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SUMMARY

Advances in sensing and positioning technology, fueled by wide deployment of

wireless networks, have made many devices location-aware.These emerging technolo-

gies have enabled a new class of applications, known as Location-Based Services (LBS),

offering both new business opportunities and a wide array ofnew quality of life enhanc-

ing services. One example of such services is spatial alarms, an enabling technology for

location-based advertisement, location-based alerts or reminders and a host of other appli-

cations. On the other hand, the ability to locate mobile users accurately also opens door for

new threats - the intrusion of location privacy. The time series of location data can be linked

to personal identity, which leads to unauthorized information exposure about the individ-

ual’s medical conditions, alternative lifestyles, unpopular political views or location-based

spam and stalking. Thus, there are two important challengesfor location-based service pro-

visioning. How do we scale LBSs in the presence of client mobility and location dependent

constraints for the multitude of new, upcoming location-based applications under a com-

mon framework? How do we provide anonymous location-based services with acceptable

performance and quantifiable privacy protection in the nextgeneration of mobile networks,

systems and applications? This dissertation delivers technical solutions to address these

important challenges.

First, we introduce spatial alarms as the basic primitive torepresent a class of location-

based services that require location-based trigger capability. Similar to time-based alarms,

spatial alarms serve as spatial event reminders that enableus to express different location-

based information needs supported by a variety of applications ranging from location-based

advertisements, location-based personal assistants, to friend locator services like Google

Latitude. We develop a generalized framework and a suite of optimization techniques for
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server-centric scalable processing of spatial alarms. Ourarchitecture and algorithm devel-

opment provide significant performance enhancement in terms of system scalability com-

pared to näıve spatial alarm processing techniques, while maintaining high accuracy for

spatial alarm processing on the server side and reduced communication costs and energy

consumption on the client side. Concretely, we develop safe period optimizations for alarm

processing and introduce spatial alarm grouping techniques to further reduce the unneces-

sary safe period computation costs. In addition, we introduce a distributed alarm processing

architecture that advocates the partitioning of the alarm processing load among the server

and the relevant mobile clients to reduce the server load andminimize the client-to-server

communication cost through intelligent distribution and parallelization. We also explore a

variety of optimization opportunities such as incorporating non-spatial constraints into the

location-based information monitoring problem and utilizing efficient indexing methods

such as bitmap indexing to further enhance the performance and scalability of spatial alarm

processing in the presence of mobility hotspots and skewed spatial alarm distributions.

Second, we develop the PrivacyGrid framework for privacy-enhanced location service

provisioning, focusing on providing customizable and personalized location privacy so-

lutions while scaling the mobile systems and services to a large number of mobile users

and a large number of service requests. The PrivacyGrid approach has three unique char-

acteristics. First, we develop a three-tier architecture for scaling anonymous information

delivery in a mobile environment while preserving customizable location privacy. Sec-

ond, we develop a suite of fast, dynamic location cloaking algorithms. It is known that

incorporation of privacy protection measures may lead to aninherent conflict between the

level of privacy and the quality of services (QoS) provided by the location-based services.

Our location cloaking algorithms can scale to higher levelsof location anonymity while

achieving a good balance between location privacy and QoS. Last but not the least; we

develop two types of location anonymization models under the PrivacyGrid architecture,

one provides the random way point mobility model based location cloaking solution, and

xvi



the other provides a road network-based location privacy model powered by both location

k-anonymity and segments-anonymity. A set of graph-based location cloaking algorithms

are developed, under the MobiCloak approach, to provide desired levels of privacy pro-

tection for users traveling on a road network through scalable processing of anonymous

location services.

This dissertation, to the best of our knowledge, is the first one that presents a system-

atic approach to the design and development of the spatial alarm processing framework and

various optimization techniques. The concept of spatial alarms and the scaling techniques

developed in this dissertation can serve as building blocksfor many existing and emerging

location-based and presence based information and computing services and applications.

The second unique contribution made in this dissertation isits development of the Pri-

vacyGrid architecture for scaling anonymous location based services under the random

waypoint mobility model and its extension of the PrivacyGrid architecture through intro-

ducing the MobiCloak road-network based location cloaking algorithms with reciprocity

support for spatially constrained network mobility model.Another unique feature of the

PrivacyGrid and MobiCloak development is its ability to protect location privacy of mobile

users while maintaining the end-to-end QoS for location-based service provisioning in the

presence of dynamic and personalized privacy constraints.
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CHAPTER I

INTRODUCTION

The availability of a large number of location sensing technologies ranging from cell

network-based positioning of mobile users to highly accurate GPS navigation devices has

made location information ubiquitous. This, in turn, has led to the successful deployment

of a large number of location-based services and applications. Services range from traf-

fic monitoring and emergency services to location-based advertising and entertainment as

well as location-based queries and spatial alarms [25]. Theplethora of services available

today provide a huge scope for business opportunities. According to research reports [2],

LBS revenue is forecast to reach an annual global total of $13.3 billion by 2013. This is

further supported by current trends for GPS markets which are growing at 20% annually.

Currently, 90% of available GPS devices are portable navigation devices and by 2012 mo-

bile phones equipped with GPS will have 78% of this market [14]. Cell phone users can

be accurately located at any point of time using triangulation performed by the network

of more than 220,000 cell phone towers [69]. Skyhook wireless lists a database of more

than 6.5 million Wi-Fi access points [61], all of which provide the means to locate mobile

users. With the advent of Android [11], iPhone [12], Palm Pre[16] and various other smart

phones with embedded GPS devices, it is easy to gather accurate location information for

a large number of mobile users.

We develop spatial alarms as an interesting example of location-based services, an en-

abling technology for location-based advertisement and location-based alerts or reminders.

Similar to time-based alarms, spatial alarms serve as spatial event reminders that enable

us to express different location-based information needs currently required by a variety
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of applications ranging from location-based advertisements, location-based personal assis-

tants, to friend locator services like Google Latitude [18]. Spatial alarm processing requires

meeting two demanding objectives: high accuracy, which ensures zero or very low alarm

misses, and high scalability, which requires highly efficient and optimal processing of spa-

tial alarms. These technical challenges are discussed in detail in Section 1.2.

In order to manage the scalability challenge in location-based systems, we also develop

a location-centric frameworkthat advocates clean separation of static location data from

moving objects in terms of both indexing structure and location query processing. Em-

ploying a separate index for moving objects enables us to minimize the index maintenance

cost in the presence of location updates of moving objects, and speeds up the evaluation of

location queries by maximizing the amount of parallel processing, specifically processing

location queries over static objects via location index andprocessing location queries over

moving objects through grid index. We also show that this framework enables dynamic

composition of a world wide location index which can supportindexing for all locations of

interest in the entire world in a hierarchical manner.

On the other hand, the availability of continuous, precise location information to fa-

cilitate location-based applications opens the door for potential misuse of private location

information of mobile users [64]. The collected location information can be used for stalk-

ing [1], perform inference about a user’s personal lifestyle habits or medical conditions,

or to spam users with unwanted location-based advertising.Location privacy refers to the

capability of enabling a mobile node or a trusted location server to conceal the relation be-

tween location and personal identifiable information from third parties. In this dissertation,

we present a framework for performing personalized anonymization of location informa-

tion through customizable privacy profiles.
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1.1 Location-based Systems and Services

There are two important challenges for location-based service provisioning: how to scale

LBSs in the presence of client mobility and location dependent constraints, and how to

provide anonymous location services with acceptable performance and privacy protection

in the next generation of mobile networks, systems and applications. In this section, we

briefly discuss spatial alarms as a generalized, scalable framework for supporting the next

generation of location-based services and applications and the inherent problems associated

with the availability of continuous location information of mobile users.

1.1.1 Spatial Alarm Framework

A spatial alarm is defined by three elements: a future location reference known as the

alarm target, an owner who is the publisher of the alarm and the list of subscribers of the

alarm. We categorize spatial alarms based on two criteria: the publish-subscribe scope of

the alarms and the motion characteristics of alarm targets and alarm subscribers. Accord-

ing to the publish-subscribe scope of spatial alarms, we consider three categories of alarms:

private, sharedandpublic. Privatealarms are installed and used exclusively by the pub-

lisher.Sharedalarms are installed by the publisher with a list of authorized subscribers and

the publisher is typically one of the subscribers.Public alarms are usually installed with

the purpose of sharing them with all mobile users who are entering the spatial regions of

the alarms. Mobile users may subscribe to public alarms by topic categories or keywords,

such as“traffic information on highway 85 North”or “Zagat survey of top-ranked local

restaurants”. Public alarms can be useful means of informing subscribersabout hazardous

road situations or heavy road congestion. According to the motion characteristics of the

alarm target and alarm subscriber, we categorize spatial alarms into three classes: (1) mov-

ing subscriber with static target, (2) static subscriber with moving target, and (3) moving

subscriber with moving target.

Example 1: Location-based advertisements.Macy’s store in midtown Atlanta may set
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a spatial alarm around its store location for“sending e-coupons for a 20% discount to

all gold members within a five mile radius of it store location”. This allows the store to

limit delivery of coupons to customers in the vicinity of thestore. Customers may choose

to subscribe to spatial alarms installed on Macy’s store or otherwise, thus, personalizing

delivery of information at their end. This is an example of a public alarm with moving

subscribers and static target.

Example 2: Location-based reminders [97].A user may set a spatial alarm on her fa-

vorite grocery store for“reminding her to buy some groceries when she is one mile away

from the store over the weekend”. This is an example of a private spatial alarm on static

target with moving subscriber.

Example 3: Location-enhanced social networking.The concept of location when in-

tegrated into social networking applications like Facebook [13] allows the ability to add

physical presence-based functionality. For example, a user may install an alarm on all

friends which“informs her whenever any of her friends are within a two mile vicinity of her

current location during office lunch hours”. As this requires monitoring of friends’ loca-

tion information, dealing with location privacy issues is also essential for such alarms [27].

This is an example of a private spatial alarm with moving targets and moving subscriber.

We develop a pub/sub system which allows a large number of mobile users to install a

large number of different types of spatial alarms on a server. The server receives location

data of all mobile users as well as other location sensitive data streams. This work focuses

on various optimizations which can be performed to ensure system scalability and accuracy.

1.1.2 Location Privacy Constraints

Though LBSs provide many new opportunities, the ability to locate mobile users also

presents new threats− the intrusion of location privacy [34, 53]. According to [34], lo-

cation privacy is defined as the ability to prevent unauthorized parties from learning one’s
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current or past location. Location privacy threats refer tothe risk that an adversary can ob-

tain unauthorized access to raw location data, derived or computed location information by

locating a transmitting device, hijacking the location transmission channel and identifying

the subject using the device [54]. For example, location information can be used to spam

users with unwanted advertisements or to learn about users’medical conditions, unpopular

political or religious views. Inferences can be drawn from visits to clinics, doctor’s offices,

entertainment clubs or political events. Public location information can lead to physical

harm, such as stalking or domestic abuse. The most importantfactor for the success or

failure of any upcoming technology is its acceptance by the users. Any technology which

makes people uncomfortable is very likely to be rejected or would at least progress at a

slow rate. LBSs face this challenge in the form of privacy threats posed by them; this may

prevent their widespread acceptance.

Users need to provide their personal information (i.e. location information) in order to

avail the advantages provided by LBSs. The fact that pieces oftheir location information

can be threaded together to infer daily routines is likely tomake people uncomfortable

and hesitant in using LBSs. Location privacy threats such aslocation tracking, restricted

space identificationas well asobservation identification(as identified by [53]) need to be

handled effectively to provide location privacy to users which would enable widespread

adoption of the technology.

Several approaches have been proposed for protecting the location privacy of a user.

We classify these techniques into three categories: (1) Location protection through user-

defined or system-supplied privacy policies; (2) Location protection through anonymous

usage of information; and (3) Location protection through pseudonymity of user identities,

which uses an internal pseudonym rather than the user’s actual identity. For those LBSs that

require true user identity, strong security mechanisms such as location authentication and

authorization have to be enforced in conjunction with theirlocation privacy policy. In this

work, we concentrate on the class of location-based applications that accept pseudonyms
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and present the PRIVACY GRID framework for performing personalized anonymization of

location information through customizable locationk-anonymity and locationl-diversity,

thus enabling anonymous location-based queries in mobile information delivery systems.

Perfect privacy is clearly impossible as long as communication takes place. An im-

portant question here ishow much privacy protection is necessary?Moreover, users often

have varying privacy needs in different contexts. We propose to use quantitative metrics to

model the location privacy requirements of a mobile user, firstly, using a random way point

model and then taking the underlying road network into consideration.

1.2 Technical Challenges

In this dissertation, we aim to handle the following technical challenges for scalability in

location-based services:

1.2.1 High Scalability and High Accuracy for Spatial Alarm Processing Systems

Processing of spatial alarms requires meeting two demanding objectives: high accuracy,

which ensures no alarms are missed, and high scalability, which guarantees that alarm

processing is highly efficient and scales to large number of spatial alarms and growing

base of mobile users. The conventional approach to similar problems involves periodic

evaluations at a high frequency. Each spatial alarm evaluation can be conducted by testing

whether the user is entering the spatial region of the alarm.High frequency is essential

to ensure that none of the alarms are missed. Though periodicevaluation is simple, it can

be extremely inefficient due to frequent alarm evaluation and the high rate of irrelevant

evaluations. This is especially true when the mobile user istraveling in a location that is

distant from all her location triggers, or when all her alarms are set on spatial regions that

are far apart from one another.
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1.2.2 Limiting Resource Consumption at Mobile Clients

We develop a server-centric approach and a distributed architecture for spatial alarm pro-

cessing which is essential for extending the technology to clients using cheap location

detection devices which may not possess significant computational power. Safe period and

safe region optimizations are developed to scale the systemand limit resource consump-

tion at mobile clients. Even for clients with significant computing resources, energy and

bandwidth consumption remain major bottlenecks and numerous works have dealt with the

problem of energy conservation in mobile devices [44, 45, 86]. A main challenge in the

design of our distributed architecture for spatial alarm processing is the need for develop-

ing safe regioncomputation techniques that can provide a careful trade-off between server

load and client energy consumption by taking into account: (i) the bandwidth required to

communicate the safe region from the server to its corresponding mobile client, and (ii)

the computation cost at a mobile client for monitoring its position with respect to the safe

region.

1.2.3 Fast and Effective Techniques for Location Cloaking

We develop fast and effective cloaking algorithms for providing locationk-anonymity and

locationl-diversity while maintaining the utility of LBSs under the PRIVACY GRID archi-

tecture. It is essential to develop fast, efficient cloakingalgorithms which do not interfere

with the completion of LBS requests. We propose to develop similar solutions for road

network-based privacy protection.

1.2.4 Trade-offs between Privacy and Utility of LBSs

In PRIVACY GRID, we stress that location perturbation algorithms should becapable of

dynamically making trade-offs between privacy and QoS. Unnecessarily large cloaking

boxes will lead to not only poor QoS for the mobile users but also larger result sets to be

transported from the corresponding LBS provider and higher processing costs for filtering
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at either the mobile client side or at the location anonymizer, inevitably leading to larger

delays for obtaining useful query results. We also propose to develop solutions which are

able to balance privacy-utility trade-offs in the presenceof the underlying road network.

1.3 Dissertation Scope and Contributions

This dissertation makes the following contributions in order to address the challenges de-

scribed in the previous section.

High Scalability and High Accuracy for Spatial Alarm Processing Systems:Any

server-based approach must allow optimizations for processing spatial alarms installed by

multiple mobile clients in order to ensure system scalability. We make the following con-

tributions towards developing scalable server-based solutions for spatial alarm processing.

Safe Period-based Processing:We optimize the conventional approach of periodic

alarm processing by advocating a motion-awaresafe period-basedalarm evaluation frame-

work. Concretely, we formalize the concept of spatial alarmsand the problem of spatial

alarm processing. We introduce the concept ofsafe periodto minimize the number of

unnecessary alarm evaluations, increasing the throughputand scalability of the system.

We show that our safe period-based alarm evaluation techniques can significantly reduce

the server load for spatial alarm processing compared to theperiodic evaluation approach,

while preserving the accuracy and timeliness of spatial alarms. Furthermore, we develop

alarm grouping techniques based on spatial locality of the alarms and motion behavior of

the mobile users, aiming at optimizing safe period computation at the server. We evalu-

ate the scalability and accuracy of our approach using a roadnetwork simulator and show

that our proposed framework offers significant performanceenhancements for the alarm

processing server while maintaining high accuracy of spatial alarms compared to the con-

ventional periodic alarm evaluation approach [28].

Safe Region-based Processing:We propose a distributed architecture and a suite of

safe region techniques for scalable processing of spatial alarms [26]. We show that safe
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region-based processing enables resource optimal distribution of partial alarm processing

tasks from the server to the mobile clients. “Resource optimal” implies that our distributed

architecture minimizes unnecessary alarm evaluations at both server and mobile clients.

We propose three different safe region computation algorithms to explore the impact of

size and shape of the safe region on network bandwidth, server load and client energy

consumption.

Limiting Resource Consumption at Mobile Clients: Our suite of safe region compu-

tation techniques allows us to analyze the impact of the sizeand shape of safe region on the

client-server communication cost, server load and client energy consumption. Concretely,

we develop three safe region computation techniques: (i)Maximum Weighted Perimeter

Rectangular Safe Region, (ii) Grid Bitmap Encoded Safe Region, and (iii) Pyramid Bitmap

Encoded Safe Region. These alternative methods for safe region computation provide flex-

ible support for mobile clients with heterogeneous capabilities in terms of CPU, network

bandwidth and energy capacity.

Fast and Effective Techniques for Location Cloaking: We present a three-tier ar-

chitecture to provide location privacy using a third party anonymizer service. We develop

location cloaking algorithms which are fast and capable of keeping the perceived delays

due to location anonymization to a minimum. In order to achieve this goal, we maintain

a simple grid-based data structure which keeps the mobile object counts in each cell. We

developdynamicbottom-up and top-down grid cloaking algorithms with the goal of achiev-

ing high anonymization success rate and efficiency in terms of both time complexity and

maintenance cost. A hybrid approach that carefully combines the strengths of both bottom-

up and top-down cloaking approaches to further reduce the average anonymization time is

also developed.

Trade-offs between Privacy and Utility of LBSs: We allow each user to specify her

privacy requirements in terms of privacy and utility constraints. In PRIVACY GRID, we use
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locationk-anonymity and locationl-diversity as two quantitative metrics to model the lo-

cation privacy requirements of a mobile user. In the contextof LBSs and mobile users,

locationk-anonymity refers tok-anonymous usage of location information. A user is con-

sidered locationk-anonymous if and only if the location information sent fromthe mobile

user to a LBS is indistinguishable from the location information of at leastk − 1 other

users. Locationl-diversity is introduced to strengthen the privacy protection of location

k-anonymity in situations where location information shared by thek users is sensitive.

By increasingl value to two or higher, it significantly reduces the probability of linking a

static location or a symbolic address (such as church, restaurant, doctor’s office) to a mobile

user. As QoS measures, we usemaximum spatial resolutionwhich allows the mobile user

to control the spatial resolution reduction within an acceptable QoS specific range. It can

be changed or adjusted according to the type of location service, the time of day, month

or year, and on a per message level. Similarly, the fourth measure ismaximum temporal

resolution, which controls the temporal delay acceptable for maintaining the desired QoS.

Our algorithms use these constraints effectively to balance the privacy utility trade-offs.

1.4 Organization of the Dissertation

This dissertation is organized as a series of chapters each dealing with one of the different

problems described above. Each chapter details the core problem being addressed, provides

basic concepts and then describes the development of a solution followed by the evaluation

of the proposed solution. Relevant work is described along with each chapter. Concretely,

the dissertation is organized as follows.

In chapter 2, we present alocation-centric frameworkthat advocates a clean separa-

tion of static location data from moving objects in terms of both indexing structure and

location query processing. Employing a separate index for moving objects enables us to

minimize the index maintenance cost in the presence of location updates of moving objects,
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and speeds up the evaluation of location queries by maximizing the amount of parallel pro-

cessing, specifically processing location queries over static objects via location index and

processing location queries over moving objects through grid index. We evaluate the perfor-

mance of a system processing different types of location queries by maintaining a location

index for indexing of static objects and a grid-based framework for updating and indexing

positions of moving objects. Our experimental results demonstrate the advantages of our

location-centric framework for processing location queries and conform with the predicted

results obtained via analysis in terms of IO costs for location index and object index.

In chapter 3, we present a motion-aware safe period framework and a suite of optimiza-

tion techniques for scalable processing of spatial alarms.The chapter makes two important

contributions towards supporting spatial alarm-based mobile applications. First, we intro-

duce the concept ofsafe periodto minimize the number of unnecessary alarm evaluations,

increasing the throughput and scalability of the system. Weshow that our safe period-

based alarm evaluation techniques can significantly reducethe server load for spatial alarm

processing compared to the periodic evaluation approach, while preserving the accuracy

and timeliness of spatial alarms. Second, we develop a suiteof spatial alarm grouping

techniques based on spatial locality of the alarms and motion behavior of the mobile users,

which reduces the safe period computation cost for spatial alarm evaluation at the server

side. We evaluate the scalability and accuracy of our approach using a road network simu-

lator and show that the proposed motion-aware safe period-based approach to spatial alarm

processing offers significant performance enhancements for alarm processing on server

side while maintaining high accuracy of spatial alarms.

In chapter 4, we make three important contributions towardssupporting efficient pro-

cessing of spatial alarms. First, we introduce the concept of safe region-based alarm pro-

cessing to enhance the scalability of the system. We developdifferent techniques for safe

region computation, namely the maximum weighted perimeterrectangular safe region ap-

proach and the two BSR approaches, GBSR and PBSR. Second, we consider trade-offs
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between various heuristics for safe region computation based on size, shape of the region

which affects the client to server communication cost, alarm evaluation cost, downstream

bandwidth consumption and the client energy consumption. Our experimental evaluation

shows that safe region techniques outperform other alarm processing techniques like pe-

riodic evaluation, safe period-based approach and offer close to optimal performance for

different alarm distribution scenarios. Last but not the least, our framework supports het-

erogeneous environments with varying server load, resource conditions and heterogeneity

of client capabilities using the concept of bitmap encoded safe regions.

In chapter 5, we present the SLIM system as an efficient solution for the mobile infor-

mation monitoring problem in presence of non-spatial attributes. This chapter makes three

important contributions towards efficiently solving the information monitoring problem in

presence of spatial as well as non-spatial attributes. First, we show that the addition of

less dynamic non-spatial attributes to the mobile information mix, although it leads to a

larger amount of data updates being handled at the processing server, provides opportuni-

ties to enhance system scalability beyond what is possible with spatial attributes alone. We

propose the concept of selective evaluation of received data updates which allows us to de-

termine data updates that may be dropped without further processing. Second, we propose

the concept of safe containment which allows us to perform the selective processing of

data updates. The selective processing approach seeks cooperation from mobile users and

participating data sources in the information monitoring process but provides heavy returns

in terms of savings in communication costs. We also present efficient algorithms for safe

value container computation for single-dimensional and multi-dimensional data. Last but

not the least, we conduct extensive experimental evaluation for a real world road network-

based simulator which shows that safe containment allows for savings in terms of energy

and bandwidth consumption for mobile clients in a wireless environment. Computation

costs at the server are also considerably reduced, thus enhancing system scalability.

The next two chapters are focused on developing solutions for enabling privacy-aware
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delivery of location-based services. In chapter 6, we describe the PRIVACY GRID frame-

work which allows users to express their privacy requirements in terms of location hiding

and QoS measures to control query processing overheads. Three dynamic grid-based spa-

tial cloaking algorithms are developed for providing location k-anonymity and location

l-diversity in a mobile environment. A brief discussion of the PRIVACY GRID mechanisms

for processing anonymous location queries is provided. We report our extensive exper-

imental evaluation results and show that compared to existing grid cloaking approaches

such as [82], our dynamic grid cloaking algorithms provide much higher anonymization

success rate and yet are highly efficient in terms of both timecomplexity and update cost.

In chapter 7, we present MOBICLOAK , a road network-aware location anonymization

model for protecting location privacy under road network mobility models. The MOBI-

CLOAK design exhibits three unique features. First, we enrich user k-anonymity by in-

troducing segments-anonymity as a companion metric for guarding location privacy of

mobile users on road networks. Second, we promote the use of graph density as an impor-

tant measure for determining optimal cloaking subgraphs ina road network. In addition, we

devise a suite of graph-based cloaking algorithms, supporting various levels of anonymiza-

tion optimization in terms of trade-offs between privacy and utility of cloaked location.

Our experimental evaluation demonstrates that our mobility-aware expansion combined

with controlled randomization provides highly efficient location anonymization with high

attack resilience compared to other existing approaches.

Chapter 8 concludes this dissertation with a summary of unique contributions of this

dissertation research and a discussion of open issues and possible research directions facil-

itated by this work.
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CHAPTER II

LOCATION-CENTRIC DATA MODELING FOR SCALABLE

LOCATION-BASED SERVICES

2.1 Introduction

The world of computing is changing rapidly. Wireless connectivity and mobility are no

longer considered a luxury but are a necessity in our everyday life. With rapid advances

in ubiquitous connectivity people, vehicles and computersare connected at all times and

location-aware computing will become a critical capability in future computing environ-

ments. Monitoring and evaluating location queries over static and moving objects is a fun-

damental functionality for many mobile location-based applications, ranging from location-

based emergency response, fleet management, cargo tracking, child care, to location-based

advertisement and location-based entertainment. Such systems typically consist of a dis-

tributed collection of database servers, base stations, application servers and a large number

of static and mobile objects. The database server manages the location data of mobile users

and static objects, such as gas stations, restaurants, etc.Location queries are registered and

evaluated at the database server. In these location-based computing systems two predomi-

nant costs determine the system performance and scalability: (1) the wireless communica-

tion cost for location updates of mobile clients and (2) the location query evaluation cost at

the database server.

Location queries can be classified into three major categories depending on the motion

properties associated with the querying object or the target objects of a query. The first

class of queries consists ofmoving queries over static objects. A query such as “Provide

locations of all gas stations within 10 miles, selling gas atless than three dollars per gallon,

over the next hour” belongs to this particular class of queries. Thefocal objectof the query
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is the car moving on the highway which poses this query. On theother hand a query such

as “Provide the locations for all cabs within five miles of thedowntown area of city A” is a

static query over moving objects. A query such as “Locate all customers who are looking

for cabs and are within five miles of my position over the next 20 minutes” is an example of

a moving query over moving objects. The cab which registers this query is thefocal object

of the query in this scenario.

Most existing research efforts to date have been dedicated to spatial and temporal meth-

ods for indexing objects or indexing queries [92, 94, 68, 50]. The goal of these indexing

techniques is to provide fast processing of location queries in the presence of moving ob-

jects, while ensuring the correctness of the query results within certain tolerance bounds.

Even though some indexing techniques such as TPR tree [94] have shown higher effec-

tiveness in indexing moving objects than static objects, few studies provide an in-depth

understanding of the potential performance benefit of separating the indexing over static

objects from the indexing for moving objects. Furthermore,most of the existing object

indexing schemes have to deal with the increased time complexity as the number of mobile

objects becomes large or the velocity of the objects varies significantly in the system.

We argue that a clean separation of query processing over static objects from query

processing over moving objects not only helps reduce the complexity of the problem, but

also provides significant performance gains for scaling theprocessing of queries over a

mixed workload of both types of objects. Processing requirements for evaluating location

queries over static objects are significantly different from those for queries over moving

objects. For example, queries over static objects are typically issued by mobile clients on

the move. The target objects of the queries are static objects, but the spatial query range

changes as the query issuer (i.e., the focal object of the query) moves on the road. Thus,

the set of static objects to be retrieved from the database ishighly dependent on the motion

behavior and the current location of the query focal object.In contrast, queries over moving

objects do not involve any static objects, but need to continuously track the positions of
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moving objects in the vicinity of the focal object. The ability to efficiently track the precise

positions of the target moving objects is critical for processing queries over moving objects

in terms of both result quality and system performance.

Bearing these observations in mind, we develop a location indexing framework to ad-

vocate a clean separation of static objects from moving objects in terms of both spatial

indexing structure and location query processing. By promoting locations asfirst class

citizens, we show that the location indexing framework enables scaling of location-based

services. Concretely, we propose to build a location index for managing all the static objects

in terms of their geographical locations in the real world. Our formal analysis and experi-

mental evaluation both show that our location indexing framework can provide fast access

capability with low maintenance cost compared to the existing object indexing schemes.

There are several factors for such performance gains. First, location index is served as a

primary clustered index, in the sense that all static objects stored on disk are ordered by

their locations instead of their object identifiers, thus requiring fewer disk IOs compared to

the existing object indexing schemes. Second, by managing moving objects, their location

updates, and queries over moving objects using a separate object index, we considerably

reduce the retrieval and maintenance costs of indexing structures for both static and moving

objects.

Concretely, the processing efficiency of location queries over static objects can be

greatly enhanced along several dimensions, including reduced index size, improved disk

locality, and fast searches at varying granularity of spatial approximations. Also, by em-

ploying a grid-based indexing scheme for processing location queries over moving objects,

we can reduce index maintenance cost in the presence of location updates of moving objects

and speed up query evaluation by maximizing the amount of parallel processing, specifi-

cally using a location index for queries over static objectsand grid index for those over

moving objects.

We conduct a formal IO cost analysis and an in-depth experimental comparison of our
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location indexing framework with the conventional object indexing approaches and show

that the location-indexing approach prevails over existing object indexing schemes under

all situations. In some scenarios the use of location index requires as low as only6% of the

IOs required for query evaluation by a corresponding objectindex.

The rest of the chapter is organized as follows. We begin witha motivating exam-

ple (Section 2.2) showing the problems with object indexingthat mixes static objects and

moving objects. Next, we introduce the basic concepts associated with our system in Sec-

tion 2.3. We then discuss the advantages of our location-centric framework. We describe

our approach for building a location-centric framework, including a formal analysis of the

IO cost model for our location indexing scheme in Section 2.4. The grid-based model for

processing location queries over moving objects is presented in Section 2.5. Section 2.6

reports the experimental evaluation of our location-centric indexing approach and com-

pares it with existing object indexing schemes. A discussion of related work is presented

in Section 2.7.

2.2 Motivation and Problem Statement

In this section, we lay the groundwork for motivating our location-centric framework for

location-dependent data. An example is used to illustrate the key differences in terms of

processing requirements between our location centric framework and the object-centric

approach, and the potential inefficiencies associated withthe object-centric framework,

especially in the context of processing location queries over static objects.

Consider the example as shown in Figure 1, which displays a setof static objects in

theUniverse of Discourse U(or map). Each object inU has a corresponding object entry

in the object tableO. In an object-centric framework, the data maintained in theobject

table is indexed by the‘object ID’ using a R-tree based object index which usesminimum

bounding rectangles(MBRs) to index the objects. Consider a location based queryq1over

this object table as shown in Figure 1. Assuming that an R-Treebased object index exists,
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Figure 1: Object-based Modeling

the query retrieves a set of index entries that correspond tothe list of objects belonging to

the region being queried byq1. Now for further query processing the object entries need

to be retrieved from the table using this index on the object ID column. However, since

the data organization on disk is based on object ID rather than spatial locality, the objects

being queried, though in close vicinity, may be spread across multiple disk pages resulting

in highly inefficient disk bandwidth utilization. For instance in this example, five objects

reside in the region being queried byq1. Thus as many as four differentdisk pagesmay

need to be fetched. Furthermore, if we incorporate moving objects into this model some

of the MBRs may need to be split into smaller ones as new mobile objects join the system,

not only increasing the number of MBRs to be maintained in the R-Tree based object index

and the index search cost, but also increasing the maintenance cost of the index since the

location updates of moving objects often cause the mobile objects to be moved from one

MBR to another.

We reach the following conclusions from the above discussion. First, when the system

needs to maintain an index for large number of static and moving objects, such maintenance

cost can be significant, since each position update of a moving object requires at least one
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index search and one update at each of the corresponding index nodes. Second, the spatial

locality of the objects is the dominating property for both static and moving objects in

a mobile environment. Location queries typically attempt to retrieve objects of interest

within a particular spatial region in the vicinity of the focal object. Thus static objects

or moving objects within certain spatial vicinity are typically accessed together. Access

of static objects is often separated from the access of moving objects due to the fact that

location queries are typically targeted at either static objects or moving objects, but rarely

targeted at both types. Thus mixing static and moving objects in one index is not an optimal

solution for processing location queries. Last but not the least, object-based indexing and

storage of static objects fail to capture the spatial locality-based access patterns for both

disk access and processing of queries over static objects. Thus, object indexing and object-

based disk management will lead to inefficient retrieval of large number of irrelevant object

tuples in order to find the target objects relevant to a location query.

In order to benefit from the properties associated with static objects, we develop a

location indexing framework that cleanly separates staticobjects from moving objects. The

basic principles for making such a clean separation include(1) creating and maintaining

separate indexing structure for static objects and moving objects; (2) developing location

index to speed up the retrieval of static objects where location is used as theprimary key

instead of objects for both index search and disk access; and(3) developing a dedicated

object indexing structure for managing moving objects.

Our location indexing framework offers several advantages. First, it offers significant

performance gains by separating operations over moving objects from the retrieval of static

objects. Second, the location indexing framework encourages higher level of parallel pro-

cessing since queries over static objects can be processed independently from queries over

moving objects, leading to another level of performance andthroughput enhancement. Fig-

ure 2 displays our approach for location-centric modeling of static objects. Our approach

first divides the entire universe of discourse intospatial regionsbased on factors such as
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Figure 2: Location-centric Modeling

spatial locality, object density and page size. The examplein Figure 2 displays a simple

grid-based division of the region. The static object data isorganized in a location-centric

manner with spatial locality of objects being mapped to locality of the data on the disk. By

enabling the use of spatial locality to access static objectdata on disk, we improve query

processing by making more efficient use of disk bandwidth. For example, as shown in

Figure 2, the data for the five objects relevant to queryq1 can now be retrieved in a single

page fetch. Armed with these insights for location-dependent data, we next describe our

framework for modeling and indexing static data. But first, wedescribe the basic concepts

associated with our location-centric framework.

2.3 Basic Concepts

The basic elements of our system model are a set of moving or stationary objects and a

set of moving or static (range) queries. Fast evaluation is critical for processing location

queries, as it not only improves the freshness of the query results by enabling more frequent

reevaluation, but also increases the scalability of the system by enabling timely evaluation

of a large number of queries over a large number of objects.
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We denote the set of moving or stationary objects asO, whereO = Om ∪ Os and

Om ∩ Os = ∅, Om denotes the set of moving objects andOs denotes the set of stationary

objects. We denote the set of moving or static queries asQ, whereQ = Qm ∪ Qs and

Qm ∩Qs = ∅,Qm denotes the set of moving location range queries andQs denotes the set

of static location range queries. Some essential concepts associated with our location-based

framework are defined below.

Universe of Discourse (UoD):We refer to the geographical area of interest as the uni-

verse of discourse (or map), which is defined byU = Rect(x, y, w, h), wherex is the

x-coordinate andy is the y-coordinate of the lower left corner of a rectangularregion,w

is the width andh is the height of the universe of discourse. Basically, we consider maps

which are rectangular in shape. In case our Universe of Discourse is extremely large, it

is possible to divide the entire Universe of Discourse(UoD)into smaller maps (or UoDs).

Each UoD can be handled by a location-based system exclusively setup for managing this

particular Universe of Discourse.

Static Objects: Any static objectos ∈ Os is represented by a tuple:〈io, ~p, attp〉 in the

object tableO. Here,io is the unique object identifier,~p = (px, py) identifies position of

the static object in the UoD wherepx is its position in thex-dimension andpy is its position

in they-dimension, andattp denotes a set of attributes related to the object. The position~p

of the object may also be represented by asemantic locationsuch as a postal address rather

than as two-dimensional coordinates in the UoD. The set of propertiesattp may represent

multiple attributes like associated businesses (e.g. restaurant, hardware store, gas station

etc.).

Locations: We introduce the concept of location tuples where any location can be repre-

sented by〈il, ~p, ~oid, ~attp〉 in the location tableL. Here,il is the unique location identifier

assigned to this location tuple,~p = (px, py) identifiesposition of the locationin the UoD

wherepx is the x-coordinate of the location andpy is the y-coordinate for the location,~oid
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is a vector (of object identifiers) denoting the set of staticobjects associated with this loca-

tion and ~attp is a vector of attributes denoting a set of properties about the corresponding

objects. As in the case of static objects, the position~p describing the location may also be

represented by asemantic locationsuch as a postal address rather than as two-dimensional

coordinates in the UoD. Locations at the user interface level can besemantic locationsor

geometric locationsbut at the conceptual level they are generalized to the geo-spatial model

for processing by the system. The vector associated with theset of properties~attp may rep-

resent multiple attributes like associated businesses (e.g. restaurant, shopping complex, gas

station etc.).

Moving Objects: We describe a moving objectom ∈ Om using a tuple:〈io, ~p,~v, attp〉

in the object tableO. Here,io is the unique object identifier,~p = (px, py) is the current

position of the moving object wherepx is its position in thex-dimension andpy is its

position in they-dimension,~v = (vx, vy) is the current velocity vector of the object, and

attp is a set of properties about the object.

Static Queries: We describe a static queryqs ∈ Qs using a tuple:〈iq, region, f〉. Here,iq

is the unique query identifier,region is the rectangular or circular region defining the shape

and extent of the spatial query region, andf is a predicate, calledfilter, defined over the

properties (attp) of the target objects of the query. Further, the query specifies whether it

is searching for static objects or moving objects which can also be easily determined from

the filter for the query. For example, a query related to restaurants is obviously looking for

static objects and similarly a query related to cabs is looking for moving objects. In real

life scenarios, it is difficult to find queries which search for both static and moving objects;

most queries are directed either over static objects or overmoving objects. This further

validates our decision to separate processing of queries over static and moving objects.

Moving Queries: We describe a moving queryqm ∈ Qm by a quadruple:〈iq, io, r, f〉.

Here,iq is the unique query identifier,io is the object identifier of the focal object of the

query,r defines the shape of the spatial query region bound to the focal object of the query,
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andf is a predicate, calledfilter, defined over the properties (attp) of the target objects of

the query. Note that,r can be described by a closed shape description such as a rectangle

or a circle. This closed shape description also specifies a binding point, through which it is

bound to the focal object of the query. In the rest of the chapter we assume that a moving

location query specifies a circle as its range with its centerserving as the binding point and

we user to denote the radius of the circle. Similar to the case of static queries, any moving

queryqm is defined either over the set of static objectsOs or over the set of moving objects

Om.

We further define a grid-based framework on top of the existing universe of discourse

to handle position updates for moving objects. Some relevant concepts related to this grid

based framework are defined below.

Grid and Grid cells: In our framework, we map the universe of discourseU = Rect(x, y, w, h)

onto a gridG of cells. Each grid cell is anα × α square area, whereα is a system param-

eter that defines the cell size of the gridG. Formally, a grid corresponding to the uni-

verse of discourseU can be defined asG(U, α) = {Ai,j : 1 ≤ i ≤ M, 1 ≤ j ≤ N ,

Ai,j = Rect(x+i∗α, y+j∗α, α, α),M = dw/αe, N = dh/αe}. Ai,j is anα × α square

area representing the grid cell that is located on theith column andjth row of the gridG.

Position to Grid Cell Mapping: Let ~p = (px, py) be the position of a moving object in

the universe of discourseU = Rect(x, y, w, h). LetAi,j denote a cell in the gridG(U, α).

Pmap(~p) is a position to grid cell mapping, defined asPmap(~p) = A
d px−x

α
e,d

py−y

α
e
.

Current Grid Cell of a Moving Object: Current grid cell of a moving object is the grid

cell which contains the current position of the moving object. If om ∈ Om is an object

whose current position, denoted as~p, is in the Universe of DiscourseU , then the current

grid cell of the object is formally defined bycurr cell(om) = Pmap(~p).
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2.4 Location-Centric Framework

In this section we describe our approach towards modeling and indexing location-dependent

data in terms of location tuples rather than object tuples. Our approach modifies the object-

based modeling and indexing approach to emphasize on modeling static objects with their

location as the primary key instead of object identifiers. Asa result, each relevant location

in our model has one or more static objects associated with it. A location-centric model for

static objects requires: (1) modeling object tuples as location tuples and, (2) constructing a

location index to efficiently answer queries associated with static objects.

2.4.1 Location Centric Data Modeling

In the location-centric framework, the first step for indexing static objects is to model them

differently with location as theprimary keyinstead of objects. This remodeling involves

grouping location data in a manner which allows spatial locality of data to be mapped to

locality of data on disk.

