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SUMMARY 

 

An experimental and analytical study was performed to determine the stability 

behavior of prestressed concrete beams.  Two stability phenomenons were investigated: 

(1) lateral-torsional buckling and (2) rollover.  An emphasis was placed on the effects of 

initial imperfections on the stability behavior; the effect elastomeric bearing pads and 

support rotational stiffness was investigated.  The experimental study consisted of testing 

six 40-in. (1016 mm) deep, 4-in. (102 mm) wide, 32-ft. (9.75 m) long rectangular 

prestressed concrete beams with varying prestressing force and prestressing strand 

eccentricity and testing one 100-ft. (30.5 m) long PCI BT-54 bridge girder.  Elastic and 

nonlinear analyses were performed on the seven test specimens, on a hypothetical 

rectangular beam with a series of varying initial imperfections and a PCI BT-72 with 

varying imperfections. 

 The first set of experiments was performed on the six rectangular beams.  The 

beams were designed to fail by lateral-torsional buckling.  The results showed that the 

prestressing strands did not restrain the beams from buckling out-of-plane or destabilize 

the beam like in the case of a beam-column.  The beams buckled after flexural cracking 

had occurred and did so at a load much less than what elastic lateral-torsional buckling 

theory predicted.  Initial imperfections were shown to decrease the inelastic lateral-

torsional buckling load due to a rotated neutral axis, additional torsion on the cross-

section and progressive rotation that led to a larger component of flexure about the weak-

axis (P-delta effect).   
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 A material and geometric nonlinear, incremental load analysis was performed on 

the six rectangular beams.  The nonlinear analyses matched the experimental load versus 

lateral displacement and load versus rotation behavior, and the analysis predicted the 

experimental maximum load within an error of 2%.   

 The nonlinear analysis was extrapolated to several different initial imperfection 

conditions to parametrically study the effect of initial lateral displacement and initial 

rotation on the inelastic lateral-torsional buckling load.  A simplified expression for 

lateral-torsional stability of beams with initial imperfections was developed based on an 

elastic stability expression (Goodier, 1941 and 1942).  The data from the parametric 

study were used to develop reduction parameters for both initial sweep and initial 

rotation.   

 The first experiment with the PCI BT-54 was a study on the deformation of the 

girder due to solar radiation.  Solar radiation on the top and side of the girder, wind 

speed, internal strain, air temperature, internal temperature and surface temperature were 

recorded to determine additional sweep or rotation in the girder due to non-uniform 

heating.  The research showed that the initial sweep of the 101-ft. (30.8 m) PCI BT-54 

girder increased up to 40% due to the effect of solar radiation on the girder, an additional 

sweep of 0.0515-in. (1.31 mm) per 10-ft. (3.05 m) of girder length.  However, only 

0.000212 radians of additional rotation was developed due to the non-uniform heating of 

the girder.     

 The PCI BT-54 was tested under midspan point load to examine its rollover 

behavior.  For the stability experiment, full torsional restraint was not provided at the 
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supports.  Instead, torsional restraint was only provided by the couple created by the 

bottom flange and the elastomeric bearing pads.  The load versus lateral displacement and 

load versus rotation response corresponded well with the prediction from the nonlinear 

incremental analysis that included a bearing pad model.  A rollover failure occurred well 

before an inelastic lateral-torsional buckling mode was anticipated.  In fact, the girder 

never cracked during the testing.  The nonlinear incremental analysis did not predict the 

rollover failure because of assumptions made in the elastomeric bearing pad model.  

Imperfect bearing conditions were not modeled and nonlinear bearing stiffness behavior 

at large rotations was most likely inaccurate.  The rollover methodology proposed by 

Mast (1993) predicted the rollover limit state very well.   

 From the research, it was apparent that rollover is the controlling stability 

phenomenon for prestressed concrete bridge girders.  The nonlinear lateral-torsional 

stability failure is unlikely because prestressed concrete bridge girders are designed to not 

crack under self-weight alone.  Therefore, the inelastic lateral-torsional buckling 

simplified equation initial imperfection reduction parameters do not apply to bridge 

girders. Instead, the elastic lateral-torsional buckling predictions should be used.  

However, the elastic lateral-torsional buckling loads were found to be greater than the 

rollover limit for girders with no end support lateral bracing.  



 

1 

CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

 The spans of precast prestressed concrete bridge girders have become longer to 

provide more economical and safer transportation structures.  Increases in concrete 

strength, strand diameter and manufacturing processes have enabled lengthening of 

girders.  As the spans have increased, so has the depth of the girders which in turn have 

increased the slenderness of the girders.  Slenderness in a beam or girder would increase 

the likelihood that a stability failure would occur.  Stability failures could pose a danger 

to construction personnel due to the sudden nature in which a stability failure would 

occur.  Furthermore, stability failures of prestressed concrete girders during construction 

would cause a detrimental economic impact due to the costs associated with the failure of 

the girder, the ensuing construction delays, damage to construction equipment and 

potential closures to highways over which the bridge was being constructed.  

 The collapse of 150 ft. (45.7 m) long, 90-in. (2.3 m) deep, precast prestressed 

concrete bridge girders in Pennsylvania in the fall of 2004, depicted in Figures 1.1 and 

1.2, resonated the need to understand the behavior of such girders, particularly with 

respect to their stability.  Mr. Brian Thompson, Pennsylvania Assistant State Bridge 

Engineer, suspected that additional sweep (lateral deformations) could have occurred due 

to the sun heating one side of the girder and causing the girder to bow.  Additional sweep 

in the girders would have increased the possibility of a stability failure because 

eccentricity of the gravity load would apply torsion to these girders. 
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Figure 1.1 - Stability failure of 90 in. (2.3 m) deep precast prestressed concrete girders on 
I-80 in Pennsylvania (Zureick, Kahn and Will, 2005) 

 

 

 

Figure 1.2 - Stability failure of precast prestressed concrete girders on I-80 in 
Pennsylvania (Zureick, Kahn and Will, 2005) 
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 More recently in the summer of 2007, during the construction of the Red 

Mountain Freeway near Power Road in Mesa, Arizona, nine girders collapsed, as shown 

in Figure 1.3.  The Arizona Department of Transportation hired CTLGroup to investigate 

the collapse.  The investigation by the CTLGroup (Oesterle et al., 2007) concluded that 

the collapse probably was due to lateral instability of one girder which caused a 

progressive collapse of the adjacent eight girders.  Oesterle et al. (2007) believed several 

factors caused the instability including “bearing eccentricity, initial sweep, thermal 

sweep, creep sweep, and support slope in both the transverse and longitudinal directions.” 

 

 

Figure 1.3 – Stability failure of AASHTO Type V bridge girders in Arizona (Oesterle et 
al., 2007) 

 

Investigating the effect of girder sweep and eccentricity is of utmost importance 

due to the potential for a decrease in lateral stability caused by the imperfections.  There 

are several causes of accidental eccentricity in precast prestressed concrete girders such 
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as imperfections during fabrication, eccentricity of prestressing strands in the girder, 

cracking and permanent deformations from handling and transportation of the girder and 

lastly, the eccentricity caused by solar radiation heating the girder on one side, only.  

Additionally, bearing support conditions can also adversely affect the stability of bridge 

girders.  Therefore, understanding the stability behavior of precast prestressed bridge 

girders including reasonable magnitudes of girder and support imperfections and their 

affect on stability behavior are paramount in ensuring safety during erection of such 

girders. 

1.1.1 Problem Definition 

 Understanding the stability of precast prestressed bridge girders would require the 

consideration of two different stability phenomenons that could have been the cause of 

the collapse of the aforementioned bridge girders in Pennsylvania and Arizona.  The first 

of the potential causes essentially would be a rollover failure of the girder.  A rollover 

failure in this case would be where the girder as a whole tips over since there were no 

physical restraints to prevent this from occurring.  When the girder was placed, the girder 

was expected to stay in place simply by using its self-weight.  However, if the girder’s 

self-weight was off-center at all, an overturning moment would have been created that 

would try to tip the girder over if it became larger than the resisting moment. 

 There could be several causes of overturning moment.  The first possible cause 

would be the eccentricity effect from imperfections during fabrication, eccentricity of 

prestressing strands in the girder, cracking and permanent deformations from handling 

and transportation of the girder and the eccentricity caused by solar radiation 
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inconsistently heating the girder.  If the girder had an initial out-of-straightness there 

would be an overturning moment created that would be a function of the self-weight of 

the girder and the initial lateral deformation of the girder which could be generalized as: 

 

 ( ) ( )∫ ⋅
L

0

ib dxxexW  (1.1) 

where: 

 Wb(x) =   girder self-weight as it varies along the girder length 

ei(x) =   eccentricity of girder center of gravity as it varies along the girder                                    
length 

 
L = length of the girder 

 

The effect of the eccentricity induced overturning moment in Equation 1.1 would be 

amplified by considering that the girder was not rigid.  The initial imperfections in the 

girder included rotation; therefore, a component of the self-weight load of the girder 

would act about the weak-axis of the girder causing the girder to both deform and rotate 

more.  The additional deformation and rotation would add to the overturning moment 

which in turn would cause the girder to deform and rotate more, and so on.  

Mathematically it would become an iterative process until the system converged to 

equilibrium, or becomes unstable. 

 Overturning moment could also be created due to the support conditions.  The 

bearing pads on which the girders rest may not have provided a level surface.  If the 

bearing pad had a lateral slope, the girder would have had an initial rotation at the ends of 
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the girder which would have caused an overturning moment.  Furthermore, many bridges 

have used elastomeric bearing pads, including the Red Mountain Freeway Bridge in 

Arizona (Oesterle et al., 2007).  Elastomeric bearing pads would have had the capacity to 

deform under load.  As the overturning moment increased, more of the load would be 

transferred from one corner of the bottom of the girder into the bearing pad as illustrated 

in Figure 1.4. Due to the load concentration on one side of the bearing pad, the bearing 

pad would deform more on that side further increasing the slope of the bearing, and once 

again it would become an iterative process until equilibrium was met. 

 

Bridge
Girder

Elastomeric
Bearing Pad

Bridge
Girder

Elastomeric
Bearing Pad Laterally

Sloped
Support

 

Figure 1.4 - Elastomeric bearing pad deformation and load condition for the perfect case 
and for the laterally sloped support case 

 

 The second possible stability phenomenon that could have caused the bridge 

girders to collapse in Pennsylvania was lateral-torsional buckling.  Elastic lateral-

torsional buckling was a topic that had been researched extensively for steel, timber and 

polymer composite beams due to the susceptibility to lateral-torsional buckling for 

typical beam cross-sections which used these materials.  Most formulae on the subject 

could be traced back to the original development by Timoshenko (1905) and expanded by 

Goodier (1941, 1942) and reported by Timoshenko and Gere (1988); however, Chen and 
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Lui (1987) included the equations for many loading and support condition cases.  The 

generalized case for a simply-supported elastic I-section subjected to strong-axis flexure 

was: 
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where: 

 Mb =   buckling moment 

Cb =   moment gradient coefficient 

E = elastic modulus 

I = moment of inertia 

G = shear modulus 

J = torsion constant 

Cw = warping constant 

 

Additionally, effects of load height were discussed in Trahair (1993), and depending on 

the properties of the beam, the load height could significantly affect the critical load.  The 

critical load was most affected in the case of shorter beams with a high modulus of 

elasticity, large warping constant and a low torsional stiffness. 

Other cases that were important to consider included the simplified case of a thin 

rectangular beam in which the warping constant was zero; Equation 1.2 could thus be 

modified accordingly.  Furthermore, Kirby and Nethercot (1979) gave one possible 
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approximate solution for the case where the in-plane deflection would have an effect on 

the critical load as: 
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where: 

 Ix =   strong-axis moment of inertia 

Iy =   weak-axis moment of inertia 

  

The use of Equations 1.2 and 1.3 for analyzing reinforced and prestressed 

concrete beams would result in extremely non-conservative results.  In fact, an engineer 

would be hard-pressed to conceive of a reinforced or prestressed concrete cross-section 

that resembles anything that could be put to practical use where Equations 1.2 and 1.3 

would result in a critical buckling load less than the flexural ultimate load of the cross-

section.  The reason for this is that the flanges of the girders and the relatively large web 

thicknesses create cross-section properties that are too large to cause stability concern.  

The possibility for a lateral-torsional buckling failure in a reinforced concrete or 

prestressed concrete girder lies in the fact that Equations 1.2 and 1.3 were for elastic 

cross-sections and would not compensate for the nonlinear behavior, including cracking, 

of reinforced or prestressed concrete beams.   
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Lateral-torsional buckling equations for a prestressed concrete beam would need 

to consider the nonlinear material properties of concrete when the compression zone of 

the concrete has been stressed significantly, or else the equations would be 

unconservative.  Furthermore, during loading, the concrete in the tensile zone would 

crack and reduce the flexural and torsional rigidities.  Prestressed concrete beams would 

involve additional complications to the analysis that differ from reinforced concrete 

beams.  The addition of the steel prestressing strands would add a compressive stress to 

the cross-section as well as a bending stress component if the strands were eccentric.  A 

prestressing force in the beam would pose additional questions about the behavior.  

Would the prestressing force act as an axial load like in a beam-column, would the fact 

that the strands are embedded in the concrete create a restraint to lateral deformation 

since the strands would want to resist being deflected out-of-plane, or would there be no 

effect and the behavior would be the same as reinforced concrete?    

Initial imperfections and imperfections due to solar radiation were suspect during 

the collapse of the bridge girders in Pennsylvania and Arizona; therefore, the analytical 

model would need to represent the realistic imperfections of a bridge girder.  In theory, 

the elastic buckling load for an imperfect beam would approach the same load as a 

perfect one; however, there would no bifurcation point in an imperfect beam.  Increased 

lateral deformations would occur immediately upon loading, and substantial deformation 

would occur at a load less than that of the critical load.  For an elastic beam with a 

constant end moment applied, Chen and Lui (1987) derived the equations for the lateral 

deflection and rotation given by Equations 1.4 and 1.5, respectively.  The analysis was 

based on an initial lateral deflection and rotation given by Equations 1.6 and 1.7.  
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where: 

 u =   lateral deflection 

M0 =   applied end moment 

δ0 = initial lateral displacement at midspan 

z = coordinate axis along centroidal axis of girder with origin at end 

θ0 = initial rotation at midspan 

u0 = initial lateral deflection 

β0 = initial rotation 

 

Equations 1.4 and 1.5 were for an elastic beam; however, the equations would need to be 

altered to consider the complexities of concrete.  Furthermore, deformations in a 

reinforced or prestressed concrete beam would usually be associated with cracking of the 

beam which would reduce the stiffness and consequently reduce the critical buckling load 

as well.  More discussion on the elastic behavior including initial imperfections was 

included in Bleich (1952) and Trahair et al (2001). 
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 To accurately analyze a precast prestressed bridge girder with respect to lateral-

torsional buckling, an analytical equation or method would need to consider the nonlinear 

behavior of concrete, the effect of prestressing force, and the effect of initial 

imperfections.  Within the category of initial imperfections, fabrication error would 

already be limited by code, and, therefore, maximum imperfections could be predicted; 

however, the additional imperfections due to sloped bearings, creep sweep and solar 

radiation would need to be quantified so that they could be considered.  Currently, these 

issues are not considered in the design of precast prestressed bridge girders. 

 The PCI Bridge Design Manual (2003) addresses the lateral stability of 

prestressed concrete bridge girders for two cases: (1) when the girder is hanging from a 

lifting device and (2) when the girder is resting on flexible supports (specifically referring 

to the case of the girder being transported).  The PCI Bridge Design Manual (2003) 

provides an explicit procedure to determining the safety against instability for those two 

cases which were based on Mast (1989) with respect to a hanging girder and Mast (1993) 

with respect to a girder in transit.  However, the PCI Bridge Design Manual (2003) does 

not provide methods or recommendations for prestressed girders in their erected position.  

There is an attempt to stress in the PCI Bridge Design Manual (2003) the danger of 

unbraced girders in their erected state when supported by elastomeric bearing pads due to 

the highly nonlinear behavior of the bearing pad, particularly when the bearing reaction 

leaves the confines of the bearing pad’s kern. 

There are several construction tolerances specified by the Precast Prestressed 

Concrete Institute.  The PCI Bridge Design Manual (2003) specifies that the flatness of 

the support is limited to a 1/16 in. (1.6 mm) tolerance as shown in Figure 1.5 and a sweep 
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tolerance of 1/8 in. (3.2 mm) per 10 ft. (3 m) of girder length.  Additionally, the PCI 

Tolerance Manual for Precast Prestressed Concrete Construction (2000) limits the 

centerline of the bottom of the girder to ± 1 in. (25.4 mm) relative to the centerline of the 

elastomeric bearing pad as shown in Figure 1.6. 

Support
Surface

Tolerance 1/16"
 

Figure 1.5 – Support flatness tolerance 

 

Bridge
Girder

Elastomeric
Bearing Pad

Tolerance 1"
 

Figure 1.6 – Offset of girder and bearing pad centerline tolerance 

 

 The AASHTO LRFD Bridge Design Specifications (2007) and AASHTO LRFD 

Bridge Construction Specifications (2004) do not limit construction tolerances in any 

way as a direct result of stability considerations.  The AASHTO LRFD Bridge 

Construction Specifications (2004) stipulates in Section 8.13.6 that “the contractor shall 
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be responsible for the safety of precast members during all stages of construction.”  It is 

apparent that the governing design codes lack sufficient guidance on the subject of 

stability of precast prestressed bridge girders.  Approaches from Mast (1993) were 

applied by Oesterle et al. (2007); however, it is unknown if that is accurate or even 

conservative for the case of a girder in its erected position.  Furthermore, it is unknown if 

the girders that collapsed in Pennsylvania and Arizona were due to a rollover failure or a 

lateral-torsional buckling mechanism.   

 Rollover behavior as well as lateral-torsional behavior of precast prestressed 

bridge girders needs to be understood to ensure the safety of the placement of such 

girders.  Furthermore, to fully understand the limits of the behavior, the flexural and 

torsional rigidities need to be accurately considered while also considering the maximum 

girder imperfections that can occur in practice, particularly with regards to the unknown 

sweep from solar radiation. 

1.2 Scope 

 

 The research addressed several of the deficiencies in knowledge, as well as the 

lack of verification in current analytical techniques with respect to the lateral-torsional 

buckling of precast prestressed concrete bridge girders and the rollover of prestressed 

concrete bridge girders.  This broad objective was split into several smaller objectives.  

The first objective was to quantify the magnitude of additional sweep that could occur 

due to solar radiation.  The study on girder deformations due to solar radiation was not 

intended to be an extensive study, but instead, an investigation into the possibility of solar 

radiation causing non-negligible geometric imperfections.  The second objective was to 
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perform a series of lateral-torsional buckling experiments on prestressed beams to 

determine the effect of the prestressing force on their stability.  Additionally, a validation 

of the existing analytical techniques was performed and proved the need for a better 

analytical approach; therefore, both a calculation intensive analytical approach and a 

simplified equation were developed to predict the lateral-torsional buckling behavior of 

prestressed concrete flexural members.  Lastly, the rollover behavior and the effect of the 

bearing pad on rollover were investigated by an experiment on a PCI BT-54 bridge 

girder.  An emphasis was placed on the magnitudes of the initial imperfections and the 

effect the initial imperfections had on the stability of the girders. 

 All of the experimental work was performed on seven beam specimens.  The first 

six specimens were rectangular prestressed concrete beams.  The beams had a length of 

32 ft. (9.75 m), a width of 4 in. (10.2 cm) and a height of 40 in. (102 cm).  The seventh 

specimen was a 101 ft. (30.8 m) PCI BT-54 bridge girder.  The BT-54 was prestressed 

with 40 – 0.6 in. diameter prestressing strands with each strand having a jacking force of 

43,943 lbs. (195.47 kN).  The details of the seven test specimens are described in Chapter 

2.   

 The six rectangular test specimens were used in a lateral-torsional buckling 

experimental program.  Two experiments were performed on the BT-54 test girder.  The 

first experiment for the BT-54 involved obtaining temperature variations in the girder, 

thermal strains in the girder, solar radiation data, wind data, and for certain days due to 

experimental limitations, sweep and camber data.  The non-destructive nature of the first 

experimental allowed for a stability experiment on the BT-54 as well.  Details of the field 

BT-54 experimental study are presented in Chapter 3.  Chapter 4 presents the 
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experimental setup for the seven stability experiments.   The results of the rectangular 

beam experiments are presented in Chapter 5. 

 Chapter 5 also presents a comparison between the experimental results and the 

analytical results utilizing the methodologies of previous researchers.  Chapter 6 presents 

the analytical developments to predict the lateral-torsional buckling behavior of 

prestressed concrete flexural members.  The first methodology predicted the load vs. 

lateral displacement and load vs. rotation behavior; however, the rigorous and time 

consuming nature of the methodology could possibly be unattractive to the practicing 

engineering.  Therefore, a simplified equation was developed that expedited the 

analytical work and provided a prediction on the buckling load.  Both analytical 

procedures included the material characteristics of concrete and the effect of initial 

imperfections.  The stability results for the BT-54 girder and a comparison to analytical 

procedures is presented in Chapter 7.  Chapter 8 provides a commentary on the behavior 

of prestressed concrete bridge girders with respect to lateral-torsional buckling and 

rollover.  Lastly, conclusions and recommendation from this research are presented in the 

final chapter. 

1.3 Background 

1.3.1 Lateral-Torsional Buckling 

1.3.1.1 Reinforced Concrete Beams 

 Classical theory had dealt with the behavior of linear elastic, isotropic materials; 

however, reinforced concrete members needed solutions that incorporated the 

complexities of concrete behavior.  The elastic modulus could not be considered constant 
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because the stress-strain behavior would be nonlinear.  Furthermore, after cracking, both 

the flexural and torsional rigidities of the member would be reduced. 

 Hansell and Winter (1959) approached the problem of lateral-torsional buckling 

of reinforced concrete beams by performing a set of experiments.  Ten different beams 

were built with the same cross-section and longitudinal reinforcing and were loaded at 

quarter-points for five different spans.  Each beam had the same dimensions; 13 in. (33 

cm) deep, 2.5 in. (6.4 cm) wide and included one 0.75 in. (19 mm) diameter deformed bar 

centered 11.25 in. (28.6 cm) from the extreme compression fiber as shown in Figure 1.7.  

The additional details of the specimens are shown in Table 1.1. 

 

 

Figure 1.7 – Test beam geometry from Hansell and Winter (1959) 

 

 

 

13” 
11.25” 

2.5” 
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Deformed Bar 
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Table 1.1 - Test beam data from Hansell and Winter (1959) 

Beam 
Mark 

Span, 
ft. (m) 

L/b 
Ratio 

Stirrup 
Spacing, 
in. (cm) 

Cylinder 
Strength, 

fc', psi (MPa) 
B6 6 (1.83) 28.8 5.5 (13.97) 4310 (29.72) 
B9 9 (2.74) 43.2 5.5 (13.97) 4310 (29.72) 
B12 12 (3.66) 57.6 7 (22.96) 4350 (29.99) 
B15 15 (4.57) 72.0 7 (22.96) 4215 (29.06) 
B18 18 (5.49) 86.4 7 (22.96) 4260 (29.37) 

 

  

The test set-up was such that a 1.5 in. (38 mm) diameter ball attached to a roller 

assembly was used at the load points so that the beam was free to rotate and displace 

laterally to simulate gravity load.  Additional testing was done (Hansell, 1959) to find 

that the maximum lateral restraining force provided by the loading apparatus was 0.1% of 

the vertical loads.  The end conditions were simply supported with the additional use of 

vertical rollers so that the beams were restrained against torsion at the ends.  

The results of the tests are shown in Table 1.2.  Note that there was two of each 

beam type and were differentiated by a suffix of either 1 or 2.  All ten of the beams failed 

in a flexural tension mode in good agreement with ultimate strength theory.  The extreme 

slenderness of these test specimens not only did not buckle, but there was no reduction in 

capacity at all.  Hansell and Winter (1959) believed that one potential influence on the 

results was the large web reinforcement ratio that probably contributed a significant 

amount of torsional restraint.  Furthermore, Table 1.2 includes the amount of initial 

imperfections in each beam as well as the final observed lateral and vertical 
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displacements of the beams.  Although not discussed significantly by Hansell and Winter 

(1959), the test specimens with larger initial imperfections correlated to larger final 

lateral displacements. 

 

 

Table 1.2 - Test results from Hansell and Winter (1959) 

Beam B6 B9 B12 B15 B18 Suffix 
L/b Ratio 28.8 43.2 57.6 72.0 86.4 1, 2 
Observed Ultimate 
Moment, Mtest, 
kip-in. (kNm) 

216 (24.4) 
199 (22.5) 

201 (22.7) 
205 (23.2) 

193 (21.8) 
199 (22.5) 

192 (21.7) 
198 (22.4) 

190 (21.5) 
196 (21.1) 

1 
2 

Calculated 
Ultimate Moment 
Mcalc, kip-in. 

196.7 
(22.2) 

196.7 
(22.27) 

197 
(22.26) 

195.9 
(22.13) 

196.2 
(22.17) 

1,2 

Mtest/Mcalc 
1.10 
1.01 

1.02 
1.04 

0.98 
1.01 

0.98 
1.01 

0.97 
1.00 

1 
2 

Midspan Deflections at Yield Point, 0.001 in. (0.0254 mm)  

Vertical 
192 
188 

330 
330 

460 
495 

825 
1005 

1015 
1080 

1 
2 

Lateral - Top 
53 
78 

33 
18 

43 
515 

1260 
97 

72 
500 

1 
2 

Lateral - Bottom 
66 
82 

56 
25 

14 
620 

1090 
228 

150 
430 

1 
2 

Initial Sweep, 
0.01 in. (0.254 mm) 

4 
6 

8 
6 

8 
11 

25 
12 

13 
17 

1 
2 
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Although the experiments gave no results with respect to lateral-torsional 

buckling behavior, Hansell and Winter (1959) proposed an approximate buckling 

analysis for a reinforced concrete beam by taking the classical lateral-torsional buckling 

equation for an elastic rectangular cross-section with equal applied end moments that was 

given by: 
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where: 

 ν =   Poisson’s ratio 

Ehw =   modified modulus of elasticity from Hansell and Winter (1959) 

 

 Both cross-sectional properties, Iy and J, were to be calculated by the use of 

standard formulas except that the height of the section was to be taken as the depth of the 

compression block and reinforcement was to be neglected.  The only way in which the 

longitudinal reinforcement was implicitly considered was by the effect it had on the depth 

of the neutral axis.   

 The reduced modulus was to be derived by using an established stress-strain 

relation for concrete such as the modification to Stüssi’s flexural theory reported by 
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Hognestad (1955) to obtain the secant modulus at various points along the load history of 

the beam corresponding to the strain at the extreme compression fiber of the beam. 

 Hansell and Winter (1959) did not have any test data to confirm their method 

besides the fact that their method also predicted that their test specimens would not 

buckle.  Furthermore, the approximations that were made with respect to the cross-

section properties, although conservative, potentially neglected a significant amount of 

stiffness in the beams provided by other mechanisms such as the effect of the reinforcing 

steel and aggregate interlock, and, therefore, were overly conservative.  A reduced 

modulus concept was a good method to represent the inelastic modulus of elasticity of the 

cross-section; however, the modulus at a specific load point was based on the extreme 

compression fiber and, therefore, did not accurately represent the elastic modulus at other 

locations in the depth of the cross-section or along the length, once again providing for 

conservative results.   

 Sant and Bletzacker (1961) also performed a set of tests on slender reinforced 

concrete beams.  There were 11 beam specimens in total.  Every beam was 20 ft. (6.1 m) 

long, 2.5 in. (63.5 mm) wide and the average concrete compressive strength was 5860 psi 

(40.4 MPa).  Table 1.3 shows the results of the 11 tests. 
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Table 1.3 - Test results from Sant and Bletzacker (1961) 

Beam 
Specimen 

d/b 
Ratio 

Test Moment 
kip-in. (kNm) 

Theoretical 
Flexural Moment 

Capacity 
kip-in. (kNm) 

Mtheory/Mtest 
Failure 
Mode 

B36-1 12.45 1620 (183) 3483.75 (393.6) 2.155 Instability 
B36-2 12.45 1845 (208) 3483.75 (393.6) 1.890 Instability 
B36-3 12.45 1350 (153) 3483.75 (393.6) 2.580 Instability 
B30-1 10.20 2040 (230) 2250.8 (254.3) 1.105 Instability 
B30-2 10.20 2160 (244) 2250.8 (254.3) 1.041 Instability 
B30-3 10.20 1402 (158) 2250.8 (254.3) 1.600 Instability 
B24-1 8.13 1260 (142) 1492.5 (168.6) 1.185 Instability 
B24-2 8.13 1350 (153) 1492.5 (168.6) 1.105 Instability 
B24-3 8.13 1440 (163) 1492.5 (168.6) 1.037 Instability 
B12-1 3.78 300 (34) 330.0 (37.3) - Flexure 
B12-2 3.78 210 (24) 330.0 (37.3) - Flexure 

 

 All of the beams failed by lateral buckling except for the two beams with the 

lowest d/b ratio.  Sant and Bletzacker (1961) showed that it was possible to have 

reinforced concrete beams fail by lateral-torsional buckling.  The reason Sant and 

Bletzacker’s (1961) specimens were able to buckle while Hansell and Winter’s (1959) 

specimens did not buckle was due to the differences in L/b and d/b ratios.  In Sant and 

Bletzacker’s (1961) tests, the L/b ratios all of the beams were 96 while the beams with 

the highest L/b ratio in Hansell and Winter’s (1959) tests was 86.4, slightly less slender.  

Additionally, the transition between a stability failure and a flexural failure in Sant and 

Bletzacker’s (1961) tests occurred between a d/b ratio of 8.13 and 3.78 which is 

consistent with the fact that all of the beams in Hansell and Winter’s (1959) test had a d/b 

ratio of 5.2. 

 Sant and Bletzacker (1961) took the same approach as Hansell and Winter (1959) 

with respect to the analysis of the beams.  The concrete not within the compression block 
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was neglected when the section properties were calculated.  The difference in approach 

between the two was with respect to the modulus of elasticity.  Sant and Bletzacker 

(1961) chose to use the reduced modulus given by Equation 3.3. 
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where: 

 Ec =   modulus of elasticity of concrete 

Etan =   tangent modulus of elasticity 

Er = reduced modulus of elasticity 

 

 The analytical method used by Sant and Bletzacker (1961) was in fact a 

conservative approach.  All of the specimens that buckled did so at a 4% to 116% higher 

load than predicted according to Sant and Bletzacker (1961).  The variability of the 

experimental results was somewhat suspect though, particularly with respect to the B30 

series and B36 series.  The variability could have been attributed to the inherent 

variability of concrete, varying amounts of restraint provided by the test setup on a test-

by-test basis, or a combination of reasons. 

 Massey (1967) performed small-scale experiments as well.  The specimens used 

were 0.5 in. (12.7 mm) wide, 3 in. (76.2 mm) deep and no coarse aggregate was used in 

the “concrete” mix as shown in Figure 1.8.  The results from the experiments are shown 

in Table 1.4. 
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Figure 1.8 – Dimensions and reinforcement for specimens from Massey (1967) 

 

 

Table 1.4 - Test results from Massey (1967) 

Specimen 
Reinforcement 

Pattern 

Concrete 
Strength 
fc' (psi) 

Span 
(in.) 

M fail  
(lb-in.) 

Failure 
Mode 

1 Single 4500 48 5760 Buckling 
2 Single 3750 48 5260 Buckling 
3 Single 2740 36 5060 Buckling 
4 Single 3400 24 5260 Flexure 
5 Single 3620 60 4860 Buckling 
6 Single 4430 72 4460 Buckling 
7 Double 3340 48 7060 Buckling 
8 Double 3520 48 6860 Buckling 
9 Double 3140 36 7320 Buckling 
10 Double 2680 24 7460 Buckling 
11 Double 2950 72 5360 Buckling 
12 Double 3800 72 5460 Buckling 
13 Double 3740 60 5460 Buckling 
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 The analytical portion of Massey’s (1967) work expanded on the previous 

researchers’ work.  The following equation was derived to approximately solve the 

differential equation which considered warping of the section: 
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where: 

 B =   weak-axis flexural stiffness 

C =   torsional stiffness 

 

 The lateral flexural rigidity proposed by Massey (1967) was similar to previous 

researchers except that Massey (1967) used the secant modulus of elasticity and included 

the effect of longitudinal steel as shown by: 
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where: 

 c =   depth of neutral axis 

b =   breadth of cross-section 

Esec = secant modulus of elasticity 

Es = steel modulus of elasticity 

Isy = moment of inertia of individual longitudinal steel reinforcing bar 
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Massey (1967) suggested that the longitudinal steel would have an effect on the 

torsional rigidity and that there was experimental evidence to suggest that the torsional 

rigidity should be based on the gross concrete section.  Furthermore, Massey (1967) 

stated that the torsional rigidity would be reduced when major-axis bending was 

increased, and, therefore, the shear modulus should be modified as (Batdorf, 1949): 

 

 cseccc EEG'G =  (1.13) 

where: 

 Gc =   concrete shear modulus 

Gc’ =   modified concrete shear modulus 

 

Based on the thin-membrane analogy (Plunkett, 1965), Massey (1967) considered the 

torsional rigidity to be:  
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where: 

 βT =   parameter based on ratio d/b (Timoshenko and Goodier, 1951) 

d1 =   depth of area enclosed by steel reinforcing ties 

bs = lateral distance between longitudinal steel reinforcing bars 

db = diameter of steel reinforcing bar 

 

Furthermore, Massey (1967) added the stipulation based on Cowan (1953) that vertical 

ties would increase the torsional rigidity by: 
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where: 

 Cs =   torsional stiffness from steel reinforcing bar 

b1 =   breadth of area enclosed by steel reinforcing ties 

At = area of individual steel reinforcing bar in reinforcing tie 

p = pitch of steel reinforcing ties 

 

 Massey (1967) also considered warping rigidity with the analysis, and it was 

suggested that neglecting the warping rigidity was accurate for singly-reinforced beams 

but not for doubly reinforced beams.  The derivation arrived at the following equation: 
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where: 

 d’ =   distance between top and bottom longitudinal reinforcing steel 

I1 =   moment of inertia of top longitudinal reinforcing steel 

I2 = moment of inertia of bottom longitudinal reinforcing steel 

  

More recently Revathi and Menon (2006) proposed their equations for the 

flexural and torsional rigidities which were based on previous research and experiments 

which they performed.  Revathi and Menon (2006) considered the flexural rigidity by 
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modifying an equation originally proposed by Branson (Pillai and Menon, 2002) to 

calculate flexural deflection in a reinforced concrete beam.  Revathi and Menon’s (2006) 

equation once again neglected the concrete not in the compressed region.  The steel was 

thought to contribute to the rigidity but only in the case that the beam in question was 

over-reinforced.  The reason for this consideration was that in under-reinforced beams, it 

was suspected the steel was close to yield, and, therefore, incapable of providing any 

rigidity.  Furthermore, Revathi and Menon (2006) considered the compression 

reinforcement ineffective for flexural rigidity thus leaving the lateral flexural rigidity as: 
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where: 

 MR =   cracking moment of cross-section 

Mu =   ultimate flexural moment capacity of cross-section 

h = height of cross-section 

cu = depth of neutral axis at ultimate load 

ψ = 0 for cu ≤ cb (under-reinforced beam);  

  1 for cu > cb (over-reinforced beam) 
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 With respect to the torsional rigidity, Revathi and Menon (2006) used Tavio and 

Teng’s (2004) torsional rigidity equation which considers the concrete cracking as well as 

the affect of longitudinal reinforcing and shear stirrups.  The equation was as follows: 
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where: 

µ =   rigidity multiplier (1.2 for under-reinforced and 0.8 for over-

reinforced) 

A0 =   area enclosed by centerline of longitudinal reinforcing steel  

Ag = gross area of concrete 

p0 = perimeter of centerline of longitudinal reinforcing steel 

ρl = longitudinal reinforcing steel reinforcement ratio 

ρt = transverse reinforcing steel reinforcement ratio 

 

 Revathi and Menon (2006) performed experiments on seven beam specimens in 

an attempt to validate their rigidity equations.  The specifics of the beams tested shown in 

Table 1.5 and the failure loads of said beams are shown in Table 1.6. A comparative 

study that was included in Revathi and Menon (2006) is also included in Table 1.6.  

Revathi and Menon (2006) took the comparison one step further by comparing their 
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proposed formulation to the test beams used in Sant and Bletzacker (1961) and Massey 

(1967).  These comparisons have been included in Tables 1.7 and 1.8. 

