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SUMMARY

The discipline of statistics has been challenged by advances of technical ca-

pability in processing and storing real-life measurements. The devices of modern

technology compile vast amounts of data that are functional and multivariate in na-

ture (for example, time-dependent functional responses from multiple sources). An in-

creasingly important approach to make sense of such functional and high-dimensional

data is dimension reduction via assessment of regularity (also called as Hurst expo-

nent and related to fractal dimension) of functional paths or methodologies in machine

learning.

In this thesis we tackle two approaches for dimension reduction: (1) development

of informative and descriptive summaries based on the regularity of data, and (2)

use of topologies in which data “live” to enhance dimension-reduction process. The

common theme in the thesis is multiscale, and we use wavelet domains for either

tool-building or for illustration.

The indices of the regularity (summarized in multifractal spectrum) and various

wavelet-based spectra have been studied for their theoretical properties in mathemat-

ics and probability and for their practical use in applied disciplines. One application

is worth emphasizing: When the data consist of high-frequency bio-medical responses,

numerous studies have been conducted to link human conditions and diagnostics with

the regularity of the responses. It was shown that properly assessed indices of regu-

larity in measurements carry significant diagnostic information about the patient.

Many of real-life measurements can be collected as labeled and unlabeled. Such

data are often observed as a mixture. For developing classifiers traditionally only

labeled data are used and some recent research efforts suggest the use of unlabeled

xiii



data to enhance the classification method. These are referred as semi-supervised

learning. In this thesis we develop methodology based on semi-supervised learning to

enhance some multiscale procedures, notably wavelet shrinkage.

The thesis is organized as follows.

In the second chapter, we propose a stable method to extract the time-varying

regularity and the noise level of the data. Theoretical contributions of the proposed

model is simultaneous treatment of high-frequency process and an additive white

noise. We illustrate this methodology on EEG data, in which medical researchers look

for the onset and signature of vasospasm, a potentially fatal neurological episode.

In the third chapter, we develop a method of testing whether the high-frequency

data set is consistent with monofractality using wavelet-generated multifractal de-

scriptors. We discuss theoretical properties of the descriptors, their computational

implementation, the use in data mining, and the effectiveness in the context of simu-

lations. Applications include turbulence and analysis of coding/noncoding regions in

DNA sequences.

In the fourth chapter, we propose a novel denoising methodology that combines

classical wavelet shrinkage methods with state-of-art machine-learning techniques.

This methodology takes advantage of geometric structure of wavelet coefficients. The-

oretical optimality properties of the proposed method are discussed and its perfor-

mance is demonstrated in a comparative manner.

xiv



CHAPTER I

INTRODUCTION

Classes of random processes which are intrinsically invariant to changes in scale are

increasingly finding their way into many fields: geoscience, medicine, economics,

physics, electrical and computer engineering.

We look at such processes from the standpoint of statistical modeling and in-

troduce several traditional models. We also introduce multiscale methods (wavelets,

wavelet-like decompositions, general time/frequency representations) as tools and en-

vironments to analyze and model such processes and to unify several related phe-

nomena including fractality, multifractality, and long range dependence. Finally, we

present the overview of the remainder of this thesis.

1.1 Self-similar Processes

We start with various examples of self-similar processes.

1.1.1 Examples Scaling Processes

Statistically self-similar processes (such as fractional Brownian motion) and 1/f pro-

cesses with power law spectra are becoming fundamental in modeling of wide-range

of real-world phenomena from the fields of engineering, physics, medicine, biology,

engineering, art, economics, astronomy, chemistry, etc.

1.1.1.1 It Started with Hurst and Nile Data

British hydrologist Harold Edwin Hurst spent 62 years in Egypt and mostly worked

on design and construction of reservoirs along the Nile River. By inspecting historical

data on the Nile River flows, Hurst discovered phenomenon (now called Hurst effect).
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Hurst was trying to find an optimal reservoir capacity R such that it can accept the

river flow in N units of time,X1, X2, . . .XN , and have a constant withdrawal of X̄ per

unit time. The optimal volume of the reservoir was given by the so called adjusted

range,

R = max
1≤k≤N

(X1 + · · ·+Xk − kX̄) − min
1≤k≤N

(X1 + · · · +Xk − kX̄) (1.1.1)

Since the records for the waterflow rarely exceeded 100 years Hurst inspected other

geophysical data and in order to compare them, he standardized their adjusted ranges

R, with sample standard deviation

S =

√√√√ 1

N − 1

N∑

i=1

(Xi − X̄)2 , (1.1.2)

and obtained dimensionless ratio R/S - rescaled and adjusted range. On basis of

more that 800 records, he found [45] that quantity R/S scales as NH , for ranging

from 0.46 to 0.93, with mean 0.73 and standard deviation of 0.09.

This result was is contrast with the fact that for independent normal random vari-

ables H is 1/2 in limit. Feller proved that the limit is 1/2 for independent identically

distributed random variables with finite second moment, this limit was 1/2. It was

believed that strong Markovian dependence was responsible for this deviation untill

Barnard [8] proved that limit H = 1/2 holds for the Markovian dependence case.

It was the work of Mandelbrot [58], Mandelbrot and Van Ness [59], and Man-

delbrot and Wallis [60] who associated the Hurst (or Joseph) phenomenon on the

presence of long-memory. Figure 1(a) gives n=512 consecutive yearly measurements

from the famous Nile River Data set for the years 62-1281 A.D. Panel (b) gives its

wavelet spectra demonstrating the scaling law.

1.1.1.2 ESCA Spectrum

The ESCA spectrum used in this example was provided by J.P. Bibérian, of the

Université de Marseille – Luminy. This set is one of the template data sets in WaveLab

2
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Figure 1: (a) Nile yearly minimal level data; (b) its Wavelet log spectra

802 and it is sampled at 1024 equally spaced values. Here is short description of ESCA

spectrum methodology.

Electron Spectroscopy for Chemical Analysis (ESCA), also referred to as X-ray

Photoelectron Spectroscopy (XPS), irradiates the sample surface with a soft (low

energy) X-ray. This X-ray excites the electrons of the sample atoms, and if their

binding energy is lower than the X-ray energy, they will be emitted from the par-

ent atom as a photoelectron. Only the photoelectrons at the extreme outer surface

(10-100 Angstroms (Å); 1Å = 10−10m) can escape the sample surface, making this

methodology a surface analysis technique.
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Figure 2: (a) ESCA spectrum; (b) Scaling behavior in the Fourier domain; (c) and
in the wavelet domain.

An ESCA spectrum consists of a series of peaks corresponding the the binding

energies of the photoelectrons that produced these peaks. ESCA analysis not only

provides elemental information, but because the technique is detecting the binding

energy of emitted electrons, it can also provide some chemical bonding information.
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Depending on what elements the parent atom is bound to, the binding energy of the

emitted photoelectrons may shift slightly. Figure 2(a) shows the ESCA spectrum

(usual ordering of energy in eV is opposite than in Panel (a), it ranges from large

to small). Panels (b) and (c) represent log spectrum and log wavelet spectra. Clear

power law with the slope of - 1.80 (indicated in Panels (b) and (c)) by dotted lines)

is notable.

1.1.1.3 Exchange Rates

Many economic time series, such as stock market prices, exchange rates and asset

returns exhibit scaling laws and long range dependence. This is in empirical contra-

diction to several economic theories (random walk theory for stock market, perfect

markets, etc) and gave rise to several theories and models describing the scaling and

LRD (such as ARFIMA, fGn, fBm, GARCH, etc).

The rates of exchange between Hong Kong Dollar (HKD) and USDollar (USD)

as reported by the ONADA Company between 24 March 1995 and 1 November 2000.

Figure 3(a) shows the rates of exchange. Panels (b) and (c) represent log spectrum

and log wavelet spectra, which show clear power law with the slope of -1.89.
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Figure 3: (a) Exchange Rates HKD per US$; (b) scaling behavior in the Fourier
domain, and (c) in the wavelet domain.

1.1.2 Definitions and Properties of Self-similar Processes

We define the notions of self-similar and long-range dependent processes.
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We assume that all processes discusses are real valued and defined on the same

parameter space. Two processes X(t) and Y (t) , equal in all finite dimensional

distributions, will be denoted as X(t)
d
= Y (t). This means that for any selection

of “times” 0 ≤ t1 < t2 < . . . tk < ∞ random vectors (X(ω, t1), . . . , X(ω, tk)) and

(Y (ω, t1), . . . , Y (ω, tk)) have the same distribution. Informally, processes equal-in-

distribution are statistically indistinguishable.

Random process X(t) is called stochastically continuous at t0 if limh→0 P (|X(t0 +

h) −X(t0)| > ǫ) = 0, for any fixed ǫ > 0. Additionally, we consider processes not to

be trivial. 1

Definition 1.1.1. A random process X(t), t > 0 is called self-similar if for any a > 0,

there exists b > 0 such that

X(at)
d
= bX(t). (1.1.3)

Lamperti [54] proved the result,

Theorem 1.1.1. (Lamperti, 62.) If random process X(t), t ≥ 0 is nontrivial, stochas-

tically continuous at 0, and self-similar, then there exists unique H ≥ 0 such that

b = aH . If X(0) = 0, a.s. then H > 0.

Standard definition of self-similar processes is as follows,

Definition 1.1.2. Process X(t), t ≥ 0 is self-similar, with self-similarity index H

(H-ss) if and only if there exists H > 0 such that for any a > 0, X(at)
d
= aHX(t).

Uniqueness of H is not obvious from this definition, although, H is unique by the

Lamperti’s theorem. Also, from Definition 1.1.2 it follows X(0) = 0.

Example 1.1.1. Standard Brownian Motion B(t) is 1/2-ss. Indeed, the process

W (t) = 1/
√
aB(at) is standard Brownian motion, as well.

1Process X(t) is trivial if the distribution of random variable X(ω, t), t fixed is a point mass
measure. For example, X(t) = const or X(t) = sin(t) would be examples of trivial processes.
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Let {X(t), t ∈ IR} be a random process such that the autocovariance function

γX(r, s) = COV(X(r), X(s)) = E(X(r) − EX(r))(X(s) −EX(s)) (1.1.4)

is finite for any pair r, s ∈ IR The random process (time series) {X(t), t ∈ IR} is said

to be (weakly, second-order, or wide-sense) stationary if

(i) E|X(t)|2 <∞,

(ii) EX(t) = m, for all t ∈ IR, and

(iii) γX(r, s) = γX(r + t, s+ t) for all r, s, and t ∈ IR.

The stationarity condition (iii) is often given in the form,

COV(Xt+h, Xt) = γX(h),

emphasizing the independence of t. When it is clear what the underlying process is,

we will write γ(h) instead of γX(h). If the index space for parameter t is not IR but

the set of integers, ZZ random process X(t) is called random sequence or time series

and often indexed as Xt, t ∈ ZZ.

Example 1.1.2. (i) White noise is a stationary sequence Zt such that EZt = 0 and

γ(h) = σ2 · δh; in notation, Zt ∼ WN (0, σ2).

(ii) The moving average MA(q) process, defined as

Xt = Zt + θ1Zt−1 + θ2Zt−2 + · · ·+ θqZt−q, Zt ∼ WN (0, σ2),

has autocovariance function

γ(h) =





σ2
∑q−|h|

j=0 θjθj+|h|, |h| ≤ q

0 |h| > q.
(1.1.5)

(iii) The autoregressive AR(1) process, Xt − φXt−1 = Zt, Zt ∼ WN (0, σ2), has

autocovariance function

γ(h) = σ2 φ|h|

1 − φ2
. (1.1.6)
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Autocorrelation function is defined as normalized version of autocovariance func-

tion, ρ(h) = γ(h)/γ(0). We note that γ(0) = V ar(X(t)) is constant for stationary

processes.

Fourier transformation of autocorrelation (or autocovariance) function leads to

spectral density f(ω)

f(ω) =

∫

R

γ(h)e−ihωdh, (1.1.7)

which is non-negative by Wiener-Khinchine theorem. Properly normalized 2 indeed

represents a density in a probabilistic sense. The function f(ω) is also called power-

spectrum since E|X(t)|2 = 1/(2π)
∫
R
f(ω)dω, and E|X(t)|2 represents the “power”

of zero-mean signal X(t).

It is possible define a counterpart of a spectral density of a nonstationary process

if, for example, linear filtering will produce a stationary process. In such cases, we

define a pseudo (quasi) spectral density as a function of spectral density of filtered

stationary process and transfer function of a filter.

Now we are ready for the definition of long range dependence and 1/f processes.

A stationary process Y (t) is called long-range dependent (LRD) process if its

autocorrelation function or spectral density behave as

γY (h) ∼ Cγ|h|α−1, h→ ∞, α ∈ (0, 1), (1.1.8)

or

fY (ω) ∼ Cf |ω|−α, ω → 0, α ∈ (0, 1), (1.1.9)

where Cγ and Cf are two related constants. These two relations are equivalent,

subject to mild asymptotic monotonicity assumptions on γ.

Next, we will make link between self-similarity and LRD.

2Depending on the definition of Fourier transformation, in our case f should be divided by 2πγ(0)
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Let X(t), t ∈ R be H − ss process. If its increments are stationary, i.e, if the

distribution of X(t+h)−X(t) is independent of t, it will be called H − sssi process.

The following theorem gives the form of autocorrelation function of any H − sssi

process with finite second moment.

Theorem 1.1.2. Let X(t), t ∈ IR be an H − sssi process for which E|X(1)|2 < ∞.

Then,

γ(t, s) = EX(t)X(s) =
E|X(1)|2

2

[
|t|2H + |s|2H − |t− s|2H

]
. (1.1.10)

Proof: From H-ss and stationarity of increments property,

EX(t)X(s) =
1

2

[
E(X(t)2) + E(X(s)2) − E[X(t) −X(s)]2

]

=
1

2

[
t2HE(X(1)2) + s2HE(X(1)2) − E[X(|t− s|) −X(0)]2

]

=
E|X(1)|2

2

[
t2H + s2H − |t− s|2H

]
.

Let X(t) be an H-sssi process with 0 < H < 1 and E|X(1)|2 < ∞. Define

stationary sequence of random variables Y (n) as

Y (n) = X(n+ 1) −X(n).

If γY (n) is the autocorrelation function for Y (n), i.e., γY (n) = EY (n)Y (0), then if

H = 1/2, γY (n) = 0, for n ≥ 1 and if H 6= 1/2, it is possible to find an explicit

expression for γ(n). Using the fact that X(0) = 0 we find,

γY (n) = EY (1)Y (n) = EX(1)(X(n+ 1) −X(n))

= E(X(1)X(n+ 1) − E(X(1)X(n)) (1.1.11)

=
E|X(1)|2

2

[
(n+ 1)2H − n2H + (n− 1)2H

]
.

If in (1.1.11) the expressions (n ± 1)2H are replaced by their polynomial expansions

n2H ± 2Hn2H−1 +H(2H − 1)n2H−1 + . . . , the following asymptotic result holds

lim
n→∞

γY (n)

H(2H − 1)E|X(1)|2 n2H−2
= 1. (1.1.12)
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In other words, γY (n) = O(n2H−2).Note that series
∑

n |γY (n)| converges if 2−2H > 1

or, equivalently, if 0 < H < 1/2. For such H , expression 2H−1 in (1.1.12) is negative,

and correlations γY (n) are negative. If 1/2 < H < 1 correlations γ(n) are positive,

but
∑

n |γY (n)| = ∞, since 2 − 2H < 1.

Long range dependent process Y (n) is asymptotically second-order self-similar,

i.e., the second order moments of Yn and aggregated time series Y (m) coincide. The

series Y (m)(k) is defined as series of averages of non-overlapping blocks of size m from

the sequence Y (n),

Y (m)(k) =
Y (km−m+ 1) + · · ·+ Y (km)

m
, (1.1.13)

It is easy to see that if 1/2 < H < 1, the asymptotic behavior of V arY (m) is influenced

by asymptotic behavior of γY (n). Indeed,

V arY (m) ∼ 1/m γY (0) +
m−1∑

k=1

k2H−2(m− k) ∼ m2H−2.

Informally, Y (m)(k) and Y (n) look similar at all scales, and we will see later that this

asymptotic behavior of the variance of aggregated process, V arY (m) ∼ m2H−2, can

be used for inference about H.

1.1.3 Fractional Brownian Motion (fBm) and Fractional Gaussian Noise
(fGn)

Fractional Brownian motion (fBm)is generalization of Brownian motion (Wienner

Process). Brownian motion B(t) is standardly defined as random process satisfying:

(i) B(0)=0, (ii) for any choice n and 0 ≤ t1 < t2 < · · · < tn, the increments B(t2) −

B(t1), . . . , B(tn) − B(tn−1) are independent and stationary; (iii) B(t) is Gaussian

random variable with zero mean and variance t, and (iv) B(t) is a continuous function

of t, a.s. It is easy to check that Brownian motion is an 1/2-sssi process, since

W (t) = a−1/2B(at) satisfies properties (i)-(iv). Covariance of Brownian motion is,

because of Theorem 1.1.2, EB(t)B(s) = 1/2(t+ s− |t− s|) = min{t, s}.
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Brownian motion is Gausian process and Gaussian processes are fully determined

by their second order properties. Therefore, Brownian motion is unique Gaussian

process having covariance function γ(t, s) = min{t, s}. The theorem 1.1.2 gave the

covariance structure for an H-sssi process. If such process is gaussian it is unique an

it is called fractional Brownian motion.

Definition 1.1.3. A zero mean gaussian process BH(t) is called fractional Brownian

motion with Hurst exponent H , if

EX(t)X(s) =
E|X(1)|2

2

[
|t|2H + |s|2H − |t− s|2H

]
,

where E|X(1)|2 = Γ(2−2H) cos(πH)
πH(1−2H)

.

The process BH(t) is unique, in the sense that class of all fractional Brownian

motions with exponent H coincides with the class of all Gaussian H − ss processes.

However, a Gaussian process is H − ss with independent increments, if and only if it

H = 1/2, i.e., if it is a Brownian motion.

The difference process, Y (n) = BH(n + 1) − BH(n) is called fractional Gaussian

noise (fGn). As for more general H-sssi processes, covariance function of fGn is

γ(h) =
E|X(1)|2

2

[
(h+ 1)2H − h2H + (h− 1)2H

]
. (1.1.14)

An alternative definition of fractional Brownian motion can be given via stochastic

integration. Mandelbrot and Van Ness [59], Taqqu defined fBm as the process for

which:

(i) BH(0) = 0, and

(ii) BH(t) = 1/CH ·
[∫ 0

−∞
[(t− s)H−1/2 − (−s)H−1/2]B(ds) +

∫ t

0

(t− s)H−1/2B(ds)

]
,

(1.1.15)

where B(dt) is the Wiener measure, and 1/CH = Γ(H+1/2)/(Γ(2H+1) sin(πH))1/2.
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Figure 4: Simulated paths of fractional Brownian motion, (a)H = 1/4, (b)H = 1/2,
and (c) H = 3/4.

This representation can be discretized, in the sense that discrete counterpart of

B(dt) is normal noise, and as such it provides a way to simulate fBm.

Sample paths of fractional Brownian motion are behaving similarly to those of

standard Brownian motion. See Figure 4 for simulated paths of several values of H .

They are continuous almost surely for all H ∈ (0, 1) and nowhere differentiable. The

fractal (Hausdorff) dimension of sample paths is D = 2 − H. That means that for

small H (say, H < 0.5) the sample paths are quite irregular and space-filling. It is

interesting that sample paths of fractional Brownian motions are also continuous in

H , a result of Peltier and Lévy-Véhel [64, 65].

Let ∆(i) = BH( i+1
n

) − BH( i
n
), for i = 1, . . . , n − 1. Let ∆1:n ≤ . . .∆n:n be the

corresponding order statistics. Define the polynomial V BH,n(t) =
∑[nt]−1

i=0 ∆i:n+(nt−

[nt])∆[nt]:n. Phillpe and Thilly [66] demonstrated that

V BH,n(t)

n1−H
√
C

→ L(t), (1.1.16)

where L(t) = − 1√
2π

exp−1
2
Φ−1(t), and Φ is the standard Gaussian cdf. This result

can be utilized to estimate H . Similarly to integral representation (1.1.15), fBm

allows the so called harmonizable representation,

BH(t) =

∫

IR

eitω − 1

|ω|H+1/2
B(dω), (1.1.17)

where B(dω) is the Wiener measure.
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1.1.4 Autoregressive, Fractionally Integrated, Moving Average Processes
(ARFIMA)

The autoregressive fractionally integrated moving average model, denoted ARFIMA

(p,d,q), can also be used for the statistical modeling of time series with long memory.

The more familiar ARMA models (when d = 0) or ARIMA (when d is a positive

integer) are special cases. ARFIMA models were defined by Granger and Joyeux [41]

and Hosking [44].

Define the back-lag operator B as BkY (n) = Y (n − k), k = 0, 1, . . . . We write

the ARFIMA(p,d,q) model as:

Φ(B)(1 − B)dY (n) = Θ(B)ǫ(n), n = 1, 2, . . . (1.1.18)

where Φ(B) = 1 − φ1B − · · · − φpB
p) is the autoregressive polynomial and Θ(B) =

1 + θ1B + · · · + θqB
q is the moving average polynomial in the back-lag operator B;

p and q are integers, d is real. The innovations ǫ(n) are assumed i.i.d. normal with

zero mean and variance σ2. The fractional difference operator can be expresses by the

following binomial expansion:

(1 − B)d =

∞∑

k=0

(
d

k

)
(−B)k,

where
(
d
k

)
is defined as Γ(d+1)

Γ(k+1)Γ(d−k+1)
.

For d > 1/2 the ARFIMA process is not stationary, although it can be diferenced

to a stationary process. For −0.5 < d < 0 the process is called intermediate memory

or overdifferenced, see Brockwell and Davis [12]. The ARFIMA model exhibit long

memory when when 0 < d < 1/2.

In particular, ARFIMA(0,d,0) is the model model of special interest since it is close

to fractional Gaussian noise with parameter H = d+1/2. Defined as (1−B)dY (n) =

ǫ(n), it is responsible for the LRD behavior in Y (n). Indeed, Y (n) can be represented

as infinite moving average process, since

Y (n) = (1 − B)−dǫ(n). (1.1.19)
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Thus,

Y (n) =
∞∑

k=0

(−d
k

)
(−1)kǫ(n− k)

=
∑

k=0

Γ(k + d)

Γ(k + 1)Γ(d)
ǫ(n− k).

Covariance function of Y (t) is given as

γY (h) = E(Y (n)Y (n+ h)) = σ2 (−1)h(−2d)!

(h− d)!(−h− d)!

= γ(0)
Γ(1 − d)Γ(h+ d)

Γ(d)Γ(h+ 1 − d)
, (1.1.20)

where γ(0) = σ2 (−d)!
((−d)!)2 .

If σ2 = 1, i.e., if the noise is independent standard normal, one has γ(h) =

(−1)h(−2d)!
(h−d)!(−h−d)! . Autocorrelation function can be represented as

ρ(h) = γ(h)/γ(0) =
d(1 + d) . . . (h− 1 + d)

(1 − d)(2 − d) . . . (h− d)
, h = 1, 2, 3, . . . .

