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SUMMARY 

 

This thesis descries the evolution and testing of a fully portable, inductive loop vehicle 

counter system.  As a component of the NFS Embedded Distributed Simulation for 

Transportation System Management project, the system’s cellular modem transmits real-

time data to servers at Georgia Institute of Technology.  From there, the data can be fed 

into simulations predicting travel behavior.  Researchers revised both the detector circuit, 

and the temporary, reusable loop pad several times over multiple rounds of field testing.  

The final tested version of this system demonstrates the efficacy of uncommonly small 

inductive loops.  When paired with a reliable data transmission channel, the system was 

shown to capture nearly 96% of actual through traffic.   
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Chapter 1 Introduction 

1.1 Background 

The research reported in this thesis is conducted as part of an NSF-sponsored study, 

Embedded Distributed Simulation for Transportation System Management.  The study 

envisions large-scale, real time distributed networks where vehicles themselves play an 

active role in predicting future traffic demand[1].   

A component of the distributed simulation effort is simulating traffic flows on 

large-scale roadway networks in real time.  To better understand and predict driver 

behavior, the simulations are enhanced with real-world traffic data provided by fixed 

detectors.  Sensing of Bluetooth® and mobile phones in passing vehicles is another 

detection method.  The ultimate goal of the overarching research effort is to predict the 

effectiveness of an embedded, distributed transportation management system.  In the 

envisioned system much of the computational work for the simulations would be pushed 

to the vehicles themselves, operating on an ‘ad-hoc’ or asynchronous basis.  In a recent 

implementation, participant vehicles are instrumented with simulator software for 

modeling the roadway network in their immediate vicinity.  Further, the simulation 

envelopes around individual vehicles might overlap (see Figure 1), thus improving 

overall system accuracy and robustness.  Initial tests on a modeled ten-intersection 

corridor, with twenty vehicles, and then on a 10x10 grid with 40 vehicles, validate the 

potential effectiveness of this approach over a range of traffic conditions [1]. 
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Cameras, inductive loops, and possibly other roadside detection technologies are 

utilized in the initial stages of the project.  This thesis covers the research performed on a 

developed portable inductive loop detector. 

 

 

Figure 1 - In-Vehicle Simulation [1] 

 

1.2 Problem and Motivation 

For fixed in-road detection, transportation agencies traditionally saw-cut a rectangle (or 

some variation) into the pavement, insert an inductive loop, and seal the cut with binder.  

Another long cut is required to patch to the signal cabinet, which usually contains the 

detector hardware.  Performing such work for temporary installations, i.e., for collecting 

a few weeks of data for research purposes, is generally cost-prohibitive and likely 

unacceptable to most agencies. 

The problem this thesis addresses is the development of a detection device for 

short-term data collection. With the assumption that existing infrastructure cannot be 

permanently altered, challenges for this research include finding a method that can 
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withstand a deployment up to several weeks.  In addition, for short-term tests (on the 

order of hours) it is desirable that the developed system be self sufficient regarding power 

needs.  As such, the system would have to run on battery power.  Finally, the system 

must record and stream detections in real-time to a server off-site.  All these challenges 

point to the need for a simple, easily deployed, low-cost solution. 

1.3 Document Overview 

This thesis first reviews applicable literature on detection technologies and temporary 

detection applications, and then, literature on network simulation.   The text also 

discusses the evolution of the developed wireless detector system and presents 

observations and data from extensive field tests of the system.  The thesis closes with 

conclusions and ideas for future improvements. 
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Chapter 2 Literature Review 

This literature review has three components: a review of detection technologies (as 

candidates for the portable detector), the latest “state of the art” applications of loop 

detection (the selected technology for the temporary deployment), and a review of efforts 

conceptually similar to the NSF Embedded Distributed Simulation project.  This 

literature provides a contextual framework highlighting the potential ITS applications of 

the portable detector. 

2.1 Vehicle Detection 

The most comprehensive and relevant resource for vehicle detection is Klein’s Traffic 

Detector Handbook [2], last updated in 2006.  This section is framed around the rich 

information available in this 700-page handbook.  Additional literature, when cited, 

elaborates on individual technologies.  Inductive loops and their related literature are 

reviewed at the end of this section. 

2.1.1 Overview of Technologies 

2.1.1.1 Video Image Processing 

Video Image Processing (VIP) entails the mounting of video cameras above roads to 

capture the passage of vehicles.  These systems electronically monitor the color of video 

pixels and use changes in color or brightness to identify the passage of a vehicle through 

the frame.  VIP comes in three varieties.  Tripline detectors require linear detection zones 

along the road to be predefined.  Closed Loop systems significantly widen the detection 

field, to the point of tracking individual vehicles along the road and sensing lane changes.  
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Data Association VIP identifies vehicles at the pixel level.  Such detectors in turn can 

identify vehicles between cameras, which is useful for calculating link travel time. 

 The optimal placement of a VIP camera is 30-50 feet above the roadway to 

discern the gap between individual vehicles [2].  At this height, many lanes can be 

monitored at once.  While installing a VIP system is not intrusive to the roadway, the 

technology has shown other significant disadvantages.  Weather such as heavy rain and 

snowfall are known to affect video detectors.  Sun shining directly in the lens is another 

reported problem.  Further, these systems are less effective at night and require street-

lighting.  As such, depending on the conditions where they operate, VIP systems can 

report a sizeable number of misses and false positives when compared to magnetic 

detection technologies. 

2.1.1.2 Magnetic Sensors 

Magnetic sensors work by detecting local changes in Earth’s magnetic field due to the 

presence of vehicles passing over the sensor.  These detectors are generally less intrusive 

to pavement, and consequently last longer than inductive loops.  There are two major 

kinds of magnetic detection technology, Magnetic Detector and Magnetometer.  The Hi-

Star® portable counter employs a newer third technology, Giant Magnetoresistance. 

2.1.1.2.1 Magnetic Detectors (aka Microloops) 

Magnetic Detectors are “simple and rugged” [2].  The devices are always mounted 

perpendicular to the flow of traffic and require a lead-in cable.  For the most part, they 

can only detect moving vehicles.  (The model 702 from 3M® can detect stopped 

vehicles, but only when installed in rows of three and with specialized software.)  The 
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cores, containing several coils of fine, wound wire, are usually tunneled 1-2 feet below 

the pavement.  While this configuration is resistant to climate and vehicle wear, 

installation can be cumbersome.  One model, however, is mounted flush with the 

pavement, has dimensions of 3 x 5 x 20 inches, and is enclosed in cast aluminum 

housing. 

 In 2009, Middleton et al. [3] at the Texas Transportation Institute published a 

comprehensive comparison study of a wide-area radar detector, the Sensys® 

Magnetometer (see Magnetometers, below), and the Global Traffic Technologies 

Magnetometer – which is actually a microloop.  The researchers installed all three 

sensors near the Texas A&M campus, or, in nearby Austin.  Their study evaluated the 

products for signalization applications, including red light running and dilemma zone 

protection.  Like other magnetic detectors, the GTT unit had difficulties with slow or 

stopped vehicles.  While the unit detected the stationary vehicle, the detection often 

“dropped out” for a moment – resulting in an overcount.  The researchers also contacted a 

number of nationwide jurisdictions and recorded their experience with each product.  The 

City of Arlington, TX, had installed the GTT microloops but reported the units stopped 

working.  According to Middleton, the individual who had more information on the 

failures no longer worked for the city. 

Installation of the GTT microloop cost about $3400 to monitor the stop bar of a 

two-lane intersection, and at six lanes the cost reaches $10,000 [3].  The other two 

technologies, installed, also easily cost in the thousands.  Those costs will be detailed 

later in their respective sections.   
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2.1.1.3 Magnetometers 

Magnetometers are typically installed in a circular, vertical bore in the pavement.  Unlike 

Magnetic Detectors, these devices contain at least two narrow wrappings of wire.  One is 

mounted vertical to sense disturbances in the vertical component of Earth’s magnetic 

field, and the other, usually mounted parallel to traffic flow, captures the horizontal 

component.  This robust, compact design enables magnetometers to detect stopped 

vehicles, hold a vehicle presence for a long time, and be resistant to picking up detections 

from an adjacent lane (known as crosstalk).  The bore is often 18” deep, making these 

detectors especially popular in the northeast where climate stresses pavement and 

damages wiring close to the surface. 

 An emerging class of magnetometers are wireless and run off a battery.  These 

self-powered vehicle detectors (SPVDs) are housed in enclosures several inches square, 

embedded in the pavement, and last for several years on one charge.   

2.1.1.3.1.1 Sensys® Magnetometer 

The SPVD marketed by Sensys® appears frequently in the literature.  The manufacturer 

observes that loops are “notoriously unreliable” and touts that their rugged units can run 

ten years on a charge [4].  The California Center for Innovative Transportation at UC 

Berkeley [5] tested the Sensys® against loops and video.  The researchers spent just over 

an hour drilling cores in six lanes to house the sensors, a significant time savings over 

inductive loops which can require an hour each.  Further, the sensor’s count accuracy and 

ability to track vehicle speed (between two detectors) was virtually identical to inductive 

loops.  The units did require, however, an access point mounted to a pole and connected 

to AC power.    
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 In the Middleton et al. [3] comparison cited above, the researchers reported 

having to drill a 4-inch core into the pavement to house one sensor.  They reported 

accuracy validating the California study, although there was an overcount rate of 3-8%.  

Baltimore, Farmers Branch near Dallas, and Harris County (Houston) TX also provided 

positive feedback on the Sensys® system.  Middleton et al., however, warned that the 

devices would be destroyed by surface milling when pavement is resurfaced.  Further, the 

researchers lamented an episode involving buggy firmware in the sensors, and tech 

support issues.   

 Middleton reports that one sensor node costs $450, plus $3000 for the access 

point.  Installation costs were additional. 

