the set {p ∈ P : f(p) 
= 0} are called the products of i and

j. The map R specifies the probability of each possible product when two atoms interact

and has the following properties
⎧⎪⎪⎨
⎪⎪⎩

if p is a product of i and j then size(p) = size(i) + size(j)

R(i, j) = R(j, i) ∀ i, j ∈ P.

These properties can be understood as conservation of mass and the irrelevance of the order

of the reactants, respectively.

13



3.2.2 System model

The state at time t, S(t), is a P -vector where the ith element corresponds to the number of

assemblies of type i at time t. The state S(t) has the property that ∀t, ∑i∈P Si(t)·size(i) =

N . The state space is denoted by S.

At each time t, a random variable F (S(t), t) is sampled, taking on values in the set

C(S(t)) = {i ∈ P : Si(t) 
= 0} × ({j ∈ P : Sj(t) ≥ χi(j) + 1} ∪ {0}), where χi(·) is

the indicator function for i. Each (i, j) ∈ C(S(t)) provides a present assembly type i and

either an additional assembly type j, or j = 0 for i by itself. We can have i = j only when

at least two of that assembly type are present. If j 
= 0 then one of the actions from the set

A = {form,break.i,break.j,null} is taken.

form: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Si(t+ 1) = Si(t)− 1

Sj(t + 1) = Sj(t)− 1

k = rand(R(i, j))

Sk(t+ 1) = Sk(t) + 1

Sl(t+ 1) = Sl(t), ∀ l 
= {i, j, k}
break.i: ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Si(t+ 1) = Si(t)− 1

S1(t+ 1) = S1(t) + size(i)

Sl(t+ 1) = Sl(t), ∀ l 
= {i, 1}
break.j: ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Sj(t+ 1) = Sj(t)− 1

S1(t+ 1) = S1(t) + size(i)

Sl(t+ 1) = Sl(t), ∀ l 
= {j, 1}
null:

S(t) = S(t− 1)

14



Where rand(·) is the result of sampling a random variable with the specified distribution.

If j = 0 then i is selected and the available actions are break. i and null only. Usage

of the verbs form and break is understood throughout to mean selection of assemblies (or

agents in the atom-level process) and undertaking of the appropriate actions.

3.2.3 Assembly task

There is a polygonal assemblyG ∈ P that is the desired, or goal, assembly. The objective is

to bring the state of the system to the set S̄ = {S ∈ S :
∑

i �=G Si(t)·size(i) < size(G)} and

stay there. An assembly task is feasible if for any initial time t0, and any initial state S(t0)

with S1(t0) ≥ size(G) there exists a time T > t0 and a sequence of assembly selections

i(t), j(t) and corresponding actions a(t) in [t0, T − 1] that result in SG(T ) > SG(t0) with

positive probability. Note that feasibility depends on the specifics of G, R, and F .

What remains is to establish policies for the agents so that they can decide on a par-

ticular action based on the information available to them at the time of the decision. The

policy we will present will require the agents in the two assemblies to be aware only of the

number of atoms in each assembly and whether either assembly is of type G.

3.3 Policies

3.3.1 Information restricted policy

An information restricted policy, hereon just a policy, is a pair of mappingsH = {H1, H2}.

The map H2 : P × P → A satisfies ∀ i, j, k, l ∈ P such that
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

size(i) = size(k)

size(j) = size(l)

χG(i) = χG(k)

χG(j) = χG(l)

we have H2(i, j) = H2(k, l). In other words, H2 can depend only on the function size(·)
and whether or not i and/or j are equal to G. The map H1 : P → A satisfies ∀ i, k ∈ P
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such that χG(i) = χG(k) we have H1(i) = H1(k), so that H1 depends only on whether or

not i = G At time t, H1 is used to select an action if
∑

i∈P Si(t) = 1 and H2 is used to

select an action when
∑

i∈P Si(t) ≥ 2.

3.3.2 Goal-size policy

At time t with F (S(t), t) = (i, j), Ĥ1 is used to select an action if j = 0 and Ĥ2 is used

to select an action when j 
= 0. Assume without loss of generality throughout that if two

assemblies, i and j 
= 0, are selected at time t, size(i) ≤ size(j). Let the goal-size policy

Ĥ = {Ĥ1, Ĥ2} be defined

Ĥ1 =

⎧⎪⎪⎨
⎪⎪⎩
break i, i 
= G

null, i = G

Ĥ2 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

form, size(i) < size(G) and size(j) < size(G)

break.j, size(j) ≥ size(G) and j 
= G

null, j = G

The correctness of this policy will rely on the following definition.

Definition 2.1 (F bounded away from zero): There exists F̄ > 0 such that for all t, S(t)

Pr [F (S(t), t) = (i, j)] > F̄

for all (i, j) ∈ C(S(t)).
The distribution F bounded away from zero guarantees that two assemblies present at

time t have a probability of being selected that is bounded away from zero. This removes

the possibility of pieces becoming shielded and inaccessible such as from containment

within a larger cyclical assembly. The next two sections will provide the proof of the

correctness of Ĥ— that it brings the system to S̄ and stays there.
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3.4 Monotonicity of SG

This section will build up to the result that SG strictly increases with positive probability

under Ĥ. We will first note an elementary result concerning SG.

Claim 3.1 (SG non-decreasing under Ĥ):

SG(t) ≥ SG(t− 1) ∀ t

Proof: The only ways that SG can decrease are (i) a goal assembly being selected and

broken up or (ii) a goal assembly forming with another assembly. Ĥ never does either of

these things. �

This implies that S̄ is always an invariant set under Ĥ . In practice, there are many

different sequences of actions that can lead to an increase in SG. However, to ease the

analysis, we will restrict our interest to one specific sequence of actions— one consisting

only of form actions.

Claim 3.2 (form-only trajectories): For any feasible assembly task G 
= 1 with F bounded

away from zero, for any initial time t0, and any initial state S(t0) /∈ S̄, S1(t0) ≥ size(G),

there exists a time T > t0 and a sequence of assembly selections i(t), j(t) in [t0, T − 1]

that, along with the form action at every time instant, result in SG(T ) = SG(t0) + 1 with

positive probability.

Proof: By induction on size(G); size(G) = 2: Any assembly of size 2 can only be

formed from two atoms. Since these two atoms are available at time t0 we can select them

and have SG(t0 + 1) = SG(t0) + 1.

Induction step: Let the claim hold for all G with size(G) < k and let size(G) = k,

then G can only be formed from assemblies whose sizes sum to k, but this implies that

each of these assemblies has size less than k and can therefore be reached via a form-only

trajectory implying that G itself can be reached with only form actions. �

Theorem 3.1 (SG increases with positive probability under Ĥ): For any feasible assem-

bly task G with F bounded away from zero, if S(t0) /∈ S̄, then there exists a time T > t0
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that results in SG(T ) > SG(t0) under Ĥ with positive probability.

Proof: Case 1: Suppose G = 1, then we are guaranteed to eventually select one or two

assemblies with size greater than one with positive probability (by F bounded away from

zero). Ĥ will call for the break up one of those assemblies, increasing SG.

Case 2: Suppose G 
= 1 and S1(t0) ≥ size(G), by the feasibility of the assembly task

G and the previous claim there exists such a trajectory involving form actions only. It

follows from the details of the proof of that claim that the sequence of assembly selections,

i(t), j(t), can be chosen so that size(i(t)) < size(G) and size(j(t)) < size(G) for all

t ∈ [t0, T − 1]. Since Ĥ always chooses form when the assemblies both have size less

than size(G), and there is positive probability associated with i(t) and j(t) (by F bounded

away from zero), SG increases with positive probability under Ĥ .

Case 3: Suppose G 
= 1 and S1(t0) < size(G), if we have for some j 
= G that Sj(t0) >

0 and size(j) ≥ size(G) then the action break.j will be taken with positive probability

under Ĥ , bringing us to the previous case. If not, then Ĥ2 will, with positive probability,

form smaller assemblies until an assembly j satisfying Sj(t) > 0 and size(j) ≥ size(G)

for some t is formed. If j = G we are done, if not then break.j is eventually performed

with positive probability, giving the previous case.

The next section completes the proof of the correctness of Ĥ with respect to the assem-

bly task.

