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SUMMARY

The way in which infants play with objects can be indicative of their developmental

progress and may serve as an early indicator for developmental delays. However, the ob-

servation of children interacting with toys for the purpose of quantitative analysis can be a

difficult task. To better quantify how play may serve as an early indicator, researchers have

conducted retrospective studies examining the differences in object play behaviors among

infants. However, such studies require that researchers repeatedly inspect videos of play

often at speeds much slower than real-time to indicate points of interest. The research pre-

sented in this dissertation examines whether a combination of sensors embedded within toys

and automatic pattern recognition of object play behaviors can help expedite this process.

For my dissertation, I developed the Child’sPlay system which uses augmented toys and

statistical models to automatically provide quantitative measures of object play interactions,

as well as, provide the PlayView interface to view annotated play data for later analysis.

In this dissertation, I examine the hypothesis that sensors embedded in objects can provide

sufficient data for automatic recognition of certain exploratory, relational, and functional

object play behaviors in semi-naturalistic environments and that a continuum of recognition

accuracy exists which allows automatic indexing to be useful for retrospective review.

I designed several augmented toys and used them to collect object play data from more

than fifty play sessions. I conducted pattern recognition experiments over this data to

produce statistical models that automatically classify children’s object play behaviors. In

addition, I conducted a user study with twenty participants to determine if annotations

automatically generated from these models help improve performance in retrospective re-

view tasks. My results indicate that these statistical models increase user performance and

decrease perceived effort when combined with the PlayView interface during retrospective

review. The presence of high quality annotations are preferred by users and promotes an

increase in the effective retrieval rates of object play behaviors.
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CHAPTER I

INTRODUCTION AND MOTIVATION

The observation of infants’ and toddlers’ developmental progress for the purpose of quan-

titative analysis is an important and yet difficult task. A developmental delay is diagnosed

when a child fails to exhibit behavioral milestones typical for their age group. The preva-

lence of developmental delay in the United States for young children is approximately 10

percent [19]. As such, the early identification of these children is an important public

health goal. However, the wide variation of typical development among children can make

establishing the presence of a developmental delay a difficult task. Subtle, early abnormal-

ities can often be overlooked as normal developmental variation [9]. This issue is further

exacerbated by the large number of markers used to track developmental progress. The

routine monitoring of a child’s progress is crucial to the identification of delays and is con-

sidered a vital component of pediatric care [63]. Recent formative research has explored the

monitoring practices and record-keeping needs for families of young children. The results

suggest that parents may benefit from increased support with the manual tracking of their

child’s developmental progress and that mobile ubiquitous computer technology may help

in this domain [38]. These devices may benefit from further development of technology and

algorithms that can automate the identification and recording of developmentally relevant

activities. Such automated technology has yet to be explored.

The Centers for Disease Control and Prevention currently lists over 200 milestones to

track over the first five years of a child’s life [13]. These developmental skills can range from

banging a toy on a table to displaying socially appropriate expressions to siblings. With

developmental milestones spanning the four main areas of cognitive, physical, linguistic,

and psychosocial skills, a large variety of mobile sensors can be employed to collect data.

However, automatically recognizing all developmental milestones across all four areas is a

task beyond the scope of this dissertation. Specialists often use a subset of these milestones
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in screening diagnostics, and recent research in Psychology suggests that the observation of

object play interactions may help identify early indicators of certain developmental delays [2,

7]. A subset of play activities, similar to those studied in clinical research, will be the focus

of the automatic recognition aspects of this work.

The ways in which infants and toddlers play with objects can be indicative of their

developmental progress. Depending on their age, a child’s object play activities can display

simple physical milestones such as placing objects in their mouth to sophisticated cognitive

tasks such as symbolically using a banana as a telephone receiver. Psychologists have

created a coding scheme which quantizes the levels of sophistication displayed by infants

while engaged in object play (see Section 2.1.1 for more detail). Using retrospective analysis

of home videos for children diagnosed with autism spectrum disorder, Baranek et al. used

this scheme to identify the highest level of sophistication reached per child and found that

the level and duration of play at each level differed between typically developing children

and children with autism [7]. Object play behaviors offer a viable subset of developmental

milestones to explore for the purposes of automatic recognition.

This research will produce technology that can automatically generate quantitative data

from observations of children engaged in object play, similar to that produced by the coding

scheme of Baranek et al. These measures include the frequency with which an object is

played, the time spent attending between different objects, and the highest level of play

sophistication reached by a child. The technology presented in this dissertation focuses

on recognition within the first six levels of sophistication described by this scheme which

include play behaviors from exploratory, relational, and functional play. These categories

include toy manipulations such as grasping, shaking, rolling a ball, pushing, pulling apart

interlocking toys, uncovering lids, pouring, stacking blocks, and early imaginary actions.

Embedding wireless sensors in toys may allow the infant object play to control com-

putational objects automatically within the environment to help collect relevant data and

promote the future study of these interactions. For example, with this technology a video

capable ultra mobile device, such as KidCam [37], could automatically save video footage as

a toddler assembles blocks, babbles while removing lids from containers, or achieves some
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Figure 1: Components of the Child’sPlay system

other developmental milestone. This collection of relevant video data (as opposed to a large

continuous stream of video footage) may allow for both a more rapid and more frequent

analysis of developmental play activities by researchers. As a proof of concept, I present

technology focused on in situ controlled studies. However, in the future these technologies

could be extended to generalize to home use.

The automatic detection of developmental indicators is an interesting pattern recogni-

tion problem. This dissertation presents an applied algorithm for automatically recognizing

object play primitives and their composition to identify higher levels of play sophistication

along with the design and implementation of wireless sensor enabled toys. In addition, this

dissertation also explores the challenges associated with collecting play data from young

children and the viability of using play data gathered from adults to generate statistical

models that can then be applied to recognize play behaviors among young children. As

part of this exploration, I collect a data set of adult object play and compare the ability

of various algorithms to compose primitive play behaviors into higher levels of play sophis-

tication. In particular, I explore boosting, hidden Markov models (HMMs), and support

vector machines as well as näıve methods. Knowing that, regardless of the algorithm used,

automatic recognition of play is not perfect, this dissertation also investigates the impact

that recognition errors have on the ability of a user to interact with an intelligent interface

designed for retrospective review of object play behaviors. This investigation also provides

a target in terms of recognition accuracy for future systems.
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1.1 Purpose of Research

The goal of this research is to develop components of technological tools that could one day

help increase the understanding of children’s development through the automatic capture,

access, and retrospective review of toddler-object play in semi-structured environments.

This research includes the exploration of a wireless sensor solution consisting of sensors

embedded in toys, a statistical pattern recognition component that can automatically char-

acterize certain types of object play behavior performed by young children, and an interface

which supports retrospective review of play data (see Figure 1). In particular, this tech-

nology will automatically identify rudimentary object play behaviors and characterize the

types of play observed via the PlayView interface.

1.2 Thesis Statement

I hypothesize that sensors embedded in objects can provide sufficient data for automatic

recognition of certain exploratory, relational, and functional object play behaviors in semi-

naturalistic environments and that a continuum of recognition accuracy exists which allows

automatic indexing to be useful for retrospective review.

.

1.3 Research Questions

This thesis will explore the following research questions:

1. Can wireless sensors embedded in toys be used to collect sufficient data in semi–

naturalistic settings to automatically identify specific exploratory, relational, and

functional play behaviors?

2. Can statistical models of object play developed with adult play data be general-

ized to allow recognition of a child’s object play with sufficient enough quality to

support later review by other individuals?

3. What level of recognition quality do users find acceptable when using systems to

support retrospective analysis of object play behaviors?
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1.4 Research Contributions

The following contributions are made during the process of exploring the thesis statement

in Section 1.2:

1. The first contribution is an exploration of the use of wireless sensors embedded in

age–appropriate toys to support the transparent capture of quantitative toddler–

object interaction data in naturalistic settings. As part of this contribution, I

also designed and developed toys that allow for sensors to be easily shared and

exchanged for those with other sensing modalities.

2. The second contribution is the application and exploration of statistical machine

learning techniques to learn and automatically recognize operational definitions

of exploratory, relational, and functional play. As part of this contribution, I

investigate how well these techniques generalize across different participants and

toys as well as characterize the strengths and weaknesses of each technique for

identifying object play.

3. The third contribution is the production of a consistent method for coding de-

velopmental data by using the recognized play behaviors to automatically index

associated video footage and object play data for later analysis by other individu-

als.

4. The fourth contribution is an exploration of the impact that recognition quality has

on the user–experience when annotating object play data via an interface designed

for retrospective review.

5. The fifth contribution is the production of multivariate, multiple modality data

sets of object play behavior collected from adults, young children, and toddlers to

help encourage further pattern recognition research in this area.
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1.5 Thesis Overview

Chapter 2 presents background, which supports the need for the results of this research by

covering five distinct areas of work related to this thesis: Psychology research on object

play; capture–and–access systems for children with disabilities; existing sensor packages

along with pattern recognition techniques for activities of daily living; evaluation metrics

for continuous activity recognition; and augmented toy systems. In Chapter 3, I present my

previous work with on–body sensing systems designed to collect data for later review. This

chapter also describes the pattern recognition methods used in my previous work as well

as highlighting evaluation methods for continuous activity recognition. Chapter 4 describes

the design considerations for both the sensing technology and the toys used to collect object

play data. I also discuss the initial play tests of the prototype toys that informed the design

of the final toy set. Chapter 5 details a pilot study conducted late in 2007 and provides

initial recognition results of adults playing with a mixture of augmented and regular off–

the–shelf toys. Based on the pilot study detailed in Chapter 5, I present motivation for

restricting my pattern recognition experiments towards play data using only augmented

toys. Chapter 6 describes both the adult and child data sets collected from Fall 2008 until

Fall 2009, providing details on pattern recognition experiments on both adult and child data

sets. Knowing that recognition rates will not be perfect, in Chapter 7, I detail the results

of a study that assesses the impact that recognition errors have on the ability of a user to

identify object play behaviors using a data visualization tool. Chapter 8 and Chapter 9

present a discussion of future directions for this work and my conclusions.
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CHAPTER II

BACKGROUND AND RELATED WORK

In this chapter, I discuss some of the background and work related to key areas of this

thesis including: exploring developmental progress via infant object play, capture–and–

access systems for children with disabilities, pattern recognition systems for activities of

daily living using wireless sensors, evaluation of continuous activity recognition systems,

and augmented toy systems as tangible interfaces.

2.1 Studying Developmental Progress via Object Play

Infant–object interaction has been a focus of study since the early 1920s [65]. There are

many different types of object play that a researcher may wish to explore when attempting

to identify early indicators of developmental delays. Some current areas being explored

clinically are: social aspects of object play, such as sharing attention between objects and

playmates; physical manipulation aspects of object play, such as stacking objects; and

attentional aspects of object play, such as object preferences [2, 7, 65, 35]. My thesis

directly builds on work in physical manipulation object play and shares similar procedural

elements with work conducted in shared attention studies involving object play.

2.1.1 Levels of Sophistication in Object Play

There has been much research in Psychology investigating identification of early indicators

for a wide variety of developmental delays [19]. Of particular interest is a video retrospective

analysis performed by Baranek et al. correlating infants’ interactions with inanimate objects

(called object play) with the child’s current diagnoses as either typical, having an autism

spectrum disorder, or otherwise developmentally delayed [7]. This study provided the first

exploration of object play for infants between the ages of 9–12 months.

To perform this analysis, Baranek et al. elicited home movies of 32 infants from families

whose children were now old enough to receive a diagnosis indicating if they are typical
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or atypical with respect to development (and, in particular, a diagnosis of autism). The

content of these videos was then coded for high level scene information such as the scene

location, the number of people in the scene, and the presence of infants. This gross content

analysis was then used to composite clips of the infants from a variety of scenes into a 10

minute sampling of the video for each infant. These 10 minute samplings were then coded

for object play to determine the play ability demonstrated by each child.

Prior to the study by Baranek et al., there was no universally accepted scale to rate

object play. In order to provide a measure of play ability, Baranek et al. created unified

definitions for four distinct categories of play from an in–depth literature review and created

twelve levels of sophistication spanning those categories (see Table 1). The four categories

used in the object play coding scale are exploratory, relational, functional, and symbolic

play and are briefly defined below:

• Exploratory Play: Any child’s action upon a single object that results from a

visually–guided reach and helps provide information about the object or environment.

No functional relations exist between action and objects. Examples include: (Level 1)

grasping, rubbing, shaking, scratching, banging, poking, mouthing, (Level 2) rolling

a car, pushing a button, rocking a horse, and opening/closing doors.

• Relational Play: When two or more objects are used in combination with each

other but are associated without regard to the functions or attributes of the objects.

Examples include: (Level 3) pushing apart pop-beads, removing lids from containers,

(Level 4) stacking blocks, detaching puzzles pieces, and scooping/pouring objects.

• Functional Play: Any conventional use of an object influenced by cultural properties

of the object and simple pretend play actions. Examples include: (Level 5) placing a

lid on a pot, dumping objects from a truck, (Level 6) drinking from an empty cup,

and raising a phone to an ear to talk to a pretend friend.

• Symbolic Play: Any scheme in a continuum of play schemes that incorporates items,

attributes, contexts not actually present, or the substitution of objects. Examples
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include: (Level 9) using a block as a car, or banana as a phone, (Level 10) using

figures to load objects into truck, propping a bottle in a doll’s arms to feed her,

(Level 11) pretending a doll is crying, or claiming a toy stove is hot to the touch.

Table 1: Sequence and definitions of categories used in object play coding scale (from
Baranek et al. [7])

Category and Level Definitions Examples

Exploration of Objects in Play
Level 1: Indiscriminate actions
(2–10 months)

Does not account for functional
characteristics; physically
manipulates object in
unsophisticated ways; treats all
objects alike

Tactile manipulations; grasping,
rubbing,shaking, scratching,
banging, poking, mouthing

Level 2: Simple manipulations of
single objects (2–10 months)

Preserves physical or conventional
characteristics; discriminates
through guided manipulation

Rolling a car; pushing a button;
riding a rocking horse;
opening/shutting a door

Relational Use of Objects in Play
Level 3: Takes combinations of
objects apart (10–18 months)

Related objects are separated or
taken apart

Pulling pop beads apart; taking a
lid off a container

Level 4: Presentation/general
combinations (10–18 months)

Relating objects by putting them
together; combining objects not
according to their presentation

Stacking blocks; putting pieces
into a puzzle; scooping/pouring

Functional/Conventional Use of
Objects in Play
Level 5: Object–directed (12–18
months)

Actions are directed toward an
object

Placing a lid on a pot; dumping
objects from a truck

Level 6: Self–directed (12–18
months)

Familiar actions are directed
towards the self

Drinking from an empty cup;
raising phone to ear and
vocalizing

Level 7: Doll–directed (12–18
months)

Familiar actions are directed
toward doll figures; child is the
agent of the activity

Feeding a doll with a spoon;
combing the doll’s hair

Level 8: Other–directed (12–18
months)

Familiar actions are directed
toward other persons; child is the
agent of the activity

Extending a teacup to a person’s
lips, or a telephone receiver to a
person’s ear

Symbolic Use of Objects in Play
Level 9: Object substitution
(18–30 months)

Child represents or substitutes
one object for another

Substituting a block for a car or a
banana as a telephone

Level 10: Agent play (18–30
months)

Child moves doll figures as if they
are capable of action

Moving a figure to load blocks
onto a truck; propping a bottle in
a doll’s arms to feed

Level 11: Imaginary play (18–30
months)

Properties are assigned to objects
as if they are real; Involves an
imaginary object in play or
references an object as if it were
present

Claiming a toy stove is “hot”;
pretending a doll is crying

After the video was coded and analyzed, it was determined that no child, neither those

developing typically nor those with an atypical diagnosis, (between the ages of 9 – 12

months) achieved a level of play more sophisticated than functional object directed or self

directed play (levels 5 & 6). Regardless of current diagnosis, the children spent a total of 25%

of the time engaged in object play with 84.4% of the children engaging in only indiscriminate

actions and simple manipulations (levels 1 & 2). Table 2 shows average level of play ability
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Table 2: Average level of play ability reached in infants 9–12 months of age (from
Baranek et al. [7])

Diagnosis Group Mean Level Standard Deviation
autism 2.18 .98
other developmental delay 1.70 .67
typical 2.55 1.51

reached per diagnosis group. Baranek et al. concluded that observing exploratory play does

not help distinguish autism for this age group; however, only typical children demonstrated

play ability higher than general object combinations (level 4) reaching functional object

directed play or self directed play (level 5 & level 6).

In discussion, Baranek et al. raise future questions they would like to explore that are

summarized as:

• How often does a child play with a specific toy?

• How often is a specific toy chosen over other toys?

• What type of play is being engaged using specific toys?

• How often is that type of play engaged?

The technology I present in this thesis is designed to help automatically address the

questions above. Furthermore, because Baranek et al. found that exploratory play alone

is not sufficient to distinguish typical from atypical development, my system will focus on

identifying exploratory, relational, and functional object play. This will be discussed with

more detail in Chapter 4 and Chapter 6. In addition, Baranek et al. noted that they had

an average interrater reliability of 87%. Achieving this level of reliability required a very

fine–grained coding scheme. One of the contributions of the Child’sPlay system is that its

performance is deterministic and it will label data consistently.

2.1.2 Communication Play Protocol

The Communication Play Protocol (CPP) is a protocol designed to gather a sample of

mother–child communication using semi-structured conditions with children ages 18 – 30

months [1, 2]. The CPP focuses on four communicative functions and produces samples

10



of how mother and child negotiate while interacting socially, requesting items, commenting

on items, and narrating between each other with shared objects. The CPP is conducted

in a staged play room and is based around the concept that the mother is a “supporting

actress” to the child. The mother and child participate in a series of short scenes where the

mother is given one cue card per scene to help suggest ways to play with the child. The card

describes the plot of the scene, potential props with which to play, and a general direction

to try and focus play. The cards do not provide a direct script but provide enough cues to

allow the mother to play spontaneously for approximately five minutes.

I will use a method similar to the CPP to elicit samples of specific play behaviors when

gathering data from subjects (see Section 5.3 and Section 6.2). I will not use the CPP

directly in my studies. Providing general cues to adults will help them play creatively while

still ensuring enough samples are collected to build a robust recognition system.

2.2 Capture and Access Systems for Retrospective Analysis

Work by Kientz [39, 36, 37] has focused on embedded capture and access systems to support

decision making processes of caregivers for children. Of particular relevance to this work is

her system KidCam that supports the tracking of developmental milestones. Her system is

enabled by a technology pioneered by Hayes et al. [27], known as experience buffers, which

Hayes explored in the CareLog system.

2.2.1 Kidcam

KidCam is a prototype system designed to study the use of computer technology to support

the early detection of children with special needs [37]. Kientz evaluated the ability of

KidCam to support parents and pediatricians in the decision-making process to assess if a

child was developing typically over a 4-month period. Her technology consisted of KidCam,

a computer supported baby monitor, and companion desktop software that allows parents

to collect pictures and videos of their child while also providing age-appropriate prompts for

parents to enter developmental health-related information about their child.1 The software

1Prompts were based on the Ages at Stages Questionnaires R© (ASQ) [10]

11



allows review of the child’s progress over time at varying levels of detail. If a child has

gone too long without completing a specific milestone, the system will alert the parent and

add it to a list of questions they can print and bring to their pediatrician at their next

scheduled visit. The desktop software also supports the generation of memorabilia such as

online video sharing and newsletter–style updates that can be sent to family members.

The KidCam baby monitor is implemented on a Sony Viao-U handtop computer and

uses its integrated camera to constantly maintain a temporary buffer of the last 25 minutes

of video data. When parents or caregivers observe something they wish to record, they can

trigger the baby monitor to save video clips of what just happened by tapping a button

on the screen. This experience buffer is similar to those used by the CareLog system [26].

Kientz deployed the full technology in four homes to determine if this computing technology

could help increase and encourage the record keeping practices of new parents. A modified

version of the desktop software, that does not prompt parents, was simultaneously deployed

in four different households for comparative purposes.

This KidCam technology provided increased technological support with the manual

tracking of children’s developmental progress. Kientz found that although the parents

with KidCam recorded more videos, use of the system was still low. In this thesis, I am

exploring automated methods for collecting developmental data that can be incorporated

into the KidCam smart baby monitor software and that could potentially support automated

triggering for the experience buffers.

2.2.2 Lena: Language ENvironment Analysis

LENA is a commercial system designed to help monitor language development in children,

from new born to four years old [42]. LENA monitors and measures a child’s linguistic

progress and their language environment by automatically monitoring child vocalizations,

words spoken to the child, conversational turn taking, meaningful speech, and exposure to

environmental language. LENA provides frequency and duration information for vocaliza-

tions and is designed to help reduce transcription time of audio data for researchers.

Similar to Child’sPlay, this system is targeted at early identification of developmental

12



delays and is designed to generate quantitative statistics about developmental progress.

Furthermore, both systems can help reduce data transcription by automatically providing

labels of timestamped data for later review. Child’sPlay differs from LENA in that it has

been designed to monitor development progress associated with play (such as cognitive and

motor skills). It should be noted that the augmented toys of the Child’sPlay system have

the sensing capability to monitor babbles and speech that occur during play – though their

audio capability will not be explored as part of this thesis.

2.2.3 Automatic Content Analysis for Social Game Retrieval

Observation of social games between parent and child, such as peak-a-boo and patty-cake,

can be important in the early detection of developmental delays. When studying an infant’s

social ability in research studies, psychologists assess a child’s behaviors using recorded

videos, such as home movies (similar to the methods described for object play analysis in

Section 2.1.1). While computers currently assist in the video-based behavior assessment, it

is a manual process where researchers must search for relevant behaviors and score them.

This procedure is very time consuming and labor intensive. Work by Wang et al. [68,

69, 70] focuses on developing computer vision techniques to automate video filtering and

behavior coding of parent–infant social games. In particular the goal of her work is to

develop computer vision algorithms to automatically detect and classify social games from

unstructured videos. Similar to the goals of this thesis, algorithms by Wang et al. are

intended to help automate the behavior coding process by enumerating the types of social

games a child can play and their frequency, as well as generate other important statistics.

Wang et al. has developed an unsupervised algorithm for extracting quasi–periodic

events from unstructured video by mining for patterns among histograms of visual words

[68]. Quasi–periodic events are events which repeat within a specified period of time, but

also allow for slight variations within the repetition to occur. For the purposes of modeling

and retrieving social games, Wang et al. defines social games in terms of these quasi–periodic

events as repetitions of the dyadic interactions, with a range of permissible variations [70].

By this definition, two individuals engaged in a repetitive interaction, such as patty–cake,

13



classify as a social game. However, using just the unsupervised method, a child that is

repeatedly removing toys from a chest would be classified as a social game. To better

classify social games within the video footage extracted with the quasi–periodic algorthm,

she then applies support vector machines (SVM [11]) to categorize the video segments

according to the type of social game that are present (if any).

In her work on social game detection, she collected two video data sets. The first set

consists of three types of social games: patty–cake; rolling a ball back and forth; and

tossing a ball back and forth. The data set was collected from ten adults (five dyads) and

consists of approximately 40 minutes of footage. Training an SVM classifier (using 2
3 of the

data set for training) on the patterns of visual words, she achieves an accuracy of 94.44%

over 18 pattycake sequences, 81.25% over 16 toss-the-ball sequences, and 92.31% over 13

roll-the-ball sequences.

In addition to the adult–only data set, Wang et al. collected a second data set consisting

of 85 minutes of three parent–child dyads playing freely in a laboratory setting. This data

set includes the three games found in the first data set as well as other games. When

applying the SVM classifier trained using the adult data set to this second data set, an

average recognition rate of recognition rate of 61.41% is achieved.

Wang et al. developed her methods concurrently to the development of the Child’sPlay

system. It should be noted, that the second data set was collected in the same setting as the

data sets collected in this theses. In fact, the augmented toys from the Child’sPlay system

were used during the collection of Wang et al. second data set. Similar to Wang et al.,

I will use SVM to classify object play activities and will apply models trained on adult

play to classify play among younger children. However, unlike Wang et al., the Child’sPlay

system does not make use of computer vision nor unsupervised methods. The combination

of computer vision and augmented toys is a logical next step and will be discussed further

in Section 8.
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2.3 Pattern Recognition for Activities of Daily Living

Many applications in ubiquitous and wearable computing support the collection and auto-

matic identification of daily activities using on-body sensing [34, 64, 46, 43, 54]. In 2004,

Bao and Intille showed that the use of two accelerometers positioned at the waist and upper

arm were sufficient to recognize 20 distinct household activities, such as brushing teeth or

traversing up stairs, using the C4.5 decision tree learning algorithm with overall accuracy

rates of 84% [6]. Lester et al. reduced the number of sensor locations to one on-body po-

sition by incorporating multiple sensor modalities into a single device [44]. Using a hybrid

of both discriminative and generative machine learning methods (modified AdaBoost and

HMMs to smooth the results), they recognized 10 activities of daily living with an overall

accuracy of 95%.

In each of these works, the sensors remained on-body in a fixed orientation and often in

a fixed position limiting the degrees of freedom experienced by the sensor, hence limiting the

parameters that must be learned. The Child’sPlay system, however, can have an activity

performed with the sensors in any number of orientations. This increase in parameter space

could have dramatic effects on both training time, the number of examples required, and as

a result, the classifiers that can be learned (see Appendix D.3). For reasons of practicality,

the training time of the system should not exceed the time it takes to manually annotate

the behaviors being studied. In this case, each question posed could potentially require

additional model training and be analogous to psychologists recoding the data by hand to

address different research agendas.

2.4 Evaluation of Continuous Activity Recognition Systems

Recently, a method was developed for visually representing performance that explicitly

accounts for the various types of recognition errors that an automated system can incur,

known as Multiclass Segment Error Table (MSET) [71, 72]. MSETs represents the total

duration of the data as a rectangle and subdivides it into sections corresponding to the

different classification results. This method provides a relatively complete picture of the

overall performance and error distribution for the system. Multiple recognition methods
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can be compared at a glance by aligning the corresponding diagrams and visually comparing

the relative area of the true positive division and relevant error divisions.

Section 3.2 shows modification to the MSET framework that accounts for a more diverse

range of error distribution when evaluating recognition systems. This advanced representa-

tion could be used as a method to evaluate the performance of various algorithms applied

to identify object play behaviors.

2.5 Automating Cognitive Assessments using Tangible Interfaces

A Graspable user interface, according to Fitzmaurice, “provides users concurrent access to

multiple, specialized input devices which can serve as dedicated physical interface widgets,

affording physical manipulation and spatial arrangements”[20]. Ullmer and Ishii state that

“Generally graspable and tangible interfaces are systems relating to the use of physical ar-

tifacts as representations and controls for digital information” [66]. Graspable and tangible

interfaces are used in a variety of applications including (but not limited to) evaluations

of construction tasks, edutainment, interactive toys, creative play systems, and structural

design systems. Of particular interest to this work is the use of tangible interfaces as an

aide for clinical assessment.

The assessment of cognitive abilities is an important aspect of evaluating a child’s de-

velopmental progress. The development and retention of cognitive and motor skills can

be assessed by observing the constructional ability of an individual. Constructional ability

can be quantified by observing performance on drawing, assembly, and building tasks. For

example, a common 3D construction task is to replicate a specific spatial structure rep-

resentation with building blocks. The completion of these construction tasks requires the

ability to perceive the target shape, reason about the spatial structure of the shape, develop

a plan to construct the shape, and physically build the shape [45, 24].

Typically, assessment of construction ability is performed manually in a clinical setting

by highly trained specialists. Common metrics, such as task completion time, accuracy

of construction, assembly order, and analysis of construction strategy, are subjective and

become more difficult to assess as shape complexity increases. The manual scoring of these
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tasks often introduces bias to the assessment and may decrease test reliability [24]. As such,

recent research has focused on automating clinical assessments. In particular, research in

graspable and tangible user interfaces has explored automating the clinical assessment of

3D cognitive construction.

Cognitive Cubes is a prototype system designed to automate the clinical assessment of

cognitive construction tasks [62]. The Cognitive Cube system consists of a tangible user

interface and video projection system. During a session an administrator selects a predefined

target shape that is projected onto a screen. The participant reconstructs the projected,

rotating shape using ActiveCube, a tangible user interface for describing three-dimensional

shapes [40].

The Cognitive Cubes system analyzes the data collected from the ActiveCubes, offline,

after a construction task is completed. The system computes four assessment measures

based on the similarity of the participant’s built object to the target object: the similarity

at time of completion, the duration of the construction task, the rate of completion, and

the consistency of progress.