Our location-centric framework stores and retrieves static objects in terms of their spa-

tial locations. In order to uniquely identify the static objects using their spatial locations,

we build a grid-based overlay on top of the geographical areaof interest, namely the Uni-

verse of Discourse, and use this grid-based layout to determine the static objects that can

be stored and retrieved together.

The task of creating a location table consists of the following steps.

Step 1 - Determining grid partition parameters: The first step in building a location

table is to determine the grid partition parameterβ, which determines the size of each cell

depending on the maximum number of locations permitted in a single cell. In general,

the grid may consist of cells of different sizes dependent upon the distribution of locations

of interest in the Universe of Discourse. Areas in the Universe of Discourse, which have

higher density of relevant locations, will need to be divided into smaller cells to ensure

that the number of locations in each cell does not exceed the system-defined maximum
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limit. The decision on the cell size is based on a number of factors, including the density

distribution of the static objects, the page size of the diskaccess, the size of a location tuple,

to name a few. The goal is to accommodate the data related to all location points within

one cell in a single disk page.

Step 2 - Obtaining relevant locations: Location can refer to a position or a spatial re-

gion. In our framework, each location entry in the location table refers to a spatial region

represented in terms of grid cell. Each entry in the locationtable is uniquely identified by

its location ID and may refer to multiple static objects. We scan the static object table and

obtain relevant locations in terms of the grid cell in which they reside. Alternatively, we

may have a set of relevant locations available elsewhere, which we want to insert into the

location table. For example, we may want to insert relevant locations from a yellow book

or as identified by some other location service.

Step 3 - Generating location identifiers:In the next step, we map each location entry to

a single cell on the grid and assign alocation identifier (lid)to uniquely identify the list

of locations within each cell. Each location in a single cellis assigned a uniquelid, with

all locations belonging to a particular cell being assignedlocation identifiers in sequential

order. The order of the location identifiers will also determine the order in which the tuples

are arranged on disk. Not that ordering of the tuples is important for efficient retrieval of

static object data as discussed in section 2.2.

Step 4 - Associating objects with each location:In the final step, all static objects asso-

ciated with a location entry in the location table are assigned to the location. We store the

object identifieroid and associated values for other attributes of the static objects as vectors

related to this particular location tuple.

In case of skewed distributions, we can construct a quadtree-based structure instead

of grid structure. Also, if a particular location tuple has alarge number of associated

objects leading to an overflow, we can create an overflow tableand provide a pointer to this

overflow table which will store the list of objects associated with this location.
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2.4.2 Location Index

In this section we give a detailed description of the variousaspects of the location index.

A formal analysis of the IO costs associated with the location index is provided in the next

section.

The design of our location indexing scheme follows a number of basic principles. First,

we model spatial locations in terms of two dimensional geographical coordinates and ex-

tend the R-tree data structure [55] to model locations as firstclass citizens. For example,

leaf nodes in our R-tree based location index refer to a set of locations instead of a set of

objects. Second, we build the R-tree based location index bottom up through sorting rectan-

gles and merging nearby rectangles to form a hierarchical indexing tree structure. There are

several ways to sort the MBR rectangles, such as tree-based variations [55, 96, 31, 32, 95]

and methods that use space filling curves [63, 59]. Accordingto [63], two dimensional

Hilbert curve through centers only (2D-c Hilbert) achievesthe best clustering among all

space filling curve algorithms. In this algorithm, each datarectangle is represented by its

center only. The Hilbert value of the center is the Hilbert value of the rectangle. The third

design principle for building a high performance location index is to balance the access

latency to all locations. We build a location index in three steps. Figure 3 illustrates the

building of a location index by example.

Step 1 - Determining MBRs associated with each location:The first step in building

a location index for fast retrieval of static objects is to determine the MBR associated

with each location identifier. Figure 3 displays a set of locations (L1, L2,..., L9), where

each location is represented by its MBR. A location can be a region of any shape and be

approximated by itsMBR.

Step 2 - Constructing R-tree:By sorting theMBRsfor locations, an R-tree is constructed

bottom up for indexing the unique locations. The leaf nodes in the R-tree structure contain

entries of the form〈ptr,MBR〉, whereptr is a pointer referring to a particular location

entry andMBR is the minimum bounding rectangle enclosing this location.Intermediate
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Figure 3: Location Index− An Example

level nodes contain entries of the form〈childptr,MBR〉, wherechildptr is a pointer to a

lower level node in the R-tree andMBR is a region enclosing the MBRs for all entries in

the child node.

Step 3 - Adjusting leaf node pointers:Some leaf nodes may have locations associated

with a large number of static objects (hundreds or thousandsof offices, stores, restaurants,

for example). One way to handle this situation is to create a secondary index over some

other attribute associated with the static objects at this location, speeding up the access to

these objects. The attribute that is frequently used in the filter conditions of location queries

is a natural candidate to build such a secondary index. For example, in Figure 3 locationL7

has a large number of buildings associated with it. In this step, a second level B-tree index

is constructed over the attributeAssociated Businessfor the static objects associated to the

L7 location, allowing us to access these objects in alphabetical order of theirAssociated

Business. The pointers for leaf nodes referring to such locations aredirected at the root

node of the secondary B-tree index over the static objects. For other locations in the leaf

nodes likeL1 or L2, which have only a few objects associated with each location, the leaf

node points to the location tuple that contains these objects. In general secondary B-tree
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indices are maintained for locations with large number of static objects. The decision is

primarily based on the trade-offs involved in maintaining B-tree indices and the advantage

gained in query performance. Our current simulator constructs B-tree indices for those

locations that are associated with more than a specified number of objects.

An update on the location index requires a search on the R-treeindex to first locate the

relevant location which needs to be updated. The list of objects or the B-tree index on the

objects is then appropriately updated. Note that the R-tree index is fixed andideally no

locations are added to or removed from the index.

2.4.3 Analytical Model for IO Cost Estimation

To better understand the performance gain of location indexover object index, we provide

an analytical model for estimating the performance difference between the location index

and a corresponding object index. This analytical estimateis based on well studied R-tree

access cost models [105] and our observation of the difference between the location-centric

data model and object-centric data model for both storage and retrieval. Our comparison of

location index and object index concentrates on the performance differences between these

indices from three different perspectives: (1) the number of data rectangles indexed which

determines the index size, (2) the number of node accesses required which determines the

index search time, and (3) the disk access costs for accessing relevant relational data tuples

for each index.

Table 1 provides a list of symbols which we use throughout therest of this section.

Note that we are considering the top-level R-tree structure for the location index here.

We consider a two-dimensional unit workspaceWS = [0, 1)2 which hasNL data rect-

angles stored in the corresponding location indexL. A selection query seeks all regions

which intersect the queryq = (q1, q2) whereq1 andq2 denote the width and height of the

query window.

The densityD of a set ofN rectangles signifies the average number of rectangles that
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Table 1: List of Symbols
Symbol Definition
h height of R-tree structure of location indexL
f node fan-out for top-level R-tree structure ofL
NL number of data rectangles indexed inL
DL density of data rectangles indexed inL
N l

L number of nodes ofL at levell
Dl

L density of node rectangles ofL at levell
Nstatic average number of static objects per location in the dataset
foc average fraction of data rectangles in a leaf node of an object index

which satisfy spatial constraints for a queryq

contain a given point in the two-dimensional space. For the unit workspaceWS, where

each rectangle has an average extent ofs = (s1, s2), this density is defined as,D(N, s) =

∑

N s1s2 = N · (s1 · s2) [105].

We consider a location indexL of heighth where the root is at levelh and leaf nodes

are assumed to be at level 1. The number of nodes at levell are denoted byN l
L with average

sizesl
L. In this case, the expected number of node accesses in order to answer a selection

query using the queryq with window (q1, q2) is given by

λtotal(L, q) =
h−1
∑

l=1

intx(N l
L, s

l
L, q) (1)

where intx(N l
L, s

l
L, q) returns the number of nodes at levell intersected by query

window of q. The expected number of node accesses is equal to the expected number

of intersected nodes at each level. This does not consider any access to the root node

for the R-tree structure of the location index as the root nodeis expected to be stored

in main memory. Now, given a set ofN rectanglesr1, r2, ..., rN with average extents

and a rectangler with extentq, the average number of rectanglesri intersected byr is,

intx(N, s, q) = N · (s1 + q1) · (s2 + q2), which is equal to the number of a second set

of N rectangles with average extents′ = (s1 + q1, s2 + q2) that contain a point in the

workspace. This, by definition, equals the density of the second set of rectangles. Hence,

intx(N, s, q) = intx(N, s′, 0) = D(N, s′) = N · (s′1 · s′2), wheres′1 = s1 + q1 and
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s′2 = s2 + q2. Thus, we have

λtotal(L, q) =
h−1
∑

l=1

N l
L · (sl

L,1 + q1) · (sl
L,2 + q2). (2)

To express (2) as a function of number of rectanglesNL and densityDL of the rect-

angles, instead of location index properties, further refinement is required. The heighth

of the top-level R-tree structure for location indexL with average fan-outf that stores

NL rectangles is given byh = 1 + dlogf
NL

f
e [43]. Since a node containsf rectangles on

average, the average number of leaf nodes can be approximated asN1
L = NL/f and the

average number of nodes at levell isN l
L = NL/f

l. Using thesquaredness assumptionfor

the R-tree structure of location indexL [105], we have,

sl
L,k = (Dl

L ·
f l

NL

)
1

2 , (3)

∀ k. For the two-dimensional case we havek ∈ 1, 2. Further, the densityDl+1
L of node

rectangles at levell + 1 is a function of densityDl
L of node rectangles at levell [105]:

Dl+1
L = (1 +

Dl
L

1

2 − 1

f
1

2

)
1

2 . (4)

This enables us to calculate the density of rectangles at level l in terms of the density of

data rectanglesDL. By combining these equations the expected number of node accesses

for a selection query can be calculated in terms of data set propertiesNL andDL, fan-out

f of the R-tree structure of location indexL and the query windowq as,

λtotal(L, q) =
h−1
∑

l=1

(Dl
L +

q1 · q2 ·NL

f l
+ (q1 + q2) · (Dl

L ·
NL

f l
)

1

2 )

Let Nstatic denote the average number of static objects per location in the data set. This

implies that if a dataset hasNL data rectangles to index in the location index, the corre-

sponding object index would need to indexNO = NL ·Nstatic rectangles as the number of

objects to be indexed isNstatic times the number of locations to be indexed by the location
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index. The density of data rectangles at levell for the object index would also be approx-

imatelyNstatic times the density of data rectangles for a corresponding location index at

level l which is denoted byDl
L = Dl. Let λLI denote node accesses for the location index

andλOI denote the number of node accesses for a corresponding object index. Then we

get,

λLI =
h−1
∑

l=1

(Dl +
q1 · q2 ·NL

f l
+ (q1 + q2) · (Dl ·

NL

f l
)

1

2 ),

λOI =
h−1
∑

l=1

(Dl ·Nstatic +
q1 · q2 ·NL ·Nstatic

f l

+(q1 + q2) · (Dl ·Nstatic ·
NL ·Nstatic

f l
)

1

2 ).

Calculating the ratio for node accesses,

λLI

λOI

=
1

Nstatic

. (5)

The above estimation assumes uniform distribution of data.We can also determine

the number of tuples accessed for result retrieval for a location index and a corresponding

object index. The number of leaf nodes accessed by the R-tree structure of location index

L can be derived usingl = 1 in the equation forλtotal(L, q) as,

λleaf = (D1
L +

q1 · q2 ·NL

f
+ (q1 + q2) · (D1

L ·
NL

f
)

1

2 ).

Due to the mapping of spatial locality of data to locality of data on disk in the location-

centric model, we assume that all tuples corresponding to data rectangles on a single leaf

node can be accessed using a single disk access by the location index. This forms a lower

bound on the number of disk accesses required by the location-centric model to fetch rel-

evant tuples from disk. Also assume that each tuple corresponding to a rectangle in the

object-based model requires a single disk access. Number oftuples to be fetched by the

object-based model isf.foc times the number of node accesses at the leaf level as each leaf
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node containsf data rectangles on average, wheref is the fan-out for the object index.foc

is the fraction of data rectangles at leaf level that overlapthe query windowq; the tuples

corresponding to these data rectangles satisfy the spatialconstraints for the query and need

to be fetched from disk for checking against other query constraints. This forms an upper

bound on the number of disk accesses required here as buffering will lead to retrieval of

some relevant tuples with a single disk access. LetψLI be number of disk accesses required

by location index to retrieve relevant tuples from disk andψOI be number of disk accesses

required by object index to retrieve relevant tuples from disk. Using the above assumptions

we get

ψLI ≥ (D1 +
q1q2NL

f
+ (q1 + q2)(D1

NL

f
)

1

2 ),

ψOI ≤ ffoc(D1Nstatic +
q1q2NLNstatic

f
+ (q1 + q2)(D1Nstatic

NLNstatic

f
)

1

2 )

The ratio of disk accesses for a location indexψLI compared to the disk accesses for its

corresponding object indexψOI is,

ψLI

ψOI

≥ 1

f · foc ·Nstatic

,

wherefoc is the fraction of data rectangles at leaf level that overlapthe query windowq;

the tuples corresponding to these data rectangles satisfy the spatial constraints for the query

and need to be fetched from disk for checking against other query constraints.

In conclusion, our analytical estimates suggest that the location index clearly per-

forms much better than a corresponding object index. Our experimental evaluation in

Section 2.6.2 corroborates the analysis provided here.

The size of location index will be significantly less than thesize of a corresponding

object index where static and moving objects are indexed together, since the location index

needs to index fewer data rectangles. The node accesses for searching data in the index

and for performing disk accesses to retrieve tuples from disk are also lower for the location

index compared to an object index.
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Figure 4: World Wide Location Index

2.4.4 Engineering a World Wide Location Index

The location indexing approach proposed above can be used toindex all relevant locations

of interest in the entire world. This requires engineering modifications to enable the system

to handle queries efficiently. It is impossible to handle alllocations of interest in a single

LI; multiple LIs are required to handle the vast magnitude oflocation-dependent data that

is generated. In order to answer queries efficiently, it is important to split a World Wide

Location Index (WWLI) into smaller LIs. This is handled by engineering the WWLI as a

hierarchical structure where we index locations with increasing resolution in a hierarchical

manner.

The root node of the WWLI represents all relevant locations of interest in the entire

world. The next level in this hierarchical structure represents the different continents which

are further divided according to the geographical extent ofcountries. Some countries may

be small enough to enable us to index all locations of relevant interest in a single LI. In

the example displayed in Figure 4,Vatican Citywill be such a location. Larger countries

will be divided according to natural geographical boundaries; for example, USA can be

further represented by the states at the next level of the WWLI.The geographical division

can be further performed by splitting states into counties,cities and so on till we are able to

identify a region with has a reasonable number of locations of interest which can be inserted
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in a single LI. In order to direct queries to the appropriate LI, we maintain a hashmap which

stores a hash of the path to the LI beginning at the root node ofthe hierarchical structure

(theWorld node). Each hash key for a particular path is mapped to the root node of the LI

for the end point of the path. For example, the pathWorld → Europe → V aticanCity

is hashed and stored as a key in our hashmap. The value for thiskey points to the database

server which stores the LI for the regionVatican City. This mapping enables us to direct

all queries to the appropriate LI based on theregion of interestfor the query.

2.5 Location Query Evaluation

In this section, we describe our approach for evaluating different types of location queries,

simultaneously discussing the concepts associated with each situation. We provide evalua-

tion techniques for two representative types of location queries:Moving Location Queries

over Static ObjectsandMoving Location Queries over Moving Objects. In order to han-

dle moving queries, updating positions of mobile objects isessential for the precision and

freshness of query results. However, frequent updates to the database server are expensive

in terms of both communication costs and CPU and Disk IO costs for update processing

and index maintenance at the database server. A number of techniques have been proposed

to handle the location update of mobile objects, which attempt to balance the contrasting

requirements of precision of query results and limited bandwidth usage.

A näıve approach for updating positions of mobile objects is theperiodical updateof

object positions in which each moving object reports its current position after an interval

of time. However, this approach suffers from low precision.Moreover, the approach also

leads to a heavy load on the database server as motion updatesto the server may need to

be synchronized in order to compute query results consistently. Modeling motions of the

moving objects for predicting their positions is another commonly used method in moving

object indexing [68]. Motion modeling uses approximation for predicting the position of

a moving object based on its available motion parameters using techniques such asdead
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reckoning. The disadvantage with dead reckoning arises from the fact that the method is

based on estimation, each object needs to sample its motion parameters at regular intervals

and may not necessarily report all updates as soon as they occur. Another problem with

these methods is that they might exclude some relevant results.

2.5.1 Moving Object Indexing

Updating positions of mobile objects is essential for the precision and freshness of query

results in a mobile environment. This requires that each mobile object communicate its po-

sition and other aspects related to its motion modeling (like velocity, direction etc.) to the

database server as frequently as possible for query resultsto be computed accurately. How-

ever, frequent updates to the database server are expensiveas it involves communication

from the mobile object to the database server. Secondly, thedatabase server is required to

update the entry corresponding to this mobile object in the object table and corresponding

index. A large number of techniques have been proposed to handle the update of mobile

objects which attempt to balance the contrasting requirements of precision of query results

and limiting the usage of bandwidth.

A simple approach which can be adopted to update positions ofmobile objects is a

periodical updateof the position parameters of the object where each object reports its

current position after an interval of timetu. The disadvantage associated with this approach

is that query results may not necessarily be precise. The system has the position parameters

for the moving object at a particular time and any change in the position of the object from

the last update may invalidate the results for any queries involving these objects. This

approach also leads to a heavy load on the database server as motion updates to the server

need to be synchronized so that fresh query results can be computed after each update

period.
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Figure 5: Dead reckoning

Modeling motions of the moving objects for predicting theirpositions is another com-

monly used method in moving object indexing [109, 68]. Motion modeling uses approx-

imation for predicting the position of a moving object basedon its available motion pa-

rameters. Instead of reporting their position updates eachtime they move, moving objects

report their velocity vector and position updates only whentheir velocity vectors change

significantly. This technique is known asdead reckoning[47].

At each time step a moving object samples its current position and calculates the dif-

ference between its current position and the position predicted by the dead reckoning al-

gorithm based on the last motion update it reported to the server. In case this difference is

larger than a specified threshold, say∆D, the new motion function parameters are relayed

to the server. Figure 5 provides an illustration.

The disadvantage with dead reckoning arises from the fact that the method is based on

estimation, each object needs to sample its motion parameters at regular intervals and may

not necessarily be able to report the updates as soon as they occur. The bigger problem

with these methods is that they might exclude some relevant results. We want to ensure

that all relevant results are returned when evaluating location queries; a larger result set

having some irrelevant results may be acceptable as long as all relevant results are present

in the result set.

We now discuss agrid-based approachfor updating the positions of moving objects
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which attempts to deal with the above shortcomings while still providing only periodic

position updates to the server. The grid-based framework proposes a simple approach for

handling position updates of moving objects. Under this approach, the Universe of Dis-

course is split into a number of cells of sideα, with each moving object mapping its current

position to a particular grid cell. Each moving object is responsible for initiating a position

update when it moves from oneα-cell to another. The database server is only aware of

the current grid cell for each moving object and computes query results involving moving

objects using the currentα-cell as the position for each moving object. Figure 6 illustrates

the grid-based approach for modeling motion parameters of moving objects. The possible

areas the spatial region of a query may move into as the focal point of a moving query

moves in its current grid cell is displayed in the figure.

As can be seen from the figure, the query bounding box calculated by thisα-cell model

will be larger than the bounding box for the query obtained using the actual position of

the moving object. For queries over static objects, the query result will consist of allstatic

objects associated with locations lying inside the bounding box; whereas for queries over

moving objects the monitoring region consists of allα-cells that intersect with the bounding

box for the query. This approach will provide a larger set of objects than the result set
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obtained using the actual position of the object, but it guarantees that all relevant results

will be present in this larger set of objects.

The parameterα determines the bounding box for a moving query and the monitoring

region for queries over moving objects. Large values ofαwill lead to larger bounding boxes

and consequently larger number of objects being included inthe query results. Smaller

values forα will lead to smallerα-cells and more frequent updates to object positions as

objects will be changing cells more often. Hence, it is important to use a suitable value for

α taking both the above factors into account.

The advantages associated with the grid-based approach are: (1) It does not make any

assumptions regarding the motion parameters of moving objects. (2) The approach is guar-

anteed to return at least all relevant results for a locationquery and updates the results as

motion updates are received. (3) Motion updates are asynchronous, that is, each object

triggers updates when it moves from one cell to another and asthe updates do not occur

at the same time the load on the database server is distributed. Due to these associated

advantages, we use this grid-based framework to model positions of moving objects.

2.5.2 Query Evaluation Procedure

We now briefly describe the evaluation procedure for different types of location queries.

Moving Query over Static Objects: The procedure for evaluation of moving queries over

static objects is illustrated by an example displayed in Figure 7(a). A location queryq1 is

associated with a focal object; the position of this focal object is denoted using the current

α-cell in which it is located. Thisα-cell is displayed using a dark grey cell in the figure.

As the actual position of the object may lie anywhere inside thisα-cell the bounding box

for the query comprises of the MBR for circles with radiusr (radius of query) drawn at the

four corners of theα-cell. The light grey area in the figure displays the boundingbox for

the queryq1. Any static objects associated with locations lying insidethis bounded region

will form the answer for the query. As long as the focal objectof the query remains inside
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Figure 7: Location Query Evaluation

its α-cell, the query result will remain unchanged. When the focalobject moves to another

cell, the query results need to be revised as the bounding boxfor queryq1 will change.

Note that the bounding box and MBR for the query are the same in this case.

Static Query over Moving Objects: Figure 7(b) displays the procedure for evaluating

static queries over moving objects. The bounding box for thestatic queryq2 is a rectangular

region as shown in the figure. As the query is static the bounding box for the query remains

the same. The monitoring region of the query consists of allα-cells that intersect the

bounding box of queryq2 as shown by the shaded area in the figure. Any moving objects

lying within theseα-cells are potential candidates for answering the query andmay be

returned as the results for the queryq2. Eachα-cell is associated with a set of queries;

this set comprises of all queries that have monitoring regions intersecting with thisα-cell.

When an object moves from oneα-cell to another the query results for queries associated

with both theα-cells are updated. Note that as the query is static, the set of static queries

associated with anyα-cell remains the same and does not change over time; only theset of

query results need incremental reevaluation as the objectsmove in or out of the associated

α-cells.

Moving Query over Moving Objects: The procedure for evaluating moving queries over

moving objects is illustrated by example in Figure 7(c). TheMBR for location queryq3 in
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Figure 7(c) is defined in a similar manner as the MBR for location queryq1 in Figure 7(a).

The bounding boxBB(q3) is the set ofα-cells intersecting the MBR of the query. Any

moving objects lying within the bounding box are potential candidates for answering the

query and may be returned as the results for the queryq3. Eachα-cell is associated with

a set of queries that have their bounding box intersecting with thisα-cell. When an object

moves from oneα-cell to another the set of queries associated with bothα-cells may need

to be updated. For each moving query over moving objects, theset of moving objects

residing in its bounding box constitute the result of the query.

2.6 Experimental Evaluation

This section describes three sets of experiments for evaluating the performance and effec-

tiveness of our location index framework. We first describe the experimental setup adopted

by us to evaluate the performance of location-centric modeling and indexing. The first set

of experiments analyzes the behavior of the location index.The second set of experiments

exhibits the advantages of location indexing over object indexing for evaluating queries

over static objects. The third set of experiments considersa realistic environment compris-

ing of static and moving queries over a set of static and moving objects. The performance of

our location-centric framework against traditional indexing schemes is evaluated through a

comprehensive study of the performance of the different approaches.

2.6.1 System Parameters and Setup

For all our experiments, we consider the Universe of Discourse to be a rectangular region

expanding around 500,000 sq. miles. Moving or static queries over moving or static objects

are considered in each scenario. Moving queries are assigned range values from the list{1,

2, 3, 4, 5} miles using a Zipf distribution with parameter 0.6. Similarly, static queries are

assigned side range values from the list{2, 3, 4, 6, 8} miles using a Zipf distribution with

parameter 0.6. The above mentioned parameters and default object densities closely follow

previous work in the area; objects and queries are randomly distributed over the Universe of
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Figure 8: Comparison of Location Index and Object Index Performance

Discourse. Moving objects follow random paths, each motionupdate will lead to a random

direction and random speed being chosen for the object, withobject speeds categorized

into different values. We consider different classes of moving objects like pedestrians (0-5

miles/hour), slow moving vehicles (30-60 miles/hour) and fast moving vehicles (70-100

miles/hour). As each object is responsible for initiating an update when it moves from one

α-cell to another, no information regarding the motion of theobject is required for query

evaluation. Both the location index and object index are R-tree based indices, with a 100

pageLRU buffer, each page 4 KBytes in size. Internal tree nodes have a branching factor

of 100 with a fill factor of 0.7 in order to optimize performance [55].

2.6.2 Location Index vs. Object Index

In this set of experiments we study the advantages of location indexing (LI) over traditional

object indexing (OI), as predicted by our analytical estimates in Section 2.4.3. Figure 8(a)

plots the size of an OI and the size of the corresponding LI. The simulation setup involves

a universe of discourse (UoD) containing 100K static objects. The distribution of static ob-

jects in the UoD is varied so that the average number of staticobjects per location (Nstatic)

increases from one to ten. As can be seen in Figure 8(a) increasingNstatic does not af-

fect the size of OI as it still needs to index 100K data rectangles. On the other hand, the

size of LI decreases with increasingNstatic; the number of rectangles to be indexed by LI

decreases, as LI only needs to index (100K/Nstatic) rectangles. Figure 8(b) plots the total
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IO operations required by both indices as we vary the averagenumber of static objects per

location. We also vary the number of queries (5K-10K) over the static objects. As can be

observed from the figure LI, performs better than a corresponding OI over the static objects.

Even with a single object per location, the location-centric approach performs better than

object-based approach as retrieval of tuples from the relational table is optimized for the

location-centric approach. This is due to the spatial locality of data being mapped to local-

ity of data on disk. ForNstatic = 1, better organization of data on disk is solely responsible

for superior performance of LI. AsNstatic increases, the advantage associated with the LI

further increases as search operations are carried out overa smaller index in case of LI. In

fact, with ten objects per location on an average, LI requires only around 6% of the number

of IO operations required by OI. As the number of objects remains the same throughout the

experiment, the performance of OI almost remains the same aswe varyNstatic. Our simula-

tor can provide approximations for disk IOs for relational data access which is included in

the number of IOs. Further experiments evaluate the performance of LI against OI without

considering relational data access. The evaluation times for the same scenario, as shown in

Figure 8(c), show that evaluation over LI is much faster thanevaluation over OI for static

objects (except forNstatic = 1). Again the query evaluation times for the OI remain almost

constant as we varyNstatic. Note that these plots are generated after averaging the results

over a number of runs. Some oscillations in the results (for OI) are to be expected as our

simulator simulates a different set of queries each time a UoD is generated.

2.6.3 Location Index Performance

Figure 9 plots the query evaluation times for a set of queriesover the location index as the

size of the index increases. The size of the location index isdetermined by the number of

rectangles indexed which depends on the number of relevant locations in theUoD. As for

any index structure, the query evaluation performance for the location index declines as the

size of the index increases (Figure 9).
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The horizontal lines att = 30 sec. andt = 60 sec. help us benchmark the index per-

formance. Depending on the average number of expected queries the service provider may

guarantee a certainQuality of Service(QoS), measured in terms of minimum query evalu-

ation intervals at which user queries can be answered. For example, as can be seen from

the figure, for aQoSguarantee ofts = 30 sec., if the service is expected to handle 2.5K

queries on average, then this location index can index around 115K locations. However, if

the service is expected to handle 5K queries, the maximum number of locations that can be

indexed falls to around 50K.

2.6.4 Location Query Performance Evaluation

Now we consider a scenario involving static and moving objects and display that the

location-centric framework outperforms object-based modeling and indexing for a mixed

workload comprising of moving and static queries. We compare the performance of three

different approaches in this experiment. The first approachis the traditional object index-

ing approach, which requires all static and moving objects to be indexed as an object index.

The second approach indexes locations of all static objectsusing the LI that we have de-

veloped; moving objects are still indexed using a traditional OI. We refer to this approach

43



2 3 4 5 6 7
0

1

2

3

4

5x 10
5

Alpha

N
um

be
r 

of
 IO

 O
pe

ra
tio

ns Update IO
Search IO
Total IO

Figure 10: IO Costs with Varyingα

as theLOI approach. Our third approach indexes locations for all static objects as a LI

and maintains an OI over positions of moving objects using the grid-based framework de-

scribed in section 2.5. We call this approach theLGI approach. For this set of experiments,

we perform query evaluation for a set of 20K queries over a UoDhaving 100K (50% static

and 50% moving) objects.

2.6.4.1 Determiningα

The parameterα determines the size of the grid cell for approximating positions of moving

objects. It is important to determine the optimal value ofα for efficient system perfor-

mance. Figure 10 displays the update, search and total IO costs for different values of

α.

For this experiment half of the queries are over moving objects and the other half over

static objects. The following conclusions can be reached from Figure 10. Asα increases

the update IO cost for the system decreases; larger values ofα imply objects will have to

travel greater distances to shiftα-cells. For largerα values, fewer objects are expected to

shift α-cells for any time interval, thus leading to fewer updates.Similarly, the search IO
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Figure 11: Query Evaluation Performance

costs rise with increasingα values due to larger bounding boxes as explained earlier.α is

set to the value which balances the update IO and search IO costs thus providing lowest

total IO costs. For the current set of experiments, we can observe thatα = 4 is the ideal

value.

2.6.4.2 Performance Evaluation

Figure 11(a) plots the number of IO operations required for query evaluation, as we vary

the fraction of queries over moving objects and explore the performance of the three in-

dexing approaches as discussed above. The corresponding query evaluation times for all

approaches are shown in Figure 11(b). Among queries over moving objects, half of the

queries are static queries over moving objects and the otherhalf are moving queries over

moving objects. The IO operations consist of three different components: (a) object index

update IO for moving objects, (b) object index search IO and (c) location index search IO.

TheOI approach has just the first two components as it does not support a location index.

As can be observed from the figureLOI approach works much better than theOI ap-

proach and theLGI approach outperforms both theOI andLOI approaches. Even when

all queries are over moving objects,LOI approach works better as the object index for

moving objects in theLOI approach is smaller than the object index of theOI approach.
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This is because the object index of theOI approach indexes static as well as moving ob-

jects whereas the object index in theLOI approach indexes only the moving objects. As

only half the objects are moving objects, this index is roughly half the size of the index of

theOI approach. The search component of the IO for theLOI approach is much lower

than the search IO required by theOI approach. Further, as the percentage of queries over

moving objects decreases, the difference in search IOs required byLOI approach and the

OI approach increases. As all queries over static objects are directed to the location index,

the search performance of theLOI approach compared to theOI approach improves as

more queries are directed to the location index.LOI approach has lower update costs too

as updates are required over a smaller index compared to theOI approach. TheLGI ap-

proach, further improves the associated update costs by adopting a grid-based framework

for handling moving objects. The search costs for theLGI approach are a little higher than

those for theLOI approach. This is simply due to the fact that the bounding boxes for

the queries and MBRs for moving objects using the grid-based framework are larger than

the corresponding query bounding boxes and MBRs based on exactpositions of moving

objects. Hence, depending on the value ofα, the result sets in theLGI approach are a little

larger than the result sets in theLOI approach.

2.7 Related Work

In this section we discuss previous work related to indexingand querying in a dynamic

mobile environment relevant to our work. Location queries are tools for monitoring dy-

namically changing information whether it be content on theinternet [77] or even stream-

ing data [23]. Location queries over spatio-temporal data pose different challenges due to

the multi-dimensional nature of the data involved as indices need to be built over multi-

dimensional object data, where objects may be static or moving.

Research on object indexing in a mobile environment has been focused either on in-

dexing current positions of moving objects [57, 94, 68, 50] or indexing the trajectories of
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moving objects [92, 89, 71]. R-tree and its variants are the most commonly used indexing

structures for spatio-temporal indexing of mobile objects. Indexing moving object posi-

tions poses problems due to frequent updates to the object positions. To deal with this

problem [93] proposes indexing queries instead of objects for evaluating static location

queries over moving objects. Others have adopted this framework for moving queries too

and observed its benefits while evaluating few queries over alarge number of mobile ob-

jects. Some work attempts to leverage the advantages associated with object indexing and

query indexing by using both types of indexing to perform query evaluation [50]. The cost

of maintaining two indices is justified by gains achieved in query evaluation.

Work has also been done to introduce new indexing structureslike the TPR-tree [94],

B+-tree based indexing [60], trajectory-based indexing [89], and to make the R-tree more

update efficient [72]. However, all research exclusively focuses on update and indexing for

mobile objects. Static objects are simply considered to be aspecial case of moving objects

where its velocity is zero, and thus are treated in a similar manner as moving objects in

most of the literatures to date. Our location index and location-centric framework exploits

the performance benefits of separating static objects from moving objects and exhibits sig-

nificant performance gains over conventional object-centric approaches.

We focus on a realistic environment comprising of static andmobile objects and adopt

a divide and conquer approach to separate the modeling and indexing procedure for static

and mobile objects. Most of the work on location queries overspatio-temporal data deals

with either static location queries over moving object positions [93, 62, 68, 35, 98, 110] or

moving location queries over static object positions [102,98]. Some work deals with the

issues involved in processing moving location queries overmoving object positions [83,

50]. Work dealing with moving queries and moving objects assumes a similar platform

can efficiently handle static queries and static objects. Weconsider all possible kinds of

location queries and develop a location-centric frameworkfor efficiently answering the

different types of location queries.
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Recent work concentrates on incremental evaluation of queryresults; SINA [83] and

SEA-KNN [113] employ hashing based indexing techniques forboth objects and queries

and generate updates to previously evaluated results through a sequence of processes which

involves hashing, invalidation of existing results and joining to produce new updates to

existing query results.

Our incremental reevaluation is based on staticα-cells, with moving objects initiat-

ing position updates as they move acrossα-cells, thus forcing reevaluation or incremental

evaluation of associated queries. Most existing work concentrates on either range queries

or kNN queries. [57] proposes a common framework to handle different types of spatial

queries by developing location update strategies to suit the queries being monitored.
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CHAPTER III

SCALABLE PROCESSING OF SPATIAL ALARMS USING SAFE

PERIOD OPTIMIZATIONS

3.1 Introduction

In today’s fast-paced world, users need all available aid from existing technologies to make

their busy lives simpler and organized in order to improve their efficiency. With the advent

of mobile communication technology and continued price reduction of location tracking

devices, location-based services(LBSs) are widely recognized as an important feature of the

future computing environment [38]. In this work, we describe the spatial alarm application

for LBSs and develop a scalable, efficient framework for handling the same.

Most people use time-based alarms in their daily lives in order to wake up in the morn-

ing or to remind them of important time-based events. Time based alarms are effective

reminders of future events that have a definite time of occurrence associated with them.

Spatial alarms extend the idea of time-based alarms to future events that do not have a

definite time of occurrence but are known to be sensitive to spatial locations which mobile

users may travel to in the near future. Just as time-based alarms are set to remind us of the

arrival of afuture reference time point, spatial alarms are set to remind us of the arrival of

a spatial location of interest. Thus, spatial alarms can be modeled as location-based trig-

gers which are fired whenever a mobile user enters the spatialregion of the alarms. Spatial

alarms provide critical capabilities for many mobile location-based applications ranging

from real time personal assistants, inventory tracking, toindustrial safety warning systems.

Figure 12(a) shows three spatial alarms installed on the region around the grocery store

at the corner of Clairmont and Braircliff in Atlanta, the dry cleaning store near the house of

the mobile user, and the sport shoe stores selling Geox shoesnearby or in Lennox Square.
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Figure 12: Spatial Alarms

Assume that these alarms were installed at time instancet0. Given user positions at future

time pointst1 to t8, as shown in the figure, the spatial alarms should be triggered at future

time instantst3, t5 andt8, informing the mobile user that she is entering the spatial alarm

region of her specified location of interest.

Processing of spatial alarms requires meeting two demanding objectives: high accuracy,

which ensures no alarms are missed, and high scalability, which guarantees that the alarm

processing is highly efficient and scales to large number of spatial alarms and growing
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base of mobile users. The conventional approach to spatial alarms involves periodic alarm

evaluations at a high frequency. Each spatial alarm evaluation is conducted by testing

whether the user is entering the spatial region of the alarm.High frequency is essential to

ensure that none of the alarms are missed. Though periodic evaluation is simple, it can be

extremely inefficient due to frequent evaluations of alarmsand the high rate of irrelevant

evaluations. This is especially true when the mobile user istraveling in a location that is

distant from the spatial areas of all her location triggers,or when all her spatial alarms are

set on spatial regions that are far apart from one another.

In addition, spatial alarms can be processed using server-based infrastructure or client-

based architecture. Although the client component of the server-based approach to spatial

alarm processing shares several capabilities with a clientbased approach, such as the map

and text based installation of spatial alarms and notification of the triggered alarms, there

are some key differences in terms of processing capabilities and optimization objectives

between these two alternative architectures. A server-based approach must allow optimiza-

tions for processing spatial alarms installed by multiple mobile clients, whereas a client-

based approach focuses more on energy-efficient solutions for evaluating a set of spatial

alarms installed on a single client.

In this chapter, we describe a server-based approach to scalable processing of spatial

alarms, aiming at optimizing the conventional approach of periodic alarm processing by

advocating a motion-aware safe period-based alarm evaluation framework. Concretely, we

formalize the concept of spatial alarms and the problem of spatial alarm processing. We

introduce the concept ofsafe periodto minimize the number of unnecessary spatial alarm

evaluations, increasing the throughput and scalability ofthe system. We show that our

safe period-based alarm evaluation techniques can significantly reduce the server load for

spatial alarm processing compared to the periodic evaluation approach, while preserving

the accuracy and timeliness of spatial alarms. Furthermore, we develop a suite of spatial

alarm grouping techniques based on spatial locality of the alarms and motion behavior of
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the mobile users, aiming at optimizing safe period computation at the server. We evaluate

the scalability and accuracy of our approach using a road network simulator and show

that our proposed framework for spatial alarm processing offers significant performance

enhancements for the alarm processing server while maintaining high accuracy of spatial

alarms, especially compared to the conventional periodic alarm evaluation approach.

Our centralized framework for spatial alarm processing is aimed at providing a scal-

able system with the ability to handle a large number of clients with large number of in-

stalled alarms. The strict QoS requirements of the system demand that no spatial alarms

are missed. The hundred percent success rate requirement isessential as spatial alarms

may come to the aid of the user in life threatening situations, for example, an alarm in-

stalled on a hazardous area by a traffic monitoring system maywarn users of dangerous

road situations. Such alarms fall under thepublic alarms categorization and are different

from theprivatealarms as described in the above example scenario. We make three unique

contributions in this work. Firstly, we develop a formal definition for the spatial alarm

processing problem and describe a scalable, centralized architecture for handling the same.

Secondly, we identify problems associated with spatial alarm evaluation using existing spa-

tial querying frameworks. More concretely, we highlight the problems associated with a

periodic, continuous evaluation of spatial alarms and provide asafe period optimization

technique to handle the same. Our safe period optimization reduces the alarm processing

time considerably; however, this approach presents another scalability problem associated

with large safe period computation time. Thirdly, we suggest attribute-based alarm group-

ing techniques based on spatial locality of alarms, subscriber-specificity of alarms and near-

est alarms-based grouping methods to rapidly reduce the safe period computation time. We

also introduce subscriber mobility-based optimizations,which effectively combine with

our alarm grouping techniques, to further lower safe periodcomputation time. Extensive

experimental evaluation is performed to justify the development of this framework and the

various safe period optimization techniques.
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The rest of the chapter is outlined as follows. Section 3.2 provides a formal description

of the spatial alarm problem and describes the concepts associated with the same. Our

alarm-centricspatial alarm processor architecture is also introduced here. After consid-

ering the various options for spatial alarm processing and their weaknesses, we describe

the safe period computation technique in Section 3.3. Next we introduce various alarm

grouping-based optimization techniques in Section 3.4 followed by a description of our

subscriber mobility-based optimizations in Section 3.5. Our experimental evaluation results

are detailed in Section 3.6 followed by a brief description of related work in Section 3.7.

3.2 System Overview

In this section, we first define the concept of spatial alarms and formalize the problem

of spatial alarm processing. Then we provide a discussion ondifferent types of spatial

alarms and give a brief overview of our server-based system architecture. In addition, we

describe two alternative ways of processing spatial alarmsdiscussing pros and cons of each,

introduce the concept of safe period and discuss its benefitsfor alarm evaluation.