3.5 Correctness of Ĥ

Claim 3.3 (SG increases almost surely under Ĥ): For any feasible assembly task G with

F bounded away from zero, If S(t0) /∈ S̄, then

∀ δ > 0, ∃ T such that Pr [SG(T ) > SG(t0)] > 1− δ

Proof: Fix M = SG(t0) and let

SG,M = {S ∈ S : SG = M}
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By the previous claim, for each state in SG,M there is a positive probability γ that SG

will increase within τ iterations. Let γ̂ be the minimum of these probabilities, and τ̂ the

maximum of these times. The maximum and minimum are always defined because SG,M

is always a finite set. We have

Pr [SG(t0 + τ̂) > SG(t0)] > γ̂

Pr [SG(t0 + 2τ̂) > SG(t0)] > 1− (1− γ̂)2

...

Pr [SG(t0 + kτ̂ ) > SG(t0)] > 1− (1− γ̂)k.

Choose k so that (1− γ̂)k < δ, then T = kτ̂ . �

We can now assert the efficacy of Ĥ .

Theorem 3.2 (Correctness of Ĥ): Consider a feasible assembly task G with F bounded

away from zero. From any initial time and state t0, S(t0), Ĥ achieves the assembly task of

reaching and staying in S̄ almost surely.

Proof: The set S̄ is invariant under Ĥ, so what must be shown is for S(t0) /∈ S̄

∀ δ > 0, ∃ T > t0 such that Pr
[
SG(T ) ∈ S̄

]
> 1− δ

Let SG(t0) = m, let � N
size(G)

� = M , and let δ̂ = (1− δ)
1

M−m−1 . By the previous claim there

are times τm, τm+1, ..., τM−1 such that

Pr [SG(t0 + τm) > m] > δ̂

Pr [SG(t0 + τm + τm+1) > m+ 1] > δ̂2

...

Pr [SG(t0 + τm + τm+1 + ... + τM−1) = M ] > δ̂M−m−1 = 1− δ

so T =
∑M−1

k=m τk. �
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We remark that analyzing an assembly task only requires knowledge of the reactions

on the set {(i, j) ∈ P × P : size(i) + size(j) < size(G)} because larger assemblies that

are formed can only be broken up afterwards. The last section of this chapter provides an

example of the assembly-level information process using equilateral triangles in the plane.

The details of the procedure are illustrated and a MATLAB simulation is conducted.

3.6 Example: Equilateral triangles in the plane

The advantage of the self-assembly process presented using assembly-level information

(the goal-size policy) is that it achieves a very strong convergence result using very simple

rules. If we can assume the existence of reasonably reliable communication between a con-

nected network of agents (an assembly) and a suitable algorithm for achieving consensus

among the agents about the needed information, then the number of desired assemblies will

almost surely increase monotonically, achieve the maximum, and remain there. We do not

address the specific details of implementing such a consensus algorithm. We consider the

problem to be related to k-consensus (see [18]) and other problems related to consensus

for discrete values over graphs. It is not necessary to even identify the exact form of the

different states the system can take. In fact, these are the ingredients needed for the results

of this chapter to apply:

• The agents must be identical.

• The agents must form into a finite set of assemblies.

• The desired assembly must be feasible per the definition.

• The information and communication requirements must be met so that we can utilize

the abstraction of assembly-level actions.

A simple illustration of the procedure can be arrived at using equilateral triangles. This

choice has the added benefit of having been previously used in [13], so its use here provides

an easy contrast for the reader considering both approaches.
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Figure 5: There are 13 assemblies obtainable by joining five or fewer equilateral triangles
along their sides.
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Figure 6: The simulation reaches the desired state of twenty assemblies of type 8 from an
initial condition of 103 assemblies of type 1.

Figure 5 shows the different assemblies containing up to five atoms. In this case the

atoms are equilateral triangles and the larger assemblies are formed by overlapping a sin-

gle side. In our simulation, we seek to generate as many assemblies of type 8 as possible.

Since type 8 includes five atoms, it is necessary to tabulate the reactions involving product

assemblies of size up to and including five atoms. A reaction is a set of possible product

types when two assembly types form together. Reactions with larger products do not need

to be determined explicitly because assemblies that contain more atoms than the desired as-

sembly will eventually be broken up into type 1 assemblies in the current dynamic process.

The reactions for our case are shown in the table below and are easily verifiable.

Clearly the number of atoms is conserved in every reaction. In our simulation we

begin from the trivial initial condition of all parts having no connections— type 1. The

convergence result is actually applicable from every initial condition. Figure 6 shows the

results of the MATLAB simulation.
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Reactant 1 Reactant 2 Product(s)
1 1 {2}
1 2 {3}
1 3 {4, 5, 6, 7}
1 4 {8, 9, 10}
1 5 {8, 11, 12}
1 6 {9, 10, 11, 12, 13}
1 7 {9, 11}
2 2 {4, 5, 6}
2 3 {8, 9, 10, 11, 12, 13}

The rest of this thesis will be concerned with self-assembly techniques and analysis

when the assumption of assembly-level information is dropped and only atom-level infor-

mation is available. That is, an atom will have to make a decision with limited knowledge

about the assembly it is participating in. The convergence result, weaker than that found in

this chapter, will be in the form of stochastic stability. The next chapter will introduce this

concept.
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CHAPTER IV

STOCHASTIC STABILITY

This introduction to the notion of Stochastic Stability will draw heavily from the presenta-

tion of Young [19]. The interested reader may want to consult that source because we will

develop these concepts here with an eye for brevity. For an even more succinct exposition,

consult [20].

The well-known notion of dynamic system stability refers to the properties of the equi-

librium points of a system. If an autonomous system is in an equilibrium state, it will stay

there indefinitely. Stability classifies the attractiveness of these equilibrium states. Differ-

ent stability concepts (local, global, asymptotic, exponential, etc.) describe the behavior

of the system at various proximities to a particular equilibria. In the next chapter we will

present a model of self-assembly that can be viewed as a Markov process with fixed tran-

sition probabilities that are then perturbed with small noise terms. Under the unperturbed

model, there are a great many equilibrium states, the vast majority of which are undesirable.

However, we will see that when we add the stochastic perturbations in a particular way, the

desirable states can be made to dominate the long-run statistical behavior of the system.

In particular, the desirable states are stochastically stable. Stochastic stability of a set of

states means that those states are observed with non-vanishing probability as a temperature

parameter ε approaches zero.

4.1 Regular perturbed Markov processes

We will consider a Markov process P 0 on a finite state space Z. We will restrict our interest

to perturbations to this process of a specific form, defined below.

Definition 4.1 (Regular perturbed Markov process): Let P ε be a Markov process on Z

for each ε ∈ (0, ε̄]. P ε is a regular perturbed Markov process if P ε is irreducible (we can
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get to any state from any state in finite time with positive probability) for every ε ∈ (0, ε̄]

and for each z, z′ ∈ Z we have

lim
ε→0

P ε
zz′ = P 0

zz′,

and

if P ε
zz′ > 0 for some ε > 0, then 0 < lim

ε→0
P ε
zz′/ε

r(z,z′) < ∞ for some r(z, z′) ≥ 0.

The quantity r(z, z′) ∈ R is called the resistance of the transition z → z ′. Clearly,

r(z, z′) must be uniquely defined in order to satisfy the condition. Also, P 0
zz′ > 0 if and

only if r(z, z′) = 0. That is, transitions that occur with non-zero probability under P 0 have

zero resistance. Transitions that never occur can be considered as having infinite resistance

so that r(z, z′) is always defined.

For each ε, there is a unique stationary distribution, με, associated with P ε (by its irre-

ducibility). We can now formally define stochastic stability.

Definition 4.2 (Stochastic stability): A state z is stochastically stable (Young, 1993) if

lim
ε→0

με(z) > 0.

It has been shown elsewhere that the above limit exists for every z so that every regular

perturbed Markov process has at least one stochastically stable state. These states are the

ones that the system spends most time in over the long run when ε is small. Now we will

describe how to compute the stochastically stable states.

4.2 Computing the stochastically stable states

In this section we will explain how to compute the stochastically stable states and provide

an illustrative example. It should be noted that the stochastically stable states correspond

to the perturbed process P ε. That is, which states survive in the presence of the perturba-

tions will depend on how the perturbation is introduced. It is possible to arrive at different
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stochastically stable states for the same process P 0 by applying the perturbations differ-

ently. Also, the stochastically stable states correspond to the limiting case of ε approaching

zero, and are not always particularly likely to be observed when ε is not small.