By Sheppard’s Formula, ρ(h) ∼ h−2d−1. For details see Deriche and Tewfik [29].

In fact, an ARFIMA(p,d,q) can be decomposed on two components, ARFIMA

(0,d,0)-part, responsible for the long memory and an ARMA(p,q)-part responsible

for the short-range memory. In fact, one way to generate an ARFIMA(p,d,q) process

is to generate ARMA(p,q) process with ARFIMA(0,d,0) innovations.

Example 1.1.3. An ARFIMA(0, 1+d, 0) [an integrated ARFIMA(0,d,0)] process can

be thought as a discrete, sampled process from an fBm(H) process, for H = a+1/2.

1.1.5 Multifractional Brownian Motion (mBm)

Not all scalings are perfect or universal. Scaling exponent in fBm is a global param-

eter. Holder regularity of paths of fBm are constant and in fact equal to the Hurst

exponent.

A model that accommodates change of parameter H over time is multifractional

Brownian motion, mBm. Definition of multifractional Brownian motion can be given
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via stochastic integration. follows that of Mandelbrot and Van Ness [59] for fBm as

with H replaced by H(t).

Definition 1.1.4. Multifractional Brownian Motion is a process for which:

(i) W (0) = 0, and

(ii) W (t) =
1

Γ(Ht + 1/2)

[∫ 0

−∞
[(t− s)Ht−1/2 − (−s)Ht−1/2]dB(s)

+

∫ t

0

(t− s)Ht−1/2dB(s)

]
,

where B(t) is standard Brownian motion. The function Ht : [0,∞) 7→ [a, b] ⊂ (0, 1)

is assumed to be Holder function of exponent β > 0.

The frequency definition of mBm(H) is achieved by [10]

W (t) =

∫

IR

eitω − 1

|ω|H(t)+1/2
B(dω), (1.1.21)

We discuss details of process W in the second chapter.

1.2 Basic on Wavelets

The first theoretical results in wavelets are connected with continuous wavelet de-

compositions of IL2 functions and go back to the early 1980s. Papers of Morlet et al.

[61] and Grossmann and Morlet [62] were among the first on this subject.

Let ψa,b(x), a ∈ IR\{0}, b ∈ IR be a family of functions defined as translations

and re-scales of a single function ψ(x) ∈ IL2(IR),

ψa,b(x) =
1√
|a|
ψ

(
x− b

a

)
. (1.2.1)

Normalization by 1√
|a|

ensures that ||ψa,b(x)|| is independent of a and b. The func-

tion ψ (called the wavelet function or the mother wavelet) is assumed to satisfy the

admissibility condition,

Cψ =

∫

IR

|Ψ(ω)|2
|ω| dω <∞, (1.2.2)
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where Ψ(ω) =
∫
R
ψ(x)e−ixωdx is the Fourier transformation of ψ(x). The admissibility

condition (1.2.2) implies

0 = Ψ(0) =

∫
ψ(x)dx.

Also, if
∫
ψ(x)dx = 0 and

∫
(1 + |x|α)|ψ(x)|dx < ∞ for some α > 0, then Cψ < ∞.

Wavelet functions are usually normalized to “have unit energy”, i.e., ||ψa,b(x)|| = 1.

For any IL2 function f(x), the continuous wavelet transformation is defined as a

function of two variables

CWT f(a, b) = 〈f, ψa,b〉 =

∫
f(x)ψa,b(x)dx.

Here the dilation and translation parameters, a and b, respectively, vary continuously

over IR\{0} × IR.

Resolution of Identity. When the admissibility condition is satisfied, i.e., Cψ <∞,

it is possible to find the inverse continuous transformation via the relation known as

resolution of identity or Calderón’s reproducing identity,

f(x) =
1

Cψ

∫

IR2

CWT f(a, b)ψa,b(x)
da db

a2
.

If a is restricted to IR+, which is natural since a can be interpreted as a reciprocal of

frequency, (1.2.2) becomes

Cψ =

∫ ∞

0

|Ψ(ω)|2
ω

dω <∞, (1.2.3)

and the resolution of identity relation takes the form

f(x) =
1

Cψ

∫ ∞

−∞

∫ ∞

0

CWT f(a, b)ψa,b(x)
1

a2
da db. (1.2.4)

Next, we list a few important properties of continuous wavelet transformations.

Shifting Property. If f(x) has a continuous wavelet transformation CWT f (a, b),

then g(x) = f(x − β) has the continuous wavelet transformation CWT g(a, b) =
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CWT f (a, b− β).

Scaling Property. If f(x) has a continuous wavelet transformation CWT f (a, b),

then g(x) = 1√
s
f
(
x
s

)
has the continuous wavelet transformation CWT g(a, b) =

CWT f

(
a
s
, b
s

)
.

Both the shifting property and the scaling property are simple consequences of

changing variables under the integral sign.

Energy Conservation. From (1.2.4),

∫ ∞

−∞
|f(x)|2dx =

1

Cψ

∫ ∞

−∞

∫ ∞

0

|CWT f(a, b)|2
1

a2
da db.

Localization. Let f(x) = δ(x − x0) be the Dirac pulse at the point x0. Then,

CWT f (a, b) = 1√
a
ψ(x0−b

a
).

Reproducing Kernel Property. Define IK(u, v; a, b) = 〈ψu,v, ψa,b〉. Then, if F (u, v)

is a continuous wavelet transformation of f(x),

F (u, v) =
1

Cψ

∫ ∞

−∞

∫ ∞

0

IK(u, v; a, b)F (a, b)
1

a2
da db,

i.e., IK is a reproducing kernel. The associated reproducing kernel Hilbert space

(RKHS) is defined as a CWT image of IL2(IR) – the space of all complex-valued

functions F on IR2 for which 1
Cψ

∫∞
−∞
∫∞
0

|F (a, b)|2 da db
a2

is finite.

Characterization of Regularity. Let
∫

(1 + |x|) |ψ(x)| dx < ∞ and let Ψ(0) = 0.

If f ∈ Cα(Hölder space with exponent α), then

|CWT f(a, b)| ≤ C|a|α+1/2. (1.2.5)

Conversely, if a continuous and bounded function f satisfies (1.2.5), then f ∈ Cα.

Example 1.2.1. Mexican hat or Marr’s wavelet. The function

ψ(x) =
d2

dx2
[−e−x2/2] = (1 − x2)e−x

2/2
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is a wavelet [known as the “Mexican hat” or Marr’s wavelet.

By direct calculation one may obtain Cψ = 2π.

Example 1.2.2. Poisson wavelet. The function ψ(x) = −(1 + d
dx

) 1
π

1
1+x2 is a

wavelet [known as the Poisson wavelet. The analysis of functions with respect to this

wavelet is related to the boundary value problem of the Laplace operator.

The continuous wavelet transformation of a function of one variable is a function

of two variables. Clearly, the transformation is redundant. To “minimize” the trans-

formation one can select discrete values of a and b and still have a transformation that

is invertible. However, sampling that preserves all information about the decomposed

function cannot be coarser than the critical sampling.

The critical sampling (Fig. 5) defined by

a = 2−j, b = k2−j, j, k ∈ ZZ, (1.2.6)

will produce the minimal basis. Any coarser sampling will not give a unique inverse

transformation; that is, the original function will not be uniquely recoverable. More-

over under mild conditions on the wavelet function ψ, such sampling produces an

orthogonal basis {ψjk(x) = 2j/2ψ(2jx− k), j, k ∈ ZZ}.

There are other discretization choices. For example, selecting a = 2−j , b = k will

lead to non-decimated (or stationary) wavelets. For more general sampling, given by

a = a−j0 , b = k b0 a
−j
0 , j, k ∈ ZZ, a0 > 1, b0 > 0, (1.2.7)

numerically stable reconstructions are possible if the system {ψjk, j, k ∈ ZZ} consti-

tutes a frame. Here

ψjk(x) = a
j/2
0 ψ

(
x− k b0 a

−j
0

a−j0

)
= a

j/2
0 ψ(aj0x− k b0),

is (1.2.1) evaluated at (1.2.7).

17



r
rr r
rrrr r r r

r r r r r r rrrrrrr

r r r r r r r r r r r r rrrrrrrrrrrrr

r r r r r r r r r r r r r r r r rr r r r r r r r rrrrrrrrrrrrrrrrrrrrrrrrrr

-
b0

6a

Figure 5: Critical Sampling in IR × IR+ half-plane (a = 2−j and b = k 2−j).

Next, we consider wavelet transformations (wavelet series expansions) for values

of a and b given by (1.2.6). An elegant theoretical framework for critically sampled

wavelet transformation is Mallat’s Multiresolution Analysis [55, 56, 57].

1.2.1 Multiresolution Analysis

A multiresolution analysis (MRA) is a sequence of closed subspaces Vn, n ∈ ZZ in

IL2(IR) such that they lie in a containment hierarchy

· · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · · . (1.2.8)

The nested spaces have an intersection that contains the zero function only and a

union that is dense in IL(IR),

∩nVj = {0}, ∪jVj = IL2(IR).

[With A we denoted the closure of a set A]. The hierarchy (1.2.8) is constructed such

that (i) V -spaces are self-similar,

f(2jx) ∈ Vj iff f(x) ∈ V0. (1.2.9)

and (ii) there exists a scaling function φ ∈ V0 whose integer-translates span the space

V0,

V0 =

{
f ∈ IL2(IR)| f(x) =

∑

k

ckφ(x− k)

}
,

18



and for which the set {φ(• − k), k ∈ ZZ} is an orthonormal basis.3

Mild technical conditions on φ are necessary for future developments. It is assumed
∫
φ(x)dx 6= 0. Since V0 ⊂ V1, the function φ(x) ∈ V0 can be represented as a linear

combination of functions from V1, i.e.,

φ(x) =
∑

k∈ZZ

hk
√

2φ(2x− k), (1.2.10)

for some coefficients hk, k ∈ ZZ. This equation is called the scaling equation (or two-

scale equation) and it is fundamental in constructing,exploring, and utilizing wavelets.

In the wavelet literature, the reader may encounter an indexing of the multireso-

lution subspaces, which is the reverse of that in (1.2.8),

· · · ⊂ V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 ⊂ · · · . (1.2.11)

The coefficients hn in (1.2.10) are important in connecting the MRA to the the-

ory of signal processing. The (possibly infinite) vector h = {hn, n ∈ ZZ} will be

called a wavelet filter. It is a low-pass (averaging) filter as will become clear later by

considerations in the Fourier domain.

To further explore properties of multiresolution analysis subspaces and their bases,

we will often work in the Fourier domain. Define the function m0 as follows:

m0(ω) =
1√
2

∑

k∈ZZ

hke
−ikω =

1√
2
H(ω). (1.2.12)

The function in (1.2.12) is sometimes called the transfer function and it describes the

behavior of the associated filter h in the Fourier domain. Notice that the function m0

is periodic with the period 2π and that the filter taps {hn, n ∈ ZZ} are the Fourier

coefficients of the function H(ω) =
√

2 m0(ω). In the Fourier domain, the relation

(1.2.10) becomes

Φ(ω) = m0

(ω
2

)
Φ
(ω

2

)
, (1.2.13)

3It is possible to relax the orthogonality requirement. It is sufficient to assume that the system
of functions {φ(• − k), k ∈ ZZ} constitutes a Riesz basis for V0.

19



where Φ(ω) is the Fourier transformation of φ(x). Indeed,

Φ(ω) =

∫ ∞

−∞
φ(x)e−iωxdx

=
∑

k

√
2 hk

∫ ∞

−∞
φ(2x− k)e−iωxdx

=
∑

k

hk√
2
e−ikω/2

∫ ∞

−∞
φ(2x− k)e−i(2x−k)ω/2d(2x− k)

=
∑

k

hk√
2
e−ikω/2 Φ

(ω
2

)

= m0

(ω
2

)
Φ
(ω

2

)
.

By iterating (1.2.13), one gets

Φ(ω) =
∞∏

n=1

m0

( ω
2n

)
, (1.2.14)

which is convergent under very mild conditions on rates of decay of the scaling function

φ. There are several sufficient conditions for convergence of the product in (1.2.14).

For instance, the uniform convergence on compact sets is assured if (i) m0(ω) = 1

and (ii) |m0(ω) − 1| < C|ω|ǫ, for some positive C and ǫ. See also Theorem 1.2.3.

Next, we prove two important properties of wavelet filters associated with an

orthogonal multiresolution analysis, normalization and orthogonality.

Normalization.

∑

k∈ZZ

hk =
√

2. (1.2.15)

Proof:

∫
φ(x)dx =

√
2
∑

k

hk

∫
φ(2x− k)dx

=
√

2
∑

k

hk
1

2

∫
φ(2x− k)d(2x− k)

=

√
2

2

∑

k

hk

∫
φ(x)dx.
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Since
∫
φ(x)dx 6= 0 by assumption, (1.2.15) follows.

This result also follows from m0(0) = 1, since
∫
φ(x)dx 6= 0 and φ ∈ IL1(IR) in the

time domain translate to Φ(0) 6= 0 and Φ(ω) ∈ IL∞ in the Fourier domain.

Orthogonality. For any l ∈ ZZ,

∑

k

hkhk−2l = δl. (1.2.16)

Proof: Notice first that from the scaling equation (1.2.10) it follows that

φ(x)φ(x− l) =
√

2
∑

k

hkφ(2x− k)φ(x− l) (1.2.17)

=
√

2
∑

k

hkφ(2x− k)
√

2
∑

m

hmφ(2(x− l) −m).

By integrating the both sides in (1.2.17) we obtain

δl = 2
∑

k

hk

[
∑

m

hm
1

2

∫
φ(2x− k)φ(2x− 2l −m) d(2x)

]

=
∑

k

∑

m

hkhmδk,2l+m

=
∑

k

hkhk−2l.

The last line is obtained by taking k = 2l+m. An important special case is l = 0 for

which (1.2.16) becomes

∑

k

h2
k = 1. (1.2.18)

One consequence of the orthogonality condition (1.2.16) is the following: the convo-

lution of filter h with itself, f = h ⋆ h, is an à trous.4

The fact that the system {φ(• − k), k ∈ ZZ} constitutes an orthonormal basis for

V0 can be expressed in the Fourier domain in terms of either Φ(ω) or m0(ω).

(a) In terms of Φ(ω):

∞∑

l=−∞
|Φ(ω + 2πl)|2 = 1. (1.2.19)

4The attribute à trous (Fr.) ( ≡ with holes) comes from the property f2n = δn, i.e., each tap on
even position in f is 0, except the tap f0. Such filters are also called half-band filters.
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By the [par] property of the Fourier transformation and the 2π-periodicity of eiωk

one has

δk =

∫

IR

φ(x)φ(x− k)dx

=
1

2π

∫

IR

Φ(ω)Φ(ω)eiωkdω

=
1

2π

∫ 2π

0

∞∑

l=−∞
|Φ(ω + 2πl)|2eiωkdω. (1.2.20)

The last line in (1.2.20) is the Fourier coefficient ak in the Fourier series decomposition

of

f(ω) =
∞∑

l=−∞
|Φ(ω + 2πl)|2.

Due to the uniqueness of Fourier representation, f(ω) = 1.

Remark. Utilizing the identity (1.2.19), any set of independent functions spanning V0,

{φ(x − k), k ∈ ZZ}, can be orthogonalized in the Fourier domain. The orthonormal

basis is generated by integer-shifts of the function

F−1


 Φ(ω)√∑∞

l=−∞ |Φ(ω + 2πl)|2


 . (1.2.21)

This normalization in the Fourier domain is used in constructing of some wavelet

bases.

(b) In terms of m0 :

|m0(ω)|2 + |m0(ω + π)|2 = 1. (1.2.22)

Since
∑∞

l=−∞ |Φ(2ω + 2lπ)|2 = 1, then by (1.2.13)

∞∑

l=−∞
|m0(ω + lπ)|2|Φ(ω + lπ)|2 = 1. (1.2.23)
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Now split the sum in (1.2.23) into two sums – one with odd and the other with even

indices, i.e.,

1 =

∞∑

k=−∞
|m0(ω + 2kπ)|2|Φ(ω + 2kπ)|2 +

∞∑

k=−∞
|m0(ω + (2k + 1)π)|2|Φ(ω + (2k + 1)π)|2.

To simplify the above expression, we use relation (1.2.19) and the 2π-periodicity of

m0(ω).

1 = |m0(ω)|2
∞∑

k=−∞
|Φ(ω + 2kπ)|2 + |m0(ω + π)|2

∞∑

k=−∞
|Φ((ω + π) + 2kπ)|2

= |m0(ω)|2 + |m0(ω + π)|2.

Whenever a sequence of subspaces satisfies MRA properties, there exists (though

not unique) an orthonormal basis for IL2(IR),

{ψjk(x) = 2j/2ψ(2jx− k), j, k ∈ ZZ} (1.2.24)

such that {ψjk(x), j-fixed, k ∈ ZZ} is an orthonormal basis of the “difference space”

Wj = Vj+1⊖Vj . The function ψ(x) = ψ00(x) is called a wavelet function or informally

the mother wavelet.

Next, we detail the derivation of a wavelet function from the scaling function.

Since ψ(x) ∈ V1 (because of the containment W0 ⊂ V1), it can be represented as

ψ(x) =
∑

k∈ZZ

gk
√

2φ(2x− k), (1.2.25)

for some coefficients gk, k ∈ ZZ. Define

m1(ω) =
1√
2

∑

k

gke
−ikω. (1.2.26)

By mimicking what was done with m0, we obtain the Fourier counterpart of (1.2.25),

Ψ(ω) = m1(
ω

2
)Φ(

ω

2
). (1.2.27)
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The spaces W0 and V0 are orthogonal by construction. Therefore,

0 =

∫
ψ(x)φ(x− k)dx =

1

2π

∫
Ψ(ω)Φ(ω)eiωkdω

=
1

2π

∫ 2π

0

∞∑

l=−∞
Ψ(ω + 2lπ)Φ(ω + 2lπ)eiωkdω.

By repeating the Fourier series argument, as in (1.2.19), we conclude

∞∑

l=−∞
Ψ(ω + 2lπ)Φ(ω + 2lπ) = 0.

By taking into account the definitions of m0 and m1, and by mimicking the derivation

of (1.2.22), we find

m1(ω)m0(ω) +m1(ω + π)m0(ω + π) = 0. (1.2.28)

From (1.2.28), we conclude that there exists a function λ(ω) such that

(m1(ω), m1(ω + π) ) = λ(ω)
(
m0(ω + π), −m0(ω)

)
. (1.2.29)

By substituting ξ = ω+π and by using the 2π-periodicity of m0 and m1, we conclude

that

λ(ω) = −λ(ω + π), and (1.2.30)

λ(ω) is 2π-periodic.

Any function λ(ω) of the form e±iωS(2ω), where S is an IL2([0, 2π]), 2π-periodic

function, will satisfy (1.2.28); however, only the functions for which |λ(ω)| = 1 will

define an orthogonal basis ψjk of IL2(IR).

To summarize, we choose λ(ω) such that

(i) λ(ω) is 2π-periodic,

(ii) λ(ω) = −λ(ω + π), and

(iii) |λ(ω)|2 = 1.
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Standard choices for λ(ω) are −e−iω, e−iω, and eiω; however, any other function

satisfying (i)-(iii) will generate a valid m1. We choose to define m1(ω) as

m1(ω) = −e−iωm0(ω + π). (1.2.31)

since it leads to a convenient and standard connection between the filters h and g.

The form of m1 and the equation (1.2.19) imply that {ψ(• − k), k ∈ ZZ} is an

orthonormal basis for W0. Since |m1(ω)| = |m0(ω + π)|, the orthogonality condition

(1.2.22) can be rewritten as

|m0(ω)|2 + |m1(ω)|2 = 1. (1.2.32)

By comparing the definition of m1 in (1.2.26) with

m1(ω) = −e−iω 1√
2

∑

k

hke
i(ω+π)k

=
1√
2

∑

k

(−1)1−khke
−iω(1−k)

=
1√
2

∑

n

(−1)nh1−ne
−iωn,

we relate gn and hn as

gn = (−1)n h1−n. (1.2.33)

In signal processing literature, the relation (1.2.33) is known as the quadrature mirror

relation and the filters h and g as quadrature mirror filters.

Remark. Choosing λ(ω) = eiω leads to the rarely used high-pass filter gn = (−1)n−1

h−1−n. It is sometimes convenient to define gn as (−1)nh1−n+M , where M is a “shift

constant.” Such re-indexing of g affects only the shift-location of the wavelet function.

1.2.2 Haar Wavelets

In addition to their simplicity and formidable applicability, Haar wavelets have tremen-

dous educational value. Here we illustrate some of the relations discussed in the Sec-

tion 1.2.1 using the Haar wavelet. We start with φ(x) = 1(0 ≤ x ≤ 1) and pretend

that everything else is unknown.
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The scaling equation (1.2.10) is very simple for the Haar case. By inspection of

simple graphs of two scaled Haar wavelets φ(2x) and φ(2x+ 1) stuck to each other,

we conclude that the scaling equation is

φ(x) = φ(2x) + φ(2x− 1)

=
1√
2

√
2φ(2x) +

1√
2

√
2φ(2x− 1), (1.2.34)

which yields the wavelet filter coefficients:

h0 = h1 =
1√
2
.

Now, the transfer functions become

m0(ω) =
1√
2

(
1√
2
e−iω0

)
+

1√
2

(
1√
2
e−iω1

)
=

1 + e−iω

2
.

and

m1(ω) = −e−iω m0(ω + π) = −e−iω
(

1

2
− 1

2
eiω
)

=
1 − e−iω

2
.

Notice that m0(ω) = |m0(ω)|eiϕ(ω) = cos ω
2
· e−iω/2 (after cos x = eix+e−ix

2
). Since

ϕ(ω) = −ω
2
, Haar’s wavelet has linear phase, i.e., the scaling function is symmetric

in the time domain. The orthogonality condition |m0(ω)|2 + |m1(ω)|2 = 1 is easily

verified, as well. Relation (1.2.27) becomes

Ψ(ω) =
1 − e−iω/2

2
Φ
(ω

2

)
=

1

2
Φ
(ω

2

)
− 1

2
Φ
(ω

2

)
e−iω/2,

and by applying the inverse Fourier transformation we obtain

ψ(x) = φ(2x) − φ(2x− 1)

in the time-domain. Therefore we “discovered” the Haar wavelet function ψ. From the

expression for m1 or by inspecting the representation of ψ(x) by φ(2x) and φ(2x−1),

we “conclude” that g0 = −g−1 = 1√
2
.
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The Haar basis is not an appropriate basis for all applications for several rea-

sons. The building blocks in Haar’s decomposition are discontinuous functions that

obviously are not effective in approximating smooth functions. Although the Haar

wavelets are well localized in the time domain, in the frequency domain they decay

at the slow rate of O( 1
n
).