A pilot study and two in–depth studies were conducted comparing the Cognitive Cube

system to manual assessments. Forty-three participants ranging in age from 22–86 partic-

ipated in the studies. Two of the participants had mild Alzheimer’s disease. The studies

showed that Cognitive Cubes is sensitive to cognitive factors, increased scoring measure-

ment resolution, and increased reliability of assessment when compared to manual scoring

of 3D construction tasks. Strengths of the system include consistency of administration,

and sensitivity to cognitive deficiencies by recording data on the often ignored intermediary

steps of construction.

Similar to the Cognitive Cube system, my system aims to increase the consistency of

manual annotation and provide the ability to record relevant data that would have otherwise

gone unnoticed by human observers for object play behaviors. However, unlike the Cognitive

Cube system, Child’sPlay will target a much younger population and consists of wireless

components.
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CHAPTER III

PREVIOUS WORK: ACTIVITY RECOGNITION TECHNIQUES FOR

CONTINUOUS, MOBILE WIRELESS SENSING

Activity recognition is the problem of detecting and identifying activities in time-varying

sensor data [50]. As mentioned in the previous chapter, there have been several projects

involving the automatic recognition of daily activities as recorded by wireless sensors. This

chapter briefly describes one of my previous projects involving mobile wireless sensing.

While the system described below is not directly related to the identification of object

play activities, it was a prototype system designed to automatically recognize activities and

index them for later review. After, I will discuss previous, collaborative work involving

the types of errors that can occur during continuous recognition and how Error Division

Diagrams (EDDs) can be used to help researchers visually compare the performance of

recognition systems in terms of these errors. Based on this analysis researchers can select

the system that best suits their needs [50]. This chapter closes with a discussion of the

impact that different recognition error types might have on an intelligent interface designed

for retrospective review of object play.

3.1 Classification using HMMs and the Georgia Tech Gesture Toolkit

In this section I present my initial work investigating the use of wireless sensors to assist in

the naturalistic observation and care of children with autism. In particular, I describe an

on–body system that provides continuous recognition of mimicked autistic self–stimulatory

behaviors using three wireless accelerometers [77]. This pilot study provided a proof-of-

concept system that is capable of collecting data from a child with autism and can also

automatically provide indices into that data to highlight the self–stimulatory behaviors for

later review. Our initial results are computed using a neurotypical adult and indicate that

an automatic indexing system for self-stimulatory activity is feasible. However, there are

many practical issues that may make a wearable system for the target population of children
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difficult to deploy [38, 21]. This section also discusses the recognition components of the

Georgia Tech Gesture Toolkit that were used in this project, followed by a brief discussion

of the implications for recognizing object play behaviors in toddlers.

3.1.1 Wireless On–body Sensing to Support Children with Autism

Autism is a developmental disorder affecting a child’s social development and ability to

communicate. Children with autism will often exhibit behaviors such as vocal stutters and

brief bouts of vigorous activity (e.g., violently striking the back of the hands) to cope with

everyday life. Depending on the child’s level of functioning, these highly individualized, self-

stimulatory (“stimming”) behaviors can be disruptive, socially awkward, and even harmful.

Caregivers and researchers would like to explore the correlation between these stimming

behaviors and environmental factors, behavioral treatments, mood, and other physiological

markers.

To assist in this analysis, I aimed to automate the recording and analysis of these behav-

iors [77]. Although it is impractical for a researcher to monitor a given child continuously

for episodes of stimming, an intelligent monitoring system could collect daily data from the

child and filter it so that only the stimming episodes are highlighted. An automated data

collection system may provide insight into a given child’s mental and physiological state. It

may also provide detailed, quantitative data for researchers in the field, which is currently

rare.

The initial results indicate that an automatic indexing system for stimming activity is

feasible. Our data set consists of acceleration data generated from a neurotypical adult mim-

icking autistic stimming behaviors while performing unscripted activities. The accelerom-

eters were positioned on the right wrist, the back of the waist, and the left–ankle. Seven

stimming behaviors and intermediary unconstrained “non-stimming” activities were mod-

eled using hidden Markov models (HMMs) via the Georgia Tech Gesture Toolkit (GT2k) [73]

(see Section 3.1.2). I explored the performance of these models in both isolated and contin-

uous settings. The isolated HMM experiments assumed slight noise in data segmentation

and achieved accuracy rates of 91.0 percent. In the continuous recognition experiments,
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exact segmentation of the stimming events was not possible due to minor insertion errors.

These fragmentation errors (rapid alternation of classes at the boundaries) produce an over-

all system accuracy of 68.6 percent. However, I improved segmentation accuracy by using

insertion penalties and smoothing during the model alignment process. I achieve a recall

rate of 100 percent for the self-stimulatory events with 92.9 percent precision including

identification of non-self-stimulatory activities.

3.1.2 Georgia Tech Gesture Toolkit: GT2k

In 2003 I developed and released The Georgia Tech Gesture Toolkit (GT2k) [73]. The

GT2k provides a publicly available toolkit, which leverages Cambridge University’s speech

recognition toolkit HTK, for developing gesture–based recognition systems [29]. Since its

release, the GT2k has been used in over 100 projects across 3 continents to provide tools that

support gesture recognition research. It has also resulted in a secondary, more accessible

toolkit, GART: the Gesture and Activity Recognition Toolkit [47].

GT2k provides a user with tools for preparation, training, validation, and recognition

using HMMs for gesture–based applications (see Appendix C for mathematical details). In

the simplest case, recognition can be performed on one gesture at a time. This technique is

known as isolated gesture recognition. However, the more practical use for my purpose is to

perform continuous recognition on a sequence of gestures within a contiguous block of data.

Knowledge of the possible sequences of gestures can be presented to GT2k in the form of

a rule–based or stochastic grammar. Grammars allow GT2k to leverage knowledge about

the structure of the data, which aids in continuous recognition by constraining the gesture

classification with respect to the previously classified gestures. Grammars also allow users

to define complex gestures as a sequence of simpler gestures.

3.1.3 Implications

GT2k provides a flexible and powerful framework for using HMMs in continuous activity

recognition systems. Of particular interest to this thesis is the support for bi–gram, tri–

gram, and N–gram grammars that will allow greater representational power for expressing

object-play behaviors in young children. For the purposes of recognizing children’s object
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play activities, there is an implicit structure for simple exploratory behaviors in so much

that a child must pick up a toy before he can shake the toy. For more complex relational

play actions, such as stacking and unstacking, grammars can be used to remember object

state. However, specifying a rule–based grammar for every combination of toy and object

play activity could be tedious. For this reason, I will explore the use of stochastic grammars

to allow domain knowledge to influence model alignment.

It should be noted that whatever the combination of sensors, algorithms, and accuracy,

the viability of the end solution is determined by the influence of the recognition errors

on the retrospective review task. There are certain error types that can be ignored or

overlooked with respect to the retrospective review of object play behaviors. However, a

discussion of acceptable and unacceptable error types is delayed until Section 3.3, after the

introduction of work describing the different error types that can occur during continuous

recognition.

3.2 Quantitative Evaluation Metrics for Systems Supporting Retrospec-
tive Analysis

In this section I will discuss my collaborative work involving the description of error types

that can occur during continuous recognition and how Error Division Diagrams (EDDs)

can help researchers compare the performance of recognition systems visually to select the

system that best suits their needs [50]. I will also discuss the impact these errors might

have on an intelligent interface designed for retrospective review of object play.

3.2.1 Disadvantages of a Single, Numerical Metric

Standard accuracy metrics do not always account for the impact that different error types

have on applications. For example, in automatic recognition systems, a trade–off exists

between identifying all instances of an activity and obtaining accurate event boundaries.

These trade–offs have different impacts based on how the recognition technology is being

used. For example, when coding videos for play, some researchers may be interested in

the exact duration of play events (e.g., how long a child rocked a wobbly toy back–and–

forth). Other researchers may only be interested in the number of times the play event
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Figure 2: Sample hypothetical ground truth (GT) labels for a simple domain that includes
waving (W), dropping (D), and rolling (R) toys, along with the hypothetical predicted labels
for three different recognition systems (A, B, and C) that yield equivalent accuracy.

occurred, while others may merely want to know if the event occurred within a segment of

video. When considering these different types of usage scenarios, a single numerical metric

can often be misleading. For example, Figure 2 shows a recognition task along with the

hypothetical predicted output of three systems. The top row consists of ground truth events

while the subsequent rows consist of predicted output values. All three systems yield the

same frame–level accuracy of 66 %. However, as illustrated, the three systems do not have

identical output. In fact, each system produces different types of frame and event level

errors. Appendix B.1 illustrates and describes frame, event, and segment analysis in more

detail. The impact of these errors may vary in significance depending on the application as

well as the level of analysis being preformed.

3.2.2 Types of Errors Encountered in Continuous Recognition

There are many types of errors that can occur during continuous recognition involving

correspondence issues between activity boundaries and labels. Figure 3 shows the output

of nine different recognition systems, A − J , where each illustrates a specific error type

common to continuous recognition. The definitions and specifics of these error types are

listed in Appendix B.3.

3.2.3 Error Division Diagrams

Error Division Diagrams (EDDs) are a way to represent graphically the overall performance

of a recognition system including both the distribution of errors (according to type) and the

percentage of null activity present. These rectangular diagrams organize errors according to

type and severity by representing each error type as a corresponding percentage of the entire

column. Figure 4(a) represents two EDDs with symbolic labels for illustrative purposes.

22



Starting from top to bottom, these labels represent the percentage of frames that were true

positives, true negatives, overfills, underfills, fragmentations, merges, insertions, deletions,

substitution-fragmentations, substitution-merges, and substitutions with the black horizon-

tal line indicating the division between mild and severe errors. Figure 4(b) is the numerical

version of Figure 4(a).

The two top divisions of EDDs represent the percentage of true positive and true negative

instances recognized, respectively. These two divisions account for all of the data that was

correctly identified by the system. All divisions afterwards represent errors which increase

in severity with minor errors towards the top and more severe errors at the bottom. For

example, overfill (O) and underfill (U), indicate simple boundary errors whereas insertions

(I) and deletions (D) of events are more serious classification errors. In Figure 4(b), System

A and System B correctly identify the same percentage of events, however, System B has

less severe errors.

Figure 4(c) shows an EDD comparison of multiple systems. With these diagrams, recog-

nition methods can be compared by inspecting the percentage of errors below the serious

error line and relative area occupied by other errors. For example, the large percentage of

area devoted to overfill (O) and underfill (U) indicates that System B has event boundary

Figure 3: Different boundary and label correspondence error types that can occur in
continuous recognition systems. The ground truth labels are highlighted at the top.
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Figure 4: Error Division Diagrams comparing recognition systems. Part (a) and part (b)
show identical comparisons, however, Part (a) represents EDDs with symbolic labels while
part (b) represents EDDs with numeric labels. Showing, from top to bottom, the percent-
age of frames that were true positives, true negatives, overfills, underfills, fragmentations,
merges, insertions, deletions, substitution-fragmentations, substitution-merges, and substi-
tutions. The dark horizontal bar indicates the division between severe and mild errors.
Part (c) shows EDDs comparing multiple systems

errors. Systems C and D have a large percentage of fragmentation and merge errors (re-

spectively), indicating a difficulty in determining the duration of events. Systems E, F, and

G, on the other hand, have more serious errors whereby they incorrectly identify events,

delete events, or state that events occurred where they did not.

3.3 Implications of Error Types for the Child’sPlay System

Recognition does not need to be perfect to be useful for retrospective analysis. For the task

of reviewing object play, there are some errors that are less severe than others depending on

the task. For example, if the recognition portion of the Child’sPlay system produces overfill

and underfill errors, it will highlight the occurrence of play events but provide inaccurate

timings of the events. If the goal of the retrospective analysis is to count event frequencies,

overfill and underfill are not serious errors. However, if the analysis goal is to tally the

duration of specific events, these errors would be slightly more serious – the identified

occurrence of the event can guide the user to the temporal location, but it would require
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the user to identify the boundaries of the event. Deletion and insertion errors, if numerous,

could have a drastic impact on both frequency and duration counts. If these error rates are

high, the user could potentially waste time dismissing false positives or searching for missed

false negatives.

By the same token, if the goal of the Child’sPlay system is to help identify the achieve-

ment and maintenance of specific levels of object play sophistication, the deletion and inser-

tion errors may be less serious. In the case of achievement, the system need only to identify

a small portion of instances for a specific behavior. Not all events need to be identified to

prove a developmental goal has been reached. Even if deletion errors were frequent, the

system need only recognize one instance to prove achievement. Likewise, in order to verify

the maintenance of a skill, only a fraction of instances need to be identified. This justifica-

tion partially holds for insertion errors as well. For example, the Child’sPlay system could

falsely identify multiple instance of relational play. However, if even a fraction of the events

are true positives, (which the user can screen for correctness) then the system has shown

achievement of relational play. If, however, the system failed to identify any true instances

of relational play (zero true positives, 0% recall), the insertions would be misleading. While

EDDs are not used directly in the Child’sPlay system, the discussion above helps highlight

which types of recognition errors would be most detrimental when using the Child’sPlay

system to analyze developmental progress.
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CHAPTER IV

AUGMENTED TOY DESIGN

This chapter discusses the motivations behind the selection of the activities supported by

Child’sPlay, followed by a discussion of the sensing challenges and requirements that must

be met by the toys. I end the chapter with a brief discussion on the initial play tests with

children as well as the implications for the Child’sPlay system and subsequently collected

data sets.

4.1 Activities to Recognize

Child’sPlay will support a subset of play activities similar to those studied in clinical re-

search. In particular, the system will automatically generate quantitative data from obser-

vations of children engaged in object play similar to that produced by the coding scheme

of Baranek et al. [7]. These measures include the frequency with which an object is played,

the time spent attending between different objects, and the highest level of play sophis-

tication reached by a child. Based on the scale produced by Baranek et al., as well as

conversations with developmental psychologists [59, 4], our technology will focus on recog-

nizing toy manipulations such as grasping, exploring, shaking, rolling objects, pulling apart

LegoTM Quatro–compatible blocks, assembling, pouring, stacking blocks, nesting objects

and early imaginary actions (see Table 3). These actions form the basis of more compli-

cated levels of play whose recognition is an important first step towards identifying more

complicated play structures, such as symbolic play (the recognition of which is beyond the

scope of this thesis). Toys and activities that appear in our pilot data sets (discussed in

Section 4.4 and Section 5.3) differ slightly to those that appear in our final adult and child

data sets (discussed in Section 4.5).
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Table 3: Elementary levels of object play along with canonical examples [7]
Category Levels Examples

Exploratory
L1: indiscriminate actions grasp, rub, shake, bang, mouth
L2: simple manipulation rolling toys, pushing a button

Relational
L3: takes combinations apart pull apart assembled toys, remove lids
L4: general combinations stacking, scooping, pouring

Functional
L5: object directed covering with lids, dump payloads
L6: self directed imaginary drinking or talking on phone

4.2 Sensing Considerations

Several trade-offs exist in the development of a play sensing system, including sensor type,

power consumed, and form factor. The types of sensors used and form factor of the toys

influence the quality of data that can be recorded. Regarding the design requirements

of the form factor, the sensor should be easy to charge, have maximum protection from

daily use, be unobtrusive, and remain in position during use. Embedding the sensor within

the toy addresses many of these issues and maintains the original safety properties of the

toys. It can also help keep the sensor in the proper position to allow for consistent data

recording and can prevent the sensor from becoming exposed to the child while in use. The

form factor also determines the ease with which the sensors can be accessed by caregivers

to remove for toy cleaning maintenance and for charging the battery. However, finding a

balance between ease of access for adults and preventing the children from accessing the

sensors can be difficult. Designs that require manual dexterity, such as screw tops and/or

constant force are often good for preventing children from accessing the hardware.

While no one sensor is ideal for automatic play recognition, a fusion of sensors can help

increase the range of activities that can be detected. Our toy designs favor the multiple

modality BlueSense integrated wireless sensor package [56]. The BlueSense sensors detect

motion, sound, and touch via two audio analog inputs, two capacitive touch-sensing inputs,

and an on–board 3–axis accelerometer. They measure about 1.8x1.8 inches (4.6 cm) and

can transmit data continuously for about 10 to 12 hours using a light rechargeable 3.6V

750mA battery.

The sensing modalities supported by BlueSense are well suited to the range of play
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Table 4: The Child’sPlay augmented toys and the activities they promote. The groupings
correspond to different early levels of object play similar to those described by Baranek et al.

activities that Child’sPlay system is to detect. However, there are two main disadvantages

to using an integrated approach. First, because I am using a smaller, lighter battery, it

will require more frequent charging. Second, using a centrally embedded sensor package

means that some of the integrated sensors will not have optimal positioning. For example,

the microphone will not have external exposure, as it is located inside the toy. Likewise,

the centralized sensor location can cause issues for capacitive sensing as well. Two of our

designs explore using conductive threads and fabrics to address this issue for sensing touch.

These are the plush cube and plush caterpillar designs1. These designs, as well as the other

toys in Child’sPlay will be discuss in the next section, Section 4.3.

4.3 Toy Selection and Form Factors

I have designed and implemented seven toys to collect data about toddler–object play

behaviors. These toys include a plush puppy rattle, a plush caterpillar, a plush cube, plastic

LegoTM Quatro compatible blocks, a plastic ring stacking toy compatible with the Fisher–

PriceTM Rock-a-Stack toy, an abstract shape resembling a cooking pot lid, and two plastic

dome toys compatible with the Fisher–PriceTM Stack-&-Roll Cups toy (see Figure 6). All

of the toys are designed to use the BlueSense sensing unit enclosed in a friction-fit plastic

case that is embedded within the toy. The plush puppy rattle and plush caterpillar toys

are adorned with smiling faces, to encourage social engagement with the toys [59]. The

1The plush caterpillar was designed and implemented in collaboration with Wooyoung Sung, Pamela
Griffith, Michael Genovese, and Scott Gilliland as part of a project for the Mobile and Ubiquitous Computing
class in Fall 2007. Details on the plush cube design can be found in Appendix F.
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Figure 5: Plush toys designed to detect touch via capacitive sensing

ring, lid, and dome toys are rounded objects based on a similar circumference to encourage

stacking, covering, and scooping activities. Table 4 lists the prototype toys and the object

play actions they promote according to level of sophistication. An important specification

of our design shared by all toys was safety. All toys are large enough so children cannot

swallow them. All of the toys except for the plush caterpillar and the cooking pot lid are

modeled from existing toys approved for infant use. Each toy continuously transmits data

via the Bluetooth sensor to a mobile computing device where it records and processes the

data. Example data collection platforms used are the Sony Vaio UX10 and an IBM X31

laptop. Data from a single toy has also been collected on a Nokia cell phone platform.
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Figure 6: Left: CAD models of the plastic toys used with Child’sPlay. Right: the plush
puppy rattle with sensing unit exposed.

4.4 Pilot Play Sessions with Initial Toy Designs

I have conducted initial play tests with the seven toys. These tests included three toddlers

(and respective parents) over a minimum of two 20 minute sessions per participant where

each session resulted in at least five minutes of play time with some of the augmented toys.

These informal sessions, which involved free play, allowed me to test the durability, appeal

to children, and data transmission capability of the toys.

From this play pilot, I learned that the ABS plastic and conductive textile toys were

durable, functional as toys, of interest to children, and concealed the sensor from the par-

ticipants. The toys withstood throw, drops, and kicks that occurred during play. However,

the design of the plush caterpillar proved to be flawed. The design of the caterpillar was

such that the sensor was positioned in the head of the caterpillar with the remaining three

body segments connected via conductive Velcro R© (see Figure 5). The segment connections

proved too brittle and detached unexpectedly during play. Furthermore, the body seg-

ments were stuffed with a soft cotton that did not retain shape when gripped. This caused

baseline issues for the capacitance sensing as the segments did not return to their original

shape when released. The caterpillar toy will not be used in subsequent studies due to the

difficulty to correct these flaws versus the benefit of including the toy. The plush cube,
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which was designed with conductive materials and a stiffer foam core, retains it shape when

released and does not suffer from similar baseline issues.

In addition to the flaws with the plush caterpillar design, the play tests did expose

an important challenge for constructing the automatic recognition portion of Child’sPlay.

The most prominent challenge is collecting enough training examples to build models for

recognition. While I can script play scenarios to help encourage children to engage in the

types of play the Child’sPlay system is trying to detect, there is no guarantee that the child

will be willing or able to comply. This problem is further complicated by the fact that our

target age group is children ages 10–24 months old. Some of these children may not have

yet formed language, nor will they be receptive to instructions by adults. Thus, I cannot

instruct them to play with the toys in a way that will be guaranteed to elicit proper training

data. One possible solution to this problem is to bootstrap the models with data collected

from adults engaged in semi–scripted play. Chapter 5 discusses the collection of a pilot data

set using adult subjects and my initial results when detecting relevant play activities among

the adults using both augmented and regular toys. Chapter 6 describes the collection of a

larger play data set including both children and adult play sessions as well as discusses the

application of more robust statistical adult models to detect children’s play.

4.5 Modifications and Final Toy Designs

Both the toys’ form factors and the specific play activities to be recognized were modified

after the collection of each pilot data set. The initial toy designs were used in the play tests

described in Section 4.4 and in the collection of the pilot adult play data set described in

Section 5.3. The initial plastic toys were white in color and designed to be compatible with

certain existing off–the–shelf toys. While the augmented toys interacted well with their

commercial counterparts, the augmented toys were not explicitly designed to interact with

each other. As will be discussed with more detail in Chapter 5, play interactions involving

multiple augmented toys are generally easier to detect automatically than play interactions

involving a mixture of regular toys and an augmented toy. Hence, by designing toys to

interact with commercial counterparts rather than other augmented toys, the initial set of
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Figure 7: Final version of the plastic dome toys

toys may have increased the complexity and difficulty of both modeling and recognizing

elementary play behaviors.

While interactions between augmented toys and regular toys are likely to occur in natural

settings, I feel it is important to leverage the toy designs to maximize the opportunity of

recording and identifying higher levels of play. As such, the plastic dome and plastic ring

designs were modified to encourage a wider range of relational, functional, and symbolic

play within the augmented toys. Color was also added to all the plastic toys to broaden

appeal.

4.5.1 Modifications to the Plastic Dome Design

The main modification made to the plastic dome toy is to increase the size of the plastic

dome toys both in circumference and curvature such that they can allow the nesting of other

augmented toys inside, such as the plush puppy rattle or LegoTM Quatro toys. Although

the increase in size renders the plastic dome toys incompatible with the Fisher–PriceTM

Stack-&-Roll Cups, it still maintains the same functional properties of the original toy.

Namely, the plastic dome toys are still able to stack one on top of the other to form a tower

and also assemble together, end to end, to form a ball (see Figure 7). The modification

of the domes’ sizes is important as it allows for other toys to be nested inside the domes,

which increases the types of play that can occur while using the domes [4]. For example,

a single plastic dome can now be used to hide the plush puppy rattle from sight or used

as an imaginary vehicle for the puppy. During initial play tests with the new design, the

plush puppy rattle was often rocked to sleep in an inverted dome, flown through the air

as if in an airplane, or sledded across the ground. A popular play motion among children
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Figure 8: Final version of the plastic ring toy

and adults alike was to conceal the puppy within both domes (forming the ball) and then

rolling it around on the ground.

4.5.2 Modifications to the Plastic Ring Design

The main modification made to the plastic ring was to flatten it (making it more disc

shaped) and to place recesses in the top and bottom. These indentations allow the smaller

red plastic dome to be interlocked with the plastic ring toy but do not allow the larger

blue plastic dome toy to fit. Instead the red plastic dome can interlock with either side

of the green ring to form a flying saucer shaped toy in which the plush puppy rattle toy

can also fit (see Figure 8). When the child tries to assemble the blue plastic dome and the
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green plastic ring, relation interactions occur as the child discovers that the toys do not fit.

In the process of flattening the plastic ring the circumference of the inner whole was also

increased, allowing the plastic ring to be worn on the wrist or leg by the child. As with the

modifications made to the plastic dome toys, the modifications made to the plastic ring toy

also increase the types of play that can occur while using the plastic ring toy [4]. During the

initial play tests with the new design, the plastic ring was often worn around the play space

while playing with other toys. It was also frequently used with the plush puppy rattle toy

as a feeding dish, a bed, and an acrobatic hoop. When the red plastic dome is assembled

with the plastic ring, it is often used as a flying saucer to abduct the puppy. One of the

younger children even used this combination of toys as a drum.
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CHAPTER V

DETECTION OF PLAY BEHAVIORS WITH ADULTS USING A MIX

OF AUGMENTED AND REGULAR TOYS: A PILOT STUDY

When undertaking the development of any recognition system, it is important to have a

baseline of how the system would perform under ideal conditions. In the context of a play

recognition system, it is beneficial to know how many play activities can be detected and

to what degree of accuracy they can be detected. Because our target population consists of

infants and toddlers, constructing a structured experiment to obtain such a baseline can be

difficult (see Section 5.2 for more details). As such, in late 2007 I conducted a pilot study

using adults.

This chapter begins with the research questions and hypothesis that this study addresses

(Section 5.1). The chapter then provides a discussion of the feasibility of using adults to

obtain a baseline of activities that can be reliably recognized (Section 5.2) followed by a

description of the experimental procedure (Section 5.3). After, a detailed description of the

data is provided (Section 5.4) along with a description of the applied algorithm (Section 5.5)

and associated experimental results (Section 5.6). The chapter concludes with a discussion

of the results (Section 5.7) and their implications for subsequent studies with the target

population (Section 5.8).

5.1 Research Questions and Hypothesis

This study is designed to address Research Question 1 and the following subquestions:

1. How many distinct activities can be detected?

2. With what level of accuracy can we detect these items?

3. How do user–independent, user–dependent, toy–dependent, and toy–independent

models compare in performance?
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In particular, I demonstrate that standard techniques for detecting activities in wireless

systems will allow for detection of primitive play that achieves rates significantly better than

random selection. Accuracy will be lowered by high insertion errors and user–dependent,

toy–dependent models will perform best.

5.2 Adults as a Baseline

Using adults in place of children has both advantages and disadvantages. As mentioned

in Section 4.4, children often do not do what they are asked or told. Not only does this

factor make obtaining a sampling of the activity space to be modeled difficult, it also

can make data collection very time consuming and yield comparatively small samples of

usable data. During the play tests described in Section 4.4 there were tantrums, bouts of

pouting, and wandering about (to explore everything except the augmented toys). These

non–play activities resulted in some data collection sessions that lasted over 90 minutes

with approximately 15 minutes of playtime using the augmented toys (or in close proximity

of the toys). The amount of usable data may be less than the total playtime due to heavy

parental influence. For example, one child was playing with two LegoTM Quatro bricks but

was unable to separate them. Afraid that the child might side track into a tantrum, the

parent quickly separated the blocks for the child. While parental involvement is expected

during play, it can reduce the number of examples of the child performing certain activities.

To ensure that the pilot was conducted in a reasonable amount of time and that the amount

of usable training data was maximized, this study was conducted using adult participants.

5.3 Method

To gather the baseline, five adults were recruited, two female and three male. Each subject

participated in a minimum of two sessions, with each session on a different day. Data was

collected over the course of seven days with play sessions ranging from 7 – 26 minutes

(mean 16.32 minutes, STD 7.17 minutes). Each participant was seated at a table and

then presented with a variety toys in an opaque bag (see Figure 9). Participants were

asked to shake the bag twice (to provide a means of verifying data synchronization for post

processing) and then were asked to retrieve toys from the bag. Some participants chose
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to dump the contents of the bag onto the table while others selected a single item from

the bag each time the toy was requested. Once the toys were on the table the participants

were then instructed to perform a series of play tasks (see Table 5). At the end of each

session, the toys were placed back into the bag, and the bag was shaken once again for data

synchronization purposes.

Table 5: Primary tasks asked of adults while playing
Prompt Question Desired Behavior(s)

“Let’s play knock-knock with . . . ?” banging
“Let’s play leapfrog with . . . ?” grasping, moving, stacking
“What sound does it make?” shaking
“Find me the feature / reflection” exploratory manipulations
“Can puppy play with . . . ?” imaginary
“Does it fit in there” relational, banging
“Give me/Find me/Hide” unintentionals, push, pull
“Let’s tower some blocks . . . ” join, separate, stack
“Does it Spin or Roll ?” bumping, pushing, rolling

The instructions provided during each session were designed to elicit certain play behav-

iors without directly asking for specific activities to be performed. For example, to gather

examples of shaking the toys, the participant was asked, “Find me a toy that rattles.” Typ-

ically the participant would then pick up each toy, in turn, and shake the toy to determine

if the toy produced a noise. Indirect questions were used with the hope of producing a more

naturalistic data set. Furthermore, these questions also helped engage the participants and

provide suggestions on how they should play. Participants were asked a series of questions

during each session to ensure that multiple examples of each play behavior were obtained.