4.2.1 The resistance tree method

A recurrent class of a Markov process is a set of states that, from any state in the set one can

reach any other state in the set in finite time with positive probability, and no state outside

the set is accessible from any state inside it. Let P 0 haveK recurrent classesE1, E2, ..., EK .

We will define for every distinct pair of recurrent classes Ei and Ej , i 
= j, a sequence of

states ζ = (z1, z2, ..., zq), z1 ∈ Ei, zq ∈ Ej called an ij-path. The resistance of the path

is the sum of resistances in the sequence, r(ζ) = r(z1, z2) + r(z2, z3) + ... + r(zq−1, zq).

We further denote rij = min r(ζ) as the ij-path with least resistance. rij is always positive

because there cannot be a zero resistance path between two distinct recurrent classes.

Now, for each recurrent class Ej , construct a tree rooted at a vertex j corresponding to

Ej . That is, a set of K−1 directed edges such that each Ei, i 
= j is represented by a vertex

i and there is a unique directed path from any vertex different from j to j. The resistance

of such a tree is the sum of the resistances rij on the K − 1 edges. The stochastic potential

γj of the recurrent class Ej is the minimum resistance among all such trees rooted at j. We

expect the recurrent classes of minimum stochastic potential to be the most likely when ε

is small. This result has been formalized (Young, 1993) as follows:

Theorem 4.1: Let P ε be a regular perturbed Markov process, and let με be the unique

stationary distribution of P ε for each ε > 0. Then limε→0 μ
ε = μ0 exists, and μ0 is a

stationary distribution of P 0. The stochastically stable states are precisely those states that

are contained in the recurrent class(es) of P 0 having minimum stochastic potential.

We will now consider an example that is simple, but sufficient to illustrate the proce-

dure.
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S1 S2 S3

111

Figure 7: A simple three-state Markov process, P 0. The system stays in its initial state for
all t.

4.2.2 Example: A three-state process

Figure 7 illustrates a simple three state Markov process, P 0. Each state Si, i ∈ {1, 2, 3} is a

singleton recurrent class, also referred to as an absorbing state. The state transition matrix

is given by

P 0 = I =

⎛
⎜⎜⎜⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎟⎟⎟⎠

.

It is easy to see that all state distributions are stationary in this example because the tran-

sition matrix is the identity matrix. This process is not particularly interesting, until we

introduce the perturbation and arrive at P ε as shown in Figure 8. It can easily be verified

that P ε satisfies Definition 4.1, so it must have at least one stochastically stable state. In

this example, we can easily see that the minimum resistance rooted trees for each state (as

each is a recurrent class of P 0) must be

S1 → S3 → S2, r = 2 + 1 = 3

S3 → S2 → S1, r = 1 + 1 = 2

S2 → S1 → S3, r = 1 + 2 = 3

where the resistance is also noted. All other rooted trees will involve crossing states more

than once, so that all other trees rooted at Si will have a single edge equal to the resistance

above in addition to other non-zero resistance edges. We can conclude in this example

that there is one stochastically stable state, S1. This result is intuitively satisfying because

among the three states, the probability of leaving S1, ε2, is least.
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Figure 8: The perturbed process P ε has r(S1, S2) = 2, r(S3, S2) = 1, r(S2, S1) = 1.

In cases with more edges in P ε and more states, finding the minimum resistance tree

rooted at Si will be more difficult, although it is always a finite search. We do note, however,

that the search applies only to recurrent classes of states and these are oftentimes much

fewer in number than the states themselves.
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CHAPTER V

ATOM-LEVEL INFORMATION PROCESS

We are now prepared to revisit the problem of self-assembly with agent information lim-

ited to the atom-level. That is, agents are not necessarily aware of the entire structure of

the assembly that they take part in. In particular, two agents are selected at each time t

and they are able to communicate to each other only their internal states and the internal

states of agents that they share edges with. We note that this does not imply a ‘two-hop’

communication. Since agents communicate their own internal states during a formation or

severance event, their ‘full’ internal state can be considered to be their own internal states

as well as those of their neighbors. The agents must decide upon an action to undertake

from a set of available actions based only on the information noted above. The agents will

be able to form or sever edges or do nothing. They will also be able to update their internal

states. All agents besides the two selected randomly at time t cannot form or sever edges

and cannot change their internal states. This rather severe limitation makes it impossible

for all agents to have complete assembly-level information. This is because if two agents

form an edge, one agent will never be apprised of additional edges formed or severed by the

other agent afterwards. This limitation is particularly relevant to molecular self-assembly

processes where more elaborate communication may not be realizable. In any case, we

will see that even under these limitations there exist decision policies that will converge to

desirable states.

5.1 System model

There are N identical parts, or atoms, in the plane. The desired, or goal assembly, is a con-

nected weighted graph, Ĝ = {N̂ , Ê, Ŵ}, where N̂ = {1, 2, ..., N̂} are nodes, Ê ⊂ N̂ ×N̂
are undirected edges, and Ŵ : Ê → W are edge weights from a finite set W , representing
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Figure 9: (a) An assembly involving squares in the plane, and (b) its representation as a
weighted graph.

the orientation of the connection. The system is described by the physical state, a graph

G = {N , E,W}, along with the internal state vector S, where N = {1, 2, ..., N} are

nodes, E ⊂ N × N are undirected edges, W : E → W are edge weights, and S ∈ N̂N

is a state vector with the ith element representing the internal state information of node i.

The internal state will be used to store each nodes’ corresponding vertex in Ĝ— its role in

the assembly. We will assume throughout that Ĝ is acyclic— a tree. We also impose on Ĝ

that vertex 1 participates in only one edge, (1, 2), with W (1, 2) = 0. Since the nodes are

atoms and Ĝ is a tree this imposition does not sacrifice any generality.

Figure 9 illustrates our model using the goal assembly that will serve as a motivating

example throughout our discussion. In this case, the atoms are squares in the plane. Edges

are realized as fully overlapping sides. We can consider each node other than 1 as having

a path of directed edges from node 1 terminating at it because Ĝ is a tree. Facing this

edge, the other edges at a node are assigned weights according to their orientation— 1 for

nodes to the left, 2 for nodes behind, and 3 for nodes to the right. Any acyclic assembly

composed of squares in this manner can be represented using this method. There are several

ways to represent the same assembly, but any graph corresponds to only one assembly. We

could have chosen the starting edge (given weight 0) differently, which would have given a
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different graph, however, it would still describe an assembly of squares unambiguously.

5.2 Statement of objectives

The objective of this work is to construct a dynamic process that obeys the guidelines

suggested at the start of the chapter and converges to a state that is desirable with respect

to the goal assembly. In order to define this objective clearly, we will need to review some

concepts in graph theory.

5.2.1 Graph isomorphism and subgraphs

We say that two graphs are an isomorphism, or one graph is isomorphic to another when

they obey an equivalence relation. That is G1 = {N1, E1,W1} � {N2, E2,W2} = G2 if

∃f : N1 → N2 such that⎧⎪⎪⎨
⎪⎪⎩
(i, j) ∈ E1 iff (f(i), f(j)) ∈ E2

W1(i, j) = W2(f(i), f(j)) ∀ (i, j) ∈ E1

An equivalence class of graphs all represent the same assembly. Since it is self-assembly

performance that we are concerned with, our objective will be phrased in terms of equiv-

alence classes of graphs. We will no longer explicitly refer to these equivalence classes.

We will simply refer to graphs and assume that the reference to the equivalence class is

understood.

Given I ⊂ N we define the subgraph G∩ I = {N ∩ I, E ∩ I× I,W |I×I}. We say that

G contains H if a subgraph of G is isomorphic to H . A connected subgraph is maximal if

there are no nodes in the original graph that could have been added to the subgraph while

still leaving it connected. We will use the terms assembly and maximal connected subgraph

interchangeably.

5.2.2 The objective

The performance objective can now be stated as follows: We seek to maximize the number

of disjoint subgraphs of G that are isomorphic to Ĝ. If N is not an integral multiple of N̂
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then it will not be possible for all atoms to be participating in goal assemblies at any one

time. We do not stipulate any preference for the behavior of these remainder agents. It will

turn out that these nodes will always be part of connected subgraphs that are isomorphic

to subgraphs of Ĝ in the process that will be presented. Using the simple rules that we

will suggest, the dynamic process will not always converge to the maximum number of

desirable assemblies present. However, the number of agents not participating in goal

assemblies will be bounded. This way, by making N large we can get as close to 100

percent of all nodes participating in goal assemblies as we want.