 

Table 1.5 - Test beam data from Revathi and Menon (2006) 

Beam 
Label 

Dimensions 
b x h x L, in. (mm) 

L/b d/b 
2L 6 mm 

Stirrup Spacing, 
in. (mm) 

Max Lateral 
Imperfection, 

in. (mm) 

B1a 
3.93 x 17.71 x 196.84 
(100 x 450 x 5000) 

50 4.0 7.87 (200) 0.47 (12) 

B1b 
3.93 x 21.65 x 196.84 
(100 x 550 x 5000) 

50 5.0 5.90 (150) 0.47 (12) 

B1c 
3.93 x 25.59 x 196.84 
(100 x 650 x 5000) 

50 6.0 3.93 (100) 0.31 (8) 

B2a 
3.93 x 17.71 x 236.21 
(100 x 450 x 6000) 

60 4.0 9.84 (250) 0.39 (10) 

B2b 
3.93 x 21.65 x 236.21 
(100 x 550 x 6000) 

60 5.0 9.84 (250) 0.51 (13) 

B3a 
3.14 x 11.81 x 236.21 

(80 x 300 x 6000) 
75 3.1 7.87 (200) 0.43 (11) 

B3b 
3.14 x 15.74 x 236.21 

(80 x 400 x 6000) 
75 4.3 9.84 (250) 0.35 (9) 

 

 

The various analytical methods proposed to determine critical buckling loads for 

reinforced concrete beams, were similar except for the way in which the rigidity 

properties were calculated.  A summary of the proposed expressions for the rigidity 

properties from different researchers is included in Table 1.9. 
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Table 1.6 – Experimental results from Revathi and Menon (2006) with comparative study 
for under-reinforced beams 

 
Calculated Buckling Loads, kips (kN) 

Beam 
Label 

Flexural 
Capacity, 
kips (kN) 

Failure 
Load, 
kips 
(kN) 

Failure 
Mode 

Ptest/
Pu 

Hansell & 
Winter 
(1959) 

Sant & 
Bletzacker 

(1961) 

Massey 
(1967) 

Revathi 
& 

Menon 
(2006) 

B1a 
22.86 

(101.7) 
20.88 

(92.92) 
Buckling 0.909 

38.03 
(169.2) 

118.36 
(526.5) 

80.36 
(357.5) 

20.29 
(90.27) 

B1b 
32.19 

(143.2) 
27.11 

(120.6) 
Buckling 0.834 

49.57 
(220.5) 

145.02 
(645.1) 

95.92 
(426.7) 

26.61 
(118.4) 

B1c 
50.22 

(223.4) 
39.22 

(174.5) 
Buckling 0.781 

59.03 
(262.6) 

172.99 
(769.5) 

112.58 
(500.8) 

38.66 
(172.0) 

B2a 
19.48 

(86.68) 
15.07 

(67.04) 
Buckling 0.765 

38.17 
(169.8) 

114.31 
(508.5) 

78.81 
(350.6) 

13.87 
(61.7) 

B2b 
27.62 

(122.89) 
19.31 

(85.90) 
Buckling 0.693 

47.95 
(213.3) 

141.22 
(628.2) 

93.63 
(416.5) 

17.42 
(77.5) 

B3a 
6.29 

(27.89) 
5.58 

(24.85) 
Buckling 0.837 

11.21 
(49.88) 

37.88 
(168.5) 

29.69 
(132.1) 

4.87 
(21.7) 

B3b 
12.96 

(57.67) 
8.17 

(36.37) 
Buckling 0.647 

18.14 
(80.71) 

50.53 
(224.8) 

38.73 
(172.3) 

7.22 
(32.15) 

Percentage Error (Range) 50 to 153 340 to 658 
186 to 
431 

1.4 to 
12.6 

 

 

Table 1.7 – Comparison of results for Sant and Bletzacker’s (1961) over- reinforced test 
beams (Revathi and Menon, 2006) 

 
Calculated Mb, 
kip-in (kNm) 

Beam 
ID 

b, in. 
(mm) 

h, in. 
(mm) 

L, in. 
(mm) 

As, in.2 

(mm2) 

Test Mb, 
kip-in 
(kNm) 

Sant & 
Bletzacker 

(1961) 

Revathi & 
Menon 
(2006) 

B24 
2.5 

(63.5) 
24 

(610) 
240 

(6096) 
1.9 

(1264) 
1359 

(152.5) 
976 

(110.4) 
1435 

(162.2) 

B30 
2.5 

(63.5) 
30 

(762) 
240 

(6096) 
2.4 

(1584) 
1868 

(211.1) 
1161 

(131.3) 
1987 

(224.6) 

B36 
2.5 

(63.5) 
36 

(915) 
240 

(6096) 
2.9 

(1931) 
1604 

(181.3) 
1327 

(150.0) 
1678 

(189.7) 
Percentage Error (Range) 17 to 27 4.6 to 6.3 
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Table 1.8 – Comparison of results for Massey’s (1967) over-reinforced test beams 
(Revathi and Menon, 2006) 

 
Calculated Mb, 
kip-in (kNm) 

Beam 
ID 

b, in. 
(mm) 

h, in. 
(mm) 

L, in. 
(mm) 

As, in.2 

(mm2) 
Av, in.2 

(mm2) 

Test Mb, 
kip-in 
(kNm) Massey 

(1967) 

Revathi & 
Menon 
(2006) 

B1 
0.5 

(12.5) 
3.0 
(75) 

48 
(1219) 

0.1 
(69.0) 

- 
6.03 

(0.682) 
6.03 

(0.682) 
5.69 

(0.643) 

B2 
0.5 

(12.5) 
3.0 
(75) 

48 
(1219) 

0.1 
(69.0) 

- 
5.07 

(0.573) 
5.58 

(0.631) 
5.30 

(0.599) 

B5 
0.5 

(12.5) 
3.0 
(75) 

60 
(1524) 

0.1 
(69.0) 

- 
4.68 

(0.529) 
5.03 

(0.569) 
4.37 

(0.491) 

B6 
0.5 

(12.5) 
3.0 
(75) 

72 
(1828) 

0.1 
(69.0) 

- 
4.30 

(0.486) 
4.71 

(0.533) 
3.83 

(0.433) 

B7 
0.5 

(12.5) 
3.0 
(75) 

48 
(1219) 

0.1 
(69.0) 

0.05 
(30.6) 

6.80 
(0.769) 

7.47 
(0.845) 

6.14 
(0.694) 

B8 
0.5 

(12.5) 
3.0 
(75) 

48 
(1219) 

0.1 
(69.0) 

0.05 
(30.6) 

6.61 
(0.747) 

7.02 
(0.794) 

6.03 
(0.682) 

B9 
0.5 

(12.5) 
3.0 
(75) 

36 
(914) 

0.1 
(69.0) 

0.05 
(30.6) 

7.05 
(0.797) 

8.07 
(0.913) 

7.05 
(0.797) 

B10 
0.5 

(12.5) 
3.0 
(75) 

24 
(609) 

0.1 
(69.0) 

0.05 
(30.6) 

7.18 
(0.812) 

8.36 
(0.945) 

7.72 
(0.873) 

B11 
0.5 

(12.5) 
3.0 
(75) 

72 
(1828) 

0.1 
(69.0) 

0.05 
(30.6) 

5.16 
(0.584) 

6.24 
(0.706) 

4.72 
(0.534) 

B12 
0.5 

(12.5) 
3.0 
(75) 

72 
(1828) 

0.1 
(69.0) 

0.05 
(30.6) 

5.26 
(0.595) 

6.17 
(0.698) 

4.75 
(0.537) 

B13 
0.5 

(12.5) 
3.0 
(75) 

60 
(1524) 

0.1 
(69.0) 

0.05 
(30.6) 

5.26 
(0.595) 

5.90 
(0.667) 

5.00 
(0.565) 

Percentage Error (Range) 6.2 to 20 2.5 to 10 
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Table 1.9 – Summary of flexural and torsional rigidity expressions 

Author Flexural Rigidity ( )effEIB =  Torsional Rigidity ( )effGJC =  

Hansell & 
Winter 
(1959) 
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1.3.1.2 Prestressed Concrete 

 For prestressed concrete flexural members, the same complexities as reinforced 

concrete members needed to be considered.  Furthermore, the behavior of the member 

with respect to the prestressing axial load needed to be considered.  Several questions 

have been raised about the effect of the prestressing force.  Would the prestressing cause 

a lower critical load like in the case of a steel beam-column or will the strands actually 

increase the critical load due to a restraint to lateral deformation from the strands?  

Would the prestressing force have any effect on the flexural and torsional rigidities? 

 Several authors such as Magnel (1950), Billig (1953), and Leonhardt (1955) had 

come to the conclusion that a prestressed concrete beam where the strands were bonded 

to the concrete cannot buckle.  Billig (1953) stated that the prestressing force would only 

lead to a stability concern if the strands were unbonded over long distances.  The 

reasoning behind not needing to perform stability calculations was due to the member 

being in equilibrium from the lateral reaction of the strand.  Both Billig (1953) and 

Leondhardt (1955) cite Magnel (1944), in which Magnel’s (1950) book on prestressed 

concrete incorporated the results published in the researcher’s 1944 journal article 

(Magnel, 1944).  Magnel (1950) used an example to analytically prove his theory.  

Magnel (1950) considered a beam with a prestressing tendon running through a duct 

sufficiently larger than the tendon where the tendon was rigidly attached only at the 

center by way of a cross-plate as depicted in Figure 1.9. 
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Figure 1.9 - System forces by Magnel (1950) 

 

From equilibrium in Figure 1.9, the transverse load N was found to be
P

L

y4 0

.  

The second-order differential equation was then determined to be:  

 

 






 −+−= x
2

L

2

N
Py

dx

yd
EI

2

2

 (1.19) 

where: 

P =   prestressing force 

y =   coordinate axis perpendicular to centroidal axis of girder (lateral) 

N = lateral restoring force 

 

 Solving the differential equation by using the boundary conditions y’ = 0 at x = 0 

and y = 0 at x = L/2 gave the critical buckling load as: 

 

  
2

2

b L

EI4
P

π=   (1.20) 



 35 

The critical buckling load was four times the Euler buckling load.  Additional 

calculations would show that for n number of contact points between the tendon and the 

concrete would give n2 times the Euler buckling load for the critical load.  Therefore 

Magnel (1950) claimed that it was impossible to buckle a prestressed member if the 

tendon was continuously in contact with the concrete. 

 Tests were done by Magnel (1950) to try to prove these theories.  The first of the 

relevant tests was performed on two concrete members that were 9.84 ft. (3 m) long with 

cross-sectional dimensions of 2 in. (5 cm) by 4 in. (10 cm) including a 5/8 in. (16 mm) 

longitudinal hole through the member.  The compressive strength of the concrete was 

found to be 6000 psi (422 kg/cm2) at the time when the prestressed members were tested.  

The first of the two members was tested with no prestressing wires and buckled at a load 

of 10,600 lbs. (4850 kg).  The achieved buckling load was very close to the theoretical 

Euler buckling load for the member.  The second specimen was prestressed with four 0.2 

in. (5 mm) wires and loaded to 19,000 lbs. (8600 kg) with no signs of instability or failure 

of the concrete at that load.   

 The second relevant test was performed on a concrete member with a length of 20 

ft. (6.10 m) with a cross-section that was 4 in. (10 cm) by 4 in. (10 cm).  A 1.5 in. (4 cm) 

longitudinal hole was provided for a cable constructed of 16 - 0.2 in. (5 mm) wires.  The 

compressive strength of the concrete at the time of the tests was found to be 3840 psi 

(270 kg/cm2).  These dimensions and material properties would give a buckling load of 

14,100 lbs. (6300 kg) according to the Belgium regulations to which Magnel (1950) 

referred.  The prestressing wires were stressed two at a time until the load was 49,400 lbs. 

(22 metric tons).  This load would produce a stress in the concrete of 3740 psi (262 
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kg/cm2).  No sign of instability or of concrete crushing was initially noticeable but after 

five minutes, the concrete failed in compression.  The prestressed member had a 

slenderness ratio of 185 but had the failure load that would normally be representative of 

a member with a slenderness ratio of 14.  Magnel (1950) believed that these test results 

confirmed the theory that a member with prestressing tendons continuously in contact 

with the concrete would not buckle. 

 Molke (1956) discussed a specific case study of a high school auditorium in 

Springfield, Missouri that was framed with 146 ft. (44.5 m) prestressed roof girders.  The 

prestressed roof girders needed special investigation of their stability while being lifted 

and placed before there was bracing from the roof slabs.  In literature, it was well 

established that with straight or curved concrete columns, there was no concern with 

respect to stability failure as long as the prestressing strands were located at the centroid 

of the section according to Molke (1956).  Any bending moment created by the 

prestressing force in the strands would then be countered by an equal and opposite 

restoring force.  Molke (1956) believed this had often been misconstrued to mean there 

was never any stability concern in prestressed concrete members.  Any externally applied 

loads on the member could produce the same type of buckling failures as considered if 

the member had not been prestressed.  Furthermore, the buckling load could actually be 

considered to be less than typical because the prestressing force would reduce the elastic 

modulus of the concrete.  The girders in question for the auditorium roof had sufficient 

factor of safety when utilizing traditional formulas for lateral buckling of beams.  Molke 

(1956) believed that proof of a minimum factor of safety for buckling in concrete 

structures should be calculated based on elastic theory and should be a code requirement. 
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The concept that Molke (1956) discussed in which the effect of the prestessing in 

the strands would not cause instability, but externally applied loads could potentially 

cause a buckling issue was repeated by Muller (1962).  Muller (1962) stated that stability 

has become a concern due to the long spans of the precast beams and referred to handling 

and placing as the critical conditions for stability failure of the precast beams.  The 

mechanics provided by Muller (1962) were obtained from LeBelle (1959).  Essentially, 

the derivations by LeBelle (1959) included the loading not being at the shear center, the 

cross section not being thin-walled and rectangular, and the case of unsymmetrical 

flanges.  These derivations were the same as what would be found in classical theory.  

Lebelle (1959) developed in-depth derivations for many different cases but no 

consideration was given to the prestressing force, changes in modulus of elasticity or the 

cracking of the concrete.   

Additional research by Stratford, Burgoyne and Taylor (1999) and Stratford and 

Burgoyne (1999) used classical stability theory and assumed no inelastic behavior or 

cracking of the concrete.  The cases considered by Stratford, Burgoyne and Taylor (1999) 

and Stratford and Burgoyne (1999) were beams on simple supports with torsional 

restraint at the ends and restrained rotation about the weak-axis, and beams on simple 

supports with torsional restraint at the ends and free rotation about the weak-axis.  

Furthermore, Stratford, Burgoyne and Taylor (1999) and Stratford and Burgoyne (1999) 

considered toppling of hanging girders and was expanded on by Stratford and Burgoyne 

(2000) to include a more detailed consideration of toppling of hanging girders.  Stratford, 

Burgoyne and Taylor (1999) refer to a future paper with respect rollover (Burgoyne and 

Stratford, 2001) which is discussed in Section 1.3.2 on rollover stability.  Muller (1962) 
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also considered toppling of a hanging girder as well as expanding on the classical theory 

presented in LeBelle (1959) for the case of elastic torsional restraint at the ends.  An 

elastic torsional restraint was representative of the case of a girder in transport or on 

supports.  The torsional stiffness was that provided by the truck trailer or elastomeric 

bearing pad. 

An energy of deformations approach was used by Saber (1998) to derive a 

specific classical solution for stability of prestressed girders.  Saber (1998) did, however, 

include the prestressing force, but it was done so by treating the prestressing force as an 

axial load at the end of the girder, or essentially treating the member as a beam-column.  

The girder was loaded by a prestressing force, P, which had an eccentricity, e, a uniform 

self-weight of the girder, Wb, and a uniform load from the deck, Wd.  The theory of 

stationary potential energy was used to find the governing differential equations.  The 

shear center was used as the location of the center of rotation.  Some of the assumptions 

made during the analysis included that the plane cross-sections warp but their geometric 

shape did not change during buckling, the concrete was not cracked and the loads 

remained parallel with their initial orientations.   

 For example, Figure 1.10 shows a plot of the maximum effective prestressing 

force versus the unbraced length for an AASHTO Type III girder with various concrete 

compressive strengths and strand eccentricities.  The deck weight was based on a deck 

thickness of 8 in. (20 cm) and a girder spacing of 11 ft. (3.35 m) to envelope all deck 

cases.  Varying the deck dimensions and, therefore, the magnitude of the uniform deck 

load, did not significantly change the results.  It appeared the reasoning for the 

insignificant effect of the deck weight was that the instability failure was controlled 
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mainly by the prestressing force in the member since it was large with respect to the deck 

weight.  From this plot, it is also apparent that the eccentricity of the strands has little 

effect on the results, especially as the spans become large.   
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Figure 1.11 - Prestressing force for girder lateral stability for AASHTO Type III from 
Saber (1998) 

 

 It was evident to the author that the results of this analysis by Saber (1998) were 

not correct.  For instance, the fabrication drawings for a Georgia Department of 

Transportation bridge, specifically Ramp 7 (NB C-D) over I-75 NB in Bibb County, 

Georgia, called for AASHTO Type III girders on the third span of the bridge.  The length 

of these girders was specified to be 75 ft. 1¼ in. (22.9 m), the compressive strength of the 

concrete at prestressing strand release was specified as 5000 psi (352 kg/cm2) and 5500 

psi (387 kg/cm2) at 28 days.  Thirty prestressing stressing strands stressed at 33,818 lbs. 

(15,340 kg) each were used to prestress the girder which gives a total prestressing force 
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of 1,014,540 lbs. (460,195 kg).  From looking at Figure 1.10, the analysis results 

concluded that the girder would buckle after the strands were released as the deck load 

had little effect, and, therefore, the maximum length of the girder should be less than 59 

ft. (18 m).  There were several instances of bridge girders of all types being fabricated, 

but according to the analysis results reported in Saber (1998), the girders should have 

buckled.  Therefore, the girders would not behave ideally as an isotropic beam-column as 

the analysis assumes. 

 Malangone (1977) used another mechanics approach to solve the problem but 

attempted to include the effect of the prestressing force.  The effect of the prestressing 

force was included by utilizing the work done by the second order forces in finding 

equilibrium of the system which gives an effective torsional rigidity that was dependent 

on the prestressing force and location.  The variation of the work was still equal to zero 

such that: 

 

 ( ) 0WL*
2 =+δ  (1.21) 

where: 

L2* =   second-order work of the system 

W =   work of elastic system 

 

The *
2L  term was the second order work of the system and was found as follows: 
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where: 

σz =   longitudinal stress 

εzz
(2) =   second-order strain 

 

After substituting the appropriate values for the terms in Equation 1.22 and plugging the 

second order work term into the equilibrium equation, the governing differential equation 

was found to be: 

 

 022 =













−−++

+
+− II

yxyyxx
g

yxIIIV
I eeee

A

II
PCC βββββ  (1.23) 

where: 

CI =   warping stiffness (ECw) 

ex = individual strand eccentricity from x-axis 

ey = individual strand eccentricity from y-axis 

βx = section property 
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An effective torsional rigidity, C*, could be found by subtracting the prestressing force 

stiffness term from the standard torsional rigidity of the section such that: 
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which gave the governing differential equation as: 

 

 0CC II*IV
I =− ϕϕ  (1.26) 

where: 

Cp =   prestressing force torsional stiffness effect 

C* = effective torsional stiffness 

 

Note that for the case of several prestressing strands in the section, CP became: 
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 From Equation 1.26, several solutions could be found for different cases and 

boundary conditions.  The critical uniform transverse load for the case of perfect torsional 

restraint at each end was found to be: 
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 The results were essentially the same as classical theory for a uniformly loaded 

beam considering warping except that the torsional rigidity term was replaced by the 

effective torsional rigidity taking into account the magnitude and location of the 

prestressing force.  Some examples were provided in Malangone (1977) which displayed 

the relatively small effect of the effective torsional rigidity.  The first example gave a 

result of the critical uniform load to be 1268.0 lbs/ft. (18.87 kg/cm) while the results if 

the standard torsional rigidity was used gave 1247.2 lbs/ft. (18.56 kg/cm), a difference of 

1.6%.  Notice that the effective torsional rigidity actually increased the critical buckling 

load.  The torsional rigidity could be increased or decreased depending on the magnitude 

of the prestressing force, the eccentricity and the section properties of the cross section.  

Generally, the effect was within a couple percent and would not change the results 

extensively.  The minimal effect of consider the second-order work is why the effect of 

second-order behavior is neglected in most lateral-torsional buckling analyses (Trahair 

and Teh, 2000).    

 Analysis and experimental results were completed for post-tensioned concrete 

struts by Godden (1960) which was the basis for Wilby (1963).  Godden (1960) referred 

to Billig (1952) and Magnel (1950) stating that a prestressed member would not buckle if 

the tendons were in contact with the concrete and that stability calculations should be 

performed based on a reinforced concrete column analysis.  Godden (1960) also 

expressed the opinion that further research should be done considering flexural torsional 

buckling of slender prestressed beams since the tests performed only considered axially 

loaded members.  Godden (1960) was unsure whether a prestressed strut would buckle if 

the tendons were in contact with the concrete, so the selection of struts for the 
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experiments used tendons with ducts such that they would buckle, and when the tendons 

came into contact with the side of the duct, the behavior could be observed.  

  The theoretical analysis from Godden (1960) considered three cases.  The first 

case was that of a pinned ended strut with an axial load as depicted in Figure 1.11. 

 

  

Figure 1.11 - Axial strut with pin jointed ends from Godden (1960) 

 

The results of the first case gave the critical axial force equal to the Euler buckling load, 

which was to be expected.  Seldom have actual conditions allowed for perfect loading 

with no error which was the cause for the derivation of the second case.  The conditions 

were the same except that the axial load was applied eccentrically as depicted in Figure 

1.12.   

 

 

Figure 1.12 - Eccentrically loaded axial Strut with pin jointed ends from Godden (1960) 
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The deflection of the strut was found by first setting the internal moment equal to 

the externally applied moment: 

 

 Py
dx

yd
EI

2

2

−=  (1.29) 

 

by simplifying and substituting 
yEI

P
k = : 

 

 0yk
dx

yd 2
2

2

=+  (1.30) 

 

The solution to the differential equation was of the form: 

 

 ( ) ( )kxcosBkxsinAy +=  (1.31) 

 

Using the boundary condition that when x = 0, y = e, where e is the eccentricity at each 

end, gave the constant B = e.  The boundary condition when x = L/2, y’ = 0 resulted in A 

= e[tan(kL/2)].  After substituting and simplifying the final deflection was found to be: 

 

 ( )[ ] ( ) ( )[ ]kxcosekxsin2kLtaney +=  (1.32) 

 

and at the midspan of the strut the deflection was found to be: 
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 For a known value of the prestressing force, the deflection could be found at any 

point along the strut using Equation 1.32.  However, Equation 1.32 only pertained to the 

case where the tendon did not come into contact with the duct.  If the tendon comes into 

contact with the duct, an entirely new set of conditions would arise.  The new conditions 

warranted the derivation for the third case where the strut had deformed enough such that 

the tendon and duct were in contact as shown by Figure 1.13. 

 

Figure 1.13 - Tendon in contact with duct from Godden (1960) 

 

 For the third case, the term ∆ was introduced as the deflection of the tendon.  

Essentially, ∆ was the deflection of the strut after the tendon came into contact with the 

duct.  By making the assumption that after the tendon and duct came into contact, no 
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additional bending moment was developed at midspan of the strut, Godden (1960) was 

able to solve for the restoring force, N, by equilibrating it with the moment caused by the 

prestressing force multiplied by the tendon deflection which gave the restoring force to 

be: 

 

 
( )
L

P4
N

∆=  (1.34) 

 

The internal moment had to equal the externally applied moment, therefore: 
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After substituting 
yEI

P
k =  into Equation 1.35, the solution to the governing 

differential equation became: 

 

 ( ) ( ) 






 −++=
L

x2
1kxcosBkxsinAy ∆  (1.36) 

 

Using the first boundary condition, when x = 0, y’ = 0, resulted in A = 2∆/kL and the 

second boundary condition, when x = L/2, y = 0, resulted in Equation 1.37.   
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( )

( )2kLcos

2kLsin
kL

2

B

∆−

=  (1.37)  

 

Note that the origin of the x-axis was set at midspan of the strut.  Substituting into 

Equation 1.36 resulted in the deflection at any point along the length of the strut to be: 
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The maximum deflection which occurred at midspan of the strut became: 
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Furthermore, the maximum deflection at midspan was the deflection of the tendon, ∆, in 

addition to the deflection before contact between the tendon and the duct.  The deflection 

before contact between the tendon and the duct was just the clearance between the tendon 

and the duct; therefore, y(0) = ∆  + clearance.   

 The important assumption made by the analysis for the third case was that when 

the tendon came into contact with the duct, a concentrated restoring force was applied at 

the point of contact between the tendon and the duct.  The magnitude of the restoring 
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force was determined by assuming that the reactions from the restoring force produced a 

moment equivalent to the moment produced by the prestressing force multiplied by the 

deflection of the tendon.   

 Six struts were tested by Godden (1960), but only three tests produced load versus 

deflection plots that were included due to various experimental issues.  The struts that 

had recorded load versus deflection plots were those designated by Godden as Beam II, 

Beam III and Beam VI.  Figure 1.14 shows the specifics of each of the struts.   

 

BEAM II BEAM III BEAM VI

 

Figure 1.14 - Strut details from Godden (1960) 

 

 The load was applied to the struts but running the threaded Lee-McCall bars 

through the duct and turning the end nuts so that the end nut would apply a compressive 

force to the end of the strut.  A diagram of the end condition is shown in Figure 1.15. 
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Figure 1.15 – End condition for struts from Godden (1960) 

 

 Godden (1960) stated that the experimental results demonstrated that the end 

fixities of the beams were sufficiently close to the idealized assumption that end 

conditions were pinned.  The end fixity was determined by plotting the stress on both 

sides of the strut at each of the ends.  In theory, if the ends were completely free to rotate 

then the stress on either side of the beam would be equivalent and the only induced stress 

would be from the axially induced stress.  An example of one of these plots is shown as 

Figure 1.16.  The stresses were difference on each side and it was apparent that there 

were some end fixity issues to consider.  Some of the plots that were included in Godden 

(1960) did show a good representation of a free end condition but this only occurred in 

approximately half of the end conditions of the beams.   

 

Strut 

Lee-McCall 
Bar 

End Plate 

Flanged Washer End Nut 

Load Cell 
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Figure 1.16 - Beam III load vs. stress at ends from Godden (1960) 

 

 For Beam I alone, Godden (1960) attached two strain gages at each location at 

both the top and the bottom of each side so that the stresses at these locations were 

compared.  The comparison showed that the stress at the top and bottom of the side of the 

strut were the same; so, it was concluded that the deflection at the top and bottom was the 

same and, therefore, there was no rotation of the strut.  Table 1.10 shows the material 

properties for each of the tested struts, while Figures 1.17, 1.18 and 1.19 show the lateral 

deflection versus the load for Beam II, Beam III and Beam VI, respectively. 
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Table 1.10 - Strut material properties from Godden (1960) 

Beam 
Cube Strength 
psi (kg/cm2) 

Modulus of Rupture 
psi (kg/cm2) 

Tensile Strength 
psi (kg/cm2) 

Modulus of 
Elasticity 

psi (kg/cm2) 
I 6640 (466.85) 467 (32.83) 498 (35.01) 4230 (297403) 
II 5250 (369.12) 378 (26.58) 462 (32.48) 3630 (255219) 
III 6500 (457.00) 378 (26.58) 466 (32.76) 4075 (286506) 
IV 5070 (356.46) 409 (29.76) 429 (30.16) 3780 (265765) 
VI 5356 (376.57) 428 (30.09) 498 (35.01) 5920 (416224) 
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Figure 1.17 - Beam II experimental deflection versus load from Godden (1960) 

Transition 
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Figure 1.18 - Beam III experimental deflection versus load from Godden (1960) 
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Figure 1.19 - Beam VI experimental deflection versus load from Godden (1960) 
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 Godden (1960) considered each of the deflection versus load plots to be bilinear 

with a transition zone between each of the linear segments.  The thought was that the 

transition zone where the deflection begins to increase at a higher rate was when the 

tendon came into contact with the duct and began to move with the strut.  This was 

different then what Godden’s cited references stated in which they believed there would 

be a restraining effect when the tendon and duct came into contact.  Furthermore, the 

predicted behavior using the deflection formulation of Equation 1.39 was not accurate 

either, which is apparent in Table 1.11 because the actual experimental deflections do not 

match the theoretical deflection that was based on Equation 1.39.  The comparison of the 

theoretical deflection and the actual experimental deflection was especially different in 

the case of Beam VI. 

 

Table 1.11 - Experimental and theoretical results from Godden (1960) 

Beam 
Load 

kips (kg) 
Actual Deflection 

in. (mm) 

Theoretical 
Deflection 
in. (mm) 

Euler Buckling 
Load 

kips (kg) 
II 24.64 (11176.7) 1.05 (26.67) 1.33 (33.78) 8.75 (3967.5) 
III 24.64 (11176.7) 0.37 (9.40) 0.27 (6.86) 9.82 (4453.9) 
VI 24.64 (11176.7) 1.16 (29.46) 0.537 (13.64) 14.26 (6470.5) 

 

 Notice that the transition region was at a deflection greater than the clearance 

which Godden (1960) believed was due to the tendon rotating due to a couple at the end.  

The couple induced in the tendon was quite probable since the end plate connection 

between the strut and tendon was very rigid and would not allow complete freedom of 

rotation of the strut without having an effect on the post-tensioned bar.  The author 
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further calculated the Euler buckling load, which was believed by Godden (1960) to be 

the load of instability if the tendon had yet to come into contact with the tendon. The 

Euler buckling loads were such that the strut should have buckled before the transition 

zone.  The author believed that there was some fixity at the ends of the strut which would 

result in a larger buckling load.  These considerations lead the author to believe that when 

buckling was reached, the tendon came into contact with the duct, and then they moved 

together at a higher rate of deformation.  Furthermore, there was obviously eccentricity 

and/or out of straightness errors in the struts because the lateral deflections increased at a 

high rate upon immediate loading.  Godden (1960) did not include any measured 

eccentricities or fabrication errors within his thesis.   

 Similar tests were performed by Wilby (1963) where both the struts and 

experimental set-up were extremely similar.  The analytical method developed by Wilby 

(1963) was the same as Godden (1960) except that the restoring force provided in the 

formulation was considered as a uniform load along the length in which the tendon had 

come into contact with duct.  The results of the tests performed by Wilby (1963) are not 

presented here due to a lack of information the on struts’ dimensions, material properties 

and errors.  Furthermore, the data were not provided in a sufficient manner and were very 

incomplete.   

 To the author’s knowledge, no lateral-torsional buckling tests were performed on 

prestressed concrete beams in the United States.  In Germany however, a set of tests on 

reinforced concrete and prestressed concrete beams were performed by König and Pauli 

(1990).  The six test specimens fabricated for the tests had the dimensions and 

reinforcement shown in Tables 1.12 and 1.13.   
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Table 1.12 – List of principle parameters from König and Pauli (1990) 

Test 
No. 

Cross-Section Static System 
Bottom 
Flange 

Reinforcement 

Top Flange 
Reinforcement 

Top 
Flange 
Width 

1 
2 

25 cm 

3 

4 - 12mm DIA 
4 - 8mm DIA 

35 cm 

4 

6 - 25mm DIA 
4 - 25mm DIA 
4 - 8mm DIA 

5  
 

14 - 12.5mm 
Prestressed 

4 - 12mm DIA 
2 - 12.5mm 

25 cm 

6 

 
  

24 - 12.5mm 
Prestressed 

4 - 12mm DIA 
4 - 8mm DIA 

35 cm 

Note: 1 in. = 25.4 mm 

 

Table 1.13 – Cross-section dimensions from König and Pauli (1990) 

Specimen 
 Units 

1 2 3 4 5 6 
b 

top(/bottom) 
in. 

(cm) 
10.4 

(26.5) 
10.2 
(26) 

14.2 
(36) 

10.2 
(26) 

10.2 
(26) 

14.2/12.2 
(36/31) 

b web 
in. 

(cm) 
5.3 

(13.5) 
5.2 

(13.3) 
5.1 
(13) 

5.1 
(13) 

5.1  
(13) 

5.9     
(15) 

d 
in. 

(cm) 
51.2 
(130) 

51.2 
(130) 

51.2 
(130) 

51.2 
(130) 

51.2 
(130) 

53.1 
(135) 

As top 
in.2 

(cm2) 
0.80 

(5.16) 
0.80 

(5.16) 
0.80 

(5.16) 
3.16 

(20.4) 
0.80 

(5.16) 
0.80 

(5.16) 

As bottom 
in.2 

(cm2) 
4.74 

(30.6) 
4.74 

(30.6) 
4.74 

(30.6) 
4.74 

(30.6) 
14 

Strands 
24 

Strands 
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The concrete material characteristics are shown in Table 1.14, and the steel 

characteristics are shown in Table 1.15.  The concrete material properties were 

determined by casting six concrete cubes and six concrete cylinders for each specimen.  

The tensile strength of the concrete was determined by performing a split cylinder test on 

three of the six concrete cylinders.     

 

Table 1.14 – Concrete material properties from König and Pauli (1990) 

Test No. Units 1 2 3 4 5 6 
Cube 

Compressive 
Strength 

ksi 
(MN/m2) 

8.27  
(57) 

8.27  
(57) 

8.25 
(56.9) 

8.88 
(61.2) 

8.34 
(57.5) 

6.38  
(44) 

Cylinder 
Compressive 

Strength 

ksi 
(MN/m2) 

7.99 
(55.1) 

8.51 
(58.7) 

7.27 
(50.1) 

7.56 
(52.1) 

7.18 
(49.5) 

5.95  
(41) 

Tensile 
Strength 

ksi 
(MN/m2) 

0.55 
(3.8) 

0.52 
(3.6) 

0.42 
(2.9) 

0.39 
(2.7) 

0.42 
(2.9) 

0.39 
(2.7) 

Core 
Compressive 

Strength 

ksi 
(MN/m2) 

9.86  
(68) 

9.14  
(63) 

9.12 
(62.9) 

9.66 
(66.6) 

9.22 
(63.6) 

8.27  
(57) 

Elastic 
Modulus 

ksi 
(MN/m2) 

5221 
(36000) 

5221 
(36000) 

5076 
(35000) 

5221 
(36000) 

5076 
(35000) 

4496 
(31000) 

 

 

Table 1.15 – Steel material properties from König and Pauli (1990) 

  
fy 

ksi (MN/m2) 
εsy (%) 

Es 
ksi (MN/m2) 

Reinforcing Steel 83.4 (575) 2.9 29000 (200000) 

Prestressing Strand 227.7 (1570) 8.05 28300 (195000) 
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 All of the specimens underwent the same unstable failure mechanism.  As the 

transverse load increased, lateral deflections did so at a relatively small amount; however, 

when the critical load was reached, lateral deflections increased at a large magnitude, and 

there was very little load increase after the critical load was reached.  The damage to the 

beams after the tests included diagonal cracks that developed on both the convex and 

concave sides of the specimens, and the cracks on the convex side of the specimens were 

perpendicular to those on the concave side.  This type of diagonal cracking is 

representative of torsion cracking in reinforced concrete beams and is an indicator of 

lateral-torsional buckling.  Furthermore, it was noted by König and Pauli (1990) that the 

amount of cracking was less on the concave side relative to the convex side, particularly 

in the case of the two prestressed beams.  That makes intuitive sense because there was 

compression on the concave side due to weak-axis bending that acts to close the torsional 

cracks on that side; however, on the convex side, there was tension from the weak-axis 

bending that acts to amplify the torsional cracking on that side.  It is important to note 

that weak-axis bending stresses and the torsional stresses were developed in the 

experiments by König and Pauli (1990) due to the end restraints.  The end conditions that 

they used were: torsional restraint, vertical translation restraint, and horizontal translation 

restraint while allowing free rotation about horizontal axis and free rotation about vertical 

axis. 

 The results shown in Table 1.16 indicate that both widening the top flange and 

adding additional compression reinforcement increase the stability of the cross-section.  

Furthermore, the prestressing force did not produce any significant effect with respect to 

the specimens’ stability because specimen 1 and specimen 5 were extremely similar with 



 59 

respect to geometry, and amount and location of reinforcing steel; however, specimen 5 

was prestressed, and the critical loads for the two case were very similar. 

 

Table 1.16 – Test results from König and Pauli (1990) 

Test No. Units 1 2 3 4 5 6 
Failure 
Load 

kips 
(kN) 

42.7 
(190) 

44.5 
(198) 

57.0 
(253.5) 

53.4 
(237.5) 

45.1 
(200.5) 

50.9 
(226.5) 

Horizontal 
Deformation 

in. 
(mm) 

6.38 
(162) 

3.27  
(83) 

5.55 
(141) 

1.85   
(47) 

7.24 
(184) 

8.66 
(220) 

Vertical 
Deformation 

in. 
(mm) 

4.57 
(116) 

2.40  
(61) 

4.61 
(117) 

3.74   
(95) 

2.80   
(71) 

5.51 
(140) 

Load Frame 
Tilt 

% 0.5 0 1 0 0 0 

 

  

A significant number of analytical procedures were also developed in Germany.  

Deneke, Holz and Litzner (1985) summarized the procedures available at the time by 

putting them in groups.  The groups were determined by utilizing methods and 

characteristics employed by the various researchers.  The groups in which Deneke, Holz 

and Litzner (1985) divided the various procedures are as follows: 

 

Group 1: Thin-walled straight girders made from linear elastic materials.  Large safety 

factors were used for reinforced and prestressed concrete. 
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Group 2: Like Group 1, but instead of large safety factors, the modulus of elasticity was 

reduced. 

 

Group 3: Linear elastic equations were used but the rigidities were reduced with a 

dependence on the loading magnitude.  The modulus of elasticity was also reduced in 

most methods. 

 

Group 4: Instead of computational methods, the slenderness of the girders was limited.  

In the case of ACI 318-83, the ratio of compression flange width to unbraced length was 

limited. 