1.2.3 Daubechies’ Compactly Supported Wavelets

Daubechies was first to construct compactly supported orthogonal wavelets with a

preassigned degree of smoothness. Here we present the idea of Daubechies, omitting

some technical details. Detailed treatment of this topic can be found in the monograph

Daubechies [27], Chapters 6 and 7.

Suppose that ψ has N (≥ 2) vanishing moments, i.e.,
∫
xnψ(x)dx = 0, n =

0, 1, . . . , N − 1. Then by Theorem 1.2.3, m0(ω) has the form:

m0(ω) =

(
1 + e−iω

2

)N
L(ω), (1.2.35)

where L(ω) is a trigonometric polynomial. When

M0(ω) = |m0(ω)|2 =
(
cos2 ω

2

)N
· |L(ω)|2,

the orthogonality condition (1.2.22) becomes

M0(ω) +M0(ω + π) = 1. (1.2.36)

|L(ω)|2 is a polynomial in cosω. It can be re-expressed as a polynomial in sin2 ω
2

since cosω = 1 − 2 sin2 ω
2
. Denote this polynomial by P (sin2 ω

2
). In terms of P the

orthogonality condition (1.2.36) becomes

(1 − y)NP (y) + yNP (1 − y) = 1, (y = sin2 ω

2
). (1.2.37)

By Bezout’s result (outlined below), there exists a unique solution of the functional

equation (1.2.37). It can be found by the Euclidean algorithm since the polynomials

(1 − y)N and yN are relatively prime.
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Lemma 1.2.1. (Bezout) If p1 and p2 are two polynomials of degree n1 and n2, re-

spectively, with no common zeroes, then there exist unique polynomials q1 and q2 of

degree n2 − 1 and n1 − 1, respectively, so that

p1(x)q1(x) + p2(x)q2(x) = 1.

For the proof of the lemma, we direct the reader to Daubechies ([27], 169-170).

The unique solution of (1.2.37) with degree deg(P (y)) ≤ N − 1 is

N−1∑

k=0

(
N + k − 1

k

)
yk, y = sin2 ω

2
, (1.2.38)

and since it is positive for y ∈ [0, 1], it does not contradict the positivity of |L(ω)|2.

Remark: If the degree of a solution is not required to be minimal then any other

polynomial Q(y) = P (y) + yNR(1
2
− y) where R is an odd polynomial preserving

the positivity of Q, will lead to a different solution for m0(ω). By choosing R 6= 0,

one can generalize the standard Daubechies family, to construct symmlets, complex

Daubechies wavelets, coiflets, etc.

The function |m0(ω)|2 is now completely determined. To finish the construction

we have to find its square root. A result of Riesz, known as the spectral factorization

lemma, makes this possible.

Lemma 1.2.2. (Riesz) Let A be a positive trigonometric polynomial with the property

A(−x) = A(x). Then, A is necessarily of the form

A(x) =

M∑

m=1

um cosmx.

In addition, there exists a polynomial B of the same order B(x) =
∑M

m=1 vme
imx such

that |B(x)|2 = A(x). If the coefficients um are real, then B can be chosen so that the

coefficients vm are also real.

We first represent |L(ω)|2 as the polynomial

a0

2
+

N−1∑

k=1

ak cosk ω,
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by replacing sin2 ω
2

in (1.2.38) by 1−cosω
2

. An auxiliary polynomial PA, such that

|L(e−iω)|2 = |PA(e−iω)|, is formed.

If z = e−iω, then cosω = z+z−1

2
and one such auxiliary polynomial is

PA(z) =
1

2

N−1∑

k=1−N
a|k|z

N−1+k. (1.2.39)

Since PA(z) = z2N−2PA(1
z
), the zeroes of PA(z) appear in reciprocal pairs if real, and

quadruples (zi, z̄i, z
−1
i , z̄−1

i ) if complex. Without loss of generality we assume that

zj , z̄j and rj lie outside the unit circle in the complex plane. Of course, then z−1
j , z̄−1

j

and r−1
j lie inside the unit circle. The factorized polynomial PA can be written as

PA(z) =
1

2
aN−1

[
I∏

i=1

(z − ri)(z −
1

ri
)

]

[
J∏

j=1

(z − zj)(z − z̄j)(z − z−1
j )(z − z̄−1

j )

]
. (1.2.40)

Here r1, r2, . . . , rI are real and non zero, and z1, . . . , zJ are complex; I + 2J = N − 1.

The goal is to take a square root from |PA(z)| and the following simple substitution

puts |PA(z)| in a convenient form. Since z = e−iω, we replace |(z − zj)(z − z̄−1
j )| by

|zj |−1|z − zj |2, and the polynomial |PA| becomes

1

2
|aN−1|

I∏

i=1

|r−1
i |

J∏

j=1

|zj |−2 · |
I∏

i=1

(z − ri)
J∏

j=1

(z − zj)(z − z̄j)|2.

Now, L(ω) becomes

±(
1

2
|aN−1|

I∏

i=1

|r−1
i |

J∏

j=1

|zj |−2)
1
2

· |
I∏

i=1

(z − ri)
J∏

j=1

(z − zj)(z − z̄j)|, z = e−iω, (1.2.41)

where the sign is chosen so thatm0(0) = L(0) = 1.Note that deg[PA(z)] = deg[|L(z)|2]

= N − 1. Finally, the coefficients h0, h1, . . . , h2N−1 in the polynomial
√

2 m0(ω) are

the desired wavelet filter coefficients.
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Example 1.2.3. We will find m0 for N = 2.

|L(ω)|2 =
∑2−1

k=0

(
2+k−1
k

)
sin2 kω

2
= 1 + 21−cosω

2
= 1

2
4 − 1 · cosω gives a0 = 4 and

a1 = −1.

The auxiliary polynomial PA is

PA(z) =
1

2

1∑

k=−1

a|k|z
1+k

=
1

2
(−1 + 4z − z2)

= −1

2

(
z − (2 +

√
3)
)(

z − (2 −
√

3)
)
.

One square root from the above polynomial is
√

1

2
(| − 1|) 1

2 +
√

3

(
z − (2 +

√
3)
)

=
1√
2

√
2 −

√
3
(
z − (2 +

√
3)
)

=
1

2

(
(
√

3 − 1)z − (1 +
√

3)
)
.

The change in sign in the expression above is necessary, since the expression should

have the value of 1 at z = 1 or equivalently at ω = 0. Finally,

m0(ω) =

(
1 + e−iω

2

)2
1

2

(
(1 −

√
3)e−iω + (1 +

√
3)
)

=
1√
2

(
1 +

√
3

4
√

2
+

3 +
√

3

4
√

2
e−iω +

3 −
√

3

4
√

2
e−2iω +

1 −
√

3

4
√

2
e−3iω

)
.

Table 1 gives h-filters for DAUB2 - DAUB10 wavelets.

1.2.4 Regularity of Wavelets

There is at least continuum many different wavelet bases. An appealing property of

wavelets is diversity in their properties. One can construct wavelets with different

smoothness, symmetry, oscillatory, support, etc. properties. Sometimes the require-

ments can be conflicting since some of the properties are exclusive. For example,

there is no symmetric real-valued wavelet with a compact support. Similarly, there

is no C∞-wavelet function with an exponential decay, etc.
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Table 1: The h filters for Daubechies’ wavelets for N = 2, . . . , 10 vanishing moments.
k DAUB2 DAUB3 DAUB4
0 0.4829629131445342 0.3326705529500827 0.2303778133088966
1 0.8365163037378080 0.8068915093110930 0.7148465705529161
2 0.2241438680420134 0.4598775021184915 0.6308807679298592
3 -0.1294095225512604 -0.1350110200102548 -0.0279837694168604
4 -0.0854412738820267 -0.1870348117190935
5 0.0352262918857096 0.0308413818355607
6 0.0328830116668852
7 -0.0105974017850690
k DAUB5 DAUB6 DAUB7
0 0.1601023979741926 0.1115407433501095 0.0778520540850092
1 0.6038292697971887 0.4946238903984531 0.3965393194819173
2 0.7243085284377723 0.7511339080210954 0.7291320908462351
3 0.1384281459013216 0.3152503517091976 0.4697822874051931
4 -0.2422948870663808 -0.2262646939654398 -0.1439060039285650
5 -0.0322448695846383 -0.1297668675672619 -0.2240361849938750
6 0.0775714938400454 0.0975016055873230 0.0713092192668303
7 -0.0062414902127983 0.0275228655303057 0.0806126091510831
8 -0.0125807519990819 -0.0315820393174860 -0.0380299369350144
9 0.0033357252854738 0.0005538422011615 -0.0165745416306669
10 0.0047772575109455 0.0125509985560998
11 -0.0010773010853085 0.0004295779729214
12 -0.0018016407040475
13 0.0003537137999745
k DAUB8 DAUB9 DAUB10
0 0.0544158422431070 0.0380779473638881 0.0266700579005487
1 0.3128715909143165 0.2438346746126514 0.1881768000776480
2 0.6756307362973218 0.6048231236902548 0.5272011889316280
3 0.5853546836542239 0.6572880780514298 0.6884590394535462
4 -0.0158291052563724 0.1331973858249681 0.2811723436606982
5 -0.2840155429615815 -0.2932737832793372 -0.2498464243271048
6 0.0004724845739030 -0.0968407832230689 -0.1959462743773243
7 0.1287474266204823 0.1485407493381040 0.1273693403356940
8 -0.0173693010018109 0.0307256814793158 0.0930573646035142
9 -0.0440882539307979 -0.0676328290613591 -0.0713941471663802
10 0.0139810279173996 0.0002509471148278 -0.0294575368218849
11 0.0087460940474065 0.0223616621236844 0.0332126740593155
12 -0.0048703529934519 -0.0047232047577528 0.0036065535669515
13 -0.0003917403733769 -0.0042815036824646 -0.0107331754833277
14 0.0006754494064506 0.0018476468830567 0.0013953517470513
15 -0.0001174767841248 0.0002303857635232 0.0019924052951842
16 -0.0002519631889428 -0.0006858566949593
17 0.0000393473203163 -0.0001164668551292
18 0.0000935886703200
19 -0.0000132642028945
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Scaling functions and wavelets can be constructed with desired degree of smooth-

ness. The regularity (smoothness) of wavelets is connected with the rate of decay of

scaling functions and ultimately with the number of vanishing moments of scaling and

wavelet functions. For instance, the Haar wavelet has only the “zeroth” vanishing

moment (as a consequence of the admissibility condition) resulting in a discontinuous

wavelet function.

Theorem 1.2.3 is important in connecting the regularity of wavelets, the number of

vanishing moments, and the form of the transfer function m0(ω). The proof is based

on the Taylor series argument and the scaling properties of wavelet functions. For

details, see Daubechies [27], pp 153–155. Let

Mk =

∫
xkφ(x)dx and Nk =

∫
xkψ(x)dx,

be the kth moments of the scaling and wavelet functions, respectively.

Theorem 1.2.3. Let ψjk(x) = 2j/2ψ(2jx− k), j, k ∈ ZZ be an orthonormal system of

functions in IL2(IR),

|ψ(x)| ≤ C1

(1 + |x|)α , α > N,

and ψ ∈ CN−1(IR), where the derivatives ψ(k)(x) are bounded for k ≤ N − 1.

Then, ψ has N vanishing moments,

Nk = 0, 0 ≤ k ≤ N − 1.

If, in addition,

|φ(x)| ≤ C2

(1 + |x|)α , α > N

then, the associated function m0(ω) is necessarily of the form

m0(ω) =

(
1 + e−iω

2

)N
· L(ω), (1.2.42)

where L is a 2π-periodic, CN−1-function.
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The following definition of regularity is often used,

Definition 1.2.1. The multiresolution analysis (or, the scaling function) is said to

be r-regular if, for any α ∈ ZZ,

|φ(k)(x)| ≤ C

(1 + |x|)α ,

for k = 0, 1, . . . , r.

The requirement that ψ possesses N vanishing moments can be expressed in terms

of Ψ, m0, or equivalently, in terms of the filter h.

Assume that a wavelet function ψ(x) has N vanishing moments, i.e.,

Nk = 0, k = 0, 1, . . . , N − 1. (1.2.43)

By basic property of Fourier transformations, the requirement (1.2.43) corresponds

to

dkΨ(ω)

dωk

∣∣∣∣
ω=0

= 0, k = 0, 1, . . . , N − 1,

which implies

m
(k)
1 (ω) |ω=0 = m

(k)
1 (0) = 0, k = 0, 1, . . . , N − 1. (1.2.44)

It is easy to check that in terms of m0, relation (1.2.44) becomes

m
(k)
0 (ω) |ω=π = m

(k)
0 (π) = 0, k = 0, 1, . . . , N − 1. (1.2.45)

The argument is inductive. The case k = 0 follows from Ψ(0) = m1(0)Φ(0) [(1.2.27)

evaluated at ω = 0] and the fact that Φ(0) = 1. Since Ψ′(0) = 1
2
m′

1(0)Ψ(0) +

1
2
m1(0)Ψ′(0) it follows that m′

1(0) = 0, as well. Then, m
(N−1)
1 (0) = 0 follows by

induction.

The condition m
(k)
1 (0) = 0, k = 0, 1, . . . , N − 1 translates to a constraint on the

wavelet-filter coefficients

∑

n∈ZZ

nkgn =
∑

n∈ZZ

(−1)nnkhn = 0, k = 0, 1, . . . , N − 1. (1.2.46)
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How smooth are the wavelets from the Daubechies family? There is an apparent

trade-off between the length of support and the regularity index of scaling functions.

Daubechies [24] and Daubechies and Lagarias [25, 26], obtained regularity exponents

for wavelets in the Daubechies family.

Let φ be the DAUBN scaling function. There are two popular measures of regu-

larity of φ: Sobolev and Hölder regularity exponents. Let α∗
N be the supremum of β

such that

∫
(1 + |ω|)β|Φ(ω)|dω <∞,

and let αN be the exponent of the Hölder space CαN to which the scaling function φ

belongs.

Table 2: Sobolev α∗
N and Hölder αN regularity exponents of Daubechies’ scaling

functions.

N 1 2 3 4 5 6 7 8 9 10
α∗
N 0.5 1 1.415 1.775 2.096 2.388 2.658 2.914 3.161 3.402
αN 0.550 0.915 1.275 1.596 1.888 2.158 2.415 2.661 2.902

The following result describes the limiting behavior of αN .

Theorem 1.2.4.

lim
N→∞

αN = N

(
1 − log 3

2 log 2

)
+O(

lnN

N
).

From Table 2, we see that DAUB4 is the first differentiable wavelet, since α > 1.

More precise bounds on αN yield that φ from the DAUB3 family is, in fact, the first

differentiable scaling function (α3 = 1.0878), even though it seams to have a peak at

1. See also Daubechies [27], page 239, for the discussion.

Remark. the Sobolev and Hölder regularities are related, thus, Theorem 1.2.4 holds

for the exponent α∗
N , as well.
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1.2.4.1 Moment Conditions Determine Filters

We saw that the requirement that the wavelet function possesses N -vanishing mo-

ments was expressed in terms of Φ, m0, or h.

Suppose that we wish to design a wavelet filter h = {h0, . . . , h2N−1} only by

considering properties of its filter taps. Assume that

N k =

∫

IR

xkψ(x)dx = 0, for k = 0, 1, . . . , N − 1. (1.2.47)

As it was discussed in Section 1.2.1, some relevant properties of a multiresolution

analysis can be expressed as relations involving coefficients of the filter h. For example,

the normalization property gave

2N−1∑

i=0

hi =
√

2,

the requirement for vanishing moments on ψ led to

2N−1∑

i=0

(−1)iikhi = 0, k = 0, 1, . . . , N − 1,

and, finally, the orthogonality property reflected to

2N−1∑

i=0

hihi+2k = δk, k = 0, 1, . . . , N − 1.

That defines 2N + 1 equations with 2N unknowns; however the system is solvable

since the equations are not linearly independent. For example, the equation

h0 − h1 + h2 − · · · − h2N−1 = 0,

can be expressed as a linear combination of the others.

Example 1.2.4. For N = 2, we obtain the system:





h0 + h1 + h2 + h3 =
√

2

h2
0 + h2

1 + h2
2 + h2

3 = 1

−h1 + 2h2 − 3h3 = 0 ,

h0 h2 + h1 h3 = 0
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which has the familiar solution h0 = 1+
√

3
4
√

2
, h1 = 3+

√
3

4
√

2
, h2 = 3−

√
3

4
√

2
, and h3 = 1−

√
3

4
√

2
.

For N = 4, the system is




h0 + h1 + h2 + h3 + h4 + h5 + h6 + h7 =
√

2

h2
0 + h2

1 + h2
2 + h2

3 + h2
4 + h2

5 + h2
6 + h2

7 = 1

h0 − h1 + h2 − h3 + h4 − h5 + h6 − h7 = 0

h0h2 + h1h3 + h2h4 + h3h5 + h4h6 + h5h7 = 0

h0h4 + h1h5 + h2h6 + h3h7 = 0

h0h6 + h1h7 = 0

0h0 − 1h1 + 2h2 − 3h3 + 4h4 − 5h5 + 6h6 − 7h7 = 0

0h0 − 1h1 + 4h2 − 9h3 + 16h4 − 25h5 + 36h6 − 49h7 = 0

0h0 − 1h1 + 8h2 − 27h3 + 64h4 − 125h5 + 216h6 − 343h7 = 0.

The above systems can easily be solved by a symbolic software package such as

Maple or Mathematica.

1.2.5 Discrete Wavelet Transformations

Discrete wavelet transformations (DWT) are applied to the discrete data sets to

produce discrete outputs. Transforming signals and data vectors by DWT is a process

that resembles the fast Fourier transformation (FFT), the Fourier method applied to

a set of discrete measurements.

Table 3: The analogy between Fourier and wavelet methods
Fourier Fourier Fourier Discrete
Methods Integrals Series Fourier Transformations
Wavelet Continuous Wavelet Discrete
Methods Wavelet Transformations Series Wavelet Transformations

Discrete wavelet transformations map data from the time domain (the original

or input data, signal vector) to the wavelet domain. The result is a vector of the

same size. Wavelet transformations are linear and they can be defined by matrices

of dimension n × n if they are applied to inputs of size n. Depending on boundary
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conditions, such matrices can be either orthogonal or “close” to orthogonal. When

the matrix is orthogonal, the corresponding transformation is a rotation in IRn space

in which the signal vectors represent coordinates of a single point. The coordinates

of the point in the new, rotated space comprise the discrete wavelet transformation

of the original coordinates.

Example 1.2.5. Let the vector be {1, 2} and let M(1, 2) be the point in IR2 with

coordinates given by the data vector. The rotation of the coordinate axes by an angle

of π
4

can be interpreted as a DWT in the Haar wavelet basis. The rotation matrix is

W =




cos π
4

sin π
4

cos π
4

− sin π
4


 =




1√
2

1√
2

1√
2

− 1√
2


 ,

and the discrete wavelet transformation of (1, 2)′ is W · (1, 2)′ = ( 3√
2
,− 1√

2
)′. Notice

that the energy (squared distance of the point from the origin) is preserved, 12 +22 =

(1
2
)2 + (

√
3

2
)2, since W is a rotation.

Example 1.2.6. Let y = (1, 0,−3, 2, 1, 0, 1, 2). If Haar wavelet is used, the values

f(n) = yn, n = 0, 1, . . . , 7 are interpolated by the father wavelet, the vector represent

the sampled piecewise constant function. It is obvious that such defined f belongs to

Haar’s multiresolution space V0.

The following matrix equation gives the connection between y and the wavelet

coefficients (data in the wavelet domain).
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1

0

−3

2

1

0

1

2




=




1
2
√

2
1

2
√

2
1
2

0 1√
2

0 0 0

1
2
√

2
1

2
√

2
1
2

0 − 1√
2

0 0 0

1
2
√

2
1

2
√

2
−1

2
0 0 1√

2
0 0

1
2
√

2
1

2
√

2
−1

2
0 0 − 1√

2
0 0

1
2
√

2
− 1

2
√

2
0 1

2
0 0 1√

2
0

1
2
√

2
− 1

2
√

2
0 1

2
0 0 − 1√

2
0

1
2
√

2
− 1

2
√

2
0 −1

2
0 0 0 1√

2

1
2
√

2
− 1

2
√

2
0 −1

2
0 0 0 − 1√

2




·




c00

d00

d10

d11

d20

d21

d22

d23




.

The solution is 


c00

d00

d10

d11

d20

d21

d22

d23




=




√
2

−
√

2

1

−1

1√
2

− 5√
2

1√
2

− 1√
2




.

Thus,

f =
√

2φ−3,0 −
√

2ψ−3,0 + ψ−2,0 − ψ−2,1

+
1√
2
ψ−1,0 −

5√
2
ψ−1,1 +

1√
2
ψ−1,2 −

1√
2
ψ−1,3. (1.2.48)

The solution is easy to verify. For example, when x ∈ [0, 1),

f(x) =
√

2 · 1

2
√

2
−

√
2 · 1

2
√

2
+ 1 · 1

2
+

1√
2
· 1√

2
= 1/2 + 1/2 = 1 (= y0).

Performing wavelet transformations by multiplying the input vector with an ap-

propriate orthogonal matrix is conceptually straightforward, but of limited practi-

cal value. Storing and manipulating transformation matrices when inputs are long
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(> 2000) may not even be feasible.

In the context of image processing, Burt and Adelson [15] developed orthogonal

and biorthogonal pyramid algorithms. Pyramid or cascade procedures process an im-

age at different scales, ranging from fine to coarse, in a tree-like algorithm. The images

can be denoised, enhanced or compressed by appropriate scale-wise treatments.

Mallat [55] was the first to link wavelets, multiresolution analyses and cascade

algorithms in a formal way. Mallat’s cascade algorithm gives a constructive and

efficient recipe for performing the discrete wavelet transformation. It relates the

wavelet coefficients from different levels in the transformation by filtering with h and

g. Mallat’s algorithm can be viewed as a wavelet counterpart of Danielson-Lanczos

algorithm in fast Fourier transformations.

It is convenient to link the original signal with the space coefficients from the

space VJ , for some J . Such link is exact for interpolating wavelets (Haar, Shan-

non, some biorthogonal and halfband-filter wavelets) and close to exact for other

wavelets, notably coiflets. Then, coarser smooth and complementing detail spaces

are (VJ−1,WJ−1), (VJ−2,WJ−2), etc. Decreasing the index in V -spaces is equivalent

to coarsening the approximation to the data.

By a straightforward substitution of indices in the scaling equations (1.2.10) and

(1.2.25), one obtains

φj−1,l(x) =
∑

k∈ZZ

hk−2lφjk(x) and ψj−1,l(x) =
∑

k∈ZZ

gk−2lφjk(x). (1.2.49)

The relations in (1.2.49) are fundamental in developing the cascade algorithm.