It should be mentioned that strict structure was not placed on the play session. Questions

were not asked in a specific order and were often adapted to fit the context of play currently

seen on the table as participants would often manipulate toys in unexpected ways. To keep

the rhythm of play going, questions were often adapted to what the participant did rather

than being based on the expected outcome that the question was meant to elicit. This

procedure resulted in play sessions that include subsets of activities over various sessions

with varying degrees of sophistication. In other words, the same questions were not asked

of each participant; therefore, the data sets are not uniform across participants nor trials.
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Toy Type
plastic dome augmented
plastic ring augmented
reflective lid augmented
LegoTM Quatro augmented
plush puppy rattle augmented
Snap–Lock Beads Fisher Price OTS
Stack-&-Roll Cups Fisher Price OTS
Rock-a-Stack Fisher Price OTS

Figure 9: Augmented and Off-the-Shelf (OTS) toys used during adult play sessions

5.4 Data Description

The five augmented toys depicted in Figure 9 were used to collect data during each of

the play session. Each augmented toy contains a 3–axis accelerometer that samples at

approximately 50 Hz. Therefore, each play session produces 15–dimensional data (3 axes

per toy) with approximately 49,000 samples per session. A total of 12 play sessions were

completed by the 5 participants resulting in 3.8 hours (228.49 minutes and 692,520 samples)

of 15–dimensional data. Participants only performed one play session per day.

In addition to collecting accelerometer data, motion jpegs from a single camera were also

collected during each play session. These images provided ground truth for data labeling.

Both the accelerometer data and image data were collected on the same machine to simplify

data synchronization issues during labeling of the ground truth data. Data collection was

also confined to a single device, an IBM X31, to act as a prototype for a self–contained device

that could be deployed in a household. The data was labeled using specially developed

software, TSview, which visually aligns the ground truth images with the sensor streams

(see Figure 10).

Two students independently labeled the 15–dimensional data using the TSview software.

These students were trained for approximately 1.5 hours to identify the elementary play

activities of interest and for 20 minutes to use the TSview software. During training, each
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person was provided with a coding manual (see Appendix H) indicating the 24 object-

toddler activities to identify within the data (see Table 6). Although the 15–dimensional

data stream represented 5 toys, only one label is provided for any one instant in time.

Therefore, when identifying each of the 24 actions, the associated toy must also be identified

by the label. If it is assumed that no toy interacts with any other toys, then this scheme

would lead to 120 distinct classes (24 actions × 5 toys). However, if more than one toy

is being manipulated at a time, the toy label is replaced with a quantifier indicating the

number of toys involved in the action. To reduce the combinatorial factors, the quantifiers

are limited to three choices of “two”, “many”, and “all” (see Appendix H for the complete

coding manual). This labeling scheme results in an upper bound of 192 classes (24 actions×

5 toys+ 3 quantifiers× 24 actions = 192 classes). Some combinations of quantifiers and

actions are unlikely, and the data revealed 114 classes empirically.

Figure 10: Screen capture from ground truth labeling software TSview
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Table 6: Occurrence of 24 play primitives across all toys

Actions Observed Percent of Data
Duration in milliseconds

Minimum Average Maximum
bang 185 4.63 % 10 64 316
bump 53 1.33 % 4 41 412
drop 72 1.80 % 6 33 141
grasp 122 3.05 % 6 122 913
join 81 2.03 % 10 95 413
knockdown 2 0.05 % 51 123 195
manipulate 271 6.78 % 13 314 1631
move 254 6.35 % 12 65 416
pickup 755 18.88% 5 38 163
pour 26 0.65 % 102 189 344
push 332 8.30 % 7 53 289
putdown 646 16.15% 6 47 231
relate 49 1.23 % 49 244 890
release 33 0.83 % 4 28 256
reverb 163 4.08 % 2 108 584
roll 72 1.80 % 9 53 121
rub 7 0.18 % 115 223 329
separate 77 1.93 % 6 59 142
shake 129 3.23 % 15 91 418
spin 142 3.55 % 4 40 255
spinning 51 1.28 % 8 77 285
stack 228 5.70 % 8 63 404
takeout 82 2.05 % 21 67 376
unstack 167 4.18 % 5 41 146

Total 3999

5.5 Features, Algorithms, and Analysis

Several steps are needed to prepare the raw accelerometer readings for analysis. First,

although all of the accelerometers record data at the same frequency, the samples are not

synchronized. Therefore each sensor stream is sampled at an even 50 Hz to estimate the

instantaneous reading of each sensor at identical fixed intervals. Next, a one second window

is slid along the 15D synchronized time series at 1
3 second intervals. For each window, 315

features are computed including mean, variance, RMS, energy in various frequency bands,

and differential descriptors for each dimension. Aggregate features are also computed based

on each three-axes accelerometer including the mean, variance, and RMS of the magnitude

of the sensor reading in three–dimensional–space and based on the angle of the vector to
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the x-axis. This computation of aggregate features transforms a difficult temporal pattern

recognition problem into a simpler spatial classification.

The models for recognition are trained using the iterative ADAboost framework where

each iteration selects the best single feature and one–dimensional weak binary classifier

for discrimination[60]. For our data set of 12 trials, 114 user–independent models were

trained each using 30 rounds of boosting and leave–one–out 12–fold cross validation. The

resulting ensemble binary classifiers consisted of both dual region decision stumps and tri–

region Gaussian decision boundaries. As mentioned in Appendix D.4, there are several

methods to combine multiple binary classifiers into a single multi–class classifier. Based

on the results of previous work and empirical results, the one–vs–all multi–classificatoin

scheme was used and the most probable model was selected via the probability summation

method, psum (as described in Appendix D.4) [49]. During the classification process, a one

second sliding window is again passed over the data. Thus, every 1
3 second of data receives

three classifications as it contributes to three distinct windows. A single classification for

each 1
3 second is derived by the probsum method (described in Appendix D.5) where the

probability of each class given the window is calculated for any given one second window

and the class with the largest probability sum is selected (see Figure 11).

B :

N-dimensional 
data

compute aggregate features 
and boost 1D classifiers

combine classifications 
from overlapping 

Figure 11: Summary of algorithm and parameters

5.6 Results

Several experiments were run involving different combinations of user–independent and

user–dependent models as well as variations of toy–dependent and toy–independent models.

Table 7 illustrates the results of user–independent, toy–dependent models. The event based

matching criteria require that a continuous 10% of the event, at minimum, is labeled to be
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Table 7: Average results of user–independent models for all toys and all actions

Evaluation Accuracy
Units

Errors Total

Events 25.3% 3856 5161
Frames 41.7% 6891 11823

classified as a correct instance, while the frame based evaluation accounts for correspondence

of discrete, aligned chunks of label and ground truth. While it may seem counter–intuitive

for the frame–level accuracy to be higher than the event–level accuracy, it is the result

of both a combination of the event matching criteria and substitution–fragmentation type

errors (see Appendix B for more details).

Table 8 shows the accuracy of the user–dependent, toy–dependent models for identifying

play activities. As with the previous experiment, the frame–level analysis yielded higher

accuracy rates than event level analysis. As one might expect, the average performance of

the user–dependent, toy–dependent models is higher than the average performance of the

user–independent, toy–dependent models.

Table 8: Results of user–dependent models for all toys and all actions

Participant Evaluation Accuracy
Units

Errors Total

S1
Events 17.3% 615 744
Frames 47.4% 687 1306

S2
Events 25.9% 665 898
Frames 49.7% 1052 2090

S3
Events 25.4% 1185 1588
Frames 44.6% 2037 3677

S4
Events 55.8% 199 450
Frames 79.0% 233 1109

S5
Events 25.2% 747 998
Frames 48.0% 1488 2864

Average
29.9%
53.7%

In addition to evaluating the performance of the model with respect to the participant,

models were also evaluated with respect to the toy. Table 9 shows the results of experiments
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evaluating toy–independent and toy–dependent models. The first pair of experiments as-

sesses the ability of the system to generalize models across the 24 primitive actions listed

in Table 6. The toy dependent models, on average, showed a 6.6% absolute performance

increase when evaluated by events and a 11.6% increase when evaluated by frames.

Table 9: Results of various user–independent model experiments that vary toy–
independent and toy–dependent parameters

Experiment Evaluation Accuracy
Units Totals

Errors Total Toys Actions Models

TD Actions
Events 25.3% 3856 5161 5 24 114
Frames 41.7% 6891 11823 5 24 114

TI Actions
Events 18.7% 4212 5180 5 24 24
Frames 30.1% 8259 11822 5 24 24

In addition to model experiments, I conducted an initial experiment using a näıve tech-

nique for classifying the presence or absences of relational play using the previous pilot

data. The results in Table 10 have been obtained by computing the variance and pairwise

Pearson’s linear correlation coefficients over 333 millisecond sliding windows.

Table 10: Results of initial näıve binary classification

Ground Truth
Recall Recognized

Hits Percent Total Insertions Precision
4 4 100.0% 36 32 11.11%
4 4 100.0% 67 63 5.97%
3 3 100.0% 40 37 7.50%
1 1 100.0% 102 101 0.98%
4 4 100.0% 57 53 7.01%
5 5 100.0% 101 96 4.95%
8 7 87.5% 117 110 5.98%
8 8 100.0% 98 90 8.16%
2 2 100.0% 98 96 2.04%
6 6 100.0% 77 71 7.79%
1 1 100.0% 128 127 0.78%
3 3 100.0% 141 138 2.12%

Average 98.96% 5.37%

The average recall rate is 98.96% with an average precision of 5.37%. The data used in
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this experiment contained instances of both relational and non relational play, attributable

to the high insertion rate and low precision. Several of the insertion errors were caused by

two toys being manipulated independently, yet not in relation to each other. This näıve

approach can detect the presence of motion in a toy and loosely correlate it to motion in

other toys. However, it lacks the discriminative power to properly differentiate between

the various types of motion required to identify relational play. Techniques that use näıve

filters and models to recognize motion should see a reduction in number of insertion errors.

These methods should also have the power to distinguish a larger variety of object play.

5.7 Discussion

The experiments involving the user–independent, toy–dependent models must distinguish

between 114 classes. Selecting one class of the 114 classes at random would produce an

accuracy of approximately 7.1% (assuming a uniform distribution of examples). Thus, the

user–independent models, while demonstrating a seemingly low accuracy, improve recog-

nition when compared to a random selection. The low accuracy of the models can be

attributed to several factors. First, even though the NULL class accounted for a small

fraction of the total data, the occurrence of any one single activity is extremely sparse.

Longer activities, such as basic manipulation, had a higher accuracy per class than shorter

activities, such as picking–up or putting–down a toy.

From Table 6 we can see that, on average, 70% of the activities have durations that are

less than 100 milliseconds. The sliding window used in all of the above experiments was

1000 milliseconds long with an overlap of 333 milliseconds. As evidenced by the recognition

rates, this window size may be too large to capture the nuances of the shorter play activities

and may account for the decreased recognition accuracies. Furthermore, the sparsity of this

data set may have proved insufficient to build proper models for recognition.

The free–form nature of the collected data does not ensure that there is an equal dis-

tribution of examples per play session. Hence, when training models, it is not guaranteed

that each model gets an equal number of examples nor is it guaranteed that each session

has all examples of the play behavior. When performing the leave–one–out 12–fold cross
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validation, if the test set has a high concentration of play activities that is absent from the

other trials, it both weakens the models for recognition and then presents a test set that

is unrepresentative of the training data provided. Both factors can significantly reduce the

accuracy of the models. Along these lines, the degrees of freedom per toy per activity may

require many more rounds of boosting to allow adequate models to be constructed.

The performance of the models in the user–dependent case provides some evidence that

recognition is possible to filter data for later review by an individual. For these sorts of

visual inspection tools it is important to keep false–positives and false–negatives low (see

Section 3.3). Humans may be able to quickly dismiss a few false–positives as irrelevant,

but a significant number of them would more than likely detract from the system usability.

Determining this exact number of errors and the impact of these errors will be the focus of

the study proposed in Chapter 7.

5.8 Implications for Future Studies

The algorithm used in this pilot is well suited to on–body sensor systems [49, 44]. In such

systems, the degrees–of–freedom of the sensors are limited to the kinematics of the body

part to which they are attached. As this study has shown, the pilot method does not

achieve as high of a level of accuracy (under similar training parameters) when applied to

the unconstrained sensors within the augmented toys. Several questions arise as a result of

the aforementioned experiments and will form the basis of studies discussed in the remainder

of this dissertation:

1. Can recognition rates be improved by parameter modifications to the boosting

method described in this chapter or are other methods more well suited towards

this recognition task?

2. What features are best for describing object play? Should the features be based

on single sensor streams or combinations of sensor streams?

3. Is it necessary to constrain the toys’ freedom of movement to increase recogni-

tion rates or is increasing the number of training samples sufficient to improve
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recognition?

4. What error rate do users find acceptable when using systems to support retrospec-

tive analysis?

The first three questions (Question 1 – Question 3) will be addressed by the study in

Chapter 6. This study builds on the methods described in this chapter and will compare

the recognition capabilities of this pilot algorithm to other common recognition algorithms,

such as HMMs and SVMs, to answer the questions above. The final question (Question 4)

will be addressed by the study presented in Chapter 7. This user–study has participants

identify object play behaviors presented through an intelligent data visualization interface

and quantifies the impact that various levels of recognition support have on this retrospective

review task. Recent research has shown that users can tolerate accuracies as low as 60%

when using gesture–based recognition systems [32], but it is unclear if retrospective review

tasks will tolerate more or less errors.
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CHAPTER VI

AUTOMATIC DETECTION OF OBJECT PLAY BEHAVIORS

The free–form nature of the data collected in the study presented in Chapter 5 is both

a strength and a weakness of the pilot data set. Its unscripted nature and its combined

use of augmented and non–augmented toys provides a more realistic data set. However,

it also makes it difficult to characterize the performance of recognition algorithms over

this data set due to the wide play variations found within and between participants. In

this chapter I describe another adult object play data set that I collected which is more

structured and involves play using only augmented toys. This chapter will not only describe

the data set, but it also details how this data set is used to explore various feature spaces

and recognition methods. The end goal of this exploration is to maximize the ability of the

Child’sPlay system to recognize various types of object play as well as generalize to use on

children’s play data.

This chapter begins with the research questions addressed by this study and my hy-

pothesis (Section 6.1). Next I provide a description of the adult and child data sets that

are collected (Section 6.3) along with various feature spaces that are used to represent the

data. The chapter concludes with presentation of recognition experiments and a discussion

of the results(Section 6.5).

6.1 Research Questions and Hypothesis

The goal of collecting a larger adult play data set is to explore various feature spaces and

recognition methods to help improve the recognition rates of certain object play behaviors

as well as help support the overall identification of differing levels of play sophistication.

In particular, this study is designed to address Research Question 2 and the following

subquestions:

1. Can recognition rates be improved by using only augmented toys to collect object
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play data versus a combination of augmented and off–the–shelf toys?

2. Which features spaces are best for representing object play behaviors.

3. How do effective retrieval rates of specific object play activities compare when

adult object play is modeled using boosted ensemble classifies, hidden Markov

models, and support vector machines.

I hypothesize that data from adults playing with augmented toys can be modeled using

a combination of statistical methods, and the resulting models can be applied to data of

children playing with the same toys. The recognition results on the children’s data will

have higher accuracy than the pilot approach discussed in Chapter 5 and allow for the

identification of differing levels of play sophistication.

6.2 Data Collection Method

This section will describe the methods used to collect play data sets from both adult and

child participants. The method used to collect the adult data set for these recognition

experiments will be similar in many ways to the method used to collect the pilot data set in

Section 5.3. However, there will be some important differences. First, the toys used during

play will be restricted to augmented toys rather than the mix of augmented and off–the–

shelf toys used in the pilot. Second, the play scenarios and promptings were scripted prior

to the play sessions to help ensure that an equal and consistent number of play behaviors

appear across sessions and participants. Also, the use of consistent prompts helped to create

a data set that includes more frequent examples of higher levels of play involving multiple

augmented toys, in contrast to the pilot data set. Third, adult participants will conduct

play sessions while seated on a floor (rather than at a table) within a laboratory play space

that has been designed to collect play data from infants and toddlers1. Adults played in

the same play space as the toddlers to be more consistent with the toddler data set that

was concurrently collected (see Section 6.2.2).

1This play space is the Child Studies Lab of the Health Systems Institute located on the campus of the
Georgia Institute of Technology.
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6.2.1 Data Collection from Adults

Figure 12: A view of the Child Studies Lab as shown from one of the overhead cameras.
Left: the play space prior to the start of a session. Right: the play space while adult play
data is being collected

Ten able–bodied adults were recruited, four females and six males. Each subject par-

ticipated in four play sessions, with each session occurring on a different day. Data was

collected from April 2, 2009 – April 30, 2009 with participants’ play sessions ranging from

25 – 35 minutes. At the start of the session, each participant is asked to sit in the child

play space and is then presented with an opaque bag containing the seven augmented toys

(see Figure 12). Participants were asked to shake the bag twice (to provide a means of

verifying that the data is synchronized during post processing) and then were asked to re-

trieve toys from the bag. Some participants chose to dump the contents of the bag onto

the floor while others removed toys in an orderly fashion from the bag. Once the toys were

on the floor, the participants were instructed to perform a series of play tasks. At the end

of each session, toys were placed back into the bag, and the bag was shaken once again for

data synchronization purposes. Afterwards, the participants were again asked to remove

the toys from the bag and were instructed to “play with the toys however they liked.” This

free play session typically lasted 3 minutes, though there was no set time limit. When the

adults were done playing, the toys were once again placed in the bag and shaken for the

purposes of data synchronization. It should be noted that although adult free play sessions

were collected, recognition results will only be reported for the scripted portion of the play

session to ensure uniformity of samples between participants.
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Table 11: Play procedure data collection sheet for adult participants

As with the pilot data set, the instructions provided during each sessions were designed

to elicit certain play behaviors without directly asking for specific activities to be performed

(when possible). Each session consisted of 83 scripted play prompts. Prompts were selected

at random from the protocol sheet and marked once performed to prevent accidentally

reusing the prompt. Table 11 provides the protocol sheet used when collecting adult data

(a larger version is provided in Appendix G). The column headings specify the basic

play activity (organized loosely by level), and the row headings indicate the primary toy

used in the interaction. Each cell of the table indicates the prompt to be provided to the

participant. For example, the prompt “use the red dome to hammer in an imaginary nail”

is used to elicit examples of banging with the red plastic dome. A more subtle example

is the prompt designed to elicit exploratory examinations of toys. While children have a

tendency to explore unfamiliar objects, adults sometimes need more coaxing. Rather than

simply asking the adults to examine the yellow LegoTM Quatro, the prompt asks the adult

to “find the blue dot on the lego.” However, some of the toys have dot stickers on them

while others do not (often changing from session to session). The variability in dot location

usually causes the adult to carefully examine the toy during each session.
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The last three columns of the protocol sheet are under the general heading “Playing with

Puppy in Motion.” These actions were included after several meetings with a developmental

psychologist who helped review and revise this play protocol. Activities in this category

are higher-level, developmentally-relevant activities in which children are likely to engage

given the set of augmented toys [4]. Typically developing children like to place toys inside

of other toys (loosely referred to nesting on the protocol sheet) and the abstract nature

of the augmented toys lend themselves to these types of behaviors. In particular, it is

important to detect motions with the plush puppy rattle as it has a social face and common

functional/imaginary uses for children. The “Playing with Puppy in Motion” category is

designed to collect examples of the plush puppy rattle being nested inside objects in contact

with the ground; being made to run around as well as interact with other toys; and being

nested inside objects that fly through the air (see Figure 14). While these puppy motions

are more sophisticated and not likely to be demonstrated by the age group targeted by

the Child’sPlay system, they are included in the data set to help promote future pattern

recognition research.

Figure 13: Three examples of the plush puppy rattle toy being used in play as seen by
three overhead cameras. The puppy has been circled in red. Left: puppy is nested in the
red dome; Middle: the puppy is running and jumping over another toy; Right: the puppy
is flying while seated inside the blue dome.

In addition to appropriate play, it is also important to have examples of atypical play. In

particular, it is of value to collect data when social toys, such as the puppy, are misused [4].

An example of misuse would be when the social properties of the puppy are ignored. For
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example, grabbing the puppy by the face, dropping the puppy on its face, or purposefully

throwing the puppy down face first. Another sign of inappropriate play is when the puppy

is used in an indiscriminate manner and thrashed against other toys. Items in red italics

on the play protocol sheet indicate negative play behaviors2. In particular, participants are

instructed to hammer the puppy in the head with the ring; spike the puppy down on its

face; and grab the puppy by the head while thrashing wildly it into other toys.

It should also be mentioned that while the play protocol sheet is designed to gather

a data set with an equal number of activity per toy per participant, it does not strictly

guarantee uniformity across the data set. For example, adults often fidgeted with toys in

between prompts or performed the prompt more than once. For example, when rolling one

of the domes across the floor, participants often rolled it more than once to get a “good

roll” or toss the lego from hand–to–hand as they put it down. The protocol does, however,

help make the data set more uniform than the loose prompting method used to collect the

pilot data set.

6.2.2 Data Collection from Children

In addition to the adult data set I have collected three different object play data sets with

a total of thirteen child participants. These data sets are the Rapid ABC play data set, the

multi-visit data set, and the HSI Parent Infant Social Games Video Library play data set.

Each of these data sets were collected in the Child Studies Lab Play Space.

6.2.2.1 Rapid ABC play data

Play data from the eight toddlers was collected from April 3, 2009 – December 21, 2009.

These children ranged in age from 15 – 36 months of age. One of the eight has been classified

as “at–risk” for a future diagnosis of autism spectrum disorder. Play sessions ranged from

five to ten minutes.

The eight children, 6 girls and 2 boys, were dual recruited in association with a pilot

test of the Rapid Attention Back and Forth Communication (Rapid ABC) — an assessment

2Negative play behaviors do not necessarily correspond to the overall activity column in which they
appear.
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designed to help identify children at risk for autism spectrum disorder. This autism screen-

ing assessment, targeted at children between ages 15 – 27 months of age is part of a joint

collaboration between the Emory Autism Resource Center (EAC) and the Health Systems

Institute (HSI) at Georgia Institute of Technology. When enrolling their child in the Rapid

ABC pilot, parents can choose their assessment location to be at either HSI or EAC. Parents

that enrolled at the HSI location were also given the option to enroll their child to be a

participant in the Child’sPlay data set and have their child play with augmented toys. The

Rapid ABC assessment at HSI is conducted in the Child Studies Lab, in the same location

as the Child’sPlay play space. Children that were dual recruited first participated in the

Rapid ABC assessment. The Rapid ABC lasts 3–5 minutes and consists of five socially

oriented tasks. After completing the assessment, the child then plays with the augmented

toys as their parent completes surveys and questionnaires administered by the Rapid ABC

clinician. While playing, the child is always within line of sight of his parent and the Rapid

ABC clinician. I was supervising the child directly while they were in the play space.

Prior to the arrival of the child, the toys are placed in an opaque bag and shaken three

times for data synchronization. When the child enters the play space, the toys are in the

bag, located at the center of the play space. For these play sessions there was no scripting,

the child is merely encouraged to explore what is in the bag and encouraged to find a

new toy when they become bored with the current toy with which they are playing. As

the supervisor and primary play participant with the child during this time, I would often

engage the child in social games to encourage play.

6.2.2.2 Multi-visit

Two children, a boy and a girl, were recruited independently from the Rapid ABC pilot

study and played with the augmented toys over multiple visits. Data was collected from

the boy, age 31 months, over four sessions, each lasting at least 20 minutes. There were five

months between his first and second session (April 2009 – October 2009); his second and

third sessions occurred during the same week in October; and his final session occurred a

month later, in November 2009. During all sessions the child was accompanied by a parent,
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and the parent served as the primary play partner for the child. The parents were asked to

encourage their child to play with the augmented toys while avoiding direct contact with the

toys themselves, if possible. The parents were asked to direct attention to toys by pointing

or asking the child questions pertaining to characteristics of the toys. The sessions contain

a variety of object play activities as well as social games involving use of the toys.

The girl, age 5, had data collected during four visits spanning two weeks in October 2009.

The data from her play sessions was collected specifically for use in the retrospective review

study discussed in Chapter 7. To help ensure consistency of play between the sessions, the

girl participated in the adult play protocol. It should be noted that a younger child was

originally recruited for this data set; however, the child was unable to follow the instructions

in a consistent manner.

As with the adults, each session consisted of 83 scripted play prompts that were selected

at random (without repetition) from the protocol sheet (see Table 11). The girl was the

only person in the play space while collecting the data. Although the adult protocol was

used, the length and nature of the play is very distinct from the adult subjects. Like the

adults, the girl often fidgeted with the toys between prompts. However, the girl often used

her whole body to interact with the toys during these fidgets. For example, she would

often sit on the plastic dome toys and rock or slide across the floor while seated in them.

Furthermore, she would often run around the play space, hopping and jumping between

prompts. These extraneous motions were often registered by the sensors inside the toys

even though they were not directly used.

The nature of the play itself also differed from the adults. For example, when asked

to wear the green ring as a bracelet, she would often place the ring on her arm and then

immediately remove it and place it on her leg, claiming that she liked it better in that

position. As expected, there were also larger variations in the way she performed her play

activities. For example, when asked to make the puppy run around, sometimes the puppy

would run across the ground similar to the adults. However, sometimes she jumped across

the floor holding the puppy such that he hit the ground when she landed each time. When

she was asked to fly the puppy around in the domes, she would sometimes spin rapidly
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holding the puppy and dome outward. Other times, she would raise the puppy and dome

up in the air vertically and hold them stationary in the air.

It should be noted that the girl was recruited because of her age. Younger children (30

months) were recruited, however, these children were too young to be able to complete half

a session of the adult protocol. Even at 5 years of age, the girl showed signs of frustration

in some of the latter sessions with the repetitive nature of tasks.

6.2.2.3 HSI Parent Infant Social Games Video Library

This data set was collected in collaboration with Wang et al. (see Section 2.2.3) [68]. In

this data set three children, ages 2, 4, and 4, each played a series of social games with their

respective parents. Both the augmented toys and several off–the–shelf toys were played

with during these social games. This data set consists of 85 minutes of contiguous play

data. Analysis of this data set is beyond the scope of this dissertation. This data was

collected to support future research involving a combination of vision based techniques and

augmented toys to help automatically characterize a wide variety of play activities. This

fusion of techniques will be discussed in more detail in Chapter 8.

6.3 Description of the Data Collected

Figure 14: The augmented toys of the Child’sPlay system. Left: individual toys. Right:
toys assembled.

The seven augmented toys (two plastic dome s, one plush cube, one plush puppy rattle,

one plastic ring, and two LegoTM Quatro) bricks described in Section 4.3 were used to collect

data at each of the play sessions. Each augmented toy contains a BlueSense sensor which

55



has an integrated 3–axis accelerometer, dual–channel capacitance sensor, and single channel

sound processing capabilities. However, only the accelerometer data is recorded during the

play sessions. Therefore, each toy produces three–dimensional data, and a session with

seven toys will produce 21–dimensional data. While the BlueSense sensors are capable of

producing data rates as high as 160 samples per second, the sensors were reprogrammed to

sample at 40 Hz. The reduction in data transfer helps prevent the data recording system

from dropping packets. Empirically, frequencies associated with object play did not exceed

17 Hz. Therefore, a 40 hz sampling rate is appropriate, according to the Nyquist–Shannon

sampling theorem [61].

In addition to collecting BlueSense data, motion jpegs from three overhead network

cameras, high–definition audio–video from a frontal view, and environmental audio from

a single microphone (positioned above the floor) is collected during each play session. As

with the pilot data set described Section 5.4, both the BlueSense data and audio–video

data are collected on the same machine to simplify post–process data synchronization. The

high–definition video, however, was captured on an independent camcorder, and the start

point of the video must be manually synchronized with the start of the other video feeds.

Labeling of the adult data set began on May 09, 2009. Six students were recruited

independently to exhaustively label portions of both data sets using the PlayView software

(see Figure 15 — The PlayView interface will be described in more detail in Chapter 7).