 

Group 5: The buckling problem was idealized as a compression strut that has the 

dimensions of the compressed region of the beam under the total compressive force in the 

beam, thereby allowing initial imperfections to be more easily accounted for. 

 

Group 6: The girder was broken into segments where each segment had its own 

stiffnesses based on the current load condition. 
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 Table 1.17 summarizes the analytical procedures Deneke, Holz and Litzner 

(1985) considered available at the time by putting them in their procedural groups.  Note 

that the methods deemed the most important and most accurate by Deneke, Holz and 

Litzner (1985) are in bold. 

 

Table 1.17 – Available buckling procedures from Deneke, Holz and Litzner (1985) 

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 
Beck and 
Schack 
(1972) 

Hansell and 
Winter 
(1959) 
Lebelle 
(1959) 

Petterson 
(1960) 
Stiglat 
(1971) 

Rafla 
(1969), 
(1973) 
Jeltsch 
(1971) 
Nowak 
(1971) 

Mehlhorn 
(1974) 

Streit and 
Mang (1984) 

CP 110 
(1972) 

ACI 318-83 
(1983) 

Mann 
(1976), 
(1985) 

Röder and 
Mehlhorn 

(1981) 
Röder 
(1982) 

Kraus and 
Kreuzinger 

(1983) 

  

 The methods highlighted in bold by Deneke, Holz and Litzner (1985) were 

deemed important and reasonable methodologies to determine the lateral-torsional 

buckling loads of prestressed concrete or reinforced concrete girders.  Of these 

methodologies, Stiglat (1971) employed a relatively simple approach to the stability 

problem.  Essentially, the elastic critical buckling load was determined for the cross-

section and then the buckling load was reduced by multiplying the elastic critical 

buckling load by a ratio of the secant modulus to the elastic modulus.  To employ the 

technique used by Stiglat (1971), any appropriate stress-strain diagram could be used to 

determine the secant modulus, but for the calculations performed by Stiglat (1971), the 
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stress-strain diagram published by Dilger (1966) was utilized.  The reduction of the 

elastic critical buckling load by Stiglat (1971) is shown by Equation 1.40. 

 

  
elasticb

c

sec
b

M
E

E
M =  (1.40) 

 

 Rafla (1969) developed an approximate method based on both utilizing the secant 

modulus as well as reducing the weak-axis moment of inertia to take into account the 

weakening of the beam due to cracking.  The torsional stiffness utilized the full 

uncracked section of the beam which gives the following equations for material 

properties and moments of inertia: 

 

 ccsecE εσ=  (1.41) 

 secc E4.0G =  (1.42)  

 
12

hb
I

3

y ξ=  (1.43) 

where: 

σc =   extreme compression fiber stress 

εc = extreme compression fiber strain 

ξ = factor controlling depth of neutral axis (Rafla, 1969) 

 

The factor ξ represented the reduction based on the compression zone depth that created 

equilibrium between the applied buckling moment and the internal moment.   
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 Instead of using traditional methods of closed form solutions or iterative 

approaches to determine the neutral axis depth and secant modulus, Rafla (1973) 

constructed a series of diagrams to be used as design aids.  These diagrams utilized 

several atypical parameters to associate concrete properties, reinforcement ratios and load 

height to the final rigidity properties to be substituted in the critical buckling moment 

equation which was altered to accommodate such parameters.  The critical buckling 

moment equation was: 

 

  
Rsec

2
ib

AEdbM ξ=  (1.44) 

where: 

bi =   effective width of cross-section (Rafla, 1973) 

d = effective depth of cross-section 

AR = geometric relationship that considers load height (Rafla, 1973) 

 

Within Equation 1.44, the term bi represented an effective width of a rectangular cross-

section that was based on the effective depth of the section, weak-axis moment of inertia 

and torsion constant and was given by: 

 

  
3

1

yi JI
d

6
b 




=   (1.45) 
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The term AR in Equation 1.44 was a factor that takes into account the distance of the load 

application point on the critical buckling load that was given by Equation 1.46 for a 

uniformly distributed load and was given by Equation 1.47 for a midspan concentrated 

load. 
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The aforementioned factor ξ was a function of the reinforcement ratio, the strength ratio 

between concrete and steel, and the strain at the extreme compression fiber.  It was most 

easily obtained by referring to Figure 6 in Rafla (1973). 

 Mann (1976) implemented a different technique where the compression zone of 

the beam was transformed into an equivalent compression strut that allowed for the effect 

of initial imperfections to be taken into consideration.  The first parameter utilized by 

Mann (1976) was the χ-factor which was a function of the flexural and torsional 

stiffnesses based on the compression zone depth as well as the length and internal 

moment arm of the compression zone.  The χ-factor could be obtained by utilizing Figure 

5 from Mann (1976) or by using the following equation: 
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yc

c

d EI

GJ

z

L

π
χ =  (1.48) 

where: 

zd    =      internal moment arm between compression zone and tensile steel           

reinforcement 

Iyc   =      weak-axis moment of inertia of compression zone 

 

The idealized slenderness was based on the parameter in Equation 1.48 and was most 

easily obtained by using Figure 6 in Mann (1976), but also could be obtained by using the 

following equation: 

 

  
bC5.0b289.0

L

χ
λ

+
=  (1.49) 

 

The slenderness parameter from Equation 1.49 utilized the method by Kasparek and 

Hailer (1973) to obtain a critical stress value for the derived equivalent compression strut.  

 The initial imperfections were taken into consideration by using both the initial 

out-of-plane deformation in conjunction with the initial rotation to obtain an idealistic 

compression strut imperfection which was as follows (Mann, 1976): 
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where: 

eu =   out-of-plane eccentricity of bottom of beam 

eo = out-of-plane eccentricity of top of beam 

 

Furthermore, the equivalent compression strut needed a parameter that created an 

equivalent load eccentricity to the strut.  This parameter was given by Equation 1.51. 

 

  
b

e6
mo =  (1.51) 

where: 

ē = Idealistic compression strut imperfection 

  

 The area of the equivalent compression strut was simply given by the area of the 

compression zone of the beam at a given load condition.  The critical stress of the 

equivalent strut was determined by using the previously derived characteristics and 

employing them in Kasparek and Hailer (1973).  After obtaining the critical stress of the 

equivalent compression strut, the compressive force on the strut was the product of the 

critical stress and the area of the compression strut.  The moment arm between the 

compression and the tensile steel reinforcing allowed for the critical moment in the beam 

to be determined.  The resulting critical moment must then be compared to the moment of 

the steel reinforcing acting about the compression strut where the force in the steel was 

determined by using strain compatibility for the critical moment.  If the two values were 

not equivalent, an iterative approach had to be utilized until the two moments were equal 
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(Mann, 1976).  The previous methodology was further expanded and employed to T-

shaped cross-sections by Mann (1985).   

 The last method considered important and viable by Deneke, Holz and Litzner 

(1985) was a very detailed analysis technique by Röder and Mehlhorn (1981).  The 

method utilized a computer program that calculated the stresses and strains on a beam 

that included initial deformations.  The stresses and strains were used to evaluate the 

stiffness values for separate segments of the beam.  Combining the segments of the beam 

with varying stiffness properties, Röder and Mehlhorn (1981) were able to calculate a 

critical buckling load.  

 

1.3.2 Rollover Stability 

 Rollover problems occur when an overturning moment is developed due to 

imperfections in the girder, imperfections in the support conditions, nonlinear behavior of 

the supports and in the case where cracking has occurred in girder and/or nonlinearity in 

the stiffness properties of the girder also occur.  The solution to such a problem was not 

done with a traditional stability analysis but instead by considering the bending of the 

girder and the subsequent equilibrium.  Some initial research was done on the topic by 

Imper and Laszlo (1987), but this work was expanded on by Mast (1989) for the case of a 

hanging girder, and by Mast (1993) for the case of a girder on elastic supports.  The 

works by Mast had become the standard method used to determine rollover of bridge 

girders while being transported and placed.  The Precast Prestressed Concrete Design 

Manual (2003) based its requirements on Mast’s work and even included examples from 

Mast (1989) and Mast (1993). 
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 A beam on elastic supports, such as that is shown in Figure 1.20, gives the 

equilibrium diagram (Mast, 1993) shown in Figure 1.21 depicting the overturning 

moment arm and the resisting moment arm. 

 

 

 

Figure 1.20 – Beam on elastic supports 

 

The overturning moment arm was given by Equation 1.52 and the resisting 

moment arm was given by Equation 1.53 where the angle θ represents the total rotation 

of the beam from the vertical and the angle α represents the initial angle of the supports 

before deformations in the beam or supports occurred (Mast, 1993). 

 

α = Superelevation 

Lateral Deflection of Beam 
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Figure 1.21 – Equilibrium of beam on elastic support (Mast, 1993) 

 

 

  θθθ sinycosecoszc cgicga ++=  (1.52) 

where: 

 ca = overturning moment arm 

 zcg =     lateral deflection of center of gravity of deflected beam 

ei = eccentricity of girder center of gravity 

ycg =     height of center of gravity above roll axis 

θ = roll axis of beam with respect to vertical axis 

y 

θ 

C.G. of          
deflected beam 

i0cgcg esinzez +=+ θ

θ-α = Angle at 
spring support 

Mr = Kθ(θ-α ) = 
Moment in spring 
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  ( )αθθ −=
b

r W

K
c  (1.53) 

where: 

 Kθ =     rotational spring constant of support 

α = angle of support before deformations (superelevation) 

 

 To solve for the equilibrium angle, moments were summed about the roll axis and 

small angle approximation were made to give: 

 

  [ ] ( )αθθθ θ −=++ KyezW cgicgob  (1.54)  

 

A factor “r” was introduced (Mast, 1993) which was the quotient of the bearing rotational 

stiffness and the weight of the beam.  The factor’s physical meaning was that it was the 

height in which the weight of the beam could be placed such that the system was in 

neutral equilibrium as shown in Figure 1.22.  
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Figure 1.22 – Definition of radius of stability (Mast, 1993) 

 

The factor r (radius of stability) was given by Equation 1.55.  Solving the moment 

balance resulted in the equilibrium angle and was given by Equation 1.56. 
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The factor of safety against overturning was defined as the ratio of the resisting moment 

arm to the overturning moment arm (Mast, 1993) shown as follows: 

 

Wb 

r 

M = θ(Kθ) 

rθ 

θ 
For Neutral Equilibrium 
Wb(rθ) = M = M = θ(Kθ) 

r = Kθ/Wb 
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 At a certain angle, the beam would reach tensile stresses in one of the top flanges 

that would exceed the modulus of rupture of concrete, therefore resulting in decreased 

stiffness properties.  The angle in which cracking occurs was defined by Mast (1993) as 

θmax.  The midspan biaxial stress state in a prestressed concrete girder is shown in Figure 

1.23. 

 

 

Figure 1.23 – Midspan biaxial stress state in a prestressed concrete girder (Mast, 1993) 
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 Substituting the angle at the onset of cracking into Equation 1.57 resulted in the 

factor of safety against cracking (Mast, 1993).  Mast (1993) believed it was very 

important to consider cracked conditions because many beams that had been shipped 

without collapse had factors of safety against cracking that were below unity.  If the angle 

exceeded the cracking angle, Mast (1993) proposed an effective stiffness parameter 

shown by Equation 1.58.  Furthermore, Mast (1993) noted the importance of considering 

wind force on the girder because wind would cause additional lateral deflections as well 

as additional overturning moment. 

 

 

  ( )θ5.21II yeff +=  (1.58) 

 

Burgoyne and Stratford (2001) also considered rollover by using a similar 

equilibrium methodology as Mast (1993).  The primary difference was the way in which 

initial imperfections were considered.  Mast (1993) included the initial imperfections 

within the derivation of equilibrium equations; however, Burgoyne and Stratford (2001) 

considered a perfect beam and then determined the stress distribution due to the initial 

sweep and the tensile stresses at critical locations.  As the tensile stresses were large 

enough to induce cracking, it was said that the weak-axis flexural stiffness must be 

reduced.   

The method to consider beams with flexible torsional restraints at the ends by 

Muller (1962) was based on classical stability theory.  The coefficient in the lateral-
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torsional buckling expression that included the effect of moment gradient, support 

conditions and the constant, π, was reduced as a function of the torsional stiffness 

provided by the bearing conditions.  The phenomenon represented by the method was 

still a lateral-torsional buckling mechanism and not a rollover mechanism.  Within the 

analytical techniques for rollover by Mast (1993) and Burgoyne and Stratford (2001), the 

torsional stiffness, C, was considered to be infinite.  However, in the analysis by Muller 

(1962), infinite torsional stiffness, C, would result in an infinite buckling load.  

Therefore, the failure mode consider was not that of rollover because a torsionally stiff 

member could still be “tipped” over. 
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CHAPTER 2 

SPECIMENS AND MATERIAL PROPERTIES 

2.1 Rectangular Specimens 

2.1.1 Specimen Descriptions 

 The first six specimens were rectangular prestressed concrete beams.  The beams 

had a nominal length of 32 ft. (9.75 m), a width of 4 in. (10.2 cm) and a height of 40 in. 

(102 cm).  The dimensions of these beams gave a span/width ratio of 96 and a 

depth/width ratio of 9.5.  The reasons for the dimensions initially resulted from the 

selection of the width of the beams.  The width was selected to be as small as possible to 

create a large slenderness.  A width of 4 in. (10.2 cm) was the smallest that could be 

made by the precast plant and still guarantee the prestressing would be able to be 

properly done, and to assure no damage during the handling of the test beams.  From the 

width, the length was determined by the need of a large span/width ratio, and the specific 

dimensional constraints allowed by the anchoring grid in the floor at the Georgia Institute 

of Technology Structural Engineering Laboratory.  The depth was selected such that it 

would create the largest possible depth/width ratio, while being shallow enough that 

cracking would not occur when being tipped up from their sides after fabrication.  The 

geometric ratios were compared with those of the reinforced concrete test specimens 

from Revathi and Menon (2006), and both ratios were found to be greater, and, therefore, 

more slender than the beams tested by Revathi and Menon (2006), in which all of their 

test specimens buckled. 
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 All six of the rectangular beams had the same geometric dimensions.  The reason 

for not varying the geometries of the beams was so that effect of the prestressing would 

be isolated.  The six rectangular beams were split into three pairs.  Each pair had a 

different prestressing strand pattern, but the same amount of mild steel reinforcement and 

approximate location of the mild steel reinforcement.  The three different prestressing 

cases were: two strands located at the centroid of the cross-section (C2), two strands 

located at the bottom of the cross-section (B2) and one strand located at the bottom of the 

cross-section (B1).  Either “A” or “B” was added to the end of the specimen designation 

to differentiate between the individual beams of a beam series.  The strand patterns were 

selected such that the effect of strand location (eccentricity) was determined from a 

comparison of beams C2 and B2, because the prestressing force was approximately the 

same, but strand location was not.  Furthermore, the effect of prestressing force was 

determined from a comparison of beams B2 and B1, because the center of gravity of the 

prestressing location was approximately the same, but the prestressing force was 

significantly different.  The detailed design drawings of the three different layouts are 

shown in Figures A.1, A.2 and A.3 of Appendix A.  Drawings of the beam specimens 

noting the important characteristics are shown in Figure 2.1 and photographs of the 

beams during fabrication are shown in Figures 2.2 and 2.3. 
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Figure 2.1 – Beam specimen drawings 

 

 

Figure 2.2 – Reinforcement placement during fabrication of rectangular beams 
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Figure 2.3 – Finished rectangular beams 

 

2.1.2 Initial Imperfections 

 Initial imperfections were measured for each test specimen.  The initial 

horizontal, or weak axis displacement, was measured at five points along the length of 

each of the test specimens at both the top and the bottom of the cross-section.  To 

measure the initial horizontal displacement, a taught wire was attached on either end of 

the beam length such that the distance between the wire and the beam specimen on the 

concave side of the beam was the initial horizontal displacement at that point.  Knowing 

the initial horizontal displacement at the top and the bottom of the beam specimens 

allowed for the calculation of the initial rotation at each of the measurement points.  

Figures A.4 through A.15 depicts the initial horizontal displacements for each specimen 

with a comparison with an ideal sine curve.  Table 2.1 summarizes the maximum initial 

imperfections for all of the specimens.   
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Table 2.1 – Summary of maximum initial imperfections 

Beam 
ID 

Sweep 
Top, in. 
(mm) 

Sweep 
Bottom, 
in. (mm) 

Rotation 
(radians) 

B1A 
-0.406 
(-10.3) 

-0.406 
(-10.3) 

0 

B1B 
-0.344 
(-8.7) 

-0.375 
(9.5) 

0.00078 

B2A 
1.50 

(38.1) 
1.06 

(27.0) 
0.011 

B2B 
-0.484 
(-12.3) 

-0.547 
(-13.9) 

0.00156 

C2A 
0.227 
(5.8) 

0.398 
(10.1) 

0.00430 

C2B 
-0.172 
(-2.4) 

-0.203 
(-4.0) 

0.00078 

 

2.1.3 Material Properties 

 In order to predict the stability behavior of the rectangular prestressed concrete 

beams specimens, certain material properties were required.  The prestressed concrete 

beams had three different materials to consider: concrete, mild steel and prestressing 

steel.  To obtain the material properties for the concrete in the beam specimens, several 

concrete cylinders were cast according to ASTM C31-06.  The material properties 

necessary for the analytical study were the compressive strength using ASTM C39-05, 

the initial modulus of elasticity using ASTM C469-02, and the Poisson’s Ratio using 

ASTM C469-02.  The concrete cylinder breaks occurred within one week of the testing 

of the specific beam.  The cylinders were over a year old, and, therefore, changes in 

concrete material properties in a week would be negligible.  The measured concrete 

material properties are summarized in Table 2.2. 
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Table 2.2 – Material properties for the rectangular beams specimens 

Beam ID # of Samples fc' (psi) Ec (ksi) ν 
B1 3 10133 4713 0.19 
B2 3 6015 4188 0.19 
C2 3 11281 5156 0.20 

 

 The yield strength of the mild reinforcement given in the mill certificates was 

71.7 ksi.  Additional testing of the mild reinforcement was unnecessary because the stress 

in the mild reinforcement never reached levels near the yield stress during the 

experiments.  Similarly, the stress level in the prestressing steel never reached levels of 

nonlinear stress-strain behavior during the experiments either.  However, the stress-strain 

curve from the mill certificate for the prestressing strands, which was implemented in the 

analytical study, is shown in Figure A.16 of Appendix A.  Prestressing force was 

important to monitor during the fabrication of the beam specimens.  The desired 

prestressing force in each of the test specimens was specified in the design drawings 

shown in Figures A.1 through A.3 of Appendix A.  Measured values of the prestressing 

force in each of the beam specimens are shown in Table 2.3 and a photograph of the 

prestressing force measurement is shown in Figure 2.4.   

 

Table 2.3 – Measure prestressing force in each strand of the test specimens 

Beam ID Load LC1 (lbs) Load LC2 (lbs) 
B1 32,773 - 
B2 30,398 30,832 
C2 28,752 29,828 

Note: Load LC1 measured the strand closest to the bottom of the beam. 
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Figure 2.4 – Measurement of prestressing strand force 

 

2.2 PCI BT-54 Girder 

2.2.1 Specimen Description 

 The seventh specimen was a 101 ft. (30.8 m) long PCI BT-54 bridge girder.  The 

BT-54 was prestressed with 40 – 0.6 in. diameter prestressing strands with each strand 

having a jacking force of 43,940 lbs. (195.47 kN).  Figure A.17, of Appendix A, shows 

the detailed design drawing of the BT-54, while Figures 2.5 and 2.6 show photographs of 

the BT-54 girder during fabrication and after completion, respectively.  The specimen 

length was selected without a detailed understanding of the stability behavior because the 

planned thermal experiments needed to begin early in the research.  The thought was that 
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additional initial imperfections could be introduced or a portion of the top flange could be 

cut off if it was determined that the girder would not buckle at low enough load levels.   

 

 

Figure 2.5 – BT-54 girder during fabrication 
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Figure 2.6 – Completed fabrication of BT-54 girder 

 

2.2.2 Initial Imperfections 

 Initial imperfections of the BT-54 where measured at many different times.  Many 

of the measurement were during the thermal study of the girder and are discussed in more 

detail in Chapter 3.  The three important measurements of initial imperfections were 

immediately after the prestressing strands were cut, before testing the girder when the 

girder was on level supports, and before testing the girder when the girder was on the 

initially rotated supports.  The maximum values for the initial imperfections and camber 

at these three times are shown in Table 2.4.  Furthermore, initial horizontal displacement 
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measurements at nine points along the girder were measured at the top and the bottom of 

the girder while the girder was on level supports and while the girder was on the initially 

rotated supports.  These values are presented in Figures A.18 through A.23 with a 

comparison to an ideal sine curve.  The same measurement technique as was described in 

Section 2.1.2 for the rectangular test specimens was used for the BT-54. 

 

Table 2.4 – Maximum Initial Imperfections for BT-54 

Time 
Sweep 
Top 
(in.)  

Sweep 
Bottom 

(in.) 

Rotation 
(radians) 

Camber 
(in.) 

After Strands Cut 0.875 - 0.00037 3.625 

Level Support 1.944 1.484 0.01674 4.359 

Initially Rotated 
Support 

2.456 1.969 0.06524 4.391 

 

For the BT-54 girder specimen, initial rotation was also introduced at the end supports to 

cause the girder to be more unstable.  The measured initial rotations on the bearing pads 

and on the bottom flange of the girder are shown in Table 2.5. 

 

Table 2.5 – End support initial rotations for BT-54 

 Bearing Pad Rotations (radians) Bottom Flange 
 Front Middle Back 1’ from Support 

East Support 0.04817 0.04887 0.04887 0.04939 
West Support 0.05131 0.05131 0.05079 0.05079 
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2.2.3 Material Properties 

 The BT-54 only had two different materials to consider: concrete and prestressing 

steel.  The only mild reinforcement used in the specimen was the shear reinforcement.  

To obtain the material properties for the concrete in the beam specimens, several concrete 

cylinders were cast according to ASTM C31-06.  The material properties necessary for 

the analytical study were the compressive strength using ASTM C39-05, the initial 

modulus of elasticity using ASTM C469-02, and the Poisson’s Ratio using ASTM C469-

02.  The concrete cylinder breaks occurred within two days of the testing of the specific 

beam.  The cylinders were over a year old, and, therefore, changes in concrete material 

properties in a two day period would be negligible.  The measured concrete material 

properties are summarized in Table 2.6. 

 

Table 2.6 – Material properties for the BT-54 specimen 

# of Samples fc' (psi) Ec (ksi) ν 
5 12188 4471 0.22 

 

 

The stress level in the prestressing steel never reached levels of nonlinear stress-

strain behavior during the experiments, and, therefore, the nonlinear material properties 

were not necessary.  Prestressing force was unable to be measured accurately due to the 

immense number of strands.  The design initial prestressing force is specified in Figure 

A.17 of Appendix A.   
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CHAPTER 3 

SOLAR DEFORMATION EXPERIMENTAL STUDY 

  A preliminary investigation on the deformation behavior of the BT-54 girder 

specimen from the effects of solar radiation to determine if it was plausible that 

significant additional initial imperfections could be caused due to non-uniform heating of 

a bridge girder was performed.  Subsequently, a more detailed experimental and 

analytical study was performed by another researcher at Georgia Institute of Technology 

(Lee, 2010).  

3.1 Objectives 

 The solar deformation investigation was performed using the BT-54 girder 

specimen at the precast plant in which the girder was fabricated.  Fabrication error 

resulted in an initial sweep in one direction, and, therefore, the convex side of the girder 

was directed towards the east such that the morning sun would heat the convex side 

serving to amplify the initial sweep in that direction.  The objective was to obtain 

temperature variations in the girder, thermal strains in the girder, solar radiation data, 

wind data, sweep and camber data.   

3.2 Experimental Setup 

The induced thermal strains were found with vibrating wire strain gages 

embedded in the girder during casting.  The temperature variations were found using 

internal thermocouples, external thermocouples and the thermistors that were included in 

vibrating wire strain gages.  Solar radiation data were obtained using two Apogee 
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pyranometers, one on the top of the girder, and one attached to the side of the girder 

directed horizontally to capture the magnitude of solar radiation on the side of the girder 

due to the morning sun.  The wind speed was found using an anemometer.  Sweep and 

camber data were found by hand measurements using a taught-wire system, as shown in 

Figures 3.1 and 3.2.  Additional sweep and camber measurements were taken on selected 

days using string potentiometers to gain a better perspective on the displacements 

throughout the day.  The internal thermocouples and vibrating wire strain gage locations, 

and external thermocouple locations, are depicted in Figure 3.3 and 3.4, respectively.  A 

photograph of the internal instrumentation is shown in Figure 3.5.  Additionally, Figure 

3.6 shows the locations of the pyranometers, anemometer and the string potentiometers.   

 

 

 

Figure 3.1 – Elevation view of taught wire system for camber measurements 
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Figure 3.2 – Plan view of taught wire system for sweep measurements 

 

 

INDICATES INTERNAL VIBRATING WIRE STRAIN
GAGE LOCATION (EXTERNAL THERMOCOUPLES
WILL BE APPLIED AFTER FABRICATION)

 

Figure 3.3 – BT-54 internal vibrating wire strain gage and thermocouple locations 
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INDICATES EXTERNAL THERMOCOUPLE LOCATION
(T12 IS THE AIR TEMPERATURE)  

Figure 3.4 – BT-54 external thermocouple locations 

 

 

Figure 3.5 – Internal vibrating wire strain gages and thermocouples 
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Figure 3.6 – BT-54 pyranometer, anemometer and string potentiometer locations 

 

 

3.3 Experimental Results 

Results from the experimental data for solar deformations and temperature 

gradients in the BT-54 showed that the findings could be condensed to data from three 

days during the summer of 2008.  The days presented were deemed hot weather days, 

where clear skies allowed a substantial amount of solar radiation to affect the girder, and 

cool evenings created large temperature differentials.  For all three days, the string 
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potentiometer set-up was used to gather accurate sweep and camber data.  The plots of 

the solar radiation applied to the top of the girder and side of the girder (facing east) for 

each of the three days is shown below in Figure 3.7, 3.8 and 3.9. 
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Figure 3.7 – Solar radiation on BT-54 for July 16, 2008 
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Figure 3.8 – Solar radiation on BT-54 for July 17, 2008 
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Figure 3.9 – Solar radiation on BT-54 for July 22, 2008 
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 The curves do not come out perfectly smooth due to various disturbances and 

shadows that could occur at the precast plant where the BT-54 was being stored.  For 

example, the gantry cranes often pass by the BT-54, and sometimes remain there for long 

periods of time.   

 The wind data for the three days presented are shown in Figures 3.10, 3.11 and 

3.12.  The wind speed was averaged over 15 minute increments.  Gusting was deemed to 

be unimportant and extremely large amounts of data would have to be collected to 

represent the wind gusts. 
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Figure 3.10 – Average wind speed at BT-54 on July 16, 2008 
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Figure 3.11 – Average wind speed at BT-54 on July 17, 2008 

 

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00
Time

A
ve

ra
g
e
 W

in
d
 S

p
e
ed

 (
m

p
h
)

 

Figure 3.12 – Average wind speed at BT-54 on July 22, 2008 
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Internal and External temperature measurements were made at 15 minute 

increments throughout the presented days, at the locations shown previously in Figure 3.4 

and 3.5.  Temperature contours present the data in the most efficient way such that 

temperature gradients at midspan can be compared at various times throughout the day in 

question.  Because MATLAB® (2006) cannot plot contours for inconsistent data points 

using the standard subroutines, a subroutine called “gridfit” (D’Errico, 2005) was used.  

The subroutine takes the sparse or irregular data, and converts it to a smooth surface.  The 

smooth surface can then be plotted as a contour by MATLAB’s ® (2006) standard 

subroutines.  The subroutine has many options that can be selected by the user, such as 

the interpolation method; the triangular interpolation method was chosen in this case.  

Further details on the subroutine, the algorithms used and the efficiency of “gridfit” 

(D’Errico, 2005) can be found within the text of the subroutine, and in Keim and 

Herrmann (1998).  The temperature contours were plotted at 9:00 am, 12:00 pm and 3:00 

pm for each of the three days and are shown in Figures 3.13, 3.14 and 3.15.  
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Figure 3.13 – BT-54 temperature contours at midspan on July 16, 2008 at (a) 9:00 am (b) 
12:00 pm (c) 3:00 pm 

 

 
 

 

Figure 3.14 – BT-54 temperature contours at midspan on July 17, 2008 at (a) 9:00 am (b) 
12:00 pm (c) 3:00 pm 
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Figure 3.15 – BT-54 temperature contours at midspan on July 22, 2008 at (a) 9:00 am (b) 
12:00 pm (c) 3:00 pm 

 

 

The string potentiometer measurements determined the additional sweep and 

camber due to thermal effects throughout the day and were taken at 5 minute increments.  

The measured additional sweep and camber throughout the day from the differential 

heating of the BT-54 is shown for July 16, 2008, July 17, 2008 and July 22, 2008 in 

Figures 3.16, 3.17 and 3.18, respectively. 
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Figure 3.16 – BT-54 camber and sweep for July 16, 2008 
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Figure 3.17 – BT-54 camber and sweep for July 17, 2008 
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Figure 3.18 – BT-54 camber and sweep for July 22, 2008 

 

 

The sweep data shown in Figures 3.16 through 3.18 indicated a maximum 

additional sweep in the range of 0.4 in. to 0.6 in. (10 mm to 15 mm).  The PCI Bridge 

Design Manual (2003) tolerance for sweep is 1/8 in. (3.2 mm) per 10 ft. (3 m) of girder 

length which gives for the 101-ft. long BT-54 a maximum allowable girder sweep of 

1.2625 in. (32 mm). The additional 0.6-in. sweep from thermal effects should not be 

considered negligible.  The additional sweep from thermal effects on the BT-54 tested 

was in the range of 31% to 48% of the maximum allowable sweep in the girder.  This 

was significant because a girder that is approaching the maximum allowable sweep could 

significantly surpass the allowable maximum when being erected at the bridge site, due to 

neglect of consideration to the potential for additional thermal sweep.   
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Furthermore, the sweep data presented in Figures 3.16 through 3.18 showed that 

the girder sweep went from its initial condition to a maximum sweep in a time frame of 

four hours for all cases.  Additionally, the rapid increase was initiated as soon as the sun 

began to rise.  Therefore, any stability failure attributed to the effect of thermal sweep 

from solar radiation would most probably occur within the first hours after sunrise. 

The data also showed for this case, that the rotation of the girder due to thermal 

effects was minimal.  The displacement of the top flange and bottom flange was shown in 

Figures 3.16 through 3.18.  The top and bottom flange displacements were about equal 

throughout the mornings as the girder went from its initial conditions to the maximum 

thermal sweep condition.  It was only in the afternoon when the top and bottom flange 

displacements began to differ.  Even at that point in the day, the difference in top and 

bottom flange displacement resulted in rotations of the girder that were less than 0.001 

radians. 
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CHAPTER 4 

LATERAL-TORSIONAL BUCKLING EXPERIMENTAL SETUP 

4.1 Objectives 

 To determine the behavior of prestressed concrete flexural members with respect 

to lateral-torsional buckling, the six aforementioned rectangular prestressed concrete 

beams were tested to determine the behavior for a simple geometry.  Additionally, a BT-

54 bridge girder specimen was tested to study the lateral-torsional buckling behavior of 

prestressed concrete flexural members with a more complex geometry with realistic 

bridge end support conditions. 

4.2 Experimental Setup 

Experimental methods were particularly important for the lateral-torsional 

buckling experiments on prestressed concrete beams.  A typical beam flexure experiment 

would involve supporting the beam on a pin-support on one end and a roller-support on 

the other.  The vertical load would then be applied from above via a hydraulic ram rigidly 

attached to a frame.  For lateral-torsional buckling experiments, or any sway-permitted 

experiment, the load must be permitted to translate with the specimen, remain vertical (in 

the direction of gravity) and not provide restraint to deformation of the specimen.  Failure 

to properly apply the load might either restrain or magnify lateral motions which would 

lead to incorrect determination of buckling loads.  Incorrect experimental results would 

result in poor calibration of analytical procedures and result in poor design 

recommendations.  
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Different solutions to the load application problem were proposed throughout the 

literature.  The most accurate to method would be to apply actual gravity load using water 

or sand.  However, logistics and safety concerns arise at higher load levels.  Another 

potential loading methodology (Stoddard, 1997) would be to constantly update or make 

adjustment to the load frame during the experiment; however, significant error could be 

introduced during the procedure, and the time for one experiment would be dramatically 

increased.  Instead, Yarimici et al. (1967) designed a mechanism referred to as a “gravity 

load simulator”.  The gravity load simulator is an unstable mechanism that maintains a 

vertical load when the specimen experienced lateral translation.  The gravity load 

simulator mechanism was implemented effectively in sway-frame testing of three story 

building frames (Yarimici et al., 1967), lateral-torsional buckling of steel wide-flange 

cross-sections (Yura and Phillips, 1992) and lateral-torsional buckling of polymer 

composite I-shaped cross-sections (Stoddard, 1997). 

4.2.1 Gravity Load Simulator 

 The initial geometry and the deformed geometry of the gravity load simulator in 

Figure 4.1 and 4.2 shows the behavior of the gravity load simulator when a test specimen 

would require the load point to translate with the specimen.  The gravity load simulator 

consisted of two incline members, a base, a rigid triangular frame and a hydraulic ram.  

All of the components were connected with pins which created an unstable mechanism.  

Therefore, the line of action of the load must always pass through the instantaneous 

center of rotation for equilibrium to be maintained.  To utilize the gravity load simulator, 

the test specimen must span above the gravity load simulator such that the simulator 

would pull down on the specimen via a load frame.   
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Figure 4.1 – Gravity load simulator 

 

 

Figure 4.2 – Gravity load simulator in displaced configuration 
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A gravity load simulator was designed and fabricated to load the six rectangular 

prestressed concrete beams and the BT-54 girder specimen.  The design was based on the 

ability of the gravity load simulator to achieve a load of 300 kips (1334 kN) to ensure that 

the BT-54 girder specimen would either buckle or fail in flexure before reaching the 

capacity of the gravity load simulator.  Furthermore, the gravity load simulator was 

designed to accommodate a sway of 12.875 in. (32.7 cm) in. either direction.  In theory, 

the design of the gravity load simulator’s geometry was such that the center pin that 

connected the hydraulic ram to the rigid triangular frame would maintain the same 

elevation through the entire range of translation for the gravity load simulator.  However, 

it was impossible to attain geometry such that the pin would coincide exactly with a 

horizontal line.  Therefore, the line of action of the ram deviated from vertical as 

presented in Figure 4.3.  The selected design geometry produced a maximum deviation 

angle for the line of action equal to 0.006 radians (0.344 degrees) at the extreme limits of 

the gravity load simulator.  If the gravity load simulator was limited to a sway of 8 in. 

(20.3 cm), the maximum deviation angle for the line of action would be 0.00129 radians 

(0.074 degrees).  A photograph of the gravity load simulator used for the experiments is 

shown in Figure 4.4.  The detailed design is discussed and presented in Appendix B. 
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Figure 4.3 – Load deviation from vertical as a function of sway 
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Figure 4.4 – Gravity load simulator in displaced configuration during an experiment 

 

 

 

Control 
Mechanism 

Ultrasonic 
Position 

Transducer 



 107 

4.2.1.1 Gravity Load Simulator Control Mechanism 

 The intended behavior of the gravity load simulator was to allow the hydraulic 

ram to translate laterally while the hydraulic ram remained vertically oriented.  The 

unstable mechanism that the gravity load simulator was based on would inherently 

provide that behavior given the assumption that the self-weight of the components were 

negligible.  Due to the high capacity required for the experiments, the self-weight of the 

components were not negligible which caused the hydraulic ram angle to sway slightly 

from perfectly vertical until the angle was large enough to counteract the horizontal 

component of the self-weight of the gravity load simulator.  The only position in which 

the hydraulic ram remained perfectly vertical was in the exactly undeformed position 

when the self-weight of the gravity load simulator did not create a horizontal component 

of force.  Furthermore, at higher load levels, the magnitude of the error in load angle 

would reduce because the force being transferred through the hydraulic ram would be 

larger, and, therefore, the magnitude of the required error angle would decrease and still 

result in the equilibrium horizontal component. 

 A control mechanism was design for the gravity load simulator to remove the 

error angle from the effect of the self-weight of the gravity load simulator.  The control 

mechanism caused the gravity load simulator to be a stable mechanism.  Essentially, the 

mechanism consisted of a threaded rod attached to the center pin location where the base 

of the hydraulic ram was attached via a lubricated ball joint to allow free rotation of the 

threaded rod.  The threaded rod was also threaded through a nut that was attached 

through structural components to the base plate of the gravity load simulator resulting in 

a self-reacting system.  As the threaded rod was turned, the center pin location would 
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move allowing for the control of the gravity load simulator’s position, and, thus, the 

angle of the applied load.  Detailed design drawings of the control mechanism are shown 

in Figure B.17 through B.20 of Appendix B. 