2.1.1.3.2 Giant Magnetoresistance 

Giant Magnetoresistance, or GMR, is not covered in the Traffic Detector Handbook.  The 

effect was discovered in 1988 by Albert Fert of the University of Paris-South, and Peter 

Grünberg of Germany’s KFA Jülich Research Centre.  Both shared the 2007 Nobel Prize 

in Physics for their work.  They discovered that electrons of the same spin encounter 

unexpectedly high resistance when passing through thin strips (nanometer-scale) of 

material with alternating spin.  This discovery has contributed to the miniaturization, and 

accuracy, of magnetic sensors.  GMR is now common in contemporary hard drives, and 

was cited by one of Fert’s colleagues as central to the success of portable music players 

like iPod  [6]. 

 The Hi-Star® Traffic Counter, marketed by Quixote Transportation Technologies 

(now owned by Vaisala instruments), employs GMR sensors to detect changes in Earth’s 

magnetic field when a vehicle is present [7].  Due to the effectiveness of GMR an 
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extremely small, surface-mounted device is possible.  Overall footprint of the aluminum 

enclosure is about the size and thickness of a DVD case.  The latest versions of the device 

can capture vehicle class, speed, length and roadway temperature.  However, the device 

(enclosed in a protective rubber shell) must be nailed or screwed into the pavement.  Hi-

Star® is designed for short term traffic study use, and must also be physically removed to 

download the count data [8]. 

 According to Tapconet, (telephone quotation supplied June 23rd  2010), one Hi-

Star® NC100 (which only performs vehicle count) costs $1200.  On July 1st, the 

researchers also obtained a $195 quote for the rubber housing. 

 

 

Figure 2 - Hi-Star® NC100/200 Detector, and Rubber Housing [8] 
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Figure 3 - Hi-Star® Traffic Counter Affixed to Pavement in Rubber Housing [8] 

 

2.1.1.4 Microwave Radar 

There are two basic types of Microwave Radar sensors: Continuous Wave (CW) and 

Frequency Modulated Continuous Wave (FMCW).  CW systems detect the Doppler shift 

of a fixed frequency wave reflected off approaching vehicles.  Consequently they cannot 

detect stationary vehicles, but are useful for reporting speeds.  FMCW instead transmits a 

constantly changing frequency, and measures the time shift of the returned waveform.  

These systems can thus detect stopped vehicles, and with Doppler, also report speeds.  

FMCWs, when mounted perpendicular to traffic flow (in a ‘side-fired’ configuration), 

can track up to eight lanes at once. 

2.1.1.4.1 Wavetronics SmartSensor Advance® 

SmartSensor Advance® is an extremely versatile microwave Wide Area Detector [9] 

marketed by Wavetronix LLC of Lindon, UT.  The system is mounted above the road, 
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typically aside the signal head, and features eight user-defined zones.  The detection 

range is 500 feet.  Vehicle count and speeds are recorded [10]. However, this detector 

cannot measure the first 100 feet in front of the sensor.  Middleton et al. observe that the 

SmartSensor® is inappropriate for detection at the stop bar unless a new pole is installed 

downstream of the intersection. 

 Middleton et al. mounted a SmartSensor® from a signal pole.  The unit reported a 

higher volume than other detectors, though there were some false positives from turning 

vehicles and standing queues.  The city of Denton, TX and Utah DOT were pleased with 

the product [3].  To detect dilemma zones at highway speeds, a complete SmartSensor® 

installation runs between $8,000 and $12,000 for a two-lane approach, and approaches 

$25,000 for a five-lane approach.  Sensys®, by comparison, runs between $7,000 and 

$16,000 for this same configuration [3].  Middleton et al. contended that the chief 

advantages of the SmartSensor Advance® are accuracy and reliability. 

2.1.1.5 Passive Infrared 

Like VIP, Passive IR cameras are mounted above traffic and do not transmit any energy 

on their own.  They measure heat generated by or reflected off vehicles.  Such systems 

can still be affected by sun glint and inclement weather, but not to the extent of VIP.  As 

such, Passive IR systems are somewhat more accurate than VIP.  The rule-of-thumb is 

that if a person can see the vehicle, passive IR can as well.  XTralis sells a combined 

Ultrasonic and Infrared Detector, and claims ±3% accuracy [11].  In 1999 dollars, these 

sensors run $700-$1200 plus installation [2]. 
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2.1.1.6 Laser Radar 

Laser Radar Detectors are mounted directly above passing vehicles. Several beams are 

sent out at once. By tracking reflected beams, both the speed and presence of vehicles 

underneath the detector are calculated.  Modern units can capture 3-D images of passing 

vehicles.  Laser radar units are adversely affected by heavy fog (visibility less than 20’), 

and the units require regular lens cleaning.  According to a tech report prepared by IBI 

Group for Transport Canada, a system for overhead vehicle detection can run $12,000 

(Canadian) [12].  The AutoSense II Laser Radar, according to the manufacturer, has a 

99.9% detection accuracy [13].  

2.1.1.7 Ultrasonic 

Ultrasonic detectors transmit at 25-50kHz, above the threshold of human hearing.  The 

devices are mounted perpendicular to, or above, passing vehicles.  By measuring the 

return time of reflected pulses, the presence of a vehicle is determined.  Some devices 

send out multiple beams, spaced apart at a fixed angle, and therefore measure vehicle 

speeds.  Other units instead measure vehicle speed using Doppler, but detectors with this 

ability are more expensive.  Ultrasonic detection is widely used in Japan, where 

government policy discourages cutting pavement. Ultrasonic sensors are susceptible to 

turbulent air and temperature drift.  XTralis sells a combined Ultrasonic and Infrared 

Detector, and claims ±3% accuracy [11].  According to the Traffic Detector Handbook, 

one ultrasonic sensor can run between $600 and $1900 (in 1999 dollars) [2]. 
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2.1.1.8 Passive Acoustic 

These detectors, rather than sending sound pulses, listen for passing vehicles.  Models 

like International Road Dynamics’ SmartSonic™ use an array of small microphones 

mounted above the road.  By tracking changes between different parts of the array, 

vehicle speed is determined by an algorithm assuming average vehicle length.  PA 

detectors are not effective in places with frequent “stop and go traffic,” as the detector’s 

algorithms have difficulty in switching between fast and slow flows.  Further, they can be 

affected by cold temperatures.  Middleton et al. at Texas Transportation Institute tested 

the SAS-1 PA detector from SmarTek®, and found accuracy of about 95% at freeway 

speeds, with variations of ±10% ground truth during congestion [14].  Acoustic sensors, 

according to the Traffic Detector Handbook, cost between $3100 and $8100 before 

installation (in 1999 dollars) [2].   

2.1.1.9 Piezo Electric 

This technology converts physical stresses into an electrical signal.  While piezo is not 

described in the Traffic Detector Handbook, Vijayaraghavan at University of Minnesota 

[15] implemented a system in 2008 constructed of inexpensive off-the-shelf parts.  His 

setup consists of a 6’ metal rod, with four piezo elements on either end.  The system is 

coupled with a simple transmitter with range of 100.’  Notably, the device is self-powered 

from the energy harvested from the passing vehicles. 
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Figure 4 - Piezo-Electric Detector System [15] 

 

For the experiment, the researchers constructed ramps to guide test vehicles over the 

assembly. The harvested energy, from each axle, was roughly proportional to vehicle 

weight.  The researchers touted the low cost of their unique system.  However, a slot 

must be cut in the pavement to house the detector over the long term. 

2.1.1.10 Inductive Loops 

The last detection technology covered in this literature review is Inductive Loop 

Detection, or ILD.  ILD remains one of the oldest and most widely used technologies. 

2.1.1.10.1 Theory 

An ILD system consists of one or more loops of wire embedded in the pavement by 

means of saw cuts.  The detector circuitry, usually integrated into the signal cabinet, 

transmits current between 10 to 200 kilohertz.  A magnetic field is thus generated inside 

the loop.   
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The loop serves as an inductor, with inductance proportional to the area enclosed 

within, and turns of wire squared.  Inductance is inversely proportional to the “length” of 

the loop, which is essentially the thickness of the bundled wires 

When a vehicle passes over the loop, its steel mass induces eddy currents in the 

loop wire, which reduces inductance and therefore changes the oscillation frequency.  In 

the Handbook, 100µH (micro-Henries) is established as the minimum inductance for an 

effective loop.  NEMA specifies that detectors operate with loops varying between 50 

and 700µH. 

Day and Brennan et al. [16], in a 2009 study, mapped out the inductive response 

of  loops.  They set up a wood frame, with aluminum and steel sheets propped overhead.  

This allows the sheet to move latitudinally and longitudinally, and also in 6-inch height 

increments. 
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Figure 5 - Three-Dimensional Plot of Inductance Response to Galvanized Steel Sheet Elevated 12 

Inches from the Pavement [16]. 

 

The Handbook also defines a “quality factor” Q for an inductive loop, which 

indicates the resonant efficiency of the inductor.  Q depends on Ls, the series inductance 

of the loop, Rs, the loop’s series resistance, and ! is the oscillation frequency of the 

detector circuit.  Ls itself also varies with !.  

Q = !Ls / Rs  

 

A low quality factor suggests large energy losses within the loop.  Quality factors 

below 5 are generally not effective for detection.  Further, water seeping into the saw cuts 

can substantially increase resistance and reduce the quality factor.  Increasing the number 

turns in the loop does increase the quality factor; however, past about six turns there are 

diminishing returns for typical roadway loop [2].  The same holds for vertical detection 
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distance, as noted in the Handbook: “The vehicle undercarriage detection height is 

approximately proportional to the volume enclosed by the loop conductors and is 

approximately independent of the number of loop turns for a given volume.” 

2.1.1.10.2 Hardware 

A typical ILD system consists of several components.  The loop and lead-in wire are saw-

cut into the pavement and sealed with binder.  The lead-in wire connects to lead-in cable 

inside a “pull box” accessible at roadside.  Both lead-ins are a twisted pair, which reduces 

the noise pickup and crosstalk of these components.  The final component is the detector 

circuitry itself, integrated into the signal controller cabinet. 