5.3 The self-assembly process

This section will introduce the self-assembly process for atom-level information, the most

important contribution of this work. The process will be a regular perturbed Markov pro-

cess. Therefore, we will present the streamlined unperturbed process first and then in-

troduce the perturbations that are necessary for our results. The unperturbed process is

capable of producing goal assemblies and will even produce the maximum number of goal

assemblies with positive probability from some initial conditions. However, the unper-

turbed process will usually land in some absorbing state that is not particularly desirable

and never leave.

The process we present may not appear to be the most intuitive way to to construct de-

sired assemblies. In particular, we restrict ourselves to assembling one piece at a time. We

do not ever connect two assemblies without at least one having only one vertex. This serial

assembly process will nevertheless be sufficient to achieve our performance guarantees for

any acyclic Ĝ

5.3.1 The unperturbed dynamic process (P0)

Let G(t) = {N , E(t),W (t)}, S(t) be the physical and internal states, respectively, of the

system, and let nG(t)(i) represent the neighbors of node i. At time t, two agents, i and

j, i 
= j, are selected according to a random process F (G(t), t). Assume w.l.o.g. that
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|nG(t)(i)| ≤ |nG(t)(j)| and if |nG(t)(i)| = |nG(t)(j)| then Si(t) ≤ Sj(t). One of the four

actions from the set A = {initial form,form,break,null} is taken

initial form: If |nG(t)(i)| = |nG(t)(j)| = 0, set

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E(t+ 1) = E(t) + (i, j)

(W (t+ 1))(k, l) =

⎧⎪⎪⎨
⎪⎪⎩
0 (k, l) = (i, j)

(W (t))(k, l) (k, l) 
= (i, j)

Sk(t+ 1) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Sk(t) k /∈ {i, j}

1 k = i

2 k = j

form: If |nG(t)(i)| = 0, |nG(t)(j)| 
= 0, and there exists s ∈ N̂ and w ∈ W such that

Ŵ (Sj(t), s) = w and for all k ∈ nG(t)(j) we have Sk(t) 
= s (if there are several such pairs

(s, w), choose one at random uniformly) set
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E(t+ 1) = E(t) + (i, j)

(W (t+ 1))(k, l) =

⎧⎪⎪⎨
⎪⎪⎩
w (k, l) = (i, j)

(W (t))(k, l) (k, l) 
= (i, j)

Sk(t+ 1) =

⎧⎪⎪⎨
⎪⎪⎩
Sk(t) k 
= i

s k = i

null: Otherwise, set ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

E(t+ 1) = E(t)

W (t+ 1) = W (t)

S(t+ 1) = S(t)

The initial form action creates a new assembly when two free atoms are selected.

The form action checks for a vacancy when a free atom and an atom participating in an
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assembly are selected. When neither of these actions are available for the pair of nodes

selected at time t, null is defaulted to.

5.3.2 Absorbing states of P 0:

Consider P 0 with E(0) = W (0) = {∅} and (by convention) S(0) = 0N . We will concern

ourselves with N ≥ N̂ for obvious reasons.

Claim 5.1 (Absorbing states of P 0): The absorbing states of P 0 are as follows:

(i) If N 
= mN̂ + 1 for any positive integers m then the absorbing states are all states

where each connected subgraph of G is isomorphic to a subgraph of Ĝ and |nG(i)| 
= 0 for

all i ∈ N .

(ii) If N = mN̂ + 1 for some positive integer m then the absorbing states are all states

where each connected subgraph of G is isomorphic to a subgraph of Ĝ. Either nG(i) 
= 0

for all i ∈ N or there exists only one i ∈ N with |nG(i)| = 0 and all other nodes are part

of connected subgraphs isomorphic to Ĝ itself.

Proof: (i) Since |nG(i)| 
= 0 for all i ∈ N , the form and initial form actions

cannot be taken and the state of the system cannot change. If there exists i such that

|nG(i)| = 0 then either there is a j such that nG(j) = 0 (so that i and j can initial

form) or there is a k such that there exists s ∈ N̂ and w ∈ W such that Ŵ (Sk(t), s) = w

and for all l ∈ nG(t)(k) we have Sl(t) 
= s

(ii) If |nG(i)| 
= 0 for all i ∈ N then the state cannot change. Otherwise there can be

no initial form because there is only one i satisfying |nG(i)| = 0. Also, there can be

no form because for all j ∈ N , s ∈ N̂ , and w ∈ W such that Ŵ (Sj(t), s) = w we have

some k ∈ nG(t)(j) such that Sk(t) = s. The argument for all other states not absorbing is

similar to the above. �

In words, the above claim states that the absorbing states cannot form any further and

have all assemblies being sub-assemblies of the desired assembly. Only in the situation

described in (ii) is it possible to have an atom without any connections in an absorbing
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state, and even it cannot form any further.

Note that while there are states satisfying the objective among the absorbing states,

not all absorbing states satisfy the objective. These undesirable absorbing states are also

reached with non-zero probability in P 0. The claim establishes the recurrent classes of

P ε as precisely these absorbing states, which themselves may be thought of as fully built

states. That is, no more form actions can be undertaken. The next subsection introduces

the perturbed process, P ε.

5.3.3 Perturbed dynamic process (P ε)

P ε is the same as P 0 except that null is subdivided as follows:

break: If (i, j) ∈ E(t) and nG(t)(j)\i = {∅} then case 1: Si(t) = 1, Sj(t) = 2 and we

set, with probability ε
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

E(t+ 1) = E(t)− (i, j)

Sk(t+ 1) =

⎧⎪⎪⎨
⎪⎪⎩
Sk(t) k /∈ {i, j}

1 k ∈ {i, j}

or case 2: Si(t) 
= 1 and we set, with probability ε
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

E(t + 1) = E(t)− (i, j)

Sk(t+ 1) =

⎧⎪⎪⎨
⎪⎪⎩
Sk(t) k 
= j

1 k = j

and in either case we set, with probability 1− ε
⎧⎪⎪⎨
⎪⎪⎩
E(t + 1) = E(t)

S(t+ 1) = S(t)

Otherwise perform null as above.

The break action severs an edge with probability ε when two connected nodes are

selected with one node being an extremity (having only one edge) of the assembly. The
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exception is nodes with state 1 which are not broken off unless there is only one edge in its

maximal connected subgraph. The unperturbed process is simply the above with ε = 0.

The next section will develop convergence results for P ε. P ε allows the severance of

an edge where one node is yet to establish an additional edge. In other words, a node that

is an extremity of the assembly, when selected, breaks off with probability ε.

5.4 Stochastically stable states of P ε

The results of this section will depend upon the following assumption:

Assumption 5.1 (F bounded away from zero): There exists F̄ > 0 such that for all

t, G(t) we have

Pr [F (G(t), t) = (i, j)] > F̄ ∀ (i, j) ∈ {(i, j) ∈ N ×N : i 
= j}.

This assumption is analogous to Assumption 3.1 and can also be interpreted as the

inability for any of the parts to become isolated from further reactions. For our purposes, it

suffices to note that since F is bounded away from zero it can be neglected in our analysis

of stochastic stability because it does not contribute to resistance.

The stochastically stable states of P ε will form a class defined by the number of distinct

maximal connected subgraphs. In other words, the stochastically stable states of P ε are all

of the absorbing, or fully built states with a specific number of assemblies. In particular,

it is the absorbing states with the minimum number of assemblies that are stochastically

stable.

Claim 5.2 (Minimum assembly count): The stochastically stables states of P ε are the

absorbing states with the minimum number of maximal connected subgraphs with disjoint

vertices. In particular, there are �N/N̂� such subgraphs in all of the stochastically stable

states.

Proof: The proof is based on the construction of rooted trees for the claimed class

of stochastically stable states and comparison with the trees corresponding to all other
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absorbing states. Let Z0 be the absorbing states of P ε. We will decompose Z0 into disjoint

sets Zm where each state in Zm has m assemblies, so that

⋃
m∈M

Zm = Z0,M = {�N/N̂�, �N/N̂�+ 1, ..., �N/2�}.

The rooted trees for each absorbing state contain |Z0| − 1 edges in each tree. There is

nonzero resistance associated with each of these edges because the states are all absorbing.