 Because the addition of the control mechanism removed the automatic ability of 

the gravity load simulator to apply vertical load, the angle of load angle was monitored 

during the experiments in real-time so the position of the gravity load simulator was 

updated while the specimens were being loaded.  To accomplish the acquisition of the 

load application angle, a long, stiff member was connected to the top of the hydraulic ram 

extending perpendicular to the angle of the applied load.  At the end of the extension 

members, at 60 in. (152.4 cm), a Migatron RPS-401 self-contained ultrasonic position 

transducer was attached.  The ultrasonic position transducer was used to measure the 

distance from an arbitrary, rigid, smooth and level surface because if there was a slight 

change in angle from vertical of the hydraulic ram, the ultrasonic position transducer 

would detect it.  Furthermore, such a sensor was the only sensor capable of monitoring of 

this type because as the gravity load simulator translated, the sensor translated as well, 

while maintaining a measurement from the same reference datum.  The string of a string 

potentiometer would remain attached at a specific location; therefore, when the gravity 

load simulator translated, the string would become diagonal and the reference 

displacement would no longer be the same.  Figure 4.4 shown previously labels the 

control mechanism and the ultrasonic position transducer.  The behavior of the ultrasonic 

position transducer load angle measurement method is depicted in Figure 4.5. 
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Figure 4.5 – Ultrasonic position transducer load angle measurement method in (a) 
vertical load configuration (b) angled load configuration 

 

4.2.2 Rectangular Specimen Supports 

To replicate classical theory, the end supports required the construction of lateral 

supports that restrain the beam in torsion, vertical translation and lateral translation at the 

ends, but allowed for rotation about the vertical axis.  Furthermore, 1.5 in. (3.8 cm) 

rollers were used at both bearing supports to allow for axial lengthening of the beam 

specimens during the experiment and to provide symmetry about midspan.  The rollers 

provided the restraint to vertical translation while a rigid frame was constructed and 

placed on both sides of the beam, at both ends, to restrict horizontal translation.  The rigid 

frame was designed, constructed and used for the experiments of Kalkan (2009).  For free 

rotation about the vertical axis, four 17 kip (75.6 kN) high-capacity casters were attached 

to the rigid frame at equal spacing along the depth of the test specimen.  The caster 

wheels were forged steel with tapered roller bearings.  The torsional restraint was 

provided by the couple created by the casters being spacing along the depth of the beam 
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on both sides.  A photograph of the end supports for the rectangular tests is shown in 

Figure 4.6.     

 

 

Figure 4.6 – Rectangular setup end supports 

 

 Because the beam specimens must span longitudinally above the gravity load 

simulator, the support conditions required the use of built-up pedestals to attain an 

appropriate height that allowed for the proper function of the gravity load simulator.  The 

built-up pedestal was constructed of steel and concrete members that were remaining at 
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the laboratory from previous research activities.  A photograph of the built-up pedestal is 

shown in Figure 4.7.   

 

 

Figure 4.7 – Rectangular setup build-up pedestal 

 

4.2.2.1 Secondary Restraint System 

 A restraint system was implemented because of the safety concerns of a potential 

sudden lateral stability failure.  Due to the secondary objective of unloading and 

reloading the beam specimens to investigate the possibility of buckling load degradation, 

restraint was required during post-buckling to prevent excessive damage to the beam 

specimens.  The system was composed of threaded rods connected to the beam specimen 

and to a rigid column support.  The length of the threaded rods was controlled by the use 
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of turnbuckles; therefore, the threaded rods were continuously loosened so that there was 

zero restraint before significant post-buckling deflections occurred.  A photograph of the 

system is shown in Figure 4.8.  Strain gauges on the rods were calibrated so that the 

maximum restraint load was maintained at less than 10 lbs. (44.5 N).  The turnbuckles 

were released to produce zero load at each displacement-load increment. 

 

 

Figure 4.8 – Secondary restraint system 

 

4.2.3 BT-54 Specimen Supports 

 For the stability experiment on the BT-54 girder specimen, the support conditions 

were different than for the rectangular experiments.  In actual bridge conditions, there are 

not perfect pins located at the supports.  In many cases, state Department of 
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Transportations use elastomeric bearing pads for the supports.  In the case of the girder 

collapse in Arizona, elastomeric bearing pads were used at the bearings (Oesterle et al., 

2007).  The use of elastomeric bearing pads at the end supports added additional 

variables to the experimental study.  Instead of the end boundary conditions being ideally 

rigid in the vertical direction, there was now a stiffness of the bearing pad in the vertical 

direction that needed to be considered.  Furthermore, the torsional restraint at the ends of 

the specimens that was provided by the coupling effect of the casters attached to a rigid 

frame in the rectangular test setup was instead achieved by utilizing the relatively large 

width of the bottom flange of the BT-54 that provided torsional restraint.  However, the 

torsional restraint provided by the bottom flange was not perfectly rigid because of the 

bearing pad stiffness; therefore, the bearing pad rotational stiffness was considered as 

well.  The bearing pads also had relatively low stiffness properties in shear in both the 

longitudinal direction and transverse direction.  The shear stiffness of the elastomeric 

bearing pads were relatively low compared to the vertical because the internal steel shims 

were not engaged during a shear or transverse loading.  The minimal shear stiffness is 

beneficial in bridge design because it allows for free deformation in the longitudinal 

direction when the bridge is in service so that the girders are not stressed due to thermal 

strain behavior.  In the case of the stability experiments, the shear stiffness in the 

transverse direction was also an important consideration because rotation of the girder 

caused a lateral component of force on the bearing pad. 

4.2.3.1 Bearing Pad Properties 

 The bearing pads used for the BT-54 girder specimen experiment were 24 in. 

(61.0 cm) long, 14 in. (35.6 cm) wide and 2 7/8 in. (7.3 cm) thick steel reinforced 
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elastomeric bearing pads with four internal steel shims.  The nomenclature for describing 

the axes of the bearing pad and the stiffness parameters is depicted in Figure 4.9.   

 

 

Figure 4.9 – Bearing pad axes 

 

A bearing pad was tested to obtain the vertical stiffness of the bearing pad, Kz.  The 

experimental testing consisted of placing a 1/8 in. (3.2 mm) sheet of steel that was larger 

in dimensions than the bearing pad on top of the bearing pad.  On top of the thin sheet of 

steel, a stiffened wide flange stub with larger dimensions than the bearing pad was 

placed.  The wide flange stub acted to distribute the load from the Baldwin test machine 

to the bearing pad so that the load was distributed uniformly.  The thin sheet of steel was 

used below the wide flange stub to remove the effect of the small holes that were in the 

flanges of the wide flange stub.  The displacement of the bearing pad in the axial 

direction was measured by using four dial gages located at the four corners of the bearing 
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pad.  The total displacement was taken as the average of the displacements at the four 

corners.  The experimental setup was similar to that used in Consolazio et al. (2007).  A 

photograph of the test setup is shown in Figure 4.10.  The resulting stress versus 

displacement plot is shown in Figure 4.11. 

 

 

 

Figure 4.10 – Bearing pad axial stiffness testing 
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Figure 4.11 – Stress versus axial displacement of bearing pad 2nd-order polynomial fit 

  

The load versus axial displacement plot in Figure 4.11 shows a nonlinear 

relationship because of the relatively low loads on the bearing pad.  The nonlinearity 

stemmed from the settling of the thin elastomeric lips around the bearing pad edges that 

serve as a gasket seal in actual bridge condition to prevent water from seeping under and 

above the bearing pad.  The bearing pad was only tested to 160 kips (711.7 kN) because 

160 kips (711.7 kN) would well exceed the allowable load for the test setup.  The 

behavior of the bearing pad was approximated by assuming a second-order polynomial fit 

as shown by the trend line in Figure 4.11.  A linear approximation is shown in Figure 

4.12 and considered the self-weight of the girder was 72 kips (320 kN) or 214 psi (1.48 
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MPa); therefore, the bearing pad initially underwent 36 kips (160 kN) or 107psi (0.74 

MPa) before testing began.  
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Figure 4.12 – Load versus axial displacement of bearing pad with linear fit 

 

 The axial stiffness values of the bearing pad resulted from the experimental 

testing; however, the rotational stiffness parameters had to be approximated analytically 

by assuming a rigid plate on the top of the bearing pad and applying a unit rotation which 

resulted in a triangular stress distribution.  The approximation was determined to be 

accurate by using the results from Yazdani et al. (2000) and applying the approximation.  

Yazdani et al. (2000) used the equations from AASHTO (1996) to determine the effective 
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compressive modulus of the bearing pad based on the shape factor of the bearing pad and 

the shear modulus of the bearing pad.  A finite model was created of the bearing pad 

including the steel shim plates.  The vertical stiffness, Kz, of the bearing pad from the 

finite model was 5950 kip/in (1042 MN/m) and the rotational stiffness, Kry, was 287,000 

kip-in/rad (32,400 kNm/rad).  Applying the rigid plate rotation approximation to 

determine the rotational stiffness, Kry, from the axial stiffness, Kz, resulted in an 

approximate rotational stiffness, Kry, of 285,600 kip-in/rad (32,270 kNm/rad) which was 

very close to the result given by the finite model. However, the nonlinear vertical 

stiffness at low loads meant that the true rotational stiffness of the bearing pad was 

different.  A more accurate prediction was implemented in the analytical study which is 

presented in Chapter 7 and 8.   

 Additional error in the prediction of axial stiffness and rotational stiffness was 

apparent due to the poor flatness of the bottom flange of the BT-54.  Figure 4.13 

designates the orientation of the girder.  Figure 4.14 shows the support at the east end of 

the girder, and Figure 4.15 shows the support at the west end of the girder before testing.  

The figures showed that the significant amount of curvature of the bottom of the flange 

caused a non-uniform bearing.  The majority of the self-weight of the girder was resting 

in the middle of the bearing pad; in the case of the east support, the southern edge of the 

bottom flange was not in contact with the bearing pad at all.   
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Figure 4.13 – BT-54 girder orientation 
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Figure 4.14 – East bearing pad support conditions 

 

 

Figure 4.15 – West bearing pad support conditions 
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 Initial testing of the BT-54 was performed to a load level of 29 kips (129 kN), and 

there was a significantly higher rotation at each of the supports than was anticipated due 

to the roundness of the bottom flange.  Therefore, a retrofit was performed on the bottom 

flange at each of the supports before the entire load was applied to the girder in an 

attempt to remove the effect of the roundness of the bottom flange.  The retrofit strategy 

was to use a high-strength, high-modulus epoxy on the bottom flange to create a level 

surface.  The retrofitted bottom flange is shown in Figure 4.16.  The effects of the 

roundness of the bottom flange are discussed in detail in Chapter 7. 

 

 

Figure 4.16 – High-modulus epoxy leveling retrofit 
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4.2.3.2 Secondary Torsional Restraint System 

 Ideally, the torsional restraint was to be provided by the couple created by the 

width of the bottom flange.  Because of uncertainties in the bearing pad behavior due to 

the non-uniform bearing, the lack of flatness in the bottom of the flange bearing on the 

bearing pad, and the nonlinear stiffness properties of the bearing pad at low loads, a 

secondary torsional restraint system was designed and implemented.  The system 

involved a column segment at each support, adjacent to the BT-54 girder specimen.  The 

columns were located on the north side of the girder, or the side towards which the girder 

was leaning due to the initial support rotation.  Attached to the column segment was a 

load cell device that was implemented so that when contact was made between the top 

flange and the load cell device, torsional restraint was provided and the restraint load was 

known.  The load cell device consisted of a built-up bracket that held the cylindrical, 

through-hole load cell in place and a threaded rod with both a threaded 1.5 in. (3.8 cm) 

diameter steel ball and a nut.  The girder’s top flange was to contact the steel ball, thus 

putting the threaded rod in compression.  The nut that was on the threaded rod restrained 

the threaded rod from passing through the hole in the load cell, thus activating the load 

cell.  A diagram of the device is shown in Figure 4.17. 
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Figure 4.17 – Torsional restraint system load cell device 

 

 Initially, there was a gap between the top flange and the steel ball so that the 

behavior with only torsional restraint provided by the bottom flange was observed.  If the 

rotation at the ends was substantial, the torsional restraint system was to be used.  If the 

rotation at the end was close to what was predicted, the rod was backed-off so that there 

was always a gap between the top flange and the steel ball.  Additionally, the torsional 

restraint system provided additional safety to the test setup.  If the BT-54 girder specimen 

were to overturn suddenly, it would come into contact with the torsional restraint system 

which would provide some support.  A photograph of the torsional restraint system is 

shown in Figure 4.18.   
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Figure 4.18 – Torsional restraint system 

 

4.2.4 Load Application Details 

 It was required to apply the load provided by the gravity load simulator to the top 

of the beam specimen at midspan.  Because the gravity load simulator was located below 

the beam specimen and applied the load to the specimen by pulling down on specimen, it 

was necessary to construct a frame that transferred the load from the gravity load 

simulator around the specimen, to the top of the specimen.  Furthermore, the frame had to 

be constructed such that the geometry did not obstruct the specimen when the specimen 

wanted to rotate during the experiment.   
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To accomplish the load transfer, a rod from the gravity load simulator was 

connected through the center of a stiffened rectangular structural tube that was 

perpendicular to the specimen that was above.  A high-capacity threaded rod was 

connected to each end of the rectangular structural tube.  The high-capacity rods were 

connected to a similar stiffened rectangular structural tube that spanned perpendicular 

and above the beam specimen.  Essentially, a rectangular frame was created.  In addition 

to the high-capacity thread rods, 3x3x5/16 structural angles were connected to the 

rectangular structural tubes.  The high-capacity threaded rods were sufficient for the 

tensile load being transferred, but were not stiff enough to restrain the frame from 

racking; therefore, the structural angles were used to restrain the shear racking behavior 

of the frame.  The load was transferred from the top rectangular structural tube via a pin.  

The pin was parallel to the specimen’s longitudinal axis which allowed the specimen to 

freely rotate about the load application point.  The pin’s length was small enough that the 

assumption of a point load would be adequate; however, it could have been considered a 

uniform load over a small distance.  Figure 4.19 is a photograph of the rectangular load 

transfer frame with the important components labeled.  Additionally, Figure 4.20 is a 

photograph of the pin at the load application point and Figure 4.21 is a diagram of the 

behavior of the pin during loading.     
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Figure 4.19 – Load transfer frame 
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Figure 4.20 – Load application pin 

 

 

Figure 4.21 – Behavior of load application pin during loading (a) undeformed 
configuration (b) deformed configuration 
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4.2.5 Experimental Measurements 

 All of the data acquisition was done using National Instruments hardware and the 

National Instrument’s data acquisition software Labview.  For all experiments, an 

Interface 200 kip (890 kN) load cell was mounted on the top member of the load transfer 

frame, attached to the load application pin, to measure the applied load on the specimens 

as was shown in Figure 4.20.   

 Strain measurements were made by positioning ten RDP linear variable 

displacement transducers (LVDTs) on the surface of all seven of the specimens at 

midspan.  The LVDTs were mounted with a gage length of 10 in. (25.4 cm) so that the 

strain could be calculated from the displacement output.  The ten LVDTs were positioned 

five on either side of the cross-section so that linear interpolation through the cross-

section was made to determine the depth of the compression zone, the angle of the neutral 

axis and the extent of the biaxial behavior.  Furthermore, the LVDTs were mounted on 

the specimens at a small distance off of the actual surface; therefore, interpolation was 

required to determine the actual surface strain.  For the six rectangular beam specimens, 

the LVDTs were mounted at 1.5 in. (3.8 cm), 10.75 in. ( 27.3 cm), 20 in. (50.8 cm), 29.75 

in. (75.6 cm) and 38.5 in. (97.8 cm) from the bottom of the beam cross-section.  A 

photograph of the mounted LVDTs for the rectangular beam specimens is shown in 

Figure 4.22.  The LVDTs were mounted in a slightly different configuration for the BT-

54 girder specimen.  The LVDT locations for the BT-54 girders specimens are presented 

in Figure 4.23. 
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Figure 4.22 – LVDT locations for rectangular specimens 
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Figure 4.23 – LVDT locations for BT-54 girder specimen 
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reference datum.  In theory, the method provided accurate measurements of the vertical 

and horizontal displacements; although there were experimental error issues that arose 

when previous researchers used the method.  The major objection to the method was that 

the rotation was unable to be determined using the method, and, therefore, an 

independent measurement of rotation had to be done using an inclinometer or theodolite. 

 For this research, due to the ease of implementation, string potentiometers were 

used to measure horizontal and vertical displacements.  A post-processing procedure that 

was used by Stoddard (1997) was implemented in this research to correct the measured 

displacements.  The details of the calculation procedure from Stoddard (1997) are 

included because the methodology was expanded on by the author in Section 4.2.5.1.1 for 

the case when the test specimens have initial rotation and in Section 4.2.5.1.2 for the case 

when the test specimens have unequal flange widths.  Initial rotation and unequal flange 

widths were not considered in the calculation procedure by Stoddard (1997).   

The correction method was based on the geometry of three string potentiometers 

and the coupling of the data to arrive at the correct displacements and rotation solution.  

The geometry and nomenclature used is shown in Figure 4.24.  All potentiometers were 

attached rigidly to an independent frame to measure the displacements during testing.  

Two vertical string potentiometers and five horizontal string potentiometers were used.  

Although only one vertical and two horizontal string potentiometers were necessary for 

the post-processing procedure, the post-processing procedure was repeated for all the 

string potentiometers to get accurate measurement at each measurement location to 

ensure that the specimens were rotating and translating without the cross-sectional 

geometry changing significantly.   
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Figure 4.24 – Potentiometer configuration to measure vertical displacement, lateral 
displacement and rotation for rectangular specimens 

 

 The horizontal displacement, Apx, and the vertical displacement, Apy, was 

determined by utilizing the measurements from potentiometers A and C (Stoddard, 

1997).  The initial string lengths for each of the potentiometers had to be recorded prior 

to the experiments when the strings were still orthogonal.  Pythagorean Theorem resulted 

in the following two equations to solve for the two unknowns Apx and Apy.  
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  ( ) 222
0 fpypx AAAA =+−  (4.1) 

  ( ) 222
0 fpxpy CAAC =+−  (4.2) 

Solving Equations 4.1 and 4.2 simultaneously resulted in two roots. 

Root Set #1: 
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 The two possible solution sets presented were the two theoretically possible 

displaced configurations of the displaced specimen.  However, only one solution set 

actually made sense for the experiment.  Figure 4.25 shows the two possible solutions 

which is a similar representation of what was presented in Stoddard (1997).  The solution 

sets mirrored each other about a diagonal line passing from potentiometer C to 

potentiometer A. 

 

 

Figure 4.25 – Two possible solutions sets 
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 Once the appropriate solution set was selected to determine the horizontal and 

vertical displacements, the torsional rotation, φ, was determined using the data and 

dimensions from potentiometers A and B.  The height of the cross-section, h, or more 

accurately, the distance between the two horizontal potentiometers, was also necessary to 

determine the rotation, φ, of the cross-section.  Figure 4.26 shows the required parameters 

and nomenclature for determining the rotation of the cross-section. 

 

 

Figure 4.26 – Geometric parameters to determine rotation of cross-section 
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The following equation was constructed in terms of the parameters in Figure 4.25 in 

terms of one unknown: the rotation, φ. 

 

  [ ] ( )[ ] 222
0 cos1sin fpypx BhAhAA =−++−− φφ  (4.11) 

 

The rotation, φ, was solved for resulting in two roots.  Due to the relatively small rotation 

angles measured in the experiment, the appropriate root solution for the rotation was as 

follows. 
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 The displacement or coordinate location of any point of the cross-section could 

now be determined because the horizontal and vertical displacement of point A was 

known and the rotation of the cross-section was known.   

4.2.5.1.1 Initial Rotation Considerations 

 The post-processing methodology used by Stoddard (1997) to calculate the actual 

displacements and rotation using the string potentiometer data needed to be adapted to 

the specific conditions of the experiments of this research.  The procedure presented by 

Stoddard (1997) assumed that the initial rotation of the cross-section was zero.  In the 

experiments of this research, that was not the case.  The solution for the appropriate 

horizontal and vertical displacements was exactly the same as previously presented.  This 

was because the reference point at the bottom of the cross-section was unchanged by the 

initial rotation, and, therefore, the coupled simultaneous equations that were solved for 

the horizontal and vertical displacement was the exactly the same.  However, Equation 

4.11 which was solved to determine the rotation was changed due to the initial rotation.  

The altered geometric considerations are shown in Figure 4.27. 
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Figure 4.27 – Initial rotation geometric parameters to determine rotation of cross-section 

 

The following equation was constructed in terms of the parameters in Figure 4.26 

in terms of one unknown: the rotation, φ. 

 

  [ ] ( )[ ] 222
0 coscossin fipypx BhAhAA =−++−− φθφ  (4.17) 

 

The rotation, φ, was solve for resulting in two roots.  Due to the relatively small rotation 

angles measured in the experiment, the appropriate root solution for the rotation was as 

follows.   
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 It is important to note that the solution for the torsional rotation was the increment 

of additional rotation, in addition to the initial rotation; therefore, the change in rotation 

during the experiment was found as the difference between the total rotation solved for 

using Equation 4.18 and the initial rotation of the cross-section. 

4.2.5.1.2 Unequal Flange Considerations 

 For the BT-54 lateral-torsional buckling experiment, the effect of unequal flange 

widths had to be considered in determining the corrected rotations.  The procedure that 

was adapted from Stoddard (1997) was only appropriate for rectangular cross-sections or 

flanged cross-sections where the flanges had equal widths.  Similar to the effect of initial 

rotation on the post-processing procedure, there was no effect of the unequal flange 
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widths on the computation of the horizontal and vertical displacements of the reference 

point.  The unequal flange widths only affected the computation of the true rotation of the 

cross-section.  The simplest method to account for the unequal flange widths was to 

create an equivalent rectangular section that utilized an effective height and effective 

initial rotation that was based on the actual distance between the horizontal measurement 

points, the initial rotation and the flange dimensions.  The parameters for the effective 

section are shown in Figure 4.28. 

 

 

Figure 4.28 – Equivalent section height and initial rotation for unequal flange widths 
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 The calculation procedure was exactly the same as the case of a rectangular cross-

section with an initial angle except that the equivalent height, as calculated by Equation 

4.23, was used instead of the actual height and the equivalent initial rotation, as 

calculated by Equation 4.24, was substituted into the computation procedure in place of 

the actual initial rotation. 
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4.2.5.2 BT-54 End Support Compliance Measurements  

 In addition to the load cell in each of the secondary torsional restraint systems, 

three string potentiometers were used at each end to monitor the rotation at the ends and 

the compliance of the bearing pad.  The configuration of the string potentiometers was 

one lateral string potentiometer measuring the displacement of the top flange and two 

string potentiometers measuring the displacement at each edge of the bottom flange.  The 

two bottom flange string potentiometers are shown in Figure 4.29. 
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Figure 4.29 – String potentiometer layout at end supports beneath the girder 

 

 The three string potentiometers at each end were necessary to monitor the rotation 

and displacements at the ends due to the compliance of the bearing pad so that the 

relative rotation and displacements at midspan could be determined.  Furthermore, it was 

important to investigate the deformation behavior at the end supports to determine 

experimentally if the bearing pad compliance had a large effect on the overall behavior.  

The two vertical string potentiometers would have been sufficient to determine both the 

rotation at each end and the vertical displacement due to the compression of the bearing 

pad; however, the bearing pads also had the ability to undergo shear deformation.  

Therefore, the third, lateral, string potentiometer was implemented such that the rotation, 

vertical displacement due to the compression of the bearing pad and the horizontal 

displacement due to the shear deformation of the bearing pad could be determined.   
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CHAPTER 5 

RECTANGULAR BEAM LATERAL-TORSIONAL BUCKLING 

EXPERIMENTAL RESULTS 

 The six rectangular prestressed concrete beam specimens were tested in lateral-

torsional buckling using the previously discussed test setup with a concentrated load at 

midspan.  The load versus lateral displacement, load versus rotation and strain data were 

found to best identify the stability behavior of the beams.  Load versus lateral 

displacement and load versus rotation data indicate when the rate of increase in 

deformation becomes substantial and, therefore, when the beam had become unstable.  

Furthermore, the data presented the maximum load achieved for the given geometric and 

material properties with a given initial imperfection profile.  By investigating the strain 

data, the experimental neutral axis angle and depth were able to be determined.  The 

strain data showed whether the concrete material properties were in the nonlinear region, 

areas of the cross-section that were in tension, and whether the reinforcing steel had 

yielded.  For all of the beam specimens, the load was applied until buckling occurred, and 

then the load was removed slowly until there was a very small amount of load left on the 

beam.  Then, the beam was reloaded.  The procedure was repeated two to three times so 

that the effect of cracking and large initial imperfections could be studied.   
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5.1 Beam B2A 

5.1.1 Beam B2A: Loading #1 

The initial imperfections at midspan of the first test were 1 1/2 in. (38.1 mm) 

lateral sweep at the top of the beam, and 1 1/16in. (27.0 mm) lateral sweep at the bottom 

of the beam, which resulted in an initial rotation of 0.011 radians.  The initial 

imperfections of all beams at midspan are presented in Table 2.1 of Chapter 2 and the 

detailed imperfections along the beams are presented in Appendix A.  The load versus 

lateral displacement is shown in Figure 5.1.  The maximum load reached was 35.26 kips 

(156.8 kN) at a lateral deflection of 2.17 in (55.1 mm) at the top of the beam, and 1.57 in. 

(39.9 mm) at the bottom of the beam.  The load versus rotation plot is shown in Figure 

5.2.  Additionally, the loads versus vertical deflection data for each beam test are 

presented in Appendix C.  When the maximum load level was reached, the restraint 

system held the beam from excessive lateral deflections.  The turnbuckle, controlling the 

restraint system, was then released gradually, and allowed the beam to continue 

deflecting laterally, with no additional pumping of the hydraulic jack, as shown in Figure 

5.3.  The restraining system was released until the system was in equilibrium without the 

restraining system.  Equilibrium occurred at a load of 27.6 kips (122.8 kN) at a lateral 

deflection of 5.66 in. (143.8 mm) at the top of the beam, and 3.91 in. (99.3 mm) at the 

bottom.
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Figure 5.1 – Load vs. lateral deflection for Beam B2A, loading #1 
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Figure 5.2 – Load vs. rotation for Beam B2A, loading #1 
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Figure 5.3 – Releasing restraint system during loading #1 of Beam B2A 

 

The strain profile is plotted in Figure 5.4 for the load levels of 10 kips (44.5 kN), 

20 kips (89.0 kN) and 30 kips (133.4 kN).  Each horizontal gridline represents an LVDT 

location.  The nominal gage length for all beams was 10 in. (254 mm); however the 

measured LVDT gage lengths for all beam tests are presented in Appendix C.  The 

bottom LVDT did not work properly during the experiment, and, therefore, was left out 

of the data set.  The strain values included the summation of the strain data points 

collected, and the predicted initial strain in the cross-section due to prestressing and self-

weight of the beam.  The effect of the initial strain due to prestressing and self-weight of 

the beam is depicted in Figure 5.5.  The effect of the initial strain was noticeable, but 
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small enough that at higher loads, the difference between predicted initial strain, and 

actual initial strains, would have a minimal effect.  Figure 5.4 shows a high correlation to 

a linear strain distribution.  It is also apparent, because of the relatively low strains in the 

bottom of the beam cross-section, that the steel did not yield, and, furthermore, the 

relatively small strains at the top of the beam cross-section correspond to a low enough 

concrete stress at mid-thickness, that the concrete could be considered linear-elastic.  The 

initial strain in the prestressing strands was approximately 0.00103.  With a yield strain of 

0.0088, the increase in strain at the levels of the strands would be 7770 microstrains for 

the strands to have yielded.  Similarly, strains would need to be greater than 2100 

microstrains for the non-prestressed reinforcing steel to yield.  However, it is important to 

note that these results were at mid-thickness, and, therefore, do not consider the strains 

due to out-of-plane behavior at the surface of the beam. 
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Figure 5.4 – Strain profile at mid-thickness at three load increments for Beam B2A, 
loading #1 
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Figure 5.5 – Strain profile at mid-thickness at 30 kips (133.4 kN) for Beam B2A, loading 
#1 

 

To capture the strain due to the out-of-plane behavior of the prestressed concrete 

beam, a linear interpolation from the locations of the LVDTs to the surface of the 

concrete was done.  Figures 5.6, 5.7 and 5.8 show the surface strains for the concave and 

convex side of the beam for the load levels of 10 kips (44.5 kN), 20 kips (89.0 kN) and 

30 kips (133.4 kN), respectively.   
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Figure 5.6 – Surface strain profile at 10 kips (44.5 kN) for Beam B2A, loading #1 
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Figure 5.7 – Surface strain profile at 20 kips (89.0 kN) for Beam B2A, loading #1 
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Figure 5.8 – Surface strain profile at 30 kips (133.4 kN) for Beam B2A, loading #1 

 

The surface strain profiles in Figures 5.6 through 5.8 show that the concrete 

remained linear-elastic in the compression zone, including at the top corner on the 

concave side, where the highest biaxial compressive stresses occurred.   However, when 

the buckling load was reached and larger displacements occurred, large strains developed 

in the biaxially compressed region, as shown in Figure 5.9.  Because of the larger 

compressive strains, the concrete could no longer be considered linear-elastic, and a 

reduced modulus should be used in that region from an analytical standpoint.  

Furthermore, the biaxially tensioned region, or the top of the beam on the convex side, 

developed tensile strains, and, therefore, it was possible that cracking occurred over the 

entire depth of the cross-section, at midspan, on the convex side of the beam.  The level 

of cracking was not confirmed during the experiment due to safety concerns.  Based on a 
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modulus of rupture of 7.5 'cf the tensile cracking strain would be about 139 

microstrains. 
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Figure 5.9 – Post-buckling surface strain profile at 31 kips (137.9 kN) for Beam B2A, 
loading #1 

 

 

5.1.2 Beam B2A: Loading #2 

The initial imperfections of the second test were 2 7/16 in. (61.9 mm) lateral 

sweep at the top of the beam, and 1 13/16 in. (46.0 mm) lateral sweep at the bottom of the 

beam, which resulted in an initial rotation of 0.0156 radians.  The load versus lateral 

displacement is shown in Figure 5.10 and the load versus rotation is shown in Figure 
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5.11.  The maximum load reached was 28.62 kips (127.3 kN) at a lateral deflection of 

4.13 in (104.9 mm) at the top of the beam, and 2.87 in. (72.9 mm) at the bottom of the 

beam.  Because of the larger initial imperfections in the second loading, the restraining 

system restrained the beam after minimal load increments; consequently, data points were 

reported only at points when the load was increased and the restraint system was not 

restraining deformation of the beam. 

 

 

0

5

10

15

20

25

30

35

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Lateral Deflection (in.)

L
oa

d
 (

ki
p
s)

 .

Top

Bottom

 

Figure 5.10 – Load vs. lateral deflection for Beam B2A, loading #2 
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Figure 5.11 – Load vs. rotation for Beam B2A, loading #2 

 

The strain profile is plotted in Figure 5.12 for load levels of 9.73 kips (43.3 kN), 

19.47 kips (86.6 kN) and 28.19 kips (125.4 kN).  The strain values included the 

summation of the strain data points collected, and the predicted initial strain in the cross-

section due to prestressing and self-weight of the beam.  The effect of the initial strain 

due to prestressing and self-weight of the beam is depicted in Figure 5.13.  Figure 5.12 

shows nonlinearity, particularly with respect to the bottom LVDT.  Therefore, the 

behavior of the beam is creating a slightly nonlinear strain distribution.  Torsion on the 

cross-section due to the initial imperfections could have caused a nonlinear strain 

distribution.  The nonlinear strain distribution due to torsion was not apparent in the first 

loading due to the much smaller initial imperfections.  It was also apparent, because of 
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the relatively low strains in the bottom of the beam cross-section, that the steel did not 

yield, and, furthermore, the relatively small strains at the top of the beam cross-section 

corresponded to a low enough concrete stress at mid-thickness, that the concrete could be 

considered linear-elastic.  However, it is important to note that these results were at mid-

thickness, and, therefore, do not consider the strains due to out-of-plane behavior.  

Furthermore, in the second test of Beam B2A, there were initial residual strains from the 

first test of the beam; therefore, it was more difficult to predict the initial stress and strain 

conditions in the beam, and, thus, the concrete could potentially have behaved 

inelastically at the higher load levels. 
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Figure 5.12 – Strain profile at mid-thickness at three load increments for Beam B2A, 
loading #2 
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Figure 5.13 – Strain profile at mid-thickness at 28.19 kips (125.4 kN) for Beam B2A, 
loading #2 

  

To capture the strain due to the out-of-plane behavior of the prestressed concrete 

beam, a linear interpolation from the locations of the LVDTs to the surface of the 

concrete was done.  Figures 5.14, 5.15, and 5.16 show the surface strains for both the 

concave and convex side of the girder for load levels of 9.73 kips (43.3 kN), 19.47 kips 

(86.6 kN) and 28.19 kips (125.4 kN), respectively. 
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Figure 5.14 – Surface strain profile at 9.73 kips (43.3 kN) for Beam B2A, loading #2 
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Figure 5.15 – Surface strain profile at 19.47 kips (86.6 kN) for Beam B2A, loading #2 
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Figure 5.16 – Surface strain profile at 28.19 kips (125.4 kN) for Beam B2A, loading #2 

 

The surface strain profiles in Figures 5.14 through 5.16 show that the concrete 

remained linear-elastic in the compression zone, including at the top corner on the 

concave side, where the highest biaxial compressive stresses occurred.  However, at the 

maximum load attained, tensile strains began to develop at the top of the beam cross-

section on the convex side.  The tensile strain could have been slightly higher due to 

residual strains from the first test.  Note that for the second test of Beam B2A, the beam 

was not loaded into the post-buckling range.  Also, Figures 5.14 through 5.16 show the 

reason for the lower than expected values for the bottom strain at mid-thickness of the 
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cross-section from Figure 5.12.  The LVDT located on the convex side near the bottom of 

the beam was reading significantly lower strains than expected. 

5.1.3 Beam B2A: Loading #3 

The initial imperfections of the third test were 2 5/8 in. (66.7 mm) lateral sweep at 

the top of the beam, and 1 7/8 in. (47.6 mm) lateral sweep at the bottom of the beam, 

which resulted in an initial rotation of 0.0187 radians.  The load versus lateral 

displacement is shown in Figure 5.17 and the load versus rotation is shown in Figure 

5.18.  The maximum load reached was 25.00 kips (111.2 kN) at a lateral deflection of 

4.94 in (125.5 mm) at the top of the beam, and 3.59 in. (91.2 mm) at the bottom of the 

beam.  Figure 5.19 is a photograph showing approximately the maximum sweep and 

rotation of the third loading for Beam B2A.  When the maximum load level was reached, 

increased jacking pressure significantly added to the lateral displacement with little, to no 

additional load increase.  Furthermore, additional slack was provided in the restraint 

system for this loading, and all remaining tests, to provide for more deformation before 

having to release the restraint system. 
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Figure 5.17 – Load vs. lateral deflection for Beam B2A, loading #3 
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Figure 5.18– Load vs. rotation for Beam B2A, loading #3 
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Figure 5.19 – End view of sweep and rotation for loading #3 of Beam B2A 

 

The strain profile is plotted in Figure 5.20 for the load levels of 10 kips (44.5 kN), 

20 kips (89.0 kN) and 24 kips (106.8 kN).  The strain values included the summation of 

the strain data points collected, and the predicted initial strain in the cross-section due to 

prestressing and self-weight of the beam.  The effect of the initial strain due to 

prestressing and self-weight of the beam is depicted in Figure 5.21.  Figure 5.20 shows a 

nonlinear strain distribution that appeared to become more linear at higher loads.  The 

reason for the nonlinear strain distribution could be cracking and damage from previous 

testing, effects of torsion, as well as non-uniform residual strains.  Additionally, the 

bottom LVDT on the convex side was reading smaller strain values than was to be 
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expected.  It was also apparent, because of the relatively low strains in the bottom of the 

beam cross-section, that the steel did not yield, and, furthermore, the relatively small 

strains at the top of the beam cross-section corresponded to a low enough concrete stress 

at mid-thickness, that the concrete could be considered linear-elastic.  However, it is 

important to note that these results were at mid-thickness, and, therefore, do not consider 

the strains due to out-of-plane behavior. 
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Figure 5.20 – Strain profile at mid-thickness at three load increments for Beam B2A, 
loading #3 
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Figure 5.21 – Strain profile at mid-thickness at 24.0 kips (106.8 kN) for Beam B2A, 
loading #3 

 

To capture the strain due to the out-of-plane behavior of the prestressed concrete 

beam, a linear interpolation from the locations of the LVDTs, to the surface of the 

concrete was done.  Figures 5.22, 5.23, and 5.24 show the surface strains, for both the 

concave and convex side of the beam, for load levels of 10 kips (44.5 kN), 20 kips (89.0 

kN) and 24 kips (106.8 kN), respectively. 
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Figure 5.22 – Surface strain profile 10 kips (44.5 kN) for Beam B2A, loading #3 
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Figure 5.23 – Surface strain profile 20 kips (89.0 kN) for Beam B2A, loading #3 
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Figure 5.24 – Surface strain profile 24 kips (106.8 kN) for Beam B2A, loading #3 

 

The surface strain profiles in Figures 5.22 through 5.24 show that the concrete 

remained linear-elastic in the compression zone, including at the top corner, on the 

concave side, where the highest biaxial compressive stresses occurred.  However, due to 

residual strains from the previous two tests, it was possible that the concrete became 

inelastic.  Also, at the maximum load attained, tensile strains developed at the top of the 

beam cross-section on the convex side.  The tensile strain could have been slightly higher 

due to residual strains from the first two tests.  Note that for the third test of Beam B2A, 

the beam was not loaded into the post-buckling path. 
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 Unlike the first two tests, cracking was investigated briefly.  After the maximum 

load was reached, the load was reduced to 17 kips (75.6 kN) and the crack pattern was 

quickly observed.  The concave side, or compression side, showed no cracking.  The 

convex, or tension side of the beam, had a significant amount of diagonal cracking on the 

order of 0.010 in. to 0.030 in. (0.25 mm to 0.75 mm) wide.  The crack pattern on the 

convex side of the beam is shown in Figure 5.25. 