 

Figure 6 – Components of Typical Inductive Loop System [2] 

 

2.1.1.10.3 Reliability 

ILD systems are most prone to fail at the loop itself, or at the connection between 

the lead-in wire and lead-in cable.  One Federal Highway Administration (FHWA) 

survey in New York State reported that 25% of loops were out of commission at any one 
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time.  Early electronics units were analog, and used a fixed frequency. These were 

susceptible to climate drift, where temperature alters the inductance of the loop and 

adversely affects accuracy.  Modern detector units are fully digital, and track change in 

inductance as indicated by changing oscillator frequency.  Automatic tuning against loop 

size and weather drift is also standard. 

2.1.1.10.4 Configuration 

A typical loop size is 6 feet square, but varies widely.  “Short loops” are shorter 

than 20 feet, while “long loops” are longer and require only 1-2 turns.  As large size 

increases failure rate, many agencies are instead using a series of smaller loops.  These 

“sequential short loops” (SSLs) are effective on smaller vehicles, and are not as 

susceptible to inter-lane crosstalk.  A common loop configuration is the quadropole, 

where two long, narrow and adjacent loops of opposite polarity occupy one lane.  These 

have proven effective with bicycles, when ridden down the “spine” of the quadropole.  

Day and Brennan et al. [16] concluded that, for detecting passenger vehicles, quadropoles 

are not as sensitive down the center spine as originally claimed when they emerged in the 

1970’s. 

A configuration of two “chevrons” in series has also been successful in detecting 

small vehicles.  Despite several searches of the literature, applications of inductive loops 

smaller than a foot square could not be found.   
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Figure 7 - Quadropole (left) and Chevron Loop Configurations [2] 

 

2.1.1.10.5 Contemporary Inductive Loop Technology 

All ILD systems feature an inductive loop, lead-in wiring, and a detector unit tracking the 

inductance change caused by vehicle presence.  For this research project, the most 

important component would be the detector circuit. 

2.1.1.10.5.1 Detector Manufacturers and Products 

The researchers searched the Internet for loop detector manufactures and identified their 

latest products.  Desired features include a small footprint, 12VDC operation, 

compensation for climate drift, and reasonably low power consumption.  Another useful 

feature is adjustable sensitivity, the !L/L (inductance change) which will trigger a 

detection.   
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For integration into a portable battery-powered system, NEMA or similar rack- and shelf-

mount form factors are not optimal.  The two-channel DSP-222 [17] marketed by Diablo 

Controls, for example, follows the NEMA form factor and is nearly seven inches wide.  

The large size would require a larger shared enclosure, making the system less portable.  

Further, DSP-222 also consumes up to 100mA, which would adversely affect the 

system’s battery life.  Fortunately, several small-footprint and low-power detectors are 

targeted at the gate control market and are listed below. All these detector units are 

significantly less expensive than the other technologies described in this literature review. 
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Table 1 - Inductive Loop Vehicle Detectors Targeted at the Gate Control Market 

Vendor Product Features 
Power 

usage 
Price 

DSP-7LP 
[18] 

Very small “micro” form 
factor (1.5” x 3” x 1.6”) 

10-30v AC/DC 
Non-adjustable sensitivity 
Compensation for 

environmental changes 
Loops between 20 and 

1200µH 

1ma at 
idle 

$76.95 
(http://www.accesst
ransmitters.com) 

 
 

Diablo 
Controls 

DSP-15 
[19] 

PCB (2.9” x 4.1”) 
10-30v AC/DC 
Ten selectable sensitivity 

levels 
Optional “sensitivity boost” 

mode 
Compensation for 

environmental changes 
Loops between 20 and 

1000µH 
Presence, or pulse on 

exit/entry 
 

60mA 
(observed) 

$88.50 
(http://www.accesst
ransmitters.com) 

 

Eberle 
Design 
Inc. 

LMA-1400 
Deflectomet
erTM [20] 

4.1” x 2.7” x 0.75” 
Loops between 20 – 2500 µH 
Ten selectable sensitivity 

levels 
12-32 VDC, or 14-28 VAC 
“Sensitivity Boost” feature 
Non-volatile memory stores 

loop fault diagnostic history 
LED readout of loop 

frequency 
Sensitivity adjusts to 

temperature 
Presence, and pulse on 

entry/exit modes 

85mA 
minimum 

$120.00 
(http://www.protecc
ontrols.com) 

EMX 
Industries 

D-TEK 
Vehicle 
Loop 

2.7” x 4.1” 
Loops between 20 – 2000 µH 
Ten selectable sensitivity 

60mA 
(low 
power 

$95.00 
(est. based on 
similar products on 
http://www.gatesnfe
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Detector 
(board) [21] 

levels 
12V AC/DC version 
Sensitivity adjusts to 

temperature 
Presence, and pulse on 

entry/exit modes 

version) nces.com)  

MVP D-
TEKTM 

(box) [22] 

3.3” x 2.6” x 3.7” 
Loops between 20 – 2000 µH 
Three selectable frequencies, 

automatic sensitivity boost 
9 VDC – 240 VAC 
Sensitivity adjusts to 

temperature 
Presence, and pulse on 

entry/exit modes 

19mA @ 
12VDC 

$97.45 
(http://accesstransm

itters.com) 

 

Northstar 
Controls 

NP2-ESL 
[23] 

2.4” x 2.3” x 0.8” 
Loops between 20 – 1500 µH 
Four selectable sensitivities, 

four selectable frequencies 
12VDC 

5mA 
nominal, 
20mA 
relay 
energized 

unknown 

PEEK 
Traffic 

625X [24] 3” x 1.5” x 3.5” 
Loops between 18 to 1800 µH 
Six selectable sensitivity 

levels 
12-24 VDC 
Presence, and pulse on 

entry/exit modes (pulse 
length 100-150 mS) 

60mA (est 
from 1.2 
VA 
rating) 

$167.00 
(http://www.gateeq

uipment.com) 
 

Reno 
A&E 

Model H1 
[25] 

2.5” x 2.75” x 0.85” 
Loops between 20 to 1000 µH 
Eight selectable sensitivity 

levels 
12VDC 
Sensitivity adjusts to 

temperature 
Presence, and pulse on 

entry/exit modes 
Response time between 12ms 

(low sensitivity) and 160ms 
(high sensititivity) 

21mA 
max 

$130.00 
(http://www.protecc
ontrols.com) 
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2.1.1.10.5.2 Temporary & Preformed Loops 

Klein et al. note that a number of temporary loops are on the market, although state 

agencies might make their own.  “Mat type” loops are usually smaller than saw-cut loops, 

3 x 6 to 4 x 6 feet.  These are durable rubber mats, nailed in place, and secured on the 

edges with heavy-duty adhesive tape.  The lead-in is also protected with tape.  Mat-type 

loops are for the most part reliable, except under heavy truck traffic, where “some of the 

mats did not last more than a few hours” [2]. 

LIS, Inc. [26] sells a product which is a five-layer “sandwich,” where loops of 

wire are secured between an “adhesive bituminous rubber compound coupled with a 

high-density polyethylene film” and, on top, a woven polypropylene mesh.  The 

assembly also features adhesive on bottom, with a paper backing removed before 

installation.  No nails are required.  Unlike the “Mat Type” loops, LIS’s product is also 

hollow in the center.  LIS customizes loops to order.  On May 13th, 2010, the firm quoted 

the researchers a price of just $150 for an 18” x 24”, six turn loop. 
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Figure 8 - 18" x 24" Preformed Loop Manufactured by LIS, Inc., With Peel-Off Adhesive and 

Twisted Lead-In Wires 

 

Nevada DOT experimented with temporary loops, and came up with a similar 

setup.  They eventually settled on a bitumen tape from Polyguard Products to protect the 

4-turn, 4 x 6 foot loop.  It proved to be extremely reliable, and was still functioning after 

a year.  In fact, the loops eventually became embedded in the asphalt pavement. 

While not explicitly designed for temporary uses, pre-formed loops are also 

available. These have the advantage of portability.  They feature a protective casing that 

shields the wire (once installed in the saw-cut) from debris, moisture and deteriorating 

pavement.  PVC pipe and fiber-reinforced hydraulic hose are common protective 

materials. One such product, cited in the Handbook, is the InstaLoopTM sensor, with a 
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flexible protective sleeve. InstaLoops can fit within the common "” sawcut groove, and 

feature adjustable size.  However, this product appears to be discontinued.  Never-Fail 

Systems [27] currently sells a similar product (with fixed size), and there are others on 

the market. 

2.1.1.10.5.3 Vehicle Speed 

The most straightforward way to determine vehicle speed using loops is to set up two 

loops, spaced a known distance apart, and determine the time between detections.  The 

Handbook warns that highly sensitive loop systems can exhibit longer response times.  

This, in turn, can introduce significant error in speed calculation. 

 An emerging body of research is focused on determining vehicle speed from the 

detection signature from one loop.  Doing so requires a “G factor” which represents the 

average length of passing vehicles, which is comparing to the inductive signature [28].  

Tok et al. (2009) [28] attacked this problem using neural networks.  The researchers 

obtained the actual vehicle speeds using dual loops.  Then, based on signatures from one 

loop, they assigned vehicles into five clusters based on the signature lengths and slew 

rates (slope of rise).  A regression model was run on each cluster, designed to predict 

actual speed using these two factors.  The neural network was trained with these same 

factors to assign single loop signatures to a cluster.  The network also uses the cluster’s 

regression model to predict actual speed.  This approach was able to predict actual speeds 

within a couple of percent, improving over previous efforts. 
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2.1.1.10.5.4 Vehicle Classification & Reidentification 

Inductive loops can also be used to “identify” a vehicle based on its inductive signature.  

Blokpel  (2009) finds ILD to be a desirable alternative to video for reidentification due to 

the technology’s relatively low cost [29].  Reidentification is typically achieved with 

double loops, to factor in vehicle length and speed.  This method unfortunately can have 

high error rate because of the variability of speed estimates.  Blokpel’s research tackles 

the problem of Reidentification using just one loop.   