For P ε, the resistance is at least one for each edge. We will show that a rooted tree satisfying

this minimum resistance of |Z0| − 1 can be constructed for each state in Z�N/N̂�.

To shorten the proof we restrict our interest to the case where both N and N̂ are even.

A similar construction exists for the cases where either N , N̂ , or both are odd. Let zN/2 ∈
ZN/2 be the state with all assemblies as pairs of nodes. Let zN/2−1 ∈ ZN/2−1 be the state

arrived at by performing break on one of the pairs and then performing form actions to

attach the two free atoms to one of the other pairs (or two if N̂ = 3). We proceed like

this for each zm ∈ Zm letting zm+1 be arrived at by breaking up a pair and transferring

the pieces to the largest possible assembly with a break action followed by two form

actions. Figure 10, 11 illustrates an example of this procedure.

We will first construct the tree rooted at z�N/N̂�. There are edges corresponding to the

zm as follows:

z�N/2	 → z�N/2	−1 → ... → z�N/N̂�.

Each edge zm → zm−1 represents breaking up one assembly of two nodes (r = 1), and

then having those nodes form together. This will form the backbone of the tree. Figure 12

illustrates the concept we will use to complete the tree rooted at z�N/N̂�.

Each row contains the states with a particular number of assemblies. What remains to

be shown is that all states in Zm can reach zm via a path through states in Zm with all edges

having resistance 1. Consider a state y ∈ Zm, y 
= zm. Each zm consists of only two-node

assemblies, completed assemblies, and at most one other assembly. Let xm refer to the

largest incomplete assembly of zm (let it be a two-node assembly if that is the largest). We
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z15

z14

z13
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Figure 10: The states zm, m ∈ {8, 9, ..., 15} for the Ĝ introduced above, N = 30, N̂ = 14.
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z7 z6

z5 z4

z3

Figure 11: The states zm, m ∈ {3, 4, ..., 7} for the Ĝ introduced above, N = 30, N̂ = 14.
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Figure 12: The structure of the tree rooted at z�N/N̂�; note that M = �N/N̂�.

can construct the path to zm for the two cases for y:

Case 1: There exists a maximal connected subgraph of y that is isomorphic to xm. In

this case, we take the smallest assembly with more than two nodes and shift a node to the

largest incomplete assembly other than the one just mentioned that is isomorphic to xm.

We continue this process until we obtain zm. Each step in the process involves one break

and therefore an edge with r = 1 linking to a distinct absorbing state in Zm.

Case 2: There is no maximal connected subgraph of y that is isomorphic to xm. In

this case, we take the smallest assembly with more than two nodes and shift a node to the

largest maximal connected subgraph that is isomorphic to a subgraph of xm. We proceed

like this until we obtain a maximal connected subgraph that is isomorphic to xm, and then

continue as in case 1.

We can repeat this process until we have covered all of the states in Zm, avoiding any

redundancies so that we form precisely |Zm|−1 edges. Once we have applied this technique

for all m we have obtained a rooted tree with each edge having resistance 1 so that z�N/N̂�

is stochastically stable.

A similar construction can be applied for all the other states in Z�N/N̂�. For an arbitrary

state z′ ∈ Z�N/N̂�, z
′ 
= z�N/N̂� we construct the tree just as above for the states in the sets

Zm, m > �N/N̂� and z�N/N̂�. Then, we insert the edges between z�N/N̂� and z′ in the

same way as above except that the directions are reversed. Then we apply the exact same
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procedure as above for the remaining states in Z�N/N̂�, again avoiding any redundancies.

These trees will also all have resistance 1 at every edge so that all ofZ�N/N̂� is stochastically

stable.

For any state in Zm, m 
= �N/N̂� the rooted trees all must include an edge that goes

from a state with a smaller number of assemblies to a state with a larger number of assem-

blies. This can only be accomplished by two successive break actions corresponding to

an edge with resistance 2. Since all other edges are at best resistance 1, all of these rooted

trees have resistance equal to at least |Z0|. We therefore conclude that the stochastically

stable states are precisely Z�N/N̂�. �

Corollary 5.1 (N = mN̂ ): If N = mN̂ for some m ∈ Z
+ then the only stochastically

stable state is all maximal connected subgraphs of G isomorphic to Ĝ.

Proof: This follows directly from the previous claim. �

When N is not an integer multiple of N̂ then we do not expect all nodes to participate in

complete assemblies. If we have N slightly larger than N̂ then we cannot in general guar-

antee that the stochastically stable states will contain any complete assemblies. However,

as N becomes large, the minimum number of completed assemblies in the stochastically

stable states becomes large as well. In fact, there is a bound on the total number of nodes

not participating in complete assemblies that applies for all N .

Theorem 5.1 (convergence to objective): For any acyclic Ĝ, all stochastically stables

states of P ε have no more than (N̂ − 1)2 distinct nodes not part of a connected subgraph

isomorphic to Ĝ.

Proof: Let N = (N̂ − 1)2. The maximum number of incomplete assemblies is N̂ − 1

assemblies with N̂ − 1 nodes in each assembly. Each increase of N by one, must add

one complete assembly and reduce the number of nodes not participating in complete as-

semblies by 13. This continues until we reach N = N̂(N̂ − 1) and there are zero nodes

not part of complete assemblies in the stochastically stable states. This process repeats for

N̂(N̂ − 1) + 1 through N̂2 and, it is easy to show by induction that (N̂ − 1)2 is always the
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Figure 13: The assembly (a) for Example 5.1 and its associated graph (b).

maximum number of nodes not part of complete assemblies. �

There are at most N̂−1 incomplete assemblies (rejects). This result represents the thrust

of this work. If N is much larger than N̂ , a reasonable expectation in many situations, then

an assembly process that behaves like P ε will self-assemble almost completely. The next

section will present some examples and MATLAB simulations that serve to illustrate and

verify the claims of this chapter.

5.5 Examples

Before we present MATLAB simulations for the Ĝ presented in the previous section, we

will compute the exact stationary distribution for a simpler assembly task. Even for this

simple case, the number of states is large and computation of the stationary distribution is

somewhat laborious.

5.5.1 Example 5.1: Stationary distribution

To simplify the computation we will consider the assembly of Figure 13, a subgraph of the

motivating assembly from the previous section. This graph can represent a subassembly of

the assembly represented by the previously considered graph.

We will consider the initial condition of all N = 5 nodes having no connections. The

probabilities for F will be uniform always. We have shown previously that all maximal

subgraphs encountered will be isomorphic to a subgraph of Ĝ. We will further simplify
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Table 1: Reduced order representation for Example 5.1

Assembly sizes State
(1, 1, 1, 1, 1) s1
(2, 1, 1, 1) s2
(2, 2, 1) s3
(3, 1, 1) s4
(3, 2) s5
(4, 1) s6
(5) s7

the state space by grouping together states where the maximal subgraphs have the same

number of nodes. The mapping is shown in Table 1. Figure 14 shows the three different

assembly pairings that are represented by (3, 2), or s5. The L-shaped assemblies in (a) and

(c) are actually identical and can be attained by rotation. However, they are represented

by two different graphs that are not isomorphic to each other. This coarsening of the state

space will not impact our results significantly because there is no ambiguity associated with

the desired state s7. Since we intend to show convergence to s7, the exact distributions for

the other states is not important to us.

Figure 15 shows the transition probabilities for P 0, also representable in matrix form:

P 0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0

0 2
5

3
10

3
10

0 0 0

0 0 4
5

0 1
5

0 0

0 0 0 7
10

1
10

1
5

0

0 0 0 0 1 0 0

0 0 0 0 0 9
10

1
10

0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It is easy to see that s5, not s7, is the slightly more probable outcome beginning from

s1. It can be verified that the state transition matrix for P ε is as follows

43



  (a)                                                       (b)                                                      (c)

Figure 14: S7 includes three different pairs of assemblies. (a) can be obtained from (c) by
rotation, but their graphs are not isomorphic.

S1 S2
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S6 S7

1
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.1

.3

.3

.1
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.7.7

1

.9

1

Figure 15: P 0 for Example 5.1. The recurrent classes are the absorbing states S7 and S5.