These students were trained for approximately 1.5 hours to identify the object play activities

of interest and for 20 minutes to use the PlayView software. During training, each person

was provided with a coding manual (see Appendix G) indicating the 38 object play activities

to identify within the data (see Table 12).

The data coders were asked to log their progress to help tabulate how much time they

spent labeling each play session. However, none of the coders consistently logged their

progress, stating that it was too much of a burden while labeling the data. The data coders

self–reported (verbally) that they took 3–5 hours, on average, to label a 30 minute adult

play session. They reported that the children’s sessions take longer. The data coders also

noted that the visualizations of the acceleration data sensor streams were very helpful in
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Figure 15: Screen capture of the PlayView interface used to label the data sets

the labeling process.3

In contrast with how the pilot data set was labeled, each sensor stream is labeled on

a per–stream basis, rather than using a single label to represent all seven streams for any

given instance in time. As a consequence, the data set has overlapping labels. Any of

the 38 activities can be applied to a majority of the seven toys as well as combinations of

assembled and nested toys. Empirically, there were 311 toy–dependent activities identified

within the adult data set and 269 toy–dependent identified within the child data set.

Cohen’s kappa coefficient was computed to determine the inter–rater agreement between

3These visualizations may have also helped increase inter–rater agreement.
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two data coders [15]. The two coders were given identical portions of play data that ac-

counted for approximately twenty percent of the total adult data set. The labels provided

by the two data coders exhibited agreement for 311 toy–dependent activities with an av-

erage Cohen’s kappa of κ = 0.61. According to the scale presented by Landis and Koch

for interpreting κ coefficient values, the experimental determination of κ = 0.61 indicates

moderate to substantial agreement amongst the two raters[41]. Many of the object play ac-

tivities, such as shaking the plush puppy rattle, had substantial to near perfect agreement.

Non–play activities, such as fidget or bump, often had fair to no agreement at all which

lowered the overall average κ. For the purposes of the Child’sPlay system it is acceptable

to have confusion among the non–play activities as the Child’sPlay system is currently fo-

cused on distinguishing between different types of object play activities and does not need

to differentiate between various types of non–play.

When conducting the recognition experiments, non–play activities, such as bumping

toys, fidgeting with toys, and toy reverberations, are grouped into the NONE class. In

addition, slight variations between coders are accounted for by filtering out activities that

have less than five total examples across the entire data set. As such, the adult data set

consists of 96 toy–dependent classes and the child data set consists of 160 toy–dependent

classes. These classes as well as, their average duration and the percentage of the data set

for which they account are listed in Table 12 and Table 13.

6.4 Feature Selection and Data Modeling

Crucial to the success of any recognition system is appropriate feature selection and model

selection. In selecting an appropriate representation, it is important to understand what

behaviors are being modeled (as well as why) and select methods that best represent these

aspects. When characterizing early object play, play can have both periodic and aperiodic

properties. For example, in the earlier stages of development, toys can be shaken, which

involves a repetitive back–and–forth motion. Or toys can be explored, which can be as

simple as single touch of the object, or, as complex as repeatedly rotating an object while

visually inspecting it. The speed and precision of repetitive activities is likely to increase
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Table 12: Occurrence of play primitives across all toys in 34 play sessions of the adult
data set

Actions Observed Percent of Data
Duration in milliseconds

Minimum Average Maximum
non–play (NONE) 3255 29.35 % 35 196 3448
assemble 535 4.82 % 20 172 1159
bang 233 2.10 % 24 184 475
drinks 65 0.59 % 88 194 412
drop 19 0.17 % 15 68 204
explore 306 2.76 % 30 322 1166
falls 12 0.11 % 27 42 71
flies 215 1.94 % 53 282 754
hammers 34 0.31 % 85 207 722
jumps 217 1.96 % 5 42 154
knocks down 15 0.14 % 21 44 136
nest 282 2.54 % 16 73 271
pushes 160 1.44 % 11 224 833
rams 157 1.42 % 14 85 232
relate 252 2.27 % 9 207 1159
relocate 1605 14.47 % 7 49 246
rock 149 1.34 % 23 513 1970
roll 565 5.09 % 8 165 1252
runs 352 3.17 % 13 90 689
runs towards self 62 0.56 % 59 195 594
separate 541 4.88 % 10 74 369
shake 286 2.58 % 24 130 400
slide 1196 10.78 % 8 29 751
spikes 37 0.33 % 36 119 266
spin 216 1.95 % 17 342 1556
stacks 67 0.60 % 21 83 244
thrashes 168 1.51 % 51 292 816
toss 57 0.51 % 16 177 599
wears 34 0.31 % 132 235 573

Total Play Events 7837
Total Overall Events 11092

Bias towards Play 70.65%
Bias towards Non–Play 29.35%

over time as the child’s motor skills and coordination develops. Aperiodic play motions,

such as grasping an object, putting on a plastic bracelet, or taking an imaginary drink from

a plastic cup also occur during play. Therefore, both the features selected from the data,
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and the models used to represent play activities must be able to account for both periodic

and aperiodic motions as well as accommodate temporal variations. Also, as discussed in

Section 6.4.1, representations that can help distinguish play with single objects as well as

play involving multiple objects is important to categorizing different levels of object play.

This section will describe several different feature combinations and model representations

that were explored for developing the play recognition portion of the Child’sPlay system.

6.4.1 Feature Selection

Before discussing the specifics of the feature selection process, I will briefly describe the

pre–processing that occurs with the data. As with the pilot data, several steps are needed

to prepare the raw accelerometer readings for analysis. First, each sensor stream is sampled

at an even 35 Hz to estimate instantaneous readings at identical fixed intervals across all

sensors. Second, a one and a half second sliding window is applied to the 21–dimensional

synchronized time series data at half second intervals. Therefore, each window consists of

50 samples of data and overlaps with two neighboring windows by 33 samples. Several

different features are then computed over these windows.

Figure 16: Illustration of the effect of rotation on sensor orientation. The location of the
sensor within the ring toy is highlighted white to demonstrate the effects of rotation about
Z–axis (Left and Middle) and to highlight the off–axis sensor placement within the plastic
ring toy (Right).

Similar to the pilot data set, simple descriptive statistics are computed for each window.

In particular, the mean, the second through fourth central moments (variance, skew, and

kurtosis), and the change in variance are computed for each window. When all are used,
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these statistics represent 105 elements of the final feature vector (21×5=105). The approx-

imations of orientation that are included in the pilot studies, however, are not computed

for this feature set. Except for the plush puppy rattle, the toys are abstract in shape and

orientation information cannot be used to determine appropriate versus inappropriate use.

Orientation approximations, such as rotation about the toy’s central axis, often add more

noise than information as the round toys can be grasped and used in any number of orien-

tations. This problem is further exacerbated for the plastic ring toy, where the sensor is not

aligned with the central axis of the toy. The large hole in the center of the plastic ring toy

forces the sensor to be nested off–axis (see Figure 16). For this reason, several rotationally

invariant features are added to the features used in the original pilot studies. Measures such

as the entropy, power spectrum densities and correlative measures, are also computed for

each dimension.

The power spectral density function is a rotationally invariant metric that can easily

represent periodic play motion as a variation in power over a given range of frequencies (see

Figure 17). The power spectral density features are computed per accelerometer axis using a

32–point fast Fourier transform. Only the first half of the frequency bins (1–9) are retained.

Information for frequencies 10 – 17 are discarded as, empirically, object play motion seldom

reaches frequencies in this range. Because our sensors sample at 35 Hz, 17 Hz is the highest

frequency for which valid information can be retrieved according to the Nyquist–Shannon

sampling theorem. However, even when only using the first 9 frequencies, computing power

spectral density features for each axis of each toy would lead to an additional 189 features

(7 toys × 9 frequencies × 3 axes = 189 features). To help reduce dimensionality, the power

spectral density features for the three axes (xpsdtn , ypsdtn , zpsdtn ) corresponding to the same

toy, tn, are combined into a single density measurement by computing the quadratic mean,

µpsdrms (the root mean square – see Equation 1). Therefore, the power spectrum density

for each toy is reduced from 27 features per toy to 9 features per toy resulting in 63 features

total.

Figure 18 illustrates the similarity of the power spectral density features of different

toys being shaken at different times. Power spectral densities may be a sufficient feature
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Figure 17: A comparison of the power spectral density computed over the blue plastic
dome while being explored (top left), shaken (top right), rolled (bottom left), and used as
an imaginary drinking cup (bottom right).

for representing activities independent of the toy involved in play. For example, shaking

consistently has power variations in the 4 Hz to 5 Hz range, regardless of the toy being

shaken. Likewise, Figure 17 shows the differences between various play activities performed

using the same toy. In this collection of images, the periodicity of shaking is contrasted

against other periodic play motions (such as rolling the dome and exploring the dome). The

distinction between the periodic shaking and the aperiodic motion of imaginary drinking

can be seen as well.

µpsdrms =

√
x2
psdtn

+ y2
psdtn

+ z2
psdtn

3
(1)
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In addition to the power spectral densities, aggregate features are computed over pair–

wise combinations of the sensor streams to help determine if toys are being manipulated in

a similar fashion.

Features based on coherence, correlation, and cross–covariance are all useful metrics for

determining the similarity between time–series data produced by accelerometers [43, 48, 5].

In particular, Pearson pairwise linear correlation coefficients are calculated between raw

sensor readings for every axis, resulting in 189 features. Note that there are 210 possible

combinations for seven sensors with 3 axes each, however, 21 combinations can effectively

be ignored as they represent correlations between axes on the same sensor. Correlation

coefficients are also computed between the power spectral densities (approximating the

cross power spectral density) resulting in 252 additional features.

If all of the features described above are to be used simultaneously, each 1.5 second

window will be represented by a feature vector consisting of 610 elements. Given that

the adult data set alone consists of 87947 windows and 96 classes when recognizing toy

dependent activities, memory and time requirements for algorithms for feature selection or

model inference can quickly become computationally prohibitive. Therefore, many of the

experiments discussed in Section 6.5 will involve subsets of the features described above.

6.4.2 Data Models

All of the features computed in Section 6.4.1 are calculated over sliding windows. The use

of sliding windows to create aggregate features transforms a temporal pattern recognition

problem into a simpler spatial classification and allows for a variety of supervised and

unsupervised learning techniques to be explored. Recognition experiments were conducted

using ensemble classifiers (Section 6.5.1), hidden Markov models (Section 6.5.2), and support

vector machines (Section 6.5.3).

For comparative purposes with the pilot recognition experiments (described in Sec-

tion 5.6), initial model exploration experiments are conducted using fourteen of the forty

play sessions. Although the experiments are now matched for fourteen play sessions, it

should be noted that these comparisons may be slightly misleading as the two data sets
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Figure 18: A comparison of the power spectral density computed over six different toys
while being shaken: the blue plastic dome (top left), red plastic dome (top right), the yellow
LegoTM Quatro (middle left), the grey LegoTM Quatro (middle right), the green plastic ring
(bottom left), and the plush puppy rattle (bottom right).
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were collected using different augmented toys and spanned a slightly different set of play

activities (see Table 12 and Table 6). The model which performs the best, comparatively,

will be applied to the children’s data set. However, when conducting experiments to test

the generalization of adult models to recognize children’s play activities, all of the adult

play sessions will be used as training examples instead of the fourteen session subset.

6.5 Results

This section includes results from the various experiments described in the previous section.

First, the results from models constructed over a subset of data with size comparable to

the pilot data set will be presented, followed by the presentation of experiments testing the

ability of models trained on adult data (the adult models) to generalize to the children’s

play data. Due to the sparsity of object play events within the data, the accuracy metric is

not always the best metric to measure system performance for correctly identifying object

play activity. The standard accuracy metric assigns equal weight to true positives and true

negatives (see Equation 2). As such, identifying a large number of non–play events correctly

can result in a high accuracy even if relatively few object play events are identified correctly.

To obtain a more comprehensive picture of system performance, all experimental results will

be reported in terms of accuracy, true positive rate (recall), false positive rate, specificity,

positive prediction value (precision), negative prediction value, false discovery rate, and the

F1 score. These metrics are defined and described with more detail in Appendix B.4. The

F1 score is the harmonic mean of precision and recall (see Equation 3) [58, 30]. The F1

score measures the ability of the system to effectively retrieve specific play activities and

more accurately reflects overall system performance as related to retrospective review tasks.

A high F1 score implies that the system is good at both detecting all events and avoiding

false detections. Therefore, for the experiments presented in this chapter, the F1 score is

used as the metric with which to compare model performance overall.

Accuracy =
((True Positives+ True Negatives)− False Positives)

(Positives+Negatives)
(2)
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Fβ = (1 + β2) · Precision ·Recall
β2 · Precision+Recall

(3)

True Positive Rate (Recall) =
True Positives

Positives
(4)

Positive Prediction V ale (Precision) =
True Positives

(True Positives+ False Positives)
(5)

6.5.1 Boosting One–Dimensional Classifiers

As a baseline, the boosting algorithm used in Section 5.5 is applied to the new adult data

set. Except for the sampling rate of the sensors and the resulting window size, parameters

(including features) will be kept identical to the pilot experiment. In particular, 441 features

(63 features × 7 sensors = 441) are computed over 25,487 windows (representing approxi-

mately 3.5 hours of play data). Table 14 reports the average number of true positives, true

negatives, false positives, and false negatives over fourteen play sessions as well as the num-

ber of positive and negative examples. Table 14 also provides the average recognition errors

in terms of number of merged events, number of fragmented events, number of shortened

events, and number of elongated events (see Section 3.2–Figure 3 and Appendix B for more

details on these types of event–based errors). Table 15 reports the average performance

of the toy–dependent models over fourteen play sessions according to 25 toy–independent

categories. Figure 19 illustrates the distribution of F1 scores grouped according to 25

toy–independent categories. Overall, the ensemble achieved an event–based F1 score of

51.1% ± 16.4% per toy–independent play activity. Table 16 compares performance of the

models according event, segment, and time based evaluation criteria. Segment–based evalu-

ation yields an F1 score of 26.2%±8.7% per toy–independent play activity, while time–based

evaluation produces F1 score of 39.2%± 19.4% per toy–independent play activity.

When compared to the pilot study, there were far fewer fragmentation errors resulting in

higher event level accuracies. In particular, these boosted classifiers were more effective at

classifying play events that experience abrupt changes in motion such as banging, shaking,
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Figure 19: A histogram of event based F1 scores for continuous classification using boosted
1–dimensional classifiers.

tossing the ball, thrashing, ramming, and hammering the puppy with the ring. The boosted

classifiers were less effective with play events that exhibited more consistent periodic motions

and aperiodic events, such as rocking, rolling, spinning, wearing the ring, and taking an

imaginary drink from the dome. Definitions and examples of these play activities are listed

in Appendix G.

6.5.2 Hidden Markov Models

Due to the temporal variations that can occur during a play session, Hidden Markov Models

(HMMs) are one of the representations explored. Model inference was performed using the

GT2k (as described in Appendix C). For these experiments, various model topologies are

explored, consisting of two to eight states. In particular, I will report on a three state, left–

right topology where each state’s observation probabilities were modeled using a mixture of

two Gaussian distributions. Self transition probabilities were initialized to 60 percent with

external transition probabilities initialized to 40 percent. A stochastic bi–gram grammar was
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Figure 20: A histogram of event based F1 scores for continuous classification using hidden
Markov models.

constructed (based on 25 percent of the adult data set) and probabilistically applied during

model alignment. Table 17 reports the overall performance of the toy–dependent models

over fourteen play sessions trained using leave–one–out 13–fold cross validation. Figure 20

illustrates the distribution of F1 scores grouped according to 25 toy–independent categories.

Overall, the hidden Markov model achieved an event based F1 score of 48.5% ± 9.3% per

toy–independent play activity.

As expected, the hidden Markov models were most effective at classifying play events

that exhibited periodic motions. The models preformed equally well on play events contain-

ing both smooth and abrupt periodic motions. However, these models were less effective at

identifying aperiodic motions, such as stacking blocks,4 and periodic motions that contained

decaying reverberations, such as rocking. Often, when an inverted dome is rocked, the toy

will reverberate several times before an edge is tipped rocking the toy again.

4In this dissertation, stacking is considered to be aperiodic as each toy is only stacked once and the same
motion is not happening repeatedly to the same toy.
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6.5.3 Multiclass Support Vector Machines

Wang et al. use support vector machines to classify parent–infant social games within video

sequences [70] (see Section 2.2.3). In a similar fashion, multiclass support vector machines

can be applied to identify object play behavior. The LIBSVM software package is used to

conduct several multiclass SVM recognition experiments [14].

All SVM experiments discussed in this section are conducted using a radial basis func-

tion (RBF) kernel. The cost, C , and gamma parameters, γ , are empirically selected by

performing a search over fifty–six combinations of values using the 14 session subset of the

adult data set. Five–fold cross validation is used to explore combinations C = [.01, 100000]

and γ = [.001, 1000] in multiples of 10 increments. For feature vectors consisting of de-

scriptive statistics and power spectral density features accuracy is maximized at 85.91% for

C = 100 and γ = 0.10.

Once the model parameters were selected, experiments on the fourteen adult play session

were constructed using leave–one–out cross validation using the same feature vectors as the

previous two experiments. Table 18 reports the average performance of the toy–dependent

models over the same fourteen play sessions used in the boosting and hidden Markov model

experiments. Figure 21 illustrates the distribution of F1 scores grouped according to 25

toy–independent categories.

Overall, the support vector machines achieved an event based F1 score of 75.8%±24.7%

per toy–independent play activity. Table 19 compares performance of the models according

event, segment, and time based evaluation criteria. Segment–based evaluation yields an

F1 score of 51.4%± 23.1% per toy–independent play activity, while time–based evaluation

produces F1 score of 50.6%± 23.0% per toy–independent play activity.

The support vector machines were effective at classifying a majority of both the periodic

and aperiodic events. However, the classifier exhibited difficulties with aperiodic play events

that had short temporal durations, such as spiking the puppy and stacking a LegoTM Quatro

block on top of another toy. The classifier exhibited perfect retrieval on events that had

very low within–class variation, such as wearing the ring, tossing the ball, sliding the toys

on the ground, and having the puppy run to participant (listed as “runs towards self”). It

69



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

F
1
Scores

N
u
m
b
e
r 
o
f 
T
o
y
 I
n
d
e
p
e
n
d
e
n
t 
C
la
s
se
s

Event Based F
1
Score Distribution Over 25 Object Play Classes using SVMs

Figure 21: A histogram of event based F1 scores for continuous classification using support
vector machines.

is interesting to note, that while the participants were almost uniform in how “runs towards

self” was performed, there was a much wider variation on how the plush puppy rattle was

made to run around the play space for the “run” activity. This wider variation may account

for the difference in effective retrieval scores between the two similar activities.

In comparisons to the boosted classifiers, the hidden Markov models, and the pilot

experiments, the multiclass support vector machines showed increased performance in the

overall F1 score for event, segment, and time based evaluations. Figure 22 illustrates the

distribution of the toy dependent event based F1 scores for the support vector machines,

hidden Markov models, and the boosted 1–dimensional classifier.

6.5.4 Generalization of Adult SVM models to Children’s Play Data

Based on the results from the previous experiments, three support vector machines were

trained on the full adult play data set and applied to the female child data set described

in Section 6.2.2.2 for validation. Each SVM used a subset of the features described above
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Figure 22: Histograms representing the toy–dependent event based F1 scores for support
vector machines, hidden Markov models, and boosted 1–dimensional classifiers.

and in Section 6.4.1 and were combined to help maximize generalization to the child’s data

set. The first SVM was trained using descriptive statistic–based features. The second SVM

was trained using a combination of descriptive features and power spectral density features.

The third was trained using correlative features and power spectral density features. The

output of each model was combined forming a majority vote classifier. Table 20 reports the

average number of true positives, true negatives, false positives, and false negatives over the

child’s four sessions as well as the number of positive and negative examples.

Table 21 lists event based performance metrics for the adult–trained SVM applied to

the single child, four session data set. Overall, when applied to the child data the adult

models achieved an average F1 score of 58.8% ± 18.8% per toy–independent play activity.

Table 22 compares performance of the models according event, segment, and time based

evaluation criteria. Segment–based evaluation yields an F1 score of 14.8%± 21.6% per toy–

independent play activity, while time–based evaluation produces F1 score of 9.5%± 15.9%

per toy–independent play activity.

71



6.6 Discussion

In this chapter I described the collection of multiple data sets and explored three different

statistical techniques to model object play data in adults. While no one method dominated,

support vector machines produced the higher F1 score when compared to hidden Markov

models and boosted decision stumps. By training models using combinations of three

different feature spaces, the adult models were able to recognize a variety of play events

from a single child over a four session data set. Although both the child and the adults

were performing the same play protocol, the F1 event score decreased when comparing

performance on the adult and child data sets. This decrease is not unexpected as, upon

visual inspection, the child data set had much wider within–class variation than the adult

data set (see Chapter 8 for more details). The variations within a single play activity may

also account for the much larger decrease in the segment and time based F1 scores.

Despite these decreases, the performance of adult models on the child data is encouraging

given the difficulty of collecting structured play data from young children. As will be

discussed in Chapter 7, the adult models generalize well enough to support several aspects

of retrospective review of play activities. Chapter 9 discusses the future application of these

adult models towards other data sets discussed in this chapter.
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Table 13: Occurrence of play primitives across all toys in the 4 play sessions of the female
child multi-visit data set

Actions Observed Percent of Data
Duration in milliseconds

Minimum Average Maximum
NONE 572 23.3 % 35 339 2463
assemble 103 4.19 % 35 186 576
bang 41 1.67 % 35 161 470
breaks apart 19 0.77 % 24 55 109
carry 51 2.07 % 25 162 412
crush 42 1.71 % 20 178 579
drinks 9 0.37 % 101 132 164
drop 79 3.21 % 9 57 299
explore 54 2.20 % 40 308 1078
falls 23 0.93 % 22 73 135
flies 50 2.03 % 50 286 1047
hammers 6 0.24 % 98 145 193
ignore 7 0.28 % 25 465 1618
jumps 27 1.10 % 18 59 158
knocks down 5 0.20 % 33 62 84
nest 56 2.28 % 26 88 241
present 26 1.06 % 30 124 394
pushes 27 1.10 % 21 213 919
rams 23 0.93 % 21 134 401
relate 30 1.22 % 21 120 347
relocate 403 16.4 % 13 73 283
rock 26 1.06 % 39 215 514
roll 123 5.00 % 13 107 470
runs 44 1.79 % 7 107 531
runs towards self 20 0.81 % 40 170 817
separate 65 2.64 % 18 117 468
shake 50 2.03 % 23 111 411
slide 172 6.99 % 12 53 268
spikes 15 0.61 % 26 76 173
spin 22 0.89 % 39 169 340
stacks 14 0.57 % 25 172 868
thrashes 5 0.20 % 83 141 214
toss 22 0.89 % 25 119 582
touch 203 8.25 % 7 114 928
wears 26 1.06 % 81 508 3654

Total Play Events 1888
Total Overall Events 2460

Bias towards Play 77.0%
Bias towards Non–Play 23.3%
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Table 14: Continuous recognition frequency statistics of events for boosted decision stumps
over 14 play sessions

74



Table 15: Several metrics characterizing the event based performance of boosted decision
stumps over 14 adult play sessions

Table 16: Comparison of overall performance of boosted decision stumps in terms of event,
segment, and time based evaluations for a boosted classifier over 14 adult play sessions.
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Table 17: Several metrics characterizing the event based performance of continuous recog-
nition using hidden Markov models over 14 adult play session.
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Table 18: Several metrics characterizing the event based performance of support vector
machines over 14 adult play session.

Table 19: Comparison of overall performance in terms of event, segment, and time based
evaluations for SVMs.
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Table 20: Recognition frequency statistics of the adult–trained majority vote SVMs ap-
plied to the child data
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Table 21: Metrics characterizing the event based performance of the adult trained SVMs
applied to the child data

79



Table 22: Comparison of overall performance in terms of event, segment, and time based
evaluations for SVMs trained on adult data and applied to the child data.

80



CHAPTER VII

ACCEPTABLE RECOGNITION RATES FOR RETROSPECTIVE

ANALYSIS OF CHILDREN’S PLAY BEHAVIORS

The study outlined in this chapter is designed to determine the quality of automatic recog-

nition required to support retrospective review of children’s play activities. The results of

this study will help inform which recognition algorithms (and associated accuracies) are

acceptable for use in future research and applications involving the Child’sPlay system.

This chapter begins with the research questions addressed by this study and my hy-

pothesis (Section 7.1). Afterwards, I present the within–subjects study design (Section 7.3)

which includes a list of the conditions, the method, and the selection criteria for partici-

pants. The chapter then discusses the data collected (Section 7.4), the subsequent analysis

(Section 7.5), and the overall findings from this study.

7.1 Research Questions and Hypothesis

The goal of this study is to gain a better understanding of the number and types of recog-

nition errors that a user can tolerate while annotating or reviewing previously captured

object play data. This study is designed to address the following Research Question 3 and

sub questions:

1. What level of recognition quality does a user find acceptable when using an inter-

face for retrospective review?

2. What is the perceived effort to correctly identify object play activities relative to

the level of provided annotation quality?

3. How is task performance impacted by recognition quality?

In particular, I hypothesize that there is a certain level of recognition quality that users

are willing to tolerate when using a visualization to search for information. Even in the
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Figure 23: Screen capture of the PlayView interface

presence of errors, automatic recognition can help increase the percentage of video reviewed,

increase the number of play activities identified, and reduce the perceived effort to identify

object play behaviors.

7.2 Interface for Retrospective Review

The PlayView interface used by the data coders to annotate the adult and children data sets

(as discussed in Section 6.2.1) is used to evaluate the impact that the quality of computer

supplied annotations has on the task of retrospective review. The PlayView interface is used

to view object play data and create annotations of the play data. The PlayView interface

supports the display of video from multiple camera views, the display of audio signatures,

the display of accelerometer signatures, the selective display of user created and computer

generated play annotations, as well as the ability to search for specific play events. This

section will briefly describe the main components of the PlayView interface as it relates to

this study.
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7.2.1 Videos Windows and the Timeline

The PlayView interface supports viewing of multiple video feeds. For the purposes of this

study, video from four cameras will be displayed along the right hand side of the interface

in four video windows. The windows can be enlarged to expose more detail and rearranged

to suit a user’s preference. Across the top of the interface, in the center panel, is the time

line. Time moves forward from left to right. The play head is the blue horizontal line, and

it indicates where the video views are in the relation to the timeline. In Figure 23, the play

head is positioned at 13:49:10 on the timeline.

7.2.2 Toy View

Below the time line is the annotation view area. The top most section is the Toy View. In

this view motion activity is listed per toy. The toys are listed alphabetically. When activity

occurs on a toy, a visualization of the acceleration data is graphed in the toy’s track in the

appropriate area under the timeline. The accelerometer traces in Figure 23 show that the

dome toys (formed as the ball) experience motion as the father rolls the ball while the child

plays with the puppy. Both of the LegoTM Quatro toys are not experiencing motion during

this time. 1

Figure 23 has a single pink annotation indicating that the plush puppy rattle toy is

being explored. Annotations can be drawn in the toy view by clicking and dragging on the

track of the toy which is experiencing motion. When an annotation is drawn in the toy

view, the type of activity must be selected from the annotation property pane (in the upper

left hand corner) or from a context menu. Once an annotations is assigned an activity, the

annotations also appears in the activity view.

7.2.3 Activity View

The Activity View is located below the toy view. Annotations in this view are categorized

by activity and temporally (vertically) correspond to labels which appear in the toy view.

1For the purposes of the study, participants do not have access to the accelerometer visualizations to
prevent them from using the traces to identify play behaviors (instead of, or, in addition to the computer
supplied annotations). The activity filter is also excluded for similar reasons.
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Annotations are created in the activity view in a similar fashion to the toy view. Except,

when an annotation is drawn in an activity track, the toys involved must be selected from

the activity pane. Once an annotation on an activity track is assigned toys, the annotations

also appear in the toy view.

7.2.4 Properties Pane

The annotation Property Pane shows information on the annotation currently selected.

Figure 23 the pink annotation highlighting exploration of the puppy is currently selected.

In the properties pane the activity “Explore” appears in a list box, and “puppy” is checked.

The properties pane includes the starting time of the annotation as well as the duration of

the annotation.

7.2.5 Activity Log

The activity log appears beneath the property pane. This element was added specifically

for study participants and not used by the data coders. The Log window keeps track of

annotations that study participants have viewed and wish to record as play events.