Consider a multiresolution analysis · · · ⊂ Vj−1 ⊂ Vj ⊂ Vj+1 ⊂ . . . . Since

Vj = Vj−1 ⊕ Wj−1, any function vj ∈ Vj can be represented uniquely as vj(x) =

vj−1(x)+wj−1(x), where vj−1 ∈ Vj−1 and wj−1 ∈Wj−1. It is customary to denote the

coefficients associated with φjk(x) and ψjk(x) by cjk and djk, respectively.
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Thus,

vj(x) =
∑

k

cj,kφj,k(x)

=
∑

l

cj−1,lφj−1,l(x) +
∑

l

dj−1,lψj−1,l(x)

= vj−1(x) + wj−1(x).

By using the general scaling equations (1.2.49), orthogonality of wj−1(x) and φj−1,l(x)

for any j and l, and additivity of inner products, we obtain

cj−1,l = 〈vj, φj−1,l〉

= 〈vj,
∑

k

hk−2lφj,k〉

=
∑

k

hk−2l〈vj, φj,k〉 (1.2.50)

=
∑

k

hk−2lcj,k.

Similarly dj−1,l =
∑

k gk−2lcj,k. The cascade algorithm works in the reverse direc-

tion as well. Coefficients in the next finer scale corresponding to Vj can be obtained

from the coefficients corresponding to Vj−1 and Wj−1. The relation

cj,k = 〈vj, φj,k〉

=
∑

l

cj−1,l〈φj−1,l, φj,k〉 +
∑

l

dj−1,l〈ψj−1,l, φj,k〉 (1.2.51)

=
∑

l

cj−1,lhk−2l +
∑

l

dj−1,lgk−2l,

describes a single step in the reconstruction algorithm.

Example 1.2.7. For DAUB2, the scaling equation at integers is

φ(n) =

3∑

k=0

hk
√

2φ(2n− k).

Recall that h = {h0, h1, h2, h3} = {1+
√

3
4
√

2
, 3−

√
3

4
√

2
, 3+

√
3

4
√

2
, 1−

√
3

4
√

2
}.
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Since φ(0) =
√

2h0φ(0) and
√

2h0 6= 1, it follows that φ(0) = 0. Also, φ(3) = 0.

For φ(1) and φ(2) we obtain the system


φ(1)

φ(2)


 =

√
2 ·



h1 h0

h3 h2


 ·



φ(1)

φ(2)


 .

From
∑

k φ(x− k) = 1 it follows that φ(1) + φ(2) = 1. Solving for φ(1) and φ(2) we

obtain

φ(1) =
1 +

√
3

2
and φ(2) =

1 −
√

3

2
.

Now, one can refine φ,

φ

(
1

2

)
=

∑

k

hk
√

2φ(1 − k) = h0

√
2φ(1) =

2 +
√

3

4
,

φ

(
3

2

)
=

∑

k

hk
√

2φ(3 − k) = h1

√
2φ(2) + h2

√
2φ(1)

=
3 +

√
3

4
· 1 −

√
3

2
+

3 −
√

3

4
· 1 +

√
3

2
= 0,

φ

(
5

2

)
=

∑

k

hk
√

2φ(5 − k) = h3

√
2φ(2) =

2 −
√

3

4
,

or ψ,

ψ(−1) = ψ(2) = 0,

ψ

(
−1

2

)
=

∑

k

gk
√

2φ(−1 − k) = h1

√
2φ(1) = −1

4
, [gn = (−1)nh1−n]

ψ(0) =
∑

k

gk
√

2φ(0 − k) = g−2

√
2φ(2) + g−1

√
2φ(1)

= −h2

√
2φ(1) = −

√
3

4
,

etc.

1.2.5.1 Discrete Wavelet Transformations as Linear Transformations

The change of basis in V1 from B1 = {φ1k(x), k ∈ Z} to B2 = {φ0k, k ∈ Z}∪{ψ0k, k ∈

Z} can be performed by matrix multiplication, therefore, it is possible to define
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discrete wavelet transformation by matrices. We have already seen a transformation

matrix corresponding to Haar’s inverse transformation in Example 1.2.6.

Let the length of the input signal be 2J , and let h = {hs, s ∈ ZZ} be the wavelet

filter and let N be an appropriately chosen constant. Denote by Hk is a matrix of

size (2J−k × 2J−k+1), k = 1, . . . with entries

hs, s = (N − 1) + (i− 1) − 2(j − 1) modulo 2J−k+1, (1.2.52)

at the position (i, j).Note thatHk is a circulant matrix, its ith row is 1st row circularly

shifted to the right by 2(i − 1) units. This circularity is a consequence of using the

modulo operator in (1.2.52).

By analogy, define a matrix Gk by using the filter g. A version of Gk correspond-

ing to the already defined Hk can be obtained by changing hi by (−1)ihN+1−i. The

constant N is a shift parameter and affects the position of the wavelet on the time

scale. For filters from the Daubechies family, standard choice for N is the number of

vanishing moments. See also Remark 1.2.1.

The matrix



Hk

Gk


 is a basis-change matrix in 2J−k+1 dimensional space; conse-

quently, it is unitary. Therefore,

I2J−k = [H ′
k G

′
k]



Hk

Gk


 = H ′

k ·Hk +G′
k ·Gk.

and

I =



Hk

Gk


 · [H ′

k G
′
k] =



Hk ·H ′

k Hk ·G′
k

Gk ·H ′
k Gk ·G′

k


 .

That implies,

Hk ·H ′
k = I, Gk ·G′

k = I, Gk ·H ′
k = Hk ·G′

k = 0, and H ′
k ·Hk +G′

k ·Gk = I.
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Now, for a sequence y the J-step wavelet transformation is d = WJ · y, where

W1 =



H1

G1


 , W2 =






H2

G2


 ·H1

G1



,

W3 =









H3

G3


 ·H2

G2



·H1

G1




, . . .

Example 1.2.8. Suppose that y = {1, 0,−3, 2, 1, 0, 1, 2} and filter is h = (h0, h1, h2, h3) =
(

1+
√

3
4
√

2
, 3+

√
3

4
√

2
, 3−

√
3

4
√

2
, 1−

√
3

4
√

2

)
. Then, J = 3 and matrices Hk and Gk are of dimension

23−k × 23−k+1.

H1 =




h1 h2 h3 0 0 0 0 h0

0 h0 h1 h2 h3 0 0 0

0 0 0 h0 h1 h2 h3 0

h3 0 0 0 0 h0 h1 h2




G1 =




−h2 h1 −h0 0 0 0 0 h3

0 h3 −h2 h1 −h0 0 0 0

0 0 0 h3 −h2 h1 −h0 0

−h0 0 0 0 0 h3 −h2 h1




.

Since,

H1 · y = {2.19067,−2.19067, 1.67303, 1.15539}

G1 · y = {0.96593, 1.86250,−0.96593, 0.96593}.

W1y = {2.19067,−2.19067, 1.67303, 1.15539 | 0.96593, 1.86250,−0.96593, 0.96593}.

H2 =



h1 h2 h3 h0

h3 h0 h1 h2


 G2 =




−h2 h1 −h0 h3

−h0 h3 −h2 h1


 .

43



In this example, due to lengths of the filter and data, we can perform discrete wavelet

transformation for two steps only, W1 and W2.

The two-step DAUB2 discrete wavelet transformation of y is

W2 · y = {1.68301, 0.31699 | − 3.28109,−0.18301 | 0.96593, 1.86250,−0.96593, 0.96593},

because

H2 ·H1 · y = H2 · {2.19067,−2.19067, 1.67303, 1.15539}

= {1.68301, 0.31699}

G2 ·H1 · y = G1 · {2.19067,−2.19067, 1.67303, 1.15539}

= {−3.28109,−0.18301}.

For quadrature mirror wavelet filters h and g, we define recursively up-sampled

filters h[r] and g[r]

h[0] = h, g[0] = g

h[r] = [↑ 2] h[r−1], g[r] = [↑ 2] g[r−1].

In practice, the dilated filter h[r] is obtained by inserting zeroes between the taps in

h[r−1]. Let H[r] and G[r] be convolution operators with filters h[r] and h[r], respec-

tively. A non-decimated wavelet transformation, NDWT, is defined as a sequential

application of operators (convolutions) H[j] and G[j] on a given time series.

Definition 1.2.2. Let a(J) = c(J) and

a(j−1) = H[J−j]a(j),

b(j−1) = G[J−j]a(j).

The non-decimated wavelet transformation of c(J) is b(J−1), b(J−2), . . . , b(J−j), a(J−j),

for some j ∈ {1, 2, . . . , J} the depth of the transformation.

If the length of an input vector c(J) is 2J , then for any 0 ≤ m < J , a(m) and b(m)

are of the same length. Let φj(x) = φj,0(x) and ψj(x) = ψj,0(s). If the measurement
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sequence c(J) is associated with the function f(x) =
∑

k c
(J)
k φJ(x − 2−Jk) then the

kth coordinate of b(j) is equal to

bjk =

∫
ψj(x− 2−Jk)f(x)dx.

Thus, the coefficient bjk provides information at scale 2J−j and location k. One

can think of a nondecimated wavelet transformation as sampled continuous wavelet

transformation 〈f(x), 1√
a
ψ
(
x−b
a

)
〉 for a = 2−j , and b = k.

1.2.6 Wavelets and Self-Similar Processes

We already saw that wavelets are a capable tool in detecting self-similarity in the

signals. In this section we discuss some properties of self-similar signals in the wavelet

domain – it would be a prelude to part of this handout that talks about inference

in the wavelet domain. Some important pioneering work in this area was done by

Flandrin and his collaborators [Flandrin 1989a,b, 1992a,b; Flandrin and Gonçlavès,

1993; Abry, Gonçlavès and Flandrin 1993]. The body of recent literature is quite

large.

1.2.6.1 Wavelets and Stationary Processes

Wavelets and stationary processes are well researched area. Highlights of the research

include several topics: preservation of stationarity, whitening property of wavelets

and assessing correlations in the wavelet domain, wavelet shrinkage in the presence

of stationary noise, to list a few.

Let X(t) be a second order process with autocorrelation function γ(t, s). The

discrete wavelet transformation of X(t) is a discrete random field

{djk, j, k ∈ ZZ} =

{∫

IR

X(t)ψjk(t) dt, j, k ∈ ZZ

}
, (1.2.53)

which is well defined if the path integrals in (1.2.53) are defined and

∫

IR

√
γ(t, t) |ψjk(t)| dt <∞. (1.2.54)
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Thus, when (1.2.54) is satisfied

Edjkdj′k′ =

∫ ∫

IR2

γ(t, s)ψjk(t)ψj′k′(s) dt ds. (1.2.55)

If the process X(t) is stationary, then (1.2.55) becomes

Edjkdj′k′ =

∫ ∫

IR2

γ(h)ψjk(s)ψj′k′(s+ h) ds dh, (1.2.56)

or in the Fourier domain,

Edjkdj′k′ =
1

2π

∫

IR

f(ω)Ψ
( ω

2j

)
Ψ
( ω

2j′

)
(1.2.57)

· e−iωk2−jeiωk′2−j
′

2−j/22−j
′/2 dω,

where Ψ and f are the Fourier transformations of ψ and γ, respectively.

Relations (1.2.56) and (1.2.57) are critical in assessing the whitening property of

wavelet transformations for in case of stationary processes as well as the second order

properties of wavelet coefficients of self-similar processes.

1.2.6.2 Approximation and Production of Stationarity

For a stationary process X(t), t ∈ IR and its wavelet approximation Xm(t) =

∑
k cmkφmk(t), holds

E|Xm(t) −X(t)|2 → 0 when m→ ∞, (1.2.58)

i.e., degraded process Xm(t) goes in the mean-square to the original.

Indeed, for r-regular wavelet φ and a wavelet-based reproducing kernel of Vm,

IKm(t, s) = 2m
∑

k φ(2mt− k)φ(2ms− k),

E|X(t) −Xm(t)|2 = EX(t)2 − 2EX(t)Xm(t) + EXm(t)2

= γ(0) − 2

∫
γ(t− s)IKm(t, s) ds

+

∫ ∫
γ(u− s)IKm(s, t)IKm(t, u) du ds
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and

∫
γ(u− s)IKm(t, s) ds→ γ(u− t),

uniformly on bounded sets, implying (1.2.58). In general case Xm(t) is not projection

of X(t) on Vm since the sample paths may not be IL2 integrable.

It is well known that wavelet transformations of stationary processes and sequences

yield level-wise stationary sequences of coefficients. More generally, wavelet transfor-

mation of a process with stationary increments yields a stationary sequences of wavelet

coefficients in any fixed level j. The following lemma is straightforward.

Lemma 1.2.5. Let X(t), t ∈ IR be a process with stationary (in strong sense) incre-

ments, i.e., for all finite-dimensional vectors (X(t+h1)−X(t), . . . , X(t+hk)−X(t))
d
=

(X(h1)−X(0), . . . , X(hk)−X(0)), for all t ∈ IR. Then for a fixed j, dj,k is a stationary

sequence.

Proof: Select arbitrary m ∈ ZZ and fix j. Then

dj,k =

∫

IR

X(t)ψjk(t)dt

=

∫

IR

X(t− 2−jm)ψjk(t− 2−jm)dt

=

∫

IR

X(t− 2−jm) · 2j/2ψ(2j(t− 2−jm) − k)dt (1.2.59)

=

∫

IR

(
X(t− 2−jm) −X(2−jm)

)
ψj,k+m(t)dt [ because

∫
ψjk = 0]

d
=

∫

IR

(X(t) −X(0))ψj,k+m(t)dt [ because increments are stationary]

= dj,k+m.

Standard arguments probabilistic arguments involving characteristic functions of fi-

nite linear combinations of d’s (see Abry, Flandrin, Taqqu, and Veitch, [3]) lead to

conclusion that finite-dimensional distributions are free of m, implying that the se-

quence {dj,k, k ∈ ZZ} is stationary.
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1.2.7 Wavelet Analysis of Scaling Processes

Let {X(t), t ∈ IR} be a H-ss process. Then for a fixed level j,

djk
d
= 2−j(H+1/2) d0,k. (1.2.60)

Indeed,

djk =

∫
X(t)2j/2ψ(2jt− k)dt

=

∫
X(2−ju)2j/2ψ(u− k)d(2−ju)

d
= 2−jH−j/2

∫
X(u)ψ(u− k)du

= 2−j(H+1/2) d0,k.

Note that 1/2 in the exponent is because of IL2 normalizing of wavelets, for IL1

normalized wavelets ψj,k = 2jψ(2j − k) the scaling is (2−j)H .

Let X(t) be a H-sssi process. Then d0,k, k ∈ ZZ is stationary sequence and for any

k,IEd0k = 0 and IEd2
0k = IEd2

00. Then,

IEd2
jk = C 2−j(2H+1), (1.2.61)

with C = IEd2
00. The re-expression of equation (1.2.61) as

log2 IEd2
jk = −(2H + 1) · j + C ′, (1.2.62)

is a basis for wavelet based estimation of H , as we will see later.

If the process is LRD, i.e., its spectra is behaving as |ω|−α at 0, then from (1.2.57)

IEd2
jk =

2−j

2π

∫
f(ω)|Ψ(2−jω)|2dω

∼ c · 2−αj
∫ |Ψ(ω)|2

|ω|α dω,

This relation is a basis for estimating α (or H = 1+α
2

) by taking logarithms of both

sides.
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If in (1.2.57), j = j′, we can explore covariance structure of wavelet coefficients

belonging to a single level and separated by distance of |k − k′|.

IEdjkdj′k′ =
1

2π

∫

IR

f(ω)
∣∣∣Ψ
( ω

2j

)∣∣∣
2

· e−iω(k−k′)2−j dω, (1.2.63)

The correlation IEdjkdj′k′ is thus a function of the difference (k − k′), and the

asymptotic behavior of integral in (1.2.63) when |k−k′| → ∞ is influenced by behavior

of f(ω)
∣∣Ψ
(
ω
2j

)∣∣2 as ω → 0.

As we saw before, if the wavelet has exactly N vanishing moments, then its Fourier

transformation is differentiable N times at the origin, and for 0 ≤ i ≤ N−1, Ψ(i)(0) =

0, and Ψ(N)(0) 6= 0. By Taylor series argument, the behavior of |Ψ(ω)| matches

that of |ω|N · |Ψ(N)(0)| at origin. On the other end, the spectra of LRD process is

singular at zero and behaves as |ω|−α. Thus, when the decomposing wavelet has N

vanishing moments, singularity at 0 of spectra is compensated; the behavior at ω ∼ 0

of f(ω)
∣∣Ψ
(
ω
2j

)∣∣2 is |ω|2N−α.

Two comments. (i) If N > α/2 then sequence of wavelet coefficients is not LRD,

eventhough the original signal is, and (ii) looked as Fourier pair, the autocorrelations

IEdjkdj′k′ behave as |k−k′|α−N−1 when |k−k′| → ∞. This means, the LRD processes

are better decorrelated with wavelets possessing more vanishing moments.

1.2.7.1 LogScale Diagrams or Scalograms

The totality of squared wavelet coefficients represents the energy content of the zero-

mean signal and expected levelwise energies form wavelet counterpart of Fourier spec-

tra. The following definitions are as in Abry, Flandrin, Taqqu, and Veitch [2, 3].

Definition 1.2.3. Theoretical Wavelet Spectra of a process X(t) with stationary

increments is the sequence

e(j) = IE(dj,•), (1.2.64)
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where because of stationarity, dj,• stands for an arbitrary coefficient from the level

j. The plot of (j, e(j)) is referred as Theoretical Logscale Diagram. Let E(j) be an

estimator of e(j). Then, the plot of (j, E(j)) is called simply Logscale Diagram or

Scalogram.

Because of linearity of wavelet transformation, the wavelet spectra gives complete

second-order description of the random process. The logscale diagram was originally

proposed and utilized as a tool for detecting and estimating periodicities, since, as in

the case of Fourier counterparts, energy is large at dominant scales. In our context,

logscale diagram is used to estimate the scaling exponent of a signal.

Definition 1.2.4. Let, for some q ∈ IR

eq(j) = IE|dj,•|q, (1.2.65)

The plot of (j, e(j)) is referred as q-th Order Theoretical Logscale Diagram. Let Eq(j)

be an estimator of eq(j). Then, the plot of (j, Eq(j)) is called q-th Order Logscale

Diagram or Scalogram.

1.3 Overview of the Thesis

This section pertains to the overview of the remainder of this thesis. We introduce

background and delineate challenges for multiscale statistical methods in classification

of high-frequency data and classification methods in estimation of true signals on

multiscale domains.

1.3.1 Multiscale Methodology in Classification of Multifractionality

Fractional Brownian motion (fBm) has been commonly used to characterize a wide

range of complex structures in natural phenomena that exhibit self-similarity and

long-range dependence. The fractal dimension capturing the regularity of the signal,

also called the Hurst exponent, is extended to vary with time to model realistic situa-

tions occurring in various fields such as biomechanics, stock market, and turbulence,
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to name a few. A stochastic process W (t), called multifractional Brownian motion

(mBm), has recently been proposed [59] to model both a long-range dependence and

path regularity varying with time.

A Gaussian process
(
W (t)

)
t≥0

is called multifractional Brownian motion (mBm)

with Hurst function H(t) and its scaling factor C if its covariance function is repre-

sented as

E[W (t)W (s)] =
C

2
g(H(t), H(s))

{
|t|H(t)+H(s) + |s|H(t)+H(s) −|t− s|H(t)+H(s)

}
(1.3.1)

for H ∈ Cη
(
[0, 1]

)
, s, t ∈ [0, 1], and

g
(
H(t), H(s)

)
=

√
K
(
2H(t)

)
K
(
2H(s)

)

K
(
H(t) +H(s)

) . (1.3.2)

The process is square-integrable if function H(t) is Hölderian of order 0 < η ≤ 1 on

[0, 1]: H ∈ Cη
(
[0, 1]

)
. From (1.3.1), we have E[W (t)2] = CtH(t) and consequently,

V ar[W (1)] = C: in this sense, C is called the variance level of the process in the

second chapter.

In addition to the traditional time domain representation of mBm that involves

covariance function, [10] proposed a spectral representation of mBm as follows:

W (t) =
√
C
√
K
(
2H(t)

)
/2

∫

R

ejtλ − 1

|λ|H(t)+1/2
dB(λ), (1.3.3)

where C is a constant scale parameter, B is the standard Brownian motion, and K

is a function defined by

K(α) = Γ(α+ 1) sin
(απ

2

)
/π, for 0 < α < 2.

In [10], process W (t) was modeled with a piecewise constant Hurst exponent and

continuous paths. A local version of quadratic variations (QVs) to estimate the con-

stant Hurst exponent was studied by [46], [50], and [20]. The application of a local

version of QVs to estimate H(t) and C in mBm was discussed in [21], who treated
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C separately in each sample path. In the second chapter, we extend the QV method

to estimate H(t) and C simultaneously for mBm by applying a local k-variation to

all sampled paths (all sub-sample paths from a given sample path) and aggregating

all local conditions that follow from the previous step. This method includes filtering

all sampled paths with a filter possessing a sufficient number of vanishing moments

and generating stationary outputs. The method further calculates empirical moments

of the filtered signals and then estimates H(t) and C simultaneously in a regression

setup specified by the empirical moments.

The main objective of the second chapter is to develop an estimation procedure for

unknown parameters
(
H(t), C

)
given a path of W (t) in the presence of independent

white noise. The contribution of the second chapter is twofold. One is to provide

the stable and simultaneous estimation of variance level C and time-changing Hurst

exponent H(t) in a general mBm model with independent white noise. Previous

approaches by Coeurjolly and Istas relied on local sample paths that resulted in

estimators of C sensitive to the sampled paths. The other contribution is to propose

a method that measures the white noise level in the mBm model since it is widely

accepted that noise occurs from a variety of sources. One example is the noise of

measuring instruments.

1.3.2 Multiscale Methodology in Classification of Multifractality

The third chapter is concerned with assessing the deviation from monofractality in

measured high-frequency signals. It has been observed that a wide range of complex

structures in nature is characterized by seemingly irregular behavior. Examples of

such irregular signals in both time and scale are abundant in medicine, physics, eco-

nomics, and geosciences, to list a few. Although irregular, such signals can be well

modeled by multifractal processes. Concepts of fractal dimension and self-similarity
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have been used to quantify the multifractal behavior. The key idea is to quantify sta-

tistical similarity of patterns at many different scales. The regularity index describes

the strength of the similarity. The scaling is usually stochastically complex and may

include inhomogeneity of patterns in both time and scale. Multifractal formalism has

been developed in order to quantify the irregular scaling [37, 47].

The essence of multifractal analysis is to assess fractal dimensions of self-similar

structures with varying regularities and to produce the distribution of indices of reg-

ularity, which constitutes the multifractal spectrum (MFS). The MFS describes the

“richness” of local singularities in the signal. The multifractal formalism relates the

MFS to the partition function measuring high-order dependencies in the data. In

recent years, the multifractal formalism has been implemented with wavelets [6, 76].

This approach is very amenable to computation and estimation in practice. The ad-

vantages of using the wavelet-based MFS are availability of fast algorithms for wavelet

transform, the locality of wavelet representations in both time and scale, and intrinsic

dyadic self-similarity of basis functions.