P ε =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0

ε
10

4
10

− ε
10

3
10

3
10

0 0 0

0 ε
5

4
5
− ε

5
0 1

5
0 0

0 ε
10

0 7
10

− ε
10

1
10

1
5

0

0 0 ε
10

ε
10

1− ε
5

0 0

0 0 0 ε
5

0 9
10

− ε
5

1
10

0 0 0 0 0 3ε
10

1− 3ε
10

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Table 2 gives the stationary distributions, πε for different values of ε. The stationary

distribution satisfies πε = πεP
ε. Notice that for ε = .05, P ε spends more than 99% of the

time in the desired state, S7.
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Table 2: Stationary distributions for Example 5.1

ε πε

.5 (.0003, .0066, .0197, .0789, .1578, .3157, .4209)

.3 (0, .0005, .0026.0176, .0587, .1957, .7248)

.1 (0, 0, 0, .0003, .0029, .029, .9678)

.05 (0, 0, 0, 0, .0004, .0074, .9922)

5.5.2 Example 5.2: N = N̂

One difficulty associated with simulating the atom-level information self-assembly process

is that the agent selection process F may commonly select agents whose only available

action is null. In the simulations that follows, we choose F so that pairings that cannot

result in a form or break are never selected. However we will choose F so that the

relative probabilities for break and form are consistent with F uniform. The effect

of this choice of F is that the absorbing states, where many pairings have only null

available, are less often observed. The relative frequency of the different absorbing states

is not substantially altered. Figure 16 shows the results of a simulation of Ĝ as in Figure 9

with N = 14, ε = .01 beginning from the standard initial condition.

It takes a certain amount of time for the system to first reach the desired state so that the

proportion of time spent there can increase. Afterwards, the system goes in and out of the

desired state and begins to settle at a figure of about 50% of time being spent in the desired

state. If ε is taken lower then the system will spend a higher proportion of total time in

the desired state. However, the actual length of the time intervals in between will increase.

While we may stay in the desired state for a very long period of time, it may take a very

long time to get there. This is a limitation of the process presented and the convergence

result achieved, but there are ways to improve performance other than just waiting longer.

We will employ a technique known as cooling to speed up the simulations. This in-

volves beginning with a high value for ε (temperature) and gradually reducing it in order
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Figure 16: The proportion of total time such that G � Ĝ for N = 14, ε = .01 beginning
from an initial condition where all atoms have no connections.

to settle into a stochastically stable state. One drawback of stochastic stability as a conver-

gence result for engineered systems is that while ε can be made small to keep the system in

the stochastically stable states a large proportion of the time, the absolute amount of time

spent outside the stochastically stable states may be great. For example, a process may

spend 90% of its time in stochastically stables states, spending an average of 90 minutes in

the stochastically stable states, then 10 minutes outside them, and so on. We can increase

this proportion to 99% by decreasing ε, but this may require spending an average of 99,000

minutes in the stochastically stable states, with recurring periods outside of the stochasti-

cally stable states averaging 1,000 minutes. For a task like self-assembly, such long waits

may be unacceptable. Cooling can assuage these waiting times.

Figure 17 shows the dramatic performance improvement achieved using a simple linear

evolution of ε. Over the time period T = 5 × 105, ε is lowered to 0.001, a factor of 10

lower than the previous situation. In this case, we see that using higher values of ε early on
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Figure 17: The proportion of total time such that G � Ĝ for N = 14 using cooling:
ε = 0.5− 0.499(t/5× 105).

allows us to reach the desired state quicker. Then, using lower values of ε once there is a

high probability of having reached the desired state lowers the probability that the system

will leave it. We see a dramatic improvement in the likelihood of observing the desired

state when the system undergoes cooling.

5.5.3 Cooling performance

Discussion of optimal cooling techniques is beyond the scope of this work. In general, the

right technique will depend on the demands of the specific application. In the previous

subsection we showed how a cooling technique could be used to improve the likelihood of

observing the desired state over a fixed length of time. In this subsection we will instead

attempt to cool a system so that at one specific time t = T , the system is in the desired

state. Continuing with Ĝ as before, we will vary the time T and simulate the system 50

times for each value. The parameter ε will obey

ε = 0.001 + 0.5e(−
10t
T

)
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Figure 18: The proportion of the 50 tests for each T such that G � Ĝ at time T for N = 14
using cooling: ε = 0.001 + 0.5e(−

10t
T

).

for each T . This way we maintain the same final ε of approximately 0.001. We compare

the likelihood of the system being in the desired state at t = T as we cool the system for

longer and longer lengths of time. Figure 18 shows the results of this simulation. Cooling

the system more slowly leads to a higher probability of observing the desired state at the

sample time. Since ε > 0 for all t, the probability of observing the desired state at T will

not go to 1 as T is increased. Nevertheless, we see that 48 out of 50 trials were successful

for T = 5× 106. Table 3 presents the results of Figure 18.

The minimum assembly count property guarantees similar results when N = mN̂ for

some m ∈ Z
+. However, the same cannot be said for cases when N is not an integer

multiple of N̂ . The next example illustrates what sort of performance can be expected in

this situation.
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Table 3: Data for Figure 18

T # successful (out of 50) rate
104 2 0.04

5× 104 24 0.48
105 29 0.58

5× 105 45 0.90
106 47 0.94

5× 106 48 0.96

5.5.4 Example 5.3: N not an integer multiple of N̂

This example will highlight the shortcoming of the presented process when N is small,

and how it is overcome when N is large. The simulations in this example and all others

in this thesis utilize an approximation technique in order to speed up their running time.

Whenever the system is in an absorbing state only the break action is available. However,

if ε is small, the action will usually be taken many times before it results in the actual

severance of a bond. For this reason, whenever the system is in one of these states, one of

the breakable bonds is automatically broken at random with the expected waiting time, 1/ε

in this case, added to the total time.

5.5.4.1 N small

When N 
= mN̂ for all m ∈ Z
+, many different G will satisfy the minimum assembly

count property and not all of these will contain maximal connected subgraphs isomorphic

to Ĝ in general. For example, consider the previous example with N = 16. In this case, all

states that are two disjoint maximal connected subgraphs are stochastically stable. Many of

these states do not contain a maximal connected subgraph isomorphic to Ĝ. The methods

presented in this work do not perform well when N is neither large or an integer multiple

of N̂ . We will here treat the case when N is large and show that self-assembly can be

achieved even when N 
= mN̂ . In the next chapter we will revisit the case of N small, but

not an integer multiple of N̂ and suggest some approaches to improve performance.
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Figure 19: With N = 28, ε = 0.1e(−
t

105
) + 10−5 the system achieves a mean number of

assemblies (for all t) of less than 2.03 after 7.5× 109 iterations.

We again consider the same Ĝ as in the previous example. For the case of N = 28

we expect the stochastically stable states to all feature two completed assemblies. This is a

result of the minimum assembly count property. Whenever there are two assemblies, all of

the pieces must participate in the two complete assemblies. If there are more assemblies,

there may be at most one complete assembly. For this reason, we examine the average

over all t of the number of maximal connected subgraphs for each time t. We expect

this average to approach a number very close to 2 when ε is small. This is equivalent to

there being a very high probability of observing exactly two (the maximum) completed

assemblies. Figure 19 illustrates the result for ε = 0.1e(−
t

105
) + 10−5. Although the system

actually continues to go in and out of the desired state for all t, the average appears to

decrease monotonically because most time is spent in the desired state, and the difference

between the average number of assemblies and two is largely the result of the large number

of assemblies while t is small.
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If we increase N by one so that N = 29, the situation changes dramatically. Now,

the minimum number of assemblies is three. Most of the stochastically stable states do

not include any completed assemblies. No self-assembly guarantee can be made at all,

regardless of our selection of ε or the time elapsed. For N = 41, the minimum number

of assemblies is still three. In this case though, there can be only one assembly that is

not complete, and it can only lack one piece. Therefore, when N = 41, the stochastically

stable states all feature two complete assemblies- the maximum possible. Nevertheless, the

sensitivity of system performance to variation in N when N is small is undesirable. This

sensitivity diminishes though as N becomes large relative to N̂ .

5.5.4.2 N large

For N large, Theorem 5.1 implies that the minimum number of assemblies in all stochasti-

cally stables states increases by one for every increase of N by N̂ . This implies one more

completed assembly in all stochastically stable states. We simulate this phenomenon for the

Ĝ of example 5.1. In this case N̂ = 5 so that (N̂ − 1)2 = 16. Self-assembly performance

is at its worst when N = mN̂ +1 for some m ∈ Z
+. This is because the minimum number

of assemblies is m + 1, so that N̂ − 1 more pieces are needed to arrive at all assemblies

completed (N = (m + 1)N̂). It is possible that as many as N̂ − 1 assemblies are incom-

plete, this being achieved when each of those assemblies has N̂ − 1 parts. This is why

there exist stochastically stable states for N ≤ (N̂ − 1)2 having no completed assemblies.