In the first stage, the Blokpel defines a matrix filled with the ui,j, the differences 

between i entry and j exit signatures.  An algorithm scans this matrix by column and finds 

the element with the smallest difference.  In cases where an entry signature has more than 

one exit signature match (a false positive), the algorithm cross-references against rows to 

find the next most-likely match.  In cases where input and output loops are different 

sizes, a finite impulse response (FIR) filter is employed to equate entry and exit 

signatures.  The scheme was tested against 70 vehicles on a Dutch motorway.  Blokpoel 

claims nearly 100% accuracy when matching between identical loop sizes, and 88% 

between different loops. Interestingly, the most effective loop size was a meter square.   

Cetin and Nichols [30] tackled the same problem in 2009.  Although they use 

weight-in-motion (WIM) sensor data, they state their method can be applied to other 

detection technologies.  Their method is similar to Blokpoel’s, although they achieved the 

best results when employing a Bayesian method employing real-world training data.  

These researchers achieved 99% accuracy on a sample of 947 vehicles. 
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2.1.1.10.5.4.1 Vehicle Reidentification Using the BladeTM Inductive 

Sensor 

Tok and Ritchie [31] tackled a similar problem, the classification of commercial vehicles, 

using a new inductive loop technology.  The BladeTM, developed by Inductive Signature 

Technologies in Knoxville TN, features a 9cm-wide loop of wire.  The loop is surface 

mounted to the lane between two layers of bituthane asphalt tape, and spans the entire 

lane.  When coupled with an “advanced ILD card,” the system captures data at 1200 

samples per second and produces higher resolution signatures than standard inductive 

loops.   

 

Figure 9 - Blade
TM

 System Installed at Truck Weigh Station, and the System's High-Resolution 

Signature Compared to Standard ILD [31] 

 

Tok and Ritchie installed two Blades closely together, traversing the entry lane of a 

weigh station at a twenty degree angle.  During the five hours of data capture, 1029 
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commercial vehicles passed over the assembly.  The researchers isolated two dozen 

features of each vehicle’s drive and trailer assembly in each signature.  The model, which 

was first calibrated on 720 vehicles, achieved 99% accuracy in matching axle 

configuration, 74% with drive unit body classification, 84% with trailer unit body, and 

81% when combining all three together to describe a vehicle.  The Blade, due to the 

relative ease of its installation, is a compelling technology which merits further study. 

2.2 Intelligent Transportation Systems (ITS) & Distributed 

Simulation 

The NSF Embedded Distributed Simulation project features real-time data streamed from 

vehicle detectors and in-vehicle simulators.  The literature reflects a wide variety of ITS 

applications with similar approaches. 

Li et al., 2008, [32] proposed a system featuring Vehicle-Infrastructure 

Integration (VII), whereby roads and vehicles continuously communicate with each other 

on construction status, congestion, incidents, and so forth.  The communication standard 

may include cellular, Bluetooth®, or other means; such vehicles are designated as 

“probes.” Travel time estimates from probe vehicles can vary greatly, depending on the 

probe penetration rate.  Li also cites the 25% absolute relative error of Inductive Loop 

Detectors (ILD), and the general inadequacy of point detectors in forecasting travel time.   

Li’s approach is to fuse these two data sources together to increase the accuracy 

of predicted travel time.  The author configures a six-intersection VISSIM® model of El-

Camino Real near Palo Alto, CA. Like in the Embedded Distributed Simulation Project, 

probe vehicles are instrumented with on-board equipment [33].  Once a simulated probe 
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vehicle comes within 400 feet of roadside equipment (or RSE, which are intersections, 

interchanges and other locations with instrumentation), the onboard computer ‘dumps’ its 

data.  Records from ILD and traffic signals have a resolution of 1-5 seconds and are 

continuously updated.  Using a neural network to “fuse” the two data sources, Li’s model 

tracked ground truth better than point data or probes alone.  The critical measure of 

effectiveness was travel time. 

In a similar study, Park et al., 2007, [34] developed a larger, nine-node VII 

network.  This scheme, Persistent Travel Cookies (PTC), is a “distributed on-line 

database system for transportation management using cooperating roadside and in-

vehicle communication devices.”  All vehicles are instrumented with onboard 

communication devices which talk to roadside beacons. Consequently, each vehicle 

maintains logs of past trips, signal states at visited nodes, and so forth.  With this 

aggregation of trips, the future travel of vehicles is inferred.  An advantage of the PTC 

system is that vehicles store their trip data, not a Traffic Management Center, and that 

computations are distributed across beacons and even vehicles.  By these means, the 

signal plan of one node is constantly optimized.  The authors simulated vehicles in the 

network using historical traffic demands for 14 days.  For each hour over the 14 days, 

5000 PTC-equipped vehicles were generated.  Each vehicle was given a randomly 

selected origin, a randomly selected “likely” destination, and a randomly selected 

“alternate” destination.  The simulation sends vehicles to their “likely” destination 80% 

of the time.  Over an hour-long simulation, the average trip time fell from 272.6 seconds 

using fixed signal control, to 262.5 seconds under actuated control, and then 256.6 

seconds using PTC.  
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These examples alone show the potential of vehicle detection and simulation in 

optimizing transportation networks.  The literature reflects instances where actual 

vehicles and detection come into play.  In 2009, El-Faouzi and Lawrence Klein [35] took 

trip data from a 7-km stretch of French motorway.  The first set, from 2003, spanned 

seven days while the second set, from 2004, was five days.  The data included ILD 

detections and all toll records, including electronic toll collection (ETC), cash, credit 

card, and so forth.  The authors use a statistical “fusion” strategy to merge individual data 

sources to predict travel time.  This strategy, which uses Dempster-Schafer inference, is 

compared to ground truth (taken as the entirety of all toll data).  The researchers’ method 

generally outperformed the individual data sources, except in cases where ETC 

penetration rates were high. 

This thesis is focused however on an individual ITS application: the temporary 

deployment of a non-intrusive detector.  In the literature there are many similar 

applications showing the potential of smaller-scale deployments.  Persaud, Oloufa et al, 

2010, [36] installed a dynamic speed monitoring system, over two summer months, at a 

rural, trumpet-style interchange in Florida. The loop ramp, signed for 35mph advisory, is 

partially ‘hidden’ by an adjacent bridge.  That, along with speeding, contributes to a high 

incidence of vehicle overturns.  The data collection spanned two summer months in 2007, 

with a “before” and “after” period.  The authors installed a temporary, solar powered 

Dynamic Speed Monitoring (DSM) system. This radar-based system includes a sign, 

mounted some 250 feet before the start of the ramp, informing drivers of their speed.  

Both the “before” and “after” datasets were adjusted to omit rainy periods, which in 

Florida can be intense and sporadic.  The authors observed speed limit compliance 
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increasing from 56% to 78%.  The system was less effective at night and over weekends, 

and most effective against high speeds.   

Persaud et al [36] note however that the loop’s radius indicate a 25mph advisory 

limit as opposed to the posted 35.  In a personal email communication [37], Persaud 

explained that they did mention this to Florida DOT (FDOT).  However the regulatory 

“level of effort” to change the sign was beyond the scope of their research.  The advisory 

remained at 35mph.   

In a similar application, Harb and Radwan et al (2009 & 2010) [38, 39] used 

Remote Traffic Microwave Sensor (RTMS) detection to optimize traffic flows along I-95 

construction zones in Florida.  The sensors were installed at merge points and coupled 

with Portable Changeable Message Signs (PCMs).  In the first study, two lanes merged to 

one, while three lanes dropped to two in the follow-up.  The PCMs would advise the 

driver on when to merge.  This “Motorist Awareness System” (MAS) was in each case 

configured to advise drivers to merge earlier, or later (closer to the pinch point).  In both 

studies, the MAS increased throughput.  The earlier study only showed statistically 

significant improvement with early merge, while the second study indicated that late 

merge outperforms early under heavy traffic. 

Notably, the authors of these studies indicated difficulty with the data collection. 

In both cases, weather and contractor logistics issues postponed or interrupted data 

collection. Further, the MAS requires detection equipment housed in a moderately-sized, 

weather-resistant trailer.  This “traffic detection station” is wirelessly linked to a central 

computer base station. With the narrow shoulders of construction zones, the authors 

reported that installation of the equipment was “almost impossible.” 
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2.3 Conclusions 

This literature review reveals the depth and breadth of detection technologies.  ILD tends 

to be a cheaper and more mature detection technology than the others.  For example, 

many of the non-intrusive technologies must be mounted on a pole well above the 

traveled way, rendering the system non-portable.  The other technologies, while likely 

exceeding the accuracy of ILD, are more expensive.  The literature makes clear that ILD 

has the potential to form a simple, cheap, reliable, and highly portable system with zero 

installation costs.  For the aims of this research (see 3.1, Methodology), these ILD 

characteristics are extremely desirable. 

What is also clear from this literature review is the uniqueness of a portable, 

wireless ILD detector.  While ILD is a mature technology, no wireless applications were 

found in the literature.  Further, applications using small and portable inductive loops 

were not apparent.  Therefore, the researchers expect the project to be fruitful, and one 

with many potential applications. 
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Chapter 3 Equipment Testing and Results 

This chapter describes the evolution of the portable loop detection system and tests on 

early versions. Tests performed with the mature, robust version of the system are next 

described in detail. 

3.1 Methodology 

3.1.1 Goals 

Early in the development of this system, several core goals were defined: 

1. Portability and quick deployment 

2. Low cost 

3. Wireless capability 

These conditions support the larger goals of the NSF Simulation project.  These detectors 

needed to be installed anywhere in a short time as dictated by current project needs.  

Wireless capability allows data to be streamed in real time, to research servers for further 

processing and distributed simulation modeling.  Cost is a broad and constant concern in 

any transportation system. 