3.2.1 Spatial Alarms

A mobile user can define and install many spatial alarms. A spatial alarm is typically

defined and installed by a mobile user and shared by many otherusers. We refer to the

mobile users who define and install the spatial alarms as the publishers or owners of the

alarms. The owner of an alarm may specify a list of potential mobile users with whom the

alarm may be shared. The system will verify the interest of listed mobile users authorized

to access the alarm and only those users who respond positively are subscribed to the alarm.

A spatial alarm is a location trigger with the following six basic components:Land-

mark, Alarm Target, Alarm Region, Alarm Triggering Condition, Alarm Notificationand

Alarm Stop Condition.

Landmark (L) : A landmark refers to a particular location reference whichcan be either a

popular point of interest, such as the Eiffel Tower in Paris,or an area of interest such as a
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university campus. The concept of a landmark is central to the definition of a spatial alarm

as the alarm target objects, defined below, are in the vicinity of a landmark.

Alarm Target (T): Alarm targets are objects of interest which the subscribersof the alarm

will travel to at a future time point. Typically, alarm target objects may be associated with

some filters specifying the matching conditions on the alarmtargets. A spatial alarm may

have a single target object or multiple target objects.

Alarm Region (R): Alarm region is defined as the area around the alarm targetsT upon

entering which the user requires the associated spatial alarm to be triggered. The spatial

alarm region may be specified by an area of radiusr aroundT or any other spatial region of

regular or irregular shape. Theminimum bounding rectangle Ris used to approximate all

alarm regions for processing convenience;R is denoted using the bottom-left and top-right

corner points:(xbl, ybl) and(xtr, ytr) respectively.

Consider the third spatial alarm example in Figure 12(a). Lennox Square is the land-

mark of the alarm, the sport shoe stores that sell Geox shoes are the alarm targets, and area

within a five mile radius to each shoe store of interest near Lennox Square is the alarm

region. Figures 12(c) illustrates this example scenario, in whichr1 is used to measure the

concept of nearby Lennox Square andr2= 5 miles, the distance to the shoe stores. Some

alarms may have a single target object which may be the same asthe landmark for this

alarm; the first alarm on grocery store in Figure 12(b) is an example of such an alarm.

Location Trigger : Each alarm has an associated location trigger, which defines the spatial

condition to be monitored to determine if and when an alarm should be triggered. Location

triggers can be implicit in the spatial alarm specification or be specified explicitly by the

user.

For example, all three example alarms in Figure 12(a) have implicit location triggers

set on the encounter point where the mobile user enters the alarm monitoring region. The

system will set a default Euclidean distance condition between the mobile subscriber of an

alarm and the alarm region, namelydistance(Si, R) = 0, for location trigger of alarm.
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Alarm Stop Condition : Alarm stop condition can be specified by a future time point or

a future time interval. We use the alarm stop condition to define the time interval during

which the alarm is alive, denoted as[ts, te], wherets is the starting point of the alarm

andte is the termination point of the alarm. Each spatial alarm needs to define an alarm

termination condition to allow the system to correctly remove the alarms.

Alarm Notification : Spatial alarms are not relevant to all moving objects (or users) in

the system. Any alarm will have an associated owner and one ormore potentially inter-

ested subscribers. In general, the alarm owner (installer of the alarm) may identify a list

of potential subscribers who may be permitted by the system to use the alarm. The system

determines the list of active subscribers for an alarm by seeking acknowledgements from

these potential subscribers who may accept or reject the alarm. Alarm notification mes-

sages are sent to subscribers of the alarm upon alarm activation. Each notification consists

of notification recipients, notification actions and notification methods. Notification actions

may be simple, such as displaying the notification message onuser device, or more com-

plex, such as opening a grocery shopping list on the user device along with the notification.

Notification methods can be real-time and interactive when the mobile client is active, or

deferred when the mobile client is in sleep mode.

Based on these concepts we formally define the spatial alarm evaluation problem below.

Formal Problem Definition: For any spatial alarmA, given alandmark Lat location

(xl, yl), alarm targets Taround L,alarm region Rcovering an area of radiusr around the

locations ofT and a set of interestedsubscribersS = {S1, S2, ..., Sn}, each spatial alarm

evaluation determines the subset of subscribers:{Si1 , Si2 , . . . , Sik} ε S, which enter the

alarm regionR at any instant of timet ε [ts, te], where[ts, te] indicates the duration of time

for which the spatial alarmA is active.
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3.2.2 Spatial Alarm Categorization

We categorize spatial alarms based on two criteria: publish-subscribe scope of the alarms

and motion characteristics of alarm targets and alarm subscribers.

Categorization by Publish-Subscribe Scope:We classify spatial alarms into three cat-

egories -private, sharedandpublic alarms - based on the publish-subscribe scope of the

alarms. Private alarms are installed and subscribed to exclusively by the alarm owner.

Sharedalarms are installed by the alarm owner with a list ofk (k > 1) authorized sub-

scribers and the alarm owner is typically one of the subscribers. In contrast with the privacy

desired by the owner of a private alarm, the owner of asharedalarm wishes to share the

alarm with a specified list of system users. Alarm sharing maytypically be limited to a few

system subscribers. For example, the user in example 1 may decide to share her alarm with

her entire household. The service provider disseminates the alarm information to all users

listed by the owner. It is up to the users to accept or reject the alarm; the system determines

the subscriber list based on user response.Public alarms are usually installed with the

purpose of sharing them with all mobile users who are entering the spatial regions of the

alarms and are subscribers of the alarms. Mobile users may subscribe topublic alarms by

topic categories or keywords, such as“traffic information on highway 85North”, “Zagat

survey top ranked local restaurants”, to name a few. Without loss of generality, rest of

the chapter assumes that public alarms are subscribed to by all users. Alarms indicating

hazardous road situations or heavy road congestion are examples of alarms that fall under

this category.

Categorization by Motion Characteristics: Spatial alarms may also be categorized based

on the motion characteristics of alarm targets and alarm subscribers. We illustrate our

system design in terms of three classes of spatial alarms by motion characterization. The

first class is theMobile Subscribers Static Targets(MSST) alarms, where alarm targets are

typically set on still objects such as restaurants, hospitals, churches, office buildings, and

so forth. The second class is referred to as theStatic Subscribers Mobile Targets(SSMT)
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Figure 13: Spatial Alarm Processor Architecture

alarms, where alarm targets are moving but the position of mobile subscribers remains

unchanged during the alarm validity period. A typical example of such alarms is“tell me

when the bus is within 2 miles of the bus stop near my office”. The third class, where both

alarm subscribers and alarm targets are moving, is called the Mobile Subscribers Mobile

Targets(MSMT) alarms. A typical example of such alarms is“inform me when my jogging

buddies Amy and Josh are within a mile of my current location”.

3.2.3 System Architecture

We assume that mobile users update their positions continually through either periodic lo-

cation updates or dead reckoning or other location estimation techniques based upon known

speed, elapsed time and course of movement. The proposed spatial alarm processing sys-

tem architecture is shown in Figure 13, and it consists of three main components:alarm

installation or removal, alarm evaluation and optimizationandalarm notification and de-

livery.

The alarm installation or removal component accomplishes three main tasks: the

installation of a spatial alarm from an authorized user, thespecification of publish-subscribe
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scope of the alarm, such as the authorized subscriber list, and the authorized removal of

existing alarms. Only the alarm owner is authorized to delete the active alarms she has

installed.

Upon the firing of a spatial alarm, thealarm notification and delivery component

performs two major tasks. First, it informs the subscriber(s) who trigger(s) the alarm about

the activated alarm by performing the set of actions associated with the alarm. Second,

it checks if the alarm is one-time alarm or a continuous alarmwith a specified duration.

It removes the alarm from the active alarm queue if it is a one-time alarm. Otherwise, it

triggers the alarm evaluation component to determine the alarm check period for periodic

approach or to compute the safe period for our approach. Alarm notification methods may

vary with different types of mobile devices depending on thelatency constraint and the

available means of delivery (voice message, text message, etc.).

Thespatial alarm evaluationcomponent works in three phases. First, it accepts spatial

alarms as input and indexes them using the underlying spatial indexing structures during

the alarm preprocessing phase. Next, the optimization phase applies alarm optimization

techniques to produce a near-optimal alarm processing schedule. For example, safe pe-

riod computation and alarm grouping are performed in the optimization phase. In the third

phase, the actual alarm evaluation takes place. We call thisphase run-time alarm execu-

tion. In this chapter we focus on the design of optimization techniques for spatial alarm

evaluation.

3.2.4 Spatial Alarm Processing

We dedicate this section to discuss the weaknesses of existing spatial query processing

techniques when applied to spatial alarm processing. Then we describe the advantage of

our motion-aware safe period based alarm evaluation approach. We use a concrete example

to facilitate the discussions. Figure 14(a) displays the map for Chamblee region of Georgia

and an example alarm installed by a mobile user at time instant t0 with the alarm region of
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radiusr around the alarm target.

Figures 14(b) and 14(c) display the road network for the sameregion shown in Fig-

ure 14(a), extracted from the USGS [8] database, which we usefor experimental evalu-

ation. As shown in Figure 14(c), we consider a series of user positions collected from

t1 to t12, each time instant reflects the subscriber’s position at an interval of one minute.

We first discuss how to process the installed alarm using existing spatial continuous query

framework and show why spatial query processing techniquesare inefficient when directly

applied for processing spatial alarms.

Thespatial continuous query approachwould process the spatial alarm by transforming

the alarm into auser-centriccontinuous spatial query. Given the alarm region of radiusr

around the alarm target and the mobile user’s current location marked byt0, the transformed

spatial query is defined by the query ranger with the mobile alarm subscriber as the focal

object of the query. The evaluation of this spatial query proceeds at time instantt1 and

the query processor checks if the obtained query results contain the alarm target object.

This process repeats periodically at each of the marked timeinstants until the alarm target

is included in the query results at time instantt10 (query region marked by shaded area

in Figure 14(b)). The obvious drawback of this approach is the amount of unnecessary

processing performed in terms of both the number of evaluations and the irrelevant query

result computation at each evaluation. The farther away themobile user is from her spatial

alarms, larger the amount of unnecessary evaluations incurred using the spatial continuous

59



query approach.

A continuous query framework would require the service provider to periodically re-

trieve all static objects within a distancer (alarm range) from the user location and check

if the alarm target is included in the list of retrieved objects. The system treats the user

information need as a continuous moving query over static objects which needs to be peri-

odically evaluated as object position changes continuously from t1 till t10 when the alarm

is triggered. At each position the static objects within theregion of radiusr from the user

location are retrieved only for the system to discover that they are irrelevant to this specific

query. The alarm target is retrieved only at time instantt10.

Alternatively, we can use aperiodic alarm evaluationtechnique as shown in Fig-

ure 14(c). At each time instant fromt1 onwards, the system needs to determine if the

current object position lies within the MBR of the spatial alarm region. In case alarm eval-

uation is performed at an interval of one minute, periodic spatial alarm processing would

evaluate this condition periodically fromt1 to t9 and trigger the alarm att9 as the subscriber

reaches the spatial alarm boundary at this time instant. If the alarm evaluation period is

changed to two minutes, the alarm trigger will be fired att10 instead oft9. If the alarm

evaluation period is set for four minutes, this alarm will bemissed as the alarm evaluation

takes place only at time instantst4, t8 andt12 and at all evaluation times the subscriber is

outside the alarm region.

Although the periodic evaluation does not incur irrelevantquery result computation

while processing spatial alarms, it suffers from a number ofdrawbacks. First, alarm miss

rate is unpredictable as there is no appropriate technique for the system to determine the

ideal alarm evaluation period. In case of high alarm miss rate the system fails to meet

the high accuracy requirement of spatial alarm processing.Second, the periodic alarm

evaluation approach is expensive as it performs a large number of unnecessary evaluations;

hence, it is not scalable in the presence of a large number of alarms installed by a large

number of mobile users. The amount of unnecessary evaluations increase as the mobile
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users move farther away from their alarms.

Bearing in mind the problems inherent with the continuous spatial query evaluation

approach and drawbacks of the periodic alarm evaluation approach, we develop a motion-

aware safe period-based alarm evaluation approach. The goal of applying safe period opti-

mization is to minimize the amount of unnecessary alarm evaluations while ensuring zero

or very low alarm miss rate. The other technical challenge behind safe period optimization

is to minimize the amount of safe period computation, further improving system scalability

and achieving higher throughput. We describe our basic approach for safe period computa-

tion in the next section and address the challenge of minimizing the amount of safe period

computations in Sections 3.4 and 3.5.

3.3 Safe Period Computation

We outlined the problems associated with periodic alarm evaluation in the previous section.

In this section, we discuss the safe period approach for determining an optimal schedule

for alarm evaluation. Safe period computations help us meetthe twin tasks of minimizing

alarm evaluation load at the server as well as ensuring excellent Quality of Service (QoS)

for system users. QoS goals associated with spatial alarm processing require that all alarms

be successfully triggered for all alarm subscribers.

Safe periodis defined as the duration of time for which it is safe not to check a particular

alarm for a particular subscriber as the probability of thisalarm being triggered for the

subscriber is zero. Consider a subscriberSi and a spatial alarmAj (1 ≤ j ≤ M , 1 ≤

i ≤ N ), whereN is the total number of mobile users andM is the total number of alarms

installed in the system. The safe period of alarmAj with respect to subscriberSi, denoted

by sp(Si, Aj) can be computed based on the distance between the current position of Si

and the alarm regionRj, taking into account the motion characteristics ofSi andAj.

Concretely, for alarms of the class Mobile Subscribers Static Targets, the two factors

that influence the computation of safe periodsp(Si, Aj) are (i) the velocity-based motion

61



characteristic of the subscriberSi, and (ii) the distance from the current position of sub-

scriberSi to the spatial regionRj of alarmAj. Thus the safe periodsp(Si, Aj) can be

computed as follows:

sp(Si, Aj) =
d(Si, Rj)

f(VSi
)

(6)

Similarly, for Static Subscribers Mobile Targets alarm, the safe periodsp(Si, Aj) is

computed by taking into account (i) the distance from the current position of subscriberSi

to the spatial regionRj of alarmAj, and (ii) the velocity-based motion characteristic of the

mobile alarm target, using the following formula:

sp(Si, Aj) =
d(Si, Rj)

f(VT )
(7)

For spatial alarms of class Mobile Subscribers Mobile Targets, the motion character-

istics of both subscriber and alarm target need to be considered for the computation of

the safe periodsp(Si, Aj), in addition to the distance between the current location ofthe

mobile subscriber and the moving alarm region.

sp(Si, Aj) =
d(Si, Rj)

f(VSi
, VT )

(8)

Clearly, the distance measure between the current location of the mobile subscriber and

the moving alarm regionRj is the first important parameter for safe period computation.

The second important parameter is velocity measure of the mobile subscribers or the mobile

alarm targets.

3.3.1 Distance Measurements

We useEuclidean distanceapproach as the basic distance measure for safe period com-

putation. It measures the minimum distance from the currentposition of the mobile user,

denoted asPm = (xm, ym), to the spatial alarm regionR. Though the Euclidean distance

measurement is simple, it may at times underestimate the safe period for a given alarm-

subscriber pair.
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Figure 15: Basic Safe Period Computation

Consider a spatial alarm regionR covering the rectangular region represented by four

vertices of a rectangle:(P1, P2, P3, P4), as shown in Figure 15(a), whereP1 = (x1, y1),

P2 = (x1, y2), P3 = (x2, y2) andP4 = (x2, y1). The minimum Euclidean distance from

Pm to the spatial alarm regionR, denoted bydm,R, can be computed by considering the

following four scenarios:1© when the mobile subscriber lies inside the spatial alarm region

the distancedm,R is zero; 2© when the mobile subscriber is within they scope of the spatial

alarm region, the minimum euclidean distance is the distance from the mobile subscriber

to the nearer of the two spatial alarm edges parallel to the x-axis; 3© when the mobile

subscriber is within thex scope of the spatial alarm region, minimum euclidean distance is

the distance from the mobile subscriber to the nearer of the two spatial alarm edges parallel

to the y-axis; and4© when the mobile subscriber is outside both thex andy scope then

the distance is the minimum of the euclidean distance to the four vertexes. Formally,dm,R,

the minimum Euclidean distance from mobile positionPm to the spatial alarm regionR, is

computed using the following formula:

dm,R =



















































0, x1 ≤ xm ≤ x2

and y1 ≤ ym ≤ y2

min(|xm − x1|, |xm − x2|), y1 ≤ ym ≤ y2 only

min(|ym − y1|, |ym − y2|), x1 ≤ xm ≤ x2 only

min(dm,1, dm,2, dm,3, dm,4), otherwise

dm,1, dm,2, dm,3, dm,4 denote the Euclidean distance fromPm to the four rectangle vertexes
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P1, P2, P3, P4 respectively. The distance functiondi,j =
√

(xi − xj)2 + (yi − yj)2 is used

to compute the Euclidean distance between two pointsPi andPj.

The safe period formulae in equations 1, 2 and 3 assume that the subscriber heads

towards the alarm region in a straight line along the direction of the minimum Euclidean

distance, an assumption that is rarely true in real life. Oneway to relax this stringent

condition is to use thesteady motion assumption: If the subscriber is heading towards

the alarm regionR, then the deviation in his motion direction is not likely to be extreme.

Figure 15(b) shows a scenario where the bounded deviation insubscriber motion is taken

into account for calculating average safe period for subscriberS approaching alarm region

R. In order for the subscriberS to enter the alarm regionR at some future time instant,

the average angle of motion for the subscriberS over the safe period must lie between

−θL and+θR (as shown in the figure), which we refer to asalarm trigger angular range.

Assume that the mobile subscriber heads towards the alarm regionR in a direction at an

angleθ from the minimum Euclidean distance vector; we refer to the distance from the

subscriber position to the alarm region as the steady motiondistance, denoted assmdist(θ).

The steady motion-based safe period can be determined bysmdist(θ)/f(VS). Using the

average steady motion distance obtained by computingsmdist(θ) over allθ values ranging

from−θL to +θR, the steady motion-based safe period over the alarm triggerangular range

can be calculated as,

sp =

∫ +θR

−θL
smdist(θ)dθ

f(VS)
∫ +θR

−θL
dθ

=
l + h

f(VS)(θR + θL)
, (9)

wherel, h denote the length and height of the spatial alarm region. Thesteady motion

assumption provides a more realistic and optimistic measure for safe period computations

compared to the minimum Euclidean distance approach.

3.3.2 Velocity Measurements

Maximum Speed: The use of maximum travel speed of the mobile client for the velocity

function f(VS) carries both advantages and disadvantages. On one hand, the‘maximum
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travel speed’ can be set by pre-configuration based on a number of factors, such as the

nature of the mobile client (such as a car on the move or a pedestrian walking on the

street), or the types of roads used. On the other hand, the maximum speed-based velocity

estimation is often over pessimistic especially in the following two scenarios: (1) when the

mobile client stops for an extended period of time; or (2) when the mobile client suddenly

turns onto a road with very low speed limit.

Figure 15(a) shows the use of maximum speedsV2, V3 andV4 for subscribers outside the

alarm region to compute the safe period of the alarm. For dynamic alarms, a combination of

the maximum speed for the alarm regionVT , as determined by the maximum target speed,

and the maximum speed for the subscriberVS can be used to determinef(VS, VT ); one such

possible function isf(VS, VT ) = VS + VT . Note that this function is extremely pessimistic

in calculating optimal safe period values as it assumes thatthe target and subscriber are

directly heading towards each other in the direction associated with the minimum euclidean

distance between them. Assessing the subscriber and targetobject velocities along the

direction associated with the minimum euclidean distance would provide more optimistic

measures for safe period especially when the target and subscriber are moving in a similar

direction.

Another issue related to the use of maximum speed of a mobile client for the velocity

functionf(VS) is related to alarm misses. The maximum velocity based approach may fail

to trigger alarms in cases where the maximum speed for the mobile subscriber increases

suddenly. For example, a vehicle moving from a street onto a state highway would experi-

ence a sudden increase in its velocity, which may invalidatesafe period computations. One

way to address such sudden increase in velocity is to usedead reckoningtechniques which

require the mobile user to report to the server when her velocity increases over a certain

threshold, as shown in Figure 15(c). The use of dead reckoning or similar techniques will

allow the server to recompute the safe period for all alarms subscribed by this mobile client

upon any significant velocity change.

65



In Figure 15(c), the mobile client keeps track of its predicted positions based on its

maximum speed and its actual positions. As soon as the difference between the predicted

position and the actual position exceeds a given threshold value (sayδ), the client provides

its current speedV2 to the server. IfV2 > V1, whereV1 is the previously recorded maximum

speed, the spatial alarm server uses the current reported speedV2 to infer the type of road

on which the user is traveling and the maximum travel speed for the road.

Expected Speed:One way to address the pessimistic nature of the maximum speed-based

safe period computations is to use the expected speed for thevelocity function. The future

expected travel speed of a mobile client is computed as the sum of the current expected

speed weighted by a factorα and the maximum speed weighted by a factor(1−α). Lower

α values provide similar speed estimates as the maximum speedmeasure described earlier.

Expected speed calculations are based on anexponentially weighted averageover the cur-

rent and previous location of mobile client (weighted byβ) and previous expected speed

calculation (weighted by(1− β)).

V c
expected = β ∗ D(lc, lp)

(tc − tp)
+ (1− β) ∗ V p

expected (10)

Vexpected = α ∗ V c
expected + (1− α) ∗ VS (11)

whereV p
expected, V c

expected, Vexpected are the previous, current and future expected travel

speed of the subscriber,tc, tp represent current and previous time instance for expected

speed computation andlc, lp represent the subscriber position at these time instances re-

spectively.

3.3.3 Safe Period Based Alarm Evaluation

The safe period-based approach processes a spatial alarm inthree stages. First, upon the

installation of a spatial alarm, the safe period of the alarmwith respect to each authorized
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subscriber is calculated. Second, for each alarm-subscriber pair, alarm evaluation is trig-

gered upon the expiration of the associated safe period and anew safe period is computed.

In the third stage, a decision is made regarding whether the alarm should be fired or should

wait for the new safe period to expire. If the new safe period is larger than a system-

supplied thresholdtδ, it means that the mobile client is still some distance away from the

alarm region. However, if the new safe period is smaller thantδ, it means that the mobile

client is entering the alarm region and the alarm is triggered.

When compared to periodic alarm evaluation, the safe period approach for spatial alarm

processing reduces the amount of unnecessary alarm evaluation steps, especially when the

mobile subscriber is far away from all her alarms. On the other hand, the main cost of

the basic safe period approach described in this section is due to the excessive amount

of unnecessary safe period computations, as the basic safe period approach performs safe

period computation for each alarm-subscriber pair, regardless of the distance between the

current location of the subscriber and the alarm region. Given n users with an average

of m spatial alarms relevant to each user, the complexity of safeperiod computation is

O(n ·m). One obvious idea to reduce the amount of unnecessary safe period computations

is to group spatial alarms based on geographical proximity and calculate safe period for

each subscriber and alarm group pair instead of each alarm-subscriber pair.

3.4 Alarm Grouping Techniques

The basic premise behind alarm grouping is to reduce the number of safe period computa-

tions while ensuring no alarm misses. In this section we present three alternative grouping

techniques, each of which offers different degree of improvement for safe period com-

putations. First, we group all alarms based on their spatiallocality without considering

subscriber specificity of the alarms. Alternatively, we apply spatial locality based-grouping

to alarms of each individual subscriber. Both our analyticaland experimental study show

that this approach is more effective. The third locality-based alternative is to employ the
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Figure 16: Alarm Locality-based Grouping

nearest alarms-based grouping, which is effective but costly when there are frequent alarm

additions and removals.

In addition to spatial locality based grouping techniques,we also develop subscriber

mobility-based optimizations to further improve the scalability of alarm processing, which

will be discussed in Section 3.5.

3.4.1 Spatial Locality-based Grouping

Spatial locality-based grouping considers the set of alarms from all users and inserts the

nearby alarms into alarm groups. This approach outperformsbasic safe period alarm eval-

uation if each group has a large number of alarms belonging tothe same subscriber. Fig-

ure 16(a) displays the alarm regions for a set of installed alarms. The alarms for user 1 are

marked by shaded alarm regions. Basic safe period evaluationcomputes the safe period for

each of the six alarms{Ai | 1 ≤ i ≤ 6} subscribed by the mobile user 1. In comparison,

Figure 16(b) shows three groups derived from spatial locality-based grouping technique.

We use a simple R-tree implementation in order to group alarmsand identify theminimum

bounding rectangles (MBRs)for alarm groups which are also referred to asalarm mon-

itoring regions. Instead of computing safe period for each alarm-subscriber pair, spatial

locality-based grouping requires the system to calculate asafe period for each subscriber

and alarm group pair instead. However, on entering an alarm region the safe period to all

relevant alarms within the alarm group also needs to be computed.
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Despite this additional evaluation step, the number of safeperiod computations may be

considerably reduced by grouping alarms according to spatial locality. Instead of six safe

period computations required by the basic safe period technique, only three safe period

computations need to be performed as all three alarm groups,{AGi | 1 ≤ i ≤ 3}, contain

alarms relevant to user 1. Further safe period computationswill be performed depending

on the number of relevant alarms within the users’ current alarm monitoring region. Even

though this approach reduces the number of safe period computations it requires consider-

able additional processing to determine the set of relevantalarm groups for each subscriber

and the set of relevant alarms for each subscriber within an alarm group. The lack of

subscriber-specificity in the underlying data structure, R-Tree, leads to retrieval of large

number of unnecessary alarms. The main cost of this alarm grouping technique is due to

these unnecessary alarm checks. This technique proves to beefficient for large number

of public alarms as the effect of subscriber-specificity is reduced in the presence of large

number of public alarms.

3.4.2 Subscriber-Specific Spatial Locality-based Grouping

In contrast to spatial locality-based grouping, subscriber-specific spatial locality-based group-

ing performs a two level grouping: the first level grouping ison all subscribers and the

second level grouping is on spatial alarms relevant to each subscriber. We use a B-tree

based implementation to speed up search on subscribers and an R-Tree implementation to

capture spatial locality of alarms for each subscriber in order to speed up alarm search. The

underlying data structure is a hybrid structure which uses aB-tree for subscriber specific

search at the first level and an R-tree for subscriber specific spatial alarm search at the sec-

ond level. Figure 16(c) shows an example of this grouping. Alarms installed by user 1

are grouped together inAG1 andAG4 and may be fired only when the user is entering the

MBRs ofAG1 orAG4. Subscriber specific spatial locality-based grouping has two advan-

tages over the basic safe period alarm evaluation and spatial locality based alarm grouping.
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First, the number of safe period computations is significantly reduced. Second, each alarm

group contains alarms relevant to a single user, thus no irrelevant processing is performed.

Our experimental results show that this approach is efficient in the presence of large

number of subscribers and for large number of private and shared alarms. However, this

approach is less efficient in presence of large number of public alarms or large number of

subscribers with each subscriber subscribed to a very smallnumber of alarms.

3.4.3 Nearest Alarms-based Grouping

Nearest alarms-based grouping allows the system to performone or only a few alarm

checks dependent on the current subscriber position. The idea is to have each location

on the map associated with the nearest spatial alarm region(s). In order to perform nearest

alarms-based grouping we use an extension of the well known Voronoi diagram geometric

structure [21]. The Voronoi diagram for a given set of pointsP in d-dimensional space

Rd partitions the space into regions where each region includes all points with a common

closest pointε P. The common closest point is defined according to some distance metric

dist. TheVoronoi region VR(p)corresponding to any pointp ε P contains all pointspi ε Rd

such that,

∀p′εP, p′ 6= p, dist(pi, p) ≤ dist(pi, p
′) (12)

Figure 17(a) shows the Voronoi diagram for a set of points in two-dimensional spaceR2

with euclidean distance metric. The shaded area marks out the Voronoi region VR(p)for

the pointp, each pointε P is referred to as aVoronoi site. Each edge ofVR(p)is a segment

of the perpendicular bisector of the line segment connecting p to another point inP.

In order to create a Voronoi diagram for spatial alarms we first represent each spatial

alarm regionR by its center point(xcr, ycr) and l, h representing the length and height of

the alarm region. We consider the center point of each alarm region as a Voronoi site and

create the Voronoi diagram as shown in Figure 17(b). However, this Voronoi structure ex-

hibits two problems. Consider alarmA3 in Figure 17(b). The alarm region overlaps with
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two adjacent Voronoi regions. Second, consider the subscriberS in the figure residing in

the Voronoi region of alarmA1. S is at a minimum Euclidean distanced1 from the alarm

region ofA1 and at a minimum Euclidean distanced2 to the alarm region ofA2. Even

thoughd2 < d1, S may incorrectly identifyA1 as the nearest alarm on the basis of the

underlying Voronoi diagram. In order to rectify this problem, we introduce an extension

to the original Voronoi diagram by extending the boundary ofeach Voronoi region by the

extension radiusr associated with each pointp wherer =
√

( l
2
)2 + (h

2
)2. l, h denote the

length and height of the alarm region associated with centerpointp. The extended Voronoi

regions for alarmsA1, A2, A3 andA4 are shown in Figure 17(c). Extending the Voronoi

region boundaries leads to overlaps among neighboring Voronoi regions, subscribers inside

overlapping regions may have more than one possible nearestalarm whereas subscribers

inside non-overlapping regions can have only one nearest alarm. We refer to the over-

lapping regions asprobabilistic nearest alarm regionand the non-overlapping regions as

deterministic nearest alarm region.

Nearest alarm grouping is efficient for spatial alarm systems that have infrequent addi-

tion or removal of alarms and have no hotspots. However, it fails when there is a frequent

addition and removal of spatial alarms, since Voronoi diagrams need to be reconstructed

each time an alarm is added or removed. In addition, high density of alarms in some ar-

eas may also lead to large overlaps among Voronoi regions, reducing the efficiency of the

nearest alarm grouping technique.
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3.4.4 Analytical Model for Safe Period Computation

In this section, we provide an analytical model for estimating the safe period computation

cost for the basic safe period approach (BSP), spatial locality-based approach (SLSP) and

the subscriber-specific spatial locality-based (SSSL) approach. As mentioned previously,

SLSP approach uses an R-Tree structure to perform alarm grouping whereas the SSSL

approach uses a two level tree structure. The number of alarmregions allowed in a single

alarm group, which translates to thefan-outandfill factor of a leaf node of the R-Tree,

needs to be determined in order to minimize the number of safeperiod computations. We

develop a model which allows us to estimate the appropriate fan-out of a leaf node in

order to minimize the safe period computation cost. This result is used to compare the

performance of the grouping approaches with the BSP approach.

We consider a workspace withN spatial alarms installed in the system andn users each

having an average ofm relevant alarms. However, note thatN 6= mn as shared and public

alarms will be relevant to more than one user. We assume that fraction of private alarms is

p, fraction of shared alarms iss, with each shared alarm relevant tox users on an average,

and rest of the alarms are public alarms relevant to all users.

The BSP computation calculates the euclidean distance from the current user position

to each relevant alarm. We can use the assumptions stated above to estimate the average

number of safe period computationsNbsp performed at each evaluation step which is equal

to average number of alarms relevant to a single userNA as,

Nbsp = NA = N ·
{ p

m
+
s · x
m

+ (1− p− s)
}

(13)

SSSL approach distributes the alarms relevant to a single user into multiple groups, where

each group only contains alarms relevant to this user. This approach then estimates the

euclidean distance to each alarm group, followed by safe period computation for each alarm

within the nearest alarm group once the subscriber enters the MBR of the corresponding

leaf node. Letbbr andff denote the fan-out and fill factor for a leaf node of the lower level

72



R-Tree which implies each leaf node can containbbr · ff spatial alarm regions on average.

Hence we have
NA

bbr · ff
alarm groups with all alarms within each group relevant to a single

user. The number of safe period computations performed at each evaluation step using the

SSSL approach is estimated as,

Nsssl =
NA

bbr · ff
+ bbr · ff (14)

We assume that the fill factorff is set to a constant value which is around 0.7 for best per-

formance of the R-Tree structure [55]. In order to minimize the safe period computations,

we can determinebbr by setting the first order derivative ofNsssl to zero. Hence, we have

d (Nsssl)

dbbr
= − NA

b2br · ff
+ ·ff = 0, (15)

which impliesbbr =

√
NA

ff
. Using this value forbbr, we get,

Nsssl =
NA√
NA

ff
· ff

+

√
NA

ff
· ff = 2 ·

√

NA = 2 ·
√

Nbsp (16)

A similar analysis of the SLSP approach shows that,Nslsp ≥ 2 ·
√

Nbsp. However, as this

approach mixes alarms from different users in an alarm groupthe worst case number of

safe period computations can beNsslp = Nbsp + 1. This situation may arise when allNA

alarms relevant to a user are distributed acrossNA different groups which will requireNA

safe period computations for the alarm groups and a single safe period computation for the

relevant alarm within that group.

3.5 Subscriber Mobility-based Optimizations

In order to determine the minimum safe period for any subscriber it is essential to compute

the safe periods to all relevant alarms or alarm groups usingthe approaches described in

Section 3.4.1 and 3.4.2. We have discussed three different alarm grouping techniques,

which improve the basic safe period alarm evaluation by promoting two-phase safe period

computations: First, safe period computation is only performed for each subscriber and
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alarm group pair, and upon entering the alarm group monitoring region, we switch to the

safe period computation for each subscriber-alarm pair.

In this section, we introduce subscriber mobility-based optimizations, which further

reduce the amount of unnecessary safe period computations.The main idea behind the

subscriber mobility-based optimization is to avoid safe period computations for those spa-

tial alarms that are far away from the current location of themobile subscriber. We observe

that computing the safe periods for all spatial alarms regardless of how far away they are

from the current position of their subscribers can lead to wasteful computation, since for

each mobile subscriber, alarms at remote distances will never be fired before the expiration

of the safe periods of nearby alarms. Our experiments show thatsubscriber mobility-based

safe period optimizationis highly effective for improving performance and scalability of

spatial alarm processing systems.

One way to implement subscriber mobility-based optimization is to define a moving

spatial area around each mobile user which serves as thequarantine region. We use a

system-definedquarantine regionto set the alarm monitoring area for each mobile user

and allow different sizes of the quarantine region based on anumber of factors, such as

the velocity of the mobile subscriber, the alarm density near the mobile subscriber and the

number of alarms installed per subscriber. For each subscriber, at any given time instant

safe periods are computed only for relevant alarm groups (oralarms) whose alarm group

MBRs (or alarm regions) overlap with this moving quarantine region. Clearly by focusing

on computing safe periods and performing safe period alarm evaluation only for alarm

groups (or alarms) near each mobile subscriber, this optimization can effectively reduce

the complexity of safe period computations and enhance the system scalability.

We describe two different methods for determining the appropriate quarantine region

for each subscriber and discuss the pros and cons of each whenapplying mobility-based
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optimization to our alarm grouping mechanisms. The first method is therange-based sub-

scriber mobility optimization, which uses a system-supplied radiusγ to determine the quar-

antine region for each subscriber. The second method uses a pre-defined grid and defines

the grid cell in which the mobile subscriber currently resides as the quarantine region.

When the mobile user moves to a new grid cell, her quarantine region changes; thus the

set of alarms to be monitored changes. We call this methodgrid-based subscriber mobility

optimization. Figure 18 shows examples for these two methods.
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Figure 18: Subscriber Mobility-based Optimizations

For range-based mobility optimization, we currently use a system-suppliedγ as the de-

fault quarantine radius. Given a mobile subscriber, we firstneed to identify the set of alarms

subscribed by her and then determine which of her alarm groups are intersecting with the

quarantine region defined by the given quarantine radius. Wecompute the safe period only

for those alarm groups whose alarm monitoring regions overlap with the quarantine region

(see Figure 18(a)). The retrieval of relevant alarms whose alarm regions intersect with the

quarantine region can be done by using the existing R-tree index for spatial locality-based

grouping or the two level B-tree plus R-tree index for subscriber-specific spatial locality-

based grouping.

For grid-based mobility optimization, the same principlesare applied. The only dif-

ference lies in the mechanism used to determine the quarantine region. The grid-based

optimization is designed to incorporate subscriber mobility optimization with the nearest
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alarm grouping. Concretely, the quarantine region is definedusing a grid overlaid on top of

the Voronoi diagram discussed in Section 3.4.3. The size of the quarantine region depends

on the size of the grid cellα × β, which are system defined parameters. For all Voronoi

regions that overlap with the quarantine region of a mobile subscriber, the system retrieves

all nearest alarms for each Voronoi region and performs safeperiod computations for these

alarms. The set of relevant alarms and their safe periods need to be recomputed when the

subscriber moves out of the current cell and enters another cell. The grid overlay will also

help in mitigating the costs associated with storing and querying complex shaped Voronoi

regions.

3.6 Experimental Evaluation

In this section, we report our experimental evaluation results. We show that our safe period-

based framework and optimization techniques for spatial alarm processing are scalable and

effective while maintaining high accuracy.

3.6.1 Experimental Setup

Our simulator generates a trace of vehicles moving on a real-world road network us-

ing maps available from the National Mapping Division of theU.S. Geological Survey

(USGS [8]) in Spatial Data Transfer Format (SDTS [10]). A transport layer of 1:24K Digi-

tal Line Graphs (DLGs) is used to extract the road-based network and the data is converted

to the Scalable Vector Graphic (SVG [9]) format using the GlobalMapper tool [5]. The sim-

ulator extracts the road network information for three different road classes –expressway,

arterial andcollector roads. Traffic volume data from [53] is used to estimate the number

of vehicles for different road classes; vehicles are randomly placed on the road network

according to the traffic densities. The simulator simulatesthe motion of vehicles on roads

with appropriate velocity information based on road classes; at intersections, vehicles may

move in any direction with attached probability values. We use a map from Atlanta and

surrounding regions of Georgia, which covers an area largerthan 1000km2, to generate the
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Table 2: Motion Parameters
Road type (speeds) Expressway Arterial Collector
Mean (km/h) 90 60 50
Std. dev. (km/h) 20 15 10
Traffic data (cars/h) 2916.6 916.6 250

trace. Our experiments use traces generated by simulating vehicle movement for a period

of fifteen minutes, results are averaged over a number of suchtraces. Results for longer

time periods show similar patterns. Table 2 lists mean speeds, standard deviation and traf-

fic volume values for each road type. Default traffic volume values allow us to simulate

the movement of a set of 20,000 vehicles on the road network for the map. Each vehicle

generates a set of position parameters during the simulation which are evaluated against

the generated spatial alarm information. The default spatial alarm information consists of

a set of 10,000 spatial alarms installed uniformly over the entire map region; with default

settings, around 65% of the alarms are private, 33% shared and the rest are public alarms.

This simulator setup allows us to the test the robustness of our framework under realistic

mobility patterns.

3.6.2 Performance Metrics

We identify the following requirements for efficient server-centric processing of spatial

alarms based on which we identify the performance metrics for evaluating system perfor-

mance.

Success Rate:The success rate achieved by the spatial alarm service provider is the most

critical performance evaluation criterion. The servicemust notmiss any of the spatial

alarms as it is essential to deliver all alarms at the appropriate time in order to maintain the

Quality of Service (QoS) desired by the user. Note that successful alarm evaluation does

not necessarily translate to successful alarm delivery as alarm delivery may be affected

by other factors like intermittent connectivity. We consider success rate only for alarm

evaluation at the server side.
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Scalability: The system architecture should be able to support large number of clients with

large number of installed alarms while guaranteeing the QoSrequirements which are very

stringent in this scenario. Intelligent optimization techniques deployed at the server ease

the processing load which in turn aids the scalability of thesystem.

Based on the above mentioned requirements we identify the following performance

metrics for measuring the efficiency of our approach:

Number of alarm evaluation steps:Each alarm evaluation step involves evaluating current

user position information against relevant spatial alarms. Safe period optimizations aim

at reducing the number of evaluation steps by determining a safe period during which the

evaluation steps can be avoided.

Number of safe period computations:Safe period computation involves calculating the

minimum time period for a client before it needs to perform spatial alarm evaluation. This

metric allows us to measure the advantage gained by our grouping techniques compared to

basic safe period computations.

Success Rate:We must ensure that our optimizations do not affect the correct functioning

of the spatial alarm processor. Ideally, we want zero alarm misses for alarm processing by

the system.

Evaluation time:The evaluation time determines the ability of the system to handle the

processing load. It consists of two main components:alarm evaluation timeand safe

period computation time. Evaluation time is measure over the entire simulation period

averaged over a large number of runs.