Rigorous mathematical foundations of the multifractal process and wavelet-based

approaches have been studied by several researchers [67, 76]. Many applications

to dynamics of the multifractal processes [68, 18, 73], such as TCP/IP traffic data

and financial data, can be found. In addition, the wavelet-based fractal analysis is

a pervasive concept in the medical fields; many medical images, treated as signals,

demonstrate a certain degree of self-similarity over a range of scales, driving the

development of data mining algorithms based on fractal analysis of those images. A

wavelet transform modulus maxima method combined with a multifractal analysis was

used to detect tumors as well as microcalcifications [53]. A classification technique

based on features derived from the fractal description of mammograms was used

[28]. The wavelet-based multifractal discrimination model was proposed to determine

ocular pathology based on the pupillary response behaviors exhibited by older adults
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with and without ocular disease during the performance of a computer-based task

[70].

The presence of multifractality in real-life signals is difficult to assess due to finite

signal sizes and numerical instability of assessing tools. Veitch and Abry [72] used

a collection of regularities on blocks of the signal, and Veitch et al. [73] reviewed

the evidence for multifractal behavior of aggregate TCP traffic using wavelet-based

logscale diagram. In most of the approaches for the assessment, level-wise analysis

of Lp norms of wavelet coefficients was utilized. However, the slopes in this scaling

behavior could be misleading because multifractal signals may result in a perfect

linear decay of energies. Also the slopes are sensitive to the exponent in the partition

function. Extraction of meaningful multifractal characteristics for effectively assessing

deviation from monofractality based on the MFS has not received much attention in

the literature. The main contribution of the third chapter is the development of a

test for monofractality of a signal based on relevant multifractal descriptors from

the wavelet-based MFS. We demonstrate effectiveness of this test in simulations and

real-life examples that include turbulence and DNA nucleotide sequences.

1.3.3 Classification in Multiscale Domains

In recent years statistical wavelet modeling has attracted the attention of both the-

oretical and applied statisticians. The most important property of wavelets is their

adaptive locality in both time and frequency, which helps in dealing with phenomena

that change rapidly in both domains.

Shrinkage in the wavelet domain is a simple, yet powerful tool in nonparamet-

ric statistical modeling. It utilizes the fact that wavelet transforms are energy-

compressing; that is, most of the signal variance is described by only a few wavelet

coefficients. Many approaches for wavelet shrinkage are suggested in the literature:

shrinkage by Bayes’ rules, unbiased estimator of the risk, multiple hypothesis testing,
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and cross-validation techniques, to name just a few [5]. In almost all of the cases

there is an underlying statistical model on the wavelet coefficients and the shrinkage

rule represents the optimal action in the adopted statistical paradigm. Many wavelet

shrinkage methods based on those approaches are proper thresholding rules, meaning

that the inclusion of a wavelet coefficient in the model takes place if its magnitude

exceeds a particular threshold. Perturbations on the threshold level always affect the

selection of wavelet coefficients and proper strategies are needed to ensure that the

model is neither over-fitted nor under-fitted.

In the fourth chapter, we propose a semi-supervised wavelet shrinkage. For the

coefficients whose magnitudes are close to the adopted threshold, we seek additional

information to decide if they are going to be retained in the model or not. We put

this task in the framework of statistical learning and introduce labeled and unla-

beled wavelet coefficients. For the labeled coefficients the membership in the model

is decided, while for the unlabeled coefficients the decision is not clear and hence

additional information is needed. The unlabeled coefficients are processed under a

semi-supervised learning paradigm that incorporates information from the labeled

neighboring coefficients.

The semi-supervised learning has become very popular in the area of machine

learning. It comprises a wide range of methods aimed to enhance learning from both

labeled and unlabeled data and provide better inference (usually in classification and

clustering tasks). While labeled data can be expensive or time-consuming to obtain,

unlabeled data is usually easy to collect and may carry information useful for the

inference, such as in the development of classifiers. In semi-supervised learning, in-

formation contained in unlabeled data can be incorporated by a variety of techniques,

such as expectation maximization (EM) algorithm, transductive support vector ma-

chines (SVMs), graph regularization, and others [78].

We start with two thresholds λ1 and λ2, λ1 ≤ λ2. The labeled coefficients would
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have two labels, 0 or 1, depending on whether they are excluded or included in the

model. The exclusion is decided by a thresholding rule using the threshold λ1. The

coefficients whose magnitude is less than λ1 carry the label 0, while the coefficients

greater than threshold λ2 in magnitude carry the label 1. The labels of some wavelet

coefficients with their magnitude between λ1 and λ2 remain unassigned or undeter-

mined. These will be treated as unlabeled.

By taking the approach of manifold regularization, the decisions for the unlabeled

coefficients are based on the neighborhood content of manifold structure. We demon-

strate that semi-supervised (SS) shrinkage based on background shrinkages with two

different thresholds λ1 and λ2 possesses optimal properties of their background shrink-

ages and improves their performance.
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CHAPTER II

MULTISCALE METHODOLOGY IN CLASSIFICATION

OF MULTIFRACTIONALITY

We apply multiscale statistical methods to classify and characterize high-frequency

data in the model of noised multifractional Brownian motions.

2.1 Local Variations of Multifractional Brownian Motion

Let us consider a case in which a discretized sample path (W′) is given by

W ′(i/N) = W (i/N) + σε(i/N), i = 1, . . . , N, (2.1.1)

in which W is as in 1.3.1, and ε(i/N) is independent white noise of level σ. Hurst

function H(t) generated by W (i/N) is assumed to be Hölderian function Cη
(
[0, 1]

)
,

where 0 < η ≤ 1. Additionally, noise magnitude σ is assumed to be sufficiently small

compared to the variance of mBm. The covariance function of (W′) is

E[W ′(t)W ′(s)] =
C

2
g(H(t), H(s))

{
|t|H(t)+H(s) + |s|H(t)+H(s) − |t− s|H(t)+H(s)

}

+ σ21(t = s), (2.1.2)

where 1(A) is an indicator of relation A. The entries in (2.1.2) generate covariance

matrix Σ that depends on unknown parameters θ :=
(
H(t), C, σ

)
∈ RN+2. The

covariance matrix consists of N(N + 1)/2 parameters (due to symmetry) that can be

organized into an N(N + 1)/2 × 1 vector Γ(θ). Model (2.1.2) is locally identifiable

almost everywhere if Jacobian matrix ∂Γ(θ)/∂θ′, which is N(N +1)/2× (N +2), has

full column rank [69].

In order to weaken the dependence in W ′(t) in (2.1.1), a differencing filter a of

length l+ 1 and of order p > 1 (the number of vanishing moments) is applied. Filter
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a is defined by its taps, (a0, . . . , al), such that

l∑

q=0

aqq
i = 0, for i = 0, . . . , p− 1,

l∑

q=0

aqq
i 6= 0, otherwise.

(2.1.3)

Let (V′
a) be the process consisting of (W′) filtered by a, that is,

V ′
a

(
j

N

)
=

l∑

q=0

aqW
′
(
j − q

N

)
, for j = l + 1, . . . , N. (2.1.4)

For example, when a is (1,−2, 1), the filter is of order 2, and (V ′
a) represents the

second-order differences of (W ′). Furthermore, we can choose a as high-pass wavelet

filters corresponding to orthogonal wavelets such as Daubechies and Symlet wavelets.

A detailed discussion of wavelets can be found in [27] and [75]. The process (Va) is

defined similarly with W instead of W ′. Then, the process (V′
a) is stationary due to

the vanishing moment property of filter a. Let ν(t) be an index set of a neighborhood

of t, defined as

ν(t) = {j ∈ Z | l < j ≤ N, |j/N − t| ≤ ǫ} (2.1.5)

for a parameter ǫ > 0. Let |ν(t)| be the cardinal number of ν(t). We set ǫ to be

a function of N in such a way that ǫ → 0, Nǫ → ∞, as N → ∞. In other words,

for a sufficiently large N , the size of one neighbor becomes sufficiently small while

maintaining the summation of the sizes of all the neighbors that are sufficiently large.

More precisely, the following specific form for ǫ is suggested:

ǫ ∝ N−α(log(N))β , for 0 < α < 1, β ∈ R, (2.1.6)

which results in ǫη log(N) → 0 as N → ∞.

Proposition 2.1.1. Let j ∈ ν(t), j′ ∈ ν(t′). Then, V ′
a
( j
N

) in (2.1.4) is weakly sta-

tionary, and its covariance E

[
V ′

a

(
j
N

)
V ′

a

(
j′

N

)]
depends on j − j′ as follows:
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E

[
V ′

a

(
j

N

)
V ′

a

(
j′

N

)]
=
Cg (H(t), H(t′))

NH(t)+H(t′)
πa,H(t)/2+H(t′)/2(j

′ − j)

+ σ2
∑

q−q′=j−j′
aqa

′
q + O(ǫη logN),

where

πa,h(k) = −1

2

l∑

q,q′=0

aqaq′ |q − q′ + k|2h.

This result is similar as Proposition 1 of [21] except that it has a different normalizing

factor for the first term and the second term from the white noise in the model.

Let us define the second empirical moment of the filtered signal V ′
a

as follows:

S ′(t, a) =
1

|ν(t)|
∑

j∈ν(t)
V ′

a

(
j

N

)2

, for t ∈ [0, 1], (2.1.7)

which represents the squared energy of the averaged filtered signal in the neighbor of

t. Now, define a statistic V (t, a), called the local variation of (W) as:

V (t, a) =
1

|ν(t)|
∑

j∈ν(t)

{ Va(j/N)2

E[Va(j/N)2]
− 1
}
. (2.1.8)

The statistic V (t, a) can be interpreted as the local H2-variations of a certain Gaussian

process. It captures the amount of deviations of the filtered signal from the standard

normal distribution near t. The definition of local k variations is extended using the

kth order Hermite polynomial in the summation of (2.1.8): H2 is the second Hermite

polynomial defined by H2(t) = t2 − 1. In this chapter, we use local H2-variations as

the minimum asymptotic variance estimators as shown in Coeurjolly [20]; however,

one may set k to be different from 2. Notice that V (t, a) and ν(t) are dependent on

N and ǫ. The local variation V (t, a) has many desirable properties as pointed out

by [46] and [50]. Next, we connect the local variation V (t, a) with the empirical

moment S ′(t, a) through the following relationship:
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Proposition 2.1.2. Let local variation V (t, a) and the empirical moment S ′(t, a) are

defined by (2.1.8) and (2.1.7), respectively, given W ′(t) as above and a of order > 1.

Then

log S ′(t, a) = logE
[
S ′(t, a)

]
+ V (t, a)

(
1 + o(1)

)
, as N → ∞. (2.1.9)

The proposition connects the empirical moment S ′(t, a) and the log of its expectation

through the local variation V (t, a). Since the local variation converges to 0 almost

surely and its distribution follows normal distribution asymptotically [21], the above

relationship can be regarded as a regression setup. In the following section, we discuss

distribution of V (t, a) and the relationship between logE
[
S ′(t, a)

]
and the parameters

(H(t), C, σ). We also adapt a, so that it can be used to estimate the regression

parameters.

2.2 Estimation of Hurst Function and Scaling Factor

Let us introduce am, the filter defined by

a
(m)
i =





ai/m, i/m is an integer,

0, otherwise.
(2.2.1)

Notice am is the filter a dilated m times and captures a resolution with low fre-

quency as m increases. By definition, a1 = a. For example, for a second order filter

a := (1,−2, 1), a2 becomes (1, 0,−2, 0, 1). We are interested in distribution of local

variation V (t, a) with a replaced by am.

Proposition 2.2.1. Let i ∈ ν(ti), j ∈ ν(tj). Then, we have

(√
n(ti)V (ti, a

m),
√
n(tj)V (tj , a

u)
)T d−→

(
Gam(ti),Gau(tj)

)T
,
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where
(
G(ti),G(tj)

)T
is a centered Gaussian vector, such that

E[Gam(ti),Gau(tj)] =





2
∑

k∈Z

[
π
a
m,au,H(ti)

(k)

π
a,H(ti)

(0)

]2
, i = j,

0, otherwise,
(2.2.2)

for

πam,au,h(k) = −1

2

l∑

q=0

l∑

q′=0

aqaq′ |mq − uq′ + k|2h. (2.2.3)

The proof of the proposition relies on Lemma 2 of [21; 22] with modification of π

function as in (2.2.3).

Note that a filter of order at least 2 ensures asymptotic normality for all the values

of the function H(t). For a filter of order 1, this convergence is available if and only

if 0 < suptH(t) < 3/4. The above proposition shows that a joint distribution of

local variations V (t, am) for any two time points ti and tj ; and any two dilations m

and u converges to normal distribution with a blocky diagonal covariance in a sense

that non-zero elements are shown only for the entries corresponding to the same time

point. Next, we derive relationship between the log of the expectation of the empirical

moment S ′(t, am) and the parameters of interest H(t), C, and σ in the light of the

proposition 2.1.2.

Proposition 2.2.2. Let d > 1 and let t1, . . . , td ∈ [0, 1]. Then, we have

logE[S(ti, a
m)] = log

(
C
(m
N

)2H(ti)

πa,H(ti)(0) + σ2
∑

q

a2
q

)
+ O

(
ǫη log(N)

)
, (2.2.4)

for all i ∈ {1, . . . , d} and all m ∈ {1, . . . ,M}.

The proof of this proposition follows from Proposition 2.1.1 when a is replaced by am

and from stationarity of V ′(j/N). The above proposition implies that logE[S(ti, a
m)]

is a nonlinear function of the unknown parameters. Considering Propositions 2.1.2
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and 2.2.2, we obtain a regression model for logS(ti, a
m) as N → ∞:

logS(ti, a
m) ∼ log

(
C
(m
N

)2H(ti)

πa,H(ti)(0) + σ2
∑

q

a2
q

)
, ∀i,m, (2.2.5)

which is nonlinear with respect to H(ti), C, and σ. Its covariance matrix ΣH,C is

given by the equation (2.2.2) in Proposition (2.2.1). In particular, when the noise

level σ is zero, the regression model simplifies to

logS(ti, a
m) ∼ logC + 2H(ti) log

(m
N

)
+ log

(
πa,H(ti)(0)

)
+ O

(
ǫη log(N)

)
, ∀i,m,

(2.2.6)

which turns out be linear with respect to H(ti) and logC, if log
(
πa,H(ti)(0)

)
is negli-

gible.

The following ordinary least square (OLS) estimator of
(
H(t1), . . . , H(td), C, σ

)
=

(H, C, σ) is introduced.

(Ĥols, Ĉols, σ̂ols) = arg min
(H,C,σ)

d∑

i=1

M∑

m=1

(
logS(ti, a

m) − logE[S(ti, a
m)]
)2

. (2.2.7)

One may use a weighted least square (WLS) estimator using the covariance matrix.

In practice, we use the OLS estimator due to its computational convenience and

negligible loss of precision compared to the use of WLS. We note that the gain of the

WLS estimator is extremely small compared with the computational cost involved in

the calculation of the covariance matrix.

2.3 Simulations and Comparisons

We present here a simulation study of the performance of the approach suggested in

this chapter (Simultaneous K-var). The simulation is done with “known truth” of

Hurst function H(t), and controlled signal variance and signal-to-noise (SNR) ratio.

Test functions are shown in Figure 6 with step-function for H(t) in Figure 6(a) and

straight-line function in Figure 6(c). We also compare the average mean squared error

(AMSE) performance with several popular methods such as Local Spectra Slope which
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is summarized in [39]; k-variation for known variance, which is denoted by K-var,

and k-variation of variance corrected version in [20], which is denoted by K-var (VC).

We will use hereafter the following notations regarding filters:

– Diff.i : denotes the filter of differences of order i (i vanishing moments).

– Db.i : denotes a Daubechies’ wavelet filter of order i (i vanishing moments).

– Sym.i : denotes a Symmlet’ wavelet filter of order i (i vanishing moments).

To simulate a sample path from a fBm on [0, 1], we used the method of [77]. One

can simulate a standard mBm W with covariance matrix CH(·) by generating Z ∼

N(0, IN) and estimating W := C
1/2
H(·)Z. This method is exact in theory and sufficiently

fast for reasonable sample sizeN . We generate 1000 series of lengthN = 4096 for step-
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Figure 6: Simulated test functions. Hurst functions are shown in (a) and (c); their
illustrations of signal are shown in (b) and (d), correspondingly.

function H(t) and N = 1024 for straight-line function H(t), respectively. A Symmlet

filter of order 8 (Sym.8) was used for step-function H(t) and a simple difference filter

[ 1 − 2 1 ] (Diff.2) was used for straight-line H(t). For Local Spectra Slope, the

length of sub-signal was set to be 512 to be sufficient for its numerical stability and

the two levels, by which spectral slopes are calculated, were 3 and 6. The size of

a neighborhood of t, ν(t) in (2.1.5), is set to be 50 for Simultaneous K-var, K-var,
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and K-var (VC). Illustrations of the estimators under no noise are shown in Figure

7. Estimators from K-var without considering scale parameter C deviate from true

H(t). We note that the distances between the K-var estimators and true H(t) are

connected to C. Estimators by Local Spectral Slope are bumpy because it assumes

the sub-signal in its processing is fBm without considering the connection of H(t).

Also it is observed that K-var (VC) is more unstable than Simultaneous K-var: it will

be pointed out in terms of AMSEs of Ĥ(t) and Ĉ.
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Figure 7: Illustrations of the estimators; in panel (a), variance C was 2 and in
(b) variance C was 4;the method of Simultaneous K-var matches the true H(t) best
among the four.

Regarding estimation of C, the comparison between K-var (VC) and Simultaneous

K-var is shown in Figure 8, in which two empirical confidence intervals for the true

C = 2 are shown. We sampled 1000 series of W ′(t) with C = 2 and straight-line H(t)

under no noise, σ = 0. In Figure 8(a), the confidence interval from K-var (VC) is not

only dependent on time, but also it is wide and bumpy, while the confidence interval

by Simultaneous K-var is constant in time and also sharp.

The comparison between K-var (VC) and Simultaneous K-var is made also in

terms of AMSE. We calculated AMSEs for each H(t) and generated histograms of

AMSEs that were smoothed by kernel density estimation. Step-function H(t) was

used for Figure 9(a) and straight-line H(t) was used for (b) and (c). The levels of

variance C were 1, 4, and 4 for Figure 9(a), (b), and (c), respectively. In Figure 9(c)
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Figure 8: In panel (a), estimation of C with its empirical 95% confidence interval
in blue by K-var (VC) when C = 2; in (b), estimation of C with simultaneous K-var
in red. Simultaneous K-var gives a more stable and shorter confidence interval.

only, white noise was added with signal-to-noise (SNR) 7. The picture shows that

Simultaneous K-var has the sharpest and smallest among other methods. In Figure

9(c), Simultaneous K-var was divided into two methods, the one considering white

noise and the other ignoring the white noise in (2.2.4). Simultaneous K-var consider-

ing white noise was superior to others. The effects of adapted filters are summarized

in Figure 10. The experiments were done with straight-line H(t), variance C = 2, and

SNR = 7. We observe that the performance of Simultaneous K-var on the estimation

of C does not change much depending on the filter it uses. However, we mention that

the variance of AMSEs tends to increase according to the filter size.
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Figure 9: Smoothed histogram of average mean squared square for step-function
H(t) and variance C = 1 in (a) and straight-line H(t) and variance C = 4 in (b)
and (c); SNR 7 in (c); the method of Simultaneous K-var has sharper and smaller
distribution of AMSE.
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Figure 10: The performances according to different filters with straight-line H(t);
in the panel (a), box plots for estimations of C = 2; in (b), box plots for AMSE of
H(t); filter numbers represent: 1, Diff.1; 2, Diff.2; 3, Diff.3; 4, Diff.4; 5, Sym.4; 6,
Sym.6; 7, Sym.8; 8, Db.2; 9, Db.3; 10, Db.4.

2.3.1 An Example in EEG Data

To illustrate applications of the method proposed here, we estimate the time-changing

hurst exponent and the variance factor in the noisy measurements from Electroen-

cephalography (EEG) data set. EEG signals are the recording of electrical activity

along the scalp produced by the firing of neurons within the brain. Continuous EEG

monitoring is an increasingly utilized tool for the detection of secondary injury in

neuro-critical care patients. Here we applied the suggested approach to correlate fo-

cal changes in regularity with onset of vasospasm. The EEG data for one vasospasm

patient were collected over 7 measurement days. Each day, the signals were recorded

over 1 minute period at 16 different channels of his/her scalp with a 500 Hz frequency.

In Figure 11(a) and 11(b), we see two EEG signals at the 5th channel on 6th and 7th

measurement days. In Figure 11(c), the longitudinal plot of boxplots of H(t) show

that two big jumps of regularity from 2nd to 3rd day and from 7th to 8th day. The

biggest jump of the latter coincided with onset of vasospasm of the patient. In 11(d)

the variance factor C according to the measurement days are shown. The search

interval for C in (2.2.7) was set (0, 80000) and the estimators on several days reached

to the maximum of it, which brings suspicion of the mBm models to those signals.
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The noise levels were all under 10−2 which confirms the assumption of sufficiently

small noise magnitude compared to the signal. We admit that we are in the middle

of seeking more patients to extract meaningful descriptors out of EEG signals with

onset of vasospasm and their H(t) and to validate their correlation.

0 0.2 0.4 0.6 0.8 1
−600

−400

−200

0

200

400

600

time
0 0.2 0.4 0.6 0.8 1

−500

−400

−300

−200

−100

0

100

200

300

400

time

(a) (b)

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bo
xp

lo
t o

f H
(t)

Time instances
1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8
x 10

4

Time instances

C 
(V

ar
ian

ce
 le

ve
l)

(c) (d)
Figure 11: EEG signals; in (a), 6th measurement time; in (b) 4th measure time. In
(d), boxplots of estimated H(t); in (c), estimated variance levles.
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CHAPTER III

MULTISCALE METHODOLOGY IN CLASSIFICATION

OF MULTIFRACTALITY

We apply multiscale statistical methods and extract meaningful multifractal descrip-

tors to discriminate high-frequency data posessing monofractality from those which

are inconsistenct with monofractality.

3.1 Monofractality

In this section we examine monofractality of a process by using the properties of

singularity and scaling in wavelet transforms. By inspecting decay of wavelet coeffi-

cients, we can detect singularity and scaling simultaneously. We will discuss possible

deviations from monofractality at the end of this section.

3.1.1 Singularity and Scaling

A signal, or a process Y (t) is regular if it can be locally approximated by a polynomial.

Referring to observed paths of a random process, a process will be interchangeably

used with a signal. An irregular signal features local singularities. The singularity

behavior of a process Y (t) at time t0 is characterized by Hölder exponent Ht0 (Lips-

chitz exponent): Ht0 is defined as the largest h such that there exists a polynomial P

satisfying |Y (t) − P (t)| ≤ C|t − t0|h for t sufficiently close to t0. Roughly speaking,

saying that Y (t) has exponent h at t0 means that, around t0, the process Y is bounded

by the curves of Y (t0) +C|t− t0|h and Y (t0)−C|t− t0|h (see Figure 12 for graphical

interpretation). If h is close to 0, the wide boundary from the two curves allows for

large variations. As Ht approaches 1, the process becomes regular or smooth at the

point t. The Hölder exponent of Y (t) over an interval [a b] is the sup of Ht over that
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Figure 12: Graphical interpretation of Hölder exponent h of a process Y (t) at a
point t0. Note that smaller h corresponds to a wider boundary within which the
process is allowed to vary.