 

 

Figure 5.25 – Crack pattern on convex side of beam at 17 kips (75.6 kN) during 
unloading for Beam B2A, loading #3 

 

5.1.4 Beam B2A: Hysteresis 

All three loadings were performed on the same beam, but with a large amount of 

time between loadings.  The load versus lateral deflection of all three loadings was 

combined into a hysteresis, shown in Figure 5.26.  Although, there was a large amount of 
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Spacing at 12” 
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time between loadings, the hysteresis was useful to investigate the effect of initial 

imperfections visually, such that a degradation of buckling capacity was apparent.   
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Figure 5.26 – Hysteresis of all three loadings on Beam B2A 

 

Because of the large amount of time between tests, there was some loss of 

residual deformations from one test to another.  This was particularly apparent between 

loadings 1 and 2 in Figure 5.26.  Furthermore, Figure 5.26 shows that the increase in 

initial imperfections and increase in initial damage caused the nonlinear load-deflection 

curves to be shallower. 
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5.2 Beam B1A 

Beam B1A was loaded to its critical buckling load and into its post-buckling path 

to a significant lateral displacement.  After the beam was unloaded, the beam was 

immediately loaded again to a critical load where large displacements began again with 

little, to no additional load.  The load versus lateral displacement is shown in Figure 5.27 

and the load versus rotation is shown in Figure 5.28.  The maximum load reached was 

36.87 kips (163.9 kN) at a lateral deflection of 3.46 in (87.9 mm) at the top of the beam, 

and 2.92 in. (74.2 mm) at the bottom of the beam.   
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Figure 5.27 – Load vs. lateral deflection for Beam B1A 
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Figure 5.28 – Load vs. rotation for Beam B1A 

 

Figure 5.27 shows that during the second loading of the beam, the maximum load 

for the second load was lower than the critical load during the first loading.  Specifically, 

the second loading reached a load of 29.45 kips (130.9 kN).  A linear approximation of 

the post-buckling path for the first loading was made, as shown in Figure 5.27; it 

appeared that the reloading brought the maximum to the initial load-deflection curve.  A 

similar trend is noticeable the load versus rotation plot in Figure 5.28. 

The strain profile is plotted in Figure 5.29 for the load levels of 10 kips (44.5 kN), 

20 kips (89.0 kN) and 30 kips (133.3 kN).  The mounted LVDTs at the midspan of the 

beam are shown in Figure 5.30.  The strain values included the summation of the strain 

data points collected, and the predicted initial strain in the cross-section due to 
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prestressing and self-weight of the beam.  The effect of the initial strain due to 

prestressing and self-weight of the beam is depicted in Figure 5.31.  Figure 5.29 shows 

good linearity, particularly with respect to the top four LVDTs.  Once again, one of the 

bottom LVDTs was reading a lower strain value than expected, and, therefore, the mid-

thickness strain values presented were affected by the lower than expected reading.  It 

was also apparent, because of the relatively low strains in the bottom of the beam cross-

section, that the steel did not yield, and, furthermore, the relatively small strains at the top 

of the beam cross-section corresponded to a low enough concrete stress at mid-thickness, 

that the concrete could be considered linear-elastic.  However, it is important to note that 

these results were at mid-thickness, and, therefore, do not consider the strains due to out-

of-plane behavior.  
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Figure 5.29 – Strain profile at mid-thickness at three load increments for Beam B1A 
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Figure 5.30 – Photo of mounted LVDTs at midspan 
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Figure 5.31 – Strain profile at mid-thickness at 30 kips (133.3 kN) for Beam B1A 
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To capture the strain due to the out-of-plane behavior of the prestressed concrete 

beam, a linear interpolation from the locations of the LVDTs to the surface of the 

concrete was done.  Figures 5.32, 5.33, and 5.34 show the surface strains for both the 

concave and convex side of the beam, for load levels of 10 kips (44.5 kN), 20 kips (89.0 

kN) and 35 kips (155.6 kN), respectively. 
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Figure 5.32 – Surface strain profile 10 kips (44.5 kN) for Beam B1A 
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Figure 5.33 – Surface strain profile 20 kips (89.0 kN) for Beam B1A 
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Figure 5.34 – Surface strain profile 35 kips (155.6 kN) for Beam B1A 
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The surface strain profiles in Figures 5.31 through 5.34 shows that the concrete 

remained linear-elastic in the compression zone, including at the top corner, on the 

concave side, where the highest biaxial compressive stresses occurred.  Also, the strain 

distribution for 35 kips (155.6 kN), as shown in Figure 5.34, shows that tensile strains did 

not develop at the top of the beam cross-section on the convex side for this beam, but did 

for a significant percentage of the depth of the cross-section on the convex side of the 

beam.  Additionally, it was apparent in Figures 5.33 and 5.34 that there was an error in 

the strain reading from the LVDT at the bottom of the convex side.  After the experiment, 

it was found that the LVDT in that position was broken. 

5.3 Beam C2A  

Beam C2A was loaded to its critical buckling load and into its post-buckling path 

to a significant lateral displacement.  After the beam was unloaded, the beam was 

immediately loaded again to a load where large displacements began with little, to no 

additional load.  The load versus lateral displacement is shown in Figure 5.35 and the 

load versus rotation is shown in Figure 5.36.  The maximum load reached was 33.68 kips 

(149.7 kN) at a lateral deflection of 3.88 in (98.6 mm) at the top of the beam, and 3.37 in. 

(85.6 mm) at the bottom of the beam.  Additionally, Figure 5.37 is a photo of Beam C2A 

after buckling occurred showing the gravity load simulator with a shifted geometry. 
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Figure 5.35 – Load vs. lateral deflection for Beam C2A 
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Figure 5.36 – Load vs. rotation for Beam C2A 

Linear Approximation 
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Figure 5.37 – Photo of shifted gravity load simulator 

 

Figure 5.35 shows that during the second loading of the beam, the maximum load 

was lower than the critical load during the first loading.  Specifically, the second loading 

reached a load of 27.23 kips (120.0 kN).  A linear approximation of the post-buckling 

path for the first loading was made, like was done for Beam B1A, as shown in Figure 

5.35, it appeared that reloading brought the maximum to the initial load-deflection curve.  

A similar trend is noticeable the load versus rotation plot in Figure 5.36.  Therefore, the 
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trend that the critical load of subsequent loadings falls on the initial load-deflection curve 

was reaffirmed during the testing of Beam C2A.  

The strain profile is plotted in Figure 5.38 for load levels of 10 kips (44.5 kN), 20 

kips (89.0 kN) and 30 kips (133.3 kN).  The strain values included the summation of the 

strain data points collected, and the predicted initial strain in the cross-section due to 

prestressing and self-weight of the beam.  The effect of the initial strain due to 

prestressing and self-weight of the beam is depicted in Figure 5.39.  Figure 5.38 shows a 

slight nonlinearity in the strain distribution through the cross-section particularly at 

higher loads most likely due to strains developed due to torsion on the cross-section.  

Furthermore, the higher tensile strain than expected at the bottom LVDT could be due to 

a crack developing within the gage length.  It was apparent, considering the relatively low 

strains at the bottom of the beam cross-section, that the steel did not yield, and, 

furthermore, the relatively small strains at the top of the beam cross-section corresponded 

to a low enough concrete stress at mid-thickness, that the concrete could be considered 

linear-elastic.  However, it is important to note that these results were at mid-thickness, 

and, therefore, do not consider the strains due to out-of-plane behavior.  
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Figure 5.38 – Strain profile at mid-thickness at three load increments for Beam C2A 
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Figure 5.39 – Strain profile at mid-thickness at 30 kips (133.3 kN) for Beam C2A 
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To capture the strain due to the out-of-plane behavior of the prestressed concrete 

beam, a linear interpolation from the locations of the LVDTs to the surface of the 

concrete was done.  Figures 5.40, 5.41, and 5.42 show the surface strains for both the 

concave and convex side of the beam, for load levels of 10 kips (44.5 kN), 20 kips (89.0 

kN) and 32 kips (142.2 kN), respectively. 
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Figure 5.40 – Surface strain profile 10 kips (44.5 kN) for Beam C2A 
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Figure 5.41 – Surface strain profile 20 kips (89.0 kN) for Beam C2A 
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Figure 5.42 – Surface strain profile 32 kips (142.2 kN) for Beam C2A 
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The surface strain profiles in Figures 5.40 through 5.42 show that the concrete 

remained linear-elastic in the compression zone, including at the top corner, on the 

concave side, where the highest biaxial compressive stresses occurred.  Also, the strain 

distribution for 32 kips (142.2 kN), as shown in Figure 5.42, shows that tensile strains 

developed through most of the depth of the cross-section on the convex side for this 

beam.  Note that the load level of 32 kips (142.2 kN) was only slightly less than the 

maximum load attained, 33.68 kips (149.7 kN).  Additionally, linearity of the strain 

distributions throughout the loading of Beam C2A, confirmed that the occurrence of 

strain values that were unexpected in the previous tests were due to a faulty LVDT, and 

not due to the beams behavior. 

5.4 Beam B1B  

Beam B1B was loaded to its critical buckling load and into its post-buckling path 

to a significant lateral displacement.  After the beam was unloaded, the beam was 

immediately loaded again to a load where large displacements began with little, to no 

additional load.  The load versus lateral displacement is shown in Figure 5.43 and the 

load versus rotation is shown in Figure 5.44.  The maximum load reached was 33.92 kips 

(150.8 kN) at a lateral deflection of 3.59 in (91.2 mm) at the top of the beam, and 3.19 in. 

(81.0 mm) at the bottom of the beam.  Additionally, Figure 5.45 shows an end view of 

the buckled deflected shape of Beam B1B. 
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Figure 5.43 – Load vs. lateral deflection for Beam B1B 

 

0

5

10

15

20

25

30

35

40

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050

Rotation (radians)

L
oa

d 
(k

ip
s)

 .

 

Figure 5.44 – Load vs. rotation for Beam B1B 

Linear Approximation 
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Figure 5.45 –End view of Beam B1B in buckled position 

 

Figure 5.43 shows that during the second loading of the beam, the maximum load 

during the second load was lower than the critical load during the first loading.  

Specifically, the second loading reached a load of 29.42 kips (130.8 kN).  A linear 

approximation of the post-buckling path for the first loading was made, like was done for 

Beam B1A, as shown in Figure 5.43, and the reloading brought the maximum load to the 

initial load-deflection curve.  A similar trend is noticeable in the load versus rotation plot 

in Figure 5.44.  Therefore, the trend that the critical load of subsequent loadings falls on 

an initial load-deflection curve for the first loading was reaffirmed during the testing of 

Beam B1B.  
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The strain profile is plotted in Figure 5.46 for load levels of 10 kips (44.5 kN), 20 

kips (89.0 kN) and 30 kips (133.3 kN).  The strain values included the summation of the 

strain data points collected, and the predicted initial strain in the cross-section due to 

prestressing and self-weight of the beam.  The effect of the initial strain due to 

prestressing and self-weight of the beam is depicted in Figure 5.47.  Figure 5.46 shows a 

nonlinear strain distribution through the cross-section strains from torsion at higher loads 

and the possibility of cracking occurring through the gage length.  It was apparent, 

considering the relatively low strains in the bottom of the beam cross-section, that the 

steel did not yield, and, furthermore, the relatively small strains at the top of the beam 

cross-section corresponded to a low enough concrete stress at mid-thickness, that the 

concrete could be considered linear-elastic.  However, it is important to note that these 

results were at mid-thickness, and, therefore, do not consider the strains due to out-of-

plane behavior.  
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Figure 5.46 – Strain profile at mid-thickness at three load increments for Beam B1B 
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Figure 5.47 – Strain profile at mid-thickness at 30 kips (133.3 kN) for Beam B1B 
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To capture the strain due to the out-of-plane behavior of the prestressed concrete 

beam, a linear interpolation from the locations of the LVDTs, to the surface of the 

concrete was done.  Figures 5.48, 5.49, and 5.50 show the surface strains for both the 

concave and convex side of the girder, for load levels of 10 kips (44.5 kN), 20 kips (89.0 

kN) and 32 kips (142.2 kN), respectively. 
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Figure 5.48 – Surface strain profile 10 kips (44.5 kN) for Beam B1B 
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Figure 5.49 – Surface strain profile 20 kips (89.0 kN) for Beam B1B 
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Figure 5.50 – Surface strain profile 32 kips (142.2 kN) for Beam B1B 
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The surface strain profiles in Figures 5.48 through 5.50 show that the concrete 

remained linear-elastic in the compression zone, including at the top corner, on the 

concave side, where the highest biaxial compressive stresses occurred.  Also, the strain 

distribution for 32 kips (142.2 kN), as shown in Figure 5.50, shows that tensile strains 

developed through most of the depth of the cross-section on the convex side for this 

beam.  Note that the load level of 32 kips (142.2 kN) was only slightly less than the 

maximum load attained, 33.92 kips (150.8 kN).  Figure 5.50 also shows a larger than 

expected strain value at the mid-depth LVDT on the convex side of the beam.  The 

unexpected strain value at that location was most likely due to a crack forming through 

the LVDT mount at that location.  At the load of 32 kips (142.2 kN), significant cracking 

already occurred in the beam.  Significant flexural cracking was observed at 20 kips (88.9 

kN) and significant diagonal cracking was observed at 29 kips (128.9 kN).  Figure 5.51 

shows the vertical flexural cracking in the midspan region, as well as the flexural 

cracking that transformed into flexural-shear cracks as the load became closer to the 

buckling load.  Furthermore, the cracking became predominantly diagonal in the support 

region.  Also, the vertical flexural cracks can be seen in the region of the LVDTs, which 

could have been the reason for the mid-depth LVDT, on the convex side, recording 

unexpected strain values at high loads. 
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Figure 5.51 – Photo of cracking pattern after buckling of Beam B1B 

 

5.5 Beam B2B  

Beam B2B was loaded to its critical buckling load and into its post-buckling path 

to a significant lateral displacement.  After the beam was unloaded, the beam was 

immediately loaded again to a load where large displacements began with little, to no 

additional load.  The load versus lateral displacement is shown in Figure 5.52 and the 

load versus rotation is shown in Figure 5.53.  The maximum load reached was 34.69 kips 

(154.2 kN) at a lateral deflection of 3.08 in (78.2 mm) at the top of the beam, and 2.82 in. 

(71.6 mm) at the bottom of the beam.   
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Figure 5.52 – Load vs. lateral deflection for Beam B2B 
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Figure 5.53 – Load vs. rotation for Beam B2B 

Linear Approximation 
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Figure 5.52 shows that during the second loading of the beam, the maximum load 

of the reloading was lower than the critical load during the first loading.  Specifically, the 

second loading reached a load of 29.62 kips (131.7 kN).  A linear approximation of the 

post-buckling path for the first loading was made, like was done for Beam B1A, as 

shown in Figure 5.52, and it appeared that the reloading reaching the initial load-

deflection curve.  A similar trend is noticeable the load versus rotation plot in Figure 

5.53.  Therefore, the trend that the critical load of subsequent loadings falls on the load-

deflection curve of the first loading was reaffirmed during the testing of Beam B2B.  

The strain profile is plotted in Figure 5.54 for the load levels of 10 kips (44.5 kN), 

20 kips (89.0 kN) and 30 kips (133.3 kN).  The strain values included the summation of 

the strain data points collected, and the predicted initial strain in the cross-section due to 

prestressing and self-weight of the beam.  The effect of the initial strain due to 

prestressing and self-weight of the beam is depicted in Figure 5.55.  Figure 5.54 shows a 

slight nonlinearity in the strain distribution through the cross-section due to the effect of 

torsion on the strain distribution.  It was apparent, considering the relatively low strains in 

the bottom of the beam cross-section, that the steel did not yield, and, furthermore, the 

relatively small strains at the top of the beam cross-section corresponded to a low enough 

concrete stress at mid-thickness, that the concrete could be considered linear-elastic.  

However, it is important to note that these results were at mid-thickness, and, therefore, 

do not consider the strains due to out-of-plane behavior.  
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Figure 5.54 – Strain profile at mid-thickness at three load increments for Beam B2B 
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Figure 5.55 – Strain profile at mid-thickness at 30 kips (133.3 kN) for Beam B2B 
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To capture the strain due to the out-of-plane behavior of the prestressed concrete 

beam, a linear interpolation from the locations of the LVDTs, to the surface of the 

concrete was done.  Figures 5.56, 5.57, and 5.58 show the surface strains for both the 

concave and convex side of the girder, for load levels of 10 kips (44.5 kN), 20 kips (89.0 

kN) and 34 kips (151.1 kN), respectively. 
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Figure 5.56 – Surface strain profile 10 kips (44.5 kN) for Beam B2B 
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Figure 5.57 – Surface strain profile 20 kips (89.0 kN) for Beam B2B 
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Figure 5.58 – Surface strain profile 34 kips (151.1 kN) for Beam B2B 
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The surface strain profiles in Figures 5.56 through 5.58 show that the concrete 

remained linear-elastic in the compression zone, including at the top corner, on the 

concave side, where the highest biaxial compressive stresses occurred.  Also, the strain 

distribution for 34 kips (151.1 kN), as shown in Figure 5.58, shows that tensile strains 

developed through most of the depth of the cross-section on the convex side for this 

beam.  Note that the load level of 34 kips (151.1 kN) was only slightly less than the 

maximum load attained, 34.69 kips (154.2 kN).  At 30 kips (133.3 kN), cracking was 

investigated; flexural cracking was present, as well as a large amount of diagonal 

cracking.  Figure 5.59 shows the large amount of diagonal cracking, particularly around 

the end supports.  Notice that most of the diagonal cracks extend the complete depth of 

the beam. 

 

Figure 5.59 – Photo of diagonal cracking at supports after buckling of Beam B2B 
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5.6 Beam C2B  

Beam C2B was loaded to its critical buckling load and into its post-buckling path 

to a significant lateral displacement.  After the beam was unloaded, the beam was 

immediately loaded again to a load where large displacements began with little, to no 

additional load.  The load versus lateral displacement is shown in Figure 5.60 and the 

load versus rotation is shown in Figure 5.61.  The maximum load reached was 39.55 kips 

(175.8 kN) at a lateral deflection of 3.63 in (92.2 mm) at the top of the beam, and 4.10 in. 

(91.2 mm) at the bottom of the beam.   
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Figure 5.60 – Load vs. lateral deflection for Beam C2B 
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Figure 5.61 – Load vs. rotation for Beam C2B 

 

Figure 5.60 shows that during the second loading of the beam, the maximum load 

during the reloading was lower than the critical load during the first loading.  

Specifically, the second loading reached a load of 35.49 kips (157.7 kN).  A linear 

approximation of the post-buckling path for the first loading was made, like was done for 

Beam B1A, as shown in Figure 5.60, it appeared that the reloading reached the initial 

load-deflection curve and then unstable behavior began.  A similar trend is noticeable in 

the load versus rotation plot in Figure 5.61.  Therefore, the trend that the critical load of 

subsequent loadings falls on the load-deflection curve of the first loading was reaffirmed 

during the testing of Beam C2B.  

The strain profile is plotted in Figure 5.62 for load levels of 10 kips (44.5 kN), 25 

kips (111.1 kN) and 38 kips (168.9 kN).  The strain values included the summation of the 
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strain data points collected, and the predicted initial strain in the cross-section due to 

prestressing and self-weight of the beam.  The effect of the initial strain due to 

prestressing and self-weight of the beam is depicted in Figure 5.63.  Figure 5.62 shows a 

slight nonlinearity in the strain distribution through the cross-section due to the effects of 

torsion on the strain distribution.  It was apparent, considering the relatively low strains at 

the bottom of the beam cross-section, that the steel did not yield, and, furthermore, the 

relatively small strains at the top of the beam cross-section corresponded to a low enough 

concrete stress at mid-thickness, that the concrete could be considered linear-elastic.  

However, it is important to note that these results were at mid-thickness, and, therefore, 

do not consider the strains due to out-of-plane behavior.  
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Figure 5.62 – Strain profile at mid-thickness at three load increments for Beam C2B 
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Figure 5.63 – Strain profile at mid-thickness at 25 kips (111.1 kN) for Beam C2B 

 

To capture the strain due to the out-of-plane behavior of the prestressed concrete 

beam, a linear interpolation from the locations of the LVDTs, to the surface of the 

concrete was done.  Figures 5.64, 5.65, and 5.66 show the surface strains for both the 

concave and convex side of the beam, for load levels of 10 kips (44.5 kN), 25 kips (111.1 

kN) and 38 kips (168.9 kN), respectively. 
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Figure 5.64 – Surface strain profile 10 kips (44.5 kN) for Beam C2B 

 

-800 -600 -400 -200 0 200 400 600 800 1000 1200 1400

Strain (microstrain)

D
e
pt

h 
fr
om

 T
op

 (
in

.)
   

 .

Convex Side

Concave Side

1.50

10.75

38.50

29.25

20.00

 

Figure 5.65 – Surface strain profile 25 kips (111.1 kN) for Beam C2B 
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Figure 5.66 – Surface strain profile 38 kips (168.9 kN) for Beam C2B 

 

The surface strain profiles in Figures 5.64 through 5.66 show that the concrete 

remained linear-elastic in the compression zone, including at the top corner, on the 

concave side, where the highest biaxial compressive stresses occurred.  Also, the strain 

distribution for 38 kips (168.9 kN), as shown in Figure 5.66, shows that tensile strains 

developed though most of the depth of the cross-section on the convex side for this beam.  

Note that the load level of 38 kips (168.9 kN) was only slightly less than the maximum 

load attained, 39.55 kips (175.8 kN).  Flexural cracking was the most prominent during 

this test and only around the critical load did diagonal cracking occur.  Figure 5.67 shows 

the predominant flexural cracking before the critical load was reached and Figure 6.68 

shows the transition to diagonal cracking when the critical load was reached.  Beam C2B 
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had the smallest initial imperfections, particularly with respect to the initial rotation.  

Because of the relatively small initial imperfections, in-plane flexural behavior 

dominated until much higher loads than in the other cases, thus causing flexural cracking 

only until just before buckling when enough torsion developed to cause the flexural 

cracks to become flexural-shear cracks. 

 

 

 

Figure 5.67 – Photo flexural cracking before buckling of Beam C2B 
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Figure 5.68 – Photo of diagonal cracking at the buckling load for Beam C2B 

 

5.7 Additional Error Source 

After the first experiment, it was deemed that the gravity load simulator did not 

remain perfectly vertical due to the self-weight of the gravity load simulator being so 

large.  The gravity load simulator would rotate to a position where the horizontal force 

component was developed to equal the self-weight sway force of the gravity load 

simulator.  To keep the load vertical at all times, a mechanism was devised to control the 

displacement of the gravity load simulator.  The angle of the gravity load simulator was 

kept vertical by monitoring the angle of the bottom cross-bar of the load frame.  

However, after all testing on the rectangular beams were completed, it was found that the 

bottom cross-bar and hydraulic ram had not been perfectly perpendicular.  The error 
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stemmed from a machined threaded rod coupler that connected the hydraulic ram threads 

with the threaded rod that connected with the bottom cross-bar of the load frame.  The 

magnitude of the error was 0.012217 radians.  To correct the error for future experiments, 

a new threaded rod coupler was fabricated that provided a much better accuracy and the 

initial load application angle was zeroed by measuring the angle of the hydraulic ram as 

opposed to the bottom cross-bar. The error was compensated for in the discussion of 

results and the conclusions drawn from the results.  Furthermore, the error was taken into 

account during the analytical validation.  

5.8 Results Summary and Discussion 

5.8.1 Summary of Results 

Several comparisons, observations and qualitative relationships were found from 

the analysis of the summary of results in Table 5.1.  Note that positive values of 

displacement represent displacement away from the reaction wall, while negative 

displacements were those that were towards the wall, as shown in Figure 5.69.  

Additionally, Table 5.2 shows the depth of the compression zone and the applicable 

section properties that were based on the compression zone depth and shape.  The 

compression zone depth values were found experimentally by using the strain values 

obtained at the surface of the beams and linearly interpolating to find the location of zero 

strain.  Table 5.2 shows that the compression zone was not rectangular and the neutral 

axis had a significant angle.  Table 5.2 will be important for later discussion.   
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Table 5.1 – Summary of experimental results 

Initial Imperfections 
Beam 

ID 
Sweep 
Top, in. 
(mm) 

Sweep 
Bottom, 
in. (mm) 

Rotation 
(radians) 

Ec, ksi 
(GPa) 

Pbuckle, 
kips (kN) 

Pbuckle 
Sweep 
Top, in. 
(mm) 

Pbuckle 
Sweep 

Bottom, in. 
(mm) 

B1A 
-0.406 
(-10.3) 

-0.406 
(-10.3) 

0 
4713 
(32.5) 

36.87 
(163.9) 

3.46 
(87.9) 

2.92 
(74.2) 

B1B 
-0.344 
(-8.7) 

-0.375 
(9.5) 

0.00078 
4713 
(32.5) 

33.92 
(150.8) 

3.59 
(91.2) 

3.19 
(81.0) 

B2A 
1.50 

(38.1) 
1.06 

(27.0) 
0.011 

4188 
(28.9) 

35.26 
(156.8) 

2.17 
(55.1) 

1.57 
(39.9) 

B2B 
-0.484 
(-12.3) 

-0.547 
(-13.9) 

0.00156 
4188 
(28.9) 

34.69 
(154.2) 

3.08 
(78.2) 

2.82 
(71.6) 

C2A 
0.227 
(5.8) 

0.398 
(10.1) 

0.00430 
5156 
(35.5) 

33.68 
(149.7) 

3.88 
(98.6) 

3.37 
(85.6) 

C2B 
-0.172 
(-2.4) 

-0.203 
(-4.0) 

0.00078 
5156 
(35.5) 

39.55 
(175.8) 

4.10 
(104.1) 

3.59 
(91.2) 

 

 

The results from Beam B2A were left out of this discussion for several reasons.  

Beam B2A was the first beam tested, and, therefore the gravity load simulator’s angle 

was not consistently controlled as was discussed in section 5.1.7 Additional Error.  The 

data for Beam B2A did not reflect many of the apparent trends, and the author believes 

this was due to a failure to maintain the load in the direction of gravity nearly as well as 

in the subsequent tests.  Furthermore, observations could have been made even though 

the load was not in the direction of gravity; however, it was unknown what the actual 

applied load angle was. 
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Table 5.2 – Experimental compression zone depth and section properties 

Compression Zone Depth, 
in. (mm) Beam 

ID 

Load, 
kips 
(kN) 

Beam 
Rotation, 
radians Convex 

Side 
Concave 

Side 
Center 

phi, 
radians 

Ix, 
in4 (cm4) 

Iy, 
in4 

(cm4) 

10  
(44.5) 

0.00023 
20.97 
(533) 

28.47 
(723) 

24.72 
(628) 

1.08 
14111 

(587344) 
131 

(5454) 
20 

(89.0) 
0.00133 

11.87 
(301) 

18.98 
(482) 

15.42 
(392) 

1.06 
14549 

(605575) 
81 

(3382) B
1A

 

30 
(133.3) 

0.00472 
8.87 
(225) 

19.04 
(484) 

13.96 
(354) 

1.20 
14929 

(621392) 
72 

(3005) 
10  

(44.5) 
0.00013 

17.64 
(448) 

31.29 
(795) 

24.47 
(621) 

1.29 
14395 

(599165) 
128 

(5320) 
20 

(89.0) 
0.00477 

8.80 
(224) 

19.10 
(485) 

13.95 
(354) 

1.20 
14927 

(621309) 
72 

(3002) B
1B

 

30 
(133.3) 

0.01195 
3.13 

(79.5) 
19.28 
(490) 

11.21 
(285) 

1.33 
15470 

(643910) 
53 

(2217) 
10  

(44.5) 
0.00217 

19.67 
(500) 

31.90 
(810) 

25.79 
(655) 

1.25 
14628 

(608863) 
135 

(5639) 
20 

(89.0) 
0.00530 

10.95 
(278) 

22.15 
(563) 

16.55 
(420) 

1.23 
14288 

(594711) 
86 

(3574) B
2A

 

30 
(133.3) 

0.01059 
8.02 
(204) 

21.13 
(537) 

14.58 
(370) 

1.27 
14705 

(612068) 
74 

(3086) 
10  

(44.5) 
-0.00107 

23.34 
(593) 

38.41 
(976) 

30.88 
(784) 

1.31 
17236 

(717416) 
162 

(6742) 
20 

(89.0) 
0.00076 

9.95 
(253) 

24.13 
(613) 

17.04 
(433) 

1.30 
14220 

(591881) 
87 

(3626) B
2B

 

30 
(133.3) 

0.00786 
5.72 
(145) 

22.56 
(573) 

14.14 
(359) 

1.34 
14709 

(612235) 
69 

(2887) 
10  

(44.5) 
0.00132 

20.32 
(516) 

31.66 
(804) 

25.99 
(660) 

1.23 
14626 

(608780) 
137 

(5697) 
20 

(89.0) 
0.00614 

8.44 
(214) 

26.06 
(662) 

17.25 
(438) 

1.35 
14224 

(592048) 
86 

(3589) C
2A

 

30 
(133.3) 

0.01541 
3.84 
(98) 

23.97 
(609) 

13.91 
(353) 

1.37 
14622 

(608614) 
65 

(2722) 
10  

(44.5) 
0.00059 

27.09 
(688) 

31.03 
(788) 

29.06 
(738) 

0.78 
15406 

(641246) 
155 

(6443) 
25 

(111.2) 
0.00428 

8.15 
(207) 

24.85 
(631) 

16.50 
(419) 

1.34 
14305 

(595419) 
83 

(3440) C
2B

 

38 
(169.0) 

0.01788 
3.96 
(101) 

24.90 
(632) 

14.43 
(367) 

1.38 
14512 

(604035) 
68 

(2819) 
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Figure 5.69 – Test setup with positive and negative displacement convention noted 
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The first observation was made by comparing the experiments of Beams B1A and 

B1B, and the experiments of Beams C2A and C2B.  Note that many of the beams had 

sweep in the negative direction which was not the direction of buckling.  Therefore, a 

lower magnitude of negative sweep caused the beam to be more prone to buckling, and, 

furthermore, as the loading increased, the negative sweep would become positive due to 

the angle of the load from the error in the set-up pushing the beams in the positive 

displacement direction.  When making the comparisons, the effect of the concrete’s 

modulus of elasticity, prestressing strand pattern and prestressing force was eliminated, 

and, therefore, the only difference between beams was the initial imperfections.  In the 

case of the B1 beam series, B1A had slightly larger sweep measurements than Beam 

B1B, but in both cases the sweep was in the negative direction, and, furthermore, Beam 

B1B had twice the initial rotation of Beam B1A.  Both beams of the series B1 had 

rotations that opposed the sweep direction, but buckled in the positive direction, or the 

direction that was favored by the rotation, and not the sweep.  That would suggest that the 

direction of buckling was governed by the direction of the rotation, and not necessarily 

by the direction of the sweep; however, it cannot be determined from these experiments 

due to the error in the applied load angle.  Beam B1B, the beam with the larger initial 

rotation, buckled at a load approximately 8% less than beam B1A, which suggested that 

an increased initial rotation reduced the buckling load.  Figure 5.70 shows a plot of the 

buckling loads versus initial rotation for both the B1 and C2 series.  Figure 5.70 makes 

the effect of rotation more apparent.  Note that the rotation plotted in Figure 5.70 was the 

initial rotation not including the error in load application angle because that was a 

constant throughout the testing.  Furthermore, Figure 5.71 shows a plot of the buckling 
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loads versus initial sweep at mid-depth for both the B1 and C2 series.  From Figures 5.70 

and 5.71, the trend was that a larger positive initial rotation combined with a larger initial 

sweep (in the positive direction) resulted in lower buckling loads.  In the case of the C2 

beam series, Beam C2A had a larger sweep (in the positive direction) and larger initial 

rotation than Beam C2B.  Beam C2A, the beam with the larger initial rotation, buckled at 

a load that was approximately 15% less than beam C2B. 
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Figure 5.70 – Buckling load versus initial rotation 
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Figure 5.71 – Buckling load versus initial sweep 

 

The effect of the prestressing strand location and force as well as the initial 

concrete modulus of elasticity cannot be inferred directly from the experimental data.  

Because of the variability of the concrete modulus of elasticity between series, it was 

difficult to determine whether the difference in buckling loads was due to the modulus of 

elasticity or the influence of prestressing strand location and force.  To determine the 

effect of the prestressing force and strand location, the buckling load was normalized by 

the initial concrete modulus of elasticity because the classical lateral-torsional buckling 

formulation was a linear function of the modulus of elasticity.  By normalizing the 

buckling load with respect the modulus of elasticity, the effect of the modulus of 

elasticity was removed from consideration.  The normalized results are shown in the last 

column of Table 5.3. 
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Table 5.3 – Normalized buckling load with respect to initial concrete modulus 

Initial Imperfections 
Beam 

ID 
Sweep 
Top 
(in.) 

Sweep 
Bottom 

(in.) 

Rotation 
(radians) 

fc' 
(ksi) 

Ec 
(ksi) 

Pbuckle 
(kips) 

Pbuckle/fc' 
(in2) 

Pbuckle/Ec 
(in2) 

B1A -0.406 -0.406 0 10.133 4713 36.87 3.46 7.82E-03 
B1B -0.344 -0.375 0.00078 10.133 4713 33.92 3.59 7.20E-03 
B2A 1.500 1.060 0.01100 6.015 4188 35.26 2.17 8.42E-03 
B2B -0.484 -0.547 0.00156 6.015 4188 34.69 3.08 8.28E-03 
C2A 0.227 0.398 0.00430 11.281 5156 33.68 3.88 6.53E-03 
C2B -0.172 -0.203 0.00156 11.281 5156 39.55 4.10 7.67E-03 

 

From Table 5.3, Beam C2B had a larger normalized buckling load than Beam 

B1B even though Beam C2B had twice the initial rotation and an initial sweep that was 

more favorable to buckling than the initial sweep for Beam B1B.  Therefore, two 

prestressing strands located at the center of the cross-section created a more stabilizing 

effect than one strand located near the bottom of the cross-section.  That conclusion was 

consistent with concept that a larger compression zone would create a higher buckling 

load.  Beam B2B also had a larger normalized buckling load than Beam B1B and had a 

larger initial rotation.  Although the initial sweep was more favorable to buckling in the 

case of Beam B1B, because the normalized buckling load for Beam B2B was 15% larger 

and the initial sweep was twice as large as Beam B1B, the conclusion that a larger 

compression zone creates a higher buckling load was further verified. 

5.8.2 Current Analytical Techniques vs. Experimental Results 

A summary of the analytical results from the current analytical methods discussed 

in Chapter 1, applied to all of the beams tested, is shown in Table 5.4.  Additionally, 

Table 5.4 shows a summary of the experimental buckling loads for all of the tested 
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rectangular beams, with a comparison between the experimental and analytical results.  

The percent difference was calculated by using Equation 5.1; therefore, a positive percent 

difference was conservative.  