7.3 Study Design

This study is a within–subjects design with 20 participants. There are four conditions

that are explored in this study to help assess the effect of computer recognition capabilities

on the task of retrospective review. These conditions vary by the quality of automatic

play–recognition support supplied to the user via the PlayView interface. In the control

condition, participants are asked to identify three play behaviors using the interface with

no computer supplied annotations. In the other three conditions participants are asked

to identify the same three play behaviors using the interface with computer generated

annotations containing a range of low, medium, and high effective retrieval rates. Each

participant receives 30 minutes of training on both proper annotation of the three object

play activities for which they were searching (10 minutes) and interface software usage (20

minutes). Each participant is asked to identify the number of occurrences for each of the

three play task within the entire video, remove instances where the computer incorrectly
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identified one of the three events, and ensure that annotations identifying play activities

correctly represent the start and end of the play activity. After each condition, participants

complete a NASA–TLX survey, as well as a post–condition questionnaire to ascertain the

perceived workload and level of frustration in relation to the quality of the automatic

assistance provided and the ease of completing a given task.

7.3.1 Conditions

In each condition, participants concurrently search through one of four recorded play ses-

sions for occurrences of the three play behaviors listed below. These three behaviors were

selected because they span multiple levels of play sophistication and were independent from

statistical model development.

1. shaking any toy: any of the seven toys being shaken

(Level 1: Indiscriminate Actions)

2. assembling LegoTM Quatros: assembling the two LegoTM Quatro toys

(Level 4: Presentation and General Combinations)

3. puppy jumping: the plush puppy rattle jumping over any of the other six toys

(Level 5: Object Directed)

During the course of the experiment, participants search through play data collected

from four different play sessions involving a 5–year–old child performing the adult play

protocol (described in Section 6.2). Participants search through a different play session

for each condition. The presentation order of the play sessions is held constant across

all 20 participants as all the play sessions involve the same child and are similar in both

length as well as play behavior frequency. On average, there are 27 instances of the play

behaviors that the participants should identify. To minimize the ordering effect, the order

of conditions is balanced using a partial Latin Square. However, participants remain blind

to the order in which they receive the four conditions: None, Motion–Only, Low, and

High.
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7.3.1.1 None

In the None condition participants receive no recognition assistance within the PlayView

interface. The toy and activity views contain no additional information to support the

search process. In this condition, participants can watch the video in real–time or use

the interface quickly scan through video. Participants must create all annotations. This

condition is the control condition of the experiment because it is similar to current best

practices in retrospective analysis. Figure 24 is a screen capture of this condition applied

to the fourth play session.

Figure 24: Screen capture of the PlayView interface while searching through the fourth
play session during the None condition.

7.3.1.2 Motion–Only

Participants in the Motion–Only condition receive a näıve level of recognition assistance

within the PlayView interface. In this condition, every instance of motion experienced by the

toys is annotated as a “unknown” activity and highlighted grey in color. Participants can

use the toy and activity views to visually correlate when toys are experiencing motion with
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the video time line. Participants can quickly jump the video over spaces where no motion

is occurring, quickly scan through video, or watch the video in real–time. Participants

can annotate data by changing the categorization of the “unknown” annotations to more

descriptive labels, or they can create a new annotation. Figure 25 is a screen capture of

this condition applied to the fourth play session.

Figure 25: Screen capture of the PlayView interface while searching through the fourth
play session during the Motion–Only condition.

7.3.1.3 Low

Participants in the Low condition receive recognition assistance within the PlayView inter-

face. In this condition, 78 toy–dependent play activities are annotated with bright colors

using the statistical models described in Section 6.5.4, and the supplied annotations reflect

the current capability of the Child’sPlay system. Participants can use the toy and activ-

ity view to visually correlate when toys are experiencing motion with the video time line.

Participants can quickly jump to specific activities within the video, jump past segments

of the video where no motion is occurring, quickly scan through video, or watch the video
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in real–time. Participants can annotate data by adjusting the boundaries of existing la-

bels, changing the categorization of the other annotations, or can create a new annotation.

For consistency, the Motion–Only grey labels are also present in this condition with the

higher level recognition information superimposed. In this condition, recognition support

provided for each of the three play activities experiences a different type of recognition error.

LegoTM Quatro activities experienced high insertion errors, puppy jumping experienced a

high number of deletion errors, and shaking toys was often misidentified as banging. Using

the current recognition capabilities discussed in Section 6.5.4 the average F1 measure of

the provided annotations is 58.8%. The average F1 measure for the three activities the

participants must identify in this condition is 47.38%. Figure 26 is a screen capture of this

condition applied to the fourth play session.

Figure 26: Screen capture of the PlayView interface while searching through the fourth
play session during the Low condition.
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7.3.1.4 High

Participants in the High condition receive the highest quality of recognition assistance

within the PlayView interface. Similar to the Low condition, 78 toy–dependent play activ-

ities are annotated with bright colors using the statistical models described in Section 6.5.4.

However, modifications were made by hand to improve the supplied annotations to signifi-

cantly increase the F1 measure. This condition is intended to represent the future capability

of the Child’sPlay system. Identical to the Low condition, participants can use the toy and

activity view to visually correlate when toys are experiencing motion with the video time

line. Participants can quickly jump to specific activities within the video, jump past seg-

ments of the video where no motion is occurring, quickly scan through video, or watch the

video in real–time. Participants can annotate data by adjusting the boundaries of existing

labels, changing the categorization of the other annotations, or can create a new annotation.

For consistency, the Motion–Only grey labels are also present in this condition with the

higher level recognition information superimposed. In this condition, recognition support

provided for each of the three play activities reduces the errors experienced in the Low

condition. Insertion errors for the LegoTM Quatro activities are reduced by 65%, deletion

errors for the puppy jumping are reduced 65%, and substitution errors between shaking

and banging toys is also reduced by 65%. The average F1 measure of the three activities to

identify in this condition is 68.50%. Figure 27 is a screen capture of this condition applied

to data collected in the fourth play session.

7.3.2 Method

7.3.2.1 Informed Consent and Background Survey

After a standard informed consent procedure, the participant completes a background sur-

vey to collect basic demographic information, as well as experience using video editing and

annotation software; information on exposure to pattern recognition courses; and overall

trust in information automatically provided by computer algorithms is also ascertained.

Background data is also collected on overall experience with computers, involvement in

clinical studies observing play, and exposure to children, in general. Appendix E includes
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Figure 27: Screen capture of the PlayView interface while searching through the fourth
play session during the High condition.

the background survey as well as all other paper–based surveys administered during the

experiment.

7.3.2.2 Training

After completing the background survey, the participant is informed of the task he will

be completing. Namely, he will be viewing four different videos of a child playing and

identifying when three specific types of play occur. However, the types of play are not

described at this time. Next, the participant is physically shown the seven toys used during

play. Each toy is identified by type and color. Afterward, the sensor inside the yellow

LegoTM Quatro is revealed. The participant is told that there are similar sensors in each

of the toys and that the toys transmit motion information back to the computer. The

computer then analyzes the motion and identifies the type of play that is occurring to the

best of its ability.

Using the physical toys, the participant is shown each of the three play activities he will

be identifying in the video. First the participant is shown the two LegoTM Quatro toys being
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assembled. He is instructed that the order of assembly does not matter, and that the child

is not required to physically hold both toys. The main requirement is that the one–four

pegs of one LegoTM Quatro are mated into the underside holes of the other LegoTM Quatro.

Second, the participant is shown the plush puppy rattle toy jumping over another toy. He

is instructed that it does not matter which toy the puppy jumps over, the number of toys

traversed, nor the height of the jump. The only requirement is that the puppy starts on

the ground, passes over a toy while in the air and returns back to the ground. Third, the

participant is shown each of the toys being shaken, individually. He is instructed that the

direction of the shake, the toy orientation, and the frequency do not matter. After seeing

a description of the play activities the participant is told that all play activities begin the

moment one of the involved toys is touched and ends when the last toy involved comes to

rest (be it in a statically held position, or resting on the ground). Questions about the play

activities are then fielded. Explanation of these activities and related questions typically

lasts 10 minutes.

Once the participant expresses he is comfortable and feels he can identify the three play

activities, he is told of his primary task and trained in usage of the PlayView interface.

Each participant is told that he must identify as many occurrences of the three play tasks

as possible and reach the end of the video. They are also to remove annotations where the

computer incorrectly identifies any of the three events and ensure that annotations correctly

represent the start and end of the play activity.

All participants received training on the same play session, which was used solely during

the training session. The participants are trained using a 20 minute play session from the

adult play data set that is annotated with both motion labels and high recognition. First,

each section of the interface is named and described, starting with the videos, the toy view,

the activity view, the properties pane, and then the log window. Next the timeline is

described, and basic functionality of the play–head is explained. Participants are shown

how to scan through the video by dragging the play–head, jump to various points in the

time line by double clicking on it, and play the video in real–time. After instruction, the

participant is asked to repeat the activities he has just been taught.
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Next, the participant is shown how to identify computer supplied annotations. As part

of this instruction, the participant is informed that colored labels indicate areas where

the computer has identified play activities and that different colors correspond to different

activities. The participant is told that colored labels are more likely to be correct than

incorrect. Grey annotations indicate areas where the computer identified that the toys

experienced motion but could either not classify the play or determined that no play was

occurring. The participant is informed that the toys are often in motion as the result

of being bumped, reverberating from previous actions, or that the toys are picking up

vibrations from other movements in the play space. However, there is a guarantee that no

motion exists in the spaces between the grey labels. The participant is urged to leverage

computer assistance, whenever possible, to aid the search process.

The participant is shown how to identify computer supplied annotations for his specific

three play activities within the activity view and how to skip forward to these activities to

hasten the search process. He is also asked to double click on various annotation labels to

demonstrate how to skip the videos forward and adjust the videos to that location. Next,

the participant is instructed to locate two of each activity via the fast searching method.

After demonstrating the ability to locate labels, the participant is then shown how to

adjust annotations both in the temporal and categorical sense. Dragging on the boundaries

of an annotation can adjust the duration of the annotation by altering the beginning and

ending points of the annotation. To reclassify an annotation label (e.g., from banging to

shaking) the participant simply selects the new categorization from the properties pane. In

addition, the participant is also shown how to delete incorrect labels. If the participant

encounters a computer supplied annotation that is incorrect, he is instructed to delete it.

However, he is instructed to only check the correctness of labels concerning his three play

activities. Labels can be deleted by selecting the annotation and hitting the delete key or

by selecting delete from a context menu. At this time, the participant is asked to locate two

labels and change their categorizations, adjust the duration of two annotations, and delete

an annotation.

The remaining task to teach the participant is creating new annotations. A participant
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needs to create annotations during the None condition and in other conditions if he en-

counters play activities that the computer failed to annotate. Annotations can be created in

either the toy view or the activity view portion of the interface. The participant clicks in the

appropriate track and drags forward in time until the activity ceases. He then right clicks

and selects the appropriate categorization for the activity. Corrections to the categorization

can be made in the properties pane if needed.

After a participant practices creating labels, he is then shown how to add the activity

annotation to the log. Annotations are added (or removed) from the log by right clicking on

the annotation label and selecting the appropriate action from a context menu. Annotations

are logged after being inspected and adjusted to the appropriate duration. The participant is

instructed to log both correct annotations provided by the computer, computer annotations

that he adjusted, as well as any annotation he creates. Logging the activities helps determine

which computer supplied annotation the participant viewed and which ones he did not. Prior

to the conclusion of training the participant is asked to find an example of each of the three

play activities and add them to the log (as well as remove one annotation from the log).

The participant is instructed to use the interface and ask questions. The training session is

complete when the participant states that he is comfortable with the interface.

7.3.2.3 Experimental Conditions

Each participant receives all four levels of recognition quality in permuted order as dictated

by the partial Latin square. At the start of the each condition, the experimenter loads the

appropriate play session and applies the appropriate level of automatic recognition support.

The participant is then seated at the computer, given time to adjust the video components

of the interface and ask any questions they may have about the task. The participant is

told that he will have fifteen minutes to complete his task and that each play session is over

forty–five minutes in length. The participant is told that he must balance the number of

instances he views and the level of detail he uses to correct annotation durations in order

to complete the task. The participants are also told that it is possible to reach the end of

the video if he leverages the information provided by the computer. If the participant has
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no further questions, he is told that he will receive verbal notification when he has a minute

remaining to complete the task and to begin when ready. A screen capturing program is

started by the experimenter just prior to the start of the search process.

At the end of the fifteen minutes, the experimenter saves the log and label annota-

tions. The experimenter then starts a computerized version of the NASA–TLX survey [3].

When the participant completes the NASA–TLX, he is then administered a paper survey

ascertaining task search strategy, task difficulty, and his satisfaction with the quality of the

annotations provided by the computer (see Appendix E for the survey details). Once the

participant has completed the survey, the experimenter scans the document and asks any

clarifying questions, if needed. After the survey process is complete, the participant begins

his next condition, repeating these steps.

7.3.2.4 Post–Conditions

After all four conditions and the associated surveys have been completed a post–experiment

survey is administered. The participant ranks which condition he likes best, which condition

provided the most useful annotation support, and which condition was easiest. The survey

also compares conditions for similarity, and asks several questions about which aspects of

automatic annotations (e.g., annotation duration and categorization) are most important.

The survey also investigates the impact of the software interface design on task performance.

The participant is asked clarifying questions after the completion of this survey.

7.3.3 Participants and Compensation

Twenty participants, sixteen males and four females, were recruited from the Atlanta

Metropolitan Area as well as from the student population of the Georgia Institute of Tech-

nology. Each participant is recruited for a single, two and a half hour session and receives

$20 for his involvement. As a recruitment criteria, participants must be able to use a tradi-

tional mouse, understand verbal instructions, be able to distinguish between different colors

displayed on a computer monitor, and have basic computing skills. This population can

be considered similar to that which is often hired to annotate data for university based

psychology research studies.
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Figure 28: Histogram of participant’s ages

Participants are between the ages of 20 – 50 years of age, with the mean age being 29.

Figure 28 is a histogram of participant ages. All of the participants have at least a high

school education. Eight of the participants were currently obtaining or held degrees in com-

puter science. Only two participants reported having experience with pattern recognition

or machine learning courses. Overall, participants report using a computer for 30 – 49 hours

a week. Four participants have experience with video editing software (under 50 hours of

use). No participants reported experience transcribing or annotating video.

None of the participants have been involved in previous clinical research involving young

children. Only two of the participants are parents. However, all but three participants

report experience watching young children play with toys.

7.4 Performance Measures

Several measurements are collected during the course of the study from each participant to

help assess both quantitative and qualitative aspects of automatic play recognition support

and the impact it has on identifying play activities. First, the time taken to identify all
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instances of assembling LegoTM Quatros, puppy jumping, and shaking any toy that exist

in the play session is recorded. The expectation is that the level of annotation will directly

influence the time required to annotate a play session. If participants do not finish anno-

tating a play session in the given time, a second measure of performance is the percentage

of the play session physically viewed by the participant. The furthest point reached in the

play session is computed post hoc from screen captures collected during the session and

is used to compute the percentage of the play session that is viewed. Third, regardless if

the participants completely annotate the play session data, the resulting annotations are a

combination of the computer generated labels and human supplied corrections. These anno-

tations are recorded for each participant and accuracy metrics evaluating the quality of the

annotations are computed. To help ascertain which labels are affected by the participant, a

log file is created by each participant which details the annotations he has physically viewed,

potentially adjusted, and verified for correctness. The log file is necessary as the computer

may provide labels that do not require adjustment and would look identical to its state

prior to the participant viewing it. The log allows the experimenter to distinguish between

which annotations were viewed and required no corrections versus which annotations that

the participant did not reach due to time constraints but are still included in the resulting

annotation file.

In addition to metrics resulting from task performance, survey instruments are used to

collect a quantitative measure of perceived effort and frustration caused by errors. These

instruments include two post–condition surveys and an exit survey after the experiment is

complete. In these surveys, the participants provide information via forced rankings, Likert

scales, and short essay responses.

7.5 Analysis of Performance Metrics

Analysis of the data collected is presented according to task performance metrics and fol-

lowed by survey data.
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7.5.1 Play Identification Performance Metrics

During each condition, a participant is asked to log play events as well as remove mistakes

made in the computer annotations. The resulting play annotation is a combination of

computer generated annotations with human corrections. These annotations, which include

the participants ability to identify play behaviors, can be evaluated in the same way that

the statistical models of play recognition are evaluated.

The F1 score is the harmonic mean of the positive prediction value and the true positive

rate. A one–way repeated measures ANOVA was conducted to compare the F1 scores of the

participant’s play annotations after completing the None, Motion–Only, Low, and the

High annotation conditions. The means and standard deviations are presented in Table 23

as well as illustrated in Figure 29. There was a significant effect for annotation condition,

Wilks’ Lambda = .063, F (3,17) = 84.01, p = .0005, multivariate partial eta squared = .937.
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Figure 29: F1 scores of participants’ annotations grouped by condition.

The F1 scores did not vary significantly between the None and the Motion–Only
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Table 23: Descriptive statistics for F1 scores of participants’ annotations of play activities.
Condition Participants (N) Mean Standard deviation
None 20 42.67% 13.01%
Motion–Only 20 43.85% 12.84%
Low 20 62.27% 7.30%
High 20 78.96% 7.06%

conditions. However, there is a significant difference between the Low and High conditions

(p = .000); between Motion–Only and High (p = .000); between Motion–Only and

Low (p = .000); between None and High (p = .000) as well as between None and Low

(p = .000);

The results indicate that overall participant performance does not significantly change

between the baseline (None) condition, which provides the user with no annotations, and

the Motion–Only condition, which provides the user with annotations indicating toy

motion. While the generalized motion labels help participants skip over areas of inactivity,

the labels were too frequent and nondescript to help significantly increase performance. Of

important note was that the motion labels often included non–play motions, such as toys

being kicked and bumped. There were 12 participants that made comments regarding the

slight benefits provided by the motion labels over the None condition. Participant g4p3

states, “... I think I actually made it further into this video [ None ] and identified more

activities than in the last [condition Motion–Only ]. I think the grey labels in the last

[condition] helped me a little but were not that descriptive and ended up having me waste

my time and distract me so I stopped using them.” Similarly, Participant g5p3 states, “...

Grey boxes are only slightly more useful than not having anything especially when she [the

child] is all wound up [jumping around causes motion in the toys when they are not being

used].”

The conditions with annotations provided by the computer significantly increase per-

formance as the annotation condition increases in quality. This result is not surprising as

the High condition was designed by modifying the different error types present in the Low

condition until there was a significant increase in the F1 measure. The average F1 scores

of the participants is higher, pairwise, than the original F1 scores of the High and Low
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conditions – hinting at a potential gain to keep humans in the play recognition loop while

using the Child’sPlay system, even as future recognition abilities increase towards the High

condition (and potentially beyond). The system, as it stands, is significantly better than

current best practices and can only improve as technology allows the system to move from

Low to High.

7.5.2 Percentage of Video Reviewed

Unexpectedly, fourteen of the twenty participants did not reach the end of the play sessions

during the High and Low conditions. The percentage of video reviewed by the participants

is calculated using the screen captures recorded during the participants sessions. The start-

ing position of the play–head is marked and the furthest position reached in the time line is

considered the ending point. The differences between these two positions is calculated and

divided by the length of the video.

Condition did not have a significant effect on the percentage of video viewed by the par-

ticipant. I feel this result directly relates to the search strategy utilized by the participants.

During training, each participant is shown how to maximally use the provided annotations

to search through the play session. Participants must demonstrate the ability to search

through the training video in a similar fashion before proceeding to the first experimen-

tal condition. However, only five of the twenty participants adopted the training search

strategy in both the High and Low condition. One participant switched to the training

strategy for his last condition (accounting for the six participants which viewed all of the

play session video).

When questioned about the search strategy used, eight participants stated that they

wanted the annotations that they provided to be as accurate as possible. For example,

Participant g4p2 states, “[if ] I didn’t finish the video, at least what I did finish was solid.”

Participant g1p4 states, “Given that the video was much longer than the time available, I

didn’t focus on getting through it, more on trying not to miss any play activities and trying

to be accurate in the start and stop times.” Of the participants that watched large portions

of the video in real–time, three participants stated that they chose to watch the video in
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real–time (and near real–time) as it seemed most natural or was easiest. Participant g1p1

states, “it just seemed the method that was most familiar to me.” One participant watched

the video in near real–time due to a lack of trust in the recognition Participant g2p2 states,

“I didn’t fully trust the labels so I wanted to view most of the video myself, and that seemed

the likely best way to do it quickly and accurately.”

The degree of trust in computer algorithms has an impact on the participants’ search

process at some level. As part of the background survey all participants are asked for an

opinion of the following statement: “If a computer uses an algorithm to provide me with

information, I believe it to be correct. Figure 30 shows the distribution of responses. Four

of the participants disagreed with this statement, five were neutral, and eleven agreed.

Mean =4.15
Std. Dev. =1.42

N =20

Figure 30: Histogram of responses to background questions 13: “If a computer uses an
algorithm to provide me with information, I believe it to be correct.”

This distribution of responses to the belief in computer supplied information may suggest

that many participants wanted to maximize the accuracy of the labels they themselves
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created to augment the computer labels, which they mostly trusted to be correct. In

explaining his strategy, Participant g5p1 states, “I decided to aim for finding as many

[missing play activities] as I could rather than checking as many [computer provided labels]

as I could. I was going for accuracy over speed. I was not ignoring the labels, but augmenting

the existing labels and checking labels as I encountered them just to make sure they were

OK.” No other participants expressly stated that they were specifically augmenting the

existing labels. However, the search strategies of eight other participants were very similar

to the strategy used by participant g5p1.

It should also be noted that the trust in the computer’s accuracy did not change sig-

nificantly as a result of the participants annotating four play sessions. A paired T-test was

conducted on the pre–experiment beliefs and post-experiment beliefs and did not reveal a

significant difference between the responses. Figure 31 compares the pre–experiment and

post–experiment distributions.

Mean =4.15
Std. Dev. =1.42

N =20 Mean =4.55
Std. Dev. =1.099

N =20

Figure 31: Comparison between pre–experiment and post–experiment belief in computer
accuracies (from left to right)

7.5.3 Number of Logged Play Activities

In light of the search strategies discussed above, it is also important to investigate the

effect that annotation condition has on the percentage of play activities logged. A one–

way repeated measures ANOVA was conducted to compare the percentage of proper play

instances logged by the participant after completing the None, Motion–Only, Low, and
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the High annotation conditions. The means and standard deviations are presented in

Table 24 as well as illustrated in Figure 32. There was a significant effect for annotation

condition, Wilks’ Lambda = 0.430, F (3,17) = 7.52, p = .002, multivariate partial eta

squared = 0.570.
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Figure 32: Percentage of play activities logged by participants over each condition.

Table 24: Descriptive statistics for the percentage of play instances logged
Condition Participants (N) Mean Standard deviation
None 20 37.60% 16.55%
Motion–Only 20 39.48% 15.30%
Low 20 55.47% 20.64%
High 20 61.44% 21.96%

The percentage of items logged did not vary significantly between the None or Motion–

Only conditions nor between the Low and High conditions. However, there is a difference

between None and Low (p = .008); None and High (p = .002); Motion–Only and Low

(p = .012); as well as Motion–Only and High (p = .002).

In terms of the number of events found, there is a significant difference between the
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percentage of events found in conditions that provided activity specific annotation when

compared to those that did not. This result helps justify systems such as Child’sPlay that

use statistical models to help identify activity versus those that might rely solely on simple

motion indicators and assume that a human can filter through the results to make intelligent

annotations.

7.6 Analysis of Survey Data

In addition to performance metrics, it is also important to factor in the participant’s percep-

tions. Surveys were conducted after a participant completed annotating each play session.

Each participant completed a total of four Post–Condition surveys. Unless otherwise stated,

responses are collected from a seven point Likert scale with a score of 1 = Strongly Disagree

and a score of 7 = Strongly Agree. The next few sections, discuss these results.

7.6.1 Satisfaction with Annotation Support Provided by the Computer

A one–way repeated measures ANOVA was conducted to compare Likert scale scores on

the participant’s satisfaction with the number of labels provided by the computer after

completing the None, Motion–Only, Low, and the High annotation conditions. The

means and standard deviations of the participants’ responses to the question, “I am satisfied

with the number of labels provided by the computer.” are presented in Table 25 as well as

illustrated in Figure 33. There was a significant effect for annotation condition, Wilks’

Lambda = .43, F (3,17) = 7.39, p = .002, multivariate partial eta squared = .95.

Table 25: Descriptive statistics for responses regarding the satisfaction with the number
of labels provided by the computer

Condition Participants (N) Mean Standard deviation
None 20 2.85 1.90
Motion–Only 20 3.60 2.04
Low 20 5.25 1.16
High 20 5.30 1.22

Satisfaction with the number of labels did not vary significantly between the None or

Motion–Only conditions nor between the Low and High conditions. However, there is a

difference between None and Low (p = .001); None and High (p = .001); Motion–Only
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Figure 33: Average Likert scale response to “I am satisfied with the number of labels
provided by the computer.” grouped by condition.

and Low (p = .017); as well as Motion–Only and High (p = .012)).

These results indicate that, in terms of number of labels provided, participants viewed

the grey Motion–Only labels as equivalent with no annotations and are, in general, dissat-

isfied by the number of labels provided. Participants were more satisfied with the number

of detailed colored annotations in the Low and High conditions over just the grey mo-

tion labels alone. Participant g1p2 states, “The grey labels were pretty useless, it seemed

that they were triggered even the kid walked next to the toy.” While detailed color annota-

tions are more satisfying than generalized motion labels, there is not a significant change

in satisfaction between the Low and High quality annotations.

7.6.1.1 Searching in the Presence of Annotations for Multiple Activities

When interpreting the performance metrics above, it is also important to have an under-

standing if the participant felt overwhelmed by aspects of the task. In particular, the

automatic recognition was not specifically tailored for the three play tasks that the partic-

ipants were searching. The presence of other types of play causes more annotations to be
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present and increases the opportunity for play events to be misclassified.

A one–way repeated measures ANOVA was conducted to compare scores on the partici-

pant’s ability to ignore annotations not related to the primary search task after completing

the None, Motion–Only, Low, and the High annotation conditions. The means and

standard deviations of the participants’ responses to the question, “I was not distracted by

labels not related to my task.” are presented in Table 26. There was a significant effect for

annotation condition, Wilks’ Lambda = .56, F (3,17) = 4.53, p = .016, multivariate partial

eta squared = .44.

Table 26: Descriptive statistics for responses regarding the ability to ignore annotations
not related to the primary search task

Condition Participants (N) Mean Standard deviation
None 20 6.50 0.76
Motion–Only 20 5.30 1.90
Low 20 5.45 1.47
High 20 5.60 1.43

Ability to ignore unrelated annotations did not vary significantly between the Low or

High conditions nor between the Low, Motion–Only, and High conditions. However,

there is a difference between None and Low (p = .024) as well as None and Motion–Only

(p = .050).

During the search tasks, participants are asked to locate three different types of play

among thirteen total activities. These results indicate that participants can search for three

different play activities without being distracted by information pertaining to the ten other

types of play. Furthermore, this result is independent of the level of annotation provided

by the computer.

7.6.2 Searching in the Presence of Inaccurate Annotations

In addition to gauging the impact of unrelated activities, it is also important to understand

the impact that errors have on the search process. A one–way repeated measures ANOVA

was conducted to compare scores on the participants’ ability to perform the search task in

the presence of inaccurate annotations after completing the None, Motion–Only, Low,

105



and the High annotation conditions. The means and standard deviations of the partici-

pants’ responses to the question, “Erroneous labels did not prevent me from completing my

task.” are presented in Table ?? as well as illustrated in Figure 34. There was a signif-

icant effect for annotation condition, Wilks’ Lambda = .35, F (3,17) = 10.46, p = .0005,

multivariate partial eta squared = .65.
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Figure 34: Average Likert scale response to “Erroneous labels did not prevent me from
completing my task.” grouped by condition.

Table 27: Descriptive statistics for responses reguarding the ability to perform the search
task in the presence of inaccurate annotations

Condition Participants (N) Mean Standard deviation
None 20 6.70 0.47
Motion–Only 20 5.30 2.13
Low 20 4.95 1.43
High 20 5.50 1.40

The performance on search in the presence of inaccurate annotations did not vary sig-

nificantly between the Motion–Only, Low and High conditions. However, there is a

difference between None and Low (p = .000); as well as None and High (p = .008).

Recall that in the None condition, there are no annotations provided by the computer.