Two series of tests were performed.  The first series consisted of “trial and error” 

whereby a system design was achieved through an iterative process.  During these early 

tests little formal data was collected, with assessment of the performance based on 

observation.  The goal of those tests was to achieve quick turn around time in system 

redesign.  Those tests were followed by a second series of tests in which formal analysis 

was conducted of the system performance under a series of fine-tuned configurations.  
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3.1.2 Evolution 

3.1.2.1 Communications Link 

Early on, the researchers decided to use technology from Phase IV of the Commute 

Atlanta Study.  Commute Atlanta, funded by FHWA, Georgia Department of 

Transportation (GDOT), and Georgia Tech, monitored the travel behavior of Atlanta-area 

drivers.   

 Phase IV monitored buses and freight, including trucks and trains.  Here, an off-

the-shelf monitoring product from V-Santana® was employed.  Their RSN1000 Fleet 

Management Device is a brick-sized ‘black box’ featuring a Global System for Mobile 

Communications (GSM) modem, and Global Positioning System (GPS) capability.  

While the RSN1000 is designed to run off standard automotive 12v, Phase IV tethers the 

unit to a 33 amp-hour (AH) 12v ‘gel’ battery, slightly smaller than a car battery.  Both the 

RSN and battery have separate, portable climate-resistant cases. 

 

Figure 10 - RSN1000, Showing Leads For GSM And GPS Antennas 
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 The RSN1000, which retailed for approximately $300 but is no longer available, 

is an extremely versatile device.  The unit allows customization of two outputs and three 

inputs.  Therefore, interfacing the RSN1000 to an inductive loop detector is possible.  

Further, the RSN can stream detections, over GSM, in near real-time to servers at the 

Civil Engineering Department.  From that point, detections could be then streamed to the 

web for public viewing. 

3.1.2.2 Detector 

3.1.2.2.1 Hobby Circuit 

In the interest of cost, simple (and mostly analog) circuits were first considered.  Through 

Internet searches, the researchers found a web site containing an extensive selection of 

easily-assembled analog circuits including a vehicle detector [40].  All the parts for the 

detector circuit could be purchased for about ten dollars.  The parts include resistors, 

capacitors, diodes, a 555 timer chip, a LM393 comparator chip, and potentiometers for 

calibration. 
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Figure 11 - Simple Detector Circuit [40] 

 

 

Figure 12 - Simple Detector Circuit on Provided PCB [40] 

 

The researchers ordered parts for four detectors, including credit-card sized PCBs to 

mount the parts.  It was found that the unit consumes about 100mA, in addition to the 75-

150 mA drawn by the RSN1000.  After field testing, the researchers decided that this 
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circuit was not sufficient to meet the project needs.  It was susceptible to climate drift and 

performed poorly with high-bed vehicles.  More details on the testing of this circuit are 

covered below under “Experiments.” 

3.1.2.2.2 Diablo Controls 

Due to the limitations of the first circuit, the researchers investigated mature detector 

circuits using digital signal processing technology.  Several products are listed in the 

literature review (see “Detector Manufacturers and Products”).  Two detectors from 

Diablo Controls Inc., headquartered near Chicago Illinois, were chosen for further 

testing. 

The first, the DSP-7LP detector, retails for about $80.  This unit is small (the size 

of a credit card, and an inch thick) and is intended for solar powered parking gate 

applications. The red LED indicates a detection; further, the green LED indicates a short 

or open circuit in the loop depending on blink rate.  This unit consumed only a few 

milliamps in rest state when tested with a digital multimeter. 

The second, the DSP-15, is designed for “all parking, drive-through and access 

control applications.”  This unit improves on the 7LP by introducing 10 sensitivity levels.  

It also features a “sensitivity boost” mode which increases sensitivity during a vehicle 

detection (also known as a “call.”)  Additional functionality supports call delay, call 

extension, and entry/exit pulses [19].  This unit, when tested in-house, consumed about 

57 mA in rest state, and 60 mA during a call. 

Both units performed substantially better than the first circuit (see below under 

“Experiments.”)  DSP-15, in fact, performed very well when coupled with small loops.  
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As such, the researchers settled upon this circuit for the final field tests described in this 

thesis. 

The RSN1000 consumes, on average, 125mA of current.  When coupled with the 

DSP-15, this system would function for about a week when coupled with the 33AH gel 

battery. 

 

Figure 13 – Diablo Controls DSP-7LP Vehicle Detector [18] 

 

 

Figure 14 - Diablo Controls DSP-15 Vehicle Detector [19] 
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3.1.2.3 Loop and Housing 

A unique challenge of this project is securing the loop onto the pavement in a non 

invasive, temporary, and rigid manner which maintains the loop geometry.  During the 

early “trial and error” tests, the researchers employed black foam-rubber “shop mats” 

available at hardware and auto parts stores.  The material, about half an inch thick, is 

black and easy to cut.  Tests using this material employed a two-layer design.  The first 

layer, which rests on the pavement, has a groove cut out to house the loop (see Figure 

16).  The second layer rests atop the first, protecting the loop.  Amazing Goop™, a very 

strong rubber cement, glues the two layers together.  Polyken™ tape, an industrial-

strength duct tape, secures the assembly to pavement. 

 

Figure 15 - First Generation Shop-Mat Loop Pad (12” x 17” loop) 



  40 

 

Figure 16 - First Generation Shop-Mat Loop Pad, Bottom Side Showing 17” X 34” Loop 

 

 

Figure 17 – First Generation Loop Pad (17” X 34” Loop) Affixed to Eastbound Ferst Drive on 

Georgia Tech Campus 

 

The most recent experiments refined this approach by using a heavier mat of 

recycled tire, available from McMaster-Carr ™ Supply Company.  These sheets, 5/8 
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inches thick, are not as prone to shifting on the pavement as the foam rubber.  Therefore, 

the overall footprint is substantially smaller. 

The protective top layer is a thinner layer of foam rubber similar to shop-mat.  

Between the two is a thin, flexible sheet of vinyl normally used as protective liner for 

bathtub installation.  The recycled tire mat, however, is very dense and must be bored out 

with a wood router to house the loop.   

 

Figure 18 – Second Generation Loop Assembly Made of Recycled Tire, and Close-up of Electrical 

Interconnect  
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Figure 19 - Recycled Tire Loop Assembly, Underside 

 

Lead-in wires are hand-spun twisted pairs, wrapped in electrical tape.  For the 

loops, the researchers used rigid rectangular objects, most notably plastic file-folder 

crates, to secure the wires before wrapping in electrical tape.  The same crates delineate 

the ring cut from the foam rubber or recycled tire.  Nearly all loops employ 14-gauge 

wire, the same size commonly used by state transportation departments.  The exceptions 

were a few unusually small loops tested in the later stages of this research.   
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3.2 Experiments 

3.2.1 First Field Test – Hobby Circuit  

3.2.1.1 Location and Configuration 

Researchers first tested the system on the Georgia Tech campus on February 13, 2009 at 

approximately 2pm.  This half-hour deployment, along eastbound Ferst Drive just before 

State Street, was largely qualitative in the sense that no hard data (including vehicle count 

and successful detections) were recorded.  The system featured the hobbyist detector 

circuit, and a “first generation” foam rubber mat.  The loop was 12 x 17 inches, with 

three turns in the loop. 

 

 

Figure 20 - Location of February 2009, May 2009 & Summer 2010 Tests Along Eastbound Ferst 

Drive (Google Maps) 
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3.2.1.2 Results 

The portable detector appeared to detect about 2/3 of passenger vehicles.  Further, it 

streamed detections to the web.  However, the detector missed a substantial number of 

buses, trolleys and high-bed trucks.  Some vehicles avoided the pad, which was small and 

multi-colored.  Further, the system was highly susceptible to frequency “drift.”  The 

researchers frequently re-tuned the detector to operate accurately without remaining stuck 

permanently at a call.  Temperature variations may have contributed to this problem.  The 

researchers thus decided to try larger loops with more turns. 

 

 

Figure 21 – First Field Test, 2/13/09 
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Figure 22 – First Field Test, 2/13/09, Showing RSN1000 and Detector in Enclosure 

 

3.2.2 Second Field Test – Hobby Circuit 

3.2.2.1 Pre-Test 

An informal “cabinet test” was performed to predict the efficacy of the larger loops.  By 

placing a ruler against a steel cabinet in the researchers’ laboratory at Georgia Tech, the 

detection distance between the pad and cabinet is measured.  While not a simulation of a 

field test, the cabinet test is a useful proxy because, like a car, the cabinet is a similarly 

large metal object. 

 The small 3-turn loop from the first field test, over 16 detections against the 

cabinet, was detected at a mean 12.8” inches with the hobby circuit.  Using a 17” x 34” 
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loop with four turns increased this mean distance, over six detections, by approximately 

one inch.   

3.2.2.2 Location and Configuration 

The 17” x 34” loop with four turns, and a second 17” x 34” loop with eight turns, were 

tested on the Georgia Tech Campus starting at 10:00am on April 24, 2009.  Testing lasted 

less than an hour.  As with the first field test, no data were recorded. 

 

 

Figure 23 - Location Of Second Field Test, on Eastbound Ferst Drive Near the Klaus Computing 

Building (April 2009) (Google Maps) 
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3.2.2.3 Results 

The performance with heavy vehicles was still poor, and frequency drift remained a 

problem.  Overall, about a third of vehicles continued to be missed, resulting in a clear 

need for a significant system redesign. 

 

 

 

Figure 24 - RSN 1000 (Bottom) in Enclosure With Hobbyist Loop Detector Circuit (Bottom Right 

Corner on Lid) 
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3.2.3 Third Field Test – Diablo DSP-7LP 

The researchers selected the Diablo Controls™ DSP 7LP detector as a potential solution.  

In preparation for the third field test, this detector was bolted into the enclosure next to 

the original hobby circuit.   

3.2.4 Location and Configuration 

The system with DSP-7LP was field tested on May 15th 2009, at 10:30AM.  The location 

of the test was the same as the previous February: eastbound Ferst Drive between 

Hemphill Avenue and State Street.  Researchers deployed the 8-turn, 17” x 34” loop.  