We consider the case of N = 20N̂ + 1 = 101. We expect all stochastically stable states

of the system to have the minimum number of assemblies, 21. At most 4 assemblies are

incomplete so that whenever the system has 21 assemblies, at least 17 are complete. Figure

20 shows the results of this simulation for ε = 0.1e(−
t

106
) + 10−6.

Figure 20 illustrates the self-assembly process’s typical ’driving down’ of the number

of assemblies over time. The mean number of assemblies first seems to settle in at 22 and

then later abruptly begins to approach 21, the value exhibited by stochastically stable states.
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Figure 20: With N = 101, ε = 0.1e(−
t

106
) + 10−6 the system achieves a mean number of

assemblies (for all t) of less than 21.08 after 4.3× 109 iterations.

Since at this stage, ε is very close to 10−6, break actions are quite improbable. The system

spends nearly all of its time in the absorbing states of P 0- all nodes having at least one edge.

It will take, on average, about 1/ε = 106 iterations before the break action results in the

elimination of an edge and the production of a free node. Then, the probability of that free

node rejoining one of the other assemblies is much greater than another node breaking off,

so that is what we expect to happen almost always. If we are oscillating in this manner

about a non-minimum number of assemblies, this process continues until eventually the

final two nodes of an assembly are broken apart. There is then a reasonable probability that

these two nodes will each add onto existing assemblies, resulting in a state with one less

assembly.

Figure 21 provides the raw number of assemblies at each time iteration for the same

simulation. While this is too much data to make quantitative observations, it does facilitate

a qualitative observation. During the earlier time iterations while ε is large, we observe that
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Figure 21: The raw number of assemblies will settle into oscillation between 22 and 23,
and then 22 and 21.

the system transits frequently between different number of assemblies. By t = 107 the sys-

tem begins to transition between 23 and 22 assemblies exclusively. The process described

above is occurring here. The system is spending almost all its time with 22 assemblies,

breaking off a piece and then reforming it again and again. Eventually, a favorable series

of outcomes leads to the breakup of a two-node assembly and assimilation of the two free

nodes by existing assemblies. This results in 21 assemblies. The process of breaking up and

rejoining continues, with the system spending nearly all of its time with 21 assemblies. It

is very unlikely that the system will increase the number of assemblies because this would

require two successive break actions without a form action in between.

If we were to continue increasingN , the number of completed assemblies in the stochas-

tically stable states would increase and the number of incomplete assemblies would always

be 4 or fewer. By making ε small, we can achieve a probability of observing the minimum

number of assemblies that is as close to one as we please. The difficulty with N large and

ε small however, is that the number of iterations required to achieve satisfactory results can
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be very long.

It should be noted that ‘time’ in our models is a relative concept. If the ‘parts’ are in a

fixed volume (e.g. particles in a test-tube), then we should expect the rate that interactions

occur to increase with N . Our procedure considers one interaction per iteration though,

making large N cases appear to evolve very slowly. Another issue is that the procedure

presented in this work is formulated so as to make the presentation of analytical results

as clear as possible. In particular, we use resistances of 1 for every breakup. In the next

chapter we will explore selecting different resistances for different edges empirically to

improve performance.
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CHAPTER VI

EXTENSIONS

In this chapter we will suggest modifications to the atom-level process that can improve

performance. We also study and improve upon the process’s sensitivity to some simple dis-

turbances. First, we discuss how the system can be modified so that errors can be corrected.

6.1 Error correction

All the states of the process presented in the last chapter are composed of maximal con-

nected subgraphs that are each isomorphic to a subgraph of Ĝ. That is, the assemblies are

always sub-assemblies of the desired assembly. This is an outcome of the dynamics, and

the assumption that the system is initialized with all parts disconnected. The same holds if

the system is initialized in any state within this invariant set. The system can be modified

so that this result holds from any initial condition, even if there exists an assembly that is

not a subassembly of the desired assembly.

In order to achieve this, we will modify P 0. We introduce an action, correct, which

allows agents to unilaterally sever bonds they know to be mistaken. The action correct

is given preference over all other actions in P 0. That is, if the criteria for the action are

met it is taken, even if another action could be taken. We describe the criteria for the

availability of the correct action as well as the result of the action for agent i. If the

action is not available to i then it should be considered for j as well. We will make the

following assumption about Ĝ, which sacrifices no generality.

Assumption 6.1 (N̂ increasing): In Ĝ, any path of distinct, connected vertices {vk}Kk=1 ∈
N̂ satisfies vk > vk−1, k = 2, 3, ..., K.

Figure 9(b) provides an example of a graph satisfying the assumption. An outcome of

this structure for Ĝ is that a node i with Si(t) 
= 1 and |nG(t)(i)| ≥ 1 must share an edge
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with a node j having Sj(t) < Si(t). We now present the correct action.

• correct: (i) Let L1 ⊂ N−{i, j} be the largest set such that each l ∈ L1 has (i, l) ∈
E(t), but either (Si(t), Sl(t)) /∈ Ê or W (i, j) 
= Ŵ (Si(t), Sl(t)). (ii) Additionally,

if there is no k ∈ nG(t)(i) with both Sk(t) < Si(t) and W (k, i) = Ŵ (Sk(t), Si(t));

then let L2 = {l : (i, l) ∈ E(t)}, otherwise L2 is empty. Set

E(t+ 1) = E(t)− L1 ∪ L2

Additionally, if L2 is nonempty, set
⎧⎪⎪⎨
⎪⎪⎩
Si(t+ 1) = 0

Sk(t+ 1) = Sk(t) k 
= i

• If L1 ∪ L2 is empty, proceed with P 0 as before.

Remember that we check for the correct action for i and then j. The correction

(i) unilaterally eliminates all incorrect connections. The second correction (ii) determines

if a node lacks connection with the proper parent node, as specified by Ĝ. We correct

both (i) and (ii) if possible. An important feature of the correct action is that it is

enacted unilaterally- a major advantage in the presence of malfunctioning or malicious

agents. The modified P 0 has a non-zero probability path from any state to the invariant set

of states having all maximal connected subgraphs isomorphic to a subgraph of Ĝ. Since

the absorbing states of P 0 are the same and we have not changed the resistances in P ε, this

system achieves all of the same results as the unmodified process, but from any arbitrary

initial condition.

The correct action provides a simple remedy for certain types of errors in the as-

sembly process. We can model errors as perturbations to P 0. Consider a (not necessarily

regular) perturbation of P 0, P̃ 0. Suppose that there is a (fixed) probability δ > 0 that fol-

lowing a form action, the new atom’s state is updated incorrectly. One of the two atoms
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13 214/1

Figure 22: The malicious agent (outlined in red) is able to circumvent the correct action
by falsifying its internal state to its neighbors.

will eventually perform the correct action and evacuate that bond. If the evacuated

node has since formed additional bonds, it will eventually sever those as it realizes its er-

ror. The atoms connected to it will sever their bonds in turn when they see they have lost

the necessary parent node until the entire erroneous appendage has been eliminated. P̃ 0

has the same absorbing states as P 0 and can be perturbed as P̃ ε producing the same re-

sults as above. Stochastic stability is determined entirely by the recurrent classes and the

resistances between them. This implies that any sort of error that does not change these

relationships will not change the stochastically stable states.

The correct action does not however render the self-assembly process immunes to

all types of error or manipulation. As an example, consider the presence of a malicious

agent that is able to represent its internal state differently to different agents. It forms a bond

and appears to have the proper resulting state, but then advertises a different state to other

agents afterwards. Since the exploited agents do not know about the malicious agent’s other

bonds, they do not know they are participating in a perpetually flawed structure. Figure 22

gives an example using the familiar Ĝ from the last chapter. The malicious agent (outlined
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in red) attaches to a node with the state 13 and adopts the appropriate state of 14. It later

represents itself as a state 0, and then forms with another 0, updating its state to 1 for the

purposes of that connection.