3.6.3 Experimental Results

We evaluate the safe period-based approach to spatial alarmprocessing through four sets

of experiments.The first set of experiments measures the performance of periodic alarm

evaluation by varying the time period and measuring successrate and processing time. We

show that the periodic approach does not scale.The second set of experiments compares the
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Figure 19: Scalability with Varying Number of Users

basic safe period alarm evaluation against the periodic approach, and shows that the safe

period based alarm processing offers much higher success rate with lower alarm evaluation

time. The third set of experiments illustrates the effect ofvarying quarantine radiuson

the range-based subscriber-mobility optimization technique. The final set of experiments

compares the performance of the various grouping-based andmobility-based safe period

optimizations against the basic safe period approach exhibiting the scalability of our opti-

mizations. We show that the mobility-based optimizations outperform all other techniques

in terms of the number of safe period computations.

3.6.3.1 Scalability Problems of Periodic Alarm EvaluationTechnique

In this first set of experiments, we measure the scalability of the periodic alarm evaluation

technique with varying number of users and varying number ofalarms. Figure 19 displays

the results as we vary the number of users from 2K to 20K. The time periodtp for periodic

alarm evaluation is varied from 1 second to 50 seconds. As canbe seen from Figure 19(a),

the success rate for alarm evaluation is 100% only iftp= 1 second; for highertp success

rate starts falling, even withtp= 2 seconds the success rate does fall to 99.9% which may

not be acceptable from QoS viewpoint as this translates to a significant number of alarm

misses. The sequence of alarms to be triggered for 100% success rate are determined from
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a trace generated with extremely frequent location update information for each user in the

system. Fortp= 50 seconds the success rate falls to 81-82%. Similar drop insuccess rate

is experienced in all cases as we vary the number of users in the system from 2K to 20K.

The alarm processing time is plotted in Figure 19(b). Our traces are of fifteen minutes

duration; considering that the system may be able to spend around 80% of this time for

processing spatial alarms we set the maximum processing time available to the system at

t=12 minutes as indicated by the horizontal dotted line in Figure 19(b). As can be seen

from the figure, for 10K users the system is unable to process alarms attp=1 seconds, thus

failing to attain 100% success rate. For 20K users, this scalability problem becomes worse

and the system is able to evaluate alarms only attp=5 seconds. Figure 20 shows the results

for a set of 10K users as we vary the number of alarms from 10K to40K. The success

rate, as shown in Figure 20(a), again exhibits a similar dropon increasingtp. The alarm

processing time shown in Figure 20(b) displays the inability of the system to scale to large

number of alarms. From these results, we conclude that periodic evaluation technique is

unable to scale to a large number of users and large number of alarms.
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Figure 22: Basic Safe Period Optimization with Varying Number of Alarms

3.6.3.2 Performance Comparison with Basic Safe Period Approach

In this section, we compare the performance of basic safe period approach against the pe-

riodic evaluation technique to display that basic safe period optimizations reduce alarm

evaluation time considerably but excessive amount of safe period computations affect the

scalability of the system. We display the results for periodic approach withtp=2 second,tp=

5 seconds,tp=10 seconds and the basic safe period optimization as discussed in Section 3.3

(P2, P5, P10 and SP in Figures 21(b) and 22(b) respectively).Figure 21 displays the suc-

cess rate and processing time as we vary the number of users from 2K to 20K. Figure 21(a)
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displays that the success rate is 100% for basic safe period approach and all periodic ap-

proaches miss at least a few alarm triggers. Figure 21(b) displays the alarm processing time

for P2, P5, P10 and SP with varying number of users. The safe period approach has much

lower alarm evaluation time compared to periodic approaches and the figure displays that

it is almostscalable to 20K users with 100% success rate. Despite the lowalarm evalu-

ation time, the approach requires significant amount of safeperiod computations and has

high processing time as can be seen from the figure. Figure 22 displays the results for a

set of 10K users with varying number of alarms as we increase the number of alarms from

10K to 40K. The success rate, shown in Figure 22(a), again displays similar patterns as

with varying number of users. The alarm processing time, as shown in Figure 22(b), dis-

plays the inability of our basic safe period approach to scale to large number of alarms. In

presence of even 20K installed alarms, the approach has excessive safe period computation

time which pushes the overall processing time beyond the 12 minute limit determined ear-

lier. Our alarm grouping and subscriber mobility-based techniques provide optimizations

to overcome this problem as displayed by the experimental evaluation in Section 3.6.3.4.

3.6.3.3 Internal System Parameters

This set of experiments determines the appropriate parameters for the quarantine radiusγ

for range-based subscriber mobility optimization. Figure23 displays the results obtained

for the number of alarm evaluation steps, number of safe period computations and overall

processing time with varying values forγ. We vary the radius from 250m to 2000m and

observe the above parameters. The number of users is varied from 2K to 20K to observe

results across a wide range of number of users in the system. As can be seen from Fig-

ure 23(a) the number of alarm evaluation steps steadily decreases as we increaseγ. Smaller

γ values will calculate lower safe periods in absence of any alarms (or alarm groups) within

the quarantine region. Hence, for lower values ofγ the safe period computations are more

conservative. This trend is common as we vary the number of users from 2K to 20K. The
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Figure 23: Results with Varying Quarantine Radius Values

number of safe period computations steadily rises as we increaseγ (Figure 23(b)). This

trend is also as expected because largerγ implies more alarms (or alarm groups) will lie

within the quarantine region. A trade-off between these twofactors is required to deter-

mine the appropriate value forγ. Figure 23(c) displays the overall processing time for

differentγ values across varying number of users. The figure displays the alarm evaluation

time and safe period calculation time forγ ε {0.25km, 1km, 2km} for each set of users;

results for otherγ values are omitted from this graph to avoid clutter. As we vary the num-

ber of users, from 2K to 20K, we observe that for each set of users the overall processing

time is minimum forγ=1000m. We choose this as the appropriate value forγ for further

experimentation.

3.6.3.4 Scalability of Safe Period Evaluation Techniques

We now discuss the performance of the safe period optimization techniques to test the scal-

ability of our framework. Figure 24 shows the number of alarmevaluation steps, number

of safe period computations and the alarm processing time required by each approach-

Basic Safe Period Optimization (BS), Subscriber-Specific Spatial Locality (SS), Voronoi

Grid-Based (VG) and the Range-based Subscriber Mobility Optimization (RB). Results

for Spatial Locality-based grouping show expected trends but this approach has high over-

all processing time as the system needs to perform significant amount of computation to

determine relevance of alarms/alarm groups for each subscriber (see Section 3.4.1). Hence,
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Figure 24: Safe Period Optimizations with Varying Number of Users

we exclude this approach from the results below.

Figure 24(a) displays the number of alarm evaluation steps required by each approach.

Basic safe period measures the safe period to each relevant alarm and uses this safe period

to avoid further evaluations. As a result, this approach hasto perform a low number of

alarm evaluations but each evaluation step will involve a very large number of safe period

computations. Hence the number of safe period computationsfor this approach is ex-

tremely large (Figure 24(b)) which makes this approach overall computationally expensive

as can be seen from the total alarm processing times in Figure24(c). Subscriber-specific

spatial locality grouping incurs a large number of alarm evaluation steps as can be seen

from Figure 24(a). This approach first evaluates safe periodfor each alarm group; once the

user enters an alarm monitoring region another evaluation step is required to determine the

safe period to all alarms lying within the alarm monitoring region. Further, the algorithm

needs to keep a check on its position inside the alarm monitoring region and switch to per

alarm group-based safe period computations, once subscriber moves outside the current

alarm monitoring region. These additional evaluation steps imply that this approach will

incur a larger number of alarm evaluation steps with each evaluation step requiring a small

number of safe period computations: either for each alarm group or for all alarms lying

within the current alarm monitoring region. Thus the numberof safe period computations

required by this approach is much lower than the basic approach despite the larger number

of alarm evaluation steps. Consequently, the overall processing time for SS is lower than
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Figure 25: Safe Period Optimizations with Varying Number of Alarms

the BS approach as can be seen from Figure 24(c).

The VG and RB approaches lower the number of alarm evaluation steps by considering

only alarms or alarm groups within the quarantine region. Inthis set of experiments the

quarantine radiusγ for RB is set to 1000m as determined by the results in the previous

section. Similarly, VG grid cell size is set to 1000m× 1000m. The number of evaluation

steps for these approaches is still larger than the number ofevaluation steps used by the

basic approach as the safe periods computed by this approachmay be lower than the safe

period computed by the basic approach, in case no relevant alarms/alarm groups lie within

the quarantine radius range or the current grid cell of the subscriber. In absence of any

alarms/alarm groups within the quarantine region, the safeperiod for these approaches is

calculated as the time required by user to reach the edge of the quarantine region.

However, each alarm evaluation step involves a very small number of safe period calcu-

lations leading to an extremely small number of safe period computations (in Figure 24(b)

results for VG and RB are almost overlapping). Consequently, the overall processing times

for these two approaches are significantly lower than other approaches. Figure 25 displays

the results for a set of 10K users as we vary the number of alarms from 10K to 40K. These

results confirm that our mobility-based optimizations can scale to a large number of alarms.

As shown in Figure 25(c), even for 40K alarms VG and RB approaches have a processing

time lower than the 12 minute limit determined earlier. Fromthese results we can conclude

that our safe period optimizations significantly aid the scalability of the system.
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3.7 Related Work

An event-based location reminder system has been advocatedby many human computer

interaction projects [78, 97, 40, 80, 66]. Understandably,the primary focus of the work

is from the point of view of the usability of such systems. Some of the work provides

extensive user evaluation studies which establish the usefulness of location-based reminder

systems beyond doubt. However, none of these approaches deal with the system oriented

issues which need to be resolved to make such systems feasible.

In the realm of information monitoring, event-based systems have been developed to

deliver relevant information to users on demand. User-defined triggers can be initiated

when new relevant information which is of personal interestto the user is detected by the

system [76, 30]. In addition to monitoring continuously changing user information needs,

spatial alarm processing systems also need to deal with the complexity of monitoring user

location data in order to trigger relevant alerts in a non-intrusive manner.

Applications like Geominder [4] and Naggie [6] already exist which provide useful

location reminder services using cell tower ID and GPS technology, respectively. Client-

based solutions for spatial alarm processing should focus on efficiently evaluating spatial

alarms while preserving client energy. Our server-centricarchitecture makes it possible for

users to share alarms and make use of external location information monitoring services

which provide relevant location-based alerts. A server-centric approach is also essential

for extending the technology to clients using cheap location detection devices which may

not possess significant computational power. Even for clients with significant computing

resources, energy and bandwidth consumption remain major bottlenecks and numerous

works have dealt with the problem of energy conservation in mobile devices [44, 45, 86].

In this work, we propose a scalable and efficient centralizedarchitecture for processing

spatial alarms to resolve the above issues.
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CHAPTER IV

SAFE REGION TECHNIQUES FOR FAST SPATIAL ALARM

EVALUATION

4.1 Introduction

Location provides one of the most powerful tools for personalization of mobile services.

The ability of GPS assisted devices to provide accurate location information with a reason-

ably high degree of temporal precision makes it feasible to use a multitude of location-based

applications which constantly survey user surroundings todeliver useful location-based in-

formation on demand. Cheaper GPS devices integrated with mobile phones are further

pushing the demand for location-based services with development of mobile platforms like

Android [11] and iPhone SDK [12]. The market for GPS devices is growing at around

20% annually with 90% of the devices being portable navigation devices. By end of 2012,

mobile phones are expected to have around 78% of this market as GPS is incorporated into

them [15].

Due to the multitude of available applications, location-based services become depen-

dent on personal preferences and interests of the users. Spatial alarms [28, 87] provide a

useful abstraction for modeling a large number of personalized location-based applications.

Consider the following examples:

Example 1: Location-based advertisements.Macy’s store may set a spatial alarm around

its store locations in Atlanta for“sending e-coupons for a 20% discount to all gold members

within a five mile radius of it store locations”. This allows the store to limit delivery of

coupons to customers in the vicinity of the store. Customers may choose to subscribe

to spatial alarms installed on Macy’s stores or otherwise, thus, personalizing delivery of

information at their end.
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Example 2: Location-based reminders [97].A user may set a spatial alarm on her fa-

vorite grocery store for“reminding her to buy groceries whenever she is one mile away

from the store over the weekend”. The installation of such an alarm allows the user to

offload an essential function of remembering to buy groceries to her mobile phone!

Example 3: Location-enhanced social networking.The concept of location when inte-

grated into social networking applications like Facebook [13] allows the ability to add phys-

ical presence-based functionality. For example, a user mayinstall an alarm on all friends

which “informs her whenever any of her friends are within a two mile vicinity of her cur-

rent location during office lunch hours”. As this requires monitoring of friends’ location

information, dealing with location privacy issues is also essential for such alarms [27].

Client-centric [87] and server-centric [28] architecturesfor spatial alarm processing are

both feasible. A client-based architecture is limited in application, due to absence of in-

teraction among users and information delivery systems, but attractive due to it simplicity.

On the other hand, from the user perspective, a server-centric architecture has various ad-

vantages not limited to offloading of alarm processing to a centralized server, sharing of

alarms among users, ability to subscribe to alarms installed by large number of information

delivery systems. However, centralization of alarm processing leads to the alarm process-

ing server becoming a bottleneck as the server needs to process large number of alarms

installed by a large number of mobile users.

We consider a spatial alarm processing system which hosts spatial alarms installed by a

large number of mobile users and information monitoring systems. Users subscribe to these

alarms and report their position to the server; the server receives user position information

and processes this information against the installed alarms triggering relevant alarm noti-

fications. Processing of spatial alarms requires meeting two demanding objectives: high

accuracy, which ensures no alarms are missed, and high scalability, which guarantees that

alarm processing is highly efficient and scales to large number of spatial alarms and grow-

ing base of mobile users. The conventional approach to similar problems involves periodic
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evaluations at a high frequency. Each spatial alarm evaluation can be conducted by testing

whether the user is entering the spatial region of the alarm.High frequency is essential to

ensure that none of the alarms are missed. Though periodic evaluation is simple, it can be

extremely inefficient due to frequent alarm evaluation and the high rate of irrelevant evalu-

ations. This is especially true when the mobile user is traveling in a location that is distant

from all her location triggers, or when all her alarms are seton spatial regions that are far

apart from one another. Safe period-based approaches [28] allow the system to overcome

these deficiencies by adaptively computing a safe period foreach user; no alarm process-

ing needs to be performed for the user before the expiry of itssafe period. However, these

approaches heavily rely on future motion estimation of the user for computing the safe pe-

riod. Pessimistic motion estimations may still lead to frequent alarm evaluation leading to

excessive load on the alarm processing server. Optimistic motion estimations can lead to

missed alarms which defies the high accuracy criterion.

In this work, we presentsafe region-based approaches for spatial alarm processing. We

show that the safe region approach, when applied to our alarmprocessing problem, enables

distribution of the processing load between the server and the large number of mobile users

significantly aiding server scalability at the cost of nominal energy consumption at the

client end. TheVoronoi Diagram [21], as shown in Figure 26 is a classical example of safe

region-based techniques. Consider the set of points, as shown in Figure 26(a), displaying

the Voronoi region,V (pi), for each pointpi. Processing a simplemoving nearest neighbor

query for query pointq simplifies to identifying the Voronoi region associated with the

current location ofq. In the above example, as long asq is within the regionV (p4), p4

remains the nearest neighbor forq. In this scenario, the Voronoi regionV (p4) (shaded

region) is a safe region for the moving NN query; no processing of any information is

necessary as long as the moving query point lies within this safe region. Onceq moves into

the Voronoi regionV (p6), the safe region changes and query recomputation is required.

Figure 26(b) provides an example of safe region for the spatial alarm processing problem.
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Figure 26: Examples of Safe Region

Spatial alarm regionsA1, A2, A5 andA6, represented by shaded rectangular regions, are

relevant to the subscriberS, whereas, alarm regionsA3 andA4 are not relevant to this

subscriber. The safe region is represented by the rectangular region touching the boundaries

of the relevant alarm regions. As long asS is located within this safe region, none of the

relevant alarms can be triggered; as soon asS moves out of this rectangular region a new

safe region needs to be computed.

We make three unique contributions in this work: (i) Firstly, we explore safe region-

based techniques for spatial alarm processing. Concretely,we propose theMaximum

Weighted Perimeter Rectangular Safe Regionapproach and two approaches for represent-

ing rectilinear polygonal shapes using bitmap encoding, namely,Grid Bitmap Encoded Safe

RegionandPyramid Bitmap Encoded Safe Region. Our experimental evaluation shows that

the safe region-based approaches outperform periodic evaluation and safe period-based ap-

proaches. (ii) Secondly, we consider different heuristicsbased on size, shape of the safe

region and study their affect on the bandwidth, energy and server load resource consump-

tion. (iii) Last but not the least, unlike previous safe region approaches, our framework

supports heterogeneous client capabilities using bitmap encoding techniques.

The rest of the chapter is outlined as follows. Section 4.2 introduces basic concepts as-

sociated with spatial alarms, safe region and a grid overlayto limit safe region computation
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costs. Section 4.3 describes our rectangular safe region approach followed by the bitmap

encoding techniques in Section 4.4. A detailed experimental evaluation is conducted in

Section 4.5 using a real world road network. Related work is presented in Section 4.6

followed by the conclusion.

4.2 Preliminaries

4.2.1 Spatial Alarms

A spatial alarm expresses a location-based information need of a subscribers ∈ S around

a location of interest. The alarm trigger requires that the subscriber be informedas soon as

she enters a spatial regionR around the location of interest and the non-spatial constraints

associated with the trigger are satisfied.

Spatial alarms can be categorized asprivate, sharedor public alarms depending on the

scope of subscribership of the alarm. Private alarms are relevant to a single subscriber

authorized to install or remove the alarm. A subscriber may install an alarm on the neigh-

borhood grocery store reminding her to purchase groceries when she is within a one mile

radius of the store and special discounts are available on her desired items. Shared alarms

are installed by a subscriber of the alarm and may be shared with a group of users; for

example, in the above scenario the subscriber may wish to share the alarm on the grocery

store with other members of her household. Public alarms arerelevant to all subscribers

in the system; examples of such alarms are warning notifications against hazardous road

conditions.

Motion characteristics of the subscriber and the alarm target provide another criterion

for alarm categorization. The first class is theMobile Subscribers Static Targetalarms,

where alarm targets are still objects such as restaurants, hospitals, etc. The second class is

referred to as theStatic Subscribers Mobile Targetalarms, where alarm targets are moving

but the position of mobile subscribers remains unchanged during the alarm validity period.

A typical example of such alarms is“tell me when the bus is within two miles of the bus stop
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near my office”. The third class, where both alarm subscribers and targets are moving, is

called theMobile Subscribers Mobile Targetalarms. Location enhanced social networking

applications typically install such alarms.

4.2.2 Safe Region

Definition 4.2.1 We define the Safe Region, denoted byΨs for each users ∈ S, such that,

(i) as long as the user’s position lies within this region the probability of the user entering

any of its relevant spatial alarm regions is zero. (ii) If theuser position lies inside one or

more relevant spatial alarm regions, the intersection of the spatial alarm regions forms the

safe region for the user. In this case, as long as the client remains inside the safe region the

probability of any alarms other than those associated with this safe region being triggered

is zero. Consequently, as long as the users lies within its computed safe region any location

updates may be dropped without performing alarm evaluation.

Pr[ls(t)⇒ Ai | ls(t) ∈ Ψs] = 0 (17)

ls(t) denotes the position information for subscribers at timet,Ai wherei ∈ [1...n] de-

notes the set of alarms relevant to subscribers and⇒ denotes an alarm trigger action. The

spatial alarm processing server computes a safe regionΨs for each subscriber and commu-

nicates this safe region to the subscriber. The subscriber is responsible for monitoring its

position within the safe region. Once the subscriber moves out of its safe region it provides

a location update to the server which performs alarm processing and recomputes the safe

region.

The safe region approach aims at minimization of resource consumption at the server

and the client. In the distributed environment we consider here, where client-server com-

munication occurs through a wireless channel, safe region computation must satisfy the

following constraints:

Lightweight Construction. The safe region computation should induce a low processing
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overhead at the server as this computation may need to be performed frequently for a large

number of mobile users.

Compact Representation. The safe region should have a compact representation as it

needs to be communicated back to the user resulting in consumption of downstream band-

width. For example, a rectangular-shaped safe region requires only two points (bottom-left

and top-right) for representation and may be considered to be suitable to meet this require-

ment.

Fast Containment Check. Mobile users need to monitor their position within the safe

region almost continuously. A simple containment check will enable the clients to perform

this function with low energy consumption.

Device Heterogeneity. Their may exist vast diversity in resource capabilities of clients

participating in the spatial alarm processing system. Saferegion computation techniques

which are flexible, adaptive and sensitive to device computational capabilities are suitable

to meet this requirement. Our bitmap safe region techniques, introduced in Section 4.4,

provide an elegant solution which supports this requirement.

4.2.3 Grid Overlay for Safe Region Computation

In its simplest form safe region for any subscriber comprises of the region covered by the

entire Universe of Discourse (or map) except the relevant spatial alarm regions. This poses

two problems: (i) Firstly, it amounts to communicating information for all relevant alarms

to the subscriber which leads to heavy communication costs.(ii) Secondly, it leads to

excessive computation costs at the server which needs to consider a large number of alarms

for each safe region computation. In order to deal with the computation costs, we overlay

a grid on top of the Universe of Discourse which allows us to limit the defined safe region

to the vicinity of the current subscriber position.

Definition 4.2.2 In our framework, we map the Universe of DiscourseU = Rect(x, y, w, h)

onto a gridG of cells.(x, y) represents the bottom-left corner andw, h represent the width
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and height ofU. Formally, a grid corresponding to the universe of discourse U can be

defined asG(α, β) = {Ci,j : 1 ≤ i ≤ M, 1 ≤ j ≤ N , Ci,j = Rect(x + i · α, y + j ·

β, α, β),M = dw/αe, N = dh/βe}. Ci,j is anα × β rectangular area representing the

grid cell that is located in theith column andjth row of the gridG.

Considering our above definition of a grid we can define a mapping from any point

~p = (px, py) in the Universe of Discourse to the Grid,f : U⇒ G.

Definition 4.2.3 Let ~p = (px, py) be any point in the Universe of DiscourseU. LetCi,j

denote a cell in the gridG(α, β). f(~p) is a position to grid cell mapping, defined as

f(~p) = C
d px−x

α
e,d

py−y

β
e

where(x, y) denotes the bottom-left corner ofU.

Our safe region approaches utilize this grid overlay to limit the safe region computation

for each subscriber. The grid overlay can be used to limit thesafe region computation to

an area comprising of the current cell of subscribers. We define themonitoring regionζs

inside the current grid cell below and proceed to describe our algorithms for safe region

computation.

Definition 4.2.4 Monitoring Regionζs for any subscribers located in cellCi,j may be

calculated as,

ζs = Ci,j −
|m|
⋃

k=1

R(s, Ak), (18)

whereR(s, Ak), k ∈ [1...m], denotes the spatial alarm regions relevant to subscribers

intersecting the current subscriber cellCi,j.

4.3 Maximum Weighted Perimeter Rectangular Safe Region

The safe region approach aims to reduce the number of alarm evaluations performed by the

server. A rectangular shape has many properties required ofthe safe region as mentioned

above. In this section, we discuss themaximum weighted perimeter rectangular safe re-

gion computation approach and present an algorithm for the same based on the concept of

dynamic skylines [88].
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Figure 27: Preliminaries for Safe Region Theorem

Figure 27(a) displays a mobile user at positionls(t); ls(t′) is the previously recorded

position of the client. The probability density function (pdf) for the client motion inside

the safe region, denoted byp(φ), is given by:

p(φ) =











































1 +
s

t

⌈π/2− |φ|
s/t · π

⌉

2π
, if − π/2 ≤ φ ≤ π/2

1− s

t

⌈ |φ| − π/2
s/t · π

⌉

2π
,otherwise

In the above pdf formula,s, t are parameters of steadiness such thats/t < 1. Fig-

ure 27(b) displays the pdf fors = 1 and for different values oft. The value ofs/t deter-

mines the weight to be assigned to the probability of the client moving in the direction of

its current motion.t determines the granularity of change inφ for which the probability

value decreases. As shown in Figure 27(b), the probability of the client moving in a direc-

tion such that0 ≤ φ ≤ π/t is the same; for values ofφ > π/t, this probability decreases.

Assuming random direction of motion would lead to a probability of 1/2π for all values of

φ.

Proposition 4.3.1 Assume that an object moves in a directionφ as shown in Figure 27(a)

with a speedv. Assuming a convex safe regionΨs, previous locationls(t′) and an updated
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locationls(t), we compute the average alarm evaluation costCs over time as:

Cs = Cl ·
(

∫ π

−π

r(φ)p(φ)dφ

2πv

)−1

In the above equation,Cl is the cost of a single alarm evaluation,φ is the angle between the

direction of motion of the object and its previously recorded direction of motionls(t)ls(t′),

r(φ) is the length of the segmentls(t)R whereR is the point on the safe region boundary at

which the next alarm evaluation is expected to occur. Given the angleφ, the elapsed time

before the next evaluation isr(φ)/v. The average elapsed time over all values ofφ is given

by
∫ π

−π

r(φ)p(φ)dφ

2πv
. Therefore, we have,

Cs =
Cl · 2πv
λ(φ)

, (19)

whereλ(φ) =
∫ π

−π
r(φ)p(φ)dφ is the weighted perimeter of the safe region. In order

to minimize the alarm evaluation costs, we have to maximize the value of the weighted

perimeter. Therefore, the problem of minimizing alarm evaluation costs reduces to finding

a rectangular safe region with maximum weighted perimeter.

We now present an algorithm to compute the maximum weighted perimeter safe region

for a user. Our algorithm applies the concept ofdominating pointand appropriate heuris-

tics, to find thefour skyline points[101] which form the corner points of the rectangular

safe region. The algorithm accepts the current position vector ~O for a user and the current

grid cell G( ~O) in which the user resides as inputs. The set of alarms intersecting the grid

cell G( ~O) are considered for safe region computation. In case no relevant alarm regions

intersect the grid cellG( ~O), the entire cell is returned as the safe region. Otherwise, the

algorithm adopts a four step approach outlined below.

Step 1: Determine Candidate Point Set.The algorithm partitions the cellG( ~O) into

four quadrants with current subscriber position{Ox, Oy} as the origin. We define a set of

candidate pointsC and a set oftension pointsT for each quadrant. The candidate point set

is the set of points which can potentially form a corner pointof the safe region. Tension
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points are obtained from the set of candidate points by ensuring that only points that form

largest possible rectangular regions not overlapping the spatial region of any alarm region

are selected.

The set of candidate points is determined as follows. Firstly, the spatial region corner

for each relevant alarm is selected as a candidate point in its appropriate quadrant. For

alarm regions which do not completely lie inside the grid cell G( ~O), the intersection points

of the grid cell boundary and the alarm region are selected ascandidate points. Secondly,

for alarm regions which intersect the x-axis or y-axis of thecoordinate axes with origin

at {Ox, Oy}, we also consider points of intersection of the alarm regions with the axes as

candidate points. The algorithm trims the set of candidate points in the next step. Firstly, if

multiple candidate points in a quadrant intersect the x-axis (or y-axis), all candidate points

other than the point on the x-axis (or y-axis) closest to the origin are removed from the setC.

Further, we remove points whichfully dominate1 any other point inC. Finally, the points

are sorted according to increasing distance of their x-coordinate from the origin. Points

with the same x-coordinate are arranged in order of decreasing distance of y-coordinate

from origin.

Step 2: Determine Tension Point Set.The set of candidate points is then processed in the

following manner to obtain the set of tension points. Each tension pointTQi, whereQ ∈

{1, 2, 3, 4} represents the quadrant the point belongs to, is assigned the same x-coordinate

as the corresponding candidate pointCQi. TQi is assigned the same y-coordinate as that of

CQi−1, orTQi−1 if TQi andTQi−1 have the same x-coordinate. The y-coordinate ofTQ1 is set

as either the top bound of the cell or the y-coordinate of a candidate point intersecting the

y-axis if any. Finally, duplicate points and points lying onthe x-axis or y-axis are trimmed

from the setT .

Step 3: Determine Component Rectangles.The set of tension points form the opposite

1P1 is said to fully dominateP2, if P1.x > P2.x andP1.y > P2.y.
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Figure 28: Maximum Weighted Perimeter Safe Region Computation

corner (opposite to the origin) of the set of candidatecomponent rectanglesin each quad-

rant. The final safe region is composed of the intersection ofthe component rectangles

from each quadrant. It seems logical to select component rectangles with the maximum

perimeter in each quadrant as this will lead to safe regions with the maximum weighted

perimeter.

Step 4: Determine Safe Region from Component Rectangles.Computation of the max-

imum weighted perimeter safe region can be involved and can lead to expensive computa-

tions. Our algorithm adopts greedy heuristics in order to quickly compose a suitable safe

region from the set of component rectangles. As opposed to anoptimal solution which enu-

merates every possible combination of component rectangles and computes the weighted

perimeter for each combination thus taking quartic time, our approach performs greedy de-

cisions. We first select the quadrant in which thepdf of the expected motion of the object is

maximum. The component rectangle with the largest weightedperimeter in this quadrant

is selected. Quadrants are further selected dependent on the distribution ofpdf values in

the quadrant using the steady motion assumption. At each step the component rectangle

which forms the safe region with the largest weighted perimeter is selected. The algorithm

continues until all four quadrants are processed using thisgreedy heuristic.

Figure 28 shows an example of our safe region computation approach. The candidate

point set for the given scenario is as shown in Figure 28(a). The black dots represent the

candidate points whereas the hollow dots represent points which are trimmed from the
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candidate point set as explained in Step 1 above. Figure 28(b) displays the set of tension

points obtained from the candidate point set as explained inStep 2. Figure 28(c) displays

the component rectangles formed by selecting a few of the tension points. The largest

component rectangle in Quadrant I is first selected as the pdfvalues for object motion are

maximum in this quadrant. Pdf values of object motion are expected to be next highest in

Quadrant IV because the angleθ shown in Figure 28(c) is such thatθ < π/4.

If the value ofθ was greater thanπ/4, Quadrant II would be selected first in stead

of Quadrant IV. Addition of the component rectangle with tension point atT43 provides a

safe region with larger weighted perimeter compared to the safe region obtained by adding

component rectangle with tension point atT41. Finally, the component rectangles with

tension points atT22 in Quadrant II andT33 in Quadrant III (in order of expected pdf values)

are selected. The shaded region composed out of the component rectangles, as shown in

Figure 29, forms the safe region.

4.4 Bitmap Encoded Safe Region Computation

Rectangular safe regions exhibit various advantages such ascompact representation which

leads to low server to client safe region communication costand fast containment detection
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at the client end. However, the rectangular shape restriction on safe region forces even

powerful clients to underutilize their computational capacity. In this section, we relax the

restriction on safe region shapes and consider rectilinearpolygonal representations for safe

region. We introducebitmap encoded safe region(BSR) techniques for quickly and effi-

ciently representing rectilinear polygons using bitmaps.This approach provides flexibility

in safe region computation by providing larger, complex safe regions for powerful clients,

thus personalizing the safe region for each client according to its computational capacity.

Figure 30(a) displays the monitoring region (shaded region) for subscriber at pointP with

four relevant alarm regions intersecting the grid cell. Theserver may compute the monitor-

ing region as the safe region for the client and communicate it to the client. Note that the

server is virtually pushing the relevant alarms onto the client in this scenario by providing

this safe region. Each alarm region may be represented by thebottom-left and top-right

corner point locations. We consider this as anoptimal approachfrom the client perspective

as the client has complete knowledge of all alarms in its vicinity. However, this approach

may not be feasible from the point of view of communication costs incurred while broad-

casting safe region to the clients. Additionally, for areaswith high density the server may

push a large number of alarms onto the client which would leadto heavy load for weak

clients. To counter this problem, we now develop the conceptof bitmap encoded safe re-

gions, which provides an estimation of the actual safe region using a bitmap, allowing for

trade-off between size of the bitmap and accuracy of safe region representation.

Definition 4.4.1 A bitmap encoded safe region represents a safe regionΨs for subscriber

s using a bitmapB of lengthn. A bit value of 1 indicates that a predefined region (cell)

belongs to the safe region; whereas a 0 bit indicates the negation.

We first describe aGrid Bitmap Encoded Safe Region (GBSR)computation technique

and exhibit its inability to accurately and efficiently represent safe regions. An extension to

this approach using the pyramid data structure [95], referred to as thePyramid Bitmap En-

coded Safe Region (PBSR)approach, allows us to represent safe regions accurately aswell
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Figure 30: Grid Bitmap Encoded Safe Region Computation

as efficiently. BSR techniques exhibit the following advantages: (i) for low alarm density

regions, it allows for further reduction of alarm evaluations compared to the rectangular

safe region approaches, (ii) it supports varying granularity of safe region computations

thus supporting heterogeneity among client capabilities,and (iii) clients can determine

their position with respect to the safe region using a predefined (worst case) number of

computations.

4.4.1 Grid Bitmap Encoded Safe Region Computation

The safe region for a subscribers can be represented by the set of grid cells as shown in

Figure 30(b).

Proposition 4.4.2 We use a grid bitmap scheme to represent the safe region withinthe

monitoring region shown in Figure 30(a). The cellCi,j is represented by a single bit

B(Ci,j). If Ci,j

⋂

Σm
k=1R(s, Ak) = ∅ we setB(Ci,j) = 1 denoting that the entire cell

Ci,j belongs to the safe regionΨs, else we setB(Ci,j) = 0 and splitCi,j into U × V

smaller equi-sized cells. The same encoding procedure is used for each smaller cell. This

bitmap encoding technique provides a compact representation for safe regionΨs.

Figure 30(b) shows the safe region representation for the safe region of Figure 30(a) us-

ing a bitmap encoding scheme. No alarm regions intersect thethree shaded cells which are

represented by 1’s; other cells intersecting with alarm regions are represented by 0’s. The
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safe region is represented using a simple bitmapB = 0000011010 which represents the

cell bit values in a raster scan fashion. The first zero bit corresponds to the entire cell, indi-

cating that the cell does not belong to the safe region and hasintersecting alarm regions. As

visible from Figure 30(b), this bitmap encoding is able to represent only a small portion of

the monitoring region thus providing a poor estimate of the actual safe region. Figure 30(c)

presents a 9×9 split of the cell at a finer resolution which allows for more accurate rep-

resentation of the safe region. However, this approach is inefficient for the following two

reasons: (i) it unnecessarily uses a much larger bitmap thanrequired to represent the safe

region, and (ii) different regions have different alarm densities thus making it difficult to

select a uniform grid cell size. The PBSR approach overcomes these deficiencies by allow-

ing for more accurate representations of the safe region while providing a smaller bitmap

size.

4.4.2 Pyramid Bitmap Encoded Safe Region Computation

The pyramid representation splits cells in thebasegrid (levelL=0) withB(CL
i,j) = 0 only

into U × V smaller cells, whereU , V are system defined parameters. The process may

be further repeated for several iterations to form smaller cells at each level thus forming

a pyramid data structure of heighth. As shown using a pyramid structure withh = 2 in

Figure 31, by further splitting cells withB(C0
i,j) = 0 into a 3×3 grid we obtain a much

more accurate representation for the safe region. Compared to the grid-based approach

which either does not represent the safe region accurately (3×3 grid in Figure 30(b)) or

computes a much larger bitmap (9×9 grid in Figure 30(c)), the PBSR approach provides

flexibility in computation of the safe region. For example, the GBSR approach requires 82

bits, 1 bit for the entire cell and 81 bits for the 9×9 grid, to represent the safe region in

Figure 30(c). In comparison the PBSR approach requires only 64 bits, 1 bit for the entire

cell, 9 bits for the cells at level 1 and only 54 bits for the cells at level 2, to represent the

same safe region as shown in Figure 31.
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Figure 31: Pyramid Bitmap Encoded Safe Region

The bitmapB is initially assigned anull value and current levelL of the pyramid is set

to zero (line 2). A brief outline of the procedure is given below. The pyramid representation

of the base cells is constructed for heighth by splitting cells iteratively intoU × V cells.

This step can be performed offline by the server thus providing a precomputed pyramid

representation for safe region computation. Next, starting from the base cells (levelL = 0)

we determine if each cell intersects any relevant alarms. Cells not intersecting with any

relevant alarm regions are assigned a bit valueB(CL
i,j) = 1 indicating that they are a part

of the safe region; else a cell is assigned bit value 0. For cells at each levelL − 1 (L ≤ h)

which have an assigned bit value 0, we consider the relevantU × V childrencells at Level

L and assign a bit value 0 or 1 considering intersection of the cell with relevant alarms at

each level of the pyramid.

Proposition 4.4.3 The PBSR approach for safe region computation allows us to represent

the safe regionΨs in terms of a bitmap of size|B|. The height of the pyramidh allows us to

control the accuracy of representation of the safe region atthe cost of computing a larger

bitmap for more accurate representations.

103



Algorithm 1 : Pyramid Bitmap Encoded Safe Region Computation
Input : C0

k,l, h, U , V , Arel
s

Output : B

C0 ← {C0
k,l};1

B = null; L = 0;2

while (L < h) do3

CL+1 ← SPLIT (CL, U, V );4

L = L + 1;5

end6

L = 0;7

while (L ≤ h) do8

for (i = (k − 1) · UL + 1; i ≤ k · UL; i + +) do9

for (j = (l − 1) · V L + 1; j ≤ l · V L; j + +) do10

if ((L = 0) ‖ ((L 6= 0) && (B(CL−1

bi/Uc,bj/V c) = 0))) then11

if (CL
i,j

⋂

Arel
s = ∅) then12

B(CL
i,j) = 1;13

else14

B(CL
i,j) = 0;15

end16

B = B || B(CL
i,j);17

end18

end19

end20

L = L + 1;21

end22

We now defineCoverageandBitmap Sizewhich allow us to control the quality of the

safe region representation for our BSR computation techniques.

Definition 4.4.4 The coverage of a safe region representationΨs, denoted byη(Ψs), is

defined as the ratio of area of the safe region using the BSR representation to the area of

the monitoring region.

η(Ψs) =

h
∑

L=0

k·UL
∑

i=(k−1)·UL+1

l·V L
∑

j=(l−1)·V L+1

α · β
(U · V )L

·B(CL
i,j)

ζs
, (20)

whereα, β defines the size of a base grid cellC0
i,j of the pyramid.

Definition 4.4.5 The bitmap size for safe regionΨs, denoted byϑ(Ψs), is defined as the
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number of bits in the BSR representation of the safe region.

ϑ(Ψs) = 1+

h−1
∑

L=0

k·UL
∑

i=(k−1)·UL+1

l·V L
∑

j=(l−1)·V L+1

(1−B(CL
i,j)) · U · V

(21)

In practice, we want to achieve high coverage with as small bitmap size as possible.

Each client may specify the maximum height of the pyramid used by the PBSR approach

for computing its safe region. In the worst case scenario, the client may need to determine

its position relative to the safe region at each level of the pyramid data structure.

For the BSR approach, safe region for a client needs to be recomputed only when the

client moves out of the base grid cell. Note that a client may move out of its safe region

without triggering any relevant alarms even while it is inside the grid cell. No safe region

recomputation needs to be performed in such situations for the BSR approach. In case

the client triggers an alarm on moving outside its safe region but stays within the cellC0
i,j

corresponding to the safe region, the safe region can be quickly updated by considering

the triggered alarm to be a part of the safe region. Additionally, BSR approaches can be

optimized by precomputing the bitmap at each pyramid level for public alarms.

4.4.2.1 Client Safe Region Containment Detection

The MPSR approach demands that the client monitor its position within rectangular shape

safe region which requires simple computations on part of the client. For the PBSR region

approach, the client needs to determine its position with respect to the safe region from

the bitmap|B|. The client determines its position at each level of the pyramid in order to

determine if it is within the safe region or not. In the worst case scenario, the client needs

to performh computations, one at each level of a pyramid of heighth; on an average it

will perform much fewer thanh computations. Algorithm 2 outlines the client safe region

containment logic required for the PBSR approach.

The algorithm accepts as input the bitmapB and the position vector~ps for subscribers.