Inaccurate labels did not prevent the participants from identifying play activities. Though
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the difference between the baseline condition and the higher quality annotations levels sug-

gests that there was more opportunity for erroneous labels to be encountered versus none

at all. A lack of distinction between the Motion–Only and None annotations here may

indicate that the grey, Motion–Only labels were not necessarily perceived as labels that

were “correct” or “incorrect.” Qualitative data supports two explanations. First, that the

Motion–Only annotations were merely a way to skip sections of inactivity within the play

session. Participant g3p2 states, “The labels at the top [grey] were useful for me when there

were long breaks in toy movement and I would just skip over the dead space.” Second, the

participants ignored the generalized motion annotations. Participant g6p2 states, “I used

grey to skip ahead but for the most part ignored them.” Participant g3p1 states, “The grey

labels seemed to be worthless.”

After completing all conditions, participants were again asked questions pertaining to

the impact of errors during an exit survey. Figure 35 illustrates the distribution of responses

to the question: I would rather have inaccurate, computer generated labels than no labels

at all. Eleven participants disagreed with this statement while 9 agreed and one remained

neutral.

The median response, 3.00, indicates that overall, participants, somewhat disagree with

this statement. However, in the context of this response, I believe that participants inter-

preted “inaccurate labels” to mean the grey generalized motion labels associated with the

Motion–Only condition rather than classification errors within the conditions with col-

ored annotations. This interpretation aligns with many of the negative comments directed

towards the Motion–Only and None conditions as well as positive comments directed

towards the Low and High conditions. More evidence to support this interpretation is also

provided by the response towards questions investigating false positive errors.

Figure 36 illustrates the distribution of responses to the question: It is easier to ig-

nore extraneous labels than it is to search video for missing labels. Sixteen of the twenty

participants agreed with this statement while two disagreed, and two remained neutral.

The median response, 6.00, indicates that participants, overall agreed with the above

statement. This result suggests that participants would rather delete false positives than

107



86420

F
re
q
u
e
n
c
y

6

4

2

0

Mean =3.7
Std. Dev. =1.895

N =20

I would rather have inaccurate computer generated 
labels than no labels at all

Strongly AgreeAgreeSomewhat AgreeNeutralSomewhat DisagreeDisagree

Response

Strongly Disagree

N

Mean

Std. Error of Mean

Median

Mode

Std. Deviation

Variance

Minimum

Maximum

25

50

75

Percentiles

20

5.00

3.00

2.00

7

1

3.589

1.895

2

3.00

.424

3.70

PercentFrequency

Strongly Disagree

Disagree

Somewhat Disagree

Neutral

Somewhat Agree

Agree

Strongly Agree

Total 100.020

10.02

10.02

20.04

5.01

15.03

35.07

5.01

Figure 35: Histogram of responses pertaining to generalized annotations versus no anno-
tations

receive no annotation support from the computer. Participant g5p3 states, “If one is trying

to produce an essay with few mistakes, it saves a lot of time if there is already a rough draft.

Just correcting mistakes is easier than having to do the work yourself and then correct the

mistakes.”

When interpreting both the response to this question and the previous question, one

must be more specific about the types of errors the participants are willing to tolerate to

avoid contradiction. In particular, the false positives must provide more specific information

than simply informing the user that motion occurs, and occurs less frequently, than the

general motion labels.

7.6.3 Computer Generated Annotations are Useful to the Search Process

Another way to confirm the interpretation about errors presented in the last section is to

determine if participants found annotations that were useful during each of the conditions.
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Figure 36: Histogram of responses pertaining to preference of insertion errors to deletion
errors

A one–way repeated measures ANOVA was conducted to compare scores on the partic-

ipant finding computer generated labels that are useful to his process after completing the

None, Motion–Only, Low, and the High annotation conditions. The means and stan-

dard deviations of the participants’ responses to the question, “I found computer generated

labels that were useful to my search.” are presented in Table 28. There was a significant

effect for annotation condition, Wilks’ Lambda = .105, F (3,17) = 48.19, p = .000, multi-

variate partial eta squared = .89.

Table 28: Descriptive statistics for responses reguarding the presence of useful computer
generated annotations

Condition Participants (N) Mean Standard deviation
None 20 6.70 0.47
Motion–Only 20 5.30 2.13
Low 20 4.95 1.43
High 20 5.50 1.40

The perception of the presence of useful computer generated annotations did not vary

significantly between the Motion–Only and Low conditions, the Motion–Only and
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High conditions, nor the Low and High conditions. However, there is a difference between

Motion–Only and High (p = .009) as well as None and all other conditions (Motion–

Only p = .001, Low p = .000, and High p = .000).

In all levels of computer provided annotation, the participants were able to find anno-

tations that assisted them in the search process. Of particular interest is the fact that the

ability to find useful labels did not vary significantly between the Low and High conditions.

While there were also no differences between the Low and Motion–Only conditions, there

is a perceived benefit over just motion alone if the annotations are of sufficiently high quality

(approaching quality found in the High condition).

7.6.3.1 Confidence in Identifying All Instances of Play That Exist

Results from the previous sections suggest that participants prefer higher quality annota-

tions over generalized motion labels or nothing at all. Next, it is interesting to investigate

the impact that different quality annotations have on participants’ confidence.

A one–way repeated measures ANOVA was conducted to compare scores on the partici-

pant’s confidence in logging all existing play activities after completing the None, Motion–

Only, Low, and the High annotation conditions (survey question 12). The means and

standard deviations of the participants’ responses to the question, “I am confident that I

logged all instances of my play activities that exist in the video.” are presented in Table 29.

There was a significant effect for annotation condition, Wilks’ Lambda = .513, F (3,17) =

5.39, p = .009, multivariate partial eta squared = .49.

Table 29: Descriptive statistics for responses regarding the confidence of logging all existing
play activities

Condition Participants (N) Mean Standard deviation
None 20 2.70 1.84
Motion–Only 20 2.65 1.73
Low 20 3.75 1.74
High 20 3.40 1.88

Confidence in identifying all existing play did not vary significantly between the Low

and High conditions nor between the Motion–Only and None conditions. However,

there is a difference between the Motion–Only and Low condition (p = .012) .
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These results indicate that the increase in annotation quality does not necessarily in-

crease the confidence in identifying all instances of play. However, providing more play

specific detail in relation to general motion information can help improve confidence. Over-

all, confidence is low across all conditions. This is partially related to both trust in the

computer recognition and the timed nature of the task. Only six of the twenty participants

were able to complete annotating a play session (in the Low and High condition). While

more than half of the participants (12) expressed confidence in identifying all the behaviors

in the percentage of the session they viewed, they acknowledged that they had not com-

pleted enough of the session to state with confidence that they had logged all instances of

an event. Participant g1p3 states, “I am not overly confident. It is a long video.”

Of the six that finished the video, all but one participant reviewed the video to identify

play activities in the grey areas. Participant g4p3 states, “[I have less confidence] because

I only listened to the computer and it may have missed something.”

Participant g5p2 is the only participant that specifically stated that he lacked confidence

in the recognition because he did not understand how the recognition worked beyond the

simple explanation provided in training. Participant g5p2 states, “I could have missed a

shake I was scrolling really fast. I am 90% confident in [finding] all assembling I can imagine

the sensors are pretty accurate with identifying that. I just don’t know how the sensors can

tell the difference from the puppy being shaken versus thrown across the room ... I don’t

know how confident I can be in the computer’s ability to recognize [correctly] since this is

all I looked at. I don’t know if the computer missed something in the grey areas.”

The statement quoted above also suggest that the participants in this study may be more

familiar with the capabilities of technology than the general population. This knowledge of

technology may have made them increasingly more aware of the difficulty of the computation

and the possibility that the underlying algorithms may not work as intended. Further study

is needed to determine if the awareness of computation decreases trust in the automatic

annotations. This issue will be discussed further in Chapter 9.
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7.6.4 The Computer Reduces the Amount of Effort Required to Annotate

Given the lower scores in confidence for the computer generated annotations, it is important

to investigate if participants feel the computer annotations reduce the effort required to

annotate the video.

A one–way repeated measures ANOVA was conducted to compare scores on the partic-

ipants’ opinions that the computer reduces the amount of effort required to annotate play

session after completing the None, Motion–Only, Low, and the High annotation con-

ditions. The means and standard deviations of the participants’ responses to the question,

“Overall, the computer reduced the amount of effort required to annotate this video.” are

presented in Table 30 as well as illustrated in Figure 37. There was a significant effect for

annotation condition, Wilks’ Lambda = .395, F (3,17) = 8.66, p = .001, multivariate partial

eta squared = .61.
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Figure 37: Average Likert scale response to “Overall, the computer reduced the amount
of effort required to annotate this video.” grouped by condition.

Opinions pertaining to required effort as a result of the level of computer provided

support did not vary significantly between the Low and High conditions nor between the
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Motion–Only and Low conditions. However, there is a difference between the Motion–

Only and High condition (p = .028). There is also a difference between the baseline, None

condition and all other conditions (Motion–Only p = .024, Low p = .001, and High p =

.000).

For all levels of annotation, the computer provided annotations significantly reduced the

amount of perceived effort to annotate the data over not having any annotations provided.

There is a significant decrease in effort again when comparing the effort required to annotate

the data with general motion annotations compared to the highest quality annotations. In

general, the grey labels allowed participants to ignore inactivity in the play data while

the higher quality labels allowed participants to focus attention on specific types of play.

It should be noted that there was not a significant decrease in effort between the lower

quality annotations and the general motion labels. This lack of difference is attributed to

the high insertion errors inherent in the Low condition (as described in Section 7.3.1.3).

While the colored labels allow a participant to focus on specific play, there are several

inaccurate instances that need to be discarded. These inaccuracies are not present in the

High condition.

7.6.4.1 Least Effort and Overall Worklaod

Because the computer generated annotations are designed to reduce effort, the participants

were asked, again, in the exit survey to both rank the conditions in terms of required

effort as well as asked their overall opinion on effort. Figure 38 shows the distribution of

response to the question “Computer generated labels decreased the amount of effort required

to annotate video.” Fourteen participants agreed with this statement, two disagreed, and

four remained neutral.

Table 30: Descriptive statistics for responses reguarding the computer reducing the effort
required to annotate play sessions

Condition Participants (N) Mean Standard deviation
None 20 2.95 2.02
Motion–Only 20 4.40 1.70
Low 20 5.60 1.35
High 20 5.60 0.76
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Figure 38: Distribution of responses to “Computer generated labels decreased the amount
of effort required to annotate video”

Of more interest are the rankings provided. Each participant ranked the conditions

in order of required effort. The variance among the rank results is analyzed using a non–

parametric alternative to the one–way repeated measures ANOVA, the Friedman Test. Post

hoc analysis to determine the significant aspects is performed with the Wilocoxon Sign Rank

Test which is the non–parametric alternative to the repeated measures paired–T test and

has the advantage of comparing ranks instead of means [53].

Table 31: Descriptive statistics for the rankings of the condition that participants felt
required the least effort (1 = least effort, 4 = most effort)

75th50th (Median)25th

Percentiles

2.001.001.00

2.002.001.00

3.003.003.00

4.004.003.00

MaximumMinimumStd. DeviationMeanN

None

Motion

Low

High 41.9791.7020

41.9182.0020

41.8132.8520

41.8873.4520

The results of the Friedman Test indicated that there is a statistically significant dif-

ference in rankings of the condition which the participants felt required the least effort:

χ2(3, n = 20) = 22.98, p = .000. Table 31 reports the descriptive statistics of the rankings

per condition. Figure 39 illustrates the distribution of rankings across the conditions.
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Figure 39: Distribution of rankings for the condition that participants felt required the
least effort (1 = least effort, 4 = most effort)
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A Wilcoxon Signed Rank Test revealed two statistically significant rank increases. First,

there is an increase between the None and Low condition, z = −3.13,p = .002, with a

small effect size (r=.29). The median rank increased from condition None (Md =4.00) to

Low (Md = 2.00). Second, there is an increase between the None and High condition,

z = −3.37,p = .001, with a medium effect size (r=.31). The median rank increased from

condition None (Md = 4.00) to High (Md = 1.00).

From these results, it can be seen that the participants felt the High and Low condi-

tions require less effort than the None condition. Again, while the median values differ,

there is not a significant difference in effort between the None and Motion–Only condi-

tions, between the Low and High conditions, nor between the Motion–Only and Low

conditions.

In addition to ranking conditions based of effort, the participants were also administered

the NASA–TLX after each condition. The NASA–TLX is a tool used to measure perceived

workload, and it was administered to measure differences in perceived effort, frustration,

mental demand, performance, physical demand, and temporal demand. A one–way repeated

measures ANOVA was conducted to compare responses on the NASA–TLX after completing

the None, Motion–Only, Low, and the High annotation conditions. There were no

significant difference between the individual components. However, there was a significant

effect for annotation on perceived overall workload, Wilks’ Lambda = .540, F (3,17) = 4.26,

p = .023, multivariate partial eta squared = .46.

Opinions pertaining to overall workload as a result of the level of computer provided sup-

port decreased significantly between all annotations conditions (p = .000), with Motion–

Only being the heaviest workload and High being the lightest. The perceived workload,

however, did not vary significantly between the None and Motion–Only conditions.

These results agree with the idea that as quality of annotation increases, the workload

required by the participant decreases.
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Figure 40: Distribution of rankings for the condition that participants felt was the best
condition (1 = best, 4 = worst)

7.6.5 Best Condition Overall

In addition to ranking the quality of annotation in terms of effort, participants were also

asked to rank the conditions in terms of the ones they like best.

Table 32: Descriptive statistics for the rankings of the conditions that participants liked
best (1 = best, 4 = worst)

MaximumMinimumStd. DeviationMeanN

None

Motion

Low

High 41.9511.8020

41.9122.1020

41.9992.9520

411.1053.2020

The results of the Friedman Test indicated that there is a statistically significant differ-

ence in rankings of which condition the participants liked best: χ2(3, n = 20) = 16.21, p =

.001. Table 32 reports the descriptive statistics of the rankings per condition. Figure 40

illustrates the distribution of rankings across the conditions.
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A Wilcoxon Signed Rank Test revealed a statistically significant rank increase between

the None and High condition, z = −3.16, p = .002, with a small effect size (r=.28).

The median rank increased from condition None (Md = 4.00) to High (Md = 2.00).

There is also a statistically significant rank increase between the Motion–Only and High

condition, z = −2.61, p = .009, with a small effect size (r=.26). The median rank increased

from Motion–Only (Md = 4.00) to condition High (Md = 2.00).

These results indicate that the High condition is liked better than both the baseline

None and the Motion–Only conditions. In other words, the presence of high quality an-

notations is liked better than the current best practices. There is not a significant difference

between the rankings of the Low and High conditions, nor between the Motion–Only

and the Low conditions. Again, as with previous questions, the lack of differentiation be-

tween the Low and Motion–Only conditions is attributed to the increased number of

false positives between the Low and High conditions.

7.6.6 Most Useful Annotations

To help distinguish what participants like best about the conditions, participants were also

asked to rank conditions in terms which condition provided the most useful annotations.

Table 33: Descriptive statistics for the rankings of the conditions in which the participants
found the most useful annotations (1 = most useful, 4 = least useful)

75th50th (Median)25th

Percentiles

2.001.001.00

2.752.001.25

3.003.003.00

4.004.003.00

MaximumMinimumStd. DeviationMeanN

None

Motion

Low

High 31.5981.4020

41.9882.1520

41.7182.9020

41.8263.5520

The results of the Friedman Test indicated that there is a statistically significant dif-

ference in rankings of the condition which the participants felt provided the most useful

annotations: χ2(3, n = 20) = 31.14, p = .000. Table 33 reports the descriptive statistics

of the rankings per condition. Figure 41 illustrates the distribution of rankings across the

conditions.

A Wilcoxon Signed Rank Test revealed three statistically significant rank increases.
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Figure 41: Distribution of rankings for the condition that participants felt provided the
most useful annotations (1 = most useful, 4 = least useful)

First, there is an increase between the None and Low condition, z = −2.97, p = .003, with

a small effect size (r=.27). The median rank increased from condition None (Md = 4.00)

to Low (Md = 2.00). Second, there is an increase between the None and High condition,

z = −3.89, p = .000, with a medium effect size (r=.36). The median rank increased from

condition None (Md = 4.00) to High (Md = 1.00). Third, there is also a statistically

significant rank increase between the Motion–Only and High condition, z = −3.49, p =

.000, with a medium effect size (r=.31). The median rank increased from Motion–Only

(Md = 2.00) to condition High (Md = 1.00).

These results indicate that both the High and Low conditions provide more useful

annotations than the baseline None condition. Participants also found the High conditions

annotations to be more useful than annotations provided by the Motion–Only condition.

Although the median scores differ, there is not a significant difference in usefulness between

the Low and High conditions, nor between the Motion–Only and the Low conditions.

Not surprisingly, these results are similar to the rankings for the condition that participants
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Figure 42: Distribution of rankings for the condition participants felt made it easiest to
find play activities (1 = easiest, 4 = hardest)

liked the best.

7.6.6.1 Annotations that made it easiest to find play activities

While the distinction between best, most useful, and easiest are slight, participants were

also asked to rank the conditions in terms of which condition made it easiest to find play

activities.

Table 34: Descriptive statistics for the rankings of the condition which made it easiest to
find play activities (1 = easiest, 4 = hardest)

75th50th (Median)25th

Percentiles

2.001.001.00

3.002.001.25

3.003.002.00

4.004.002.00

MaximumMinimumStd. DeviationMeanN

None

Motion

Low

High 411.0201.7520

411.0312.3020

41.7682.8020

411.1823.1520

The results of the Friedman Test indicated that there is a statistically significant dif-

ference in rankings of the condition which the participants felt provided the most useful
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annotations: χ2(3, n = 20) = 13.38, p = .004. Table 34 reports the descriptive statistics

of the rankings per condition. Figure 42 illustrates the distribution of rankings across the

conditions.

While the nonparametric ANOVA is significant, after controlling for Type 1 errors, using

a Bonferonni adjusted alpha value of .0083, the significance is not evident in the post hoc

pairwise comparison tests. The variations in search strategies may account for the inability

to differentiate the effect of annotation quality on ease of play identification. The variations

may be a result of novice behavior – understanding expert use of the system is valuable and

the future study of these users will be discussed further in Section 8.6.

7.7 Discussion and Future Implications for the Child’sPlay System

Overall, the participants liked the PlayView interface and the provided recognition sup-

port. The implications for the Child’sPlay system are two–fold in terms of the participant’s

performance and the participant’s preferences. In terms of performance, the more specific

annotations (High and Low) helped increase play retrieval over lesser quality annotations

(Motion–Only) or none at all which are the current standards. In terms of performance,

there is a benefit to using the statistical models with an F1 score = 48.0% to retrieve play

activities over using näıve motion analysis on all sensor streams. The benefit of the statis-

tical models will likely also increase as accuracy, in terms of the F1 score, increases. These

increases will be brought about as algorithmic or data sets advances allow the statistical

models to achieve rates comparable to the High condition, where the F1 score = 70.0% or

better.

In terms of participant preferences, the more specific the annotation quality, the better.

In terms of developing the Child’sPlay system for future use, several factors revealed during

this study are important to consider and investigate further:

1. Confidence: Users of the retrospective system must have confidence in the annota-

tions provided by the system. The level of confidence in the information provided by

the computer impacts the search strategy used. If the user does not have confidence

in the annotations, they will be of little benefit to the user. While this is not a new
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concept to the design of intelligent systems, it is important to reiterate. Trust in

the computer supplied annotations comes from understanding how the computer can

generate accurate annotations and understanding why it selected the annotation that

it did. Belief in the labels provided by the computer either allows the user to “trust”

the already existing annotations and look for other instances, or quickly review those

instances provided by the computer, knowing that it retrieved a majority of the events

of interest.

2. Annotation Usage: Users of the Child’sPlay system will likely use annotations

in different ways. Annotations may be used merely as an interest–point indicators,

alerting users when to pay attention while scanning through data. Annotations can

also be used to help differentiate the difference between visually similar activities

(similar to how participants used annotations to distinguish shaking from banging).

3. Contextualize Error Types: Different types of errors have different impacts de-

pending on the quality of the annotation. If the annotation is too vague, consisting of

elongated merge and substitution errors, participants may prefer no assistance at all.

If the false positive errors are in the presence of more specific annotations, and the

errors are also specific and concise, they are more tolerable. Search strategy again,

can impact the preference between error types – especially with regards to boundary

errors. Participants that watch the video in near–real time may prefer annotation

creation, while those that jump ahead to only annotations prefer adjustment and

deletion of errors.

4. Hierarchical Annotations: Participants search in a variety of ways and handle

errors in different ways. A combination of the generalized motion annotations and

very specific annotations can promote different types of investigation of the data and

play event retrieval performance.
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CHAPTER VIII

DISCUSSION AND FUTURE WORK

In this dissertation I have presented several augmented toy designs as well as explored

a variety of supervised learning methods to facilitate both the automatic collection and

automatic recognition of object play. The automatic collection and identification of ob-

ject play data is challenging for a variety of reasons. This chapter will recapitulate the

main challenges associated with recognizing object play, how specific design choices in the

Child’sPlay system addresses many of these challenges, and discusses future directions for

the technology explored in this dissertation.

8.1 Challenges in Object Play Recognition

A key aspect of recognizing different levels of object play sophistication is being able to

automatically differentiate between play versus non–play activities. Distinguishing play

from non–play is very difficult using limited motion sensing capabilities in combination

with multiple augmented toys. Consider a child laying on the ground kicking an upside

down plastic dome toy with her foot while she plays with two other toys in her hands.

Using only data from the augmented toys, it could appear as if the three toys were being

used together because all three toys are experiencing high motion. However, in reality, only

two toys are engaged in object play while the plastic dome is simply reverberating from

being kicked. In this case, being able to extract the object play from the motion caused by

accidental bumps and fidgets is very challenging as it happens concurrently, and each toy is

experiencing enough motion that both sophisticated and näıve motion filters would identify

it as important. As discussed in sections Section 5.6 and Section 6.4.1 correlative features

can help recognition systems distinguish between toys being used together versus toys that

are used in an unrelated manner; however, it does not solve the problem. In addition, these

non–play activities happen more frequently than expected as children often roll, flop, jump,

and crawl around play spaces paying little attention to toys that they topple or bump in
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the process.

The extraction and distinction of play activities from non–play activities is further com-

plicated by the fact that there is not a single, salient feature of play that can be used to

distinguish toys experiencing playful motions from those that are not. The salient aspects

of play that can be used to distinguish different types of play vary based on the number

of toys present, the number of people present, as well as the level of play sophistication

being recognized. For example, sound and proximity to toys becomes key when trying to

determine higher level functional play from imaginary play. If only a single child is present

and playing with the toys while a conversation is occurring, higher level functional or imag-

inary play is likely taking place. For example, a child could instruct the plush puppy rattle

to take a running jump over other toys or instruct the plush puppy rattle to have a cup

of tea with him. However, if a child and adult are present, conversation may not indicate

higher level play. The child may be conversing with the adult rather than speaking to the

plush puppy rattle toy or an imaginary play partner. Proximity to the toy may or may not

be useful in these cases as the child may clutch the toy while verbally interacting with the

adult. Proximity, however, is very useful when distinguishing early exploratory actions from

accidental bumps and kicks (see Section 8.4 and Appendix F for more details). In fact, at

very early ages, almost all purposeful interactions with objects are considered playful. Us-

ing proximity to filter purposeful interactions from accidental interactions is therefore very

beneficial when determining early exploratory play from non–play as duration of motion

often does not provide enough information to distinguish between the two.

The recognition of object play is further complicated by the fact that higher level object

play often mimics real–world activities in pretend play, such as cooking, feeding a baby,

cleaning, and shopping. Recognition of general activities of daily living is an open challenge

and, in the case of object play, is further complicated because the activities to recognize

are performed by young children. The playful nature of children introduce variations in

the consistency of how activities are preformed as well as variations due to motor skills

development. As mentioned in Section 6.6 the variation inherent in how children preform the

same activities on a daily basis and as they develop can make recognition of children’s data
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more difficult than recognizing similar activities within adult data. Section 8.5 discusses how

unsupervised learning algorithms can be used to address this difficulty in future systems.

8.2 Large Scale Data Collection

Long term, wide spread data collection will provide a more representative sample of object

play data and may help in the generation of more robust models of object play. In addition

to helping researchers analyze play data collected in laboratory studies, the Child’sPlay

system has been designed to collect and analyze play data within home environments and

integrate with systems designed to help parents monitor developmental progress [38, 37].

However, due to social economic factors, it is not realistic to assume that all families can

afford such technology. To aid in the collection of large scale data sets as well as help

Child’sPlay be accessible by all new parents, the Child’sPlay system could be integrated

into a kiosk and deployed in the waiting areas of pediatricians’ offices. Under this scheme,

toddlers can play with a set of augmented toys and have their activities characterized while

waiting to see the pediatrician during well child visits. In addition to the kiosk being able

to upload anonymous play data to a central repository, parents could also keep the results

and share them with the pediatrician if there are any concerns. Furthermore, if this central-

ized model is successful, a similar mechanism can be used to deploy the Child’sPlay system

in developing countries. Child’sPlay characterizes early play motions which psychologists

believe to be uniform across many cultures. Therefore, this system has the potential for

worldwide deployment and may help assist in the early identification of children with de-

velopmental delays in areas where autism awareness is low. In addition to helping identify

children and ensuring they receive needed services, deployments of this nature can also help

psychologists collect, large scale, multicultural data and further assist with early detection

and identification research.

8.3 Selecting Toys for Recording Object Play

Chapter 4 discusses the design and implementation of seven augmented toys designed to

record object play data. These toys were designed to interact with each other to help

promote early exploratory, relational, and functional object play activities. When used in
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clinical settings, it is feasible to use all of the toys. However, seven augmented toys may be

impractical for home deployments, due to issues of battery maintenance and toy expense.

Subsets of augmented toys can easily be selected for home deployments. If only one toy

can be deployed, a toy with social properties, such as the smiling face on the plush puppy

rattle, is recommended. The plush puppy rattle can be used in lower level play and supports

a wide variety of higher level play, such as having the puppy run and jump over objects as

well as imaginary interactions with the puppy. When collecting the various toddler data

sets, the plush puppy rattle toy appeared more approachable by the toddlers due to the

social face and familiar dog shape. In addition, the social aspects and familiar shape of the

plush puppy rattle toy help promote the detection of appropriate and inappropriate play.

For example, if the toy is oriented with the legs pointed towards the ground and moves

in the direction that the head is facing, the puppy is likely being used in an appropriate

manner. However, if the puppy is dropped face first, repeatedly, there is potential that the

child does not recognize the significance of the face or the plush puppy rattle ’s resemblance

to a living creature. The more abstract toys, such as the plastic dome toys, cannot be used

in this manner to detect inappropriate play.

Another practical augmented toy subset is a three toy combination consisting of the

plush puppy rattle and the two plastic dome toys. The plastic dome toys were specifically

designed to support relational play by promoting stacking and assembling of the plastic

domes. In addition to forming a ball, the two plastic domes were also designed to allow

nesting the plush puppy rattle inside to support a variety of developmentally relevant func-

tional and imaginary play activities. Either one of the domes can serve as an imaginary

vehicle for the puppy, such as a car driving across the ground or a spaceship flying through

the air. The puppy can also be nested inside the ball and rolled across the floor — this

action was seen frequently in both adult freeplay sessions as well as toddler and child play

sessions. This three toy combination nicely promotes both the low level exploratory object

play as well as the higher level functional and imaginary object play.

If the LegoTM Quatro toys are added to the subset, creating a subset of five toys, the

additional toys provide more opportunities for relational play to be recorded. The two
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LegoTM Quatro toys also provide another object, in addition to the plush puppy rattle,

that can be nested inside the domes. The two LegoTM Quatro toys also provide additional

objects for the plush puppy rattle to push around or interact with during higher level object

play. The plastic ring would be the next toy to add to the subset, promoting additional

higher level play between the puppy and the ring as well as opportunities for relational play

between the plastic ring and the plastic dome toys.

When selecting subsets of augmented toys, it is important to select toy combinations that

maximize the occurrence of the play activities a researcher or parent wishes to observe. The

subset combinations presented above are selected to maximize the observation of differing

levels of play sophistication and play type.

8.4 Development of “Smarter” Toys

During most of the data collection described in this dissertation, the augmented toys were

used in relatively isolated settings, typically involving a single child playing with them.

When siblings played with the toys, or when parent and child interacted with the toys, it

was difficult to automatically attribute which motions to associate with which participants.