Testing lasted less than an hour, and traffic moved freely. 

3.2.4.1 Results 

The DSP-7LP proved far more accurate than the hobbyist circuit.  The system detected 

all trucks and buses.  Researchers noted a small detector output lag of few tenths of a 

second compared against actual vehicle presence.  The system tended to miss fast-

moving vehicles (above 40mph, per the researchers’ qualitative judgment).  All told, the 

detector captured over 87% of all vehicles passing over or grazing the pad.  This positive 

result would later correlate with greater detection distance during the cabinet test. 
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Table 2 - Field Observations From Third Field Test 
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* "Trucks" are large, heavy duty trucks up to and including 18-wheelers.   “Large 

SUVs & Vans” include large pickup trucks such as the Ford F-150.  Smaller pickups are 

“Cars.” 

(**) One bus was double-counted. 

 

3.2.5 Streamlining & Fourth Field Test – DSP-7LP 

Building upon this success, the next goal was to streamline the system.  First, the 

recycled rubber mat from McMaster-Carr was selected for the new loop housing.  As 

mentioned before, this material has the advantage of weight, durability and thus, smaller 

footprint.  The mat for this loop was 5/8” thick. 

3.2.5.1 Pre-Test 

The researchers set about to shrink the loop, and used the “Cabinet Test” as a guide.  The 

test was performed with the DSP-7LP on January 25th and 27th, 2010.  The large 8-turn 

loop (from the third field) test averaged an impressive 20.5” inches clearance from the 

cabinet over ten runs.  It was found that a smaller, 12” x 25” with six turns nearly equaled 

this performance at 19.98”.  Therefore, this size was chosen for the fourth field test. 
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Table 3 - Cabinet Test Of Configurations Used For Third And Fourth Field Tests 
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3.2.5.2 Location and Configuration 

The fourth test occurred on February 23rd, 2010 at approximately 4pm.  The location was 

also on Ferst Drive, but westbound between State and Atlantic Streets.  Researchers 

deployed the 12” x 25” loop in the new rubber pad.  Data collection lasted approximately 

half an hour.   
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Figure 25 - Location of Fourth Field Test, on Westbound Ferst Drive, February 23, 2010 (Google 

Maps) 

 

3.2.5.3 Results 

The system again performed well, detecting over 93% of the 145 vehicles passing over or 

grazing the pad.  This test however is not a direct analogue to the previous test.  This test 

was conducted at a different location, and due to the time of day there was higher traffic 

flow with several standing queues.  Further, the researchers used somewhat different 

methodology for classifying trucks.   
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Table 4 – Field Observations From Fourth Field Test 
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* Here, the vehicle classification methodology is slightly different.  “Trucks” include 

large pickups. 

 

 

Figure 26 - Philip Blaiklock and the Detector System (Third Field Test) 
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Figure 27 - Loop Assembly Detecting an 18-Wheeler (Third Field Test) 

 

 

Figure 28 - Vehicle Detection During Fourth Test 
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Figure 29 - System During Fourth Field Test. Battery Enclosure is on Left 

 

3.2.6 Fifth Field Test – DSP-7LP & DSP-15 

To further refine the system, the researchers began testing with the Diablo Controls DSP-

15.  The researchers deployed both this detector and the DSP-7LP for a direct 

comparison. 
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3.2.6.1 Pre-Test 

Ahead of the fifth field test, the DSP-15 was tested in lab, with the 6-turn loop, against 

the cabinet.  During the test (on May 12th, 2010) four sensitivity levels were tested: 0, 5, 

9, and 9 with sensitivity boost.  These settings respectively averaged, over ten runs each, 

5.6”, 19.0”, 27.0” and 29.5”.  This highest sensitivity level outperformed the DSP-7LP by 

a large margin in lab, and was therefore selected for this field test. 

 

Table 5 - Cabinet Test Results of the DSP15 Detector at Various Sensitivity Levels 
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3.2.6.2 Location and Configuration 

The researchers started testing the DSP-7LP at 11:30am on May 14th 2010, and collected 

data through 1:00pm.  The researchers installed the pad on eastbound Ferst Drive on the 
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Georgia Tech Campus, between Hemphill Avenue and State Street (the same location as 

the first field test).  The loop had six turns, at 12x25 inches.  At 1:00, the DSP-15 was 

swapped into the enclosure, and set to sensitivity level 9 with “sensitivity boost.”  Testing 

resumed at 1:10 for another ninety minutes.  Traffic moved freely during both tests. 

3.2.6.3 Results 

During the first ninety minutes, 337 vehicles were observed passing over or grazing the 

loop.  The DSP-7LP detected approximately 80% of these vehicles.  During observation, 

researchers made a qualitative judgment of vehicle speed.  A few dozen “fast” moving 

vehicles (at least 40mph) passed over or grazed the pad.  The system failed to detect 

about half of such “fast” vehicles.   

 

Table 6 - Field Observations from Fifth Field Test, with DSP-7LP Detector 
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 * "Trucks" are large, heavy duty trucks up to and including 18-wheelers.   “Large 

SUVs & Vans” include large pickup trucks such as the Ford F-150.  Smaller pickups are 

“Cars.” 

 

Over the second ninety minutes, 365 vehicles passed over the detector pad.  This 

configuration performed exceptionally well.  100% of all 365 vehicles were detected, 
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including ones grazing the loop.  Even though the Diablo DSP-15 is designed for parking 

gates, this detector successfully caught all “fast” vehicles.  Further, calls precisely tracked 

vehicle presence, with no if any discernible delay.  However, a few buses, trucks and 

trolleys were double-counted due to high clearance. 

 

Table 7 - Field Observations From Fifth Field Test, with DSP-15 Detector 
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 * "Trucks" are large, heavy duty trucks up to and including 18-wheelers.   “Large 

SUVs & Vans” include large pickup trucks such as the Ford F-150.  Smaller pickups are 

“Cars.”  

(**) One SUV (with trailer), one bus and two trucks were double-counted. 
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Figure 30 - Fifth Field Test, 5/14/2010, Along Eastbound Ferst Drive 

 

 

Figure 31 - Wide-Angle View of Test Site (Fifth Field Test) From Other Side of Ferst Drive.   

Portable Chairs Were Set Up for the Observers 
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Figure 32 - Detector Pad Affixed to Pavement (Fifth Field Test) 

 

 

Figure 33 - DSP-7LP Detecting a Campus Bus (Fifth Field Test) 
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Figure 34 - DSP-15 Detecting A Georgia Tech "Golf Cart" (Fifth Field Test) 
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Figure 35 - Electronics Enclosure With DSP-15 Installed (Fifth Field Test) 

 

3.2.7 Sixth Field – DSP-15 and Small Loops 

In lieu of DSP-15’s exceptional performance when mated with a moderate-sized loop, the 

researchers decided to try minimizing the size of the loop to improve the portability of 

the system. 
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 A hexagonal loop, with a diameter of about ten inches, was chosen to maximize 

the surface area within the loop with respect to circumference.  While the Detector 

Handbook [2] notes that loop effectiveness reaches diminishing returns at about six turns, 

the reference is silent on very small loops.  Therefore, the researchers felt that increasing 

the number of turns well beyond six might be needed to increase performance.  

 Four loops were fashioned for testing.  They featured, respectively, 6, 12, 29 and 

88 turns of wire.  The first two used standard 14 gauge wire, the 29-turn used thinner 

twenty-gauge wire, while the 88-turn used a very thin, single-stranded 28 gauge wire.  

This wire, including shielding, is roughly the thickness of common recreational fishing 

line.  For all four loops, just one lead-in wire was fashioned.  The lead-in is detachable 

from the hexagonal loops by means of “quick connects” crimped on the wire ends.  For 

added durability, the crimp joints were soldered in place. 

 All four loops can be swapped in and out of a common mat.  The same recycled 

tire material was used; however, an additional eighth inch of foam was added between 

the tire material and vinyl liner, and bored out, to make room for the thicker loops.  This 

new mat was #” thick. 

3.2.7.1 Pre-Test 

These four configurations were then “Cabinet Tested” in the lab on May 26th and 27th, 

2010.  The DSP-15 rejected the 6-turn loop.  The detector’s auxiliary (green) LED 

flashed rapidly, indicating a short circuit.  With its small surface area, the circuitry likely 

read an inductance too small to be useable.  
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 The DSP-15 accepted the other three loops.   During cabinet testing, a greater 

variation in detection distance from the cabinet was apparent. Therefore, two runs of ten 

detections were performed for each loop.   

 With DSP-15 set to sensitivity level 9 and “sensitivity boost” enabled, the unit 

detected the cabinet from an average 14.0” away using the 12-turn loop.  Increasing to 29 

turns only modestly increased this mean distance, to 15.2.”   

 After the first few detections, the 88-turn loop would not release its call once fully 

withdrawn from the cabinet.  The configuration was stable once sensitivity boost was 

disabled, but overall performance was disappointing.  The 88-turn loop only detected the 

cabinet from a mean 10.0” distance.  Sensitivity level 8, with sensitivity boost on, 

performed similarly at 10.2” inches.   

Based on cabinet test results, the 12 and 29-turn loops were chosen for field 

testing.  However, the cabinet test did not indicate a likely high accuracy.  Configurations 

earlier cabinet-tested to 20” effectiveness corresponded to 80-90% field accuracy (DSP-

7LP), while cabinet tests on the order of 12” corresponded to about 60-70% field 

accuracy (hobby circuit). 
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Table 8 - Cabinet Tests Ahead of Sixth Field Test 

Respective maximum detection distance from detector pad to cabinet 
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Figure 36 - Small Detector Pad With Four Hexagonal Loops (10" Diameter).  From Left: 6 Turns, 12 

Turns, 29 Turns, and 88 Turns of Wire 

 

 

Figure 37 - Detachable Lead-In Wire  
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3.2.7.2 Location and Configuration 

The researchers tested the small 12- and 29-turn loops on Wednesday, June 2nd, 2010.  