 

Table 5.4 – Comparison of analytical methods to experimental results 

Beam Specimen ID  
B1A B1B B2A B2B C2A C2B 

Experimental 
Buckling Load, 

kips (kN) 

36.87 
(163.9) 

33.92 
(150.8) 

35.26 
(156.7) 

34.69 
(154.2) 

33.68 
(149.7) 

39.55 
(175.8) 

Elastic 
kips (kN) 

153.13 
(680.6) 

153.13 
(680.6) 

133.47 
(593.3) 

133.47 
(593.3) 

167.06 
(742.6) 

167.06 
(742.6) 

% Difference -315.32 -351.44 -278.53 -284.75 -396.02 -322.40 
Hansell & Winter 

(1959) 
No Prestressing Force 

47.04 
(209.1) 

47.04 
(209.1) 

39.53 
(175.7) 

39.53 
(175.7) 

50.68 
(225.3) 

50.68 
(225.3) 

% Difference -27.58 -38.68 -12.11 -13.95 -50.48 -28.14 
Hansell & Winter 

(1959) 
57.12 

(253.9) 
57.12 

(253.9) 
45.65 

(202.9) 
45.65 

(202.9) 
63.33 

(281.5) 
63.33 

(281.5) 
% Difference -54.92 -68.40 -29.47 -31.59 -88.03 -60.13 

Sant & Bletzacker 
(1961) 

71.41 
(317.4) 

71.41 
(317.4) 

62.07 
(275.9) 

62.07 
(275.9) 

80.81 
(359.2) 

80.81 
(359.2) 

% Difference -93.68 -110.52 -76.04 -78.93 -139.93 -104.32 

Massey (1964) 
68.44 

(304.2) 
68.44 

(304.2) 
56.69 

(252.0) 
56.69 

(252.0) 
69.96 

(311.0) 
69.96 

(311.0) 
% Difference -85.63 -101.77 -60.78 -63.42 -107.72 -76.89 

Rafla (1969) 
90.481 
(402.2) 

90.48 
(402.2) 

61.49 
(273.3) 

61.49 
(273.3) 

101.44 
(450.9) 

101.44 
(450.9) 

% Difference -145.41 -166.75 -74.39 -77.26 -201.19 -156.49 

Stiglat (1971) 
95.92 

(426.3) 
95.92 

(426.3) 
61.43 

(273.0) 
61.43 

(273.0) 
105.78 
(470.2) 

105.78 
(470.2) 

% Difference -160.16 -182.78 -74.22 -77.08 -214.07 -167.46 

Malangone (1977) 
158.21 
(703.2) 

158.21 
(703.2) 

140.55 
(624.7) 

140.55 
(624.7) 

166.03 
(737.0) 

166.03 
(737.0) 

% Difference -329.10 -366.42 -298.61 -305.16 -392.96 -319.80 
Revathi & Menon 

(2006) 
20.12 
(89.4) 

20.12 
(89.4) 

24.63 
(109.5) 

24.63 
(109.5) 

21.81 
(96.9) 

21.81 
(96.9) 

% Difference 45.43 40.68 30.15 29.00 35.24 44.85 
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The primary observation that was taken from Table 5.4 was the extremely large 

scatter in predicted results for all of the analytical methods presented.  From Table 5.4, it 

was apparent that the analytical methods by Hansell and Winter (1959) and Revathi and 

Menon (2006) were the most accurate analytical approaches.  Essentially, the analytical 

procedure of Hansell and Winter (1959) used classical lateral-torsional buckling 

equations, but used the secant modulus of elasticity for the modulus of elasticity, and 

calculated both the moments of inertia, and torsion constant, based on the depth of the 

compression zone.  The analytical procedure of Revathi and Menon (2006) used a 

flexural rigidity formula originally proposed by Branson (Pillai and Menon, 2002), with a 

modification where 80% of the ultimate flexural moment was used instead of the entire 

ultimate flexural moment capacity to determine the flexural rigidity.  For the torsional 

rigidity, Revathi and Menon (2006) used Tavio and Teng’s (2004) torsional rigidity 

equation which was based on torsionally cracking reinforced concrete member.  The 

details of these methods were presented in Chapter 1.  

Table 5.4 includes two rows for Hansell and Winter (1959); the first row included 

the effect of the area of steel of the prestressing strands, but not the prestressing force, 

while the second row included the effect of the prestressing force on the compression 

zone of the cross-section.  The predicted buckling loads for the case where the effect of 
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the prestressing force was considered were larger than the predicted buckling loads when 

the effect of the prestressing force was neglected.  That was because the prestressing 

force caused a larger compression zone depth, and, therefore, the rigidity properties 

calculated were larger based on the method by Hansell and Winter (1959). 

 For both cases of predicted buckling loads determined by using the method by 

Hansell and Winter (1959), the buckling load was over-predicted, and, therefore, 

unconservative.  There were some possibilities why the method was over-predicting the 

results.  First, the torsion constant was based on the compression zone depth, but the 

coefficient k1 in the equation for the torsion constant, shown in Equation 5.2 from 

Timoshenko and Goodier (1970), was calculated using the entire depth of the beam 

instead of the compression zone depth.  Using the entire depth of the cross-section would 

result in a larger k1, and, thus, a larger torsion constant than if the depth of the 

compression zone was used in the equation.   
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Secondly, the moments of inertia and the torsion constant were based on a 

rectangular compression zone with the dimensions as the width of the beam and the depth 
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of the compression zone.  However, unless the beam was initially perfect, the 

compression zone would not be rectangular, but instead a trapezoid.  The compression 

zone depth on each side of the beams, the associated neutral axis angle, and moments of 

inertia based on the compression zone depth was shown in Table 5.2.  Table 5.2 shows 

that the compression zone was in fact a trapezoid and the angle of the neutral axis was 

substantial.  To visualize the actual shape of the compression zone, the surface strain 

profiles for Beam C2B at 10 kips (44.5 kN) and 38 kips (168.9 kN) are presented in 

Figures 5.72 and 5.73, respectively.  In the case that the compression zone was 

rectangular, the lines representing the surface strain would intersect the ordinate at the 

same value.  Beam C2B had relatively minimal initial imperfections; however, at a 

loading of 10 kips (44.5 kN), the lines representing the surface strains did not intersect 

the ordinate at the same value, as shown in Figure 5.72.  Furthermore, at a loading of 38 

kips (168.9 kN), the lines representing the surface strains intersect the ordinate at 

significantly different values.  The compression zone shapes at the two presented load 

values are shown in Figure 5.74.  As the load increased, the compression zone shape 

changed from a rectangle, to a trapezoid, and then it approached a triangle.  
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Figure 5.72 – Surface strain profile 10 kips (44.5 kN) for Beam C2B 
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Figure 5.73 – Surface strain profile 38 kips (168.9 kN) for Beam C2B 
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Figure 5.74 – Compression zones for Beam C2B at (a) 10 kips (44.5 kN) (b) 38 kips 
(168.9 kN) 

 

Lastly, none of the aforementioned analytical procedures considered initial 

imperfections.  Initial imperfections would serve to reduce the buckling load, and, 

therefore, any analytical procedure should take initial imperfections into account or the 

buckling load would be less than what was predicted.  Figure 5.75 shows a plot of the 

normalized buckling moment to ultimate flexural moment ratio versus the slenderness 

ratio for the experimental data from the current study, Hansell and Winter (1959), Sant 

and Bletzacker (1961) and Kalkan (2009).  Also in Figure 5.75 is the predicted buckling 

moment to ultimate flexural moment ratio versus slenderness ratio for the analytical 

method by Hansell and Winter (1959).  Note that a constant value for the reinforcing bar 

yield strength, when calculating the ultimate flexural strength in all cases was used so 

that the data were comparable.   Figure 5.75 shows a general trend that Hansell and 
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Winter (1959) over predicts the buckling load; however, not all data points show that 

trend.  The experimental data of Hansell and Winter (1959) matches very well with the 

analytical procedure by Hansell and Winter (1959) because the test beams failed in 

flexure and not by stability.  More apparent was the overall variability in the 

experimental results.   The parameters not considered by Hansell and Winter (1959) that 

could be causes for the variability in results were the initial imperfections of the test 

beams, the experimental error and the differences in experimental setups.  Furthermore, 

the data presentation method of Figure 5.75 is a decent method to investigate general 

behavior but cannot be used quantitatively due to the assumption that the ultimate 

moment and buckling moment differ by the same ratio depending on amount and location 

of reinforcement, which was not necessarily the case. 
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Figure 5.75 – Buckling moment to ultimate flexural moment ratio versus slenderness 
ratio for test data compared with Hansell and Winter (1959) analysis 
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 The analytical procedure by Revathi and Menon (2006) under-predicted the 

experimental buckling loads by a non-negligible amount.  That would be good from a 

safety standpoint, but would not be good for design economy or from the theoretical 

standpoint of understanding the actual behavior.  Furthermore, the analytical procedure 

by Revathi and Menon (2006) did not consider initial imperfections; therefore, any 

modification to their method that included the effect of initial imperfections would 

decrease the accuracy of the prediction.  A similar plot to the one in Figure 5.75 is shown 

in Figure 5.76 except that the experimental data were compared with the analytical 

procedure by Revathi and Menon (2006).  Figure 5.76 shows that all the experimental 

results were higher than what was predicted by Revathi and Menon (2006), and, 

therefore, does not represent the actual behavior and would potentially be too 

conservative. 
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Figure 5.76 – Buckling moment to ultimate flexural moment ratio versus slenderness 
ratio for test data compared with Revathi and Menon (2006) analysis 
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5.8.3 Discussion of Secondary Loading 

For every test beam, the beam was initially loaded until buckling occurred, and 

lateral deflections were increased into the post-buckling range; then the load was 

removed, and each beam was reloaded until buckling occurred a second time.  The results 

of the secondary tests are summarized in Table 5.5. 

 

Table 5.5 – Results of secondary loading of beam specimens 

Residual Imperfections 
Residual + Initial 

Imperfections 

Beam ID Sweep 
Top, 
in. 

(mm) 

Sweep 
Bottom, 

in. 
(mm) 

Rotation 
(radians) 

Sweep 
Top, 
in. 

(mm) 

Sweep 
Bottom, 

in. 
(mm) 

Rotation 
(radians) 

Ec, 
ksi 

(GPa) 

Pbuckle, 
kips 
(kN) 

40B1A ** ** NA ** ** ** 
4713 
(32.5) 

29.45 
(130.9) 

40B1B 
1.861 
(47.3) 

1.550 
(39.4) 

0.00778 
2.174 
(55.2) 

1.925 
(48.9) 

0.00623 
4713 
(32.5) 

29.42 
(130.8) 

* 40B2A 
#2 

0.938 
(23.8) 

0.750 
(19.1) 

0.00469 
2.438 
(61.9) 

1.810 
(46.0) 

0.01569 
4713 
(32.5) 

28.62 
(127.3) 

* 40B2A 
#3 

1.125 
(28.6) 

0.810 
(20.6) 

0.00789 
2.625 
(66.7) 

1.870 
(47.5) 

0.01888 
4188 
(28.9) 

25.00 
(111.2) 

40B2B 
1.407 
(35.7) 

1.122 
(28.5) 

0.00713 
1.891 
(48.0) 

1.669 
(42.4) 

0.00555 
4188 
(28.9) 

29.62 
(131.7) 

40C2A 
1.460 
(37.1) 

1.202 
(30.5) 

0.00645 
1.663 
(42.2) 

1.515 
(38.5) 

0.00370 
5156 
(35.5) 

27.23 
(120.0) 

40C2B 
1.618 
(41.1) 

1.364 
(34.6) 

0.00635 
1.721 
(43.7) 

1.520 
(38.6) 

0.00503 
5156 
(35.5) 

35.49 
(157.7) 

 

  

From Table 5.5, the most obvious trend was that the buckling load of the second 

loading was always less than the buckling load of the secondary loading.  The initial 

imperfections due to the residual deformations from the first loading did not appear to 
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have a trend with respect to the buckling load of the secondary loading.  For instance, the 

buckling load of Beam C2B was 30% larger than the buckling load of Beam C2A, 

although the initial sweep and rotation for the secondary loading was larger for beam 

C2B.  More observations of the secondary loading behavior were made by investigating a 

plot of the load versus lateral displacement at the top of the beam.  As an example, Figure 

5.77 shows the lateral displacements for Beams C2A and C2B. 

 

0

5

10

15

20

25

30

35

40

45

0 1 2 3 4 5 6 7
Lateral Deflection (in.)

L
o
ad

 (
ki

p
s)

 .

C2A

C2B

 

Figure 5.77 – Load vs. top lateral displacement for Beams C2A and C2B 

 

 Figure 5.77 shows graphically that the residual deflection after the first loading 

was larger for Beam C2B.  This was attributed to the fact that Beam C2B had a larger 
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maximum displacement during the first loading, and probably was in a more damaged at 

the end of the first loading than was Beam C2A.  In both cases, the secondary loading 

load-displacement curve was shallower than the load-displacement curve of the first 

loading.  During the secondary loading for all of the test beams, a trend was noticed.  

When the secondary loading reached the post-buckling path of the first loading, the load-

deflection curve would continue along what was inferred as the post-buckling path of the 

first loading if the beam was displaced to that level during the first loading.  Furthermore, 

the displacement at buckling during the secondary loading for every test beam was 

greater than the largest displacement reached during the first loading. 
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CHAPTER 6 

ANALYTICAL DEVELOPMENT 

6.1 Analytical Development Objectives 

 The current analytical procedures to predict buckling loads of prestressed concrete 

beams were inadequate based on the comparisons between theoretical and experimental 

results presented in Chapter 5.  The objective of the analytical portion of this research 

was to develop a methodology that predicted load versus lateral displacement and load 

versus rotation behavior of a prestressed concrete beam subjected to lateral-torsional 

buckling.  Furthermore, it was desired to develop a simplified approach that predicted the 

lateral-torsional buckling load of a prestressed concrete beam that was less 

computationally rigorous and which could be used for design.   

The analysis that predicted the load versus deflection and load versus rotation 

plots was developed first.  The procedure involved a fiber model with a material and 

geometric nonlinear incremental analysis.  The nonlinear behavior was compared to the 

experimental results to validate the fiber model approach.  After validation was 

accomplished, the analysis was run for various imperfections for the different beams such 

that the accuracy of a proposed simplified equation was verified.  Lastly, the simplified 

technique was compared with available experimental results where the initial 

imperfections of the beams were published to determine the validity of the technique. 
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6.2 Nonlinear Analysis 

The nonlinear analysis program was developed by first creating a fiber model of 

the beam cross-sections to obtain a moment-curvature relationship.  The moment-

curvature relationship was used in the nonlinear analysis at each load increment to 

determine section and material properties.  The fiber model and nonlinear analysis are 

discussed in the following sections.  Additional information is provided in Appendix H. 

6.2.1 Fiber Model 

The fiber model was created for the experimental beam cross-sections with 320 

fibers in each segment, where each fiber was 1 in. (25.4 mm) in height by 0.5 in. (12.7 

mm) in width.  Each fiber was 0.5 in2 (323 mm2) in cross-sectional area.  Each individual 

fiber was composed of a value representing the area of concrete, the area of mild steel, 

and the area of prestressing steel.  The total area of the three components summed to 0.5 

in2 (323 mm2), the total area of fiber.  The procedure utilized was based on that 

performed by Liang (2008).  The assumptions of the fiber model were that plane sections 

remained plane after deformation, there was perfect bond between the concrete and steel 

reinforcing, strain hardening was not included in the steel material models, the influence 

of creep was not included and the concrete followed the assumed stress-strain 

relationship during strain reversals.  There was no hysteretic behavior considered during 

strain reversals within the applied concrete stress-strain model.  

The procedure began by cycling through a range of angles of rotation for the 

beam; at different load stages, the beam was oriented at different angles.  For each angle 

of orientation, the curvature was incremented to obtain the weak-axis and strong-axis 
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flexural moment at each curvature value.  However, to obtain the weak-axis and strong-

axis flexural moment at each curvature, several steps had to be taken. 

The first step was to assume a neutral axis angle, φ, (the axis of zero strain) and 

depth of the neutral axis.  From the assumed neutral axis angle, φ, and neutral axis depth, 

geometric relations were used to find the strain in each fiber.  The relations, which were 

similar to those used by Liang (2008) are shown in the following equations and the 

variables are depicted in Figure 6.1.  Note that the sign conventions for Equations 6.1 

through 6.4 assume compressive strains were positive and tensile strains were negative.  

At a certain angle of applied load, for a specific level of curvature and for the assumed 

angle of the neutral axis, φ, the strain in each fiber was determined from Equations 6.1 

through 6.4.   
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Figure 6.1 – Fiber geometric relations and strain distribution for biaxial flexure 

 

Knowing the fiber strains allowed for the use of material models to determine the 

stress in each fiber.  An elastic, perfectly plastic model was used for the nonprestressed 
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reinforcement.  The stress-strain curve for the prestressing strand was obtained using the 

curve provided by the manufacturer.  The initial stress in the prestressing strands was 

determined from the measured load in each strand during fabrication immediately before 

the strands were cut.  Then, estimates were made to take into account prestress losses due 

to elastic shortening, concrete shrinkage, steel relaxation and creep.  For the concrete of 

the rectangular prestressed beams, the stress-strain relationship presented by Thorenfeldt 

et al. (1987) for concrete strengths from 2.2 ksi (15 MPa) to 18.1 ksi (125 MPa) was 

used; however, strain values never reached levels in which the selection of the concrete 

constitutive model affected the results until post-buckling.   

Member forces were determined by summing the stress resultants in the beam by 

using the following equations from Liang (2008): 
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 In Equations 6.5 through 6.7, the subscript “s” referred to stresses and areas of 

steel fibers and the subscript “c” referred to stresses and areas of concrete fibers.  

Furthermore, “ns” means the number of steel fibers, and, similarly, “nc” means the 

number of concrete fibers. 
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 The calculated value of axial force “P”, based on the assumed neutral axis angle, 

φ, and neutral axis depth, dn, was compared with the applied axial load on the cross-

section; in this case, the applied axial load was the prestressing force.  If the calculated 

axial force was not equivalent to the applied axial load (within a set amount of error), the 

assumed value of the neutral axis depth had to be iterated until force equilibrium was 

met.  Once force equilibrium was met, moment equilibrium had to be met.  If the internal 

moment was not equivalent to the external moment, the neutral axis angle, φ, was iterated 

until the moment equilibrium was met.  Note that for each iteration of the neutral axis 

angle, φ, the depth of the neutral axis to fulfill force equilibrium had to be determined 

once again. 

 The nested loops tended to become computationally cumbersome, and, therefore, 

a more efficient method of iterating values was used to arrive at the correct values more 

quickly.  A secant algorithm similar to that used by Liang (2008) was utilized for the 

neutral axis depth and neutral axis angle, φ, and proved to be much more efficient.   

 Once force and moment equilibrium were met, and the proper values for the 

neutral axis angle, φ, and neutral axis depth were obtained, the fiber program would 

output the moment, maximum compression strain, the depth of the neutral axis, neutral 

axis angle, φ, and the average tangent modulus of the concrete fibers.  Essentially, the 

tangent modulus of elasticity was calculated for each concrete fiber and was averaged 

over the number of concrete fibers in compression.  All of the properties were used in the 

nonlinear analysis; therefore, the fiber analysis was used as a subroutine to the nonlinear 

analysis.   
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6.2.2 Nonlinear Analysis Program 

To perform the nonlinear analysis, the beam specimens were divided into eight 

segments, 47.1 in. (1.20 m) in length; however, symmetry was used so that the analysis 

was only performed on four segments.  The symmetry boundary conditions were to 

restrain rotation about the strong-axis and weak-axis at midspan.  At each node, the 

degrees of freedom applied within the member stiffness matrix were lateral translation (x-

direction), vertical translation (y-direction), strong-axis rotation (about x-axis), weak-axis 

rotation (about y-axis) and torsional rotation (about z-axis).  The axial displacement was 

neglected, and, therefore, catenary or membrane behavior was not captured by the 

analysis.  The initial rotation, θ0, and lateral displacement of each beam were applied as 

an assumed sine curve along the length of the beam.  Figure 6.2 shows the symmetric 

boundary conditions and the segment locations. 

 

Figure 6.2 – Symmetric boundary conditions (a) elevation view and (b) plan view 

The nonlinear analysis was performed by stepping the vertical load, P, at a small 

increment until large lateral displacements were achieved.  Note that at a vertical point 

load of zero, the self-weight moment was already applied to the cross-section to ensure 

that the analytical load versus displacement curves could be compared with the 
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experimental load versus displacement curves.  The load increment used was 0.10 kips 

(0.45 kN) and was determined to be a small enough load increment to provide sufficient 

accuracy.  The accuracy was determined by running the analysis for 0.25 kips (1.11 kN) 

and 0.10 kips (0.45 kN) increments and finding that the difference in maximum loads 

achieved was less than 1%.  In addition to the accuracy achieved from numerical 

experimentation in determining a sufficiently small load increment, it was assumed that 

the number of segments along the length was large enough to provide sufficient accuracy.  

For each load increment, the applied moment and initial rotation, θ0, of the beam 

was used as an input to the fiber subroutine to obtain the depth of the neutral axis, the 

angle of the neutral axis, φ, and the average tangent modulus of the compression zone for 

each segment along the length of the beam.  The depth of the neutral axis and angle of the 

neutral axis, φ, were used to calculate the moments of inertia based on the shape of the 

compression zone and the transformed area of the steel.  The torsion constant was 

calculated by using the approximate method for non-circular solid sections presented by 

Dooley (1979).  The method was basically a summation of a series of thin-walled hollow 

sections.  The approximate method had to be used because the torsion constant was based 

on the compression zone which was not rectangular, but instead was trapezoidal or 

triangular.  Longitudinal and transverse reinforcement were not considered in the 

expression for the torsion constant because Hsu (1984) determined through analytical and 

experimental study that the longitudinal and transverse reinforcement increased the 

torsional cracking moment but did not affect the torsionally uncracked torsional stiffness. 

For each load increment, the section and material properties were determined 

using the fiber subroutine for each segment along the length of the beam.  Then the 
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stiffness matrix was formed for each individual segment and was combined by 

eliminating restrained degrees of freedom to form the global stiffness matrix.  The 

incremental load vector was then formulated by applying the load increment to the 

appropriate degree of freedom and applying torsion to the beam which was determined 

by the increment of applied load on the deformed beam using the displacements and 

rotations along the length of the beam from the previous load increment.  The 

incremental displacement and rotation vector was then found by multiplying the inverse 

of the stiffness matrix and the incremental load vector as shown in Equation 6.8.  The 

inversion of the stiffness matrix was performed by an included subroutine “mldivide” in 

MATLAB® R2009a (2009).  For the specific case of a square stiffness matrix and a 

column load vector, the solution will be exact and the method of solution was based on 

Cholesky decomposition because the stiffness matrix was square, symmetric and had real 

positive diagonal elements.  The stiffness matrix was positive definite until unstable 

behavior occurred and computational errors arose within the analysis at which point the 

analysis was halted.        

 

 { } [ ] { }PKu 1−=  (6.8) 

 

Once the lateral displacement and rotation, θ, were determined for a load 

increment, the process was repeated for the next load increment.  Essentially, for every 

load increment, there was a different value of the rotation and applied moment; therefore, 

the fiber subroutine was used for every load increment for each segment along the length 

of the beam to determine the section properties for the specific load increment.  
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Furthermore, when the stresses became high enough, the average tangent modulus of 

elasticity of the compressed fibers was less than the initial modulus of elasticity, and, 

therefore, the modulus of elasticity used in the global stiffness matrix would change with 

each load increment and for each segment along the length of the beam.  The process can 

be best summarized in the flowchart shown below in Figure 6.2.  A more detailed 

flowchart and the associated subroutine flowcharts are presented in Appendix G. 
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Figure 6.3 – Nonlinear analysis flowchart 
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6.2.3 Nonlinear Analysis Results 

The nonlinear analysis was run for all of the beams except for B2A because that 

was the beam where the angle of the applied load was unknown.  For all of the other test 

beams, there was a 0.01222 radian (0.7 degrees) error in the applied vertical load; 

however, it was a known quantity that was taken into account in the analysis.   

6.2.3.1 Method to Account for Error in Load Angle 

The error in the load angle was taken into account in the nonlinear analysis by an 

additional term in the incremental load vector, {P}.  The incremental load vector of a 

beam loaded with a perfectly vertical load would have an applied load in the horizontal 

direction as the product of the applied vertical load and the sine of the rotation, θ, of the 

cross-section at midspan.  Because of the error in applied load angle, the component of 

horizontal load at midspan was a product of the applied vertical load and the sine of the 

summation of rotation, θ, and the error in applied load angle.  Similarly, additional 

torsion was applied to the cross-section due to the error in applied load angle.  The 

component of torsion due to the horizontal load acting about the shear center included the 

component of horizontal load due to the error in applied load angle.    

6.2.3.2 Nonlinear Analysis Results vs. Experimental Results 

The results of the nonlinear analyses are depicted in Figures 6.4 through 6.18 for 

Beams B1A, B1B, B2B, C2A and C2B.  For each of the beams, the load versus lateral 

displacement, load versus rotation and load versus vertical displacement are shown.  The 
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initial imperfections used in the analysis were those measured prior to each of the 

experiments. 
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Figure 6.4 – Load versus lateral displacement for Beam B1A 
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Figure 6.5 – Load versus rotation for Beam B1A 
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Figure 6.6 – Load versus vertical displacement for Beam B1A 
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Figure 6.7 – Load versus lateral displacement for Beam B1B 
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Figure 6.8 – Load versus rotation for Beam B1B 
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Figure 6.9 – Load versus vertical displacement for Beam B1B 
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Figure 6.10 – Load versus lateral displacement for Beam B2B 
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Figure 6.11 – Load versus rotation for Beam B2B 
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Figure 6.12 – Load versus vertical displacement for Beam B2B 
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Figure 6.13 – Load versus lateral displacement for Beam C2A 
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Figure 6.14 – Load versus rotation for Beam C2A 
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Figure 6.15 – Load versus vertical displacement for Beam C2A 
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Figure 6.16 – Load versus lateral displacement for Beam C2B 
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Figure 6.17 – Load versus rotation for Beam C2B 
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Figure 6.18 – Load versus vertical displacement for Beam C2B 
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It was apparent from Figures 6.4 through 6.18 that the nonlinear analysis matched 

the experimental load versus horizontal displacement, load versus rotation curves, and 

load versus vertical displacement well with little deviation.  The nonlinear analysis 

sufficiently predicted the leveling of the experimental load versus lateral displacement 

and load versus rotation curves when the beams became unstable and continued to 

deform with no additional load.  The nonlinear analysis was able to successfully predict 

the nonlinear behavior of the vertical displacements when the beams became unstable.  

The nonlinear behavior shown in the experimental curves for the vertical displacement 

was due to the large rotations causing the lateral displacement about the local axes of the 

beam becoming a significant component of displacement in the global vertical direction.  

Furthermore, the nonlinear analysis predicted the maximum load well.  The differences in 

predicted maximum load can be attributed to error in measuring the initial imperfections 

and the possibility of “settlement” in components of the test set-up, such as the end 

supports, once loading began.  The possibility of error in measuring the initial 

imperfections was a strong possibility because the nonlinear analysis results varied 

significantly with varying initial imperfections with all other parameters equivalent.   

The nonlinear analysis never “softened” like the experimental results because the 

nonlinear analysis was a load-controlled analysis.  Using the fiber model to determine 

stiffness properties as inputs into a matrix analysis based approach does not allow for a 

displacement controlled analysis unless the system was assumed to be one degree of 

freedom system.  The fiber model required knowing the moment at the cross-section in 

question to determine moment equilibrium of the section.  To obtain the descending, 

softening portion of the curve, an incremental approach with a predictor-corrector 
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algorithm such as the arc length method (Riks, 1979; Crisfield, 1981; Clarke and 

Hancock, 1990; Lam and Morley, 1992; Hellweg and Crisfield, 1998) would have had to 

be used.  An arc length approach was successfully employed for concrete cracking by 

Foster (1992); however, the use of finite was necessary to perform the analysis.  The use 

of nonlinear finite analysis was outside the scope of this research and should be 

performed in future research on the subject.   

 Because the nonlinear analysis did not predict the descending portion of the load 

versus lateral displacement, in all plots and tables the nonlinear analysis buckling load 

was the maximum load at which the analysis became computationally unstable.  At a 

certain load increment, the stiffness quantities in the global stiffness matrix created a 

global stiffness matrix that was approaching singularity.  A comparison of the maximum 

load from the nonlinear analysis and from the experiments is given in Table 6.1. 
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Table 6.1 – Comparison of nonlinear analysis results to experimental results 

Beam ID 
Experimental 

Pbuckle, 
kips (kN) 

Nonlinear Analysis 
Pbuckle, 

kips (kN) 
% Difference 

B1A 
36.87 

(163.9) 
36.2 
(161) 

1.82 

B1B 
33.92 

(150.8) 
33.4 
(149) 

1.53 

B2B 
35.26 

(156.8) 
34.8 
(155) 

1.30 

C2A 
33.68 

(149.7) 
33.8 
(150) 

-0.36 

C2B 
39.55 

(175.8) 
40.2 
(179) 

1.64 

  

Additional comparisons between the experimental results and the nonlinear 

analysis results were made to further validate the nonlinear analysis.  From the 

experiments, the compression zone depths on both surfaces of the beams were 

determined from the strain measurements on the surfaces.  The nonlinear analysis 

program output the compression zone depths on both sides of the beam so that a 

comparison with the experimental compression zone depths could be made.  The results 

from the comparison are shown in Table 6.2. 
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Table 6.2 – Comparison of experimental and analytical compression zone depths 

Experimental 
Compression Zone Depth, in. 

(mm) 

Analytical 
Compression Zone Depth, in. 

(mm) Beam ID 
Load, 
kips 
(kN) Convex 

Side 
Concave 

Side 
Center 

Convex 
Side 

Concave 
Side 

Center 

10  
(44.5) 

17.0 
(432) 

26.4 
(671) 

21.7 
(551) 

16.0 
(406) 

24.1 
(612) 

20.1 
(511) 

20 
(89.0) 

11.8 
(300) 

18.9 
(480) 

13.9 
(353) 

7.04 
(179) 

24.2 
(615) 

15.6 
(396) B

1A
 

30 
(133.3) 

8.88 
(226) 

19.0 
(483) 

14.2 
(361) 

3.58 
(90.9) 

25.0 
(635) 

14.3 
(363) 

10  
(44.5) 

14.2 
(361) 

26.4 
(671) 

22.7 
(577) 

12.7 
(323) 

26.3 
(668) 

19.5 
(495) 

20 
(89.0) 

6.17 
(157) 

20.5 
(521) 

13.3 
(338) 

5.56 
(141) 

25.3 
(643) 

15.4 
(391) B

1B
 

30 
(133.3) 

2.23 
(56.6) 

19.9 
(505) 

11.1 
(282) 

0.00 
(0.00) 

27.4 
(696) 

13.7 
(348) 

10  
(44.5) 

22.3 
(566) 

40.0 
(1020) 

31.3 
(795) 

22.7 
(577) 

33.0 
(838) 

27.9 
(709) 

20 
(89.0) 

8.29 
(211) 

27.4 
(696) 

17.9 
(455) 

8.39 
(213) 

29.2 
(742) 

18.8 
(478) B

2B
 

30 
(133.3) 

5.35 
(136) 

24.1 
(612) 

14.7 
(373) 

4.26 
(108) 

28.6 
(726) 

16.5 
(419) 

10  
(44.5) 

15.4 
(391) 

30.1 
(765) 

22.8 
(579) 

11.0 
(279) 

29.6 
(752) 

20.3 
(516) 

20 
(89.0) 

8.18 
(208) 

25.6 
(650) 

16.9 
(429) 

5.49 
(139) 

27.2 
(691) 

16.4 
(417) C

2A
 

30 
(133.3) 

3.70 
(94.0) 

23.7 
(602) 

13.7 
(348) 

0.00 
(0.00) 

30.2 
(767) 

13.8 
(351) 

10  
(44.5) 

16.9 
(429) 

30.2 
(767) 

23.6 
(599) 

13.5 
(343) 

27.7 
(704) 

20.6 
(523) 

20 
(89.0) 

7.79 
(198) 

23.6 
(599) 

15.7 
(399) 

8.72 
(221) 

24.8 
(630) 

16.8 
(427) C

2B
 

30 
(133.3) 

6.63 
(168) 

23.9 
(607) 

15.3 
(389) 

5.27 
(134) 

25.1 
(638) 

15.2 
(386) 
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Table 6.2 shows reasonable correlation between the compression zone depth at 

the center of the cross-section for the experimental results and the analytical results.  For 

some specific load levels and beam cases the experimental results and analytical results 

for the compression zone depths on the surfaces of the beams matched well; however, 

there were many cases where there were apparent differences.  The general trend with 

respect to the compression zone depths on the surfaces of the beams was similar between 

the experimental and analytical cases, and the results showed better correlation at the load 

level of 20 kips (89.0 kN) than at the other load levels presented.  There were some 

reasons for the discrepancies between the experimental and analytical results.  The 

predicted initial strain due to prestressing and self-weight was added to the experimental 

results so that the experimental and analytical results could be compared accurately.  At 

higher load levels a direct superposition may not be accurate.  Also, the sensitivity of the 

compression zone depth on the surfaces of the beam was very high at low loads, below 

10 kips (44.8 kN) and when the applied load approached the buckling load.  The high 

sensitivity is apparent in a plot of the analytical results for the surface compression zone 

depth shown in Figure 6.19. 
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Figure 6.19 – Nonlinear analysis compression zone depth for Beam B1B 

 

From Figure 6.19, the rate of change of the compression zone on each side of the 

beam was high at low load levels and at high load levels as the load approached the 

buckling load.  This trend was apparent in all the beam cases.  Because of the trend, 

comparisons of the compression zone depth from the experimental results and the 

analytical results were more accurate in the middle of the applied load range where the 

rate of change of the compression zone depth was smaller.  Because the compression 

zone depth at the center of the cross-section showed good correlation between the 

experimental and analytical results, the discrepancies potentially originated from 

differences between the analytical and experimental results for the neutral axis angle, φ.   

Plots of the neutral axis angle, φ, as a function of applied load for each rectangular beam 
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are shown in Figures 6.20 to 6.24 for the experimental data and the nonlinear analysis 

data.     

   

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 5 10 15 20 25 30 35 40

Applied Load (kips)  

N
e
u
tra

l A
xi

s 
A

n
g
le

 (
ra

d
ia

n
s)

  
  
  
.

Nonlinear Analysis

Experimental

 

Figure 6.20 – B1A neutral axis angle for experimental data and nonlinear analysis 
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Figure 6.21 – B1B neutral axis angle for experimental data and nonlinear analysis  
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Figure 6.22 – B2B neutral axis angle for experimental data and nonlinear analysis 
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Figure 6.23 – C2A neutral axis angle for experimental data and nonlinear analysis 
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Figure 6.24 – C2B neutral axis angle for experimental data and nonlinear analysis  
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 Figures 6.20 through 6.24 show good correlation between the analytical and 

experimental results with respect to the behavior of the neutral axis angle, φ, as a function 

of the applied load, but in most cases, there was an appreciable amount of error between 

the experimental and analytical results for the neutral axis angle, φ.  The error was in the 

range of 5% to 30% during the applied loading after the cross-section had cracked at 

midspan in flexure.  There were three potential causes of the differences between the 

analytical and experimental results.  First, the experimental neutral axis angle, φ, was 

calculated using the experimental data and the assumed initial strain values due to the 

prestressing force and self-weight of the beam; however, there was no compensation 

made for the initial rotation, θ0, causing a component of self-weight moment acting about 

the weak-axis of the beams.  Secondly, the location of the additional longitudinal #3 

reinforcing bars that spanned continuously along the length of the beam affected the 

neutral axis angle, φ, predicted in the nonlinear analysis.  If the #3 reinforcing bars were 

located further from mid-thickness of the cross-section than specified in the design 

drawings, the neutral axis angle, φ, predicted in the nonlinear analysis would be reduced.  

Lastly, the nominal gage length of the LVDT’s was 10-in. (254 mm), and for such a 

small gage length, flexural cracking did not necessarily cross the LVDT’s.  If cracking 

did not intersect the LVDT gage length, the measurements of strain would be smaller and 

incur an experimental error.   

6.2.3.3 Nonlinear Analysis Results for Theoretical Cases 

The nonlinear analysis was extrapolated to various initial imperfection cases for 

both beam series B1 and C2.  Performing the nonlinear analysis for several different 

initial imperfection conditions made the lateral-torsional buckling behavior with respect 
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to initial sweep and initial rotation, θ0, more apparent by uncoupling the two types of 

initial imperfection.  Uncoupling the behaviors of initial sweep and initial rotation, θ0, 

was achieved by performing the nonlinear analysis for a series of initial rotation, θ0, 

values with a constant initial sweep and by performing the nonlinear analysis for a series 

of initial sweep values with a constant initial rotation.  For the both beam series’, the load 

versus deflection for the case of an initial sweep of ¼ in. (6.35 mm) is shown in Figure 

6.25 for series B1 and Figure 6.26 for series C2 for several initial rotation angles.  

Additionally in Figures 6.25 and 6.26, the case of near zero imperfections both with 

respect to initial sweep and rotations was included. 
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Figure 6.25 – Nonlinear analysis load vs. lateral displacement for Beam Series B1 with ¼ 
in. (6.35 mm) initial sweep and various initial rotations, θ0 
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Figure 6.26 – Nonlinear analysis load vs. lateral displacement for Beam Series C2 with ¼ 
in. (6.35 mm) initial sweep 

 

 

From Figures 6.25 and 6.26, it was apparent that the lateral deflection behavior 

was not a linear function between the initial rotation, θ0, and the reduction in maximum 

load.  Similarly, the rotation was held at a constant value of 0.001563 radians and the 

load versus lateral displacement results for several values of initial sweep at the top were 

obtained for series B1 and series C2.  The plots of the results are shown in Figures 6.27 

and 6.28. 
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Figure 6.27 – Nonlinear analysis load vs. lateral displacement for Beam Series B1 with 
0.001563 radians initial rotation for several initial sweep displacements, u 

 

0

10

20

30

40

50

60

70

80

90

0 0.5 1 1.5 2 2.5 3 3.5 4
Lateral Displacement (in)

A
pp

lie
d 

L
oa

d
 (
ki

ps
) 

 .

Near Zero Imperfection
u = 0.125 in.
u = 0.25 in.
u = 0.50 in.
u = 1.00 in.
u = 2.00 in.

 

Figure 6.28 – Nonlinear analysis load vs. lateral displacement for Beam Series C2 with 
0.001563 radians initial rotation for several initial sweep displacements, u 
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 The analysis shows that the lateral displacement and rotation of the cross-section 

can continue to increase indefinitely which is not the case.  Figures 6.27 and 6.28 depict 

the effect the initial sweep has on the lateral displacement behavior of the beams.  