Being able to identify parent from child, or siblings from each other, may help support

research involving social aspects of object play. Toy form factor, capacitive sensing, and

force resistive sensing offer a potential solution to this issue. Preliminary work suggests

that the form factor of a toy, specifically its physical affordances, can cause adults to grasp

and manipulate toys in a way that is distinct from young children. The selective placement

of capacitive and force resistive sensors in areas where an adult is most likely to grasp the

object can provide valuable information to pattern recognition systems [22].

In addition to distinguishing between play participants, capacitive sensing can be im-

portant in filtering play motions from accidental bumps and kicks that can occur during

play. The Child’sPlay system assumes that a child is focusing his attention on the toy

that is actively experiencing motion. However, playtime can be very chaotic where toys

are unintentionally toppled, kicked, and knocked down. Furthermore, the sensors within

the augmented toys picks up vibrations from a child moving around the play space even
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when the toys are at rest. Determining the proximity of the child to the toys may help

distinguish between intentional and unintentional interactions. The plush cube toy was

originally designed to support capacitive sensing for this purpose. However, the capacitive

fabric design proved flawed and did not withstand sixty play sessions. Appendix F includes

details on the plush cube design as well as new modifications to the LegoTM Quatro design

to support robust capacitive sensing and the associated preliminary data.

Capacitive furs and polymers offer the potential to study object play in new ways. For

example, it can be difficult for an observer to determine the instant when a child comes

in contact with a toy or the moment he releases a toy from video footage. Understanding

the way a child reacts to the textures of a toy when he touches it can be instrumental

in diagnosing if the child has tactile sensitivities to specific textures [8]. Being able to

accurately detect the onset of a grasp or the release of a toy in a quantitative way can help

in determining such aversions. Toys augmented with capacitive polymers can help support

this type of quantitative analysis and may allow developmental psychologists a new way to

explore object play and sensory aversion. In general, augmented toys offer the potential for

researchers to sense and visualize aspects of play the human eye cannot and may allow a

microscopic analysis of object play that was not previously possible.

The combination of sensors and toy form factors is vast. Toys can be tailored to detect

specific play behaviors, or they could remain more general depending on the goals of the

researchers. The sensing abilities can also be altered depending if they will interact with

other augmented toys or off–the–shelf toys. In home deployments where a smaller subset of

augmented toys might be used, additional sensors may be added to help determine when

the augmented toys interact with off–the–shelf toys. For example, in the situation where

an off–the–shelf toy is being nested inside the plastic dome toy, from a motion standpoint,

it can appear as if the augmented plastic dome toy was bumped as the system has no

knowledge of the motion imposed upon the plastic dome by the off–the–shelf toy. Light

sensors and microphones may help in distinguishing when regular toys interact with the

augmented toys versus when the augmented toys are accidentally bumped. An internal

array of microphones could help localize points of contact when an augmented toy is bumped
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or when it interacts with other off–the–shelf toys. Likewise, light sensors may be able to

provide additional information that can help determine if an off–the–shelf toy has been

nested inside an augmented toy or if the augmented toy is interacting with the off–the–shelf

in some way.

8.5 Adapting Algorithms

Chapter 5 and Chapter 6 show a comparison of recognition results over a combination of

normal and augmented toys compared to just augmented toys. While using augmented–only

toys helps increase recognition rates, it is desirable to have a system that can accurately

recognize object play using a mixture of both types of toys. Improving the sensing ca-

pabilities of the augmented toys may help increase recognition rates. However, I feel the

combination of computer vision techniques, such as those explored by Wang et al., audio

analysis, and augmented toys can vastly increase the recognition of object play as well as

expand the types of play that can be automatically recognized. Computer vision can help

provide general categorical information such as social play, and the augmented toys may

help provide nuanced information about that play. The combination of computer vision,

audio analysis, and augmented toys may be the key in recognizing higher level symbolic

play. Audio and vision analysis can help determine when a child is speaking to an imaginary

play partner or a parent present in the scene.

In addition to detecting a wider variety of play, unsupervised techniques may also be

used to help determine variations within play activities as a child develops. For example,

as a child’s motor coordination develops, the ways in which he manipulates objects will

change. While a supervised method can be used to classify play activities into a single

group, such as shaking, unsupervised clustering methods can be used to categorize the

variations within the group. Variations within shaking may cluster into even and uneven

shaking or may be further refined. When investigating data from a single child, the presence

of fewer clusters for low level play may indicate more advanced development as there is

less variation in how the activity is preformed. Likewise, as the child is performing more

sophisticated play, an increase in the number of clusters may indicate development of new
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skills. When clustering data between children, larger numbers of clusters may indicate

the variety in which play can occur for certain activities. These clustering techniques may

allow developmental researchers new ways to investigate phenomena that are difficult, if

not impossible for them to observe from video alone. Along those same lines, discovery

algorithms may help the system adapt as a child learns new skills for systems that are

deployed in home environments.

8.6 Studying User Behavior During Retrospective Review in More De-
tail

Chapter 7 reported on novice use of the PlayView intelligent interface to support retrospec-

tively identifying three specific object play behaviors. Although the novices were trained to

use an optimal search strategy, several of them chose to use different strategies. The utility

of the PlayView interface and other tools designed to support retrospective review of play

behaviors is likely dependent on the search strategy employed by the participant and how

useful he considers the supplied annotations.

The PlayView interface is designed to be flexible to support both expert and novice use.

It would be very interesting to observe the types of strategies used by experts when using

the PlayView interface and the value they placed in computer supplied annotations. In

speaking with a developmental psychologist [4], she indicated that she has often left current

annotations tools in fast forward and stopped video playback when she sees a behavior of

interest occur. Such a search strategy might be considered annotation independent, and it

would be interesting to determine if the quality of annotation has an impact with such a

strategy. In our studies four novice participants reported using the video heavily to identify

when play was occurring and using the computer provided labels as a way to know when

to slow down the fast forwarding of the video. In strategies similar to this one, the type of

annotation may not matter, just the fact that it is present.

In addition to search strategies, there are different types of annotations strategies. There

are exhaustive, interval, and segment based coding strategies. In exhaustive annotation the

video is ascribed a label or code every time activity in the video changes. Interval coding

ascribes a label for a fixed duration of time based on the predominant activity during that
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interval. For example if the duration of the interval was 25 seconds, a single label would

be applied for the entire 25 seconds. Segment based coding is similar to spot checking. A

video is played for a specified number of seconds and paused, if at the end of that duration,

the behavior of interest is displayed, that particular moment in time is labeled as an event.

The Child’sPlay system and PlayView interface were designed to support exhaustive

annotation. It would be interesting to compare performance results based on different

types of coding and search strategies using experts.
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CHAPTER IX

CONCLUSION

This dissertation has provided evidence to support the thesis that ubiquitous sensing tech-

nology and statistical models can be used to help researchers identify object play behaviors

collected in naturalistic environments. Furthermore, despite inaccuracies in recognition, the

technology described in this dissertation can help reduce the perceived effort of annotating

object play data and increase the percentage of play examples that a researcher can view.

In Chapter 4, Chapter 5, and Chapter 6, I showed that wireless sensors embedded in

toys can be used to collect data that when modeled can provide automatic characteriza-

tions of certain exploratory, relational, and functional play behaviors in both children and

adults. As discussed in Chapter 6, I developed a play procedure for use with augmented

toys to collect object play data. I then showed that statistical techniques, such as support

vector machines, can be used to model object play data. On average, these models can

obtain an effective retrieval score of 58.8% with play events that occur over a range of

play sophistication for a single child using models constructed from adult play data. These

models, while not perfect, still promote an increase in performance when used with the

PlayView interface to support retrospective review of play data. In Chapter 7, I showed

that models which matched these current recognition capabilities allow users to record an

increased percentage of play activities when compared to standard practices and that effec-

tive retrieval rates also increase. Furthermore, the percentage of play activities logged did

not vary significantly when comparing current and future recognition capabilities. However,

users showed preference towards higher quality annotations when compared to annotations

provided by current recognition capabilities. Based on these findings, I affirm my hypoth-

esis that sensors embedded in objects can provide sufficient data for automatic recognition

of certain exploratory, relational, and functional object play behaviors in semi-naturalistic

environments and that a continuum of recognition accuracy exists which allows automatic
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indexing to be useful for retrospective review.

This dissertation has provided the initial foundation for research augmenting toys and

applying statistical models to automatically characterize object play. Moving forward,

there are three important areas to explore. The first area involves improvements to the

augmented toys and long term, in situ data collection. The second area involves algorithmic

and external sensing modality enhancements for detecting a wider variety of object play.

The third area involves further investigation into expert use of the PlayView interface to

support retrospective review of play activities. With the prevalence of developmental delay

in the United States for young children at approximately ten percent, developing technology

to help track developmental progress automatically and promote the early identification of

these children is paramount.
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APPENDIX A

TERMS AND DEFINITIONS

1. Augment: The concealment of wireless sensors within a toy. These sensors are

capable of detecting acceleration, touch, sound, and limited proximity.

2. Toys: Age appropriate objects that can easily be grasped and manipulated by the

child. These objects must be large enough to permit augmentation.

3. Detection: The automatic identification of child-object interactions from multiple

streams of time-series data generated by manipulation of augmented toys.

4. Interactions: Any purposeful contact, incidental contact or manipulation of aug-

mented toys.

5. Categorize: Interactions will be grouped according to an object-play scale developed

by Baranek et al. [7]. This scale has quantized exploratory, relational, and function

play into twelve levels. Due to limitations imposed by sensor technology, this work

will group interactions according to levels zero through six. Higher levels of Baranek’s

scale is beyond the scope of this work.

6. Exploratory Play: Any child’s action upon a single object that results from a

visually–guided reach and helps provide information about the object or environment.

No functional relations exist between action and objects. Examples include: (Level 1)

grasping, rubbing, shaking, scratching, banging, poking, mouthing, (Level 2) rolling

a car, pushing a button, rocking a horse, and opening/closing doors.

7. Relational Play: When two or more objects are used in combination with each

other but are associated without regard to the functions or attributes of the objects.

Examples include: (Level 3) pushing apart pop-beads, removing lids from containers,

(Level 4) stacking blocks, detaching puzzles pieces, and scooping/pouring objects.
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8. Functional Play: Any conventional use of an object influenced by cultural properties

of the object and simple pretend play actions. Examples include: (Level 5) placing a

lid on a pot, dumping objects from a truck, (Level 6) drinking from an empty cup,

and raising a phone to an ear to talk to a pretend friend.

9. Symbolic Play: Any scheme in a continuum of play schemes that incorporates items,

attributes, contexts not actually present, or the substitution of objects. Examples

include: (Level 9) using a block as a car, or banana as a phone, (Level 10) using

figures to load objects into truck, propping a bottle in a doll’s arms to feed her,

(Level 11) pretending a doll is crying, or claiming a toy stove is hot to the touch.
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APPENDIX B

EVALUATION METRICS FOR CONTINUOUS RECOGNITION

B.1 Levels of Analysis for Continuous Recognition

A fundamental issue for evaluating activity recognition concerns the level of analysis used

to calculate performance. Figure 43 illustrates three levels of analysis: event–based, frame–

based, and segment–based correspondence.

Predicted

Ground TruthWalking

Walking

Running

Running

W W W W W W W W R R R R R R R R

W W W W W W W W R R R R R

Ground Truth

Predicted

W W

W W

R R

R

R Ground Truth

Predicted

Events

Frames

Segments

Figure 43: Three levels of analysis: events, frames, and segments.

B.1.1 Event Level Analysis

Each occurrence of an activity represents one event, which is a contiguous block of time

during which the activity label is constant. Evaluation could measure whether each event

is detected, whether the event is detected at the correct time, and how closely the predicted

event boundaries correspond to the true start and stop times. We call evaluation at this

level event analysis. See the top row of Figure 43 for an illustration of events detected at

the correct time but with poor boundary alignment (see Appendix B.2 for the details of

temporal correspondence of events).
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B.1.2 Frame Level Analysis

Alternatively, we can view the data as a series of equal-length time intervals and consider

the activity being performed during each interval. For example, we could divide an hour

of data into 3,600 seconds and label each one-second block according to the dominant

activity during that time. Evaluation would then depend on the correspondence between

the ground truth label and predicted label for each second. We call evaluation at this level

frame analysis. Note that the temporal duration of a frame is arbitrary and can change

based on the domain. See the middle row of Figure 43 for an illustration of frame analysis.

B.1.3 Segment Level Analysis

Finally, a hybrid approach divides the data into variable length segments. The segments are

defined as maximal intervals within which both the predicted and true labels are constant.

Thus the boundary of each segment coincides with a boundary of either a true or predicted

label. Evaluation at this level is called segment analysis [71]. Thus, each segment may have

a different duration, but there are no aliasing problems or ambiguities associated with event

correspondences and boundary alignment (see Figure 43). Segment-based representations

simplifies detecting different kinds of recognition errors.

B.2 Temporal Correspondence and Identification at the Events Level of
Analysis

Each occurrence of an activity represents one event, which is a contiguous block of time

during which the activity label is constant. Evaluation could measure whether each event

is detected, whether the event is detected at the correct time, and how closely the predicted

event boundaries correspond to the true start and stop times. We call evaluation at this

level event analysis. See the top row of Figure 43 for an illustration of events detected at

the correct time but with poor boundary alignment.

When it is important to consider the actual time during which an event was detected,

a temporal correspondence method can be used. This method seeks to match each ground

truth event with a predicted event based on temporal overlap. Many different match criteria

are possible (see Figure 44), including:
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Figure 44: Three methods for determining temporal event correspondence: midpoint span,
majority vote, and maximum overlap. The vertical, dashed line represents the midpoint of
the ground truth label.

midpoint overlap: A predicted event must span the midpoint of its matching ground

truth event. This approach is often used to score word spotting

systems in the speech recognition domain.

majority overlap: A predicted event is paired with a ground truth event if the overlap

accounts for a majority of the time in both events.

maximum overlap: Predicted and ground truth events are paired based on maximizing

overlap. Although computing the optimal correspondence is NP-

hard, greedy approaches work well in practice.

B.3 Types of Errors Encountered in Continuous Recognition

There are many types of errors that can occur during continuous recognition involving

correspondence issues between activity boundaries and labels. Figure 3 shows the output of

nine different recognition systems, A−J where each illustrates a specific error type common

to continuous recognition [50]. These error types are:

Correct (C): sometimes called “Hits” (H); represents correct classification. This

number represents both True Positives and True Negatives (see Fig-

ure 3, System A)

Substitutions (S): represent correct temporal detection but incorrect activity identi-

fication (see Figure 3, System B)
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Insertions (I): detection of an activity when none actually occurred; this can also

occur when a long activity is partially detected multiple times

(see Figure 3, System C)

Deletions (D): failure to detect an activity (see Figure 3, System D)

Total Number of True Events (N): a useful variable for calculating statistics, though not strictly a

classification result: N = (C +D + S).

Underfill (U): when an activity is correctly identified, underfill errors account

for the time at the beginning and end of the activity that is not

detected (see Figure 3, System E)

Overfill (O): when an activity is correctly detected, overfill errors account for

the time before and after the activity that is incorrectly identified

as part of the activity (see Figure 3, System F)

Fragmentation (F): errors due to detecting a long activity as multiple events separated

by null(see Figure 3, System G)

Substitution-fragmentation (SF ): whereas a normal fragmentation error falsely divides an event with

null, this error divides an event by incorrectly inserting known

activities (see Figure 3, System H)

Merge (M): errors due to incorrectly detecting multiple, closely occurring events

that are separated by null as a single, longer event (see Fig-

ure 3, System I)

Substitution-merge (SM): like a standard merge error, a substitution-merge involved detect-

ing multiple occurrences of an activity as a single occurrence, but

here the separating activity is a known class (see Figure 3, Sys-

tem J)
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B.4 Common Evaluation Metrics

Once the different continuous recognition error types have been accumulated, a variety of

summary statistics can be computed. Each statistic highlights the recognition system’s

performance relative to different criteria. Many of the most commonly used metrics are

presented below [51, 50].

B.4.0.1 Sensitivity / Recall

Sensitivity, which is also referred to as recall, corresponds to the correct detection rate

relative to ground truth. It is the percentage of correctly detected activities out of all true

instances of a particular class, averaged over all activities. Sensitivity is defined as TP
TP+FN .

Likewise, (1 − sensitivity) = FN
TP+FN is the probability of the recognizer failing to detect

an instance of an activity.

B.4.0.2 Precision / Positive Predictive Value

Precision is also known as the Positive Prediction Value (PPV) and measures the likelihood

that a detected instance of an activity corresponds to a real occurrence. Precision is defined

as TP
TP+FP . Likewise, (1−precision) = FP

TP+FP is the probability of the recognizer incorrectly

identifying a detected activity.

Precision and recall are highly related. Both are based on the number of true positives,

but sensitivity normalizes by the true number of occurrences (based on the ground truth),

while recall normalizes by the total number of occurrences detected (based on the predicted

label). Thus, they estimate different likelihoods: “What percentage of the total number of

occurrences will the recognizer correctly identify?” and “What percentage of the detected

occurrences will be correct?”.

B.4.0.3 Specificity

Specificity can be thought of as the recognizer’s sensitivity to the negative class. It measures

the proportion of correctly identified negative occurrences to all true negative occurrences.

Specificity is defined as TN
TN+FP
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B.4.0.4 Negative Predictive Value (NPV)

The negative predictive value can be thought of as “negative precision” and measures the

likelihood that a negative identification is correct relative to all negative identifications.

The negative predictive value is defined as NPV = TN
TN+FN .

B.4.0.5 F-Measure

The F-Measure combines the precision and recall rates into a single measure of performance.

It is defined as the harmonic mean of precision, P, and recall, R: F =
(β2+1)PR

β2P+R , where

precision and recall are evenly weighted when β = 1 [58, 30].

B.4.0.6 Likelihood Ratio

The Likelihood Ratio is the ratio of the likelihood that a particular activity would be

predicted when it matches the ground truth to the likelihood that it would be predicted

erroneously. This ratio can be computed for both true positive and true negative results:

LR+ = sensitivity
1−specificity = TP (TN+FP )

FP (TP+FN)

LR− = 1−sensitivity
specificity = FN(TN+FP )

TN(TP+FN)

B.4.0.7 Accuracy

Accuracy is defined as (C−I)
N and measures the percentage of correct identifications after dis-

counting insertion errors. Although accuracy has a maximum value of 100%, for continuous

recognition systems, there is no general lower bound due to the penalty for insertion errors.

Thus, a poor recognition system with a very low detection threshold could insert more false

detections than there are true events, thereby leading to a negative overall accuracy.
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APPENDIX C

GT2K MATHEMATICAL DETAILS

C.1 HMM Parameter Learning used in GT2k

Training of an HMM involves adjusting the model parameters λ = (A,B, λ) to maximize

the probability of generating the observation sequence (in our case specific sensor readings)

given the model λ. There is no way to analytically solve for λ which maximizes P (O|λ)

[57]. Parameters for λ can be computed such that they locally optimize P (O|λ) by an

iterative method known as Baum–Welch re–estimation. In this process the initial model

λ = (A,B, π) is used in the re–estimation equations (see equations 6, 7, and 8 given below)

to produce a new estimate λ = (A,B, π). We then iteratively use λ in place of λ which allows

us to improve the probability of O being observed from the model. After each iteration

two possible conditions hold: the model λ defines a critical point and λ = λ, or the model

λ = λ is more likely to have produced the observation sequence than the model λ such that

P (O|λ) > P (O|λ). Re–estimation is repeated until λ defines a critical point or until some

limiting point is reached.

The model parameters can be re–estimated using frequency counting [57]. Equation 8 is

the re–estimation of the observation probability density and Equation 7 is the re–estimation

of transition probability.

πi = γ1(i) = expected number of times in Si at t = 1 (6)

aij =

T−1∑
t=1

ξt(i, j)

T−1∑
t=1

γt(i)
=
expected number of transitions from Si to Sj

expected number of transitions from Si
(7)

bj(k) =

T∑
t=1 Ot=vk

γt(j)

T−1∑
t=1

γt(i)
=
expected visits to state Si and observing symbol vk

expected number of times in Sj
(8)
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C.2 Recognition used in GT2k

We computed the probability of an observed sequence, O =< o1, o2, o3, . . . , oT > being

generated by a specific model, P (O|λ), using the Viterbi Algorithm. Each observation O is

associated with a state SJ given a model λ. Thus, given an observation sequence O and a

model λ, P (Q,O|λ) is computed by determining the a single path through the model (the

state sequence Q =< q1, q2, . . . , qT >) that best explains the observation sequence. This

quantity is calculated through dynamic programing methods 1.

In isolated recognition, the observation sequence O is aligned to at most one model. In

continuous recognition, the observation sequence O may align with multiple models (be-

cause it contains multiple activities). Alignment is performed by constructing the most

probable path through all possible sequences of the models in parallel. Domain knowledge,

in the form of simple grammars, can be used to help inform the alignment process2. Gram-

mars, by providing a priori activity sequence knowledge, help prune the search space by

eliminating model sequences that violate the grammar. This reduces both alignment time

and misalignment with improbable sequences.

1Mathematical formulation and implementation details can be found in Rabiner’s tutorial [57]
2There has been much literature in the speech–recognition domain and the mathematical details of this

process can be found in [29]
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APPENDIX D

PILOT ALGORITHM MATHEMATICAL DETAILS

D.1 Aggregation of Features for Simple Spacial Recognition

Several steps are needed to prepare the raw accelerometer readings for analysis. First, we

resample each sensor stream at 60Hz to estimate the instantaneous reading of every sensor at

the same fixed intervals. Next, we slide a three second window along the 18D synchronized

time series in one second steps. For each window, we compute 378 features based on the

18 sensor readings including mean, variance, RMS, energy in various frequency bands, and

differential descriptors for each dimension. We also compute aggregate features based on

each three-axes accelerometer including the mean, variance, and RMS of the magnitude of

the sensor reading in 3-space and based on the angle of the vector relative to the x-axis.

The computation of aggregate features transforms a difficult temporal pattern recogni-

tion problem into a simpler spatial classification. Rather than explicitly choosing relevant

features from the aggregate set as a preprocessing step, models are built using an adaboost

framework [60] by selecting the best dimension and 1D classifier during each iteration. This

framework automatically selects the best features for discrimination and, importantly, is

robust to unimportant or otherwise distracting features.

D.2 Boosting One–Dimensional Classifiers

Adaboost is an iterative framework for combining binary classifiers such that a more ac-

curate ensemble classifier results [60]. We use a variant of the original formulation that

includes feature selection and support for unequal class sizes [67]. Given a training data

set (x1, y1), ..., (xn, yn), where each pair (xi, yi) consists of a feature vector (xi ∈ RN ) and

a label (yi = ±1), each round of boosting selects the dimension and 1D classifier that min-

imizes the classification error over the weighted training set. Initially, the weights are set

to be uniform within each class: w1
i = [ 1

2p if yi = +1 else 1
2q ], where p is the number of
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positive examples and q is the number of negative examples. In each round of boosting

(m), the weights are normalized (wmi ←
wmiPn
j=1 w

m
j

), and a new weak classifier is selected

by searching over all weak learners (hj(x)) and all features and then choosing the classifier

(hm(x)) which minimizes the weighted error (εmj =
∑

iw
m
i I(hmj (xi) 6= yi)), where I(·) is the

indicator function that equals one when the condition is true and zero otherwise.

After the best feature and 1D classifier is found, the weights are updated according to

wm+1
i = wmi β

I(hm(xi)6=yi)
m , where βm = εm

1−εm . Boosting continues for a specified number

of iterations (M), and then the final ensemble classifier (H(x)) is formed as a weighted

combination of the weak classifiers: H(x) = sign(
PM
m=1 αmh

m(x)PM
m=1 αm

), where αm = log( 1
βm

).

The ensemble classifier is based on the sign of a value derived from a weighted combi-

nation of the weak classifiers called the margin (m(x) = (
PM
m=1 αmh

m(x)PM
m=1 αm

). The magnitude of

the margin gives an indication of the confidence of the classifier in the result. Margins may

not be comparable across different classifiers however, but we can use a method developed

by Platt to convert the margin into a probability [55]. This method works by learning the

parameters to a sigmoid function that directly maps from a margin to the probability of

one of the classes (without loss of generality, we take this as p(y = +1) = p(ω1)). Since

p(ω1|x) = p(x|ω1)p(ω1)P
j p(x|ωj)p(ωj)

, it suffices to estimate p(x|ωj), which we can do via kernel density

estimation after computing the margin for each training point. Finally, we fit a sigmoid

(f(x) = 1/(1 + eA(x+B))) to the margin/probability pairs derived from the training points

and only save the sigmoid parameters (A and B) for use during inference.

D.3 Selection of One–Dimensional Weak Classifiers

During each round of boosting, the algorithm selects the feature and 1D classifier that min-

imizes the weighted training error. Typically, decision stumps are used as the 1D classifier

due to their simplicity and efficient, globally optimal learning algorithm. Decision stumps

divide the feature range into two regions, one labeled as the positive class and the other

as the negative class. In our experiments, we supplement decision stumps with a Gaussian

classifier that models each class with a Gaussian distribution and allows for one, two, or

three decision regions depending on the model parameters.
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Learning the Gaussian classifier is straightforward. The parameters for the two Gaus-

sians ((µ1, σ1) and (µ2, σ2)) can be estimated directly from the weighted data. The decision

boundaries are then found by equating the two Gaussian formulas and solving the resulting

quadratic equation for x: (σ2
1−σ2

2)x2−2(σ2
1µ2−σ2

2µ1)x+[(σ2
1µ

2
2−σ2

2µ
2
1)−2σ2

1σ
2
2log(σ1

σ2
)] = 0.

In general, arbitrarily complex weak learners can be used within a boosting framework.

In our case, the resulting ensemble learner always has the same form (axis-aligned decision

boundaries) but may learn an accurate model more quickly (i.e., fewer rounds of boosting)

or have better generalization depending on the choice of weak learners. We empirically

determined that boosting over both decision stumps and Gaussian classifiers led to a suf-

ficient increase in classification accuracy to justify the extra computation during learning.

Specifically, when testing on Aberdeen data that included the null activity, cross-validated,

event-based accuracy rose from 71.5% to 74.9% when we boosted over both 1D classifiers.

D.4 Combining Binary–class Classifiers for Multi–class Classification

The boosting framework can be used to learn accurate binary classifiers. Two common

methods for combining multiple binary classifiers into a single multiclass classifier are the

one–vs–all (OVA) and the one–vs–one (OVO) approaches. In the one–vs–all case, for C

classes, C different binary classifiers are learned. For each classifier, one of the classes is

taken as the positive class while the (C−1) others are combined to form the negative class.

When a new feature vector must be classified, each of the C classifiers is applied and the

one with the largest margin (corresponding to the most confident positive classifier) is taken

as the final classification.

In the one-vs-one approach, C(C − 1)/2 classifiers are learned, one for each pair of

(distinct) classes. To classify a new feature vector, the margin is calculated for each class

pair (mij is the margin for the classifier trained for ωi vs. ωj). Within this framework many

methods may be used to combine the individual classification results:

vote[ms,ps,pp]: each classifier votes for the class with the largest margin; ties are

broken by using msum, psum, or pprod.

msum: each class is scored as the sum of the individual class margins; the
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final classification is based on the highest score:

argmax
i

∑C
j=1mij(x)

psum: each class is scored as the sum of the individual class probabilities;

the final classification is based on the highest score:

argmax
i

∑C
j=1 p(ωi|mij(x))

pprod: the classification is based on the most likely class:

argmax
i

∏C
j=1 p(ωi|mij(x))

D.5 Combining Classification Results from Overlapping Windows

As discussed in Section D.1, the temporal recognition problem is transformed into a spatial

classification task by computing features over three second windows spaced at one second

intervals. This means that typically there are three different windows that overlap for each

second of data. To produce a single classification for each one second interval, three methods

were tested:

vote: each window votes for a single class and the class with the most votes

is selected

prob: each window submits a probability for each class, and the most likely

class is selected: argmax
i

∏3
j=1 p(ωi|windowj)

probsum: each window submits a probability for each class, and the class with

the highest probability sum is selected: argmax
i

∑3
j=1 p(ωi|windowj)

D.6 Implications

The method described in this section is influenced by many parameters. With respect to

the task of identifying soldier activities in the field, recognition performance is relatively

unaffected by the choice of multi–class aggregation method, though one–vs–one methods

(see Section D.4) lead to a considerable reduction in training time. This distinction can be

important for classification systems that have large numbers of classes. The voting scheme
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for combining classification results, however, can have a noticeable impact on the frame

level accuracy rate. Surprisingly, the number of rounds of boosting did have a slight impact

on results, however, the results tended to stabilize after 20 rounds.
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APPENDIX E

SURVEY PACKETS
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Participant ID:________       Date:________ Time:________  

Background Information 
Please answer the following questions. If you answer “NO” to a question in bold, you may skip the 

remaining parts, such as (a) (b) (c), for that question. Feel free to ask questions at any time. 