The pad was again installed on eastbound Ferst Drive on the Georgia Tech Campus, 

between Hemphill Avenue and State Street.   Testing with the 12-turn loop commenced 

at 12:05pm and lasted 90 minutes (with the detector set at sensitivity level 9 with 

sensitivity boost).  Testing with the 29-turn loop commenced at 1:55pm and paused at 

3:00pm.  At that time, sensitivity had to be reduced to 8 (with sensitivity boost), the 

setting successfully used for the last 25 minutes of testing.  Traffic flowed freely during 

all observations.   

3.2.7.3 Results 

The DSP-15 detector exceeded the researchers’ expectations.  With the 12-turn loop, the 

unit detected over 98% of the 339 vehicles observed passing over or grazing the pad.  All 

failures occurred with SUVs or “Tech Trolleys,” a Georgia Tech bus service.  A double 

count occurred with one bus, and with one SUV.  Over a dozen “fast” vehicles were 

observed, and all were successfully detected.   Due to the small size of the pad and the 

unusual width of the travel lane, researchers noticed a large number of drivers avoiding 

the pad.   
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Table 9 - Field Observations From Sixth Field Test, with DSP-15 Detector (at Sensitivity Level 9 

With Sensitivity Boost) Mated to Small 12-Turn Loop 
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 * "Trucks" are large, heavy duty trucks up to and including 18-wheelers.   “Large 

SUVs & Vans” include large pickup trucks such as the Ford F-150.  Smaller pickups are 

“Cars.”  

(**) One SUV and one bus were double-counted. 

 

At 1:55pm the 29-turn loop was installed in the pad, and testing resumed.  The 

researchers also tallied vehicles avoiding the pad.  At about 3:00pm, the DSP-15 failed to 

release a call.  The device was immediately dialed down to level 8 (with sensitivity boost) 

and testing continued for the final 25 minutes. 

For the first 65 minutes, 257 vehicles passed over or grazed the loop.  All were 

successfully detected.  One car and one bus were double-counted.  An additional 24 

vehicles, or 8.5% of all observed, fully avoided the loop (many of the 24 were golf carts 

and motorcycles). 

Over the remaining 25 minutes, 82 more vehicles were observed passing over or 

grazing the loop.  Two fast cars grazed the pad and were not detected by the system, 

yielding accuracy of nearly 98%. An additional seven vehicles, or 7.9% of the total, 

avoided the pad.  
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As with the larger loops, there was little if any discernible call delay during the 

sixth field test.  The results indicate that very small, 12-turn loops produce excellent 

performance with the DSP-15.  However, adding more turns of wire risks an unstable 

system with false calls.  No matter the amount of wire, 98% appears to be the highest 

achievable accuracy with these very small loops. 

 

Table 10 - Field Observations From Sixth Field Test, with DSP-15 Detector (at Sensitivity Level 9 

with Sensitivity Boost) Mated to Small 29-Turn Loop 
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 * "Trucks" are large, heavy duty trucks up to and including 18-wheelers.   “Large 

SUVs & Vans” include large pickup trucks such as the Ford F-150.  Smaller pickups are 

“Cars.”  

(**) One car and one bus were double-counted. 
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Table 11 - Field Observations From Sixth Field Test, with DSP-15 Detector (at Sensitivity Level 8 

with Sensitivity Boost) Mated to Small 12-Turn Loop 
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 * "Trucks" are large, heavy duty trucks up to and including 18-wheelers.   “Large 

SUVs & Vans” include large pickup trucks such as the Ford F-150.  Smaller pickups are 

“Cars.”  

(**) One bus was double-counted. 

 

 

Figure 38 - Detector Pad with 12-Turn Loop.  Looped Tape is Applied to Affix Pad to Pavement 

(Sixth Field Test) 

 



  70 

 

Figure 39 - Detector Pad on Pavement (Sixth Field Test) 

 

 

Figure 40 - Test Site for Sixth Field Test 
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3.2.8 Seventh Field Test – DSP-15 and Intermediate-Size Loop 

While the accuracy of the very small loops was excellent and far better than expected, 

many drivers avoided the pad due to its size and the relatively wide lane at the test site.  

To address this issue, and improve upon the small loop’s 98% performance, the 

researchers decided to experiment with a wide, narrow loop form factor. 

 A loop size of 8 by 20 inches was settled upon, intermediate between the small 

hexagon and the larger 11” x 25”.  Based on the performance of these previous loops (12 

and 6 turns respectively), the new intermediate loop was woven with ten turns.  

 As with these predecessors, a mat of recycled tire was built to house the loop.  

Due to thickness of the wiring, this mat was #” thick.  The mat featured two outlets for 

the lead in wire: one on the long side, the other on the short side.  That way, the pad 

orientation could be easily changed between longitudinal and traverse to the flow of 

traffic. 
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Figure 41 – Underside Of Intermediate-Sized Loop in Mat, Configured for Longitudinal Mount 

 

 

Figure 42 - Underside of Intermediate Loop in Mat, Re-Configured for Transverse Mount 
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3.2.8.1 Pre-Test 

The field performance of the very small loops greatly exceeded what the cabinet test 

predicted.  However, the same test with the new loop was performed to maintain 

formality of test procedure.  Further, the new loop’s cabinet performance relative to the 

very small loop would be relevant, given that both loops were mated to the same detector 

(DSP-15). 

 The intermediate loop was cabinet tested on June 10th and 11th, 2010.  The highest 

sensitivity setting was chosen, level 9 with sensitivity boost.  After a few minutes of 

testing, the detector failed to release a call.  Thus, the sensitivity level was dialed back to 

8 (with sensitivity boost).  Over two ten-detection runs, the system successfully detected 

the cabinet at a mean 19.8”.  This improvement over the small loops’ 14-15” cabinet 

performance predicted even stronger field accuracy. 



  74 

Table 12 - Cabinet Tests Ahead of Seventh Field Test 
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3.2.8.2 Location and Configuration 

The intermediate loop was tested on Monday, June 15th.  Starting at 1:05pm, two blocks 

were scheduled: the first with traverse mount, the second with longitudinal mount.  The 

researchers hoped to improve on the pad avoidance rate of the very small loop with at 

least one of these orientations.  After the first 90-minute test, the researchers removed the 

loop pad and re-oriented the loop wire 90 degrees.  Once re-orientation was complete, at 

2:55, a short 15-minute test with longitudinal mount began.   

For both tests, the DSP-15 was set to sensitivity Level 8 (plus sensitivity boost) to 

match the successful cabinet test.  Traffic flowed freely during the experiment. 
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3.2.8.3 Results 

The traverse configuration successfully detected 99.6% or vehicles driving over or 

grazing the pad.  Only one of these 227 vehicles, a fast-moving car grazing the pad, failed 

detection.  However, the avoidance rate, at 16.5%, was significantly higher than with the 

very small loops.  As before, motorcycles and golf carts tended to avoid the pad.  The 

researchers also spotted a number of motorists slowing down while approaching the pad. 

 

Table 13 - Field Observations From Seventh Field Test, with Intermediate-Size 10-Turn Loop Pad 

Mounted Traverse to Traffic. The DSP-15 Detector Was Set to Sensitivity Level 8 With Sensitivity 

Boost 
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 *"Trucks" are large, heavy duty trucks up to and including 18-wheelers.   “Large 

SUVs & Vans” include large pickup trucks such as the Ford F-150.  Smaller pickups are 

“Cars.”  
(**) One truck was double-counted. 

 

 During the fifteen minute longitudinal-mount test, 52 vehicles were observed 

passing over or grazing the pad.  All were detected.  An additional eight vehicles (mostly 

cars) avoided the pad.  While the dataset for longitudinal mount is smaller, its 13.3% 
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avoidance rate wasn’t significantly smaller than traverse mount.  This avoidance rate, and 

the 16.5% rate observed from traverse mount, are about double that of the smaller loops. 

 

Table 14 - Field Observations From Seventh Field Test, with Intermediate-Size 10-Turn Loop Pad 

Mounted Longitudinal To Traffic. The DSP-15 Detector Was Set to Sensitivity Level 8 with 

Sensitivity Boost. 
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 * "Trucks" are large, heavy duty trucks up to and including 18-wheelers.   “Large 

SUVs & Vans” include large pickup trucks such as the Ford F-150.  Smaller pickups are 

“Cars.”  
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Figure 43 - Intermediate Size Loop Deployed Longitudinally, During Seventh Field Test 

 

 

Figure 44 - "Tech Trolley" Driving Over Intermediate-Sized Loop Mounted Traverse (Seventh Field 

Test) 
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Figure 45 - Test Site on Eastbound Ferst Drive with Intermediate-Size Loop Mounted Longitudinal 
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Figure 46 - Intermediate Size Loop Deployed Longitudinal to Traffic, During Seventh Field Test 

 

 

3.2.9 Eighth Field Test – DSP-15, Small Loop and Streaming Data 

3.2.9.1 Location and Configuration  

For this eighth and final field test, the researchers chose the very small 12-turn hexagonal 

loop for its demonstrated accuracy and portability.  Further, the pad was spray painted 

with light gray “Fleck” enamel.  The researchers hoped the paint would blend the pad 

with the surrounding pavement, and reduce the problem of drivers avoiding the pad. 

The researchers elected to test the system during the late afternoon peak period.  

They deployed along eastbound Fifth Street, between Spring and West Peachtree Streets.  



  80 

This test, unlike the others, was fully “online” as well, with the GSM uplink from the 

RSN1000 to Georgia Tech’s VMT server activated.  The server data was then pushed to a 

VMT website.  This allowed the researchers to track detections, in real time during the 

test period, with web-enabled mobile phones. 

 Testing started at 3:15 and lasted through 5:56.  Traffic was mostly free flow at 

the start of the testing period, but sporadic standing queues appeared after 4:00pm and 

were more frequent near the end of the test period. 