The algorithm returns the containment detection resultCDR indicating a value true if client
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Algorithm 2 : PBSR Client Safe Region Containment Detection
Input : B, ~ps

Output : CDR ∈ {true, false}
L = 0;LStartIndex = 0;LEndIndex = 0; posIndex = 0;1

numFalsePrevL = 0;numFalsePrevLPosIndex = 0;2

while (LStartIndex 6= |B|) do3

if (B[posIndex] == true) then4

return true;5

else6

L = L + 1;7

for (i = LStartIndex; i ≤ LEndIndex; i + +) do8

if (B[i] == false) then9

if (i < posIndex) then10

numFalsePrevLPosIndex + +;11

end12

numFalsePrevL + +;13

end14

end15

cellid = getRelCellPos(~ps, L);16

LStartIndex = LEndIndex + 1;17

LEndIndex+ = (numFalsePrevL · U · V );18

posIndex = LStartIndex + cellid + (numFalsePrevLPosIndex · U · V )− 1;19

numFalsePrevL = 0;numFalsePrevLPosIndex = 0;20

end21

end22

return false;23

lies inside safe region or false if client lies outside safe region. Initially the levelL of the

pyramid is set to zero. The algorithm also identifies the start indexLStartIndex and end

indexLEndIndex for bitmap values inB related to levelL. We define the set of bitmap

values from start to end index for any levelL as ablock. The bitmap index concurrent to

the cell the client currently belongs to is indicated byposIndex (line 1). Additionally, the

algorithm needs to keep a count of the number offalse bitsnumFalsePrevL in a block

and the number of false bitsnumFalsePrevLPosIndex before theposIndex in a block

(line 2). The algorithm checks for each levelL, if the bitmap value istrue indicating that

client location lies within the safe region (lines 4-6). Otherwise the algorithm increments

the levelL and maintains the count of number of false values in previousblock and the

number of false values beforeposIndex in previous block of the bitmap (lines 8-15). These

values are used to determine theLStartIndex, LEndIndex andposIndex in the new

block corresponding to the next level of the pyramid in the bitmap (lines 16-19). This
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computation is repeated for each levelL of the pyramid to determine if the subscriber lies

within the safe region (lines 6-21).

In order to facilitate installation of new alarms, the server maintains a main memory

grid index on the safe region of all clients. Location updates are required of all clients

whose safe region intersects the new spatial alarm region. Spatial alarm information is in-

dexed using a disk resident R-tree structure. We use a 3-dimensional R-tree which indexes

the subscriber relevance information for private, shared and public alarms as well as the

bottom-left and top-right points of the safe regionminimum bounding rectangles (MBRs).

4.5 Experimental Evaluation

In this section, we evaluate the performance of our safe region computation techniques us-

ing three different sets of experiments. The first set of experiments performs an evaluation

of the maximum weighted perimeter rectangular safe region approach. The second exper-

iment evaluates the bitmap encoded safe region (BSR) approaches, namely grid bitmap

encoded safe region (GBSR) and pyramid bitmap encoded safe region (PBSR). The final

experiment provides an evaluation of the safe region techniques compared to periodic pro-

cessing (PRD), safe period-based (SP) computation [28] and the optimal (OPT) approach

as described in beginning of Section 4.4. The optimal approach does not consider any

restrictions on resource availability and assumes all relevant alarms within the monitor-

ing region are pushed to the client, which implies the clientis fully aware of all relevant

alarms in its vicinity. We measure the performance of all approaches on different evaluation

metrics like number of client-to-server messages, downstream server-client bandwidth con-

sumption, client energy consumption and server processingtime. We do not measure alarm

trigger accuracy as the parameters adopted for each processing approachensure 100% of

the alarms are triggered in all scenarios. The sequence of alarms to be triggered is deter-

mined by a very high frequency trace of the motion pattern of the vehicles.
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4.5.1 Experimental Setup

Our simulator generates a trace of vehicles moving on a real-world road network us-

ing maps available from the National Mapping Division of theU.S. Geological Survey

(USGS [8]). Vehicles are randomly placed on the road networkaccording to real world

traffic densities as given in [27]. The simulator simulates the motion of vehicles on roads

with appropriate velocity information; at intersections,vehicles may move in any direction

with attached probability values. We use a map of Atlanta andsurrounding regions, which

covers an area around 1000km2 in expanse, to generate the trace. Our experiments use

traces generated by simulating vehicle movement for a period of one hour, results are aver-

aged over a number of such traces. Default traffic volume values allow us to simulate the

movement of a set of 10,000 vehicles on the above road network. Each vehicle generates a

set of position parameters during the simulation; positioninformation is evaluated against

installed spatial alarms indexed in aR∗-tree [31]. The default spatial alarm information

consists of a set of 10,000 spatial alarms installed on alarmtargets distributed uniformly

over the entire map region. We vary the fraction of private, shared and public alarms in-

stalled in order to vary the number of alarms relevant to eachsubscriber. Default setup

assumes 10% of the alarms are public alarms; private and shared alarms are present in the

system in the ratio 2:1. This simulator setup allows us to thetest the robustness of our

framework under realistic mobility patterns.

4.5.2 Experimental Results

Performance of Maximum Weighted Perimeter Rectangular Approach. This set of

experiments is designed to study the performance of the maximum weighted perimeter

rectangular safe region approach as we vary the parameters of steadinesss, t. The results

for s = 1 and different values oft in comparison with a non-weighted approach (no steady

motion assumption) are shown in Figure 32. The non-weightedperimeter approach im-

proves upon the approach presented in [57] by allowing for overlapping alarm regions.
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Figure 32: Performance of Rectangular Approach

The approach presented in [57] leads to alarm misses and erroneous safe regions in such

scenarios. Figure 32(a) shows the number of client-to-server location messages exchanged

with different grid cell sizes. The weighted perimeter approach consistently performs bet-

ter than the non-weighted perimeter approach even though bya small margin. Considering

the fact that more than 60 million location messages are produced for each trace, it can be

observed that less than 3% of messages need to be communicated to the server using any

of the rectangular safe region approaches. The other observation from this figure is that

with increasing grid cell size the number of client-to-server messages reduces. This is as

expected because with larger grid cell sizes larger safe regions are computed and the client

stays within the safe region for a longer duration. Figure 32(b) shows the server processing

time as we vary the size of the grid cell. As grid cell size is increased, alarm processing

costs decrease due to the smaller number of location messages being processed against the

spatial alarm index. The safe region computation costs increase with increasing grid cell

size due to larger number of intersecting alarms being considered for safe region computa-

tion. The total server processing time is minimum with a gridcell size of 2.5 sq. km. This

value of grid cell size is used for further experimentation.
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Figure 33: Performance of BSR Approach

Performance of BSR Approach.This set of experiments is designed to evaluate the per-

formance of the BSR approach. We vary the height of the pyramidfrom h = 1 (for GBSR)

to h = 7 and observe the performance as shown in Figure 33. Figure 33(a) displays the

number of client-to-server messages communicated as we increase the pyramid height from

h = 1 to h = 7. It can be observed that the GBSR approach is highly inefficient as it limits

safe region computation to a very high granularity. The saferegion computed using this

approach provides a very coarse representation of the actual safe region forcing the clients

to frequently send location messages as a result of which GBSRapproach incurs high
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communication costs. As we increase the pyramid height, more accurate safe region repre-

sentations can be computed and consequently number of messages transmitted experiences

a sharp drop. Another observation is that BSR approaches display high sensitivity to alarm

density levels; the performance deteriorates sharply for higher percentage of installed pub-

lic alarms. On the other hand, the downstream bandwidth required by the server to broad-

cast the safe regions to the clients increases with pyramid height (Figure 33(b)). For higher

pyramid levels, larger bitmaps are required to represent the safe region and hence higher

bandwidth is required. For pyramid heighth = 7, with high alarm density the downstream

bandwidth requirement goes up to 3.5 Mbps, but forh = 5 this value remains below 200

Kbps even when percentage of public alarms is increased to 20%. Figure 33(c) displays

the client energy consumption (in milliwatt-hours) used todetermine client position within

the safe region. For the GBSR approach the clients need to perform an average of 2-3 safe

region containment detections per second resulting in low energy consumption. This cost

does not experience a significant increase with pyramid height for low percentage of public

alarms. For higher public alarm percentages, 6-7 safe region containment detections per

second are required for a pyramid of heighth = 7 resulting in higher energy consumption.

As seen from Figure 33(d), for low pyramid height, safe region computation costs are low

as relatively simpler computations are involved. On the other hand, alarm processing costs

are high as a large number of messages are received from clients. On increasing pyramid

height, alarm processing costs drop due to fewer client-to-server messages. The safe re-

gion computation costs increase due to high complexity of safe region computation. Even

despite the fewer number of safe region computations being performed at higher pyramid

height, the increase in cost of a single safe region computation is such that a net increase in

safe region computation load is experienced. However, thiscost can be significantly offset

by using precomputed bitmaps for public alarms as mentionedearlier. Forh = 4 or h = 5,

the overall processing load is at its lowest point.

Performance Comparison of Safe Region with Other Approaches. Now we compare
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Figure 34: Safe Region vs. Other Approaches

the performance of the maximum weighted perimeter rectangular safe region approach

(MWPSR) and the pyramid bitmap safe region (PBSR) approach (h = 5) with periodic

evaluation (PRD), safe period-based processing (SP) and theoptimal approach (OPT) as

described at the beginning of Section 4.4. As can be seen fromFigure 34(a), the safe region

approaches transmit few client-to-server messages. Periodic processing requires clients to

transmit each location update to the server amounting to 60 million messages and is not

shown in the figure. The safe period approach experiences significantly higher commu-

nication costs, approximately 2-3 times the cost incurred by the safe region approaches.

This is due to the pessimistic assumptions required to ensure that the safe period approach
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triggers all alarms with a 100% success rate. The optimal approach would require clients

to transmit updates only when the spatial constraints for one or more relevant alarms are

met and transmits fewest number of messages. Figure 34(b) displays the downstream band-

width consumed by the system to broadcast safe regions to theclients. Safe period approach

would also require that a computed safe period be broadcast to each client; however, we

exclude the bandwidth incurred for this approach from theseresults. As expected the safe

region approaches incur much lower bandwidth expense when compared to an optimal so-

lution. PBSR (h = 5) performs the best for different percentage of public alarms in the sys-

tem. Not surprisingly, client energy consumption for the optimal approach is significantly

higher than the safe region approaches (Figure 34(c)) as theoptimal solution is based on

the assumption that clients have very high capacity. PBSR andMWPSR approaches lead

to lower client energy consumption especially at higher alarm density levels. The process-

ing load experienced by each approach is as shown in Figure 34(d). Periodic approach

(PR) has much higher alarm processing costs as each update needs to be processed by the

client and the server load does not scale. The processing load does not rise much at higher

alarm densities as each update is processed by this approachfor all percentage of public

alarms. The MWPSR and PBSR approaches (MW and PB in the figure) experience lower

server load due to much lower alarm processing load. With increasing percentage of public

alarm values, the safe region computation as well as the alarm processing load rises; how-

ever, the total load incurred by the system is much lower thanthe periodic approach for all

configurations. The PBSR approach again shows similar trendsas the MWPSR approach;

however, the CPU load incurred by this approach at higher alarm density levels is higher

than MWPSR approach. The safe period (SP) approach experiences higher CPU load com-

pared to the safe region approaches. This is a direct result of the larger number of updates

that need to be processed by the safe period approach. Resultsfor the optimal approach

(OP) are plotted to show that the safe region approaches do not incur much higher CPU

load except for the highest percentage of public alarms.
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4.6 Related Work

In the realm of information monitoring, event-based systems have been developed to deliver

relevant information to users on demand [30, 76]. In addition to monitoring continuously

changing user information needs, spatial alarm processingsystems also need to deal with

the complexity of monitoring user location data in order to trigger relevant alerts in a non-

intrusive manner.

Periodic reevaluation is commonly used for continuous monitoring of moving objects [60,

83, 93, 115]. Some work exists on monitoring continuous queries which applies the concept

of safe region directly [35, 57, 93] or indirectly [114, 116]. Spatial alarms differ from this

work as they do not demand periodic evaluation or reevaluation like continuous queries;

in stead they require one shot evaluation which should result in a trigger when the alarm

conditions are satisfied. Our work is focussed on determining the opportune moment for

evaluating spatial alarms relevant to a client by seeking cooperation at the client end.

None of the previous work except [57] presents clear algorithms for safe region com-

putation. The maximum weighted perimeter rectangular saferegion approach outperforms

the approach presented in [57]. Further, unlike our approach presented in Section 4.3,

the algorithm presented in [57] cannot handle overlapping alarm regions, alarm regions

overlapping multiple grid cells or alarm regions intersecting the axes of the coordinate

system. Most importantly, previous work fails to consider an environment supporting het-

erogeneous clients. Our BSR techniques provide an elegant solution for exploiting client

heterogeneity further easing the computational load on theserver.
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CHAPTER V

SCALABLE INFORMATION MONITORING FOR MOBILE

SYSTEMS WITH NON-SPATIAL ATTRIBUTES

5.1 Introduction

Availability of cheap location sensing devices and advancement in wireless communica-

tion technology has led to an explosion of location-based services. Other technological

advances like large-scale deployment of sensor networks and information monitoring sys-

tems (e.g. traffic monitoring and analysis) have led to the availability of large amounts

of context-aware location-sensitive information. Users can explore their environments for

useful information from the convenience of GPS equipped vehicles or their cell phones.

In this chapter, we introducelocation-centric triggers, which provide useful means of al-

lowing users to express their location-based information needs. Many information needs

may be expressed usinglocation-centric triggers, which require a one-shot evaluation, as

opposed to the continuous re-evaluation required by the continuous query mechanism.

In monitoring systems, information is typically deliveredto centralized servers in the

form of data streams that arrive continuously, rapidly and in real time [52, 84]. It is not

possible to control the order of arrival of data updates or tostore all the data updates. A

mobile information monitoring system is characterized by alarge number of such data

streams, some delivering positioning information for a large number of mobile users and

others delivering large amounts of location-sensitive monitored data. Examples of such

location-sensitive monitored data may include gas prices at gas stations, pollution levels at

locations of interest or traffic conditions at major junctions.

We introduce the SLIM1 system for efficiently monitoring information comprising of

1SLIM is an acronym for ScaLable Information Monitoring
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spatial as well as non-spatial data. To the best of our knowledge, the SLIM system is

the first to study the effects of considering the interactionbetween spatial and non-spatial

data in mobile systems. In our system, users express their information needs in terms of

location-centric triggers with spatial and non-spatial predicates. For example, a user may

install a trigger of the form“inform me when I am within one mile of gas station G and

the price of gas is below$4” . The central server receives and processes mobile position

updates and monitored data updates from a large number of sources to determine the oppor-

tune moment to activate triggers. As opposed to current systems which focus on efficient

evaluation of different types of continuous queries (e.g. kNN query, range query) based on

spatial predicates alone ( [57, 58, 83, 113]), we consider a mobile system with a large num-

ber of location-sensitive attributes being delivered frommultiple data monitoring sources.

Introduction of non-spatial predicates renders existing solutions incapable of handling the

mobile information monitoring problem efficiently. Addition of non-spatial attributes to

the mix presents opportunities to perform optimizations beyond those possible with spatial

attributes alone as explained in our motivating example (cf. Section 5.2).

Location-centric trigger processing requires meeting three demanding objectives: (i)

high accuracy, which ensures no triggers are missed, (ii) server scalability, which guar-

antees that the information monitoring server scales to large number of triggers, growing

base of mobile users and a large number of data streams, and (iii) immediate evaluation

of data updates in order to activate triggers at the earliestpossible moment. Activation of

location-centric triggers typically transforms into someaction on part of the user, which is

dependent on the presence of the user at thelocation of interestassociated with the trig-

ger, thus, making it imperative to activate triggers as soonas the spatial and non-spatial

predicate conditions are met.

Solutions in the domain of streaming systems provide optimizations which lead to ap-

proximate answers [39, 106] or delayed evaluation as in the case of batch processing of

data updates [22, 75]. Both are unable to meet our objectives of immediate evaluation with
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100% accuracy. A simple solution which meets these objectives processes each and every

data update on arrival to determine if any triggers are activated. However, thisin-transit

processingapproach hurts the scalability of the system. Load sheddingapproaches [104]

allow controlled tuning of the server load by dropping data updates randomly or selectively

but cannot guarantee 100% accuracy.

The SLIM approach takes into account interaction between various attributes which

facilitates dropping updates that previous approaches cannot avoid. SLIM selectively eval-

uates received data updates against installed trigger information, dropping updates which

havezero probability of activating any installed triggers(cf. Section 5.3). In order to

achieve 100% accuracy while selectively evaluating data updates, we introduce the con-

cept of safe containment. Safe value containers are computed for each object in SLIM

allowing the system to drop updates which lie within their respective safe value containers

without evaluation. Additionally, safe value containers are communicated back to relevant

participating objects in the system seeking their cooperation in the monitoring process and

thus allowing for communication cost savings. However, safe value container computation

leads to additional processing cost at the server.

We present efficient algorithms for safe value container computation for single-dimensional

and multi-dimensional data. For single-dimensional data,we compute single safe value

containers or multiple safe value containers. A comparative study of single versus multiple

safe value containers reveals that multiple safe value containers are preferable when rate

of change of data values is high and update frequency of data sources is low. We extend

the concept of safe value containers to multi-dimensional data and discuss an algorithm

for computation of two-dimensional safe value containers.Extension to multi-dimensional

data (> 2) is also discussed briefly. Our experimental evaluation shows that server scala-

bility is enhanced multiple times by deployment of safe containment techniques. Mobile

clients may gain in terms of energy and bandwidth consumption by monitoring their posi-

tion within their respective two-dimensional safe value containers.
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Figure 35: Motivating Example

The rest of the chapter is structured as follows. Section 5.2provides a motivating

example. We define the fundamental concepts and notations associated with our system in

section 5.3. Section 5.4 provides algorithms for computingsingle-dimensional and multi-

dimensional safe value containers. This is followed by an experimental evaluation using a

real world road network in section 5.5. Section 5.6 providesa brief discussion of related

work.

5.2 Problem Motivation

We motivate the optimization opportunities presented by addition of less dynamic non-

spatial attributes to the information monitoring problem in mobile systems with the aid of

an example. Figure 35 displays mobile usersA, BandC with installed location-centric trig-

gers on gas stationG. Each user specifies spatial as well as non-spatial predicate conditions

for her location-centric trigger. For example, the location-centric trigger for userA requires
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that the trigger should be activated when theuser is within one mile of the gas station G

andgas price is below$4. Similarly, usersB andC specify different spatial and non-spatial

predicate conditions for their location-centric triggers. For the sake of exposition, assume

that the rate at which the pricing data stream is delivered atthe server is half the rate at

which mobile clients update their positions. Further, we consider that the updates from the

data streams are synchronized for the sake of simplicity. Inthe example, the location data

stream comprises of mobile positioning information between time instantst1 andt4 (at one

minute intervals) as shown in Figure 35. Similarly, pricingdata are received at the server

at time instantst2 andt4. A simple approach would process the data updates as and when

they are received. However, as we discuss next, it is unnecessary for the server to process

all received data updates.

Firstly, we observe that userA lies outside the spatial region associated with her in-

stalled trigger at time instantst1, t2 andt4. If it was possible for the server to determine

that the probability of userA being positioned within the spatial region of her installedtrig-

ger is zero at these time instants, the location data for the user at these time instants can be

dropped without processing. Alternately, the user can saveon precious energy and band-

width costs by avoiding sending updates to the server at these time instants. Secondly, we

observe that the pricing data at time instantt2 does not satisfy the non-spatial constraints

for any of the installed triggers. If the server can determine that the probability of the pric-

ing data constraint being satisfied for any of the installed triggers on the gas station is zero

at t2, this update may be dropped. Thirdly, the position update for all mobile users at time

instantt3 can be dropped if the server recognizes the fact that even though the spatial con-

straints are satisfied for all the triggers, the probabilityof the non-spatial constraints being

satisfied is zero due to the previous pricing data update att2. Lastly, the pricing data update

at time instantt4 may be dropped, even though it satisfies the non-spatial constraints for the

trigger installed by userC, if the server recognizes that the probability of any of the users

satisfying the spatial constraints for their respective triggers is zero at this time instant. The
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last two cases highlight the benefits of considering the interaction between the different

attributes involved in trigger processing. Keeping these observations in mind, we develop

the concept of safe containment forSLIM. But first, we describe the fundamental concepts

associated with our system.

5.3 Fundamental Concepts and Notations

In this section, we describe the data model, location-centric trigger model and the process-

ing model adopted by our system. Eachmobile userui ∈ U expresses her location-based

information needs in the form oflocation-centric triggersti,j ∈ T at alocation of interest

lj ∈ L. The triggers are installed at the server which receives updates from multiple data

sources; the location-centric characteristic of our system implies that sources delivering

location updates from mobile users are a consistent featureof the system. The server also

receives updates from data sources associated with other attributes and processes them to

determine if any relevant triggers need to be activated.

Data Model: Each data source delivers tuples of the formSk(o(t)) = 〈o, t, a1, a2, ..., an〉,

containingn− dimensional data.ar, r ∈ [1...n], is a value in domainDr representing the

value of therth attribute, associated with the objecto ∈ O and delivered by sourceSk, at

timet. The data sources deliver content associated with either a mobile user or a location of

interest in the system, hence,O= U ⋃L. For example, a data source delivering positioning

information for a large number of mobile clients delivers tuples of the formS(ui(t)) =

〈ui, t, x, y〉, which indicates the position of userui in the two-dimensional coordinate space

at timet. A monitored data source may deliver tuples of the formS(lj(t)) = 〈lj, t, price〉,

which represents the attributeprice (of gas) at location of interestlj (gas station) at timet.

Trigger Model : A location-centric trigger specifies a set of spatial predicates and non-

spatial predicates in the form〈attribute〉 〈op〉 〈value〉 where〈op〉 ∈ {<,>,≤,≥}, com-

bined using the∧ logical operator. For example, the trigger installed by user A on gas

stationG in the previous section can be expressed astA,G = (x ≥ −
√

2 ∧ x ≤
√

2 ∧
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y ≥ −
√

2 ∧ y ≤
√

2 ∧ p < 4). The first four constraints express the spatial trigger re-

gion using theminimum bounding rectangle (MBR)of the circle of radius one mile around

the gas stationG, assuming that it is located at the origin of the coordinate space. The

last predicate condition expresses the requirement on gas price as specified by the user.

The predicate conditions specified on the spatial region will be a common feature of all

triggers; however, different locations of interest will have different monitored attributes as-

sociated with them. We assume that each trigger specifies predicate conditions on all the

monitored attributes associated with its corresponding location of interest.

We classify location-centric triggers into three different categories depending on the

relevance to the subscriber population:private, sharedand public triggers. Consider a

trigger processing system with| U | users. Private triggersti,j ∈ T are relevant to a single

user, wherei ∈ [1... | U |]. Shared triggerstU ′,j ∈ T , whereU ′ = {i1, i2, ..., iu’} andu’ ≥ 2,

are relevant to at least two users.u’ specifies system limitations on maximum number of

users permitted to share a trigger. Public triggerstU ,j ∈ T are deemed to be relevant to the

entire subscriber base. An additional constraint specifiesthat a userui may have only one

trigger relevant to a given location of interestlj.

Processing Model: Our processing model is intended to outperform the in-transit process-

ing and load shedding approaches [104, 49] in order to provide a scalable mobile system

with 100% trigger activation success rate. We now model ourselective processingapproach

which drops all data updates with zero probability of activating relevant triggers without

trigger processing.

Consider a triggerti,j which has predicate conditions associated with data being deliv-

ered bym different data sources. The probability of a data update from thekth data source

Sk(o(t)), being able to activate this trigger, denoted byPr[Sk(o(t)) ⇒ ti,j], is dependent

upon two factors: (i) the probability of the data update being able to satisfy its predicate

constraints associated with the trigger. We represent the constraints by the range of values

Rk
i,j and denote the associated probability byPr[Sk(o(t)) ∈ Rk

i,j]. (ii) the probability of all
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previous data updatesSk′(o′(t′)), wherek′ ∈ [1...m] andk′ 6= k, satisfying their respective

predicate conditions specified by the triggerti,j. The probability of any data update satis-

fying its predicate conditions for triggerti,j is denoted byPr[Sk′(o′(t′)) ∈ Rk′

i,j]. Heret′

denotes the time instant at which the latest data update fromSk′ for objecto′ was received

by the server, such thatt′ < t.

Now, we consider the processing model for a large number of triggers associated with

an objecto. Consider the set of triggersT ′ ⊂ T relevant to the objecto. Any data update

associated with this object should be processed at the server, if the probability of activating

at least one trigger, denoted byPr[Sk(o(t))⇒≥1 T ′], is greater than zero. Thus, we have,

Pr[Sk(o(t))⇒≥1 T ′] = 1− Pr[Sk(o(t)) ; T ′], (22)

wherePr[Sk(o(t)) ; T ′] denotes the probability of not activating any relevant triggers in

T ′. Now, we separately consider the case where objecto is a mobile userui and the case

where objecto is a location of interestlj.

Case I- (o = ui): Consider the set of triggers relevant to the mobile userui denoted by

T i.

Pr[Sk(ui(t))⇒≥1 T i] = 1− Pr[Sk(ui(t)) ; T i] (23)

Assuming that the probability of activating each trigger inT i is independent of the

probability of activating any other triggers, we have,

Pr[Sk(ui(t)) ; T i] =

|T i|
∏

j=1

(

1− Pr[Sk(ui(t))⇒ ti,j]
)

=

|T i|
∏

j=1

(

1− Pr[S1(lj(t
′)) ∈ R1

i,j]... · Pr[Sk(ui(t)) ∈ Rk
i,j]

... · Pr[Sf(j)(lj(t
′′)) ∈ Rf(j)

i,j ]
)

The termSf(j) indicates that the number of streams is a function of the location of

interest as it is dependent on the set of attributes being monitored at the location of interest.

Given the above equation, we can conclude that the probability of any relevant triggers
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being activated by a data updateSk(ui(t)) is zero, if (i)∀ j : 1 ≤ j ≤| T i |, Pr[Sk(ui(t)) ∈

Rk
i,j] = 0, or (ii) ∀ j : 1 ≤ j ≤| T i |, ∃ k′ : 1 ≤ k′ ≤ f(j)

∧

k′ 6= k, Pr[Sk′(lj(t
′)) ∈

Rk′

i,j] = 0. Note that the time instantt′ corresponding to eachk′ may be different.

Case II - (o = lj): Consider the set of triggers relevant to the location of interestlj

denoted byT j. We assume thatlj has monitored attributes associated withm different data

sources.

Pr[Sk(lj(t))⇒≥1 T j] = 1− Pr[Sk(lj(t)) ; T j] (24)

Again, assuming that the probability of activating each trigger inT j is independent of

the probability of activating any other triggers, we have,

Pr[Sk(lj(t)) ; T j] =

|T j |
∏

i=1

(

1− Pr[Sk(lj(t))⇒ ti,j]
)

=

|T j |
∏

i=1

(

1− Pr[S1(lj(t
′)) ∈ R1

i,j]... · Pr[Sk(lj(t)) ∈ Rk
i,j]

... · Pr[Sk′′(ui(t
′′)) ∈ Rk′′

i,j ]... · Pr[Sm(lj(t
′′′)) ∈ Rm

i,j]
)

Given the above equation, we conclude that the probability of any relevant triggers

being activated by the data updateSk(lj(t)) is zero, if (i)∀ i : 1 ≤ i ≤| T j |, Pr[Sk(lj(t)) ∈

Rk
i,j] = 0, or (ii) ∀ i : 1 ≤ i ≤| T j |, ∃ k′ : 1 ≤ k′ ≤ m

∧

k′ 6= k, Pr[Sk′(o(t′)) ∈ Rk′

i,j] = 0.

Note thato ∈ {ui, lj} and the time instantt′ corresponding to eachk′ may be different.

The next section introduces the concept ofsafe containmentwhich allows us to develop

data structures modeling fast and precise checking of conditions under which data updates

may be dropped.

5.4 Safe Containment

The concept of safe containment can be applied to incoming data updates to ensure that an

update with zero probability of activating any relevant triggers may be dropped.

Definition 5.4.1 (Safe Value Container) A safe value containerψ(o, Sk) is defined for

each objecto with respect to each data sourceSk delivering content relevant to the object
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o, such that,

Pr[Sk(o(t))⇒≥1 T ′ | Sk(o(t)) ∈ ψ(o, Sk)] = 0 (25)

ψ(o, Sk) is computed as a set of n-dimensional range of values[Ln, Hn], whereLn =

〈l1l2...ln〉,Hn = 〈h1h2...hn〉 andn is the dimensionality of the data being delivered bySk.

Definition 5.4.2 (Inclusive Trigger Set) When the extent of the safe value containerψ(o, Sk)

overlaps the predicate range of a set of relevant triggersT I , T I is defined as the inclusive

trigger set. Note that any data updates falling within the safevalue container can still be

dropped as long as the system is aware of the fact that updates for other relevant attributes

may activate a trigger∈ T I . As long as the attribute values delivered bySk fall within the

safe value containerψ(o, Sk), any trigger relevant too and /∈ T I cannot be activated by

updates from other relevant data sources.

In section 5.4.2, we present two algorithms for safe value container computation for

single-dimensional data discussing the pros and cons for each approach. Section 5.4.3

describes an algorithm for safe value container computation for multi-dimensional data.

However, before proceeding with the algorithmic details, we establish the properties de-

sired of safe value containers.

5.4.1 Safe Value Container Computation Requirements

The goal of safe containment is to minimize the number of dataupdates which need to be

evaluated against the installed triggers in order to determine trigger activation. We identify

the following requirements for safe value container computation.

Lightweight Construction: Safe value container computation needs to be performed for

each objecto with respect to attributes delivered by each data sourceSk delivering data

tuples relevant to the objecto, thus making it imperative that safe value container compu-

tation is performed quickly in order to avoid server overload.

Fast Containment Check: The containment check needs to determine if the current attribute
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Figure 36: Single-dimensional safe value container computation scenarios. (a) Case I:
attribute value lies outside any relevant trigger regions,(b) Case II: attribute value lies
inside a relevant trigger region and (c) Case III: attribute value lies within the intersection
of multiple relevant trigger regions.

values for objecto delivered by data sourceSk, Sk(o(t)), lie within the current safe value

containerψ(o, Sk).

Maximum Coverage: As long as the data tupleSk(o(t)) lies within the safe value container

ψ(o, Sk), the data update can be dropped. Maximizing theextentof safe value containers

should achieve the goal of minimizing the fraction of data updates processed. However, this

may be in direct opposition to the goal of lightweight construction of safe value containers.

5.4.2 Single-Dimensional Safe Value Containers

We define single-dimensional safe value containersψ(o, Sk) for each objecto and each

data sourceSk delivering single-dimensional data relevant too. Safe value containers for

single-dimensional data can be represented using a set of range of values[L1, H1], such

that, as long as the attribute value lies within the bounds ofany range of values no triggers

relevant too can be activated. Note that triggers in the inclusive trigger set may be activated

by updates from other data sources. Figure 36 displays the plot of a single-dimensional

attributev varying with timet. The predicate conditions for three different installed triggers

T1, T2 andT3 over the attributev are displayed by horizontal lines. We identify three

separate cases for safe value container computation.

Case I: When attribute value lies outside any relevant trigger rangevalues, the safe value

container is identified as the range[l, h], such that, no relevant triggers can be activated
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as long as the attribute value lies within the safe value container. Figure 36(a) shows an

example where the value of the attribute at timet1, v(t1), lies in a safe value container,

[l, h] = [T3.high, T1.low]. This safe value container remains valid till the attributevalue

lies betweenT3.high andT1.low. As soon as the attribute valuev(t) < T3.high or v(t) >

T1.low, the safe value container is invalidated and recomputed.

Case II: When attribute value lies within a relevant trigger range, the safe value container

is identified as the range[l, h], such thatl, h represent the lowerbound and the upperbound

of the predicate condition associated with the trigger. As long as the attribute value lies

within the safe value container no triggers can be activated. However, updates to other

relevant attributes may result in activation of theinclusive trigger. Figure 36(b) shows an

example scenario where the attribute valuev(t2) lies within the trigger range ofT1 and the

safe value container is identified as[l, h] = [T1.low, T1.high]. TriggerT1 is an inclusive

trigger in this scenario.

Case III: When attribute value lies within multiple relevant intersecting trigger ranges, the

safe value container is identified as theminimal intersectionof the trigger value ranges.

The intersecting triggers form theinclusive trigger set. Figure 36(c) shows an example

scenario where the attribute valuev(t3) lies within the trigger range ofT2 as well asT3.

The safe value container is identified as[l, h] = [T3.low, T2.high]. TriggersT2 andT3 form

the inclusive trigger set. Oncev(t) moves outside the bound[l, h], safe value container

recomputation is required.

Multiple safe value container computation is more expensive compared to single safe

value container computation. However,multiple safe value containers lead to fewer data

updates compared to single safe value containers when the rate of change of data values is

high and update frequency is low. We now discuss algorithms for single and multiple safe

value container computation. The advantage of multiple safe value containers over single

safe value containers is depicted with the help of an example.
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5.4.2.1 Single Safe Value Container Computation Algorithm

Algorithm 3 outlines the procedure for single safe value container computation. The algo-

rithm presented here computes a single safe value containerin accordance with the three

case scenarios described above. The algorithm accepts as input the objecto and the cur-

rent valuea of the single-dimensional attribute and outputs the safe value container[l, h]

associated with the objecto dependent on the current value of the attribute.

Algorithm 3 : Single Safe Value Container Computation Algorithm
Input : o, a

Output : [l, h]
[rl, rh]← getRangeBlock(a);1

T ′ ← getIntersectingTriggers(o, [rl, rh]);2

l← rl, h← rh;3

if (T ′ 6= φ) then4

for (i = 0; i < |T ′|; i + +) do5

if (T ′
i.low <= a && T ′

i.low > l) then6

l← T ′
i.low;7

end8

else if (T ′
i.low >= a && T ′

i.low < h) then9

h← T ′
i.low;10

end11

if (T ′
i.high >= a && T ′

i.high < h) then12

h← T ′
i.high;13

end14

else if (T ′
i.high <= a && T ′

i.high > l) then15

l← T ′
i.high;16

end17

end18

end19

return [l, h];20

In order to limit the safe value container computation costs, we consider a small num-

ber of triggers in the vicinity of the current attribute value a. To facilitate this, the value

range of the attribute is divided into a number of blocks and the range block[rl, rh] within

which the current attribute valuea lies is computed (line 1). Next, we retrieve the set of

triggersT ′ relevant to objecto intersecting the range block[rl, rh] (line 2). If the set of

intersecting triggersT ′ is empty, the entire range block is returned as the safe valuecon-

tainer. Otherwise, the algorithm proceeds to compute the safe value container dependent

on the intersecting trigger bounds (lines 4-19).
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Figure 37: Single Safe Value Container vs. Multiple Safe Value Containers. (a) Data
source delivers data with high rate of change and low update frequency invalidating the
single safe value container at time instantt2. (b) Multiple safe value containers avoid the
unnecessary recomputation of safe value containers at timeinstantst2 andt3.

For each of the intersecting triggers, the algorithm considers the boundsT ′
i.low and

T ′
i.high associated with the trigger. The lower and upper bounds of the safe value con-

tainer are modified to the nearest trigger bounds around the current attribute value as out-

lined in the algorithm (lines 6-17).

5.4.2.2 Multiple Safe Value Container Computation Algorithm

Multiple safe value containers are computationally more expensive than single safe value

containers. However, in certain scenarios the disadvantages associated with the higher com-

putational costs are outweighed by the advantages offered by multiple safe value containers

in terms of lower trigger processing costs.

Figure 37 displays an example scenario where the source generates data updatesv(t1),

v(t2) andv(t3) at time instantst1, t2 andt3. Consider the single safe value container in

Figure 37(a). The data source being considered here delivers data which has ahigh rate of

changeandlow update frequency. The valuev(t2) at time instantt2 lies outside the current

safe value container. Hence, the safe value container is invalidated and a new safe value

container is computed. At time instantt3, the data value again lies within the safe value

container associated withv(t1); as this safe value container has been previously invalidated
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on receiving data updatev(t2), the safe value container associated withv(t1) is recomputed

as the new safe value container at time instantt3.

Figure 37(b) displays multiple safe value containers, denoted by shaded stripes, which

avoid the unnecessary recomputation of safe value containers described in the above sce-

nario. The valuesv(t1), v(t2) andv(t3) lie inside one of the multiple safe value containers

at each time instant, thus preventing data updates which thesingle safe value container

approach required.

Algorithm 4 : Multiple Safe Value Container Computation Algorithm
Input : o, a

Output : {svcBlocks}
[rl, rh]← getRangeBlock(a);1

T ′ ← getIntersectingTriggers(o, [rl, rh]);2

{svcBlocks} ← [rl, rh];3

if (T ′ 6= φ) then4

getMultSvc← true;5

for (i = 0; i < |T ′|; i + +) do6

if (T ′
i.low <= a && a <= T ′

i.high) then7

getMultSvc← false;8

break;9

end10

end11

if (!getMultSvc) then12

{svcBlocks} ← φ;13

[l, h]← compSingleSvc(o, a);14

{svcBlocks} ← [l, h];15

end16

else17

{svcBlocks} ← [rl, rh] -
⋃|T ′|

i=1
[T ′

i.low, T ′
i.high];18

end19

end20

return {svcBlocks};21

Algorithm 4 outlines the basic algorithm for computing multiple safe value contain-

ers. The algorithm accepts as inputs the objecto and the attribute valuea associated with

the objecto and delivered by the single-dimensional data source. A set of multiple safe

value containers{svcBlocks} is computed. Similar to algorithm 3, the value range of the

attribute is divided into a number of range blocks. The rangeblock [rl, rh] within which

the current attribute valuea lies is computed (line 1) and the set of triggersT ′ relevant to
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objecto intersecting the range block[rl, rh] is computed (line 2). If the set of intersecting

triggers is empty, the range block is returned as the set{svcBlocks}. Otherwise, the al-

gorithm determines if any of the intersecting trigger regions contain the current attribute

valuea (lines 5-11). If the attribute valuea lies within any relevant trigger regions, the

algorithm resorts to computing a single safe value container using the procedure outlined

in algorithm 3 (lines 12-16). In case the attribute value lies outside all relevant trigger re-

gions, the algorithm computes multiple safe value containers as illustrated in Figure 37(b).

The multiple safe value containers represent the range block except the region covered by

the union of relevant trigger ranges[rl, rh] -
⋃|T ′|

i=1 [T ′
i.low, T ′

i.high] (lines 17-19).

5.4.3 Multi-dimensional Safe Value Containers

In the previous section, we described algorithms for computation of safe value containers

for single-dimensional data. However, data streams may deliver multi-dimensional data

instead of single-dimensional data, thus requiring computation of multi-dimensional safe

value containers. The attributes being delivered by a multi-dimensional data source are

not independent of each other; thus, considering these attributes to be independent and

computing single-dimensional safe value containers for each dimension leads to inefficient

data processing. For example, the data stream delivering location updates provides two-

dimensional data(x, y) denoting the current location of the mobile user.

Similar to single-dimensional safe value containers, multi-dimensional safe value con-

tainers aim to reduce the number of data updates which need tobe evaluated against the set

of installed triggers. Section 5.4.1 defined the requirements for safe value container charac-

teristics. Multi-dimensional safe value containers may have some additional requirements

like compact representation. For example, two-dimensional safe value containers for lo-

cation updates need to be communicated back to the mobile user over a wireless channel

which may lead to significant communication costs and energyconsumption on the mobile

client. A rectangular-shaped two-dimensional safe value container requires only two points
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(bottom-left and top-right) for representation and can be considered to be suitable to meet

the requirement of compact representation. More complex-shaped (irregular) safe value

containers may have higher overhead for communication due to more complex representa-

tion.

5.4.3.1 Two-dimensional Safe Value Container Computation Algorithm

We now outline the procedure for computation of two-dimensional safe value containers.

The underlying concepts may be applied to extend this approach to safe value container

computation for higher dimensions. We use the concept of dominating point and appro-

priate heuristics to find the skyline points [88, 101] which form the corner points of the

rectangular safe value container in two-dimensional space. In order to reduce the safe

value container computation costs, relevant triggers in the data space only in the vicinity

of the current value(a1, a2) are considered. This is achieved by overlaying a grid structure

over the two-dimensional space associated with the data being delivered by the source. The

algorithm accepts the two-dimensional data value(a1, a2) and the current two-dimensional

grid cell in which the data value resides as inputs. The set oftriggers intersecting this

two-dimensional grid cell are considered for safe value container computation. This step

is analogous torange blockcomputation for single-dimensional data. In case no relevant

triggers intersect the grid cell, the entire two-dimensional cell is returned as the safe value

container. Otherwise, the algorithm proceeds to calculatethe safe value container by ap-

plying the concept of dominating points and skyline computation as mentioned earlier.