The figure illustrates that if a malicious agent can represent its internal state in multiple

ways, the neighboring agents will have no basis to suspect that their reliance on local in-

formation is being exploited. Since the correct action will not rectify this situation, the

structure in Figure 22 is part of an absorbing state. Since the absorbing states have been

altered by the behavior of the malicious agent, the performance guarantees of the previous

chapter no longer apply. In this case, the presence of a single malicious agent reduces the

expected number of nodes participating in completed assemblies by as much as 2N̂ − 1.

This will be insignificant if the number of malicious agents is much less than N .

The form of disturbance that is most realistic will depend on the specific application.

Here, we intend only to suggest that the process presented is not unreasonably sensitive to

the agents’ ability to follow the rules. The impact of agents acting correctly only a certain

percentage of the time will usually be to require more iterations and a smaller value of ε

for the same level of self-assembly performance as the analogous process without errors.

Even when the disturbance is specifically engineered to disrupt the process, as with the

malicious agent, the true distributed nature of the process prevents circumvention of the

entire population by a small number of agents acting in a deleterious way.

6.2 Heterogeneous resistances

In the presentation of the last chapter, the break action, once undertaken, resulted in the

elimination of an edge with probability ε. This strategy leads to convergence results that

are straightforward to demonstrate analytically, but are not optimal with respect to conver-

gence rates or yield. We have thus far looked at simulations that highlight the large number

of iterations required to observe the proposed convergence, particularly when N is large.

In the discussion that follows, we propose simple, empirical state-dependent probabilities
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Figure 23: Assigning more resistance to the breakup of more advanced bonds improves
performance empirically.

associated with the break action’s elimination of edges for the motivating example of the

previous chapter. We have not verified these results analytically, but consider simulation

results to be suggestive that the same convergence results apply. The existence of a de-

terministic procedure for selecting the breakup probabilities for general Ĝ is also an open

question.

We assign breakup probabilities based on the two internal states of the nodes under-

taking the break action, so that the restriction of atom-level information is maintained.

Figure 23 indicates the breakup probabilities (in powers of ε) associated with each pair of

internal states. The idea is to deter breakup of the more complete assemblies, so that the

smaller assemblies can be preferred and the number of assemblies can decrease faster. To

develop a rigorous proof of convergence for this version of the process, we would have

to consider resistance trees with edges having resistances different from 1 and 2. Alter-

natively, the process could be formulated as a potential game with the potential function

being the total number of edges. While such a proof is not yet known to us, we have an
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Figure 24: The convergence rate appears to be much faster with the empirical breakup
probabilities.

indication of the efficacy of using these resistances from MATLAB simulation.

We first revisit the situation in the first part of example 5.3. There, the average number

of assemblies got close to the minimum number, 2, but took 7.5 × 109 iterations to do so.

When we instead use the heterogeneous breakup probabilities from Figure 23, the system

responds much faster. Figure 24 illustrates this result using ε = max{0.1(1−t.25/100), 0}+
10−4. We are able to use larger values of ε since we will generally be raising it to one of

the integer powers. Here, the system reaches an average number of assemblies of less than

2.03 in just over 107 iterations.

To strengthen the case for heterogeneous breakup probabilities, we provide the results

of a simulation for N = 1000, using the usual Ĝ. Since the methods presented in this work

have special relevance to systems with large numbers of agents, we consider the positive

results of this simulation important, despite the lack of theoretical justification. Figure 25

shows the results of the simulation.
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Figure 25: N = 1000, ε = max{0.1(1 − t.25/500), 0} + 10−5. The system converges to
oscillation about the minimum number of assemblies, 72.

Another apparent advantage of heterogeneous resistances is related to the yield of desir-

able assemblies. With homogeneous resistances the yield was related to the stochastically

stable states having the minimum number of assemblies. This guaranteed no more than

N̂ − 1 rejects, but we could not expect to see desirable assemblies when the minimum

number of assemblies was less than N̂ − 1 (and not an integer). For example, using the

same Ĝ as above with N̂ = 14, if we use N = 15 parts, we would expect just two as-

semblies in the stochastically stable stats, but not necessarily any complete assemblies.

This is not the case with heterogeneous resistances. While we stress that these results have

not been verified analytically, preliminary simulation results suggest that carefully picked

heterogeneous resistances can achieve guarantees of fewer than N̂ − 1 rejects.

We consider N = 15 using the same Ĝ with heterogeneous resistances as above. A

simulation using a ε = max{0.1(1− t.25/50), 0}+10−4 converges to an average number of

complete assemblies greater than 0.92, the maximum number being 1. This phenomenon

is not limited to this case. We have observed convergence with fewer than N̂ − 1 rejects

for many different values of N , although the system does not converge to the maximum
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Figure 26: With heterogeneous resistances, the usual Ĝ, and N = 15 the system still
converges to close to one completed assembly, the maximum number.

number of assemblies (as it does here) for all such values. Whether or not resistances can

be selected that can have the maximum number of desirable assemblies in all stochastically

stable states for all N ≥ N̂ is an open question.

6.3 Feedback control

This thesis answers questions about self-assembly when the requirement of local rules is

interpreted in a quite rigid way. It is clear from the assembly-level information case that

relaxation of information constraints on the policies is extremely material to self-assembly

performance. One can imagine a continuum of self-assembly policies corresponding to

problems falling between our two cases. One particularly interesting aspect to consider

is the parameter ε in the atom-level case. We have heretofore looked at this parameter as

exogenous to the process. Either it is a fixed number, or monotonically decreases as time

evolves. Suppose that ε can be controlled and made to depend on the state of the system.

This approach shares similarities with [21]. This concept is illustrated in Figure 27.
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Figure 27: A feedback configuration where G(t) is sampled and the parameter ε is adjusted
appropriately.
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Figure 28: Using feedback with N = 1000, the system converges to the minimum number
of assemblies, 72, quickly and in nearly monotone fashion.
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The advantage of controlling ε based on G(t) is that we can have ε be decreasing in the

number of completed assemblies. When ε is varied as a function of time this phenomenon

is sought as a result of the dynamics. Controlling ε in this way intuitively gives faster

convergence. If we can detect when the maximum number of completed assemblies is

present (without delay) then we can even set ε to zero at that moment and make invariant

the state where the maximum number of completed assemblies is present, giving almost

sure convergence. Recall that without feedback we were limited to stochastic stability of

states with minimum assembly count.

Figure 28 shows the result of a simulation using the same Ĝ as above with the hetero-

geneous resistances. Here ε = (n(t)−72
108

)1/4. Once the system reaches 72 assemblies, it will

set ε = 0 and remain in that state forever. For this reason, we end the simulation at that

moment.

The addition of feedback gives “closer” to monotonic increase of the number of desir-

able assemblies with respect to time. Recall that such monotonicity, a long with invariance

of the desired state, were key features of the assembly-level information case. This ’in-

between’ case of atom-level information with ε fed back in suggests yet again a strong

relationship between information and performance and the existence of a continuum of

self-assembly systems allowing for a fine trade-off between these two factors appropriate

to specific applications.
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CHAPTER VII

CONCLUSIONS

Self-assembly with local rules has important implications for many fields. Still, results

exploring foundational questions about self-assembly in a theoretical context have been

few and far between. In this thesis, we have presented the first ever self-assembly results

with restrictions on intra-assembly communication. We also introduced the notion of a

probabilistic performance guarantee to the area. That is, our atom-level process’s long-run

behavior is described by stochastic stability. Since simplicity of the self-assembly policy

is a critical factor, the development of processes like ours with memory and computation

requirements that are linear in the size of the desired assembly is a relevant direction for

research.

The assembly-level case highlights the role that information plays in self-assembly per-

formance. While self-assembly in that context is not new, we presented it in a streamlined

manner that nuanced the atom-level information case. It remains an open question whether

there is any way to achieve the stronger form of convergence, almost sure, in the atom-level

case.

The most important future step for this research is to contextualize. In what applications

can the ideas here make a tangible impact? What are the specific challenges for implemen-

tation? Self-assembly is ultimately concerned with building things and theoretical results

must derive their importance through affect in that context. This is an ongoing question not

just for our work, but for everyone advancing the abstract theory of self-assembly.

We have suggested several directions already in which this research can be continued.

From a theoretical standpoint we are very interested in methods of proving the stochastic

stability of self-assembly processes with heterogeneous breakup probabilities. We have
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considered extensions to the work where information about the system can be fed back in,

or rules can be augmented to handle errors. Ultimately, these sort of innovations may or

may not be of real import depending on the context, if any, in which the general ideas here

most appropriately apply.
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