The DSP-15 was initially set to sensitivity of nine (with sensitivity boost), the 

configuration successfully tested on June 2nd with the small twelve-turn loop.  The 

detector almost immediately failed to release a call.  The unit was dialed back to 

sensitivity level 8 (with boost).  

  

 

Figure 47 - Location of Eighth Field Test, on Eastbound Fifth Street Between Spring and West 

Peachtree Streets (Google) 
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3.2.9.2 Results  

For ten minutes, 25 through vehicles were observed passing the test site.  None avoided 

or missed the pad, and all were detected.  One vehicle, which grazed the pad, was double-

counted.  Ten minutes later, a moment after the sun came out, the detector again failed to 

release a call.  The sensitivity was reduces to 7 (with boost), and continued. 

 Through 4:10 pm, 99 eastbound through vehicles were observed.  Three of the 99 

missed or avoided the pad.  The other 96 passed over or grazed the pad, all of which were 

successful detections.  At 4:10 pm, another unreleased call occurred when the sun came 

out.  Temperature was apparently triggering false calls within the detector’s sensitivity 

margins.   

 

Table 15 - Field Observations From Eighth Field Test, with Small 10-Turn Loop Pad Spray-Painted 

Fleck Gray. The DSP-15 Detector was Set to Sensitivity Level 7 with Sensitivity Boost 
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 * "Trucks" are large, heavy duty trucks up to and including 18-wheelers.   “Large 

SUVs & Vans” include large pickup trucks such as the Ford F-150.  Smaller pickups are 

“Cars.”  
(**) One truck was double-counted. 
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The researchers reduced the sensitivity to 5 (with boost). The detector remained 

stable at this setting for the rest of testing.  An additional 335 through vehicles passed 

over or grazed the pad, and were observed as detections.  The unit failed to detect another 

eleven vehicles, six of which were grazes.  This yielded an overall detection rate of 

96.8%.  Fourteen through vehicles (or 3.5% of all observed) missed or avoided the pad. 

 

Table 16 - Field Observations From Eighth Field Test, with Small 10-Turn Loop Pad Spray-Painted 

Fleck Gray. The DSP-15 Detector was Set to Sensitivity Level 5 with Sensitivity Boost. 
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 * "Trucks" are large, heavy duty trucks up to and including 18-wheelers.   “Large 

SUVs & Vans” include large pickup trucks such as the Ford F-150.  Smaller pickups are 

“Cars.”  

(**) Two cars, one truck and seven trolleys were double-counted. 

 

Double-counting of high bed vehicles (particularly “Tech Trolleys”) remained an 

issue.  This frequently occurred once sensitivity was dropped to 5.  During the 161 

minute test period, twelve double-counts were observed (mostly high-bed vehicles like 

Trolleys). 
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 The site is across the street from a parking lot.  Over the 161 minutes of testing, 

the researchers spotted an additional 21 vehicles turning in to this parking lot.  Seven of 

these turning vehicles, passing over or clipping the pad, were detected. 

 Overall, the researchers observed 475 detections during the eighth field test.  This 

figure includes the 12 double counts.  These data indicate a 94% “capture rate,” which is 

475detections, divided by 505 total observed passenger vehicles.  If just the 4:10-5:56 

window is considered, and the turning vehicles ignored, the “capture rate” improves to 

nearly 96%.   

Table 17 - Summary Of All Traffic Observed During Eighth Field Test 
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Figure 48 - Eastbound View Along Fifth Street at Test Site (Eighth Field Test) 

 

 

Figure 49 - Closeup of Detector Pad 
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Figure 50 - Dr. Michael Hunter, Philip Blaiklock and Nick Wood Collect Data at Test Site 

 

 

Figure 51 - Dr. Randall Guensler Follows Detections on his Mobile Phone with Web Access 
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Figure 52 – Close-Up of Detector Pad, Showing “Fleck” Paint Blending with Pavement 

 

 

Figure 53 - Standing Queue on Eastbound Fifth Street 
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Chapter 4 Conclusions and Future Work 

This research explored several new angles in vehicle detection with inductive loops.  

Many rounds of field testing yielded a mix of unexpected, and often encouraging, results.  

These findings lay the groundwork for new and exciting lines of research.  

4.1 Small Loops 

A ten-inch wide hexagonal loop, coupled with the right detector, reliably detected up to 

97% of all vehicles passing over or grazing the pad containing the loop.  The test results 

revealed the unexpected effectiveness of very small inductive loops, a topic unexplored 

in the literature.  

Twelve turns of wire provided the best performance.  Adding more turns can, in 

theory, further increase the inductance of the loop and its sensitivity.  However, the 

quality factor (Q) of an inductor is inversely proportional to its resistance.  More turns of 

wire means higher resistance, and more lost energy within the inductor.  Physical space 

also becomes a problem with many turns of wire.  Past twelve turns, a thinner gauge must 

be used to fit the wire within the detector pad.  Thinner gauges of wire introduce even 

higher resistance per unit length.  For example, the 14-gauge wire used in most of this 

research (and typically by DOTs) introduces 2.5 ohms per 1000 feet.  Twenty-gauge 

wire, employed in the small 29-turn loop, quadruples the resistance to 10.1 ohms per 

1000 feet.  The 28-gauge wire, necessary for fitting 88 turns into the pad, pushes the 

resistance to 64.6 ohms per 1000 feet [41].  The series resistance, therefore, of the 88-turn 

loop is 89 times that of the 12 turn loop.  This high resistance explains why this loop was 
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less effective when tested against in-lab the cabinet, and why the 29-turn loop offered 

only a slight improvement over the 12-turn loop. 

Another observed limitation of small loops is a tighter sensitivity margin.  The 12-

turn small loop often failed to release a call at higher sensitivity settings (or smaller 

!L/L).  With a lower overall inductance, slight changes in inductance caused by 

temperature swings can easily impact the system.  Sensitivity level 5 (with sensitivity 

boost) ultimately proved reliable in the field during summer daytime, under direct 

sunlight and shade.  The field testing results, at the end of the day, do validate the Traffic 

Detector Handbook’s guidance that loop surface area is the controlling factor for loop 

effectiveness.  

4.2 Driver Avoidance 

This system’s chief advantage, portability, proved to have a potential drawback.  The 

avoidance rates of small and medium-size pads may indicate that drivers may attempt to 

avoid objects affixed in the center of the lanes.  This appeared to be less of a problem 

during earlier tests, with larger loop pads (although hard data on miss-rate was not 

recorded).  But, larger pads are less portable.  The compromise “intermediate” loop size 

(8” x 20”) proved most troublesome.  Approximately 1 out of 7 motorists missed or 

avoided this pad.   

 It is important to note that these high avoidance rates also occurred on a two-lane 

section of Ferst Drive with a wide traveled way.  The standard 12-foot lane was not 

striped.  Here the small detector pad had an avoidance rate of about 8%.  After the 

researchers painted this pad fleck-gray, and deployed the unit on the striped 12-foot lane 

along Fifth Drive just off campus, the miss rate was halved.  Whether the pavement-
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colored paint, the lane striping, or some other factor contributed most to this result 

remains unclear.  

4.3 Choice of Detector 

In the course of this research, the detector unit selected for integration into the portable 

detector affected accuracy more than any other system component.  The lab ‘cabinet test’ 

predicts field performance only when the new configuration and the baseline 

configuration share the same detector circuit.  Further, upgrading from the hobbyist 

circuit to the DSP-7LP substantially improved the field performance of the 17” x 34”, 8-

turn loop.  Likewise, the DSP-15, set to medium sensitivity and coupled with a very small 

loop, outperformed all configurations with DSP-7LP.  This is no surprise, for the DSP-

7LP is a comparatively simple, low-power device.  

 The exact response time however, of the DSP-15 (in milliseconds) was not 

available to the researchers as of this writing.  In the field, the detector appeared to 

respond to vehicle presence within a tenth of a second or so.  In any event, field results 

show that detector units targeted at the access control market may potentially be effective 

in counting fast-moving vehicles. 

4.4 Future Work 

Vehicle avoidance of the pad results in undercounting of traffic volumes.  The 

researchers would like to further test the small, spray-painted pad to gauge its avoidance 

rate on wide, unstriped lanes.  If it’s comparable to the 8% rate observed on the unstriped 

lane of Ferst Drive on campus, other means of addressing the avoidance issue should be 

explored.   Possible solutions include a long, narrow loop spanning the width of the lane 
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(similar to the Blade [31]).  A small loop could be secured underneath a white 

thermoplastic “through arrow,” emulating the appearance of a typical pavement marking.  

Another potential strategy against avoidance is to tether small loops together in series. 

 The detector pads crafted from recycled tire remained fully intact during field 

testing, and can be used again.  The unit housing the very small loop, for example, 

withstood six hours of light-to-moderate traffic during the tests described in this thesis.  

Further testing would determine the long-term durability of these temporary pads.  An 

alternative solution for long-term testing is the 18” x 24” temporary loop from LIS Inc., 

custom-made for the researchers.  This unit, while intended for one use, is designed for 

deployment at construction zones and would likely last weeks in the field.  Over a long-

term test, the total power draw of the system, and its battery life, would also be more 

thoroughly evaluated. 

 Future versions of the system might integrate all components, including a thin 

laptop-size battery, a small form-factor GSM modem, and a detector PCB, within the pad 

assembly itself.  For such a setup, a lower-power detector solution is preferable.  The 

researchers also need to examine the efficiency and effectiveness of the GSM 

communication channel.  

4.5 Closing Remarks 

This system is, to the researchers’ knowledge, the first fully portable, inductive loop 

vehicle counter.  The researchers observed the system detecting nearly 96% of applicable 

through vehicles within one striped lane.  This work also advances the applications of 

very small inductive loops, smaller than one square foot. 
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 Further, the system is relatively inexpensive.  The tested configurations consist of 

several hundred dollars of off-the-shelf components, cheaper than the commercial 

solutions described in the literature.   While some challenges remain, the unique system 

described in this thesis holds significant promise. 
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