A process scales if its distributional properties are intrinsically invariant to changes

of a scale. A process Y (t) is self-similar with self-similarity index H > 0 (H-ss) if

Y (at)
d
= aHY (a). Here

d
= denotes equality in all finite-dimensional distributions. An

H-ss process with stationary increments exhibits long range dependence (LRD) when

H > 1/2. A zero mean Gaussian process BH(t) with stationary self-similar increments

is called fractional Brownian motion (fBm) with Hurst exponent H (fBmH) if BH(t) ∼

N(0, σ2|t|2H), and

BH(t+ τ) −BH(t)
d
= BH(τ) −BH(0)

d
= τHBH(1). (3.1.1)

As a zero mean Gaussian process, BH(t) could be alternatively defined via its covari-

ance structures:

E
[
BH(t)BH(s)

]
=
σ2

2

[
|t|2H + |s|2H − |t− s|2H

]
. (3.1.2)

The scaling behavior of a signal is tightly related to singularity of wavelet coefficients

[48, 36]. The singularity (Hölder exponent) and the self-similarity (Hurst exponent)

are obtainable through multi-scale analysis of wavelet transforms. We will discuss

wavelet transforms only at the level needed to introduce the concepts of singularity

and self-similarity.
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3.1.2 Wavelets: Detecting Singularity and Scaling

To detect the phenomena of singularity and self-similarity using wavelets, let us con-

sider an L
1-normalized orthogonal wavelet basis comprised of ψj,k(t) = 2jψ(2jt− k).

Wavelet functions ψj,k(t) are generated from wavelet function ψ(t) by dilation by a

scale factor 2−j and translation of 2−jk. We assume that the ψ(t) has R vanish-

ing moments:
∫
trψ(t)dt = 0, r = 0, . . . ,R − 1. The coefficients of discrete wavelet

transform of a process Y are defined by

dj,k =

∫ ∞

−∞
Y (t)ψj,k(t)dt, (3.1.3)

which carries information on the local difference of the process near to the position k

on a dyadic scale j. Let k2−j → t means that t ∈ [k2−j , (k+ 1)2−j[ and j → ∞. The

result of Jaffard [see 48, p. 291] and Gonçalves [40] concerns detecting singularity of

a signal: if Y (t) is of Hölder exponent H , then

|dj,k| = O(2−jH), as k2−j → t (3.1.4)

for any wavelet with R > H . This means that the decay of the local differences of

a process is related to the singularity of the signal, provided that the decomposing

wavelet is more regular than the process.

Wavelets also enable us to detect the self-similarity of a signal. For an H-ss process

with stationary increments (H-sssi), it can be shown that

dj,k
d
= 2−jHd0,k

d
= 2−jHd0,0, ∀k, (3.1.5)

which leads to the same order of |dj,k| as in (3.1.4). Note that L
2 normalization is

used in computations for the sake of computational simplicity, and L
1 normalization

is selected in discussions to simplify the rate of the decay: for L2-normalized wavelets,

dj,k
d
= 2−j(H+1/2)d0,0. The equation (3.1.5) also serves as a basis for wavelet based

estimation of H :

log2 E|dj,k|q = −jqH + Cq, (3.1.6)
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where Cq is a constant depending on q, wavelet function ψ, and the magnitude of the

signal. The partition function

T (q) = lim
j→∞

(−1/j) log2 E|dj,k|q

measures the scaling of the higher order dependencies and the singularity structure

of the process at the exponent q. Index k is arbitrary, given dj,k within the level j,

that the partition function does not depend on k. In particular, for the H-sssi signal

or the signal with Hölder exponent H signal, equation (3.1.6) rewrites: log2 E|dj,k|q =

−jT (q) + C, where C is a constant.

A practical estimation of H is based on empirical moments of the wavelet coeffi-

cients at dyadic scale j:

Ŝj(q) =
1

nj

∑

k

|dj,k|q, (3.1.7)

where nj is the number of dj,k available at dyadic scale j. We assume that the wavelet

coefficients are uncorrelated, and hence independent, as has been approximately the

case in various contexts (see [2] for a review and [4] for numerical simulations). A plot

of the logarithm of the estimates Ŝj(q) against j,
(
j, log2 Ŝj(q)

)
, is called as qth order

Logscale Diagram (q-LD): it is also a wavelet spectrum for q=2. These diagrams result

in straight lines with slopes of −qH , or −T (q), for the fBmH or signals with Hölder

exponent H over the interval. Straight lines in q-LDs provide empirical evidence for

monotone scaling. Partition function T (q) is estimated as the slope in the following

regression:

log2 Ŝj(q) = −jT (q) + εj, (3.1.8)

where the error term εj is introduced by the moment matching method when the true

moments are replaced with the empirical ones. Simple ordinary least square (OLS) is

the most convenient choice to estimate the partition function. Figure 13 shows wavelet

spectra from three simulated fBmH with different slopes under L2 normalized Haar

wavelet. In what follows, the Haar wavelet was used unless mentioned otherwise.
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Figure 13: Simulations of fBm with (a) H = 0.33, (b) H = 0.50, and (c) H = 0.80;
in the lower, the corresponding wavelet spectra are shown; as H gets larger, the
spectrum line gets steeper.

Next, we will analyze the concept of deviation from monofractality by relating it

to q-LDs.

3.1.3 Deviation from Monofractality

We consider deviations from the linearity of log2 E|dj,k|q over dyadic scale j as evi-

dence of deviation from monofractality. We make a distinction between deviation from

monofractality and evidence for multifractality as the two are not synonymous: multi-

fractality is richer as a form of scaling behavior since it is associated with randomness

and distribution. Multifractal signals possess rich scaling behavior and deviation from

linearity of the spectrum is not sufficient to characterize multifractal signals. For in-

stance, multifractal signals can have perfectly linear 2nd order spectra as exemplified

later. Distribution of local singularity is required to assess multifractality.

Linear scaling behavior at q-LDs does not necessarily suggest evidence for the

presence of monofractality since multifractal signals can show linear scaling behavior.

Figure 14(a) shows a realization of the multifractal wavelet model (MWM) synthesis
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and its cumulative sum of the signal [68]. Since the signal, generated to be non-

negative, was regarded to be comparable to fractional Gaussian noise, we took the

cumulative sum, which reveals a more stable scaling behavior. Indeed, the Hurst

exponent, 0.9255, from the cumulative sum was reasonable. The wavelet spectra of

the two signals are shown in Figure 14(b), which reveals that the spectra are linear

while the signal is multifractal. MWM is a multifractal extension of traditional fBm

models and the MWM synthesis is a multiplicative and coarse-to-fine construction

of scaling coefficients for positive and stationary LRD signals. It models the wavelet

coefficients of a signal as dj,k = aj,kuj,k with the multiplier aj,k being independent

random variables on [−1 1] and uj,k being an approximation of the signal at dyadic

scale j. The simulation in Figure 14(a) was done by β multifractal wavelet model us-

ing beta distribution as the multiplier aj,k and fBm0.8 as the initial approximation of

the signal uj,k in the coarsest level of smooth. This observation that the multifractal

signal has linear spectrum indicates a weakness of spectral slopes in characterization

of deviation from monofractality.

Moreover, scaling behavior is sensitive to the exponent q in q-LD. Figure 15 shows

different scaling behavior over the exponent for simulated signals from fBm0.3 +

fBm0.7. The spectral slopes from 2-LD in 15(a) and 6-LD in 15(b) were −2.2013

and −6.659, respectively, which resulted in different Hurst exponents, 0.6626 and

0.7454. Figure 15(c) plots boxplots of 1, 000 estimators of H for different exponent

q. Thus, looking at an isolated q will not be sufficient to assess monofractality. This

also emphasizes the shortcoming of spectral slopes and motivates the MFS to con-

sider different scaling behaviors relevantly. Instead of making scaling inferences on

the spectral slopes, one can adopt an empirical approximate of the MFS from wavelet-

based partition functions that include information on the spectral slopes. Now, we

propose a testing procedure to distinguish signals of monofractality from those that

deviate from monofractality based on the MFS.
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Figure 14: (a) One realization (in blue) of the multifractal wavelet model synthesis
overlapping with its cumulative sum (in red) scaled by 1/200; (b) the wavelet spec-
trum of the signal; (c) the wavelet spectrum of the cumulative sum, which shows a
clearly linear scaling behavior.
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Figure 15: (a) 2th order logscale diagram for a fBm0.3 + fBm0.7; (b) 6th order
logscale diagram for the signal; (c) boxplots of estimated Hurst exponents over the
scaling exponent q; linear spectrum decays at an exponent q is insufficient to link to
monofractality; the estimated Hurst exponents would not vary with exponent q if the
process was monofractal.

3.2 Multifractal Spectrum

MFS of a process is a summary of its scaling and singularity properties. Here we de-

scribe MFS and discuss how to apply it in measuring deviations from monofractality.

Let us consider the local singularity strength of wavelet coefficients as follows [40]:

α(t) = lim
k2−j→t

−1

j
log2 |dj,k|. (3.2.1)

The local singularity strength measure (3.2.1) converges to the local Hölder exponent

of the process at time t. Small values of α(t) reflect the more irregular behavior

at time t. Any inhomogeneous process has a collection of local singularity strength
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measures and their distribution f(α) forms the MFS. A direct way to obtain this

spectrum is to use the counting technique,

f(α) = lim
ǫ→0

lim
j→∞

1

j
log2

(
2−j#{k : 2−j(α+ǫ) < |dj,k| < 2−j(α−ǫ)}

)
, (3.2.2)

which captures the limiting frequency of occurrences of a given singularity α and

ranges from −1 to 0. It relates to the distribution of the local singularities. Smaller

f(α) implies fewer points in t behave with singularity α. If all points in t behave with

singularity α∗, then f(α∗) = 0.

Although it is feasible to estimate the MFS using (3.2.1) and (3.2.2), the method

is not practicable due to the computational difficulty of approximating the limit. The

multifractal formalism enables MFS f to be calculated by taking Legendre transform

fL of partition function T , fL(α) := infq{qα − T (q)}: using the theory of large

deviations, one can show that fL(α) converges to the true MFS f(α) [68, 67]. Because

of the log-convex property of the moment generating function and concavity of T (q),

fL is obtained as follows:

fL(α) = qα− T (q) at α = T ′(q).

Using the estimator T̂ (q) of T (q) in (3.1.8), for equally spaced qi with spacing q0 =

qi − qi−1, we estimate fL(α) as follows [40]:

α̂i = [T̂ (qi+1) − T̂ (qi)]/q0,

f̂L(α̂i) = qiα̂i − T̂ (qi).

(3.2.3)

Inspecting the MFS of monofractals is beneficial to build intuition on the variety

of shapes of the Legendre transform based MFS of different signals.

Example 3.2.1. For a fBmH in (3.1.1), it is easy to show that L1-normalized wavelet

coefficients are

dj,k ∼ N(0, σψ2−2jH), (3.2.4)
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where σψ is a constant that depends on the wavelet function ψ and the magnitude of

the signal, hence the partition function T and the MFS as Legendre transform fL of

T become

T (q) =






−∞, q ≤ −1,

qH, q > −1,
and fL(α) =






−∞, α < H,

0, α = H,

H − α, α > H.

(3.2.5)

Figure 16 depicts the theoretical partition function and the corresponding MFS

for fBm0.3. Note that both are the Legendre transform of each other: the slope −1

and the intercept (0, H) in Figure 16(b) of MFS correspond to a point of (−1,−H)

in Figure 16(a) of partition function T (q).

−1 0 1 2 3
−1

−0.5

0

0.5

1

1.5

(−1,−H)

Slope=H=0.3

q

T
(q

)

0 0.2 0.4 0.6 0.8 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3 (0,H)

(H,0)

H

Slope = −1

α

f(α
)

(a) (b)

Figure 16: (a) Partition function T (q) of fBm(0.3); (b) MFS f(α) of the signal.

Example 3.2.2. Suppose we observe different fBm processes varying with time in-

tervals: X(t) is given by

X(t) = BHk(t), t ∈ [tk−1, tk[, (3.2.6)

for k = 1, 2, 3, and H1 < H2 < H3. Since T (q) is determined by the minimum of
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Hurst exponents when q > 0 and by the maximum when q < 0 [71], we have

T (q) =





−∞, q ≤ −1,

qH3, −1 < q < 0,

qH1, q ≥ 0,

and fL(α) =





−∞, α < H1,

0, H1 ≤ α ≤ H3,

H3 − α, α > H3.

(3.2.7)

The illustration of (3.2.7) is shown in Figure 17 for H1 = 0.3, H1 = 0.5, and

H3 = 0.7. It is worth mentioning that the MFS is flat in the interval between

min{Hi} and max{Hi} and that information on regularities between min{Hi} and

max{Hi}, which is H2 in this example, is lost in T (q) and fL(α). We will see in the

next section that some of the low-dimensional descriptors of MFS are consistent with

the deviation from monofractality.
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Figure 17: (a) Partition function T (q) of X(t); (b) MFS f(α) of the signal.

3.2.1 Multifractal Descriptors

Rather than operating with MFS as a function (density), we summarize it by a

small number of meaningful descriptors. These descriptors are interpreted in terms

of location and shape of MFS because they are calibrated by the counterpart of

MFS of monofractal signals. Theoretically, the MFS of fBm (a representative of

monofractal) consists of three geometric parts: the vertical line, the maximum point,

and the right slope, as is shown in Figure 16(b). However, it is rare to obtain such
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a perfect spectrum in practice. Even for the well simulated fBm, due to error of

estimation (most of them are due to the partition function estimation and derivative

calculation as presented above), the MFS deviates from the theoretical form, as shown

in Figure 18. Panels (a) and (b) of Figure 18 show theoretical MFS as a blue solid

line and empirical MFS as a red dashed line for fBm0.5 and X(t) in the example

3.2.2, respectively. Notice that the maximum or mode is well approximated, but the

slope exhibits discrepancy between theoretical and empirical MFS due to numerical

instability.
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Figure 18: Theoretical MFS (blue solid line) and an empirical MFS (red dash
line); (a) for fBm0.5; (b) for X(t) in the example 3.2.2; empirical MFSs deviate from
theoretical ones.

Despite the existence of estimation error, the MFS can be approximately summa-

rized by 3 canonical descriptors (multifractal descriptors) without loss of the discrim-

inant information. The proposed summaries are (1) the spectral mode (Hurst expo-

nent, H), (2) left slope (LS) or left tangent (LT ) and (3) width spread (broadness,

B) or right slope (RS) or right tangent (RT ). A typical MFS can be quantitatively

described as shown in Figure 19(a). There are many ways to define the broadness

(B). These descriptors have been successfully used in classification procedures as in

[28] and [70]. In this chapter, we select the following definition [70].
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Definition 3.2.1. Suppose that α1 and α2 are two roots which satisfy the equation

f(α) + C = 0 and α1 < α2. The broadness (B) of MFS is defined as B = α2 − α1.))(( qf
 Hurst Exponent))(( qf
 Hurst Exponent(H)0 Left Tangentg(LT) Right Tangent(RT)Left Slope(LS) Right Slope(RS)( ) ( )C
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Figure 19: (a) Illustration of geometric descriptors of MFS. Note that the horizontal
axis represents values of Hölder exponent α(q), while the vertical axis represents values
proportional to the relative frequency of these indices, f

(
α(q)

)
; (b) interpretation of

left slope (LS) with partition function T (q); LS is obtained by the two slopes (H
and α1) of the two tangent lines; LS is adopted as a measure of deviation from the
straight line passing through the origin.

The suggested multifractal descriptors are graphically presented in Figure 19(a).

Figure 19(b) shows the link of descriptor LS to the configuration of partition function

T (q) since LS is determined by two points (−C, α1) and (H, 0) in Figure 19(a), which

correspond to the tangent line passing through (0, C) in green and the tangent line

passing through the origin in blue in Figure 19(b). It should be noted that the

threshold value C in the definition could be adjusted empirically in the practical

analysis to ensure that this measure is well computed for signals under analysis. In

practical implementations, we use C = 0.15 or 0.2.

Another difficulty in computation is caused by the discreteness of α(q). The

problem is that it may be hard to find the exact roots of the equation f(α) + C = 0

among the discrete values of α’s. To get around this, we first find the two closest

points (αli, f(αli)) and (αui , f(αui )) for each i such that

f(αli) < −C and f(αui ) > −C, i = 1, 2,
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and then obtain the two solutions α1, α2 by interpolation. The slopes LS and RS and

tangents LT and RT can be obtained using the interpolation technique, as computed

by

LS = C/(H − α1) and RS = −C/(α2 −H),

LT = (f(αu1) − f(αl1))/(α
u
1 − αl1) and RT = (f(αu2) − f(αl2))/(α

u
2 − αl2).

(3.2.8)

Interpretation of H and LS (or LT ) is straightforward. The apex of the spectrum

or the most common Hölder exponent α found within the signal represents Hurst

exponent H . The slope of the distribution produced by the collection of Hölder

exponent α with smaller values of the mode (H) represents LS (or LT ).

In this study, we selected the LS as the multifractal characteristic for measuring

deviation from monofractality because the monofractality theoretically corresponds

to a vertical line at H , infinite LS, in MFS. We related the extent of deviation from

the vertical line to the characterization of monofractality, which is explored more in

the following section.

3.3 Test for Deviation from Monofractality

In this section, we analyze the MFS summaries as possible statistics for assessing

deviation from monofractality. For this goal, the LS turns out to be an informative

index.

3.3.1 Left Slope in MFS as a Measure of Deviation from Monofractality

We start with intuitive interpretation of LS, connecting it with the partition function

T (q). Geometrically, α1 in Figure 19(a) is the slope of the tangent line whose intercept

is C in Figure 19(b). In addition, H in Figure 19(a) is the slope of the tangent line that

passes through the origin. Theoretically, the expectation of T (q) is linear in an ideal

case of fBm, which leads to a perfect vertical line at the Hurst exponent as in Figure
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16(b) and thus the infinite LS. Empirically, the wavelet-based estimator T̂ (q) of T (q)

in (3.2.3) deviates from the straight line because of the finite approximation to the

moments and numerical deviations. This causes LS to be finite for empirical fBms.

As a result, LS incorporates information on the shape of the partition function. It

reflects deviation from the straight line passing through the origin: the more linear the

partition function, the larger LS. The processX(t), which is a synthetic superposition

of the three fBms, in the example 3.2.2, lead the flat segment between min{Hi} and

max{Hi} (as the blue line in Figure 18(b)) and much wider breadth compared to

MFS of the individual fBm (as the blue line in Figure 18(a)). The theoretical MFS

has a wide breadth (as the blue line in Figure 18(b)) leading to small LSs for its

empirical processes (as the dotted red line in Figure 18(b)) in comparison with those

for empirical fBms (as the dotted red line in Figure 18(a)). We attribute this decrease

to deviation from monofractality of the signal.

To emphasize this point, consider a multifractional Brownian motion (mBm) with

time varying Hurst exponent. A mBm with H(t) (mBmH(t)) is a zero mean Gaus-

sian process defined as in (3.1.2) by replacing H with a time-varying H(t) [10, 21].

Specifically, we consider a mBmH(t) with H(t) given as, for T = 211,

H(t) =
0.6

T
t+ 0.2, t ∈ [ 0 T ].

Next we compare this mBmH(t) with a standard Brownian motion, fBm0.5. In Figure

20(a) and Figure 20(b), simulated signals of the two processes and the corresponding

MFS are shown. The LS of mBmH(t) was smaller than that of fBm0.5 (0.48 compared

to 1.09). In Figure 20(c) and 20(d), the partition functions from the two signals are

shown, respectively. The shapes of the two partition function that carry information

equivalent to MFS are strikingly different. The LS reflects the difference of the two

tangent lines (red and green) for each partition function: the larger the difference of

the two slopes, the smaller the LS. We observe that the partition function in 20(d)

deviates from the theoretical partition function (the straight red line) more severely
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than that in 20(c). The slopes of the two tangent lines (the green lines) of the two

partition functions that pass through the point (0, 0.2) are different due to different

shapes of the two empirical partition functions.
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Figure 20: (a) Simulated signals of fBm0.5 in red, mBm with straight line H(t) =
0.6
T
t + 0.2, (T = 211) in blue; (b) MFS of the fBm0.5 in red and of the mBm in blue;

(c) partition function for the fBm0.5; (d) partition function for the mBm.

This behavior of LS is consistent whenever the monofractality of the signal is

violated. Using this observation, we propose a testing procedure described in the

next section, which tests the monofractality of a signal based on LS. The details of

the testing procedure and its applications are provided.

3.3.2 Parametric Bootstrap Test

Bootstrapping is a computer-based method for assigning measures of accuracy to

statistical estimates with sampling from an approximating distribution [34]. The ad-

vantage of bootstrapping is that it is straightforward to apply the bootstrap to derive
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estimates of complex estimators such as percentile points, proportions, odds ratio,

and correlation coefficients. The bootstrap method may also be used for constructing

hypothesis tests as an alternative to inference based on parametric assumptions. In

the case in which exact distributions are unknown or analytic procedures are too com-

plex to obtain, even an approximation to the distribution, the bootstrap techniques

are employed. In our case, the distribution of LS for monofractality of fixed size,

wavelet basis, and precision settings of MFS calculation are overly complex.

With LS as a measure of deviation from monofractality, we propose a new testing

procedure to check if a signal is monofractal; H0: the signal is monofractal vs. H1:

not H0. This type of hypothesis is a goodness-of-fit type. Not rejecting H0 leads

to the conclusion that the signal is consistent with assumption of monofractality.

Rejecting H0 does not indicate multifractality, but just a violation of monofractality

or inconsistency of the monofractality assumption. The proposed test is conducted

with parametric bootstrap which is outlined in Figure 21. We start with an observed

signal and a wavelet basis with a sufficient number of vanishing moments; and also

fix C as in Definition 3.2.1 and qi in (3.2.3). The following steps describe the testing

algorithm:

[1] Calculate L̂S and Ĥ as estimators of LS and H , respectively, for an input.

(a) Calculate wavelet coefficients dj,k as in (3.1.3).

(b) Estimate the partition function T (q) with dj,k as in (3.1.8).

(c) Estimate the MFS f(α) with T (q) as in (3.2.3).

(d) Estimate H as the maximizer of f(α) and find LS as in (3.2.8).

[2] Generate B copies of fBmĤ and for each copy (realization) find LS∗b, b =

1, . . . , B; this is the parametric bootstrap step.

[3] Construct a bootstrap distribution of L̂S using bootstrap replicates; find em-

pirical 0.05 quantile (q0.05).

[4] If the LS is less than q0.05, reject H0.