The algorithm partitions the two-dimensional grid cell into four quadrants with(a1, a2)

as the origin. We define a set ofcandidate pointsand a set oftension pointsfor each

quadrant. The candidate point set is the set of points which can potentially form a corner

point of the rectangular safe value container. Tension points are obtained from the set of

candidate points by ensuring that only points that form largest possible rectangular regions

not overlapping the spatial region associated with any relevant trigger are selected.
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The set of candidate points is determined as follows. Firstly, the spatial region corner

for each relevant trigger is selected as a candidate point inits appropriate quadrant. For

triggers which do not completely lie inside the grid cell, the intersection points of the cell

boundary and the trigger spatial region are considered as candidate points instead of the

corner points which fall outside the grid cell. Secondly, for trigger spatial regions which

intersect the x-axis or y-axis of the coordinate axes with origin at (a1, a2), we also consider

points of intersection of the triggers with the axes as candidate points. The algorithm trims

the set of candidate points in the next step. Firstly, in casemultiple candidate points in a

quadrant intersect the x-axis (or y-axis), all candidate points other than the point on the

x-axis (or y-axis) closest to the origin are removed from thecandidate point set. If no

intersecting points are present on the x-axis, the point of intersection of the x-axis and the

cell is added to the candidate point set. Further, we remove points whichfully dominate

any other point from the candidate set. A pointP1 is said to fully dominate pointP2 if P1.x

> P2.x andP1.y > P2.y. Finally, the points are sorted according to increasing distance of

the x-coordinate from the origin. Points with the same x-coordinate are arranged in order

of decreasing distance of y-coordinate from origin.

The set of candidate points is then processed in the following manner to obtain the set of

tension points. Each tension pointTQi, whereQ ∈ {1, 2, 3, 4} represents the quadrant the

point belongs to, is assigned the same x-coordinate as the corresponding candidate point

CQi. TQi is assigned the same y-coordinate as that ofCQi−1, orTQi−1 if TQi andTQi−1 have

the same x-coordinate. The y-coordinate ofTQ1 is set as either the top bound of the cell or

the y-coordinate of a candidate point intersecting the y-axis if any.

The set of tension points form the opposite corner (oppositeto the origin) of the set

of candidatecomponent rectanglesin each quadrant. The final safe value container is

composed of the intersection of the component rectangles from each quadrant. Various

heuristics may be applied to determine the set of component rectangles to be used for

composing the rectangular safe value container.
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Figure 38: Two-dimensional Safe Value Container Computation

We now describe a simple greedy heuristic in order to quicklycompose a suitable safe

value container from the set of component rectangles. As opposed to an optimal solu-

tion which enumerates every possible combination of component rectangles and computes

metrics for each combination thus taking quartic time, our approach performs greedy de-

cisions. For example, we may attempt to determine the rectangular safe value container

with the largest perimeter in order to reduce the cost of trigger evaluations. To compute

this safe value container, a simple approach can be to first select the quadrant in which the

component rectangle with the largest perimeter is present.Quadrants are further selected

dependent on the perimeter of the largest component rectangle present in the quadrant.

At each step, the component rectangle which forms the rectangular safe value container

with the largest perimeter is selected. The algorithm continues until all four quadrants are

processed using this greedy heuristic.

Figure 38 shows an example of our safe value container computation approach. The

candidate point set for the given scenario is as shown in Figure 38(a). The black dots repre-

sent the candidate points, whereas the hollow dots represent points which are trimmed from

the candidate point set as explained above. Figure 38(b) displays the set of tension points

obtained from the candidate point set. Figure 38(c) displays the component rectangles

formed by selecting a few of the tension points. The final rectangular safe value container

is composed out of these component rectangles using the heuristic described above.
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Extension of this approach to larger dimensional spaces maylead to expensive com-

putations. For example, three-dimensional spaces would require the processing of relevant

points in each octant of the coordinate system. Our experimental evaluation is limited to

single-dimensional and two-dimensional spaces.

5.5 Experimental Evaluation

In this section, we evaluate the performance of the SLIM system to exhibit the benefits of

our safe containment techniques. We benchmark the performance of the SLIM approach

against three different approaches: in-transit processing (INT) which processes all data

updates in the order of their arrival (as outlined in section5.1), random update dropping

(RND) and the safe value container approach applied to the spatial attribute (SR) alone.

The experiments are designed to study the performance of these techniques based on the

following metrics: 1)Computation costs. These are measured as a combination of trigger

processing costs as well as safe value container computation costs. Lower computation

costs are desired in order to enhance system scalability. 2)Communication costs and en-

ergy consumption. The system aims at reducing client-to-server communication costs, es-

pecially in a wireless environment where high communication costs also lead to excessive

energy consumption on the mobile client. 3)Trigger activation success rate. We aim to

achieve 100% trigger activation success rate in order to provide a high level of QoS. The

sequence of triggers which should be activated are determined by the in-transit processing

approach. This approach has very high computation costs, thus, it is practically impossible

for this approach to activate all triggers. We relax the real-time processing requirements

for this approach in order to determine the trigger activation sequence.

5.5.1 Experimental Setup

We simulate the proposed mobile information monitoring system using an event-based

simulator. The event-based simulator consists of two parts, one responsible for generating

mobile user movement traces and the other responsible for modeling the arrival of data
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from multiple sources at a large number of locations of interest. The mobile user movement

simulator generates a trace of vehicles moving on a real-world road network using maps

available from the National Mapping Division of the U.S. Geological Survey (USGS [8])

in Spatial Data Transfer Format (SDTS [10]). Vehicles are randomly placed on the road

network, according to traffic densities determined from thetraffic volume data in [53],

ensuring appropriate traffic densities on different road classes like expressway, collector

and arterial roads.

The simulator simulates the motion of vehicles on the road network with the velocity

information presented in Table 3. At the intersections, vehicles may move in any direction

with attached probability values in order to keep traffic densities on various road classes

constant. We use a map of Atlanta and surrounding regions, which covers an area around

1000km2 in expanse, to generate the trace. Our experiments use traces generated by sim-

ulating vehicle movement for a period of one hour with results averaged over a number of

such traces. Traffic volume values allow us to simulate the movement of a set of 10,000

vehicles with each vehicle generating a set of position parameters during the simulation.

Default values require each vehicle to generate location updates with a period of0.5 sec-

onds.

The other part of the simulator models multiple data sourcesgenerating data relevant to

the locations of interest. A default set of 10,000 locationsof interest uniformly distributed

over the entire map region are considered. The data arrival at the mobile information moni-

toring server is modeled as a poisson process; hence, the interarrival times are exponentially

distributed with the mean arrival rate as expressed in Table3. A maximum of twenty data

sources are considered in the system with a different set of attributes monitored at each

location of interest. The default trigger information consists of a set of 10,000 triggers with

the fraction of private, shared and public triggers installed in the system determining the

number of triggers relevant to each client. We consider a dynamically changing trigger set

where triggers are inserted and deleted periodically.
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Table 3: Experimental Setup Parameters
Parameter Default Value Value Range
# Mobile Users 10K –
# Locations of Interest 10K –
# Triggers 10K –
# Data Sources 10 10 - 20
Grid Cell Size (sqkm) 1.1 0.01 - 10
Range Block (% of value range) 50% 5%-50%
Location Update Period 0.5 sec –
Data Update Period 1, 2, 5, 10 sec 1 - 20 sec
Mean User Speed (km/h) {50, 60, 90} –
User Speed Std. Dev. (km/h) {10, 15, 20} –
Data Value Rate of Change Mean (per
sec)

{0.0625%, 0.125%,
0.25%, 0.5%, 1%}

–

Data Value Rate of Change Std. Dev.
(per sec)

{0.005%, 0.01%,
0.02%, 0.04%,
0.08%}

–

Fraction ofPrivate, Sharedand Public
Triggers

{0.6, 0.3, 0.1} {0.45-0.66, 0.3-
0.35, 0.01-0.2}

Each experimental setup considers default values, as shownin Table 3, unless men-

tioned otherwise. This simulator setup allows us to test therobustness of our framework

under realistic mobility and non-spatial data arrival patterns. Indexing structures like B-

tree [37], R*-tree [31] and X-tree [33] are used for single-dimensional, two-dimensional

and multi-dimensional data respectively. Even installed triggers are indexed using these

indexing structures. Note that the performance gain of our safe containment techniques is

independent of the underlying indexing mechanisms.

5.5.2 Experimental Results

5.5.2.1 Limitations of In-transit Processing and Random Dropping Approaches

This experiment is designed to expose the limitations of thein-transit processing and ran-

dom dropping approaches. We vary the fraction of public triggers from 0.01 to 0.2 - higher

fraction of public triggers results in each client having more relevant triggers in the system

- and study the performance of the in-transit processing approach (INT) and the random

dropping approach for drop probabilities of 0.2, 0.5 and 0.8(RND 0.2, RND 0.5, RND
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Figure 39: Performance of in-transit processing and random dropping with varying frac-
tion of public triggers

0.8).

Figure 39(a) plots the CPU time for each approach as we vary thefraction of public

triggers. It can be observed from the figure that the in-transit approach is not at all scalable

even for the lowest fraction of public triggers as it requires nearly 200 minutes of CPU

time to process data received over 60 minutes (one hour trace). Figure 39(b) displays the

success rate for each approach and shows that this approach has 100% success rate. How-

ever, for all practical purposes, due to high computationalcosts, this approach will start

dropping updates due to the heavy load on the server. A simplealternative is to randomly

drop updates as they are received at the server. This approach suffers from two deficiencies.

Figure 39(a) shows the CPU time required for random dropping approaches with different

drop probabilities. The CPU load reduces as we increase the drop probability for the ran-

dom dropping approach. However, even with very high drop probability of 0.8 the system

is not scalable for higher fraction of public triggers. Higher processing costs are incurred

as we increase the fraction of public triggers installed in the system. Hence, it is not pos-

sible to determine the ideal drop probability to ensure system scalability; alternatively, one

can vary the drop probability with CPU load. However, the random dropping approaches

reduce CPU load at the cost of drop in success rate as can be observed from Figure 39(b).
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Figure 40: (a) Results with varying grid cell size for two-dimensional safe value contain-
ers. (b) Results with varying range block size for single-dimensional safe value containers.
(c) Results with varying grid cell size and range block size for single-dimensional and
two-dimensional safe value containers.

For low fraction of public triggers this success rate provides unacceptable QoS. Safe value

container-based approaches rectify the situation by allowing the system to determine and

drop only the updates which have zero probability of activating relevant triggers.

5.5.2.2 Determining Range Block Size and Grid Cell Size

This experiment is aimed at determining the appropriate grid cell size for two-dimensional

safe value containers and the range block size for single-dimensional safe value contain-

ers. First, we consider spatial and non-spatial data streams being delivered separately to

the server. Finally, we consider a mobile information monitoring system which receives

both spatial and non-spatial data streams concurrently. Figure 40(a) displays the evaluation

time and the number of update messages received at the serverfor a location data stream

utilizing the two-dimensional safe value container computation algorithm explained in sec-

tion 5.4.3.1. The figure shows the results for evaluation time as we vary the grid cell size

from 0.1km2 to 10 km2, plotted on the left y-axis. There are two costs involved in the

system: two-dimensional safe value container computationcost and the location update

evaluation cost for mobile clients positioned outside their current safe value container.

We can observe from the figure that the safe value container computation cost first

slowly decreases as we increase the grid cell size. This is due to lower number of safe value

container computations being performed for larger grid cell sizes. As the grid cell size is
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increased, a larger number of triggers in the vicinity of theuser are considered, allowing

for computation of larger safe value containers. This leadsto lower number of messages

being processed at the server for larger grid cell sizes as mobile clients stay within the safe

value container for longer time periods. The number of messages processed are plotted

on the right y-axis. However, with increasing grid cell sizes, each safe value container

computation becomes more expensive as it considers a largernumber of trigger regions.

For the largest grid cell size of 10km2, each safe value container computation is expensive

enough to outweigh the effect of lower number of safe value container computations being

performed. Thus, the safe value container computation costs exhibit an increase for this

grid cell size. The location update evaluation costs decline with increasing grid cell sizes

as fewer number of messages are evaluated at the server. The overall computation costs are

lowest for a grid cell size of 1.1km2 as visible from the figure.

Similarly, Figure 40(b) plots the evaluation times and the number of messages as we

vary the range block size for single-dimensional data on theleft y-axis. The safe value

container computation costs steadily decline as we increase the range block size. Again,

this is due to fewer number of messages being processed at theserver with increasing range

block size, as plotted on the right y-axis. Larger range block sizes allow us to compute

safe value containers of larger extent which leads to fewer number of data updates being

processed at the server. Even though the cost of each safe value container computation

increases with increasing range block size, the overall safe value container computation

costs slowly decline. Data update evaluation costs also decrease with increasing range

block size. Range block size of 50% has lowest total processing costs.

Figure 40(c) displays the evaluation time for the SLIM system with varying grid cell

size for two-dimensional location updates and range block size for single-dimensional data

updates. The figure plots the location update evaluation cost, two-dimensional safe value

container computation cost, data update evaluation cost and the single-dimensional safe

value container computation cost as stacked bars for different combinations of grid cell
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Figure 41: Performance comparison of in-transit, spatial safe value container and SLIM

size and range block size. SLIM also displays lowest overallevaluation costs for the com-

bination of grid cell size of 1.1km2 and range block size of 50%. We use these parameters

for further experimentation.

5.5.2.3 System Scalability

Our mobile system is designed with the goal of achieving 100%trigger activation success

rate. The following experiment considers only those approaches which can meet this cri-

teria and studies the performance of SLIM in comparison within-transit processing (INT)

and the safe value container approach applied to spatial data alone (SR). Note that the

success rate is not plotted as all of the above approaches achieve 100% trigger activation

success rate.

As can be seen from Figure 41, the SLIM approach outperforms in-transit processing

as well as the SR approach. The SLIM approach shows that interaction of spatial and non-

spatial data attributes further enhances system scalability. SLIM outperforms in-transit

processing by a margin of around 20 times and the SR approach by a margin of 5-8 times.

Updates which may satisfy their respective predicate conditions can still be dropped, in
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case, other predicate conditions are not likely to be satisfied for trigger evaluation. Due to

this interaction between attributes from different data sources, the SLIM approach exhibits

scalability even as we increase the number of data sources. The other two approaches fail

to exploit the effects of this interaction between multipleattributes.

5.5.2.4 Energy and Bandwidth Consumption at Client

Figure 42(a) displays the bandwidth consumption for mobileclients as we vary the fraction

of public triggers from 0.01 to 0.2. The bandwidth consumption is measured in terms of

number of messages sent from the mobile clients to the serverplotted on a logarithmic

scale. As can be seen from the figure, the in-transit processing approach requires a large

number of client-to-server messages. However, the number of messages remains constant

as we vary the fraction of public triggers. SLIM requires only 1.5% - 3.6% of number of

client-to-server messages required by the in-transit processing approach. The SR approach

requires same number of client-to-server messages as SLIM.This is due to the fact that each

mobile client in the SR approach is also aware of its own safe value container as in SLIM.

The benefit of SLIM over SR approach is experienced only in terms of enhanced server

scalability where the server may drop a position update fromthe mobile client based on the

interactions with other attributes. The mobile client cannot determine any such interactions

with other attributes without communicating with the server. Another observation from the

figure is that the number of client-to-server messages increases as we increase the fraction

of public triggers. At higher fraction of public triggers, higher number of triggers are

relevant to each client thus resulting in smaller safe valuecontainers. As a result, mobile

clients move out of their safe value containers more often and need to communicate with

the server more frequently.

Figure 42(b) displays the energy consumption on each mobileclient in milliwatt-hours.

Once again, SLIM and SR approaches have the same energy consumption on the mobile
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Figure 42: Performance comparison of bandwidth and energy consumption at mobile
client.

client. As we vary the fraction of public triggers, the energy consumption of these ap-

proaches varies from 2.8% - 4.6% of the energy consumption ona mobile client under the

in-transit processing approach. The in-transit approach has the same energy consumption

irrespective of the fraction of public triggers. Energy consumption is estimated as a combi-

nation of power required for client-to-server communication and the computation required

on the client [107]. Wireless communication costs form the dominant part of energy con-

sumption costs on mobile clients. Lower communication costs provide a huge benefit in

terms of lower energy consumption on the mobile client. SLIMalso requires the mobile

client to monitor its position within the safe value container, thus leading to some addi-

tional energy consumption. However, the energy consumption due to the computation on

the client is negligible when compared to the savings in energy consumption due to lower

wireless communication costs.

5.5.2.5 Single (S) vs. Multiple (M) Safe Value Containers

This set of experiments provides a comparison of the performance of the two approaches for

safe value container computation for single-dimensional data, namely, single and multiple

safe value container computation. Figure 43 displays the results as we vary the average
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Average 
Update 
Period 

(seconds)

Single SVC
(# messages in 

millions)

Multiple SVC
(# messages in 

millions)

Gap 
(%)

1 1.749 1.749 0
2 1.643 1.640 0.18
5 1.666 1.638 1.56
10 1.622 1.558 3.95
20 1.490 1.403 5.84
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Figure 43: Performance comparison of single vs. multiple safe value containers with
varying update period.

update period for the data streams from 1 second to 20 seconds. Figure 43(a) displays the

number of messages processed by each approach as we increasethe update period. At high

data frequency (low update period), the gap between the single and multiple approaches is

nominal and they process almost the same number of updates. However, as we increase

the update period, a significant gap appears between the number of updates processed by

the single and multiple safe value container approaches. This is due to the data values

jumping betweenthe multiple safe value containers leading to significantlylarger number

of dropped updates. Figure 43(b) displays the evaluation times for each approach as we

vary the average update period. Note that the multiple safe value container approach does

not perform significantly worse than the single safe value container approach, although the

container computation times for this approach are a little higher.

Figure 44 displays the results as we vary the average rate of change of data values

from 0.125% to 2% per second. Figure 44(a) displays the number of messages processed

by each approach as we increase the average rate of change of data values. At low rate

of change of data, the gap between the single and multiple approaches is almost invisible.

However, as we increase the data change rate, a significant gap appears between the number

of updates processed by the two approaches. Figure 44(b) displays the evaluation times for
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Average Data 
Value Rate 
Change Per 
Second (%)

Single SVC
(# messages 
in millions)

Multiple SVC
(# messages in 

millions)

Gap 
(%)

0.125 1.544 1.542 0.13
0.5 1.998 1.953 2.25
1 2.654 2.516 5.2
2 3.312 2.888 12.8
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Figure 44: Performance comparison of single vs. multiple safe value containers with
varying rate of change of data.

each approach as we vary the average rate of change of data. The total evaluation time for

the multiple container approach is slightly lower than thatfor the single container approach

at high rate of change of data due to significantly lower number of processed updates.

5.6 Related Work

An event-based location reminder system has been advocatedby many human computer

interaction projects [78, 97, 40, 80, 66]. In the realm of information monitoring, event-

based systems have been developed to deliver relevant information to users on demand [76,

30]. The SLIM system also needs to deal with the complexity ofmonitoring continuously

changing data from multiple data sources in order to triggerrelevant alerts in a non-intrusive

manner.

In the field of location-based queries, periodic reevaluation approach is commonly used

for continuous monitoring of moving objects [60, 83, 93, 115]. Incremental reevaluation

for range and kNN queries has been proposed in [83, 113]. [114, 116] propose the idea

of returning moving query results with a validity scope. TheSLIM system differs from

this work in two aspects. Firstly, our installed location-centric triggers do not demand

periodic evaluation or reevaluation like continuous queries; instead they require one-shot
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evaluation which should result in a notification being sent to the user when the trigger acti-

vation conditions are satisfied. Our work is focused on determining the opportune moment

for evaluating triggers relevant to a client. Secondly, unlike the SLIM system, none of

the previous work explores the impact of considering both spatial as well as non-spatial

predicates and the interaction between the different attributes for information processing in

mobile systems.

Streaming data processing optimizations include batch processing methods [22, 75] or

approximation processing [39, 106] to handle the large amounts of data. Fortunately, our

problem defines a finite number of objects, mobile users and locations of interest, for which

an infinite amount of continuously evolving information is being delivered. This makes it

possible to store data corresponding to each object in the form of its safe value container.

Data updates are processed against safe value containers todetermine if installed triggers

may be activated by an incoming update.
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CHAPTER VI

PRIVACYGRID ARCHITECTURE FOR ANONYMOUS

LOCATION-BASED SERVICES

6.1 Introduction

With rapid advances in mobile communication technologies and continued price reduction

of location tracking devices, location-based services (LBSs) are widely recognized as an

important feature of the future computing environment [38]. Though LBSs provide many

new opportunities, the ability to locate mobile users also presents new threats− the in-

trusion of location privacy [34, 53]. According to [34], location privacy is defined as the

ability to prevent unauthorized parties from learning one’s current or past location.

In LBSs, there are conceivably two types of location privacy− personal subscriber-

level privacy and corporate enterprise-level privacy. Personal subscriber-level privacy must

supply rights and options to individuals to control when, why and how their location is

used by an application. With personal subscriber-level privacy, each individual has lib-

erties to “opt in” and “opt out” of services that take advantage of their mobile location.

Corporate enterprise-level privacy is fundamentally different in that corporate IT managers

typically control when, why and how mobile location capabilities provide application ben-

efits to the organization as a whole. Within the enterprise, personal subscriber-level privacy

is sometimes irrelevant because location is a critical requirement for staff to function pro-

ductively while on the road. Asset tracking and workforce management are examples of

location-enabled enterprise applications. However, companies need enterprise-level pri-

vacy to preserve corporate secrets and maintain competitive edge. Location privacy threats

refer to the risk that an adversary can obtain unauthorized access to raw location data,

derived or computed location information by locating a transmitting device, hijacking the
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location transmission channel and identifying the subjectusing the device [54]. For exam-

ple, location information can be used to spam users with unwanted advertisements or to

learn about users’ medical conditions, unpopular political or religious views. Inferences

can be drawn from visits to clinics, doctor’s offices, entertainment clubs or political events.

Public location information can lead to physical harm, suchas stalking or domestic abuse.

Several approaches have been proposed for protecting the location privacy of a user.

We classify these techniques into three categories: (1) Location protection through user-

defined or system-supplied privacy policies; (2) Location protection through anonymous

usage of information; and (3) Location protection through pseudonymity of user identi-

ties, which uses an internal pseudonym rather than the user’s actual identity. As described

in [34], some location-based services can operate completely anonymously, such as “when

I pass a gas station, alert me with the unit price of the gas”. Others can not work without

the user’s identity, such as “when I am inside the office building, let my colleagues find out

where I am”. Between these two extremes are those applications that cannot be accessed

anonymously but do not require the user’s true identity, such as “when I walk past a com-

puter screen, let me teleport my desktop to it”. Here, the application must know whose

desktop to teleport but it could do this using an internal pseudonym rather than the user’s

true identity.

For those LBSs that require true user identity, strong security mechanisms such as loca-

tion authentication and authorization have to be enforced in conjunction with their location

privacy policy. In this chapter, we concentrate on the classof location-based applications

that accept pseudonyms and present the PRIVACY GRID framework for performing person-

alized anonymization of location information through customizable locationk-anonymity

and locationl-diversity, thus enabling anonymous location-based queries in mobile infor-

mation delivery systems.

Perfect privacy is clearly impossible as long as communication takes place. An impor-

tant question here ishow much privacy protection is necessary?Moreover, users often have
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varying privacy needs in different contexts. In PRIVACY GRID, we propose to use location

k-anonymity and locationl-diversity as two quantitative metrics to model the location pri-

vacy requirements of a mobile user. In the context of LBSs and mobile users, location

k-anonymity refers tok-anonymous usage of location information. A user is considered

locationk-anonymous if and only if the location information sent fromthe mobile user to a

LBS is indistinguishable from the location information of atleastk − 1 other users. Loca-

tion l-diversity is introduced to strengthen the privacy protection of locationk-anonymity

in situations where location information shared by thek users is sensitive. Increasingl

value to two or higher significantly reduces the probabilityof linking a static location or

a symbolic address (such as church, restaurant, doctor’s office) to a mobile user. Location

perturbation is an effective technique for implementingpersonalizedlocationk-anonymity

and locationl-diversity. Cloaking methods typically perturb the location information by

reducing its resolution in terms of time and space, referredto as spatial cloaking and tem-

poral cloaking respectively [53]. By reducing the spatial resolution, a spatial region that

containsk − 1 other users’ location information can be used to replace thespatial position

of the user. By reducing the temporal resolution, the messagecan be delayed for a certain

duration of time; the message may live long enough to find a spatio-temporal cloaking re-

gion that satisfies the maximum spatial and temporal resolution constraints and is shared by

at leastk − 1 other mobile users. The fundamental challenge is how to control the spatial

and temporal resolution reduction to the minimal amount that will enable mobile users to

preserve the desired level of location privacy while allowing LBSs to remain effective.

The anonymity model as adopted in various fields can provide an effective approach

to tackle the problem of location privacy. The aim of location anonymity is to provide

location information to LBSs in a manner which would prevent them from pinpointing the

exact location from which the message originated and consequently the user who created

the message. The concept of k-anonymity, as proposed in [100], has been widely accepted

as a feasible model for providing anonymity in relational databases. [53] first proposed
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extending this approach to location privacy and [48, 82] have built on thelocation k-

anonymitymodel proposed by [53]. Location k-anonymity emphasizes onmaking the user

location indistinguishable from the location informationof at leastk - 1other users.

In this chapter, we present the PRIVACY GRID approach to support anonymous location-

based queries in mobile information delivery systems. The design of PRIVACY GRID pro-

vides a unified and yet effective location anonymization framework for all types of location

queries so that mobile users can enjoy the convenience of LBSswithout revealing their

exact location information. We make three unique contributions in this chapter. First, we

provide a location privacy preference profile model, calledlocation P3P, which allows mo-

bile users to explicitly define their preferred location privacy requirements in terms of both

location hiding measures (i.e., locationk-anonymity and locationl-diversity) and location

QoS measures (i.e., maximum spatial resolution and maximumtemporal resolution). Our

location P3P model supports personalized and continuouslychanging privacy needs of a

diverse user base. Second, we develop fast and effective cloaking algorithms for provid-

ing locationk-anonymity and locationl-diversity while maintaining the utility of LBSs.

Concretely, ourdynamic expansiontechnique for bottom-up grid cloaking anddynamic

reductiontechnique for top-down grid cloaking provide high anonymization success rate

and yet are efficient in terms of both time complexity and maintenance costs. We also

propose a hybrid approach that combines the bottom-up and top-down search of location

cloaking regions to further lower the average anonymization time. Last but not the least,

we incorporate temporal cloaking functionality into the PRIVACY GRID location perturba-

tion process. Deferred processing of location anonymization requests within the temporal

delay constraint further enhances the anonymization success rate while maintaining the

desired quality of service (QoS). Our discussion on the new capabilities required for pro-

cessing anonymous location queries exhibits the benefits ofusing small cloaking regions

for anonymous query processing. The PRIVACY GRID approach is evaluated through exten-

sive experimentation, thus verifying that PRIVACY GRID location cloaking algorithms can
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provide close to optimal location anonymity as defined by peruser location P3P without

introducing significant performance penalties.

6.2 Related Work

Privacy has largely been the domain of policy-based solutions in the past, based on the

principles of user consent, purpose binding and deploymentof adequate security measures

to protect user data [70]. This entails a detailed understanding of the service provider poli-

cies on the part of the user; on the other hand, service providers need to formulate privacy

policies and notify users of any changes in policies leadingto substantial overhead in at-

tempting to protect user privacy. Even despite the substantial overhead, policies are merely

service agreements and do not have any guarantees associated with them. Some of the prior

work in location privacy has focussed exclusively on such policy-based approaches [42].

Thek-anonymity approach to privacy protection was first developed for protecting pub-

lished medical data [99]. Anonymity is a system property which implies inability to asso-

ciate information with a particular individual [91]. Techniques such as generalization and

suppression can be used to deanonymize or hide the values associated with some sensi-

tive attributes (quasi-identifiers) in databases. Otherwise, the values associated with these

quasi-identifiersmay be associated with external information to uniquely identify individ-

ual records. In such a scenario,k-anonymity guarantees the inability of the adversary to

distinguish an individual record from at leastk − 1 other records. [29, 73] provide solu-

tions for optimalk-anonymization. Personalization of privacy requirementshas attracted

attention recently [48, 111]. Other related work includes anonymization of high dimen-

sional relations [20] and extending the concept ofk-anonymization vial-diversity [79],

t-closeness [74] andm-invariance [112].

The concept of locationk-anonymity was introduced in [53] wherek is set to be uni-

form for all users. The concept of personalized locationk-anonymity with customizable

QoS specifications, first introduced in [48], is adopted by several others [82, 51]. Most
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popular solutions for location privacy [53, 48, 82] have adopted the trusted third party

anonymization model, which has been successfully deployedin other areas such as Web

browsing [3]. Two representative approaches to personalized location anonymization are

theCliqueCloakalgorithm introduced in [48] and the Casper system [82]. TheCliqueCloak

algorithm relies on the ability to locate a clique in a graph to perform location cloaking,

which is expensive and shows poor performance for largek. The Casper approach performs

the location anonymization using the quadtree-basedpyramiddata structure, allowing fast

cloaking. However, due to the coarse resolution of the pyramid structure and lack of mech-

anisms to ensure QoS and constrain the size of the cloaking region, the cloaking areas in

Casper are much larger than necessary, leading to poor QoS perceived by the users. Our

experiments show that the PRIVACY GRID approach outperforms Casper and other exist-

ing location anonymization approaches in terms of efficiency and effectiveness, producing

cloaking regions that meet both location privacy and location service quality requirements.

In contrast to the trusted third party anonymizer model, a couple of research projects,

with Prive [51] being the most representative one, attempt to remove the trusted third party

anonymizer by relying on a decentralized cooperative peer to peer model and the exis-

tence of a trusted centralized certification server. The main technical challenge handled

in this work involves dynamic formation of nearby peer groups that can perform location

anonymization for each other. In fact, the PRIVACY GRID approach can be easily adapted to

such settings to perform the actual location cloaking amongselected peer groups. Another

thread of efforts is to perform location obfuscation at the mobile clients by introducing ran-

dom noises or utilizing nearby landmarks [56, 41], assumingmobile clients have sufficient

computation and communication resources to participate inboth location anonymization

and anonymous query processing tasks.
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6.3 PRIVACYGRID: An Overview

We assume that the LBS system powered by PRIVACY GRID consists of mobile users, a

wireless network, location anonymization servers and LBS servers. Mobile users com-

municate with the LBS servers via one or more PRIVACY GRID location anonymization

servers by establishing an authenticated and encrypted connection to the anonymization

server. Each location anonymization server connects to a number of base stations, tracks

the location updates of the mobile users in the range of thosebase stations and performs

location anonymization for both location queries and location updates from these mobile

users. Each location anonymization server has access to allpublicly available data which

can be used for ensuring locationl-diversity for user requests.

6.3.1 System Architecture

The PRIVACY GRID system promotes a three-tier architecture for supporting anonymous

information delivery in a mobile environment, as shown in Figure 45. The top tier is the

location P3P user profile model that captures users’ personalized location privacy require-

ments. The middle tier comprises of the location perturbation service typically provided

by a trusted third party location server, specialized in location tracking and anonymization

service. The third tier is dedicated to the transformation of raw location queries to anony-

mous location queries, enabling the processing of cloaked location queries at the individual

LBS providers. Each participating LBS provider will need to provide anonymous query

processing support and cooperate with the location anonymizer to provide the desired lo-

cation privacy protection for consumers. In the PRIVACY GRID development, we consider

the anonymous query processing component as an integral part of the solution.

Our location P3P model allows mobile users to specify when, how and with whom their

location information can be shared. In addition to the standard P3P specification [7], we

add four location privacy specific measures, two for location hiding constraints and two for

QoS constraints. The first measure is locationk-anonymity, which allows a mobile user
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Figure 45: System Architecture

to control her state of being unidentifiable from a set ofk − 1 other users. The second

measure is locationl-diversity, which allows the mobile user to control her state of being

unidentifiable from a set ofl different physical locations (such as churches, clinics, business

offices). This measure can be seen as a companion measure of locationk-anonymity and is

particularly useful in reducing the risk of unwanted location inference when there arek or

more distinct users at a single physical location (such as a clinic or a political gathering).

The third measure ismaximum spatial resolution, which allows the mobile user to control

the spatial resolution reduction within an acceptable QoS specific range. It can be changed

or adjusted according to the type of location service, the time of day, month or year, and on

a per message level. Similarly, the fourth measure ismaximum temporal resolution, which

controls the temporal delay acceptable for maintaining thedesired QoS.

The location anonymization component anonymizes the location information from mo-

bile users, by performing spatial and temporal cloaking, based on their P3P profiles before

passing the location information to the actual LBS providers(path 2 in Figure 45). The

detailed location cloaking algorithm design will be discussed in subsequent sections.
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The query anonymizer component is responsible for transforming each raw location

query into two components: (1) an anonymized location queryby replacing the exact loca-

tion of the mobile user with the location cloaking box produced by the location anonymiza-

tion module; and (2) the filtering condition that will prune the candidate set of query results

to produce the exact result to the original raw query posed bythe mobile user. For those

LBSs that offer location dependent services over public locations, such as restaurants, gas

stations, offices and so forth, only anonymized location queries are passed from the location

anonymizer to the respective LBS provider. Mobile users who allow their movements to be

tracked by certain LBSs may use their location P3P to specify how they want their location

updates to be cloaked and to which LBS servers their location updates can be provided.

Upon receiving anonymized location queries, the LBS providers will invoke the anony-

mous query processing module. Anonymous location query processing consists of two key

steps. First, each anonymized query will be evaluated at theLBS provider to produce the

set of candidate results. Second, the candidate set of queryanswers will need to be fil-

tered to get exact results. There are a couple of alternativeways of performing the filtering

step for anonymous query processing. For example, one can choose to have the location

anonymizer as the middleman between mobile users and individual LBS providers such

that the filtering task is carried out at the location anonymizer and the exact query result

is generated and returned to the mobile user through the location anonymizer (path 3A in

Figure 45). This approach adds additional load and bottleneck to the location anonymizer.

Alternatively, filtering can be performed at the mobile client. In this case, for each location

query received by the location anonymizer, the anonymized query will be passed to the

LBS provider, and the filter condition will be returned to the mobile user who issued the

query. The LBS provider will pass the candidate set of answersto be filtered at the client

(path 3B in Figure 45). Filtering at the client will introduce additional communication and

processing overhead. Thus it is critical to develop techniques that can minimize the amount

of processing to be performed at the mobile client side. We will dedicate Section 6.7 for
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discussing issues related to processing of anonymous location queries.

6.3.2 Location Privacy Requirements

In PRIVACY GRID the following requirements are considered essential for supporting anony-

mous location queries.

Personalized user privacy profile:We provide two measures for mobile users to specify

their location privacy requirements: locationk-anonymity and locationl-diversity. The

former allows a mobile user to control her state of being not identifiable from a set ofk− 1

other users. The latter allows a mobile user to control her state of being traceable to a set

of at leastl distinct public locations, which are typically referred toas symbolic addresses.

Location l-diversity is particularly useful in reducing the risks of unauthorized location

inference when there arek or more distinct users at a single physical location (such asa

clinic or a church). A mobile user may change her privacy preference level (k andl values)

as often as required or on a per message basis.

QoS guarantees:In order to provide effective location cloaking, PRIVACY GRID provides

two QoS measures which allow a mobile user to specify critical QoS constraints. The first

QoS measure is the maximum spatial resolution, indicating the amount of spatial inaccu-

racy the user is willing to tolerate to maintain acceptable QoS. The second QoS measure

is the maximum temporal resolution, ensuring that the delayintroduced for cloaking a re-

quest message should be within an acceptable time interval.By utilizing these two quality

metrics, PRIVACY GRID aims at devising cloaking algorithms that will find the smallest

possible cloaking region meeting desired privacy levels for each location anonymization

request.

Dynamic trade-off between privacy and quality: In PRIVACY GRID, we stress that loca-

tion perturbation algorithms should be capable of dynamically making trade-offs between

privacy and QoS. Unnecessarily large cloaking boxes will lead to not only poor QoS for

the mobile users but also larger result sets to be transported from the corresponding LBS
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provider and higher processing costs for filtering at eitherthe mobile client side or at the

location anonymizer, inevitably leading to larger delays for obtaining useful query results.

Efficiency and scalability: In PRIVACY GRID, a mobile user can change her location P3P

at any time. The cloaking algorithms should be effective andscalable in the presence of

changing requirements on both the number of mobile users andthe content of location P3P.

At the same time, the cloaking algorithms must be fast and capable of keeping the perceived

delays due to location anonymization to a minimum.

6.3.3 Basic Concepts

In this section, we define the basic concepts that are required for the subsequent discussion

of the PRIVACY GRID framework.

Universe of discourse (UoD):We refer to the geographical area of interest as the uni-

verse of discourse (or map), which is defined byU = Rect(x, y, w, h), wherex is the

x-coordinate andy is the y-coordinate of the lower left corner of a rectangularregion,w

is the width andh is the height of the universe of discourse. Basically, we consider maps

which are rectangular in shape.

Grid and grid cells: In our framework, we map the universe of discourseU = Rect(x, y, w, h)

onto a gridG of cells. Each grid cell is anα × β rectangular area, whereα, β are system

parameters that define the cell size of the gridG. Formally, a grid corresponding to the

universe of discourseU can be defined asG(U, α, β) = {Ai,j : 1 ≤ i ≤ M, 1 ≤ j ≤ N ,

Ai,j = Rect(x + i · α, y + j · β, α, β),M = dw/αe, N = dh/βe}. Ai,j is anα × β rect-

angular area representing the grid cell that is located in the ith column andjth row of the

gridG.

Position to grid cell mapping: Let ~p = (px, py) be the position of a moving object in the

universe of discourseU = Rect(x, y, w, h). LetAi,j denote a cell in the gridG(U, α, β).

Pmap(~p) is a position to grid cell mapping, defined asPmap(~p) = A
d px−x

α
e,d

py−y

β
e
.

Current grid cell of a moving object: Current grid cell of a moving object is the grid cell
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which contains the current position of the moving object. IfOm is a moving object whose

current position, denoted as~p, is in the Universe of DiscourseU , then the current grid cell

of the object is formally defined bycurr cell(Om) = Pmap(~p).

User privacy preference profile: PRIVACY GRID uses a personalized location privacy

model. A user registered with the anonymization server specifies her location privacy re-

quirements in terms of her desired user anonymity levelk, desired location diversity levell,

maximum spatial resolution{dx, dy} and maximum temporal resolutiondt. Each location

P3P record is of the form〈objid, LBSinfo, reqid, k, l, {dx, dy, dt}〉, whereobjid identifies

the user,LBSinfo is optional and provides the type and the identifier of the LBS this P3P

record is applied to andreqid is used to uniquely identify a service request posed by the

user with the givenobjid. We usek = 1 andl = 0 or l = 1 as the default setting, where

neither anonymity nor diversity are considered. Whenk and l use their default settings,

dx, dy, dt are set to unknown valuenull.

6.3.4 Location Anonymization Server

In PRIVACY GRID, each messagems received by the anonymizer is of the form〈objid, reqid,

{x, y, t}, k, l, {dx, dy, dt}〉. Theobjid andreqid uniquely identify a message. The coordi-

nate(x, y) and the timestampt together form the three dimensional spatio-temporal loca-

tion point of the mobile user who issued the messagems. The parameters{k, l, dx, dy, dt}

denote the location P3P specified by the mobile user who issued this request. The lo-

cation anonymization server will transform the original messagems to a location per-

turbed messagemt of the form 〈h(objid||reqid), {X : [xs, xe], Y : [ys, ye], I : [ts, te]}〉,

whereh is a secure hash function,X : [xs, xe] andY : [ys, ye] denote the spatial cloak-

ing box of the message on x-axis and y-axis respectively, such thatxe − x, x− xs ≤ dx

and ye − y, y − ys ≤ dy; and I : [ts, te] denotes the temporal cloaking interval such

that te − ts ≤ dt. Furthermore, there are at leastk − 1 other mobile users and at least

l symbolic addresses located within the same spatio-temporal cloaking box defined by
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〈X : [xs, xe], Y : [ys, ye], I : [ts, te]〉. We refer to this process as spatio-temporal cloaking

based message perturbation. We will describe the PRIVACY GRID spatial cloaking algo-

rithms for finding an ideal spatial cloaking box〈X : [xs, xe], Y : [ys, ye]〉 that meets the

k-anonymity andl-diversity requirements in Section 6.4.

6.3.5 Evaluation Metrics

In this section, we define several metrics that will be used toevaluate the effectiveness and

efficiency of PRIVACY GRID location cloaking algorithms. The anonymization success rate

(ASR) and relative anonymity (relative diversity) levels are important measures for eval-

uating the effectiveness of the cloaking algorithms. Another useful effectiveness measure

is the user location distribution (ULD) with respect to the cloaking box. It measures the

strength of the location cloaking algorithm against inference attacks that attempt to guess

the actual location of the mobile users with respect to the center of the cloaking region.

Important efficiency measures include relative spatial resolution and message processing

time.