However, for the beams to achieve the displacements required for the beam to support the 

maximum load, the beams must not crack in torsion.  When the beams crack in torsion, 

the torsion constant used in the analysis would no longer be accurate, and a torsion 

constant for a torsionally cracked prestressed beam should be used.  However, torsion 

constant expressions for a torsionally cracked beam are substantially less than the 

calculated torsion constant based on a rectangular compression zone; therefore, the beam 

would no longer remain stable.  Therefore, when torsional cracking occurs at the ends of 

the beams, the descending portion of the load versus lateral displacement curve would 

initiate.  With respect to the effect steel reinforcing had on the torsion behavior, Hsu 

(1984) established via experimental results that both transverse and longitudinal steel 

reinforcement act to increase the cracking torque of the cross-section but do not influence 

the uncracked torsional stiffness of the cross-section. 

6.2.4 Torsional Cracking Behavior 

 The torsional cracking behavior was investigated by determining the point on the 

load versus lateral displacement curve where the torsion on the cross-section had reached 

the cracking torque.  The cracking torque expression used in the analysis was the 

cracking torque expression from ACI 318-05 as presented in Equation 6.17. 
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Each of the load versus lateral displacement plots for the experimental beams (except 

B2A) are presented in Figure 6.29 to 6.33.  The plots include the experimental and 

analytical data as well as the point on the analytical load versus lateral displacement 

curve at which the cracking torque was exceeded. 
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Figure 6.29 – Load vs. lateral displacement with cracking torque threshold for B1A 



 257 

0

5

10

15

20

25

30

35

40

45

-1 0 1 2 3 4 5 6 7

Lateral Displacement (in.)

A
p
p
lie

d
 L

o
a
d
 (

ki
p
s)

  .

P-Delta

Experimental

Torsional Cracking

 

Figure 6.30 – Load vs. lateral displacement with cracking torque threshold for B1B  
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Figure 6.31 – Load vs. lateral displacement with cracking torque threshold for B2B  



 258 

0

5

10

15

20

25

30

35

40

45

0 1 2 3 4 5 6 7

Lateral Displacement (in.)

A
p
p
lie

d
 L

o
ad

 (
ki

p
s)

  
.

P-Delta

Experimental

Torsional Cracking

 

Figure 6.32 – Load vs. lateral displacement with cracking torque threshold for C2A  
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Figure 6.33 – Load vs. lateral displacement with cracking torque threshold for C2B  
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 From Figures 6.29 to 6.33, the line designating the threshold for a torsionally 

uncracked cross-section coincided very well with the maximum experimental load, or the 

point at which the descending portion of the experimental load versus lateral 

displacement curve began.  After large displacements occurred, torsional cracking was 

apparent at the ends of the beams during the experiments.  However, cracking was not 

investigated immediately before buckling so it was not known whether torsional cracking 

occurred and then buckling happened as a result or if large post-buckling displacements 

occurred which led to torsional cracking at the ends.  From the nonlinear analysis and 

predictions of the cracking torque for the cross-section, it was hypothesized that the 

torsional cracking occurred due to large post-buckling displacements.  The flexural and 

flexural-shear cracking was observed as predicted by the nonlinear analysis at load much 

less than the buckling loads (10 kips to 18 kips).       

6.3 Simplified Stability Analysis 

A simplified stability analysis was developed to predict the buckling load that 

included the effects of the initial sweep and rotation imperfections.  The simplified 

analysis was based on the approach by Hansell and Winter (1959) and by Sant and 

Bletzacker (1961).  The secant modulus of elasticity of the extreme compression fiber of 

the beam was used for the concrete modulus of elasticity.  The weak-axis moment of 

inertia was based on the ratio of the applied moment to the cracking moment as shown by 

Equation 6.18.  The compression zone depth at midspan was used to calculate the weak-

axis moment of inertia along the length of the beam in which the strong-axis flexural 

cracking moment had been exceeded.  For the distance along the beam in which the 
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strong-axis flexural cracking moment had not been exceeded, the full height of the cross-

section was used to calculate the weak-axis moment of inertia. 
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Equation 6.18 was derived by considering that the weak-axis moment of inertia at 

midspan had more effect on the lateral displacement of the beam because the moment 

increased when approaching midspan.  Therefore, the area of the moment diagram in the 

cracked portion of the beam along the length and the area of the moment diagram in the 

uncracked portion of the moment diagram along the length of the beam were used to 

determine the effective moment of inertia.  Note that the derivation was based on the 

assumption of a concentrated load at midspan.  For a different loading condition, a 

similar methodology could be used based on a different moment diagram.  The ratio is 

shown in Equation 6.19, and when simplified, Equation 6.19 resulted in Equation 6.18. 

 

 

 

 



 261 

 

a

crycrack
a

crack
agycrack

a

crack

effy

M
L

IM
M

ML
M

L
IM

M

ML

I

2

222
















−+









=  (6.19) 

 

The longitudinal reinforcement was included in the calculation of weak-axis 

moment of inertia, although for the test beams of this study, there was a negligible effect 

on the weak-axis moment of inertia due to the proximity of the reinforcement to the 

weak-axis centroidal axis.  In the analysis of the flange cross-sections from König and 

Pauli (1990), the longitudinal reinforcement contributed a non-negligible amount because 

the reinforcement in the flanges was at a significant distance, 1.28-in. to 5.31-in. (32.5 

mm to 135 mm), from the weak axis.  For cases where the analysis was performed on 

cross-sections that were at strain levels greater than the yield strain of the reinforcement, 

the effect of the reinforcement on the weak-axis moment of inertia should be neglected 

similarly to the methodology of Revathi and Menon (2006), because when the 

longitudinal steel yields, there will be minimal stiffness provided by the reinforcement.   

An effective torsion constant considering flexural cracked and uncracked sections 

was developed as presented in Equations 6.20 and 6.21.  The method employed in 

developing the effective torsion constant was similar to that of the effective weak-axis 

moment of inertia.  Instead though, the largest torque was at the ends of the beam, and, 

therefore, the uncracked cross-section had more of an effect on the torsional stiffness of 

the beam than the cracked cross-section.  A parabolic lateral displacement state was 

assumed, and, therefore, the torsion diagram was also parabolic.  The assumed torsion 

diagram was integrated over half of the length of the beam to find that the area of the 
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torsion diagram for half of the beam was L/6.  Furthermore, the assumed torsion diagram 

was integrated from the end support to the point in which the strong-axis flexural 

cracking moment was exceeded resulting in the following ratio for the effective torsion 

constant: 
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=  (6.20) 

Equation 6.20 can then be simplified to: 
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The technique used by the author to determine the buckling load was to assume a 

strain value for the extreme fiber of the compression zone and solve for the compression 

zone depth that resulted in force equilibrium within the cross-section.  For rectangular 

beams, a good initial estimate for the compression zone depth was one third of the height 

of the cross-section.  Then, the value for the compression zone depth based on an 

assumed extreme compression fiber strain was used to calculate the internal moment in 
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the cross-section.  The cracked section properties and secant modulus of elasticity were 

calculated, and, therefore, the buckling moment was able to be calculated for the assumed 

extreme compression fiber strain.  The secant modulus was used because it best 

represents the “effective” modulus that would be determined from the average tangent 

modulus in the nonlinear analysis.  Then, the internal moment in the cross-section was 

compared to the buckling moment, and the assumed value of the extreme compression 

fiber strain was iterated until the internal moment and the buckling moment were 

equivalent, arriving at the buckling moment for the cross-section.  The value for the 

buckling moment was for the case of the perfect beam.  Three parameters were 

introduced to reduce the buckling load based on the initial sweep and initial rotation, θ0, 

of the beam.  The three parameters were a weak-axis flexural stiffness reduction 

parameter, Br, an initial sweep buckling load reduction parameter, ∆r, and an initial 

rotation buckling load reduction parameter, Θr 

6.3.1 Weak-Axis Flexural Stiffness Reduction Parameter, Br 

The weak-axis flexural stiffness was reduced to compensate for the effect of the 

compression zone not being in the shape of a rectangle, but instead, an initially imperfect 

beam has a rotated neutral axis.  The reduction to the weak-axis flexural stiffness was 

calculated by using Equation 6.22. 
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In Equation 6.22, the 1/3 coefficient resulted from the worst case for the weak-

axis moment of inertia with respect to the compression zone shape without reducing the 

web thickness in the calculation of the weak-axis moment of inertia; this reduction 

created essentially a triangular compression zone.  The assumption of a triangular 

compression zone was based upon the realization that a neutral axis angle, φ, coinciding 

with the weak-axis would actually be the worst case; however, the reduction would then 

be a function of the width of the cross-section and the compression zone depth.   

 The ratio of the triangular compression zone weak-axis moment of inertia to the 

rectangular compression zone weak-axis moment of inertia was 2/3; therefore, the weak-

axis moment of inertia in the weak-axis flexural stiffness term was reduced by 1/3 in the 

worst case scenario.  Because the reduction was based on a worst case scenario, the 

actual reduction was a function of the true neutral axis angle.  For example, in the case of 

zero initial rotation, the neutral axis angle, φ, would be zero; therefore, the compression 

zone would be rectangular until post-buckling and no reduction in weak-axis flexural 

stiffness was necessary.  So the reduction in weak-axis moment of inertia should be a 

function of the ratio of the actual neutral axis angle, φ, to the limiting neutral axis angle, 

φlimit, resulting in the triangular compression zone as shown in Equation 6.23. 
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 The limiting neutral axis angle, φangle, was a function of the cross-section as 

shown by Equation 6.24. 
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The limiting neutral axis angle, φangle, was approximated as π/2 for two reasons.  

The first reason was that as the slenderness of a cross-section increased, the limiting 

neutral axis angle, φlimit, approached π/2.  For example, in the case of the rectangular test 

beams, the limiting neutral axis angle, φlimit, was 1.471 radians.  Secondly, it was an 

assumption that the worst case was a triangular compression zone; the actual worst case 

was if the neutral axis was at π/2.  The limiting neutral angle was substituted into 

Equation 6.23 to arrive at: 
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 To determine the actual neutral axis angle, φ, which was substituted in Equation 

6.25, the assumption that the material was elastic and homogeneous was employed.  

Therefore, the equation for the neutral axis angle, φ, given by Beer et al. (2001) was: 
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 Equation 6.26 was further simplified by the assumption that the tangent of the 

initial rotation, θ0, of the cross-section was equal to the initial rotation angle, θ0.  The 

assumption was validated by investigating Figure 6.35. 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8 1 1.2 1.4
Theta (radians)

θ

tan(θ)

 

Figure 6.34 – Comparison of tangent of rotation angle to rotation 

  

From Figure 6.34, it was apparent that for small initial rotation angles the 

simplification was accurate.  For the approximation to remain below 1% error from the 

actual response, the initial rotation angle, θ0, must be less than 0.173 radians or 

approximately 10 degrees.  In most practical situations, a structural member should not 

have an initial rotation error exceeding 3 degrees; therefore the approximation was valid 

and Equation 6.27 can be used instead of Equation 6.26. 
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 Substituting Equation 6.27 into Equation 6.25 resulted in the weak-axis flexural 

stiffness reduction parameter in Equation 6.22.  Additionally, for small initial rotation 

angles and depending on the specifics of the cross-section, the reduction parameter of 

Equation 6.22 can be further simplified to Equation 6.28 by removing the inverse tangent 

from the equation. 
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The response of the reduction parameter of Equation 6.22 and the simplified 

reduction parameter of Equation 6.28 as a function of the initial rotation angle, θ0, for 

different ranges of strong-axis to weak-axis moments of inertia is shown in Figure 6.35.  

The moments of inertia used in the analysis were the gross moments of inertia because 

the actual moments of inertia vary along the length of the beams.  Furthermore, the 

difference between the ratio of strong-axis to weak-axis moment of inertia for the gross 

section and fully cracked section at midspan was typically less than 0.1% with respect to 

the resulting predicted buckling loads for the rectangular cross-sections.  Strong-axis 
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moment of inertia to weak-axis moment of inertia ratios on the order of 100 are 

representative of slender rectangular cross-sections (the 4x40 in. sections used had and 

Ix/Iy ratio of 115), and strong-axis moment of inertia to weak-axis moment of inertia 

ratios on the order of 10 are representative of flanged cross-sections (a BT-54 has and 

Ix/Iy = 8.75).   

0

0.2

0.4

0.6

0.8

1

1.2

0 0.05 0.1 0.15 0.2
Initial Rotation (radians)

Eq. 6.22 (Ix/Iy = 100)

Eq. 6.28 (Ix/Iy = 100)

Eq. 6.22 (Ix/Iy = 10)

Eq. 6.28 (Ix/Iy = 10)

R
e
d
u
ct

io
n
 to

 W
e
ak

-A
xi

s 
F

le
xu

ra
l S

tif
fn

e
ss

  
  
  
  
.

 

Figure 6.35 – Comparison of reduction parameter and simplified reduction parameter 

 

Figure 6.35 shows that for small initial rotations less than 0.01 radians, the weak-

axis flexural stiffness reduction parameter and the simplified reduction parameter 

produced very similar results.  Furthermore, for smaller ratios of strong-axis to weak-axis 

moment of inertia, the simplified reduction parameter was accurate at initial rotations up 
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to 0.06 radians.  However, due to the limited computational benefit of the simplified 

expression of Equation 6.28, Equation 6.22 is recommended.   

The effect that the reduction parameter Br of Equation 6.22 had on the buckling 

moment for varying strong-axis to weak-axis moment of inertia ratios is shown in Figure 

6.36.  Note that the reduction to the buckling load due to the weak-axis flexural stiffness 

reduction parameter, Br, asymptotes to a reduction of 18.3% because that corresponds to 

the largest reduction possible due to a reduced weak-axis moment of inertia from the 

rotation of the neutral axis, φ.  
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Figure 6.36 – Effect of reduction parameter Br on buckling load 
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 Figure 6.36 shows that the reduction parameter Br corresponds qualitatively to 

what intuitively would occur.  For slender rectangular beams (Ix/Iy = 100) the reduction to 

the buckling load was substantially more than for an AASHTO bridge girder (Ix/Iy = 6-

10) or a PCI BT bridge girder (Ix/Iy = 7-15).  The reason was that a specific rotation angle 

had more of an effect on the neutral axis angle, φ, for a slender rectangular beam than on 

a flanged girder.   

 The 1/3 coefficient within Equation 6.22 was determined by considering a 

rectangular cross-section, but how accurate was the coefficient for a cross-section with 

flanges?  The coefficient for flange cross-sections was a function of the specific geometry 

and the range of the neutral axis angle, φ.  Essentially, if the neutral axis angle, φ, was 

small enough that the neutral axis did not cut through the flange and reduce the flange 

width, then the 1/3 coefficient over-predicted the reduction, or was conservative.  

However, for relatively large neutral axis angles, the reduction to the weak-axis moment 

of inertia was significant and the 1/3 coefficient under-predicted the reduction because 

the neutral axis would then cut through the flange and reduce the flange width.  The 

specific range of neutral axis angle, φ, in which the coefficient transitions between 

conservative and unconservative depends on the specific geometry of the flange cross-

section.  The transition would occur at a neutral axis angle, φ, approximated by Equation 

6.29.   
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The initial rotation angles, θ0, for practical conditions are relatively small.  The 

tolerance for the flatness of the support from the PCI Bridge Design Manual (2003) is 

1/16” (1.6 mm) which results in a maximum initial rotation, θ0, of 0.0035 radians for an 

18” (460 mm) wide bearing pad.  The PCI Bridge Design Manual (2003) also limits the 

sweep of a girder to 1/8 in. (3.2 mm) per 10-ft. (3 m) of girder length which results in a 

maximum rotation of 0.026 radians for a 150-ft. (45.7 m) long girder that is 72-in. (1.8 

m) in depth.   To the author’s knowledge, no other tolerances have been specified in 

accepted design guides or construction manuals that affect the slope of the girder at 

midspan.  If the amount of rotation, θ, due to the compliance of the bearing pad is 

negligible, the neutral axis angle, φ, for typical AASHTO and PCI BT cross-sections 

would be on the order of 0.20 radians to 0.50 radians.  The neutral axis angle, φ, would 

have to exceed approximately 0.90 radians to 1.00 radians for the weak-axis flexural 

stiffness reduction parameter, Br, to become unconservative.  However, larger initial 

rotations can occur due to bearing pad compliance if there is a non-uniform bearing 

condition or if the girder is placed eccentrically on the bearing pad.  A maximum end 

rotation of 0.079 radians was measured after the collapse of the bridge girders in Arizona 

(Oesterle et al., 2007).  The approximate initial rotation, θ0, given by the summation of 

the reported maximum initial end rotation and the tolerance of initial rotation, θ0, along 

the length of the girder resulted in a neutral axis angle, φ, of approximately 1.00 radians 

for an AASHTO or PCI BT cross-section.  Therefore, if a large initial end rotation occurs 

due to a non-uniform bearing condition or an eccentric placement of the girder, the weak-

axis flexural stiffness reduction parameter, Br, can become unconservative. 
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6.3.2 Buckling Load Reduction for Initial Imperfections 

 The buckling load was reduced due to initial imperfections in addition to the 

effect of the initial rotation, θ0, on the neutral axis angle, φ.  Although small displacement 

theory for an elastic beam showed that initial imperfections affect the load versus lateral 

displacement and load versus rotation behavior, the same maximum load was achieved 

for any value of initial imperfection.  However, the inelastic behavior of a prestressed 

concrete beam did not necessarily attain the same maximum load independent of the 

initial imperfections.  Because varying initial imperfections varied the cracking behavior, 

the concrete nonlinear material properties, and the torsion constant, the buckling load was 

reduced to approximate the effects of the initial imperfections. 

Two terms were introduced: one reduction parameter for the effect of initial 

lateral displacement, ∆r, and one parameter for the effect of initial rotation Θr.  The 

reduction term for initial rotation, θ0, was chosen as an exponential function because the 

reduction of the buckling load for initial rotation, θ0, was asymptotic.  The terms were as 

follows: 

 

 
m

r L







−=∆ 01
δ

 (6.30) 

 

 0θn
r e−=Θ  (6.31) 

 

 



 273 

The reduction term for initial lateral displacement in Equation 6.30 was a function 

of the ratio of the initial lateral displacement to the span of the beam.  Such a ratio was 

used so that the term was unitless and because it was hypothesized that a constant 

quantity of initial lateral displacement should have a varying effect on the stability 

depending on the span of the beam.  The rotation term in Equation 6.31 was a function of 

only the initial rotation, θ0, so that the term was unitless and because the initial rotation, 

θ0, was already a ratio of the change in initial lateral displacement at the top and bottom 

of the beam over the height of the cross-section.  Furthermore, the ratios were reductions 

to behavior of an initially perfect beam; therefore, the ratio for initial lateral displacement 

was subtracted from unity to attain a simple multiplier.  The reason the reduction for 

initial lateral displacement was a power expression and the reduction for initial rotation, 

θ0, was an exponential expression was because the uncoupled behavior of the two types 

of initial imperfection most closely followed the specific type of equation specified.  

Figures 6.25 to 6.28 depict this behavior.   

The exponent variables in Equations 6.30 and 6.31, m and n, were determined by 

performing nonlinear analysis on nine B1 beams with varying initial imperfection 

combinations and on nine C2 beams with varying initial imperfections.  The results of the 

18 nonlinear analyses were compared with predictions from the simplified analysis.  By 

using a least-squares, best-fit methodology, the selection of the variables m and n ideally 

would have been m = 0.31 and n = 26.5 with an average residual of 1.33 and an average 

percent error of 1.67%.  Equations 6.32 and 6.33 show the final initial lateral 

displacement and initial rotation reduction parameters, respectively.  Table 6.3 shows the 

least squares methodology for the case of m = 0.31 and n = 26.5.   
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Table 6.3 – Least squares analysis on reduction parameters 

∆r Power = 0.31 θr Power = 26.5

Pbuckle (kips) u (in) Rotation (rad) Br ∆r θr Ppredict (kips) Si % error
86 0 0 1 1 1 86 0

74.2 0.25 0.001563 0.98341 0.896541 0.95943 72.74711977 2.110861 1.95806
68.8 0.25 0.003125 0.96733 0.896541 0.92052 68.65592916 0.020756 0.209405
61 0.25 0.00625 0.93886 0.896541 0.84736 61.33952549 0.115278 0.556599

41.3 0.25 0.02 0.87467 0.896541 0.5886 39.69531163 2.575025 3.885444
S (C2) = 4.82192

Pbuckle (kips) u (in) Rotation (rad) Br ∆r θr Ppredict (kips) Si % error
76.2 0 0 1 1 1 76.2 0
63.5 0.25 0.001563 0.98341 0.896541 0.95943 64.4573317 0.916484 1.507609
58.6 0.25 0.003125 0.96733 0.896541 0.92052 60.83234654 4.983371 3.809465
52.7 0.25 0.00625 0.93886 0.896541 0.84736 54.34967259 2.72142 3.130309
34.3 0.25 0.02 0.87467 0.896541 0.5886 35.1718924 0.760196 2.54196

S (B1) = 9.381471

Pbuckle (kips) u (in) Rotation (rad) Br ∆r θr Ppredict (kips) Si % error
86 0 0 1 1 1 86 0

75.6 0.125 0.001563 0.98341 0.916546 0.95943 74.37033166 1.512084 1.626545
74.2 0.25 0.001563 0.98341 0.896541 0.95943 72.74711977 2.110861 1.95806
72.1 0.5 0.001563 0.98341 0.871741 0.95943 70.73481149 1.86374 1.893465
68.7 1 0.001563 0.98341 0.840997 0.95943 68.24013742 0.211474 0.669378

S (C2) = 5.698158

Pbuckle (kips) u (in) Rotation (rad) Br ∆r θr Ppredict (kips) Si % error
76.2 0 0 1 1 1 76.2 0
66.3 0.125 0.001563 0.98341 0.916546 0.95943 65.89557293 0.163561 0.609996
63.5 0.25 0.001563 0.98341 0.896541 0.95943 64.4573317 0.916484 1.507609
62.6 0.5 0.001563 0.98341 0.871741 0.95943 62.67433297 0.005525 0.118743
60 1 0.001563 0.98341 0.840997 0.95943 60.46393571 0.215236 0.773226

S (C2) = 1.300807
Stotal = 21.20236

Mean = 1.325147 1.672242

Beam B1 Constant Rotation

Parameters

Beam C2 Constant Displacement

Beam B1 Constant Displacement

Beam C2 Constant Rotation
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 The reduction parameters from Equations 6.22, 6.32 and 6.33 were developed and 

calibrated for a specific range of initial sweep and initial rotation, and, therefore, if these 

maximums are exceeded, the reduction parameters are not necessarily accurate due to a 

lack of verification.  The limit on the maximum initial sweep is 5/16-in. (7.94 mm) per 

10-ft. (3.05 m) of span, which is 150% larger than the PCI tolerance (PCI, 2000).  The 

limit on the maximum initial rotation is θi/h < 0.8.  The total critical buckling moment 

equation for prestressed concrete beam considering initial imperfections is:  
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 (6.34) 

 

In Equation 6.34, the parameter “Α” was the parameter that takes into consideration the 

effect of load height on the buckling moment given in Equation 6.35 where ā is the load 

height above the shear center. 
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6.3.3 Simplified Equation vs. Experimental Results 

Because the experimental results from this study include an effect of the error in 

the load application angle, the error in load application angle was included as part of the 

initial rotation, θ0, of the beam in the simplified equation.  Furthermore, because the 

initial sweep of some of the beams was in the negative direction, which created a 
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stabilizing effect, the initial sweeps that were negative were input into the simplified 

equation as zero value.  The results of the comparison are shown in Table 6.4. 

 

Table 6.4 – Comparison between the experimental results and the simplified equation 

Beam ID 
Initial Sweep, 

in. (mm) 

Initial 
Rotation, 
radians 

Experimental 
Buckling Load, 

kips (kN) 

Simplified 
Equation 

Buckling Load, 
kips (kN) 

Percent 
Difference 

B1A 
-0.406 
(-10.3) 

0 
36.87 

(163.9) 
37.5 
(167) 

-1.7 

B1B 
-0.360 
(-9.1) 

0.00078 
33.92 

(150.8) 
36.2 
(161) 

-6.7 

B2B 
-0.516 
(-13.1) 

0.00156 
34.69 

(154.2) 
32.1 
(143) 

7.5 

C2A 
0.313 
(7.9) 

0.00430 
33.68 

(149.7) 
32.8 
(146) 

-2.6 

C2B 
-0.188 
(-4.8) 

0.00078 
39.55 

(175.8) 
41.8 
(186) 

-5.7 

  

 

There was good correlation between the results from the experiments of this study 

and the predicted buckling loads using the simplified equation proposed in Equation 6.34.  

However, the simplified equation was developed to determine buckling loads for beams 

with a perfect vertical load such as gravity load.  Furthermore, the simplified equation 

was not developed to account for an initial lateral displacement in the opposite direction 

of buckling.  The predicted buckling load for Beam C2A using the simplified equation 

was the second lowest absolute percent error, and it was the only beam case that had the 

initial lateral displacement in the direction of buckling.  To further validate the procedure, 

the simplified equation was also compared with the experimental results from König and 
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Pauli (1990) and Kalkan (2009).  The comparisons are shown in Table 6.5 and 6.6, 

respectively. 

 

Table 6.5 - Comparison between the experimental results from König & Pauli (1990) and 
the simplified equation 

 

Konig & 
Pauli 

Beam # 

Initial 
Sweep, 

in. (mm) 

Initial 
Rotation, 
radians 

Experimental 
Buckling Load, 

kips (kN) 

Simplified 
Equation 

Buckling Load, 
kips (kN) 

Percent 
Difference 

1 
0.787 
(20) 

0.005 
42.7 
(190) 

39.1 
(173.9) 

8.4 

2 
0.118 
(3) 

0.003 
44.5 
(198) 

43.8 
(194.8) 

1.6 

3 
0.236 
(6) 

0.013 
57.0 

(253.5) 
53.9 

(239.8) 
5.4 

4 
0.098 
(2.5) 

0.0015 
53.4 

(237.5) 
51.6 

(229.5) 
3.4 

5 
0.827 
(16) 

0.003 
45.1 

(200.5)  
47.6 

(211.7) 
-5.5 

6 
0.433 
(11) 

0.004 
50.9 

(226.5) 
50.4 

(224.2) 
1.0 
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Table 6.6 - Comparison between the experimental results from Kalkan (2009) and the 
simplified equation 

 

Kalkan  
Beam # 

Initial 
Sweep, 

in. (mm) 

Initial 
Rotation, 
radians 

Experimental 
Buckling Load, 

kips (kN) 

Simplified 
Equation 

Buckling Load, 
kips (kN) 

Percent 
Difference 

B18 - 2 
0.125 
(3.2) 

0 
12 

(53.4) 
12.3 

(54.7) 
-2.5 

B30 
0.625 
(14.3) 

0.00417 
22 

(97.9) 
22.7 

(101.0) 
-3.2 

B36 
0.219 
(5.6) 

0.00087 
39.2 

(174.4) 
39.5 

(175.7) 
-0.8 

B44 - 1 
0.250 
(6.4) 

0.00284 
15.2 

(67.6) 
15.1 

(67.2) 
0.7 

B44 - 2 
0.781 
(19.8) 

0.00284 
12 

(53.4) 
13.6 

(60.5) 
-13.3 

 

Refer to König and Pauli (1990) and Kalkan (2009) for the details of the 

individual beam properties such as the geometry, reinforcement layout, initial 

imperfections and the material properties.  Beams 1 through 4 from König and Pauli 

(1990) did not have any prestressed reinforcing, only mild reinforcing.  Beams 1 through 

4 all had a top flange, but not a bottom flange.  In König and Pauli’s (1990) study, they 

varied the top flange width and the amount of compression reinforcement to 

parametrically study these effects (Beams 1 through 4).  Table 6.5 shows that the 

simplified equation predicted buckling loads within 8% of the experimental results.  

Beams 5 and 6 were both prestressed concrete beams.  Beam 5 had a top flange, while 

Beam 6 included both a top and a bottom flange.  The simplified equation predicted the 

buckling loads for the prestressed beams within 6%.  The difference between the 

experimental results and predicted results for Beams 5 and 6 were most likely due to the 
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limited information published on the prestressing strands and prestressing force.  

Additionally, error in all beam cases could be attributed to the relative crudeness of the 

measured initial rotations.  With the exception of Beam 5 of the test beams from the 

study by König and Pauli (1990), the simplified equation was conservative and under-

predicted the actual behavior which was consistent with the previous discussion on the 

simplified equation’s 1/3 coefficient.  The previous discussion stated that for flanged 

cross-sections, the 1/3 coefficient was conservative for most cases.   

The test beams from Kalkan (2009) were all slender, rectangular concrete beams 

with mild reinforcement.  From Table 6.6, the simplified equation matched very well 

with the experimental buckling loads.  The error was from -4% to 1% for all of the beams 

with the exception of B44-2.  The error was attributed to experimental error, the fact the 

simplified equation is an approximate technique, the thin beam sections (less than 3-in. 

(76 mm)), extreme slenderness with length to width ratios of 96 to 156, and relatively 

low buckling load.  The simple analysis was very sensitive to the many parameters.  The 

sensitivity of the simplified equation with respect to initial imperfections for the test 

beams of Kalkan (2009) is shown in Table 6.7.  The lower bound simplified equation 

buckling load was the buckling load using the maximum initial imperfections possible 

within the resolution of the initial imperfection measurements.  Similarly, the upper 

bound simplified buckling load was the buckling load using the smallest initial 

imperfections possible within the resolution of the initial imperfection measurements.  

The initial rotation, θ0, was never taken as less than zero. 
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Table 6.7 - Comparison between the experimental results from Kalkan (2009) and the 
simplified equation with bounds 

 

Kalkan 
(2009) 
Beam # 

Experimental 
Buckling 

Load, 
kips (kN) 

Simplified Eq. 
Buckling 

Load, 
kips (kN) 

Lower Bound 
Simplified Eq. 
Buckling Load, 

kips (kN) 

Upper Bound 
Simplified Eq. 
Buckling Load, 

kips (kN) 

Percent 
Difference 

Range 

B18 - 2 
12 

(53.4) 
12.3 

(54.7) 
11.3 

(50.3) 
12.7 

(56.5) 
-5.8 to 5.8 

B30 
22 

(97.9) 
22.7 

(101.0) 
21.8 

(97.0) 
23.8 

(105.9) 
-3.6 to 0.9 

B36 
39.2 

(174.4) 
39.5 

(175.7) 
37.8 

(168.1) 
41.4 

(184.2) 
-5.6 to 3.6 

B44 - 1 
15.2 

(67.6) 
15.1 

(67.2) 
13.8 

(61.4) 
16.5 

(73.4) 
-8.6 to 9.2 

B44 - 2 
12 

(53.4) 
13.6 

(60.5) 
13.1 

(58.3) 
15.6 

(69.4) 
-30 to -9.2 

 

No other researchers included the initial imperfections when they published their 

experimental results; therefore, the simplified equation developed in this study was not 

compared with any other experimental results.  A sample calculation using the simplified 

technique is presented in Appendix D. 
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CHAPTER 7 

PCI BT-54 BRIDGE GIRDER INVESTIGATION 

7.1 PCI BT-54 Study Objectives 

 An experimental study was performed on a 100-ft (30.5 m) long BT-54 bridge 

girder to investigate the stability behavior of an actual bridge girder with a relatively 

large amount of prestressing force and with construction tolerances which modeled 

inaccuracies similar to those noted in the Arizona bridge collapse.  This full-size girder 

also allowed the application of the analyses developed for the simple rectangular beams 

to be verified for a large section with top and bottom flanges and with torsional restraint 

only provided by the torsional resistance of the couple created by the bearing pad and 

bottom flange of the girder rather than by a method which modeled a theoretical restraint 

condition.  All previous lateral-torsional buckling research on prestressed concrete beams 

included within this research assumed perfect torsional restraint at the supports.  Perfect 

torsional restraints were not provided in the girders that collapsed in Arizona and 

Pennsylvania; instead, the only torsional resistance was provided by the couple created 

between the bearing pad and the bottom flange.  Photographs of the test setup are shown 

in Figures 7.1 to 7.3. 

 The design and construction of the BT-54 is presented in Chapter 2.  The field 

thermal studies presented in Chapter 3 showed that the midspan sweep of the 100-ft (30.5 

m) long girder was 1.94-in. (49.3 mm) at the top flange and 1.48-in. (37.6 mm) at the 

bottom flange.  These sweeps increased by as much as 0.6-in. (15.2 mm) due to solar 

radiation; however, there was minimal additional rotation due to solar radiation.  The PCI 
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Bridge Design Manual (2003) permits a total sweep tolerance of ⅛-in. (3.18 mm) per 10 

ft. (3.05 m) length of beam, or 1.25-in. (31.8 mm) sweep for this 100-ft span girder.  

 

 

Figure 7.1 – BT-54 test setup 
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Figure 7.2 – BT-54 data acquisition and initial leveling 
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Figure 7.3 – End view of BT-54 test setup 
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The specific objectives were to experimentally investigate the effects of the 

bearing pad on the torsional restraint at the ends of the beam, to study the effect of initial 

end rotation due to bearing seat tolerances on the stability, and to compare to the rollover 

factor of safety as calculated by using the method from Mast (1993) with that found from 

the test.  

7.2 Discussion of Experiment Design 

 A nominal initial end rotation of 0.05 radians was used in the stability testing of 

the BT-54 girder for several reasons.  Initial imperfections, especially initial rotation, 

proved to be a large contributing factor to destabilization of beams both with respect to 

lateral-torsional buckling and rollover based on the method by Mast (1993).  Therefore, it 

was desired to study the effect of initial end rotation on the stability behavior.  Although, 

the initial rotation of 0.05 radians was large, it was still within the range of end rotations 

measured after the collapse of the bridge girders in Arizona (Oesterle et al., 2007). 

 Experimental design economy was also a concern.  The load application frame 

that was used for the rectangular test specimens and was detailed in Chapter 2 had a 

capacity of 170 kips (756 kN).  The rollover prediction method by Mast (1993) predicted 

instability at approximately 120 kips (543 kN), and, therefore, it was predicted that the 

BT-54 girder would fail by rollover before the capacity of the load application frame was 

exceeded, thereby eliminating the need of a higher capacity load application frame.  The 

simplified analysis predicted a lateral-torsional buckling load of 183 kips (814 kN); 

however, the girder was anticipated to become unstable in a rollover mode.  It was 

hypothesized that for prestressed concrete bridge girders, the rollover limit state would 



 286 

govern over the lateral-torsional buckling limit state because concrete cracking and 

inelastic behavior would be required for a bridge girder of a standard shape to become 

unstable.  Prestressed concrete bridge girders are designed such that the concrete does not 

crack during the erection.  Therefore, the focus of the BT-54 girder experiment was on 

the rollover behavior. 

7.3 Bottom Flange Bearing Flatness 

The BT-54 was loaded twice.  The first experiment loaded the girder to 29 kips 

(129 kN), an applied moment of 8,700 in-kips.  During the loading, the torsional rotation 

of the girder at the supports was substantially larger than was expected – 0.0042 radians 

as compared to 0.00072 radians. Further loading was suspended, and the load was 

removed to investigate the cause of the unexpected rotation.  The cause was deemed to be 

the lack of flatness of the bottom of the cross-section which was bearing on the 

elastomeric bearing pad.  The profile of the roundness of the bottom flange was measured 

and is shown in Figure 7.4. 
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Figure 7.4 – Bottom flange profile for (a) west end support (b) east end support 

 

 The rotation resulting from the bottom roundness resulted in approximately 

0.0042 radians of rotation at the 29-kip load as shown in Figure 7.5.  This rotation was far 

greater what was planned or desired for comparison with analysis.  Also, both the 

5/16 in. 1/8 in. 

17 in. 

(a) West end support looking east 

1/8 in. 1/8 in. 

12 in. 

(b) East end support looking east 

Tilt 

Tilt 
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nonlinear, fiber-model nonlinear analysis and the rollover analysis based on Mast (1993) 

did not consider the effect of roundness of the bottom flange. It was desired to only study 

the effect of the rotational stiffness provided by the bearing pad.  Furthermore, the 

rollover analysis method by Mast (1993) involved an input for the rotational stiffness of 

the bearing pad.  There was no adequate method to determine the effective rotational 

stiffness of a bearing pad without the assumption of uniform bearing.  Future studies are 

required to determine the typical magnitudes of the bottom flange roundness, and 

tolerances need to be established to reduce the risk of rollover failure from such an 

imperfection.  The use of embedded steel plates at bearing locations would provide an 

easy solution to ensuring a flat bearing surface on the bottom flange of the girder.   

To provide a flat bearing surface on the bottom flange of the BT-54, a retrofit was 

performed to the bottom flange at each of the supports so that there was uniform bearing 

on the pad.  Also, due to the camber of the girder, it was observed during the first 

experiment that the beam was not bearing uniformly along the length of the pad as shown 

in Figure 7.6.  The retrofit strategy to level the bearing pad also removed the non-uniform 

bearing condition in the longitudinal direction as well.  The details of the retrofit 

construction are provided in Chapter 4.  
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Figure 7.5 – Bearing pad reaction vs. end rotation for BT-54, loading #1 

 

 

Figure 7.6 – Non-uniform bearing due to camber 

  

Girder 

Bearing Pad Gap with No Bearing 
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 The effectiveness of the retrofit with respect to the gap caused by the camber of 

the girder is shown in Figure 7.7 by comparing the east support before, and after the 

retrofit. 