To simulate a sample path from a fBm, we used the method of Wood and Chan, which
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is based on Fourier transform [77]. We construct an empirical distribution of L̂S as

a surrogate of the true distribution of the true LS from B number of replicates of

fBmL̂S. Since signals of monofractality have high LS values, the achieved significance

level (ASL) of the test is the proportion of the number of replicates for which the

left slope (LS∗b) is less than L̂S to the total number of replicates (B). In hypothesis

testing with bootstrapping, ASL is the counterpart of the p-value in the classical

hypothesis testing. We can also adjust the quantile of q0.05 to be different from that

of 0.05. Parametric bootstrapsignal1 1*LSsignal Ĥ )ˆ(Hf Bm signal1signal2 LS 2*LSobserveds ignalw0 .200 .2 HLS )(Hf Bm signal2 LS^0 0 .5 1 1.5w0 .8w0 .6w0 .4
 (q )f(  ) LS s ignalB BLS *1.21.4 b f SAchieved 0.60.81 Distribution of LSsignif icancelevel (ASL) 0 1 2 3 4 500.20.4( )

(a)

Figure 21: Parametric bootstrapping for testing if a signal observed is monofractal;
the achieved significant level (ASL) of the test is the area of the bootstrap distribution
enclosed with the red line since monofractal signals have high values of LS.

3.3.3 Experimental Result

We perform a simulation experiment to test the following non-monofractal signalX(t)

for monofractality:

X(t) = BHk(t), t ∈ [tk + 1, tk + 210[, (3.3.1)

for tk = (k − 1)210, k = 1, . . . , 4, and H1 = H3 = 0.3, H2 = H4 = 0.7. We chose

B as 5000, C as 0.15, and qi as equi-spaced with size 0.2 on (−1 6]; and tested

3000 samples of X(t). Obviously, the signal is not monofractal since regularity is
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not constant across the time. We want to test if H0: X(t) is monofractal vs. H1:

not H0. An illustration of X(t), its wavelet spectrum, its MFS, and the empirical

distribution of LSs are shown in Figure 22. The wavelet spectrum in Figure 22(b)

shows a monotone decay across the dyadic scales, and yet the LS was 0.38 in 22(c),

which is indicating irregular scaling. We show the normalized histogram (bootstrap
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Figure 22: (a) An illustration of X(t); (b) Its wavelet spectrum; (c) its MFS; (d)
bootstrap distribution of LS∗b with the LS (0.38) for the signal (in red circle) and a
rejection region of 95% achieved significance level (within the red line).

distribution) of LS∗b from the 5000 bootstrap fBm simulations and the critical region

of level 0.05 in Figure 22(d). The LS clearly falls in the rejection region and H0 is

rejected: The ASL of this test was 0. Out of the 3000 tested signals, 2838 signals

were concluded not be monofractal: The rate, or ability to recognize the true non-

monofractal signals, was 0.946. Next we apply this to real-life examples.

3.3.4 Turbulence and DNA Examples

To illustrate the test procedure in a real-world example, we compared a turbulence

signal with a fBm1/3. Understanding the properties of turbulence is a major problem
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of modern physics, which remains mostly open despite intense research efforts from

1941 when Kolmogorov formulated a statistical theory of turbulence [52]. Kolmogorov

introduced his theory, often referred to as K41 theory, for locally isotropic turbulence.

The velocity field is modeled as a process U(x) with increments having the following

structure function of order p:

E
[
|U(x+ r) − U(x)|p

]
∝ (ǫr)

p
3 .

Parameter ǫ, energy per unit of fluid mass per unit time, describes the energy trans-

mission from large eddies, where the energy is injected, to small eddies, where the en-

ergy is converted to heat by viscosity. The K41 theory states that a one-dimensional

longitudinal trace of a three-dimensional velocity field is a fractal noise process with

constant Hurst exponent 1/3 and models turbulence as a monofractal. Though the

theory was verified in many empirical observations possessing the property of mono-

tone spectral decay, it does not take into account the existence of coherent structures

such as vortices and helicity. Kolmogorov [51] refined the homogeneity assumption

of ǫ to be a location-varying dissipation rate ǫ(x), which leads to the model of multi-

fractional Brownian motion. This turbulence model is not monofractal.

We tested a turbulence signal of length 214 from velocity measurements on July 12,

1997 at 5.2 m above the ground surface over an Alta Fescue grass site at the Blackwood

division of the Duke Forest in Durham, North Carolina to check if the turbulence is

monofractal. In Figure 23(a), the turbulence signal and fBm1/3 are in black and

red, respectively. The average log spectrum of squared wavelet coefficients for the

two signals are shown in Figure 23(b). The spectral slopes are indistinguishable; the

two signals do not differ with respect to their second order properties. The wavelet

spectrum of the turbulence signal is shifted upwards from that of fBm1/3 because of

difference in their energies.

The two MFS along with their descriptors are shown in Figure 23(c): the MFS of

the turbulence signal is wider than that of the fBm1/3 signal. To quantify the degree of
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deviation of the turbulence signal from monofractality, 10, 000 samples of the fBm1/3

and the empirical distribution of estimated LSs were obtained as is shown in Figure

23(d). Two circles represent LSs of the turbulence (left in black) and the fBm1/3

(right in red). The critical point at 95% is highlighted with the red line in Figure

23(d). The black circle, corresponding to the turbulence signal falls in the critical

region, leading to rejection of the null hypothesis. We concluded the turbulence signal

was not monofractal.

Next, we demonstrate our method in an analysis of DNA sequences. In the anal-

ysis of DNA sequences, one of the most important tasks is to study whether two

sequences are related. This is studied by using a scoring system to rank the possible

relations between the sequences and by considering statistical methods to evaluate the

significance of such relations [33]. Often the sequences of nucleotides (A, C, G, and

T) are coded as functions or DNA walks, and fractal properties of these associated

functions can be informative for functional properties of DNA segments [7].

The analysis of DNA walks is influenced by the presence of a global linear trend

induced by the excess of purines over pyramidines. In all eukaryotic species, a DNA

molecule consists of a long complementary double helix of purine nucleotides (denoted

as A and G) and pyrimidine nucleotides (denoted as C and T). A single strain of

this DNA can be represented as a long word that corresponds to a random walk.

Depending on the letter at position i in the word, the random walk gets a cumulative

sum of increments of x(i) = 1 for A and G, and x(i) = −1 for C and T. Hence, the

corresponding random walk is defined as s(n) =
∑n

i=1 x(i), in which n is an index

smaller than the length of the sequence.

In Figure 24(a), we show an 8196-long DNA random walk for a spider from the

EMBL Nucleotide Sequence Database, which is also known as the EMBL-Bank. The

wavelet spectrum and MFS of the signal are shown in Figure 24(a) and 24(b), re-

spectively. The estimated Hurst exponent was 0.648 and the left slope was 1.47. We
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noticed that the MFS yielded only the left part from the mode because the partition

function was flat for negative exponents and made the right part of the MFS compu-

tationally unobtainable. The empirical distribution of LS∗b from 10, 000 simulations

of fBm0.648 is shown in Figure 24(d). The ASL of the observed LS (1.47) was greater

than 0.05, by which we conclude that the signal is monofractal. This conclusion is in

accordance with the observation made by Arneodo that the DNA sequences are the

most perfect monofractals found in nature (personal communications).
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Figure 23: Comparison of the turbulence and fBm1/3 signals; (a) turbulence in black
and fBm1/3 in red are indistinguishable with respect to their second order properties;
(b) log spectra for the two signals with two spectral slopes produced identical slopes;
(c) MFS and the descriptors for (a); (d) the bootstrap distribution of LS∗b along with
two circles (left in back for LS, 0.73, of the turbulence signal, right in red for LS, 1.43,
of the fBm1/3) signal and a rejection region of 95% achieved significance level (within
the red line).
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Figure 24: Demonstration of the test of monofractality to a DNA random walk:
(a) 8196-long DNA random walk for a spider from the EMBL Nucleotide Sequence
Database; (b) wavelet scaling with slope −2.296 and estimated Hurst exponent 0.648;
(c) MFS with left slope 1.47; only the left part from the mode was computationally
available due to a straight line in the partition function of negative exponents; (d)
the distribution of LS∗b with the LS (1.47) in a red circle.
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CHAPTER IV

CLASSIFICATION IN MULTISCALE DOMAINS

This chapter concerns a machine learning based classification method in function

estimation on multiscale domains.

4.1 Wavelet Shrinkage

If wavelet transform W is applied to noisy measurements yi = gi+ ǫi, i = 1, . . . , N , or

in vector notation y = g + ǫ , with a possibly multivariate regression function g and

normal noise ǫ, the transformed noise Wǫ is normal, as well. This linear and orthog-

onal transformation can be described for the discrete inputs by an orthogonal matrix

W of dimension N × N . With d = Wy and θ = Wg, the noise model in the time

domain can be reformulated as d = θ + ǫ in the wavelet domain. Wavelet shrinkage

methods, now widely utilized in nonparametric function estimation, estimate θ using

noisy observations d. The simplest nonlinear wavelet shrinkage technique is thresh-

olding. The two most common thresholding policies are hard and soft thresholding

rules with corresponding rules given by:

θhard(d, λ) = d1
(
|d| > λ

)
,

θsoft(d, λ) =
(
d− sgn(d)λ

)
1
(
|d| > λ

)
,

where 1(A) is an indicator of relation A.

These two shrinkage mechanisms with properly selected thresholds are character-

ized by exceptional statistical properties especially under i.i.d. Gaussian noise model

[30]. Under the correlated Gaussian noise model, they also have near optimal be-

havior in a wide range of function classes [49]. Bayesian approaches [19, 74, 35] and

minimax approaches [32] among others are suggested for accurate estimation of the
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true signal. The wavelet thresholding based on semi-supervised learning, which is

developed in this chapter, aims to exploit the hierarchical dependence structure of

wavelet coefficients for more accurate model selection.

4.2 Semi-supervised Learning

In the real world, we encounter both labeled and unlabeled observations. When we

estimate the true link between a label (response) and attributes (variables), it is

beneficial to incorporate the unlabeled observations conditional on whether labeled

and unlabeled attributes come from the same population. This requires a formal

model that is capable of handling both kinds.

In this section, Laplacian kernel, associated with manifold regularization [9], was

used to incorporate the information contained in the unlabeled observations. This in-

formation refers to low dimensional manifolds in the attribute space spanned by both

labeled and unlabeled data. When such manifolds are well estimated, the assignment

of labels can be more precise.

−2 −1 0 1 2

−1

−0.5

0

0.5

1

?

−2 −1 0 1 2

−1

−0.5

0

0.5

1

?

(a) (b)

Figure 25: Illustration of semi-supervised learning where the new observation (the
black diamond with question mark) is to be classified in the presence of two labels
(a red square and a green circle): (a) when only labeled data are considered, the
classification is a red square; (b) when both labeled and unlabeled data are considered,
the classification is a green circle.
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For the illustration of our point, consider Figure 25. In panel (a) only the la-

beled observations are present and they suggest that the best decision for the new

observation denoted by the question mark is the red rectangle. However, when unla-

beled observations are added (blue dots) the intrinsic low-dimensional topology of the

attributes suggests that the new observation in question should be the green circle.

Suppose that empirical data are given as

(x1, r1), . . . , (xl, rl) ∈ X × {0, 1},

xl+1, . . . , xl+u ∈ X,
(4.2.1)

where X is the domain of attributes xi and the ri is the label. There are l labeled

and u unlabeled observations in (4.2.1).

The goal is to find a function f with domain X and range {0, 1}:f : X 7→ {0, 1},

which is well fitted to the labeled observations and regularized both in the ambient

space (data space) and the intrinsic space (low-dimensional space of data) of X. The

labels selected are 0 and 1, but in principle the values can be arbitrary. An estimate

of f , f̂ , is given by

f̂ = arg min
f

1

l

l∑

i=1

V (ri, f) + ‖f‖2
I ,

where V is a loss function. Possible choices for V are squared error loss
(
ri− f(xi)

)2

for Ordinary Least Square (OLS), or hinge loss function max{0, 1−rif(xi)} for SVMs.

The norm ‖ ‖I controls the complexity of the solution in the intrinsic geometry of X.

The graph Laplacian L is constructed with an adjacency matrix W with entries

Wij representing the closeness between xi and xj and a diagonal matrix D with

Dii =
∑l+u

j=1Wij : L = D −W . While several natural choices for the norm ‖ ‖I are

possible, the graph Laplacian has an intuitive interpretation, in which the penalty is
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proportional to the adjacency Wij between xi and xj when the two are mapped apart.

f̂ = arg min
f

1

l

l∑

i=1

V (ri, f) +
l+u∑

i6=j

(
f(xi) − f(xj)

)2
Wij

= arg min
f

1

l

l∑

i=1

V (ri, f) + fTLf.

(4.2.2)

Here the estimate for the labeled observations is the same as the labels: f(xi) =

ri, i = 1, . . . , l. We have V (ri, f) = 0 and the minimization of (4.2.2) involves only

unlabeled fu:

f̂ =



f (l)

f̂ (u)


 = arg min

f
fTLf

= arg min
f(u)

[ (f (l))T (f (u))T ]




L1 L2

LT2 L3






f (l)

f (u)


 =




f (l)

−L−1
3 LT2 f

(l)


 ,

(4.2.3)

where L1, L2, and L3 are l by l, l by u, and u by u, respectively. The quantity

−L−1
3 LT2 f

(l) is interpreted as a confidence measure of support of label 1 against label

0, which can be justified by the approach of optimal graph cut, as in [9].

4.3 Semi-supervised Wavelet Shrinkage

Although wavelet transforms are whitening, in most cases the wavelet coefficients

still show inter-dependence. There are several shrinkage mechanisms that utilize the

hierarchical dependence of coefficients. Some of the approaches are [42] and [16].

The underlying idea is that the inclusion/exclusion of a coefficient should depend

not only on its magnitude, but also on magnitudes of its neighbors. The proposed

procedure for semi-supervised shrinkage uses the geometry of coefficients implied by

their hierarchical structure. The methodology of semi-supervised wavelet shrinkage

is outlined next.

In what follows, the double index jk representing the scale/shift indices in djk is

omitted and a “typical” wavelet coefficient is denoted as d. Assume that d is modeled
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as

d = θ + ǫ, ǫ ∼ N (0, σ2), (4.3.1)

where we are interested in estimating the location θ. The SS shrinkage consists of the

following three steps.

Step-1. Specify a thresholding rule of δ(d, λ) = d1(|d| > λ). Other choices of thresh-

olding policies (soft, semisoft[13], garrotte[38], et al. ) can be used as well.

Step-2. Find an estimate σ̂ of the standard deviation σ of d, and set two threshold

levels λ1 and λ2 such that λ1 ≤ λ2. This can be done by selecting a (τ1, τ2),

where τ1 ≤ τ2, so that the two threshold levels are

λ1 = σ̂
√

(2 + τ1) logN,

λ2 = σ̂
√

(2 + τ2) logN.

(4.3.2)

Step-3. Estimate θ by θSS as

θSS(d|δ, λ1, λ2) =






0, if |d| < λ1,

d f(d
˜
), if λ1 ≤ |d| < λ2,

d, if |d| ≥ λ2,

(4.3.3)

where f is a decision function depending on neighbors d
˜

of d that takes

values 0 or 1 indicating whether d is excluded or included, respectively. We

can generalize θSS with other choices of thresholding policy by applying the

rule to the right-hand side of (4.3.3) accordingly.

The coefficient-by-coefficient estimator at Step-1 with thresholding level will be

background thresholding of the SS rule. The rule in (4.3.3) defines labeled (included

and excluded) and unlabeled (undetermined) coefficients. An illustration of θSS is

given in Figure 26(a) where δ is hard thresholding and in Figure 26(b) where δ is

semisoft thresholding.
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Figure 26: Illustration of estimator δSS when the background shrinkage is (a) hard
thresholding, δhard and (b) semisoft thresholding, δsemisoft; estimators for undeter-
mined coefficients are red points. In the panel (c), a neighborhood for a wavelet
coefficient in a rectangle is illustrated. It contains 6 neighbors at the same level and
5 neighbors each at the upper and lower levels.
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Figure 27: (a) A neighborhood for a wavelet coefficient in a rectangle is illustrated.
It contains 6 neighbors at the same level and 5 neighbors each at the upper and
lower levels. (b) A two-dimensional representation (N = 128) of the neighborhood
in (a) with the column and row being wavelet coefficients d. The upper, middle, and
lower diagonal (black) lines represent neighbors at the upper, same, and lower levels,
respectively.

To obtain the estimate f̂ of the decision function, the following semi-supervised

learning mechanism is adopted. As discussed before, we treat included and excluded

coefficients as labeled and coefficients for which λ1 ≤ |d| ≤ λ2 as unlabeled. Let

s1, s2, and q be the number of included, excluded, and undetermined coefficients,

respectively (N = s1 + s2 + q). Also let Ii and Ie be the index sets of indices for

included and excluded coefficients, respectively. The learning mechanism consists of
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the following three steps.

Step-1. For N wavelet coefficients, define an adjacency matrix W . The size of the

matrix is N by N and possible entries are given as follows. For a constant

ρ ∈ R+,

Wnm =





exp (− (dm−dn)2

ρ
), dn and dm ∈ the same k nearest

neighborhood,

0, otherwise.

(4.3.4)

The parameter ρ is called the diffusion parameter and its choice depends on

the assumption of how much the mutual influence between two coefficients

diminishes as their distances increase. When ρ is ∞, Wnm simply becomes 1

if the two wavelet coefficients are in the same neighborhood and 0 otherwise.

We note that the binary adjacency (ρ = ∞) performed well in practice. We

fix the number of neighbors to be k (the k nearest neighbors). In the Figure

27(a), neighbors for one unlabeled coefficient are depicted: The neighbors

are located at the same level, at its upper level and lower level. Figure

27(b) shows the corresponding neighborhood structure when N = 126. We

will discuss how to set the value of k in Section 4.4.1.

Step-2. Construct the graph Laplacian matrix L (N by N). Rearrange W so that L

has a block of L1 (s1 + s2 by s1 + s2) corresponding to the included and the

excluded coefficients and L3 (q by q) corresponding to the undetermined

coefficients:

L := diag
(∑

i

W1i, . . . ,
∑

i

WNi

)
−W =




L1 L2

LT2 L3


 . (4.3.5)

Step-3. Obtain an estimate f̂
(u)
j for the undetermined coefficients by

f̂
(u)
j = 1

(
∑

p

∆jpf
(included)
p >

1

2

∑

p

∆jp

)
, (4.3.6)
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where ∆ is −L−1
3 LT2 , and f (included) is (s1 + s2) by 1 column vector with

elements f
(included)
p := 1(p ∈ Ii). Derivation of the decision rule (4.3.6) is

provided in the Appendix A.3.

4.3.1 Interpretation of SS Rule

In the following section, properties of SS shrinkage are discussed.

K-nearest neighbor (k-NN) algorithm. The SS rule for an undetermined coeffi-

cient can be interpreted as k-NN algorithm when its neighborhood consists of labeled

coefficients only. In this case, the decision condition (4.3.6) proves to be a k-NN algo-

rithm that compares the number of included neighbors with the number of excluded

neighbors when adjacency between the two neighbors is constant.

Theorem 4.3.1. Suppose that undetermined coefficients d have neighbors that are

either included or excluded with constant adjacency between the undetermined coeffi-

cients and their neighbors. Then, the SS estimator at undetermined coefficients d in

(4.3.6) becomes a k-NN rule;

θSS = d 1
(
#{included neighbors of d} > #{excluded neighbors of d}

)
.

The proof is provided in the Appendix. When the adjacency is not constant but

varies across its neighbors, the rule becomes a weighted k-NN algorithm. When an

undetermined coefficient has another undetermined coefficient as its neighbor, the SS

shrinkage can not be expressed simply as k-NN but as an estimator based on geome-

try of all coefficients imposed by the complete adjacency structure. By adjusting the

neighborhood in (4.3.4), and hence the adjacency matrix, the SS shrinkage generalizes

the nearest neighborhood algorithms.
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4.3.2 Optimality and Risk Analysis

Asymptotic near-optimality. We demonstrate that the SS rule achieves the same

asymptotic convergence rate as its background thresholding rule. Without loss of

generality, assume that δ is a hard thresholding estimator, δhard, that is proven to be

near-optimal as in (4.3.9). Under the model in (4.3.1) and the squared error loss, the

risk of diagonal projection (DP), θ̂ = d 1(|θ| ≥ σ), is

R(θ̂, θ) = E||θ̂ − θ||22 =
N∑

i=1

min(θ2
i , σ

2) := Roracle(DP, θ). (4.3.7)

The risk is called the oracle risk (Roracle) since it is unachievable because the true

σ and θ are unknown. [30] prove that traditional hard thresholding estimators

with threshold λ exhibit good asymptotic optimality when λ is sufficiently close to

σ
√

2 logN , which means that for some γ > 0,

(1 − γ) log logN ≤ (λ/σ)2 − 2 logN ≤ o(logN). (4.3.8)

Following this result, it will be shown that when risks of δhard(d, λ1) and δhard(d, λ2)

are within the logN factor of the ideal risk, the same holds for δSS(d|δhard, λ1, λ2)

rule.

Theorem 4.3.2. Under the model in (4.3.1), the SS estimator δSS(d|δhard, λ1, λ2),

as defined in (4.3.3) above, satisfies the inequality

R(δSS, θ) ≤ M
{
σ2 +

n∑

i=1

min(θ2
i , σ

2)
}

(4.3.9)

for an M ∼ logN and all θ ∈ RN , where λ1 and λ2 are sufficiently close to σ
√

2 logN

by (4.3.8).

The proof of the theorem, given in the Appendix A.5, is based on bounding

δSS(d|δhard, λ1, λ2) with δhard(d, λ1) and δhard(d, λ2). In the ‘Oracle’ notation of

(4.3.7), the equation (4.3.9) is

R(δSS, θ) ≤ L
{
σ2 +Roracle(DP, θ)

}
.
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The inequality indicates that the SS estimator can mimic, within the logN factor, the

performance of an oracle plus one extra parameter induced by unbiased estimation

of θ. The theorem can be extended to any λ1 and λ2 that satisfy asymptotic near-

optimality in the sense of (4.3.9). For example, the threshold σ̂
√

(2 + τ) logN as in

(4.3.2) satisfies the condition (4.3.8) whenever τ ∼ o(1).

4.4 Examples

In this section we apply the proposed thresholding rules. First, we discuss the neigh-

borhood structure and the selection of parameters λ1 and λ2. This consideration helps

in automating the methodology. Next, we compare performance of the proposed rules

to eight other popular methods (both global and adaptive). In the simulations we

set the primary resolution level j0 to be log2(log(N)) + 1, following the asymptotic

considerations given in Chapter 10 of [43].

4.4.1 Selection of Parameters

In any shrinkage task, selection of the parameters is essential for satisfactory per-

formance of the model. It is also preferable to have guidelines that indicate how to

select the parameters, thus providing automaticity to the shrinkage procedure (i.e.,

user intervention is not required). In SS shrinkage, the neighborhood structure for a

coefficient and two threshold parameters should be preset. The characteristics of the

signal can guide the shape and size of the neighborhood, while the selection of two

threshold levels can be guided by the variance of the signal and the signal-to-noise

ratio.