Anonymization Success Rate (ASR):The primary goal of our location cloaking algo-

rithms is to maximize the number of messages perturbed successfully while maintaining

their anonymization constraints, specified by their privacy and QoS requirements. We de-

fine the anonymization success rate as the fraction of messages cloaked successfully by an

algorithm with respect to the set of received anonymizationrequests. LetM denote the set

of anonymization requests issued to the system. The set of messages that are successfully

perturbed can be computed by{mt|mt = fcloak(ms),ms ∈ M}, wherefcloak(ms) denotes

a PRIVACY GRID location cloaking algorithm. Thus, the anonymization success rate of

fcloak(ms) is defined as follows:

ASR(fcloak(ms)) = |{mt|mt=fcloak(ms),ms∈M}|
|M |

.

Relative Anonymity and Relative Diversity Levels: This metric measures the achieved

anonymity and diversity levels for successfully cloaked messages normalized by the anonymity
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levelk and diversity levell in the mobile user’s location P3P. Intuitively, Relative Anonymity

Level (RAL) measures the ratio of anonymity achieved by the cloaking algorithm to the

user specifiedk-anonymity level, i.e.,k
′

k
and Relative Diversity Level (RDL) provides a

similar measure forl-diversity l′

l
, wherek, l denote the user-defined values for a message

ms andk′, l′ denote the actual values obtained for the perturbed messagemt(k
′ ≥ k, l′ ≥ l).

Note that for successful anonymization relative anonymitylevel cannot go below 1. Al-

though, the location cloaking algorithms aim at obtaining higher anonymity for the same

cloaking area, excessive anonymity achieved at the cost of cloaking the location to a much

larger region leads to poor QoS and costly processing of anonymous queries. Hence, the

lower the relative anonymity and relative diversity levels, the more effective the cloaking

algorithm.

Relative Spatial Resolution (RSR):This metric measures the ability of a cloaking al-

gorithm to provide the smallest cloaking area that meets thek-anonymity andl-diversity

requirements. Given a messagems and its perturbed versionmt, we can measure the RSR

by using the minimum spatial cloaking area as calculated by the cloaking algorithm. We

define the RSR of a cloaking algorithm over a set of perturbed messagesT as follows:

RSR = 1
|T |

∑

mt=fcloak(ms)∈T

√

2·ms.dx·2·ms.dy

||Bcl(mt).X||·||Bcl(mt).Y ||
, where(dx, dy) denote the maximal

spatial resolution constraints for messagems and(Bcl(mt).X,Bcl(mt).Y ) represent the di-

mensions of the cloaking boxBcl(mt). Higher relative spatial resolution measure implies

that the cloaked spatial region is smaller relative to the user-specified maximum spatial

resolution area and the cloaking algorithm is more effective.

User Location Distribution(ULD): This metric is used to measure the level of difficulty

in inferencing the location of a user within the cloaking region shared byk users. We de-

termine the user location distribution within the cloaked area by measuring the normalized

distance of the actual user position to the center of the cloaked area for each successfully

anonymized message. A uniform user location distribution implies the algorithm is more

effective in terms of robustness against aforementioned inference attacks as the actual user
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location may lie anywhere within the cloaked region.

Message Anonymization Time:This metric measures the run-time performance of the

cloaking algorithm in terms of time complexity. Efficient cloaking implies that the cloaking

algorithm spends less processing time to perturb messages.

6.4 PRIVACYGRID Spatial Cloaking Algorithms

In this section we introduce basic data structures and two dynamic grid-based location

cloaking algorithms: bottom-up spatial cloaking and top-down spatial cloaking, both aim-

ing at finding the smallest spatial cloaking box given the location of a mobile user. Ideally,

this means that there exists no smaller spatial cloaking boxthat satisfies both locationk-

anonymity and locationl-diversity requirements as well as the maximum spatio-temporal

resolution constraints defined in the users’ location P3P.

6.4.1 Data Structures

In PRIVACY GRID the entire UoD is divided into grid cells ofα× β size by superimposing

a grid on top of the UoD.α andβ are system-controlled parameters that can be tuned

based on a number of factors, such as the cloaking speed, granularity of cloaking boxes

and average size of user-defined maximum spatial resolutions. Figure 46 illustrates the

PRIVACY GRID Index (PI)and theCell Object Count Map (COCM)data structures.

PRIVACY GRID Index (PI): ThePI data structure allows for fast and efficient computa-

tion of object counts belonging to a particular region of theUoD. Figure 46 illustrates the

composition and construction of this grid-based object index. The mobile object index and

the still object index share the same data structure though maintained separately.

Cell Object Count Map (COCM): In addition to the mapping of each object to its current

grid cell maintained byPI, we use this data structure to keep a count of the number of

mobile objects and a count of the number of static objects (symbolic addresses, such as

gas stations, restaurants, offices, and so forth) located ineach grid cell. Maintaining this

data structure allows for fast computation of the total number of mobile users and the total
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Figure 46: Data Structures for PRIVACY GRID

number of static objects located in a given spatial area. Foreach grid cell, the count of

static objects remains unchanged most of the time. However,the count of mobile objects

may change as mobile users move from one cell to another.

6.4.2 Bottom-Up Grid Cloaking

The bottom-up grid cloaking approach starts the cloaking process by taking the base cell

containing the mobile object from which the cloaking request has originated as the candi-

date cloaking area. It performs two checks for each message with k or l higher than one

in order to determine whether this candidate cloaking area meets the privacy and QoS re-

quirements to be qualified as the ideal cloaking region. The first check is to determine if

the current cell meets the user-specified maximum spatial resolution constraints. A second

check looks up the cell object count map to determine ifk-anonymity andl-diversity re-

quirements are met. If the second check is successful, the candidate cloaking area will be

chosen as the cloaking region. If not, the algorithm will start the cell expansion process to

enlarge the candidate cloaking area to neighboring cells. The cell expansion process stops

when bothk-anonymity andl-diversity requirements for the cloaked message are met.

The core idea behind bottom-up cloaking is the execution of dynamic cell expansion

when the candidate cloaking region fails to meet the location privacy and QoS constraints.
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Dynamic cell expansion takes an opportunistic approach to expand the candidate cloaking

region to any of the four neighboring set of cells.

The decision on which of the four cells to choose first is basedon the object counts; the

neighboring cell(s) with the highest object count will be chosen for expansion, generating

the new candidate cloaking box. Each candidate cloaking boxis composed of a set of

adjacent cells and is encoded by the row and column index of the these selected cells. We

maintain theselected rowsand theselected columnsfor all candidate cloaking boxes in

order to infer the selected cells of the final cloaking area. The current candidate cloaking

box may be expanded in any direction (North, South, East or West) by adding the row

above the uppermost selected row (or below the lowermost selected row) or the column to

the right of the rightmost selected column (or to the left of the leftmost selected column),

thus dynamically building the cell-based cloaking box by selecting and adding the rows or

the columns which lead to the maximum object count collectively.

For every odd iteration, the algorithm determines whether to add a row or a column as

the cloaking area may be expanded in any direction. For even iterations, the algorithm ex-

pands the cloaking area, depending on whether a row or columnwas added in the previous

iteration, in order to ensure that no vertical or horizontalskew is introduced. For exam-

ple, if the algorithm added a row during the previous iteration, the current iteration would

expand the cloaking box by addition of an adjacent column. The cell expansion steps are

recursively repeated as long as the sum of object counts inall cells in selected rows and

columns is less than the requiredk-anonymity andl-diversity levels. Upon meeting both

the privacy and the QoS requirements, the algorithm uses theselected rows and columns to

determine the grid cells forming the final cloaking area.

Figure 47 presents a walkthrough of the bottom-up dynamic expansion by example.

In this example, we assume the user-definedk value is 20 andl value is 3. The cloaking

request originates from the shaded cell with the mobile object count (number at top-left

in each cell in Figure 47) of 6 and the still object count (number at bottom-right in each
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Figure 47: Bottom-Up Dynamic Expansion Example

cell in Figure 47) of 1. It is located at the second row and the second column in the grid.

We encode this candidate cloaking region by assigning the value of 2 to bothselectedRows

andselectedColsrespectively. Clearly, this cell fails to meet both thek-anonymity and

thel-diversity requirements. The algorithm starts the dynamiccell expansion process from

the current cell. All neighboring cells of the shaded cell are considered. Given that the

first row to the north increments the mobile object count to 12, the highest among all four

neighboring cells, it is chosen to be the first cell for expansion. We add the row number 1

into theselectedRowsto encode the new candidate cloaking region. Even though thetotal

still object count in this candidate cloaking box is 3, satisfying thel-diversity requirement,

the total mobile object count of 12 does not meet the user-specified k-anonymity require-

ment of 20. Thus the algorithm starts the next iteration of cell expansion. In this iteration,

we choose one of the two neighboring columns of the candidatearea to expand. We first

consider the column to the left (first column in grid), which is not sufficient to meet the

privacy requirements. Then we consider the column to the right (the third column in grid)

which provides a cloaking area with the object count of k’=21, sufficient to meet thek-

anonymity requirement. Thus the algorithm terminates and returnsselectedRows = {1, 2}

andselectedCols = {2, 3}.
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In fact, there are two ways in which cell expansion can be performed: (1) static cell

expansion based on a pre-defined pattern, such as the quadtree-based grid expansion [82]

or (2) dynamic cell expansion that opportunistically determines appropriate neighboring

cells to expand the candidate cloaking region at run time. Itis interesting to note that

the static expansion approach promotes static cloaking following a pre-defined structure.

For example, the pyramid approach in [82] uses the quadtree-based pyramid structure and

some steps may expand the cloaking area to a pre-defined parent cell along the pyramid

hierarchy, quadrupling the cloaked area, limiting the ability of the algorithm to explore

all options of varying granularity. Though such a static cloaking approach is simple and

fast, it suffers from a number of weaknesses. For example, pyramid cloaking expands the

cloaking area to two or four times of the current size at each iteration, leading to a much

bigger cloaking area and a much higher anonymity level than required, which hurts the

QoS provided to the user and results in low anonymization success rate. In contrast to the

static cloaking approach that selects the cloaking area using a pre-built cell composition

structure, the dynamic expansion approach opportunistically expands the cloaking area,

enabling the algorithm to quickly locate an ideal cloaking area that meets privacy and QoS

requirements. Figure 48 shows pyramid expansion cloaking for the same example used

in Figure 47. Clearly, pyramid expansion results in a much larger cloaking area with a

much higher anonymity level than required. In contrast, thecloaking area produced by the

dynamic bottom-up approach is much smaller as shown in Figure 47.

6.4.3 Top-Down Grid Cloaking

In some scenarios, a top-down cloaking approach performs anonymization faster compared

to the bottom-up approach. For example, highk-anonymity and low maximal spatial res-

olution constraints may help the system quickly locate appropriate cloaking areas by us-

ing a top-down dynamic reduction approach as explained below. In PRIVACY GRID, we
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Figure 48: Pyramid Expansion Example

design the top-down dynamic grid cloaking algorithm by utilizing the user-specified max-

imum spatial resolution. We first find the largest grid cell region within the user-specified

maximum spatial resolution area, and encode the candidate cloaking area by a set ofse-

lectedRowsandselectedColsin a similar manner as is done in the bottom-up approach. If

the largest possible candidate cloaking box fails to meet the desired privacy requirements,

the message cannot be cloaked using user-defined privacy andQoS requirements and the

algorithm terminates. Otherwise, the top-down cloaking approach starts searching for the

smallest possible cloaking box that meets thek-anonymity andl-diversity requirements by

iteratively removing either an outermost row or column withthe lowest object count from

the candidate cloaking area. This iterative process shrinks the candidate cloaking box along

one of the four directions and terminates when object countsin candidate cloaking area fall

below the privacy requirement.

Figure 49 displays an example walkthrough of the top-down dynamic cloaking algo-

rithm. Recall the previous example where a mobile user in the cell at the intersection of

the second row and second column issued a location anonymization request. The shaded

area in the leftmost figure displays the largest possible cloaking area computed based on

the user-specified maximum spatial resolution. Given that the mobile object count is 35

and the still object count is 18, cell reduction is performedrepeatedly by first removing

the third row (lowest mobile object count) and then removingthe first column. The final
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Figure 49: Top-Down Dynamic Reduction Example

cloaking box consists of the four cells marked by the first tworows and the second and

third columns, withk′=21 andl′=6.

6.5 Analysis

We provide a brief analysis of the evaluation metrics described in Section 3.6.2 for the

cloaking algorithms described in the previous section. Theanalysis for the bottom-up

and top-down dynamic approaches is similar and a comparisonis made with the pyramid

approach [82]. We deal with a UoD havingnmobile users and a grid ofa rows× b columns

superimposed on top of the UoD with cell sizeα × β. Assuming uniform distribution of

objects over the UoD, object density per cell can be calculated asγ = n
a×b

. Assume the

location anonymization requests are made with desired anonymity levelsi ε [2, k], where

2m−1 ≤ k < 2m. The achieved anonymity level depends on the number of selected cells

and can be calculated asx × γ, wherex is the number of cells selected by the cloaking

algorithm to satisfy thek-anonymity requirement.

Assuming cloaking requests are uniformly distributed overthe range ofk values,

RAL =
1

k − 1
× [

x1 × γ
2

+
x2 × γ

3
+ ...+

xk−1 × γ
k

], (26)
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where∀ i ε [2,k], xi−1 ε 2s, s ≥ 0 for the pyramid approach as the number of cells

selected by the approach is a power of 2. For our dynamic cloaking approaches,∀ i ε [2,k],

xi−1 ε s
2 or s(s + 1), s ≥ 1 assuming that no skew is introduced in any direction,α ' β

anddx ' dy to allow number of selected rows to be equal to number of selected columns

(leading tos2 cells) or differ by one (leading tos(s+ 1) cells).

RAL =
1

k − 1

k
∑

i=2

[
xi−1 × γ

i
], (27)

where∀ i ε [2,k], xi−1 × γ ≥ i in order to satisfy the anonymity requirement. Similarly

assuming same maximum spatial resolution values(dx, dy) for all requests,

RSR =
1

k − 1

k
∑

i=2

√

[
4× dx × dy

xi−1 × α× β
] (28)

6.6 Hybrid Cloaking

An obvious enhancement to bottom-up and top-down cloaking algorithms is the hybrid

approach that takes advantage of the strengths of both approaches to produce a cloaking

algorithm thatruns fasterthan either of them. There are several ways to combine the

bottom-up and top-down methods. In the first prototype of PRIVACY GRID we adopt a

most straightforward approach. The main idea is to provide guidelines on how to appro-

priately decide whether to proceed in a bottom-up or a top-down manner upon receiving a

message cloaking request. For lowerk-anonymity level and higher maximum spatial res-

olution values, the algorithm will benefit by proceeding in abottom-up manner. On the

other hand, for higherk-anonymity level and lower maximum spatial resolution values,

the top-down approach clearly works faster than the bottom-up approach for finding the

ideal cloaking box. Hence, the ability of the hybrid approach to identify whether it should

proceed in a bottom-up or top-down manner upon receiving a cloaking request is crucial

to its effectiveness. We provide some guidelines through a formal analysis of the hybrid

cloaking algorithm in [24].
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Consider the UoD with a grid comprising of cells of sizeα × β superimposed on top

of it. We assume that objects are uniformly distributed overthe UoD and each cell hasγ

objects on average. The bottom-up (or top-down) approach advocates addition (or removal)

of rows and columns alternately. We assume that the final cloaking area consists of an

equal number of rows and columns. Given an anonymization request with anonymity level

k, we conclude thatc=
√

k
γ
, wherec2 is the average number of cells estimated to meet

our anonymity requirements. Consequently, given a base cell, we need to havec rows

andc columns to form the required cloaking area. Assume that the largest cloaking area,

as defined by the maximum spatial resolution values(dx, dy), consists ofmaxr rows and

maxc columns which can be quantified as below.

maxr = 2×
⌊

dy

β

⌋

+ 1;maxc = 2×
⌊

dx

α

⌋

+ 1 (29)

The bottom-up approach starts with a singe cell; locating anideal cloaking region is

expected to add only(c − 1) rows and(c − 1) columns on average, wherec=
√

k
γ
. The

top-down approach starts withmaxr rows andmaxc columns and is expected to remove

(maxr − c) rows and(maxc − c) columns on average. Hence the expected number of

iterations performed by the bottom-up approach (ibu) and top-down approach (itd) is,

ibu = 2×
{

√

k

γ
− 1

}

; itd =

{

maxr −
√

k

γ

}

+

{

maxc −
√

k

γ

}

(30)

The initial iterations performed by the top-down approach,on average, require more

computation when compared with the initial iterations performed by the bottom-up ap-

proach as the top-down iterations are initially acting on a much larger number of rows

and columns compared to the bottom-up approach. Let the average cost of iterations per-

formed by the top-down approach beδ times the average cost of iterations performed by the

bottom-up approach. From the above equations we can determine the cost of proceeding in

168



a bottom-up manner as,

Tbu = 2 ·
√

k

γ
· Costbu (31)

whereCostbu is the average cost of a single bottom-up iteration. Similarly, if the average

cost of one top-down iteration isCosttd = δ × Costbu, then

Ttd =

{

maxr −
√

k

γ
+maxc −

√

k

γ

}

· δ · Costbu (32)

For any anonymization request, the hybrid cloaking algorithm proceeds in a top-down man-

ner ifTtd < Tbu or equivalently ifδ <
2·

√

k
γ

maxr+maxc−2·
√

k
γ

, otherwise, it proceeds in a bottom-

up manner.

6.7 Processing Anonymous Queries

In PRIVACY GRID, each location query will be sanitized through the locationanonymiza-

tion server before proceeding to the relevant LBS provider. The location anonymization

engine will transform a raw location query into two components: anonymized query and

privacy sensitive filter. The anonymized query can be submitted to the LBS providers by

either the mobile user who issued the original query or by theanonymizer. However, the

privacy-sensitive filter will be kept either at the locationanonymization engine or on the

mobile client side. Upon receiving an anonymous query, the LBS provider will invoke the

anonymous location query processing engine residing at theLBS provider. Based on pro-

cessing logic, we divide anonymous location queries into two classes: location anonymous

queries over static objects (public location data) and location anonymous queries over mov-

ing objects (privacy sensitive location data). In either case, instead of exact answers, the

anonymous location query processor will return approximate query answers that include

the exact answer. The exact answer will be computed over the minimal approximate an-

swer either at the mobile client or at the location anonymizer, which then forwards the exact

answer to the mobile client.

Anonymous location query processing poses two unique challenges. First, we must
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Figure 50: Anonymous Query Processing

produce the minimal set of approximate answers, aiming at minimizing the amount of ad-

ditional communication and computation cost due to the location privacy support. Second,

with anonymous location queries, the exact query result must be delivered to the mobile

user. This may be done through the trusted location anonymizer, which performs the post-

processing and forwards the exact answer to the mobile user.Alternatively, the minimal

approximate answer can be forwarded directly to the mobile client by the LBS provider

through the subset of base stations that cover the region of the minimal query answers. The

base stations may broadcast the set of approximate answers with the secure query identi-

fier− the hash ofuserid andreqid (recall Section 6.3.4); only the mobile user who knows

the secretidentifier will be able to read the result set and perform the post-processing to

produce the exact answer.

Most of the spatio-temporal query processing techniques developed in the mobile data

management field to date cannot be applied directly to anonymous query processing. We

briefly describe below the anonymous query processing mechanisms required at the LBS

server. In order to process range queries associated with cloaked spatial regions instead

of spatial points and produce the minimal set of approximateanswers for each anonymous
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query, the anonymous query processor needs to process each query in three steps: (1)

determining the anonymous query minimum bounding rectangle (anonymous MBR) that

contains the minimal set of approximate answers, (2) transforming the anonymous location

query with anonymous MBR to an anonymity-aware range query, and (3) executing the

range query using the traditional spatial query processor to produce the minimal set of

approximate answers. Figure 50 illustrates this process using an example, where a moving

objectO1 issues a queryQ, requesting for some static objects (e.g. restaurants) within the

distancer from its current position. Figure 50(a) shows the Minimum Bounding Rectangle

(light grey rectangle) which forms the exact result set of the queryQ using a traditional

mobile query processor. Figure 50(b) shows the anonymous MBR(light grey rectangle)

which produces the minimal set of approximate answers for the perturbed version ofQ.

The cloaked query region produced by the location anonymization server is shown as a

dark grey rectangle contained inside the anonymous MBR. The mobile objectO1 could be

present anywhere within the cloaked query region. Thus the computation of anonymous

MBR will need to consider the four corner points of the cloakedrectangle and the entire

region within a maximum distancer from each corner point to ensure that the anonymous

MBR includes the exact answer of the query, as long asO1 lies within the cloaked region.

Different formulae will be required for computing anonymous MBR for different types

of location queries. For example, [82] presents an efficientalgorithm for privacy-aware

processing of nearest neighbor queries (kNN).

6.8 Experimental Evaluation

We divide the experimental evaluation of PRIVACY GRID into two components: the effec-

tiveness of our cloaking algorithms in terms of privacy and quality requirements and their

performance in terms of time complexity and scalability. Before reporting our experimental

results, we first describe the experimental setup, including the road-network based mobile

object simulator used in the experiments.
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Figure 51: Simulator for Experimental Setup

6.8.1 Experimental Setup

We extend the simulator from [48] to evaluate the effectiveness and performance of PRI-

VACY GRID cloaking algorithms. The simulator generates a trace of cars moving on a real-

world road network, obtained from maps available at the National Mapping Division of the

USGS [8], and generates requests based on the position information from the trace. The

simulator extracts the road network based on three types of roads− expressway, arterial

andcollectorroads. Our experimentation uses a map from the Chamblee region of Georgia

(Figure 51), which covers an area of approximately 168km2, to generate traces for a one

hour duration. Traffic volume data from [53] is used, generating a set of 10,000 cars on

the road network for Chamblee. Table 4 lists mean speeds, standard deviation and traffic

volume values for each road type. Cars are randomly placed on the road network accord-

ing to the traffic densities, start moving on the roads and proceed in a random direction at

the intersections. The simulator attempts to keep the number of cars on each type of road
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Table 4: Evaluation Setup Parameters
Road type Expressway Arterial Collector
Mean speed(km/h) 90 60 50
Std. dev.(km/h) 20 15 10
Traffic data (cars/h) 2916.6 916.6 250

constant with time. Each car generates a set of messages during the simulation. By default,

each message specifies an anonymity levelk from the range[2, 150] using a Zipf parameter

of 0.6 favoring higherk values. Our experiments do not considerl-diversity requirements,

but can be easily extended to measure relevant values. The maximum spatial resolution (or

spatial tolerance) values of the messages are selected independently using normal distri-

bution with default mean spatial resolution of600m and5% standard deviation. Though

all parameters take their default values if not stated otherwise, the settings of many param-

eters are changed in different experiments to show the impact of these parameters on the

effectiveness and efficiency of the algorithms.

6.8.2 Experimental Results

Our experimental evaluation of the PRIVACY GRID algorithms consists of two parts. First,

we evaluate the effectiveness of the location anonymization algorithms by measuring suc-

cess rate, relative anonymity level, relative spatial resolution, average cloaking time, user

location distribution and observe how these parameters behave when we vary the settings

of a number of parameters, such as grid cell size, anonymity levelk and maximum spatial

resolution{dx, dy}. Then we evaluate the scalability of the algorithms in termsof cloaking

time and update cost by varying the number of mobile users. Webriefly describe the im-

pact of incorporating temporal cloaking on the anonymization success rate of our dynamic

approaches. Our results show that the PRIVACY GRID dynamic grid cloaking algorithms

are fast, effective, scalable and outperform other location cloaking approaches in terms of

both anonymization success rate and cloaking QoS in the presence of a larger range ofk

values.
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Figure 52: Results with Varying Size of Grid Cells

6.8.2.1 Varying Size of Grid Cells

This set of experiments aims at measuring cloaking performance obtained by using differ-

ent settings of grid cell size. Figure 52 shows the results measured for different settings

of grid cell size which are equivalent to different settingsfor the grid size, ranging from

128 × 128 cells to1024 × 1024 cells. The user-defined anonymity levels for this set of

experiments are chosen in the range [10 – 50] with a Zipf distribution using parameter 0.6

favoring higherk values.

Figure 52(a) shows that the basic pyramid expansion (BPE) is fast in terms of cloaking

time and the cloaking time does not increase significantly with the decrease in the size

of grid cells. We implement the basic location anonymizer using the pyramid approach

as described in [82]. Due to the fine granularity of the grid structure and consequently

small cell sizes, the adaptive location anonymizer [82] does not work well due to frequent

splitting and merging of cells and experiences inferior performance compared to the basic

anonymizer. Except for the smallest grid size, both bottom-up dynamic expansion (BUDE)

and top-down dynamic reduction (TDDR) almost match the performance of BPE. More

rows (or columns) need to be added (or removed) to obtain ideal cloaking regions but

maintenance of data structures is less expensive for these approaches. Interesting to note

is that the actual cloaking time of all dynamic approaches isstill below 1.5 ms in all cases
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and such low delays are hardly perceivable. Hybrid dynamic expansion reduction (HDER)

performs better than both bottom-up and top-down approach,adapting appropriately to

each message, by deciding whether to proceed in a bottom-up or top-down fashion.

From Figure 52(b) we observe two interesting results. First, the success rate, the relative

anonymity level (RAL) and the relative spatial resolution (RSR) do not change much as we

vary the size of grid cells. Second, given a fixed grid cell size, say[24m × 28m], we see

sharp differences when comparing BPE with the three dynamic grid cloaking approaches.

BPE, though marginally faster for the smallest grid cell sizes (recall Figure 52(a)), has only

41% of the messages being anonymized successfully when QoS measures are considered,

while all the dynamic approaches have similar but much higher rate of success (> 92.8%).

All the dynamic approaches give low relative anonymity levels, which are close to one,

whereas the BPE approach has about 17% higher relative anonymity level, indicating that

it might be cloaking requests to unnecessarily larger spatial regions. This is confirmed

by the relative spatial resolution (RSR) measurement, which is about 40% higher for the

dynamic approaches when compared to BPE. We use grid cells of size [24m × 28m] for

further evaluation.

6.8.2.2 Varying User-defined Anonymity Levelk

This set of experiments evaluates cloaking performance with varying anonymity levelk

for various ranges: [2–10], [10–50], [50–100] and [100–150]. Maximum spatial resolution

values for the anonymity ranges are 400 m, 800 m, 1200 m and 1600 m (mean values with

5% standard deviation) respectively and are chosen to be large enough to theoretically al-

low cloaking of a large fraction of the messages. Figure 53 shows that BPE is able to cloak

only around 70% of the messages with anonymity levelk set in the range of [2–10] and

the success rate falls further to 50-60% with increasingk values. In contrast, the dynamic

approaches cloak 95-99.6% of the messages within user-defined maximum spatial resolu-

tion values (Figure 53(a)). From Figure 53(b), we see that BPEresults in higher relative
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Figure 53: Results with Varying Anonymity Levels

anonymity level but all dynamic cloaking approaches have relative anonymity levels close

to one, indicating that the anonymity levels obtained for all perturbed messages are very

close to the user-definedk.

Figure 53(c) shows the impact of varyingk on the cloaking time of all algorithms.

BPE is the fastest and its cloaking time does not increase muchwith the increase in the

user-definedk values. Though all dynamic cloaking algorithms will incur relatively higher

cloaking time with increasingk values, the amount of increase in cloaking time for BUDE

and HDER is lower when compared to TDDR. It is important to notethat the cloaking time

for the worst case (where the top down approach is used) is still below 3.5 ms fork values

in [100–150].

Figure 53(d) displays the impact of changingk values on relative spatial resolution
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Figure 54: Results with Varying Maximum Spatial Resolution

(RSR) obtained for the perturbed messages. Clearly, the dynamic cloaking algorithms have

considerably higher RSR (25-35%) than BPE approach for allk values, though RSR values

decrease as thek values become larger.

6.8.2.3 Varying Maximum Spatial Resolution Values

This set of experiments examines the performance of the algorithms by varying the max-

imum spatial resolution settings; messages are generated with anonymity levelk from the

range [10–50] with Zipf distribution using parameter 0.6, favoring messages with higher

k values. We vary the maximum spatial resolution value from 500 m to 800 m (mean

values with 5% standard deviation) and examine the effect ofdifferent settings of maxi-

mum spatial resolution on the effectiveness of the different approaches. Figure 54 displays

177



10 20 50 1000

0.5

1

1.5

Number of Users (in 000s)

Clo
ak

ing
 Ti

me
 (m

s)
BUDE
TDDR
HDER
BPE

(a) Anonymization Time

10 20 50 1000

0.5

1

1.5

2

2.5x 10
u

Number of Users (in 000s)

Up
da

te 
Co

st 
Pe

r S
ec

on
d BUDE

TDDR
HDER
BPE

(b) Update Costs

Figure 55: Results with Varying Number of Users

the results. The dynamic approaches are able to cloak all messages which can be theo-

retically cloaked for each maximum spatial resolution value, whereas BPE fails to cloak

a large number of messages (50-60% less as shown in Figure 54(a)). Figure 54(b) shows

that the relative anonymity levels for all cloaking algorithms do not change much when

the user-defined maximum spatial resolutions change significantly. Figure 54(c) shows

that only the top-down cloaking algorithm experiences an increase in cloaking time as the

maximum spatial resolution values increase, while other cloaking algorithms are not very

time-sensitive to maximum spatial resolution. Finally, Figure 54(d) shows that with in-

creasing maximum spatial resolution, the relative spatialresolution (RSR) for all cloaking

algorithms will increase proportionally, with a close to constant gap between BPE and the

dynamic grid algorithms.

6.8.2.4 Scalability

We now study the scalability of the PRIVACY GRID system with respect to the changing

number of mobile users. As the number of users in the system increases, we can expect

the cloaking time for algorithms to generally decrease, since messages will be anonymized

more easily, but the update costs for the grid-based structures will also increase. We use a

similar setup to that in Section 6.8.2.3 with the mean spatial resolution fixed at 800 m with
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5% standard deviation. We vary the number of users from 10K to100K and observe the

effect on the cloaking time and update cost. From Figure 55(a) we observe some interest-

ing results. First, the amount of difference in cloaking time among the algorithms changes

slightly with the increase in the number of mobile users. Second, TDDR shows a modest

increase in cloaking time with the increase in the number of mobile users in the system.

This is because the approach requires more iterations, since messages can be cloaked to

smaller spatial regions. However, BUDE displays a reverse trend− the cloaking time de-

creases as the number of users increases. This is because a higher density of mobile users

per grid cell will enable it to find the smallest cloaking box faster. Finally, we observe that

HDER adapts well to the increase in the number of users, offering similar performance as

BUDE in terms of cloaking time. Figure 55(b) measures the total number of updates per

second required to update the grid-based data structures asthe number of mobile users in-

creases. For this experiment, the grid index is maintained as a main memory data structure.

Each user provides a location update to the system after moving a distance of 100 m. We

observe that BPE requires a large number of updates as the number of users increases. A

nine-level pyramid is used in this experiment, requiring anaverage of 8 to 9 updates per lo-

cation update request. In contrast, the dynamic cloaking approaches use the flat grid index,

requiring only 2 updates for each location update request, which is significantly lower than

the BPE approach [82].

6.8.2.5 Distribution of User Location within Cloaked Areas

This experiment is designed to study the distribution of theuser location within the cloak-

ing area. Figure 56 displays the user location distribution(ULD) for the different cloaking

algorithms. Plotting the ULD allows us to observe the distribution of the normalized dis-

tance from the center of cloaking area to the actual user position for each of the algorithms.

The more uniform the distribution of user locations is within the cloaking areas, the harder

it is for an adversary to guess the actual location of the userwithin the cloaking area. We
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observe that all dynamic cloaking algorithms provide a rather uniform distribution of user

location within the cloaking area. None of the approaches reveal any significantly skewed

ULD patterns.

180



CHAPTER VII

MOBICLOAK: LOCATION ANONYMIZATION FOR MOBILE

USERS ON ROAD NETWORKS WITH RECIPROCITY SUPPORT

7.1 Introduction

The widespread availability of location sensing technologies has led to the successful de-

ployment of a large number of location-based services and applications. The plethora of

services available today provide a huge scope for business opportunities. However, the

availability of continuous location information opens thedoor for potential misuse [64] as

it can be used for stalking, performing inference about a user’s medical conditions, or for

location-based spam.

Location privacy refers to the capability of enabling a mobile node or a trusted server

to conceal the relation between location and personal identifiable information from third

parties. A fair amount of work has been performed to address the problem of location

privacy and most existing research can be classified into spatial cloaking [28, 48, 53, 82, 51]

and mix zone-based solutions [34, 54, 41, 46]. Most of the anonymization work focuses

on privacy-utility trade-offs of the anonymized location information. However, this fails in

both privacy protection and utility preservation for mobile users traveling on road networks.

The main problem arises due to the fact that the attained privacy level falls below the

promised privacy level when the underlying road network is considered. As an example,

we consider spatial cloaking techniques [28, 48, 53, 82] where the exact user position

is anonymized to an area containing other users, thus rendering an adversary incapable

of identifying the actual user position within the cloaked location. However, when the

underlying road network is considered it may be possible forthe adversary to identify that
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the user is moving on a particular road segment. This unauthorized exposure of segment-

identity relationship may have undesirable consequences.For example, if the road segment

can be identified as the only road to enter a religious or a political club, then the probability

of association of the mobile user with this sensitive publiclocation can be intrusive in

terms of privacy. Furthermore, utility of location information formulated using rectangular

cloaking boxes becomes insufficient for services which use road network distance rather

than Euclidean distance.

XStar [108] presents the first work of combining segmentl-diversity with locationk-

anonymity using star-based cloaking, aiming at offering privacy aware mobile services

over road networks. Concretely, by segmentl-diversity definition introduced in [108], a

subgraph ofl connected segments without a high degree forking junction can be a cloaked

subgraph. It is obvious that such subgraphs often fail to preserve the truel-segment diver-

sity since an adversary can easily link a request with a road segment in such a simple line

graph ofl segments with higher probability than1/l. An extreme case is when thesel seg-

ments are small logical segments of an actual long road segment linking two star structures.

Another problem with XStar [108] is the lack of explicit support of the reciprocity

criterion for successful cloaking. Informally, reciprocity states that by satisfying location

k-anonymity, there should be at leastk users using the same cloaked location in their ser-

vice requests. Unfortunately, many existing works [53, 82,28] fail to meet the reciprocity

requirement since their definition of locationk-anonymity simply requires that there are

k − 1 other users residing in the same cloaked location. As a result, instead of cloaking

k users with a unique cloaking region, each of thek users is cloaked separately, resulting

in different cloaking regions being reported by each of these k users. The probability of

linking a user with a request is much higher than1/k when reciprocity is not met [51].

In this chapter, we present MOBICLOAK , a reciprocity preserving road network-aware

location privacy model for users traveling on road networks. To address the problems in ex-

isting solutions, MOBICLOAK defines segments-anonymity as a companion metric to the
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userk-anonymity metric. Ourk-anonymity definition explicitly addresses the reciprocity

requirement whereas segments-anonymity mandates forking junctions as a necessary con-

straint to strengthen privacy measures. The MOBICLOAK approach makes three unique

contributions. First, we argue that the graph density of a cloaked subgraph is an important

quality measure for road network-based location privacy protection. High cloaking graph

density leads to high utility in terms of spatial resolutionin the road network. Compact

subgraphs lead to lower query processing costs based on current road network-based query

evaluation cost models [88].

Second, we present graph-based cloaking algorithms, offering different levels of opti-

mization in terms of privacy-utility trade-offs. Concretely, we userandomized expansion

andnetwork expansionas two näıve baseline techniques, each of which represents one end

of the privacy-utility spectrum. As opposed to the work presented in [108], our algorithms

ensure reciprocity of requests which are anonymized together. The randomized expansion

technique, although it displays high attack resilience, suffers from poor utility. In order to

deal with the static nature of the network expansion technique, which leads to low attack

resilience, we introduce service request density-aware techniques, which utilize additional

controlled randomness to provide higher resilience to replay attacks, while maintaining

desired graph density of cloaked location.

Last but not the least, MOBICLOAK permits deferred cloaking as a mechanism to allow

for trade-offs between spatial and temporal resolution of cloaking requests. We evaluate

the performance of MOBICLOAK anonymization algorithms through analytical modeling

and experimental evaluation.

7.2 Network-Aware Privacy Model

This section lays the groundwork for our road network-awarelocation cloaking algorithm

development. We formally introduce the MOBICLOAK location privacy model, the anonymiza-

tion procedure, and the evaluation metrics to study the effectiveness of our approach.
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7.2.1 MobiCloak Location Privacy Model

In MOBICLOAK , each mobile user has a personalized privacy preference profile (P3P) [28].

Two measures are used to capture the user-level location privacy requirements: userk-

anonymity and segments-anonymity. The first requirement ensures that the probability of

an adversary being able to link a mobile user with a request generated from the cloaked

subgraph is no greater than1/k. The companion requirement of segments-anonymity

ensures that the probability of an adversary being able to link a request with any road

segment in the cloaked subgraph is no greater than1/s. This addresses the vulnerability

of associating a user with a particular segment, which can beused to link the user to a

sensitive public location such as some religious club or AIDS treatment center.

Userk-anonymity cannot be guaranteed without ensuring segments-anonymity in the

road network-based model. For example, in Figure 57 a request from useru1 with privacy

parametersk = 5 ands = 3 is anonymized to include segmentsr3, r4 andr5.

As shown by the dotted bounding region, five users{ui}5i=1 are present within the region

on the road segments. As long as the adversary is unable to associate a road segment with

the service request, the probability of associating any user with the request is no greater than

1/5. However, if the adversary is able to associate the request with a particular segment,
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sayr3 in the figure, the userk-anonymity effectively falls to two. With these observations

in mind, we argue that an anonymized request must satisfy thedual requirements of user

anonymity and segment anonymity.

Definition 7.2.1 (User k-Anonymity) A user location is said to bek-anonymous if there are

(k − 1) other users within the same location released by the anonymization server.

Definition 7.2.2 (Segment s-Anonymity) The cloaked location of a user request is said to

be segments-anonymous if it contains at leasts distinct road segments, including the road

segment associated with the user’s actual location, as well asat least one forking junction

of degree higher than two.

Our definition of segments-anonymity removes the possibility of producing a successful

cloaked line subgraph. To further strengthen the attack resilience, we incorporate graph-

density metric in both our cloaking algorithms for selecting the best candidate segment to

expand and the evaluation of MOBICLOAK .

7.2.2 Location Anonymization Procedure

MOBICLOAK can be used by a trusted third party anonymizer to mediate between mobile

users and LBS providers. We assume that given the current location of a mobile user,

the anonymization server can determine the road segment associated with any generated

service requests based on the underlying road network topology. All service requests issued

by mobile users are forwarded to the anonymization server and represented by a message

of the formms = 〈objid, reqid, {r, t}, k, s, σs, σt〉. The first two components of the message

− objid andreqid uniquely identify a request. The spatio-temporal locationof the message

ms is represented by the road segment associated with the current user locationr and the

timestampt. The four parameters{k, s, σs, σt} denote the P3P for the user issuing the

service request.σs denotes the spatial tolerance of the request which affects the size of

the candidate result set [28] andσt denotes the service delay which the user is willing to

accept; together they constitute the utility metrics of theservice request.
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The general procedure of location anonymization is to take aservice requestms as input

and apply a specific road network-aware cloaking algorithm to generate a perturbed mes-

sagemt = 〈h(objid||reqid),S〉, whereh is a secure hash function,S denotes the cloaked

subgraph comprising at leasts road segments, includingr. Additionally, the cloaked sub-

graphS must meet thereciprocityrequirement. We formally define the reciprocity criterion

using the notation of MOBICLOAK privacy model.

Definition 7.2.3 (Reciprocity) A cloaked subgraphS is said to meet the reciprocity re-

quirement, iffS contains a set of service requestsM such that (i)|M | ≥max|M |
i=1 mi.k, (ii)

|S| ≥max|M |
i=1 mi.s, (iii) ∀ms ∈M , S is a subgraph ofBmax(mi.σs,mi.σt).

The cloaked subgraphS lies within themaximal spatio-temporal cloaking boxBmax(mi.σs,

mi.σt) of each messagemi ∈M . Thus, an optimal algorithm would partition the road net-

work graph intoreciprocity conformantsubgraphs which have minimal spatial resolution.

However, optimalk-anonymity on its own is an NP-Hard problem [81]. In MOBICLOAK ,

the key idea is to provide controlled randomness when we construct a cloaking subgraph

by expanding from the current segment on which a request resides. Concretely, to facil-

itate our implementation of reciprocity, we associate a segment profileκr with each road

segmentr as the basic data structure for MOBICLOAK algorithms to make an informed

decision of segment expansion at each algorithmic step.