 

1. What year were you born? ___________________________________________________________ 

 

2. In what country were you born? ______________________________________________________ 

 

3. What is your current/highest level of education?(Circle one) 

Ph.D  Masters  Bachelors  Associates  High School  Other__________________  

 

4. What is your occupation and/or field of study? __________________________________________ 

 

5. How many children do you have? (List gender and ages)_                     _________________________ 

 

6. How many hours a week do you use a computer? (Circle one) 

 
150 + 
hours  
(7) 

 100 – 149   
hours  
(6) 

 50 – 99  
hours 
(5) 

 
30 – 49   
hours   
(4) 

 
10 – 29 
hours 
(3) 

 
5 – 9  
hours 
(2) 

 
1 – 4 
hours 
(1) 

 

7. Have you ever used video editing software before? (Circle one)   YES NO   

 

a. List the software(s) you have used and when you last used them: _____________________ 

__________________________________________________________________________ 

__________________________________________________________________________ 

 

b. How many hours have you spent editing video footage? (Circle one)  

 
150 + 
hours  
(7) 

 100 – 149   
hours  
(6) 

 50 – 99  
hours 
(5) 

 
30 – 49   
hours   
(4) 

 
10 – 29 
hours 
(3) 

 
5 – 9  
hours 
(2) 

 
1 – 4 
hours 
(1) 

 
 

8. Have you ever annotated or transcribed video? (Circle one)    YES NO 

 

a. Which software or method did you use and when did you last use them? _ _____________ 

__________________________________________________________________________ 

__________________________________________________________________________ 

 

b. What type of video did you annotate and why? ___________________________________ 

__________________________________________________________________________ 

__________________________________________________________________________ 

 

c. How many hours have you spent annotating video footage? (Circle one)  

 
150 + 
hours  

(7) 

 100 – 149   
hours  

(6) 

 50 – 99  
hours 

(5) 

 
30 – 49   
hours   

(4) 

 
10 – 29 
hours 

(3) 

 
5 – 9  
hours 

(2) 

 
1 – 4 
hours 

(1) 
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Participant ID:________       Date:________ Time:________  

Background Information 
Please answer the following questions. If you answer “NO” to a question in bold, you may skip the 

remaining parts, such as (a) (b) (c), for that question. Feel free to ask questions at any time. 

 

 

 

9. Which of the following courses have you taken? (Circle ALL that apply) 

Pattern 
Recognition 

Machine 
Learning 

 
Computer 

Vision 
 

Data 
Mining 

 
Medical Image 

Analysis 
 

None of the 
courses listed 

 

  

a. In these classes, did you ever implemented pattern recognition algorithms?  YES NO 

 

b. In these classes, did you ever labeled data for use with these algorithms?   YES NO 

 

 

10. Have you ever been involved in clinical research involving young children?   YES NO 

 

 

11. Have you ever observed young children playing with toys? (Circle one)  YES NO 

 

a. In what type of setting (ie: home, lab) ___________________________________________ 

 

b. For what purpose (ie: parenting, babysitting, for a study) ______________________  _____ 

 

c. How many hours have you spent observing children play? (Circle one)  

 
150 + 
hours  
(7) 

 100 – 149   
hours  
(6) 

 50 – 99  
hours 
(5) 

 
30 – 49   
hours   
(4) 

 
10 – 29 
hours 
(3) 

 
5 – 9  
hours 
(2) 

 
1 – 4 
hours 
(1) 

 

 

12. Are you color blind or have difficulty distinguishing between different colors?   YES NO 

 

 

13. What is your opinion of the following statement? (Circle one) 

“If a computer uses an algorithm to provide me with information, I believe it to be correct.” 

 
Strongly 
Agree 

(7) 
 

Agree 
 

(6) 
 

Somewhat 
Agree 

(5) 
 

Neutral 
 

(4) 
 

Somewhat 
Disagree 

(3) 
 

Disagree 
 

(2) 
 

Strongly 
Disagree 

(1) 

 

Optional: Are there any additional comments you would like to share with the researcher? ___        ________ 

_____________________________________________________________________________________

_____________________________________________________________________________________
_____________________________________________________________________________________

_____________________________________________________________________________________
_____________________________________________________________________________________ 
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Participant ID:________  Participant Condition:________   Condition Code:________   

Post Condition Survey 

Page 1 of 3 

 

Rankings 

Rank the following items in order according to category based on the task you just completed. Numbers 
may only be used once per category. Comments are optional. 

 
 

1. Ease of Identification (3 = easiest to identify, 1 = hardest to identify) 

 

 
Assembling 
LEGOS™ 

 
Jumping Puppy 
over toys 

 Shaking a toy 

comments: 

 
2. Time Spent (5 = majority of my time, 1 = least of my time) 

 

 Watching video  Creating labels  Adjusting labels  
Searching 
for/over labels 

 
Logging 
labels 

comments: 

 
3. Effort(5 = most difficult, 1 = least difficult) 

 

 
Comprehending 
play seen in 

video 

 
Ignoring labels 
not related to 

my task  

 
Looking for so 
many of my 

play activities 

 
Completing 
Task on time 

 
Correcting 
labels  

comments: 

 

 

Questions 

Circle the answer that most accurately reflects your opinion. 

 
4. I am satisfied with the number of labels provided by the computer. 

 

 
Strongly 
Agree 

(7) 
 

Agree 
 

(6) 
 

Somewhat 
Agree 

(5) 
 

Neutral 
 

(4) 
 

Somewhat 
Disagree 

(3) 
 

Disagree 
 

(2) 
 

Strongly 
Disagree 

(1) 

 
a. If not, where there too many or too few? 

 

 
 

5. The locations of my play activities were easy to find. 
 

 
Strongly 
Agree 

(7) 
 

Agree 
 

(6) 
 

Somewhat 
Agree 

(5) 
 

Neutral 
 

(4) 
 

Somewhat 
Disagree 

(3) 
 

Disagree 
 

(2) 
 

Strongly 
Disagree 

(1) 
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Post Condition Survey 

Page 2 of 3 

 

 

 
6. The beginning and ending of my play activities were not accurately labeled. 

 

 
Strongly 
Agree 

(7) 
 

Agree 
 

(6) 
 

Somewhat 
Agree 

(5) 
 

Neutral 
 

(4) 
 

Somewhat 
Disagree 

(3) 
 

Disagree 
 

(2) 
 

Strongly 
Disagree 

(1) 

              

 
 

7. I was distracted by labels not related to my task. 
 

 
Strongly 
Agree 

(7) 
 

Agree 
 

(6) 
 

Somewhat 
Agree 

(5) 
 

Neutral 
 

(4) 
 

Somewhat 
Disagree 

(3) 
 

Disagree 
 

(2) 
 

Strongly 
Disagree 

(1) 

              

 

 
             

8. Each label I viewed accurately identified what was seen in the associated video. 

 

 
Strongly 
Agree 

(7) 
 

Agree 
 

(6) 
 

Somewhat 
Agree 

(5) 
 

Neutral 
 

(4) 
 

Somewhat 
Disagree 

(3) 
 

Disagree 
 

(2) 
 

Strongly 
Disagree 

(1) 

 

 
             

 

9. Erroneous labels prevented me from completing my task. 
 

 
Strongly 
Agree 

(7) 
 

Agree 
 

(6) 
 

Somewhat 
Agree 

(5) 
 

Neutral 
 

(4) 
 

Somewhat 
Disagree 

(3) 
 

Disagree 
 

(2) 
 

Strongly 
Disagree 

(1) 

              

 

 
10.  I found computer generated labels that were useful to my search. 

 

 
Strongly 
Agree 

(7) 
 

Agree 
 

(6) 
 

Somewhat 
Agree 

(5) 
 

Neutral 
 

(4) 
 

Somewhat 
Disagree 

(3) 
 

Disagree 
 

(2) 
 

Strongly 
Disagree 

(1) 

 

 
 

11. I found the overall task difficult. 
 

 
Strongly 
Agree 

(7) 
 

Agree 
 

(6) 
 

Somewhat 
Agree 

(5) 
 

Neutral 
 

(4) 
 

Somewhat 
Disagree 

(3) 
 

Disagree 
 

(2) 
 

Strongly 
Disagree 

(1) 
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Participant ID:________  Participant Condition:________   Condition Code:________   

Post Condition Survey 

Page 3 of 3 

 

12. I am confident that I logged all instances of my play activates that exist in the video. 

 

 
Strongly 
Agree 

(7) 
 

Agree 
 

(6) 
 

Somewhat 
Agree 

(5) 
 

Neutral 
 

(4) 
 

Somewhat 
Disagree 

(3) 
 

Disagree 
 

(2) 
 

Strongly 
Disagree 

(1) 

 
 

             

 

 
13. Overall, the computer reduced the amount of effort required to annotate this video. 

 

 
Strongly 

Agree 
(7) 

 

Agree 

 
(6) 

 

Somewhat 

Agree 
(5) 

 

Neutral 

 
(4) 

 

Somewhat 

Disagree 
(3) 

 

Disagree 

 
(2) 

 

Strongly 

Disagree 
(1) 

 

My Strategy 

 

 
 

14. Please describe the strategy you used to complete this task: 

 _______________________________________________________________________________  

 _______________________________________________________________________________  

 _______________________________________________________________________________  

 _______________________________________________________________________________  

 _______________________________________________________________________________  

 _______________________________________________________________________________  

 _______________________________________________________________________________  

 _______________________________________________________________________________  

Additional Feedback 

Is there anything else you would like to share with the researchers?: 

 _______________________________________________________________________________  

 _______________________________________________________________________________  

 _______________________________________________________________________________  

 _______________________________________________________________________________  

 _______________________________________________________________________________  

 _______________________________________________________________________________  

 _______________________________________________________________________________  

 _______________________________________________________________________________  
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Participant ID:________   

Post Experiment Survey 

Page 1 of 4 

 

Ranking of Conditions 

Rank your 4 conditions according to the following items. Please refer to the provided screen shots if you 
need help recalling details about each condition. Numbers may only be used once per category. 

Comments are optional -- If you find a ranking difficult to assign, please make a note in the comments. 
 

1. Which condition did you Like the Best? (4 = Best, 1 = Worst) 

 

 Condition A  Condition B  Condition C  Condition D 

 

Comments: ________________________________________________________________________ 
__________________________________________________________________________________ 

__________________________________________________________________________________ 
 

 
2. Which condition provided labels that were Least Useful? (4 = Least useful, 1 = Most useful) 

 

 Condition A  Condition B  Condition C  Condition D 

 

Comments: ________________________________________________________________________ 

__________________________________________________________________________________ 
__________________________________________________________________________________ 

 
 

3. Which condition was Easiest to Find “My Play” Activities (4 = Easiest, 1 = Most Difficult) 

 

 Condition A  Condition B  Condition C  Condition D 

 
Comments: ________________________________________________________________________ 

__________________________________________________________________________________ 

__________________________________________________________________________________ 
 

 
4. Which condition took the Most Effort? (4 = Most Effort, 1 = Least Effort) 

 

 Condition A  Condition B  Condition C  Condition D 

 

Comments: ________________________________________________________________________ 
__________________________________________________________________________________ 

__________________________________________________________________________________ 
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Participant ID:________   

Post Experiment Survey 

Page 2 of 4 

 

Ranking of Label Utility 

Rank the following items in order according to category based on ALL the conditions. Numbers may only 
be used once per category. Comments are optional. 

 
5. Provided Labels were Most Import for Identifying (5 = Most important, 1 = Least important) 

 

 Type of play  Location of play  Duration of play  Start of play  
End of 

play 

 

Comments: ________________________________________________________________________ 

__________________________________________________________________________________ 
__________________________________________________________________________________ 

 
6. It is Most Important that the labels Accurately Provide (5 = Most important, 1 = Least important) 

 

 Type of play  Location of play  Duration of play  Start of play  
End of 
play 

 

Comments: ________________________________________________________________________ 
__________________________________________________________________________________ 

__________________________________________________________________________________ 

 
7. Which had the Most Influence on Task Completion (5 = Most influence, 1 = Least influence) 

 

 
The number of 
activities to find 

 
Pre-computed 
labels being 

provided 

 
Labels providing 
accurate 

locations 

 
Labels providing 
accurate names 

 
Allotted 
Time 

 

Comments: ________________________________________________________________________ 

__________________________________________________________________________________ 
__________________________________________________________________________________ 

 

Labels (Annotations) 

 

 
8. There were two conditions which seemed to provide the same quality of labels. 

 

 
Strongly 
Agree 

(7) 
 

Agree 
 

(6) 
 

Somewhat 
Agree 

(5) 
 

Neutral 
 

(4) 
 

Somewhat 
Disagree 

(3) 
 

Disagree 
 

(2) 
 

Strongly 
Disagree 

(1) 

 

 
a. If so, which two conditions were indistinguishable? ________________________ 
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Participant ID:________   

Post Experiment Survey 

Page 3 of 4 

 

9. If the computer provides a labeled location, I believe it to be correct. 
 

 
Strongly 
Agree 

(7) 
 

Agree 
 

(6) 
 

Somewhat 
Agree 

(5) 
 

Neutral 
 

(4) 
 

Somewhat 
Disagree 

(3) 
 

Disagree 
 

(2) 
 

Strongly 
Disagree 

(1) 

 
 

 
10. It is easier to ignore extraneous labels than it is to search video for missing labels. 

 

 
Strongly 
Agree 

(7) 

 
Agree 

 

(6) 

 
Somewhat 

Agree 

(5) 

 
Neutral 

 

(4) 

 
Somewhat 
Disagree 

(3) 

 
Disagree 

 

(2) 

 
Strongly 
Disagree 

(1) 

 

 
 

11. Overall, the computer accurately identified the play activities I was trying to find. 
 

 
Strongly 
Agree 

(7) 
 

Agree 
 

(6) 
 

Somewhat 
Agree 

(5) 
 

Neutral 
 

(4) 
 

Somewhat 
Disagree 

(3) 
 

Disagree 
 

(2) 
 

Strongly 
Disagree 

(1) 

 
 

12. I would rather have inaccurate computer generated labels than no labels at all. 
 

 
Strongly 
Agree 

(7) 
 

Agree 
 

(6) 
 

Somewhat 
Agree 

(5) 
 

Neutral 
 

(4) 
 

Somewhat 
Disagree 

(3) 
 

Disagree 
 

(2) 
 

Strongly 
Disagree 

(1) 

 
 

 
13. Computer generated labels increased the amount of effort required to annotate video. 

 

 
Strongly 
Agree 

(7) 
 

Agree 
 

(6) 
 

Somewhat 
Agree 

(5) 
 

Neutral 
 

(4) 
 

Somewhat 
Disagree 

(3) 
 

Disagree 
 

(2) 
 

Strongly 
Disagree 

(1) 

 

 
 

14. I relied solely on annotations provided by the computer to complete my task. 
 

 
Strongly 
Agree 

(7) 
 

Agree 
 

(6) 
 

Somewhat 
Agree 

(5) 
 

Neutral 
 

(4) 
 

Somewhat 
Disagree 

(3) 
 

Disagree 
 

(2) 
 

Strongly 
Disagree 

(1) 

 
 

 
15. Computer generated labels made it difficult to search for multiple types of play at once. 

 

 
Strongly 
Agree 

(7) 
 

Agree 
 

(6) 
 

Somewhat 
Agree 

(5) 
 

Neutral 
 

(4) 
 

Somewhat 
Disagree 

(3) 
 

Disagree 
 

(2) 
 

Strongly 
Disagree 

(1) 
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The Interface and Video Navigation 

 
16. The interface was easy to use. 

 

 
Strongly 
Agree 

(7) 
 

Agree 
 

(6) 
 

Somewhat 
Agree 

(5) 
 

Neutral 
 

(4) 
 

Somewhat 
Disagree 

(3) 
 

Disagree 
 

(2) 
 

Strongly 
Disagree 

(1) 

 

 
17. It was difficult to move from one annotation to the next. 

 

 
Strongly 
Agree 

(7) 
 

Agree 
 

(6) 
 

Somewhat 
Agree 

(5) 
 

Neutral 
 

(4) 
 

Somewhat 
Disagree 

(3) 
 

Disagree 
 

(2) 
 

Strongly 
Disagree 

(1) 

 

 
18. Annotations are easy to create once I identify the location in the video I wanted to mark. 

 

 
Strongly 
Agree 

(7) 
 

Agree 
 

(6) 
 

Somewhat 
Agree 

(5) 
 

Neutral 
 

(4) 
 

Somewhat 
Disagree 

(3) 
 

Disagree 
 

(2) 
 

Strongly 
Disagree 

(1) 

 
 

19. The interface hindered me from completing my task. 

 

 
Strongly 

Agree 
(7) 

 

Agree 

 
(6) 

 

Somewhat 

Agree 
(5) 

 

Neutral 

 
(4) 

 

Somewhat 

Disagree 
(3) 

 

Disagree 

 
(2) 

 

Strongly 

Disagree 
(1) 

 
 

20. I made use of more than one camera view. 

 

 
Strongly 
Agree 

(7) 
 

Agree 
 

(6) 
 

Somewhat 
Agree 

(5) 
 

Neutral 
 

(4) 
 

Somewhat 
Disagree 

(3) 
 

Disagree 
 

(2) 
 

Strongly 
Disagree 

(1) 

 
 

21. The quality of the video made completing my task difficult. 

 

 
Strongly 

Agree 
(7) 

 

Agree 

 
(6) 

 

Somewhat 

Agree 
(5) 

 

Neutral 

 
(4) 

 

Somewhat 

Disagree 
(3) 

 

Disagree 

 
(2) 

 

Strongly 

Disagree 
(1) 

Additional Feedback 

Is there anything else you would like to share with the researchers? 

 _______________________________________________________________________________  

 _______________________________________________________________________________  

 _______________________________________________________________________________  

 _______________________________________________________________________________  
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Capacitance Sensing in Smart Toys: 
Aiding the Detection of Play Behaviors

 Abstract 

Our recent research has investigated the use of 

wireless accelerometers embedded in toys to aid in the 

automatic detection and analysis of children’s playtime 

activities. This paper discusses the implementation and 

sensing capabilities of two augmented toys, a plush 

cube and a Lego™ Quatro compatible block. One goal 

of these toys is to distinguish between a child’s direct 

manipulations as opposed to motions caused by kicks, 

accidental bumps, and other indirect interactions.  

Keywords 

Activity Recognition, Toy Design, Object-Play, 

Multimodal Wireless Sensing 

ACM Classification Keywords 

H3.1. Content Analysis and Indexing;  

Introduction & Motivation 

The way in which infants play with objects can serve as 

an early indicator for developmental delays [1]. We 

designed several smart toys to aid in the automatic 

detection and analysis of children’s playtime 

activities [3]. Typically, a toddler focuses his attention 

on the toys he is actively manipulating; however, the 

toys in his hands may not be the only toys experiencing 

motion. Playtime can be a very chaotic activity where 

toys are unintentionally toppled, kicked, and knocked 

down. Often, acceleration data does not provide 

enough information to determine which toys are held in 

the hands and which toys are accidentally bumped. This 
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Figure 2: X-ray view of the plush 

cube. The upper region (green) is the 

sensor package inside a foam shelf. 

The lower region (orange) is 

concentric cubes covered in 

conductive fabric. Wires (purple) 

connect the inner and outer 

conductive shells to the sensor.   

Figure 1: Plastic block CAD model 160



  

distinction is important for automatically generating 

quantitative measures of object play sophistication.  

Detecting the proximity of the child through capacitive 

sensing may help distinguish between the intentional 

and unintentional interactions.  

Toy Designs & Discussion 

Our toy designs leverage the BlueSense sensor package 

for the simultaneous sensing of acceleration and 

capacitance [2]. Both designs support the detection of 

direct touch as well as proximity approach.  

Plush Cube Design 

The plush cube detects when the toy is touched and 

how tightly it is grasped. It consists of two concentric 

cubes, with the outer cube being much larger than the 

inner cube (see Figure 2). Each cube consists of 

furniture foam1 covered with a single layer of 

conductive fabric. The inner cube and outer cube are 

wired to the BlueSense sensor using conductive threads 

and shielded coax cable. In order to avoid interference 

with the capacitance sensor and to prevent blocking the 

Bluetooth transmissions, the sensor package is placed 

inside a foam shelf that sits on top of the outer cube.  

The sensor battery is mounted outside of the foam 

shelf to facilitate easy charging as the sensor cannot be 

removed once it is connected. Both the foam shelf and 

concentric cubes are covered with a layer of flannel to 

conceal the shelf and prevent direct contact with the 

conductive fabric. 

                                                 
1 From our previous caterpillar design, we know that the use of 

shape-retaining foam is essential to maintain a consistent 
baseline for capacitance. 

Plastic Block Design 

The plastic block interacts with Lego ™ Quatro blocks. 

It is constructed of ABS plastic and contains a sliding 

drawer to hold the sensor package.  Two U-shaped 

copper sheets are inserted into opposing grooves inside 

the walls of the drawer.  Holes in the drawer grooves 

expose two small sections of the copper plate and allow 

wire to be soldered directly from the copper plate to the 

BlueSense sensor (see Figure 3). The drawer can be 

reinserted without disturbing these connections. 

Discussion 

Both the cube and block toys were tested in play 

sessions. The plush cube was used in over 40 adult play 

sessions and seven child play sessions. The plastic 

block has been used in 25 adult play sessions and two 

child sessions. Both toys supported the detection of 

direct and indirect movements (see Figure 4). Despite 

its inability to detect grasp intensity, we favor the 

plastic block design. Connections inside the cube are 

brittle and required constant repair. The plastic block, 

thus far, is a more durable toy.  

References 
[1] Baranek, G. T., C. R. Barnett, E. M. Adams, N. A 
Wolcott, L. R Watson, and E. R Crais. "Object play in 
Infants with Autism: Methodological Issues in 
Retrospective Video Analysis." American Journal of 
Occupational Therapy 59, no. 1 (2005): 20-30. 

[2] Presti, P. "BlueSense - A Wireless Interface 
Prototyping System." Master's Thesis, College of 
Computing, Georgia Tech, Atlanta, 2006. 

[3] T. Westeyn, J. Kientz, T. Starner, and G. Abowd 
"Designing Toys with Automatic Play Characterization 
for Supporting the Assessment of a Child's 
Development" Workshop on "Designing for Children 

with Special Needs" at IDC 2008. 

Figure 3: Plastic block and drawer CAD 

models. Peepholes exist in the back 

corners of the left and right walls. 

Figure 4: The green region highlights 

where the plastic block was indirectly 

manipulated. The upper (red) line is 

capacitance while the lower line (blue) is 

acceleration. 
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MOTIVATION  

• Certain aspects of object play 

have been linked to the potential 

early diagnosis of autism. 

 

• We have investigated the use of 

sensors within toys to aid in the 

automatic analysis of play. 

 

• Playtime can be very chaotic with 

toys unintentionally toppled, 

kicked, and knocked down.  

 

• Often, acceleration data does not 

provide enough information to 

distinguish play activities from 

toys being accidentally bumped.  

 

• Detecting the proximity of the 

child through capacitive sensing 

may help distinguish between the 

intentional and unintentional 

interactions. 

 

Capacitance Sensing in Smart Toys:  
Aiding the Detection of Play Behaviors 
US ING  THE  CHIL DS PL AY  S YS TEM 

OBJECTIVES 

To explore the implementation and sensing capabilities of two augmented toys designed to distinguish 

between a child’s direct manipulations and motions caused by kicks, accidental bumps, and other 

indirect interactions that can occur during play.  

Supporting Rapid  
         Analysis of Play Data 

PL US H  C UBE T OY D ESI G N  

• The plush cube detects when the toy is 

touched and how tightly it is grasped.  

• Two concentric foam cubes are each 

covered with a layer of conductive fabric.  

• The sensor is encased in a foam shelf on top 

of the concentric cubes and is attached using 

conductive thread and a shielded coax cable.  

• The toy is covered with flannel to prevent 

direct contact with the conductive fabric. 

PL ASTI C  BL O C K T O Y DES IG N  

• The block interacts with Lego ™ Quatro 

blocks and is constructed of ABS plastic. 

• It detects direct touches and approaches. 

• The sensor is concealed in a drawer that 

has copper sheets inside opposing walls. 

• The sensor is connected to the plate via 

two small holes in the drawer. 

• The drawer can be reinserted without 

disturbing these connections.  

WI REL ESS SE NS O RS I NS I DE  T OYS  

Toys transmit motion and touch information as 

children and adults play to a nearby computing 

platform 

  

AU T OM ATI C PL AY RE C O G NI T I O N  

Various types of play, different levels of play 

sophistication, and the toys involved can be 

automatically identified and associated with video 

 

SU PP O RTI N G R API D A NA L YSIS  

Our intelligent interface associates video footage 

with the occurrences of play activities and the 

specific toys involved.  

THE CHILDSPLAY SYSTEM 

This research has been supported by 
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DIS C U SSI O N  

• Both toys help support the detection of direct and indirect 

interactions and were each used in over 20 play sessions. 

• Connections inside the cube are brittle and frequently 

broke during sessions when children sat or fell on the cube. 

• Capacitive sensing plus acceleration helps discern 

accidental topples from the playfully knocking over of toys 

and offers a promising solution for recognizing object play.  

PRELIMINARY RESULTS FROM PLAY TESTS  
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APPENDIX G

CODING MANUAL FOR ADULT AND CHILD AUGMENTED–TOYS

ONLY PLAY STUDY
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APPENDIX H

CODING MANUAL FOR ADULT MIXED-TOY PLAY STUDY

Table 35: List of object play codes and definitions

Sheet1

Page 1

actions description example
bang single toy strikes surface

toy moved unintentionally by another toy or body part or shift in table
toy falls to surface or off surface dropped into bag

hand around toy on table or holds toy steady off table

bump causing drastic change in orientation
motion applied to toy while grasping
toy at rest (on surface or held) is relocated and brought back to rest
object lifted off a surface
contents of bag dumped onto table
objects slid across surface
object being held is placed on surface
two objects interacting with each other
object is let go
result of previous interaction shaking object when no longer touched
object tumbling across surface
object being stroked by an empty hand petting the puppy

object rapidly moved up and down in the air
object revolving across surface lid or dome spun

lid placed on ring

objects moved from from a clutter of object or removed from a bag remove from bag
unstack object moved off of the object below it

bump
drop
grasp
join two lego blocks fited together
knockdown
manipulate
move
pickup
pour
push
putdown
relate
release
reverb
roll
rub
separate lego blocks being pulled apart
shake
spin
spinning wobble after and object is spung and no longer in contact with child
stack one object moved ontop of another object
takeout

The following is a list of the toys and objects to code names

Toys/Objects:

ring

puppy

lid

lego

dome

surface

stack
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Label Scheme::

video is labeled using lower case letters with no spaces and follows the format:

action object--notes

Action is one of 25 actions listed in the spreadsheet on the previous page (see Table 35).

Object is one of the toys listed above. Actions and objects are separated by an underscore.

An example label for a child banging the lid into the table would be:

bang lid

If more than one object is interacting (ie: a toy in each hand) instead of listing the toy, a

quantifying descriptor should be used. Valid quantifiers are:

Quantifiers:

two

many

all

An exmple for when to use quantifiers would be when two toys are being related or

multiple toys are being pushed:

relate two push multiple

Notes are optional and are anything you wish to say about a specific label. They can

indicate more descriptive information, they always follow a double hyphen. Single hyphens

are used instead of spaces. Notes can be anything but will typically be one of the following:

Notes:

explore

relate
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imaginary

object-object

For example when using a quantifier instead of a toy as the object portion of the label

it is often useful to make a note about which objects are interacting. If a child were trying

to fit the lego inside of the ring, the label could use the object-object note format and read:

relate two--ring-lego

Note Description

Explore one toy being manipulated to learn about the object’s properties

Relate two objects interacting to discover properties of the objects

Imaginary object(s) used in creative play (puppy dancing, eating from dome)

If a child made the puppy dance, it could be labeled as:

manipulate puppy--imaginary-dance

If a child is searching for a feature on the dome, it could be labeled as:

manipulate dome–explore

General Rules:

One label per activity: If two actions are occurring at the same time, label it as best

you can with a single label

8x zoom start/stop: 8x zoom into the data in general and zoom from there to get

start and stop as close as possible

SAVE EARLY, SAVE OFTEN!
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