Number of neighbors. The number of neighbors at the upper and the lower levels

should depend on the support of the decomposing wavelet. The support size is linked

to the cone of influence of a wavelet coefficient [57]. Therefore, it is preferable to

use wavelets with compact support and a sufficient number of vanishing moments.
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As for the number of neighbors at the upper and lower levels, the suggestion is as

follows: the more irregular the signal is locally, the more vertical neighbors the local

wavelet coefficient should have. Prior information about smoothness of the signal

can be useful in guiding this setup. It is also recommended that the two numbers of

neighbors at the upper and lower levels be set to be equal (by the cone of influence of

a wavelet coefficient), and in practice one horizontal level, one upper level, and one

lower level will be sufficient for the levels of neighbors. Notice that neighbors of which

positions (k) are not within indices of the levels (j) are truncated and that neighbors

at the upper and lower levels of a coefficient can be asymmetric by one coefficient

depending on the position of the coefficient.

Threshold levels. We recommend selection of λ1 and λ2 by computing optimal

lower thresholds for a fixed background thresholding δ from the perspective of the

average mean squared error (AMSE), as in [13], when true signals are available. In

practice, the λ2 can be selected as an under-fitting threshold. As an example, the

background thresholding δ can be hard thresholding with the upper threshold level

λ2 as
√

2 logN . The choice for λ2 is motivated by an argument used for universal

thresholding. It was observed that the universal threshold is under-fitting, or larger

than the optimal threshold. The λ1 can be selected as an over-fitting threshold: an

example is a threshold set by the cross-validation approach [63]. Other examples for λ1

are as follows: λ1 as argmin0≤λ≤σ
√

2 logN SURE(λ,d) by SURE shrinkage paradigm[31]

or as σ
√

2(1 − ε) logN by a minimax approach [30].

For the sake of simulation, parameters λ1 and λ2, equivalently τ1 and τ2 as in

(4.3.2), can be set to minimize AMSE according to the types of signal and the length.

The lower threshold λ1 can also be chosen accordingly when the upper threshold

λ2 is set to be
√
u logN for u = 2, 3, 4. Figure 28 shows the Piecewise-Regular

signal at signal-to-noise ratio (SNR) = 5 and sample size n = 256, 1024, and 4096,

smoothed by SS shrinkage with hard thresholding as its background shrinkage for

100



various values of (τ1, τ2) with τ2 being 1. The optimal parameters for the signals of

various sizes can be selected by minimizing AMSE. As the distance between λ1 and λ2

increases, the AMSE first decreases and then increases. The parameters are tabulated

in Table 4 according to the signal length. Additional information about the numerical

experiments is found in Section 4.4.2. It is noted that the optimal distance between

two threshold levels to minimize AMSE varies as the length of signal changes.
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Figure 28: AMSE for Piecewise-Regular signal of (a) length of 256, (b) length of
1024, and (c) length of 4096 at SNR = 5; The λ1 is selected so that the distance
between λ1 and λ2 is the minimizer of AMSE.

Table 4: Optimal parameters for semi-supervised shrinkage: column SS(2) has λ2 =√
2 logN ; column SS(3), λ2 =

√
3 logN ; and column SS(4), λ2 =

√
4 logN .

SS(2) SS(3) SS(4)

N λ1 λ2 λ1 λ2 λ1 λ2

256 2.1402 3.3302 2.1687 4.7096 3.3996 4.7096
512 2.6222 3.5322 2.6961 4.3261 3.4853 4.9953
1024 2.8333 3.7233 2.9701 4.5601 3.4555 5.2655
2048 3.0150 3.9050 3.1527 4.7827 3.6125 5.5225
4096 3.1887 4.0787 3.3653 4.9953 3.6581 5.7681

4.4.2 Simulations and Comparisons

We present a simulation study of the performance of the SS method. The simulation

is done with the “known truth”, that is, with test functions and SNR specified. We

compare AMSEs of SS and several other popular methods. Comparisons between the

performance of SS and its own background thresholding method are also made.
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Simulation setting. For our simulation study, six standard test functions (Bumps,

Blocks, HeaviSine, Doppler, Piecewise-Regular, Piecewise-Polynomial) were

perturbed by scaled normal noise in order to produce a preassigned SNR. For each

method, the six test functions were generated at equally-spaced N points on the unit

interval. The true and noisy signals are shown in Figure 29(a) at N = 1024 and

SNR = 4. Denoised signals with SS shrinkage based on VisuShrink are presented in

Figure 29(b). The decomposing wavelets were chosen in a standard way: Symmlet

8 for HeaviSine, Doppler, and Piecewise-Polynomial; Daubechies 6 for Bumps

and Piecewise-Regular; and Haar for Blocks. The neighborhood structure and

thresholding levels were set as follows: the number of horizontal neighbors was 4; the

number of vertical neighbors was 12; the diffusion parameter ρ was 20; (τ1, τ2) was

(−0.2593, 0) for the SS rule based on Hybrid-SureShrink, while it was (−0.4222, 0)

for the SS rule based on VisuShrink; VisuShrink was set with the hard thresholding

option. The accuracies of the estimated signals were measured by an AMSE over

1000 simulation runs. All computations were carried out using MATLAB with the

Wavelab toolbox [14].

Comparisons with other methods. We compare SS shrinkage with several es-

tablished wavelet-based denoising methods. In particular, we consider the classical

term-by-term estimators VisuShrink of [30]; Hybrid-SureShrink of [31]; the scale

invariant term-by-term Bayesian ABE method of [35]; LPM of [23]; the “leave-

out-half” version of the Cross-Validation method of [63]; the term-by-term False

Discovery Rate (FDR) method of [1]; the term-by-term Bayesian estimator BAMS of

[74]; NeighCoeff of [17]; and finally BlockJS of Cai (1999). NeighCoeff and BlockJS

represent classical estimators that incorporate the blocking procedure to achieve a

better performance. We consider the CrossValidation method with the hard thresh-

olding policy, the BlockJS with the option ‘Augment’ [5], and SS shrinkage with

Hybrid-SureShrink as its background shrinkage.
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Figure 29: All true signals (in blue line) and noised signals (in black dots) for
simulation at the panel (a); estimated signals with SS rule based on VisuShrink at
the panel (b).

Figure 30 presents the boxplots of the AMSE computed for the above 9 methods

with N = 1024 at SNR = 4. We observe that the SS shrinkage performed comparably

to other established methods. For some signals, it outperformed several methods

such as CrossValidation, FDR, and BlockJS. In particular, it performed best for the

HeaviSine signal and surpassed the background threshold Hybrid-SureShrink for all

the six signals in terms of the sample average of AMSEs. Its ratios are shown in

Figure 32(a).
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Figure 30: Boxplots of AMSE for (1) LPM (GAMMARULE), (2) BAMS, (3) Vis-
uShrink, (4) Hybrid-SureShrink, (5) ABE, (6) CV, (7) FDR, (8) NC (9) BJS (10) SS
rule based on Hybrid-SureShrink, with n = 1024 at SNR=4.
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Figure 31: Estimated signals by semi-supervised shrinkage and its background
shrinkage, where the true signal is Blocks with SNR = 3, λ1 =

√
(2 − 0.9300) logN ,

and λ2 =
√

(2 + 1) logN ; (a) for hard thresholding with λ1, δ
hard
λ1

, (b) for semi-
supervised shrinkage based on hard thresholding, δSSλ1,λ2, and (c) for hard thresholding

with λ2, δ
hard
λ2

; Note that the signal in panel (b) compromises between the two signals
in panel (a) and (b).

Comparisons with background thresholding. Figure 31 illustrates the compar-

isons between SS shrinkage and its background shrinkage (hard thresholding) with a

part of standard “Blocks” signal and SNR = 3. Panels (a) and (c) present background

estimators for λ1 =
√

(2 − 0.9300) logN and λ2 =
√

(2 + 1) logN , respectively, while

panel (b) gives an estimator from the associated SS shrinkage. In contrast to each
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of the background estimators, the estimation by semi-supervised shrinkage compro-

mises between the two signals in panel (a) and (b) and is more sensitive to the overall

geometry of the true signal, which is evident by signal features and AMSE.

We observed that SS shrinkage outperformed its own background thresholding

method. To demonstrate this point, the thresholding level λ∗ for hard thresholding

was preset in such a way that it minimized AMSE from 1000 simulations. The

simulation was conducted using signals of size N = 2048 and with noise such that

SNR is 5. Then, the AMSE for each signal was computed based on 1000 simulations.

The neighborhood structure was characterized as follows: the number of horizontal

neighbors was 20; the number of vertical neighbors was 20; the diffusion parameter ρ

was 5000. The threshold levels for the SS rule were obtained by perturbing λ∗ with

estimated noise level σ̂: λ1 = λ∗ − k1σ̂ and λ1 = λ∗ + k2σ̂; k1 = k2 = 0.1 for Bumps;

k1 = k2 = 0.2 for Blocks, Doppler, and Piecewise-Polynomial; k1 = 0.5, k2 = 0 for

HeaviSine; k1 = 0.3, k2 = 0 for Piecewise-Regular. The estimate of the noise level was

calculated by the median absolute deviation of the wavelet coefficients in the finest

level of detail. The threshold levels in terms of τ1 and τ2 are shown in Figure 32(c)

and AMSE ratios of the SS rule compared to the background method are shown in

Figure 32(b). This simulation shows that the SS rule outperformed the background

method in terms of AMSE for the six test signals.

4.4.3 An Example in Atomic Force Microscopy

To illustrate the performance of the SS shrinkage method proposed here, we used

measurements in atomic force microscopy (AFM).

AFM is a type of scanned proximity probe microscopy (SPM) that can measure

the adhesion strength between two materials at the nanonewton scale [11]. In AFM,

a cantilever beam is adjusted until it bonds with the surface of a sample, and then the
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Figure 32: (a) Comparison (AMSE ratio) of the SS rule with its background thresh-
olding (Hybrid-SureShrink as for Figure 30); (b) comparison (AMSE ratio) of the
SS rule with its background thresholding (hard thresholding with a threshold level
that minimizes AMSE) at N = 2048 and SNR=5; the SS rule outperformed its back-
ground thresholding for all test signals; (c) threshold levels of the background hard
thresholding and the SS rule in terms of τ ; numbers represent: 1, Bumps; 2, Blocks;
3, HeaviSine; 4, Doppler; 5, Piecewise-Regular; 6, Piecewise-Polynomial.

force required to separate the beam and sample is measured from the beam deflection.

Beam vibration can be caused by factors such as thermal energy of the surrounding

air or the footsteps of someone outside the laboratory. The vibration of a beam acts

as noise on the deflection signal; in order for the data to be useful this noise must be

removed.

The AFM data from the adhesion measurements between carbohydrate and the

cell adhesion molecule (CAM) E-Selectin was collected by Bryan Marshal from the

BME Department at Georgia Institute of Technology. The detailed technical descrip-

tion is provided in Marshall, McEver, and Zhu (2001). Researchers are interested in

precise slope at the ramp (dotted line in Figure 33).

In Figure 33 the top panel shows the original noisy data. We consider the SS with

VisShrink. The middle panel shows the SS estimate with (τ1, τ2) = (0.5, 1.5), while

the bottom panel shows LPM estimate with (τ1, τ2) = (0.7, 1.5). The sample size was

n = 211 and Symmlet 8-tap filter was used to obtain the estimate. We observe that

the latter estimate exhibits slightly smoother behavior, especially in the long-middle

part without oversmoothing the “ramp-like” structure which is the feature of interest

here.
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Figure 33: Original AFM measurements (top), SS estimator based on VisuShrink
with (τ1, τ2) = (0.5, 1.5) (middle), SS estimator based on VisuShrink with (τ1, τ2) =
(0.7, 1.5) (bottom).
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CHAPTER V

CONCLUSIONS

Firstly, we derived joint estimators of time-changing Hurst exponent H(t) and its

variance coefficient C for mBm under independent white noise. Properties of the

estimator such as bias and asymptotic distribution are shown utilizing generalized

regression theory. The effectiveness of the approach was verified through numerical

experiments in comparison with several other approaches. Its application to real EEG

data set was conducted supporting clinical observations of the patient.

Secondly, evidence for deviation from monofractality, which is contained in the

partition function and MFS, can be used to develop a paradigm for formal testing for

deviation from monofractality. In the third chapter, we introduced a measure of devi-

ation from monofractality by using left slope as one of the descriptors of wavelet-based

MFS of a signal. We constructed a test procedure based on parametric bootstrapping

of sampled fBm signals which are monofractals. This produces a distribution of left

slopes consistent with the assumption of monofractality. Our simulation results in-

dicate that the testing procedure effectively separates multifractal Brownian motion

signals from fBm signals. Its effectiveness is also shown in the real life example of

turbulence and DNA sequences, first as an example of multifractal, and second as an

example of monofractal.

Thirdly, we developed a new method for wavelet-filtering of noisy signals that

combines semi-supervised learning with wavelet thresholding. Construction of la-

beled and unlabeled coefficients for semi-supervised learning and its justification is

provided. Both interpretations of the method and its theoretical properties have been

explored. We have demonstrated that the performance of semi-supervised shrinkage

108



is comparable to several existing shrinkage methods in terms of average mean-squared

error. Evidence has also been provided to show that the method preserves geometries

of signals better than underlying background shrinkage method and that it improves

its own background shrinkage method. For future research, we envision combining

different decision rules of a general type, not necessarily thresholding, with machine

learning algorithms. The implementation is fast in computations for sample sizes up

to 4096 and feasible for 8192. We want to explore computationally efficient algorithms

for samples of larger sizes.
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APPENDIX A

PROOFS AND DERIVATION

A.1 Proof of Proposition 2.1.1

Let us denote G(t) =
√
CK

(
2H(t)

)
/
√

2 for the sake of simplicity. We have the

covariance E
[
Va(

j
N

)Va(
j′

N
)
]

be

∑

q,q′

aqaq′

(
G
( j − q

N

)
G
( j′ − q′

N

) ∫ exp(i j−q
N
λ) − 1

|λ|H( j−q
N

)+1/2
×

exp(−i j
′
−q′

N
λ) − 1

|λ|H( j′−q′

N
)+1/2

dλ + σ2
E[ε(

j − q

N
)ε(

j′ − q′

N
)]

)

=
∑

q,q′

aqaq′
G
( j−q
N

)
G
( j′−q′

N

)

NH( j−q
N

)+H( j′−q′

N
)

∫
exp

(
i(j − q)u

)
− 1

|u|H( j−q
N

)+1/2
×

exp
(
−i(j′ − q′)u

)
− 1

|u|H( j′−q′

N
)+1/2

du

+σ2
∑

q−q′=j−j′

aqa
′

q (by u =
λ

N
).

By Taylor’s expansion and Hölderian order η of H(t), we approximate

G
( j − q

N

)
= G(t) + O(ǫη), G

( j′ − q′

N

)
= G(t′) + O(ǫη),

1

NH( j−q
N

)+H( j′−q′

N
)

=
1

NH(t)+H(t′)

(
1 + O(ǫη logN)

)
,

1

|u|H(
j−q
N

)+H(
j′−q′

N
)

=
1

NH(t)+H(t′)

(
1 + O(ǫη log u)

)
.

Using also ǫη → 0 as N goes to infinity, the covariance becomes

∑

q,q′

aqaq′
G
(
t
)
G
(
t′
)

NH(t)+H(t′)
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By the property of a, the equation (A.1.1) becomes

∑

q,q′

aqaq′
G
(
t
)
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NH(t)+H(t′)
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du = |κ|α, ∀κ, 0 < α < 2,
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A.2 Proof of Proposition 2.1.2

By denoting A = 1
|ν(t)|

∑
j∈ν(t)
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Using independence of W (t) and ε(t), properties of white noise ε(t), and convergence

of S(t, a) to E
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almost surely as N → ∞, we have consequently A → 0,
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A.3 Derivation of Equation 4.3.6

Define f (included) and f (excluded) as (s1 + s2) by 1 column vector, respectively,

f (included)
p :=





1, if p ∈ Ii,

0, if not,

and f (excluded)
p :=





1, if p ∈ Ie,

0, if not.

(A.3.1)

By equation (4.2.3), −L−1
3 LT2 f

(l) is a measure to support the label f (l) against all the

other labels. Then, the jth undetermined coefficient is to be included if

[−L−1
3 LT2 f

(included)]j > [−L−1
3 LT2 f

(excluded)]j, (A.3.2)
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or, equivalently, (recall ∆ is denoted to be −L−1
3 LT2 )

∑

p

∆jpf
(included)
p >

∑

p

∆jpf
(excluded)
p . (A.3.3)

By definition of f (included) and f (excluded) in equation (A.3.1), it follows

f (included)
p = 1 − f (excluded)

p for all p ∈ Ii ∪ Ie. (A.3.4)

From equations (A.3.4) and (A.3.3), equation (4.3.6) follows.

A.4 Proof of Theorem 4.1

Since neighbors of undetermined coefficients are either included or excluded, the ma-

trix L3 in (4.3.5) becomes a diagonal matrix: L3 = diag(
∑

iWij). By definition, the

elements of L2 become −Wij . The right hand side of the decision condition for the

b-th undetermined wavelet coefficient in (A.3.2) writes:

[−L−1
3 LT2 f

(included)]b = −
∑

a∈Ii

∑

h

Whb(−Wab) =
∑

h

Whb

∑

a∈Ii

Wab.

Similarly, the right-hand side of (A.3.2) becomes
∑

hWhb

∑
a∈IeWab. Consequently,

the decision rule for the b-th undetermined wavelet coefficient is

f̂
(u)
b = 1

(∑

a∈Ii

Wab >
∑

a∈Ie
Wab

)
,

which can be simplified into a k-NN algorithm because of constant adjacency among

neighbors (Wab = constant, ∀a, b):

f̂
(u)
b = 1

(
#{included neighbors of b} > #{excluded neighbors of b}

)
.

A.5 Proof of Theorem 4.2

Let δhardλ1
and δhardλ2

be two hard thresholding estimators, respectively. By the definition

of δSS at (4.3.3), for all d we have

|δhardλ2
(d)| < |δSS(d|δhard, λ1, λ2)| < |δhardλ1

(d)|. (A.5.1)
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Then, by (A.5.1), the square error loss of δSS at d is bounded,

(
θ − δSS(d|δhard, λ1, λ2)

)2
< max

{(
θ − δhλ1

(d)
)2
,
(
θ − δhardλ2

(d)
)2}

.

The risk of δSS is bounded;

R(δSS, θ) < R(δhardλ1
, θ) +R(δhardλ2

, θ).

Since risks of δhardλ1
and δhardλ2

are within the logN factor of the ideal risk, it follows

that R(δSS, θ) is within the logN factor of it.
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Series B, vol. 63, no. 2, pp. 127–148, 2001.

[18] Calvet, L. and Fisher, A., “Multifractality in asset returns: theory and
evidence,” Review of Economics and Statistics, vol. 84, no. 3, pp. 381–406, 2002.

[19] Chipman, H. A., Kolaczyk, E. D., and Mcculloch, R. E., “Adaptive
bayesian wavelet shrinkage,” Journal of the American Statistical Association,
vol. 92, pp. 1413–1421, 1997.

[20] Coeurjolly, J.-F., “Estimating the parameters of a fractional brownian mo-
tion by discrete variations of its sample paths,” Statistical Inference for Stochastic
Processes, vol. 4, pp. 199–227, May 2001.

[21] Coeurjolly, J.-F., “Identification of multifractional brownian motion,”
Bernoulli, vol. 11, pp. 987–1008, 2005.

[22] Coeurjolly, J., “Erratum: Identification of multifractional Brownian motion,”
Bernoulli, vol. 12, no. 2, p. 381, 2006.

[23] Cutillo, L., Jung, Y., Ruggeri, F., and Vidakovic, B., “Larger posterior
mode wavelet thresholding and applications,” Journal of Statistical Planning and
Inference, vol. 138, no. 12, pp. 3758–3773, 2008.

[24] Daubechies, I., “Orthonormal bases of compactly supported wavelets,” Com-
munications on pure and applied mathematics, vol. 41, no. 7, pp. 909–996, 1988.

[25] Daubechies, I. and Lagarias, J., “Two-scale difference equations. I. Exis-
tence and global regularity of solutions,” SIAM Journal on Mathematical Anal-
ysis, vol. 22, p. 1388, 1991.

[26] Daubechies, I. and Lagarias, J., “Two-scale difference equations II. Local
regularity, infinite products of matrices and fractals,” SIAM Journal on Mathe-
matical Analysis, vol. 23, p. 1031, 1992.

[27] Daubechies, I., Ten Lectures on Wavelets. Soc for Industrial & Applied Math,
December 1992.

115



[28] Derado, G., Lee, K., Nicolis, O., Bowman, F., Newell, M., Rugger,
F., and Vidakovic, B., “Wavelet-based 3-D Multifractal Spectrum with Ap-
plications in Breast MRI Images,” Bioinformatics Research and Applications,
vol. 4983, pp. 281–292, 2008.

[29] Deriche, M. and Tewfik, A., “Signal modeling with filtered discrete frac-
tional noise processes,” IEEE Transactions on Signal Processing, vol. 41, no. 9,
pp. 2839–2849, 1993.

[30] Donoho, D. L. and Johnstone, I. M., “Ideal spatial adaptation by wavelet
shrinkage,” Biometrika, vol. 81, pp. 425–455, 1994.

[31] Donoho, D. L. and Johnstone, I. M., “Adapting to unknown smoothness
via wavelet shrinkage,” Journal of the American Statistical Association, vol. 90,
pp. 1200–1224, 1995.

[32] Donoho, D. and Johnstone, I., “Minimax estimation via wavelet shrinkage,”
Annals of statistics, pp. 879–921, 1998.

[33] Durbin, R., Eddy, S., Krogh, A., and Mitchison, G., Biological sequence
analysis: Probabilistic models of proteins and nucleic acids. Cambridge Univ Pr,
1998.

[34] Efron, B. and Tibshirani, R., An introduction to the bootstrap. Chapman &
Hall, 1997.

[35] Figueiredo, M. and Nowak, R., “Wavelet-based image estimation: an em-
pirical Bayes approach using Jeffrey’s noninformative prior,” IEEE Transactions
on Image Processing, vol. 10, no. 9, pp. 1322–1331, 2001.

[36] Flandrin, P., “On the spectrum of fractional Brownian motions,” IEEE Trans-
actions on Information Theory, vol. 35, no. 1, pp. 197–199, 1989.

[37] Frisch, U., “Fully developed turbulence and intermittency,” Annals of the New
York Academy of Sciences, vol. 357, no. 1, pp. 359–367, 1980.

[38] Gao, H., “Wavelet shrinkage denoising using the non-negative garrote,” Journal
of Computational and Graphical Statistics, vol. 7, no. 4, pp. 469–488, 1998.

[39] Gao, J., Cao, Y., Tung, W., and Hu, J., Multiscale analysis of complex
time series: integration of chaos and random fractal theory, and beyond. Wiley-
Interscience, 2007.
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