Definition 7.2.4 (Segment Profileκr) Each road segmentr is associated with a segment

profile κr = 〈Mr,max
|Mr|
i=1 mi.k, max|Mr|

i=1 mi.s, min
|Mr|
i=1 mi.σs,min

|Mr|
i=1 mi.σt〉, whereMr

denotes the set of messages associated withr.

7.2.3 Evaluation Metrics

In this section, we define three sets of metrics that will be used to evaluate the cloaking

algorithms. The first set of metrics is used to evaluate the level of privacy protection,

and includes relativek-anonymity (krel), relatives-anonymity (srel), and segment entropy

(H(S)). The second set of metrics is used for evaluating the level of utility preserved in the
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cloaked subgraph produced by a cloaking algorithm. Important utility measures include

relative spatial resolution (σsrel(S)), relative temporal resolution (σtrel(S)) and graph den-

sity ρ(S). The third set of metrics, anonymization success rate (R) and anonymization time

t, is used for evaluating the cloaking algorithm performance.

Relative k-anonymity (krel) and Relative s-anonymity (srel): These two metrics mea-

sure the achieved levels of locationk-anonymity and segments-anonymity for success-

fully cloaked messages. Given a set of messagesM cloaked together, we definekrel =

1
|M |

∑

ms∈M
|M |
ms.k

. Similarly, srel = 1
|M |

∑

ms∈M
|S|

ms.s
. Although our cloaking algorithms

aim at obtaining higher anonymity, high anonymity achievedat the cost of a larger cloaked

subgraph leads to higher processing cost of service requests.

Segment Entropy (H(S)): The segment entropy is a measure of the privacy achieved by

our cloaking techniques. We measure segment entropy asH(S) = -
∑|S|

i=1 pi. log pi, where

pi denotes the probability of the user position being associated with theith segment inS.

Relative Spatial Resolution (σsrel(S)): This metric measures the ability of a cloaking

algorithm to provide compact subgraphs. Concretely, we define theσsrel(S) over a set of

messagesM by 1
|M |

∑

ms∈M
ms.σs

σ(S)
, whereσ(S) represents the spatial resolution (radius) of

the cloaked subgraphS.

Relative Temporal Resolution (σtrel(S)): This metric measures the ratio of the maximum

allowable delayσt over the amount of delay introduced by a perturbed messagemt. Let

I = [ts, te] denote the time interval between the earliest and latest message∈M . We define

σtrel(S) over a set of messagesM by 1
|M |

∑

ms∈M
ms.σt

|mt.I|
.

Average Graph Density (ρ(S)): The average graph density is a measure of the compact-

ness of the cloaked subgraph. The graph density for a cloakedsubgraph is defined asρ(S)

= 2.|E|
|V |.|V −1|

where|V |, |E| denote the number of nodes, edges respectively in the cloaked

subgraph.

Anonymization Success Rate (R): Let M denote the set of anonymization requests re-

ceived by the system. The set of messages that are successfully perturbed can be computed
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by {mt|mt = gcloak(ms), ms ∈ M}, wheregcloak(ms) denotes an anonymization algo-

rithm. The success rate is defined as follows:R(gcloak(ms)) = |{mt|mt=gcloak(ms),ms∈M}|
|M |

.

Message Anonymization Time (t): This metric measures the run-time performance of the

cloaking algorithm in terms of time complexity. Efficient cloaking implies that the cloaking

algorithm spends less time to perturb more messages.

7.3 Anonymization Algorithms

In this section, we present two sets of graph-based cloakingalgorithms. Each algorithm

accepts as input a messagems for a service request. Neighboring segments in the road

network are selected starting from the segment associated with ms. The segment selection

process is iterative and each step aims at meeting the privacy constraintsk ands without

violating the utility constraintsσs andσt for all requests associated with the set of selected

segments. The efficiency of a cloaking algorithm is determined by its segment selection

heuristic.

7.3.1 Näıve Baseline Cloaking Algorithms

The first set of cloaking algorithms serve as naı̈ve baseline methods and includes basic net-

work expansion and randomized expansion. Both algorithms make the segment expansion

decision solely based on the underlying road network topology. We now illustrate their

inability to provide a good balance between privacy and utility of cloaked locations.

Network Expansion: Network expansion is designed using a variation of Djikstra’s short-

est path algorithm. The procedure starts by initializing the cloaked subgraph with the seg-

ment associated with the initial service request. Segment profile κr is used to determine

the current privacy and utility constraints. The procedureiterates the segment expansion

process by first checking if the current subgraph satisfies the privacy requirements. If not,

the algorithm selects the road segment that is closest to theuser’s current position in terms

of road network travel distance [88] and satisfies the reciprocity requirement. The selected

segment is added to the intermediate cloaking subgraph, andanonymization parameters are
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Figure 58: (a) Network Expansion (b) Randomized Expansion (c) Density-Aware Expan-
sion (d) Density-Aware Randomized Expansion

updated with the profile of the newly added segment. If the current subgraph meets the reci-

procity requirements, the algorithm terminates successfully. Otherwise, the iterative pro-

cedure continues till the reciprocity requirements are met(success) or no new segment can

be added to the current subgraph (failure). The cloaked subgraphs generated are compact

with small spatial extent and high graph density. However, this approach suffers from poor

attack resilience since it uses a deterministic expansion heuristic. Figure 58(a) displays an

example anonymization using this approach with the order ofaddition of segments denoted

by the encircled numbers.

Randomized Expansion:Randomized expansion computes a segment pool comprising of

segments with profiles satisfying maximal spatial and temporal reciprocity requirements.

Then, starting with the initial segment, it randomly selects a segment from the segment
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pool to add to the cloaked subgraph. For example, Figure 58(b) shows the same exam-

ple fragment of the road network where useru1 issues a request. The profile of segment

j3j5, has(k, s) = (5, 3). However, request from useru8 hass = 5 which modifies the

overall privacy requirements. The algorithm terminates when the cloaked subgraph meets

the reciprocity criteria for privacy requirements. Randomized expansion allows for dis-

connected segments, which results in less compact subgraphs, and high service processing

costs. However, using a set of disconnected segments as the cloaked location offers high

resilience to replay attacks (see Section 7.4).

In summary, the use of the underlying road network topology in the network expansion

algorithm makes the segment selection static and deterministic in nature and thus results

in low attack resilience. On the other hand, randomized segment expansion leads to low

graph density, though it offers high attack resilience.

7.3.2 Service Request Density-Aware Cloaking

In order to overcome the inability of naı̈ve approaches to balance privacy-utility trade-offs,

we develop density-aware dynamic cloaking techniques. Themain idea is to utilize the

segment profiles (mainly|Mr|) associated with each segment, which is dynamic in nature,

to determine which segment should be added next to the cloaked subgraph. Given that the

request count|Mr| is highly dynamic, an adversary with knowledge of the underlying road

network is unable to perform replay attacks successfully. We show that density-aware ex-

pansion can generate subgraphs with higher graph density; yet it is more resilient than naı̈ve

network expansion. Density-aware randomized expansion introduces controlled random-

ness in the cloaking process in order to strengthen the attack resilience against adversarial

background knowledge.

Density-Aware Dynamic Expansion: Density-aware dynamic expansion takes a service

requestms and starts with the initial cloaking subgraphS containing only the segment
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r associated withms. Two priority queues are created and maintained: segment count-

based node priority queueQn and request count-based segment priority queueQs. The

two end nodes ofr are used to initializeQn and are inserted in the decreasing order of the

segment count connected to the node. The algorithm then inserts all segments connected

to these nodes which satisfy the spatial and temporal reciprocity requirements intoQs in

decreasing order of their request count. The segment at top of Qs is added to the cloaked

subgraph and the anonymization profile is updated based on the newly added segment.

Furthermore, the other end node of this segment is added toQn. All segments connected

to this node junction, satisfying the reciprocity requirement, are inserted intoQs. This

procedure is repeated till either a cloaked subgraph which meets the reciprocity criteria is

found (success) or no new segment can be added (failure).

Consider the example in Figure 58(c) where useru1 issues a request with(k, s) = (5, 5).

For simplicity, we assume that other requests in the neighborhood have lower privacy re-

quirements and do not violate spatial and temporal reciprocity requirements. The segment

j6j12 is added to the cloaking subgraph. The algorithm next inserts the segmentsj3j6, j4j6,

j5j6, j11j12, j12j13 connected to junctionsj6 andj12 intoQs in the decreasing order of their

request count. Segmentj11j12 has the highest request count of four and is selected to add

to the cloaking subgraph which currently contains the segment j6j12 only. At this point, the

k-anonymity requirements are met but thes-anonymity requirement is not satisfied. Thus

the algorithm continues to expand the cloaking subgraph. The procedure is repeated till the

cloaking subgraph meets the segments-anonymity requirement.

This approach leads to much higherk-anonymity (k = 14 in the above example) com-

pared to network expansion approach, thus providing higherprivacy with similar QoS. Fur-

thermore, unlike network expansion, density-aware expansion uses request counts, which

are dynamic in nature, as an expansion criterion making it harder for an adversary to mount

an attack. However, if an adversary could continuously log requests on the road network,

it is possible to perform a replay attack.
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Density-Aware Dynamic Randomized Expansion:In order to overcome the deficiency

of density-aware technique, we design an algorithm that canbreak the deterministic nature

of the request count-based expansion. Introduction of controlled randomness makes the

generated subgraphs highly attack resilient.

Concretely, this algorithm requires a modification to the previous approach. While

selecting a segment to add to the cloaking subgraph the algorithm does not select the

segment at the top ofQs. It considers all segments with request counts in the range of

[d|M top
r | ∗ (1−α)e, |M top

r |] and randomly selects a segment to add to the cloaked subgraph

from this subset.|M top
r | represents the request count associated with the segment atthe

top ofQs andα represents the randomization factor supplied by the system. This approach

makes it impossible for the adversary to launch a replay attack even in the presence of

complete knowledge of the segment profiles and service request positions (Section 7.4).

We illustrate this algorithm through Figure 58(d), where user u1 performs a request

with k = 5 ands = 5. The request is anonymized using the randomization factorα =

0.5. The request lies on the segmentj6j12. The algorithm next inserts segmentsj3j6,

j4j6, j5j6, j11j12, j12j13 connected to junctionsj6 andj12 intoQs in order of their request

count. Segmentj11j12, with a request count of four, lies at the head ofQs. All three

segments with mobile object counts in the range of [2, 4] are considered while expanding

the cloaking subgraph. The algorithm may randomly select any of the three segments to

extend the current cloaked subgraph. Figure 58(d) shows thealgorithm selectsj12j13 as the

next segment and proceeds in an iterative manner. The effectof the randomization factor is

studied in the next section.

7.4 Threat Model and Analysis

In this section, we outline an attack method which may be usedby an adversary to perform

a replay attack on the road network-based location anonymization solutions. We argue

that the resilience of the anonymization algorithms against this threat model determines the
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success of the solution in protecting location privacy of mobile users traveling on road net-

works. We consider the attack resilience of the algorithms against ad-hoc service requests

because we assume that all location services considered in our context do not require iden-

tity or pseudo-identity. Thus, each evaluation of the service request is considered as an

independent message in our location anonymization process. There is no pseudo-identity

based association for successive requests generated by thesame user.

The anonymization algorithm generates a set of segmentsS as the cloaked subgraph.

Ideally, an adversary is able to identify that a user belongsto a segments ∈ S, with a

probability no greater than1/|S|. In this scenario, each segment is indistinguishable to

the adversary from all other segments in the cloaked subgraph S. Our attacker-centric

threat model assumes that given a cloaked subgraphS and knowledgeK, the adversary

attempts to determine the probability of each segments ∈ S being the actual segment

associated with the user location. The knowledgeK of the adversary considered in this

work includes: 1) KnowledgeKr of the underlying road network, 2) KnowledgeKa of the

various anonymization algorithms, and 3) KnowledgeKo of the mobile object counts on

the various road segments. The adversary uses this information to conduct a replay attack

in order to determine the linking relationship between segment and user identity.

7.4.1 Replay Attack

Given that the segment associated with the user generating the service request wass′, we

denote the probability of a user identifying theith segment inS ass′, si = s′, aspi.

pi = prob[si = s′|S,K]

For each segmentsi ∈ S, the adversary attempts toreplay the algorithm assuming that the

segmentsi is associated with the exact location of the user. The probability of the adversary

generatingS using the replay attack, given the assumptionsi = s′ is,

pi,S = prob[S|si = s′,K].
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Therefore, we get,

prob[si = s′|S,K] =
prob[S|si = s′,K]

∑|S|
i=1 prob[S|si = s′,K]

For each algorithm, the adversary generates all the possible sets of segmentsSk, such that

|S| = |Sk| , k = [1...n]. Then,

prob[S|si = s′,K] =
k

∑

j=1

bj
n
,

wherebj = 1 if Sk = S, elsebj = 0.

7.4.2 Algorithm Analysis

Now we analyze each of the algorithms to determine the probability of an adversary iden-

tifying the ith segmentsi to be associated with the exact user location.

Randomized Expansion:Randomized expansion selects the(|S−1|) segments at random

and adds them to the cloaked subgraph comprising of the segment associated with the actual

user location. The replay attack model will determine that the likelihood of each segment

being identified ass′ is equal, i.e.

prob[si = s′|S,Kr,Ka] =
1

|S| ,∀i ∈ [1...|S|].

Network Expansion: Under this model, the(|S| − 1) extra segments are produced using

a deterministic algorithm. The actual segments′ associated with the exact user location is

very likely to generateS as the subgraph. The generated subgraph may not be equal to

S considering the point of the segment used for generating thesubgraph. Other segments

may or may not generate the subgraphS. This approach is likely to have low entropy value

as verified by our experiments. The knowledge available to the adversary is assumed to be

Kr andKa.

Density-Aware Dynamic Expansion:Once again, the(|S| − 1) extra segments are pro-

duced using a deterministic algorithm. The only randomnessarises in tie-break situations

where more than one segment is present at the top of the priority queue with the same
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Figure 59: Possible Attack on Mobility-Aware Dynamic Network Expansion and Removal
of Vulnerability by Introduction of Controlled Randomness

number of mobile objects. The actual segments′ associated with the exact user location

will generateS as one of the possible subgraphs. Other segments may or may not gener-

ate the subgraphS. This approach is likely to have low entropy value as verifiedby our

experiments. The knowledge available to the adversary is assumed to beKr,Ka andKo.

Density-Aware Dynamic Randomized Expansion:This approach is likely to generate

lots of possible subgraphs for each segment inS dependent on the value of the randomness

factorα. Higher the value ofα, larger the number of possible segments which may be

added to the current cloaked subgraph. Thus,α controls the number of possible subgraphs

which may be generated using a particular segmentsi as the starting point. Higher the value

of α, lower the probability of an adversary being able to identify the segment associated

with the exact user location. The knowledge available to theadversary is assumed to be

Kr,Ka andKo.

Figure 59 displays an example attack on the mobile object count based network ex-

pansion algorithm. In Figure 59(a), useru1 on segmentj4j8 issues a LBS request with

(k, s) = (15, 3). Assume the algorithm generates the cloaked subgraph comprising of the

three segmentsj4j8, j4j7 andj7j8, as displayed in the figure in solid lines forming a tri-

angle. An adversary using the replay attack can deterministically conclude that the exact

location ofu1 lies onj4j8. This is because if the exact location ofu1 was on either segment

j4j7 or segmentj7j8, the algorithm should result in a different cloaking subgraph as shown

in Figure 59(b). In contrast, if we use the randomized mobility-aware network expansion
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algorithm with the randomization factor set toα = 0.5, the cloaked subgraph generated by

this algorithm is displayed in bold lines shown in Figure 59(c). Clearly, every anonymiza-

tion execution will possibly generate a different cloaked subgraph irrespective of which of

the three segments the user position is being associated with.

7.5 Implementation Enhancements

In immediate cloaking, each request is handled by the anonymization server at the time

of arrival. We implement two enhancements on top of the algorithms to improve the per-

formance of the system:Early Failure Detectionand Deferred Cloaking. Early failure

detection caches statistical information of neighboring segments to determine if a cloak-

ing procedure is bound to fail due to insufficient number of requests in the surrounding

network graph. Deferred cloaking delays the anonymizationprocess in the absence of a

sufficient number of requests (a factorλ× κr.k, λ ≥ 1) within the spatial tolerance limits.

Temporal tolerance associated with the request allows delay in cloaking, thus presenting

opportunities to trade-off the achieved spatial and temporal resolution. As claimed in other

location privacy work [108],shared processing of multiple queriesis a further enhance-

ment which may be implemented. Note that in MOBICLOAK , the principle of reciprocity

naturally enables shared processing of multiple queries for all requests associated with the

corresponding cloaked subgraph.

7.6 Experimental Evaluation

In this section, we perform an empirical analysis of the algorithms - Network Expan-

sion (NE), Randomized Expansion (RE), Density-Aware DynamicExpansion (DAE) and

Density-Aware Dynamic Randomized Expansion (DARE) - based onthe metrics defined

in Section 7.2.3. The experimental evaluation is focused onthe effectiveness of our cloak-

ing algorithms in terms of privacy and QoS metrics, entropy-based privacy measure and

performance of the anonymization algorithms.
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7.6.1 Experimental Setup

Our simulator generates a trace of vehicles moving on a real-world road network using

maps available from the National Mapping Division of the U.S. Geological Survey. Ve-

hicles are uniformly placed on the road network according totraffic densities determined

from the traffic volume data in [53]. The simulator simulatesthe motion of 20,000 users

on the road network with appropriate velocity information.

We use maps of varying sizes to observe the performance of theMOBICLOAK algo-

rithms under different conditions. It is observed that the relative performance of the algo-

rithms is similar under different size of road network topologies tested. Results reported in

this chapter are measured using a map of Chamblee region of Georgia, which covers an area

around 168km2 in expanse, to generate the trace. This work uses the gtmobisim simulator

developed at Georgia Institute of Technology for generating traces of mobile users moving

on a real world road network [90]. Each user is placed randomly at a source location based

on the traffic volume data. The simulator uses shortest path routing to direct each user

from its source location to its destination location. Location updates are generated for each

mobile user containing the current time instant or timestamp associated with the location

update. The user location is expressed as the current segment on which the user is located

along with the distance from the starting point of the segment. The velocity of the user at

this time instant is also recorded; further updates are onlyrecorded for time instants where

the user velocity experiences a change. This allows for generation of updates associated

with the user location at any time instant. We use this velocity-based trace to generate pe-

riodic updates for mobile user location which are then fed tothe location anonymization

module. This setup follows the assumption that periodic location updates are generated by

each mobile user and sent to the location service provider; requests are generated at a mean

interval of 30 seconds.

The map comprises of about 10,000 road segments and 7,000 road junctions. Our

experiments use traces generated by simulating vehicle movement for a period of one hour,
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results are averaged over a number of such traces. Defaultk values are chosen from the

range10 − 50 and defaults values are chosen from the range10 − 20 along a Zipfian

distribution with parameter value 0.6. Default values forσs andσt are1 − 1.5 km and30

seconds respectively. The default values for the randomization factorα andλ are set to 0.5

and 2 respectively. Unless mentioned otherwise, parameters are set to their default values.

7.6.2 Experimental Results

We first present the experimental results for user-defined privacy and QoS metrics, the

entropy-based privacy metric, and the system performance by varying the values ofk-

anonymity. Our results show that (i) the density-aware techniques are more effective than

náıve approaches on both privacy and QoS metrics, (ii) density-aware approaches may have

slightly lower success rate as they are prone to selecting longer segments thus violating the

σs requirement in a few cases, (iii) DARE has attack resilience close to the RE approach,

(iv) spatio-temporal cloaking allows for trade-offs between spatial and temporal resolution

of cloaked messages.

7.6.2.1 User-defined Privacy and QoS Metrics

Results with Varyingk-Anonymity Levels:We vary thek-anonymity values to test the per-

formance of our algorithms for different privacy levels. Weset thes-anonymity levels

between10− 20, values chosen along a Zipfian distribution with parameter0.6, and max-

imum temporal resolution to a mean value of30 seconds. Thek-anonymity levels are

chosen along a Zipfian distribution with parameter0.6 from the following set of range val-

ues:5−10, 10−50, 50−100 and100−150 with corresponding maximum spatial tolerance

in the range0.8− 1 km, 1− 1.5 km, 1.5− 2 km and2− 2.5 km. In Figure 60(a), the rel-

ativek-anonymity values are higher for the density-aware approaches compared to naı̈ve

approaches for lowerk-anonymity levels as the density-aware approaches select segments

with higher request counts. For higherk-anonymity requirements, all approaches have rel-

ativek levels close to one. However, as shown by the relatives levels in Figure 60(b), the
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Figure 60: User-defined Privacy and QoS Metrics with Varying k-Anonymity Levels
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density-aware approaches achieve higherk levels by selecting fewer number of segments

compared to the baseline approaches.

Figure 60(c) shows that density-aware approaches achieve consistently higher graph

density compared to the randomized approach. Also note thatthe cloaking subgraphs pro-

duced by the density-aware schemes are compact enough to outperform the network ex-

pansion approach. Ask increases, the graph density achieved by all the approachesfalls as

larger subgraphs are produced. The relative spatial resolution of density-aware approaches

is comparable to the network expansion approach(Figure 60(d)). We observe that longer

road segments are expected to have larger number of requestsand are typically selected for

expansion with the density-aware approaches which impactstheir spatial resolution nega-

tively. Figure 60(e) displays the average node count of the cloaked subgraphs; again the

density-aware approaches outperform the baseline approaches. Note that the overall query

evaluation cost is dependent on the number of segments and nodes in the cloaked subgraph,

which implies that density-aware approaches have the lowest query evaluation costs.

7.6.2.2 Entropy-based Evaluation

In this experiment, we measure the entropy levels achieved by each approach as described

in Section 7.4.1. Figure 61(a) displays the entropy values with increasingk values;s values

are chosen from the range10−20. As expected, the randomized expansion approach has the

highest entropy levels, while the network expansion and thedensity-aware approach have

relatively low entropy due to their deterministic nature. We see that introducing random-

ization to the density-aware approach results in much higher entropy levels; interestingly

its entropy levels are competitive compared to the randomized approach. Figure 61(b)

shows that entropy levels increase with increasings values (k values in the range10− 50)

and density-aware randomized expansion has higher entropyvalues compared to the basic

density-aware approach and network expansion. On the otherhand, Figure 61(c) shows

that as we increase theσs values, the entropy levels remain more or less stable. This shows
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Figure 61: Entropy Values for the Anonymization Algorithms

that it is hard for adversaries to launch a successful attackon our density-aware randomized

expansion approach, irrespective of the desired spatial resolution. Figure 61(d) displays the

entropy values as we increase the value of the randomizationfactorα. As expected, entropy

values increase sharply with increasingα. Furthermore, the segment entropy decreases as

we increase the number of users in the system. This is due to fewer number of segments

being selected to meet thek-anonymity requirements due to higher request density.

7.6.2.3 Performance Metrics

We observe two performance metrics for MOBICLOAK : anonymization success rate and

average anonymization time with varyings-anonymity levels and varyingσs. Figure 62(a)
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Figure 62: Performance Metrics with Varying s-Anonymity and Spatial Resolutionσs

displays the average anonymization time measurements withincreasings values. The

density-aware approaches are faster as they anonymize requests quickly by locating denser

subgraphs. Similar trends are observed for increasingσs in Figure 62(b). The baseline ran-

domized expansion approach requires more time to retrieve the segments in the pool and ex-

periences high anonymization costs. The density-aware approaches have lower anonymiza-

tion time, although it increases with increasingσs. Figure 62(c) displays that the success

rate falls with increasings values. This is due to the fact that meeting the highers require-

ments with the sameσs values becomes more difficult. Figure 62(d) shows that the success

rate increases with increasingσs values as larger number of requests can be anonymized. In
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addition, we also observe that the density-aware approaches have low success rate for very

low spatial resolution values due to their tendency to select longer segments. However, for

higherσs values their success rate is easily comparable to the naı̈ve approaches.

7.6.2.4 Other Results

Effect of Varyingσt - This experiment is designed to study the effect of deferredcloaking

for anonymization using the Density-Aware Randomized Expansion algorithm. We varyσt

with a mean value between15 − 60 seconds and the interval time for request generation

with a mean value15−60 seconds too. The values ofσs are selected from the range0.5−1

km.
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Figure 63: Varyingσt and Interval

Results are shown in Figure 63. The success rate increases with increase in temporal

toleranceσt as the messages are present in the system for a longer duration before they are

dropped. Success rate also increases with a decrease in meaninterval period as messages

are generated more frequently leading to more cloaking opportunities.

Effect of Deferred Cloaking- We study the effect of deferred cloaking on the relative spatial

and temporal resolution, by varying the values of parameterλ in the range1 − 8 and the
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Figure 64: Effect of Deferred Cloaking

number of users from 10,000 - 40,000, with the Density-AwareRandomized Expansion

algorithm. Default values, as described earlier, were usedfor other parameters. As can be

observed from Figure 64(a), the relative spatial resolution increases with increasingλ as

requests are cloaked in more compact subgraphs with higher density. The relative temporal

resolution value falls with increasingλ as requests are cloaked immediately only if a high

density of other requests are present in the neighborhood (Figure 64(b)). Higherλ values

lead to a delay in cloaking and hence lower temporal resolution values.

7.7 Related Work

Existing anonymization solutions utilize location perturbation as a mechanism to disable an

adversary from associating personally identifiable information with a location. Representa-

tive techniques for anonymization-based solutions are spatial cloaking [28, 48, 51, 53, 82],

false dummies [65] and landmark objects [56], with spatial cloaking being the most pop-

ular protection mechanism. The criterion of transformation is solely based on location

anonymity, and the amount of protection measured in terms ofthe area of the cloaked re-

gion. Under the road network mobility model, the cloaking area is no longer an effective

and valid measure.
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There have been limited efforts on providing location privacy for users on road net-

works. XStar [108] is the first in-depth work that combines locationk-anonymity with

l-segment diversity, using star-based cloaking. XStar usesa road-network query process-

ing cost model to trade-off between privacy and utility of the cloaked location. However, as

we pointed out in Section 7.1, thel-segment diversity definition in [108] lacks graph den-

sity consideration and explicit support of the reciprocitycriterion for successful cloaking.

In fact, many existing location anonymization algorithms [53, 82, 28] fail to meet the reci-

procity requirement. To the best of our knowledge, only CliqueCloak [48] and Prive [51]

to date have made reciprocity as a mandatory criterion for successful cloaking.

Processing spatial queries over road networks has been an emerging research topic [88,

67, 36, 85]. The cost of query evaluation is a function of the set of segments and set of

nodes considered for evaluation; thus, the MOBICLOAK approach is bound to have lowest

query evaluation costs.
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CHAPTER VIII

CONCLUSION AND FUTURE WORK

The availability of a large number of location-aware devices has enabled a new class of

applications, known as location-based services (LBS), offering both new business opportu-

nities and a wide array of new quality of life enhancing services. New applications such as

location-based advertisement, location-based alerts or reminders, location-enhanced social

networking and a host of other applications provide useful information based on the current

location of mobile users. Despite advances in technology, anumber of issues need to be

considered for facilitating upcoming applications. Scalability of back-end servers is one

important requirement in order to allow these services to host a large number of users. Sec-

ondly, despite the advances in mobile devices, battery lifeis a major issue to consider. Mo-

bile devices operate in a wireless environment where energyand bandwidth consumption

are important considerations. Resource-aware methods for facilitating applications will aid

their acceptance and deployment. The ability to locate mobile users accurately also opens

door for new threats, namely, the intrusion of location privacy. The availability of a large

amount of location data may lead to unauthorized information exposure about the individ-

uals’ medical conditions, alternative lifestyles, unpopular political views or location-based

spam and stalking.

This dissertation provided solutions to these important challenges for location-based

service provisioning. Firstly, we described the spatial alarm framework as the basic prim-

itive in order to provide building blocks for location-based services that require location-

based trigger capability. Applications developed on top ofthis framework are enabled to

use this generalized framework and a suite of optimization techniques for server-centric

scalable processing. The spatial alarm framework providesan architecture and algorithms
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for enhancing system scalability compared to naı̈ve processing techniques. It also reduces

communication costs and energy consumption on the client side. We presented a system-

atic approach to the design and development of the spatial alarm processing framework and

various optimization techniques.

Secondly, we developed an architecture for privacy-enhanced location service provi-

sioning, focused on providing customizable and personalized location privacy solutions for

scalable mobile systems and services under random waypointand road network mobility

models. Our development of PRIVACY GRID and MOBICLOAK protects location privacy of

mobile users while maintaining the end-to-end QoS for location-based service provisioning

in the presence of dynamic and personalized privacy constraints.

We summarize the major developments of this dissertation inthe next section and out-

line open issues and future directions in section 8.2.

8.1 Dissertation Conclusion

We summarize below the major contributions of this thesis towards addressing the chal-

lenges associated with developing scalable, privacy enhanced location-based services and

applications.

• We developed a location-centric indexing framework which advocates a clean sepa-

ration of static objects from moving objects in terms of bothspatial indexing struc-

ture and location query processing. By promoting locations as first class citizens,

we displayed that the location indexing framework enables scaling of location-based

services. Concretely, we build a location index for managingall the static objects

in terms of their geographical locations in the real world. Our formal analysis and

experimental evaluation both confirmed that our location indexing framework can

provide fast access capability with low maintenance costs compared to the existing

object indexing schemes.

• We developed the spatial alarms framework as a generalized framework for allowing
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new location-based applications to express their location-based needs in the form of

location-based triggers. We proposed the usage of this framework as a vital building

block for a large number of upcoming location-based applications.

• We optimized the conventional approach of periodic alarm processing by advocat-

ing a motion-awaresafe period-basedalarm evaluation framework. Concretely, we

introduced the concept ofsafe periodto minimize the number of unnecessary alarm

evaluations, increasing the throughput and scalability ofthe system. We displayed

that our safe period-based alarm evaluation techniques cansignificantly reduce the

server load for spatial alarm processing compared to the periodic evaluation ap-

proach, while preserving the accuracy and timeliness of spatial alarms. Furthermore,

we also developed alarm grouping techniques based on spatial locality of the alarms

and motion behavior of the mobile users, aimed at optimizingsafe period computa-

tion at the server. The scalability and accuracy of our approach is validated using a

road network simulator. We displayed that our proposed framework offers significant

performance enhancements for the alarm processing server while maintaining high

accuracy of spatial alarms.

• We proposed a distributed architecture and a suite of safe region techniques for scal-

able processing of spatial alarms [26]. We displayed that our safe region-based pro-

cessing enables resource optimal distribution of partial alarm processing tasks from

the server to the mobile clients. This implies that our distributed architecture mini-

mizes unnecessary alarm evaluations at both server and mobile clients. We proposed

three different safe region computation algorithms to explore the impact of size and

shape of the safe region on network bandwidth, server load and client energy con-

sumption. Our suite of safe region computation techniques allows us to analyze the

impact of the size and shape of safe region on the client-server communication cost,

server load and client energy consumption. The alternativemethods for safe region
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computation provide flexible support for mobile clients with heterogeneous capabil-

ities in terms of CPU, network bandwidth and energy capacity.

• We presented a three-tier architecture to provide locationprivacy using a third party

anonymizer service. We developed location cloaking algorithms which are fast and

capable of keeping the perceived delays due to location anonymization to a minimum.

We developeddynamicgrid cloaking algorithms which achieve high anonymization

success rate and efficiency in terms of both time complexity and maintenance costs.

A hybrid approach that carefully combines the strengths of our different cloaking

approaches to further reduce the average anonymization time was also developed.

• We allow each user to specify her privacy requirements in terms of privacy and utility

constraints. In PRIVACY GRID, we use locationk-anonymity and locationl-diversity

as two quantitative metrics to model the location privacy requirements of a mobile

user. As QoS measures, we usedmaximum spatial resolutionwhich allows mobile

users to control the spatial resolution reduction within anacceptable QoS specific

range. It can be changed or adjusted according to the type of location service, the

time of day, month or year, and on a per message level. Similarly, the fourth mea-

sure ismaximum temporal resolution, which controls the temporal delay acceptable

for maintaining the desired QoS. Our algorithms use these constraints effectively to

balance the privacy utility trade-offs.

• We also presented MOBICLOAK , a reciprocity preserving road network-aware loca-

tion privacy model for users traveling on road networks which overcomes the weak-

nesses of the random waypoint model of the PRIVACY GRID approach. To address

the problems in existing solutions, MOBICLOAK defines segments-anonymity as a

companion metric to the userk-anonymity metric. We displayed that our approach

provides high entropy measures even after taking the underlying road network into

consideration.
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8.2 Open Issues and Future Research Directions

This dissertation addresses some of the important challenges for development of future

mobile systems and services. At the same time, it also draws attention towards a set of new

challenges that need to be addressed by further work in this area. We discuss this set of

open issues in this section.

8.2.1 Spatial Alarms Extensions

This dissertation has not only contributed to the system-level development and optimization

of spatial alarms in large scale mobile systems, but also opened several new avenues for

research in this area. We give a brief discussion below on a selection of such open issues.

Spatial Alarm as Cloud-based Middleware Service:Deployment of the spatial alarms

framework in a cloud environment throws up interesting research challenges. With the cur-

rent trends moving towards development of cloud-based, large-scale data centers, latency

becomes a major issue for real-time, latency sensitive applications. This dissertation has

dealt with the distribution of dynamic and hotspot orientedworkloads among servers and

mobile clients. Our experience shows that developing a truly distributed spatial alarms sys-

tem that can scale to large number of subscribers with large number of spatial alarms is still

a big challenge.

Another issue directly related to scaling spatial alarms isthe capability of dealing with

device heterogeneity and application programming interface (API) heterogeneity used to

access spatial alarm processing middleware servers hostedin a cloud environment. Cur-

rently, users in developed countries have a large variety ofsmart phones, equipped with

powerful computational and communication capabilities. However, a large percentage of

cellular phone users in many developing nations like India do not have access to such de-

vices which provide a rich user experience. As a result, the development of mobile services

and systems middleware hosted in a cloud infrastructure should take into consideration both

device heterogeneity and application programming interface (API) heterogeneity in order
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to deliver the convenience and benefits of location-based applications and services to the

world wide population on a 24 by 7 basis. Middleware support for ease of development

of such applications is a vital component at the intersection of mobile computing research

and cloud computing research, which demands serious attention from both academia and

IT industry.

Extensions to Spatial Alarm Processing Algorithms:The spatial alarm processing

algorithms developed in this dissertation handle either static alarm target with moving sub-

scribers or moving alarm target with static subscribers. Inthe latter case, we use the same

algorithms but with alarm check set over moving alarm targets instead of mobile sub-

scribers. The third type of spatial alarms are those with moving mobile subscribers and

moving targets. Further extensions to the spatial alarm processing algorithms are required

for supporting spatial alarms with moving subscribers and moving targets. Examples of

applications which fall in this category include social networking applications like Google

Latitude where one user may set a spatial alarm on another friend. The techniques devel-

oped in this dissertation support efficient alarm processing with 100% success rate when ei-

ther static targets or static subscribers are considered. Techniques like the TPR∗-tree [103]

can be extended for indexing of alarms which involve both moving subscriber and moving

alarm target. In such algorithms, one needs to consider new ways to define safe region and

safe period in order to minimize alarm miss-rate. We believethat it is interesting to inves-

tigate the effect of alarms with both moving targets and moving subscribers on the success

rate, the efficiency and accuracy of alarm processing. Methods for safe region construc-

tion and representation in presence of these type of alarms (moving subscriber and moving

target) need to be carefully explored.

Location Privacy for Spatial Alarms: We have discussed mechanisms for providing

location privacy for ad-hoc services (i.e., those that require snapshot queries). Extension of

such location anonymization methods and models to handle continuous spatial services is

an open challenge.
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Furthermore, location-based advertisement or monitoringservices supported by the

spatial alarms framework require installation of long-standing spatial alarms. Also, spa-

tial alarms may provide additional (and yet sensitive) information associated with an indi-

vidual’s preference. For example, a private alarm on a subscriber’s favorite grocery store

provides additional information associated with the subscriber, which would not be avail-

able in case a snapshot query for neighboring grocery storeswas issued.

Although our safe period and safe region techniques, by virtue of limiting the client-

server communication, are inherently privacy-aware, the privacy measures used in this dis-

sertation may have limitations when considered in the context of location privacy for spatial

alarms. Continuous location tracking may allow an adversaryto make certain unexpected

inferences about the users location. We argue that there is aneed for defining privacy mea-

sures which hold in the presence of continuous location updates and for preventing leakage

of information due to installation and management of alarmsat the centralized server(s).

8.2.2 Location Privacy

The availability of a growing amount of personal information and the lack of awareness

among users regarding the risks of making their location information available over social

networks have resulted in new challenges which are beyond the scope of this dissertation.

We believe that such new challenges deserve their own attention and need to be addressed.

Location Privacy Plug-ins: It is possible to provide configurable services for emerg-

ing applications like presence-based applications, large-scale social networks and location-

based event dissemination systems on top of the spatial alarm framework. Location privacy-

aware services constitute one such set of services, which can be incorporated as a plug-in.

However, näıve users may need some interface that is much more simpler and user friendly.

For instance, we can develop a mechanism to allow users to express their privacy needs

as simple privacy levels which can be translated to corresponding privacy parameters (k-

anonymity,s-anonymity andl-diversity values) dependent on the service request density
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in the relevant spatial regions. Corresponding QoS parameters, such as maximum spatial

tolerance and maximum temporal tolerance, are also determined based on the user density

in a given region and the required privacy levels. In short, the wide-deployment of Priva-

cyGrid and MobiCloak methods can benefit from plug-ins that can simplify the semantic

specification of desired privacy and QoS metrics.

Further Study on Effects of incorporating Temporal Dimension: Our work consid-

ers two different classes of QoS metrics used in the system: spatial tolerance and temporal

tolerance. By temporal tolerance we mean that location cloaking requests can be delayed

for a user specified time period. We consider location-basedservices with user location as

the predicate associated with the query. The anonymizationalgorithms are designed to en-

sure that the exact location of a user cannot be associated with any particular query which

may lead to linking of the spatial query with a particular user. In order to meet this goal,

the user location granularity is reduced within the spatialtolerance limits. The methods

presented in this thesis involve algorithms for spatial cloaking of the user location with

temporal tolerance as a delay criterion acceptable to the user. The deferred cloaking ap-

proach allows for introduction of delay in the cloaking process which allows for trade-offs

between the relative spatial resolution and the relative temporal resolution.

Spatio-temporal queries would require addition of the temporal dimension as a pred-

icate for query processing which would require our algorithms to treat the temporal di-

mension in a similar manner as the spatial dimension. For thegrid cloaking algorithms

in PRIVACY GRID, this would require the two-dimensional algorithms to be extended to

three-dimensional algorithms. The current treatment of the temporal dimension assumes

the spatial dimension is of primary concern. Furthermore, it is interesting to explore the

idea of anonymizing the temporal dimension independent of the spatial dimension.

Location Privacy in a Broader Context: Social networking and online communities

today allow users to share their location at different time instants through messaging and
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presence-based sharing methods. The effects of excessive sharing of user location infor-

mation for social networking applications, like [13, 18, 17] can be adverse. Furthermore,

the lack of awareness among users can lead to harmful effects[19]. We believe that policy-

based release of location information can be combined with location anonymization to

achieve lower location granularity. It is up to the users to apply the access control mech-

anisms provided by these applications to ensure that their personal information is shared

only with users within their network or the limited set of users with whom the information

is intended to be shared. Further research in this area is required for considering the effects

of sharing of user location information in a social networking setting.

8.3 Concluding Remarks

There were two ways to go about packaging the dissertation, either as a set of chapters,

each dealing with a specific problem related with scalability for location-based services

or as a more unified book. For example, the mobility simulatorused in each part of this

work could possibly be written as a separate chapter. However, each piece of work uses

a different version of the mobility simulator, as continuous enhancements were made as

the dissertation work progressed. Further, different parameters and data are generated for

each piece of work, keeping in mind the evaluation metrics required for measuring the

performance of our algorithms. There were arguments in favor of and against each of these

approaches. In the end, this dissertation is presented as a set of chapters with a uniform

theme as it provides for a more clear and simpler presentation of this dissertation research.

Furthermore, this dissertation research started in 2006 with spatial alarms and location

privacy as two major projects, each aiming at solving the scalability issues for location-

based and possibly anonymous services. A number of commercial developments have

revolutionized in the past four years in the context of location-based services and mobile

Internet. Today we see that wireless and mobile computing and location-based services are
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becoming a very large and successful industry with tremendous growth potential. Every-

one is connected at all times while on the move. Development of powerful handsets and a

plethora of location-based services and applications havebeen the driving force for this dis-

sertation research, developing an architectural infrastructure for developing location-based,

event-driven, anonymous mobile systems and services for future computing environments.
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