 

 

 

Figure 7.7 – Retrofit effectiveness on non-uniform bearing due to camber 

 

 The effectiveness of the retrofit strategy with respect to the flatness of the bottom 

flange was best observed by a comparison of the amount of rotation when placing the 

girder.  Initially when the girder was being placed on the initially rotated supports, the 

girder rotated at the end supports a significant amount.  After the retrofit was completed 

and the girder was replaced on its supports, there was almost no rotation which was the 

originally predicted behavior.  Table 7.1 shows the comparison between the initial end 

rotations under only the self-weight of the girder for the before and after retrofit cases.  

(a) East End Support before Retrofit (b) East End Support after Retrofit 
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The bearing pad rotation was measured at three locations along the length of the bearing.  

These rotations would ideally be the same; however, there were small differences (less 

than 1%) which were believed due to the bearing pads and the underlying support system.  

Figure 7.8 shows the rotation measurement locations. 

 

Table 7.1 – Comparison of end support initial rotations for BT-54  

Before Retrofit After Retrofit 
Bearing Pad Rotations (radians) 

 

Front Middle Back 

Bottom Flange           
1’ from Support 

Bottom Flange           
1’ from Support 

East Support 0.04817 0.04887 0.04887 0.07016 0.04939 
West Support 0.05131 0.05131 0.05079 0.06301 0.05079 

 

 

Figure 7.8 – Rotation measurement locations 
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 From Table 7.1, it was apparent that significant rotations occurred simply under 

the self-weight of the girder due to the lack of flatness of the bottom flange.  After the 

retrofit was performed, under the self-weight of the girder only, the end rotation was 

essentially equivalent to the initial rotation of the bearing before the girder was placed.   

7.4 Experimental Results 

7.4.1 BT-54 Rollover Behavior, Loading #1  

Prior to the retrofit, the girder was first loaded to 29 kips (129 kN) when large end 

rotations were noted.  The load was then released.  The load versus lateral displacement 

plot is shown in Figure 7.9, and the load versus rotation plot is shown in Figure 7.10.  

The end rotation for all plots was the rotation at the east end of the girder.  Both sides 

behaved similarly; however, one of the vertical string potentiometers on the west end of 

the girder displayed significant “noise” in the measurements.  Therefore, the discussion is 

mainly focused on the end rotation at the east end of the girder.  
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Figure 7.9 – Load vs. lateral displacement at midspan for BT-54, loading #1, before 
retrofit 
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Figure 7.10 – Load versus rotation for BT-54, loading #1, before retrofit 
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 Figure 7.9 shows that the lateral displacements at the top and the bottom of the 

beam were significant, 0.29-in. (7.4 mm) at 29 kips.  The behavior showed the 

predominance of rotation.  In the rectangular beam tests, the lateral displacements at the 

top and the bottom of the beams were very similar until buckling was about to occur.  

The cause of the significant difference between the top and bottom displacements of the 

girder was the large torsional rotation behavior at the end supports.  Figure 7.10 shows 

the midspan rotation as well at the end rotation, and it was noticeable that the majority of 

the midspan rotation was actually due to the end rotation.  Furthermore, the rotation at 

each end was significantly higher than the estimated end rotation before the experiment.  

The fact that the bottom flange was rounded at the supports reduced the effective rotation 

stiffness so much that behavior was similar to an out-of-plane roller than a torsionally 

fixed condition.  Figure 7.10 also shows that there was a significant residual rotation; 

however, the residual rotation at each end and at midspan were almost equivalent; 

therefore, the majority of the residual rotation occurred due to the “rolling” at the ends. 

 The shear stiffness of the bearing pad was also a factor in the behavior of the 

girder.  Due to the large additional initial torsional rotation (rolling) when the girder was 

placed with only the self-weight on the bearing pad and the rapid increase in end rotation 

during loading, a larger transverse shear load was applied to the bearing pad than was 

anticipated.  It was anticipated that only the initial slope of the bearing and its effect on 

the gravity load would cause transverse shear.  Figure 7.11 shows the applied load versus 

shear displacement of the bearing pad, and Figure 7.12 shows the shear force in the 

bearing pad versus shear displacement of the bearing pad.  Figure 7.13 shows the load 

versus lateral displacement of the centroid of the cross-section at midspan with the 
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bearing pad shear displacement included, without the bearing pad shear displacement 

included, and without both the bearing pad shear displacement and effective centroid 

displacement due to the large rotations at the ends.  The shear displacement was 

determined by the experimental data from the two vertical string potentiometers and the 

horizontal string potentiometers at each end of the beam.  The two vertical string 

potentiometers were used to determine the end rotation of the girder.  The end rotation 

was used to determine the lateral displacement due to end rotation at the top of the girder 

where the lateral string potentiometer measured displacements.  It was calculated by 

multiplying the end rotation calculated using the vertical string potentiometer by the 

vertical distance between the lateral string potentiometer and the center of bearing.  The 

shear displacement was then determined as the measured lateral displacement minus the 

lateral displacement due to rotation.  Furthermore, the end rotation was used to calculate 

the effective centroid lateral displacement due to end rotation because the lateral 

displacement presented in Figure 7.13 was at the centroid of the cross-section at midspan.   
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Figure 7.11 – Applied load vs. bearing pad shear deformation, loading #1 
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Figure 7.12 – Calculated bearing pad shear force vs. measured shear deformation,  
loading #1 
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Figure 7.13 – Midspan lateral displacement including & excluding bearing pad effects, 
loading #1 

  

Figure 7.11 shows that there was a significant amount of shear deformation in the 

bearing pad during loading; furthermore, residual shear deformations in the bearing pad 

occurred.  A significant amount of the residual shear deformation in the bearing pad was 

not due to plastic deformation of the bearing pad, but instead, the fact that there was 

residual rotation of the girder at the ends due to the girder “rolling” on the rounded 

bottom flange.  The residual end rotation caused an additional shear component of load 

on the bearing pad that was not there at the beginning of loading.  From Figure 7.12, the 

shear deformation stiffness of the bearing pad was 4.7 kip/in (820 kN/m).  Figure 7.13 

shows that 0.32-in. (8.2 mm) of the 0.54-in. (13.7 mm) lateral displacement of the 

centroid at midspan was due to the rigid body rotation and lateral displacement caused by 

the behavior of the bearing pads.  Although the curve with the bearing pad effects 
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included shows a residual lateral displacement of 0.1-in (2.5 mm), there was actually an 

insignificant amount of residual lateral displacement in the girder which was evident 

from the curve in Figure 7.13 which omitted all of the bearing pad effects on the 

measured lateral displacement values.  The curve omitting the bearing pad effects showed 

an almost perfect elastic return of the girder to its initial conditions.   

7.4.2 BT-54 Rollover Behavior, Loading #2  

 After the bottom of the girder was leveled as discussed in Chapter 4, the girder 

was re-loaded.  At about 100 kips (445 kN), the girder was allowed to contact the 

torsional restraints at the ends of the girder because the lateral displacements were 

becoming large (0.6-in.) and the end rotation was such that the girder was no longer in 

complete contact with the bearing pad (0.0055 radians).  Safety became a concern, and 

the load was reduced to approximately 70 kips (311 kN).   

With safety conditions assured, load was increased.  The slope of the load versus 

lateral displacement and the load versus rotation curves, shown in Figure 7.14 and 7.15, 

respectively, were very similar to the initial loading when at the 70-to-100 kip (311-to-

445 kN) load level.  However, the curve was offset compared to the initial curve due to 

the residual deformation and residual rotation behavior that was observed from the partial 

unloading.  Once the load achieved 104 kips (463 kN), the lateral displacement and 

rotation began to increase more rapidly such that there was once again a safety concern.  

Figures 7.14 and 7.15 also highlight the behavior discussed. 
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Figure 7.14 – Load vs. lateral displacement for BT-54, loading #2 
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Figure 7.15 – Load vs. rotation for BT-54, loading #2 
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 The bearing pad effect on the BT-54 during the second loading is shown in 

Figures 7.16 through 7.18. 

 

0

20

40

60

80

100

120

0 0.5 1 1.5 2 2.5
Lateral Displacement (in.)

A
p
p
lie

d
 L

o
a
d
 (

ki
p
s)

  
 .

Midspan Centroid

Omit Bearing Pad Shear
Displacements
Omit Bearing Pad Shear
Displacements & Rotation

 

Figure 7.16 - Midspan lateral displacement including & excluding bearing pad effects, 
loading #2  
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Figure 7.17 – Bearing pad shear deformation, loading #2 
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Figure 7.18 - Load versus rotation and end rotation for BT-54, loading #2 
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 Figure 7.16 shows that during the second loading, the shear deformation of the 

bearing pad and the effect which the end rotation had on the midspan lateral displacement 

were much less compared to those during the first loading.  Figure 7.17 shows the 

bearing pad shear deformation with respect to the applied load on the girder.  For the 

initial ascent of the load versus bearing pad shear deformation, the bearing pad deformed 

only 20% more than in the first loading even though it was loaded to a 270% higher load.  

The leveling retrofit did not necessarily have a direct effect on the stiffness with respect 

to shear deformation, but instead, the moment resistance provided by the bearing pad 

with leveled bottom flange allowed for much smaller rotations at the end during the 

second loading.   

Figure 7.18 shows that there was still a non-negligible amount of end rotation at 

the supports due to the bearing pad even with the retrofit.  For the first 20 kips (89 kN) of 

loading, there was essentially a negligible amount of end rotation, but from that load on, 

the bearing pad did not provide the torsional moment stiffness that was expected.  

Although the end torsional stiffness was not as high as was predicted by the ideal 

conditions, the leveling retrofit strategy was much better at providing partial torsional 

restraint at the end supports than the case of the first load with the rounded bottom 

flanges as is evident from Figure 7.19. 
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Figure 7.19 – Comparison of end rotations for loadings #1 and #2 

 

 From Figure 7.19, the end rotation achieved at 29 kips (129 kN) during the first 

experiment was equivalent to the end rotation during the second loading at 94 kips (418 

kN).  Furthermore, Figure 7.19 illustrates the rigid body unstable nature witnessed during 

the second experiment during the reloading from 70 to 104 kips (311 to 463 kN).  

Beginning at an end rotation of 0.0078 radians, additional load application brought the 

end rotation to 0.0092 radians with an increase in load of only 0.6 kips (2.7 kN).  

Therefore, it was suspected during testing that the lack of torsional restraint at the ends 

caused the limit state of the girder to be that of a rollover phenomenon.   
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7.4.2.1 BT-54 Strains and Cross-Section Results, Loading #2 

The strain behavior of the girder was captured via the LVDT layout discussed in 

Chapter 4.  The initial strain values due to the effect of prestressing were extremely 

important for understanding the behavior of the BT-54 girder.  For the rectangular beams, 

the relatively small magnitude of prestressing force only contributed a minimal amount to 

the strain profiles recorded during loading; therefore, an approximation of the actual 

prestressing force after prestressed losses was sufficiently accurate.  For the BT-54, the 

strain profile was affected by the prestressing force significantly.  The effective 

prestressing force during the experiment was determined by utilizing the internal 

vibrating wire strain gages.  There were known values for the initial strains before the 

prestressing strands were released during the fabrication of the girder.  Therefore, the 

measured strain values of the vibrating wire strain gages immediately before the 

experiment were used to determine prestress losses due to creep and shrinkage.  

Relaxation losses were calculated based on Nawy (2006) for low relaxation strands.  The 

effective prestressing force at the time of testing was found as the initial stress minus the 

losses due to creep, shrinkage and relaxation.  The effective prestressing stress in the 

strands was determined to be 166.4 ksi (1131 MPa) and the total effective prestressing 

force was 1444 kips (6425 kN).  The effect of the prestressing force and self-weight on 

the strain profile at 35 kips (156 kN) is shown in Figure 7.20.  In Figure 7.20, the solid 

black line is just the flexural strains due to the 35 kip load determined at midspan and at 

the center of the cross section (y-axis).  The dashed blue line combines these flexural 

strains with the axial and flexural strains due to the effective prestressing force plus self 

weight of the beam.   
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The total strain profile at mid-thickness for three different load increments, 35 

kips (156 kN), 70 kips (311 kN) and 104 kips (463 kN), is shown in Figure 7.21. 
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Figure 7.20 – Effect of prestressing force & self-weight on strain profile at mid-thickness 
at 35 kip (156 kN) 
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Figure 7.21 – Strain profiles at mid-thickness for load increments of 35 kips (156 kN), 70 
kips (311 kN) and 104 kips (463 kN) 

  

Figure 7.20 shows that it was necessary include the effects of initial prestressing 

force and self-weight on the strain profile because there was a significant strain 

contribution due to the prestressing force and self-weight.  The strain profiles in Figure 

7.21 show good correlation with a linear strain distribution with the exception of a slight 

deviation from linearity at the top of the girder at 104 kips (463 kN).  The strain profile at 

104 kips (463 kN) was approaching the maximum load applied of 110 kips (489 kN), 

and, although the strain profile showed that the condition of less compressive strain at the 

bottom of the girder than at the top of the girder had been attained, the bottom of the 

girder was not close to reaching tensile strain levels.  However, the strains on the 

concrete surface were significantly different than at mid-thickness due to out-of-plane 
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bending.  Figures 7.22 through 7.24 show the surface strain profiles for 35 kips (156 kN), 

70 kips (311 kN) and 104 kips (463 kN), respectively.  Note that the strain profiles were 

not and should not be linear on the surface of the girder because the girder was not a 

constant width, as was the case for the rectangular beams.   
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Figure 7.22 – Surface strain profiles for BT-54 at 35 kips (156 kN)  
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Figure 7.23 – Surface strain profiles for BT-54 at 70 kips (311 kN)  
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Figure 7.24 – Surface strain profiles for BT-54 at 104 kips (463 kN)  
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 Figures 7.22 through 7.24 show the significant differences in the strains at the 

surface of the girder as opposed to mid-thickness due to the biaxial flexure.  The surface 

strains on the top and bottom flange were particularly different from the mid-thickness 

strain values due to the large distance from center to the concrete surface.  The strain on 

the concrete surface on the convex side of the bottom flange of the girder had much less 

compressive strain than at mid-thickness; even at a load level of 104 kips (463 kN), the 

surface strains were in compression and not tension.  Therefore, the data show that 

cracking did not occur during the first load ascent of the second loading, which was 

consistent with the load versus lateral-displacement behavior.  The girder reached levels 

of unstable rollover behavior due to excessive rotations at the supports; however, the 

uncoupled load versus lateral displacement plot only included lateral displacement due to 

the deformation of the girder and showed no significant softening or stiffness reduction.  

Larger displacements and rotations occurred during the second load ascent, but once 

again, the unstable behavior was representative of rollover instability and not softening or 

a stiffness reduction of the girder.  Figure 7.25 shows the surface strain profile at 104 kips 

(463 kN) during the second load ascent.  The surface strain profile shows that tensile 

strain values were not achieved during the second load ascent, either. 
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Figure 7.25 – Surface strain profiles for BT-54 at 104 kips (463 kN), 2nd load ascent  

 

     The effect of the initial strains due to the weak-axis component of the girder self-

weight moment was non-negligible and had to be considered.  The weak-axis component 

of the self-weight was calculated by multiplying the self-weight moment by the sine of 

the initial rotation angle.  Then the stress was calculated at each strain measurement 

location using the weak-axis self-weight moment, the gross weak-axis moment of inertia 

and the distance from the weak-axis centroidal axis of the cross-section to the strain 

measurement location.  The strains were then determined by dividing the calculated 

stresses by the initial concrete modulus of elasticity.  The accuracy of the calculation was 

verified by calculating the strain from the weak-axis component of moment due to the 

applied load of 35 kips (156 kN) and comparing to the experimental values.  The 
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calculated strain from the weak-axis component of moment at the top of the cross-section 

was 70 microstrains, and the experimental strain value was 78 microstrains.  The values 

were 10% different and the error was due to the potential for error in the assumed weak-

axis moment of inertia and the modulus of elasticity.  Furthermore, an error of 0.1 

degrees (0.00175 radians) would add an additional 2.5 microstrains to the calculated 

strain value.  Figure 7.26 shows the surface strain profile at 35 kips (156 kN) showing the 

effect of the weak-axis component of the girder self-weight on the strain profile.   
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Figure 7.26 – Surface strain profiles at 35 kips (156 kN) omitting weak-axis self-weight 
moment 

 

 The differences in strain values in Figure 7.26 when the weak-axis component of 

the self-weight moment was neglected were minimal within the web of the girder.  
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Because of the large distances from mid-thickness to the surfaces of the flanges, the 

additional strains due to self-weight moment were significant and the additional strains 

should not be neglected.  

Figure 7.22 showed that at 35 kips (156 kN), the strain on the surface of the top 

flange on the convex side of the girder had a relatively small compressive strain.  The 

relatively small compressive strain at the top flange was consistent with Mast (1993) 

where it was stated that for certain initial imperfections and support conditions, the 

stiffness of the girder should be reduced when considering rollover because there was a 

possibility that the top flange could crack.  Therefore, Figure 7.27 is presented to 

investigate the initial strain condition for this girder. 
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Figure 7.27 – Initial surface strain profile due to effective prestressing and self-weight 
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 Figure 7.27 shows that tensile strains were not present in the top flange of the 

girder initially; however, the compressive strain on the convex side due to the effects of 

prestress and self weight was only 18 microstrains.  Figure 7.27 shows that girders with a 

longer span and similar initial imperfections could have initially cracked top flanges on 

the convex side of the girder.  Additional experimental data and photographs are 

presented in Appendix E.  

7.5 Analytical Investigation 

 The analytical study was performed using three different methods.  The first 

method was to perform the nonlinear analysis with the inclusion of a stiffness model that 

represented the support rotational stiffness provided by the bearing pad.  The second 

method was to compare the simplified equation with the experimental results and the 

nonlinear analysis results.  Lastly, the rollover method from Mast (1993) was used to 

predict the rollover load.  The rollover load was important because of the rigid body 

unstable behavior witnessed during the experiment.   

7.5.1 Nonlinear Analysis 

 The nonlinear analysis was done for the BT-54 much the same way that it was 

done for the rectangular beam experiments.  The primary differences were with respect to 

modeling the bearing pad behavior.  The nonlinear analysis considering the effect of 

imperfect torsional stiffness at the ends due to the compliance of the bearing pad was not 

taken into consideration by applying a stiffness term within the global stiffness matrix, 

[K].  Instead, perfect torsional restraint was assumed within the global stiffness matrix, 

[K], at the beginning of a specific load increment.  After the incremental displacement 
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vector, {u}, was calculated, the restraint was released by applying the increment of 

torque to the bearing pad model.  The rigid body rotation and displacements were then 

determined from the bearing pad model and added to the total system deformation to 

determine the deformed geometry and loading condition for the following load 

increment.  The methodology was accurate assuming small enough load increments were 

used.    

7.5.1.1 Bearing Pad Model 

 The bearing pad model was implemented as a subroutine to the nonlinear analysis 

program.  The subroutine received the amount of torque and axial load on the end 

supports for a given load increment of the nonlinear analysis.  The bearing pad was 

divided into 48 0.5-in. (1.27 mm) strips along the width of the bearing pad as illustrated 

in Figure 7.28.  The one-dimensional strip model was used as opposed to a two-

dimensional fiber model because it was assumed that there was uniform bearing along the 

width of the bearing pad.  A uniform bearing was not actually the case; however, an 

assumption had to be made because the exact bearing stress distribution was not known.  

The program iterated both the axial deformation on the side of the bearing pad that was 

more highly compressed and the end rotation of the girder to determine the axial 

deformation and end rotation required to satisfy both force equilibrium and moment 

equilibrium due to the torque applied to the bearing pad.  The force in each strip of the 

bearing pad was determined by using a bilinear force versus displacement model for the 

bearing pad determined from axial stiffness experiments on the bearing pad described in 

Section 4.2.3.  The pad’s load versus axial displacement model is shown in Figure 7.29. 
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Figure 7.28 – Bearing pad strip model layout 
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Figure 7.29 – Bearing pad bilinear axial (vertical) load vs. displacement model 
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 Bearing pad strips that underwent tensile forces were taken as zero force elements 

when force and moment equilibrium were determined.  The bearing pad model 

subroutine outputted the end rotation and the axial displacement of each edge of the 

bearing pad.  The nonlinear analysis summed the end rotation and the rotation due to the 

deformation behavior of the girder for input into the subroutine that considered the 

concrete material model, the calculation of the neutral axis angle, and the section 

properties.  With the exception of the effect which the bearing pad behavior had on the 

neutral axis angle, material properties and section properties, the deformation behavior of 

the girder was uncoupled from the rigid body rotation behavior due to the bearing pads.  

However, the rigid body rotation behavior was not uncoupled from the girder 

deformation behavior because the girder deformation behavior had a significant effect on 

the magnitude of torque applied to the bearing pads at the end supports. 

7.5.1.2 Nonlinear Analysis Results 

 The comparison of the analytical and experimental data was split into two 

different cases.  The first case was used to determine the accuracy of the analytical model 

for predicting the elastic response of the girder.  With respect to the experimental data, 

the elastic response of the girder was determined by taking the rotation, θ, at midspan and 

subtracting the end rotation (rigid body rotation) of the girder as determined from the 

experimental data from the end string potentiometers.  Similarly, the shear deformation of 

the bearing pads and the lateral displacement due to the rigid body rotation about the 

bottom of the girder to the centroid of the cross-section was subtracted from the 

experimental data at midspan to determine the elastic response of the girder.  Although 

the altered data represented the elastic deformation response of the girder, the 
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experimentally applied load was still a function of the total deformation state including 

the rigid body deformation. 

 The analysis used the total deformation state including the rigid body deformation 

to calculate the incremental load vector, {P}; however, the stiffness matrix, [K], did not 

include the bearing pad stiffness properties.  Instead, the stiffness matrix, [K], assumed 

perfect torsional restraint.  After the load increment was applied, the elastic response of 

the girder was computed.  Then, the bearing pad model was used to determine the shear 

deformation and rotation of the bearing pad for each load increment.  Therefore, the next 

load increment was updated with the new displaced configuration including the rigid 

body deformation when determining the incremental load vector, {P}.   

For the second case, the bearing pad deformation response was simply added to 

the elastic response of the girder to find the total response.  The total response was 

directly compared with the “raw” data at midspan from the experiment. 

The nonlinear analysis showed reasonably good correlation to the experimental 

results.  The analytical data included the initial effect of the self-weight of the girder on 

the girder deformations and bearing pad deformations.  Thus, at the point in the analytical 

data of zero applied load, the self-weight had already been applied.  The initial vertical 

deformation of the bearing pad from the analytical model after the self-weight was 

applied was 0.01871-in. (0.475 mm) on the axially compressed side of the bearing pad 

and 0.016394-in. (0.416 mm) on the side of the bearing pad prone to uplift.   

The experimental load versus lateral displacement data are shown both as post-

processed raw data and with corrections to the lateral displacement data.  The corrected 
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lateral displacement curves excluded the rigid body lateral displacement of the girder due 

to shear deformation of the bearing pads and the lateral displacement at the centroid of 

cross-section from the rigid body rotation of the girder due to the bearing pad 

compliance.  By not including the lateral displacement at midspan due to the shear 

deformation of the bearing pad and the lateral displacement of the girder centroid from 

the end rotation, the displacement response due to the elastic girder deformation alone 

was confirmed.  By removing the rigid body behavior and the girder deformation, while 

still maintaining accuracy, allowed for sources of error to be determined more easily.  

The experimental data for load versus lateral displacement compared to the results from 

the nonlinear analysis is shown in Figure 7.30.  The self-weight of the girder was already 

applied in the analysis at the point of zero applied load in the following plots. 
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Figure 7.30 – Nonlinear analysis load vs. lateral displacement compared to the 
experimental results 
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 The nonlinear analysis load versus displacement curve from Figure 7.30 matched 

very well with the experimental results representing the girder deformation behavior.  A 

comparison between the nonlinear analysis load versus midspan rotation behavior and the 

experimental girder rotation is shown in Figure 7.31.  Similar to the comparison between 

the load versus lateral displacement analytical and experimental curves, the experimental 

end rotation was subtracted from the experimental midspan rotation to compare the 

analytical girder rotation behavior at midspan to the experimental girder behavior, as 

opposed to the total girder rotation including the rigid body rotation from the compliance 

of the bearing pad.  Such a correction was necessary to confirm the accuracy of the 

nonlinear analysis in predicting the elastic girder deformation response, thereby showing 

that the error of in the total behavior of the system was due to the model predicting the 

behavior of the bearing pad.    
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Figure 7.31 – Nonlinear analysis load vs. rotation compared to the experimental results 

 

 From Figure 7.31, the analytical load versus rotation curve matched very well 

with the experimental curve with the bearing pad rotation omitted.  Furthermore, the 

rapid rate of increase in rotation shown by the experimental data for the entire system, as 

noted in Figure 7.31, was not apparent in the midspan rotation behavior omitting the rigid 

body rotation behavior.  That shows that the system did not become unstable due to 

unstable girder deformation as in a lateral-torsional buckling failure mode, but instead as 

an unstable rigid body rotation or a rollover failure mode.   

The analytical and experimental curves of Figure 7.31 coincided until the applied 

load reached approximately 60 kips (267 kN).  The cause of the offset between the two 

curves at 60 kips (267 kN) was that a long pause in loading occurred at that load level 

and the bearing pads at the end supports crept.  Once loading began again, the slope of 

Rapid Rate of Increase 
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the experimental load versus rotation curve matched very well with the analytical curve.  

The creep behavior was shown by the load versus vertical displacement at the girder ends 

as shown in Figure 7.32.  The vertical displacements of each side of the bearing pad are 

shown in Figure 7.32 and creep behavior is apparent at load levels of 60 kips (267 kN) 

and 80 kips (356 kN) which is consistent with long time periods where increased loading 

was suspended during the experiment.  The creep behavior at 80 kips (356 kN) was less 

noticeable in Figure 7.31 because the magnitude of creep rotation was less than at 60 kips 

(267 kN) and because the unloading curve after the first load ascent and the unloading 

curve of the second load ascent intersect the creep response making the behavior less 

apparent.   
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Figure 7.32 – Applied load vs. bearing pad vertical displacement showing bearing pad 
creep behavior 
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During the experiment, torsional cracking did not occur and was not a factor in 

the nonlinear analysis as was the case for the rectangular beam specimens.  The nonlinear 

analysis was performed to an applied load of 145 kips (645 kN) and the torque on the 

cross-section was on the order of 600 kip-in (68 kN-m), but the calculated cracking 

torque was approximately 1600 kip-in (181 kN-m).   

 The analysis included the vertical deformation of the bearing pad; however, 

Figure 7.32 shows that the bottom flanges of the south side of the girder began to uplift 

from the bearing pad once load commenced.  Uplift did not occur immediately because 

the self-weight of the girder resulted in an initial axial deformation in the bearing pad. 

The nonlinear analysis predicted that there was an initial axially compressed deformation 

of the bearing pad of 0.0187-in. (0.475 mm) on the side of the girder that was compressed 

during rollover (north side) and 0.0164-in. (0.416 mm) on the side that was prone to 

uplift during rollover of the girder (south side).  Therefore, true uplift did not occur until 

the load was approximately 60 kips (267 kN).  

During the experiment, rollover was the concern at the maximum loads.  

Although Figure 7.31 does not show the unstable behavior during the first ascent of the 

second loading because of the restraint provided at the end supports, the second load 

ascent shows an initiation of large rotations with minimal additional load.  The rollover 

behavior is better shown in a plot of the applied load versus the end rotation as shown in 

Figure 7.33.  Both contact with the torsional restraint system and uplift are noted in 

Figure 7.34. 
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Figure 7.33 – Applied load versus end rotation 

 

 Figure 7.33 shows that during the first load ascent, the rate of increase of end 

rotation increased until the torsional restraint impeded the continuation of significant end 

rotations.  During the second load ascent, the torsional restraint was removed and large 

end rotations began at approximately 104 kips (463 kN) which caused the girder to again 

contact the torsional restraint system.  Although the nonlinear analysis was developed to 

capture lateral-torsional buckling behavior, the model should also predict rollover 

behavior because of the effect of the bearing pad model on the nonlinear analysis.  

Because Figure 7.30 and 7.31 presented the girder deformation behavior neglecting the 

rigid body deformation, the plots did not show the complete behavior as predicted by the 

Contact with Torsional Restraint Contact with Torsional Restraint 

Uplift 
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analysis.  Therefore, the second analytical case where the total deformation including the 

elastic deformation of the girder and the rigid body behavior were summed was 

considered.  The applied load versus total rotation was investigated to determine the 

adequacy of the nonlinear analysis in predicting the rollover behavior of the girder.  A 

plot of the total rotation behavior predicted by the nonlinear analysis is shown in Figure 

7.34. 
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Figure 7.34 – Applied load vs. total rotation (girder rotation + end rotation) 

 

 Figure 7.34 shows that the nonlinear analysis model predicted the total rotation 

from the experiment at loads less than 80 kips (356 kN) reasonably well.  However, there 

was significant deviation between the experimental and analytical curves at relatively low 
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loads.  Because the uncoupled girder rotation behavior was proven to predict the 

experimental girder rotation behavior well, particularly at lower loads, it was apparent 

that the analytical model under-estimated the rotational stiffness of the bearing pads.  At 

high loads, in excess of 80 kips (356 kN), the analytical model appeared to over-estimate 

rotational stiffness of the bearing pads.  Furthermore, the analytical model never achieved 

a completely unstable condition, although the rate of increase in total rotation was 

increasing.  The differences in behavior are presented more clearly in a comparison plot 

between the experimental end rotation and the end rotation predicted by the nonlinear 

analysis with respect to the torque applied to the girder ends as shown in Figure 7.35. 
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Figure 7.35 – Applied torque vs. end rotation 
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 Figure 7.35 shows that the stiffness behavior of the actual bearing pad was stiffer 

than the analytical bearing pad model.  At lower loads the rotational stiffness of the 

bearing pad was larger than the analytical model represented, and the effective rotational 

stiffness of the bearing pad at higher loads was lower than the analytical model 

represented.  The detailed bearing pad behavior was further investigated by considering a 

plot of the bearing pad vertical displacements at each edge of the girder for both the 

analytical and experimental data.  Figure 7.36 shows a plot of this comparison with 

compressive displacements as positive.  The raw data for the bearing pad vertical 

displacements had to be corrected to account for the effect of the rotation about the 

strong-axis of the girder because the string potentiometers were not located directly under 

the center of rotation of the bearing pad.  The correction procedure is presented and 

discussed in Appendix F. 
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Figure 7.36 - Corrected bearing pad vertical displacements at edges (positive 
compression) 

 

 The experimental data of Figure 7.36 shows that the bearing pad had a 

substantially larger nonlinear response than the analytical model predicted.  Furthermore, 

the rate of increase in uplift became very high at higher loads, and the analytical model 

did not predict the behavior.  The experimental data in Figure 7.36 also shows that both 

sides of the bearing were being compressed upon initial loading; however, that is most 

likely not the case.  The vertical displacement correction procedure presented in 

Appendix F was sensitive to the assumption of the distance from the vertical string 

potentiometers and the center of strong-axis rotation at the bearing.  Therefore, the 

assumed center of strong-axis rotation was probably slightly in error. 

Contact with Torsional Restraint 
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 There were a few potential error sources in the analytical model that caused the 

discrepancies between the experimental and analytical bearing pad responses.  The first 

was that a relatively simple model was used to represent the stiffness properties of the 

bearing pad.  For small vertical displacements, the bearing pad response was shown to be 

highly nonlinear; therefore, a more detailed experimental and analytical study on bearing 

pad properties was needed.  Consolazio et al. (2007) presented a detailed study on 

bearing pad response; however, higher loads were dealt with and uplift was not 

considered.  Also, the retrofit to the bottom flange of the girder was intended to level the 

bearing surface so that uniform contact was made between the bottom flange of the girder 

and the bearing pad.  The author cannot be certain that the retrofit completely removed 

the roundness of the bottom flange.   

Furthermore, the retrofit was supposed to provide a uniform bearing condition in 

the longitudinal direction, and although the bearing was improved compared to actual 

bridge bearing conditions, at the end of the second load ascent, the distance along the 

width of the bearing pad that had underwent complete uplift was measured.  On the west 

side of the girder, the back side of the bearing pad, as shown in Figure 7.37, was not in 

contact with the bearing pad for a distance of 10.25-in. (260 mm), and the front side of 

the bearing pad was not in contact with the bearing pad for a distance of 6.5-in. (165 

mm).  On the east side of the girder, the back side of the bearing pad had was not in 

contact with the bearing pad for a distance of 4.75-in. (121 mm) and the front side of the 

bearing pad was not in contact with the bearing pad for a distance of 3-in. (76 mm).  If 

uniform bearing was achieved in the longitudinal direction, the uplift distance on the back 

side and front side of the bearing pad would be equivalent, which was not the case.  



 329 

Figure 7.37 depicts the region of uplift on each of the bearing pads.  Non-uniform bearing 

in the longitudinal direction was another source of error and the effects should be studied 

because the camber in actual bridge girders causes all girders to have a non-uniform 

bearing condition when being erected.   

 

 

Figure 7.37 – Region of uplift for (a) west bearing pad and (b) east bearing pad.  Note, 
the girder was spanning east-west and was laterally displacing toward the north.  

 

 The last possible cause of the highly nonlinear bearing pad response, particularly 

at higher loads, was the possibility of a second-order effect due to the shear deformation 

of the bearing pad as shown in Figure 7.38.  Because of the relatively larger shear 

displacements that the bearing pad incurred during the experiment, on the order of 0.3-in. 
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(7.6 mm) for the first load ascent and 0.5-in (12.7 mm) for the second load ascent, it was 

hypothesized that the shear deformation caused a softening of the bearing pad on the 

compressed edge of the bearing pad. 

 

 

Figure 7.38 – “Softened” bearing pad edge due to bearing pad shear deformation 

 

7.5.2 Simplified Equation Prediction 

 The simplified equation from Equation 6.34 proposed in Chapter 6 for lateral-

torsional buckling of prestressed concrete beams considering initial imperfections was 

applied to the BT-54 specimen with the initial imperfections measured before the 

experiment.  The simplified equation does not consider effects of bearing pad 

deformations.  The predicted lateral-torsional buckling load using the simplified equation 

was 23.5 kips (104.5 kN).  If cracked properties are not used, the elastic lateral-torsional 

buckling load would be 466 kips (2073 kN). 
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The BT-54 never failed in a lateral-torsional buckling mode, but instead failed by 

rollover at a higher load than was predicted by the simplified equation.  The cause of the 

large under-prediction by the simplified equation was that the girder never cracked or 

became inelastic.  The simplified equation was derived for inelastic lateral-torsional 

buckling and does not apply when a cross-section remains elastic because the lateral-

torsional buckling load does not decrease with imperfections for an elastic beam.  A 

detailed discussion of this behavior, the limits and the applicability of the simplified 

equation are presented in Chapter 8.  Additionally, because of the sensitivity of lateral-

torsional buckling and rollover to initial rotation, tighter tolerances on these initial 

imperfections are needed, particularly for long-span girders.   

7.5.3 Rollover Stability 

 For conditions where the end of a bridge girder is not braced, rollover is expected 

to govern over lateral-torsional buckling for AASHTO and PCI BT bridge girders and 

imperfection conditions.  The nonlinear analysis detailed in Chapter 6 and applied to the 

BT-54 test girder in Chapter 7 predicts the response of a bridge girder with respect to 

both lateral-torsional buckling and rollover; however, the analysis proved to be extremely 

sensitive to the bearing conditions and the bearing pad stiffness assumptions.  Mast 

(1993) provided a simple approach to check the factor of safety against rollover of a 

prestressed concrete bridge girder on elastic supports.  Figure 7.39 shows a plot of the 

rollover prediction using the methodology from Mast (1993) compared to the nonlinear 

analysis and experimental data. 
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Figure 7.39 – Mast (1993) rollover prediction vs. experimental and nonlinear analysis 
data 

  

The predicted rollover load using Mast (1993) was 111.7 kips (497 kN).  It was 

apparent from Figure 7.39 that methodology from Mast (1993) effectively predicted the 

rollover load.  However, the method required the assumption of rotational stiffness of the 

bearing pad.  A more detailed discussion of the bearing pad rotational stiffness is 

presented in Chapter 8.   
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CHAPTER 8 

ROLLOVER & LATERAL-TORSIONAL BUCKLING STABILITY: 

DISCUSSION OF RESULTS 

 The lateral-torsional buckling behavior of the rectangular prestressed concrete 

beams of this study, the BT-54 girder of this study, and the test specimens from König 

and Pauli (1990) and Kalkan (2009) were studied in Chapters 6 and 7.  Furthermore, 

Chapter 7 discussed the rollover behavior of the BT-54 girder.  The discussion on the 

lateral-torsional buckling behavior for bridge girders has been limited to the BT-54 girder 

of this study thus far.  Limitations to the applicability of the simplified equation arise for 

cases when inelastic behavior is not expected and these limitations are discussed in the 

following sections.  A parametric study of the lateral-torsional buckling behavior of a PCI 

BT-72 bridge girder that is laterally braced at the ends is provided within this chapter.  

The limitations of the simplified analysis are highlighted using the parametric study.  

Additionally in this chapter, the rollover of bridge girders without lateral bracing at the 

end is examined, and the effects of the bearing pad stiffness on the rollover behavior are 

discussed 

 8.1 Braced Girder Lateral-Torsional Buckling Discussion 

8.1.1 Limitations on Simplified Equation Applicability 

 There are limitations to the applicability of the simplified equation to predict 

lateral-torsional buckling of prestressed concrete cross-sections.  The simplified equation 
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and the associated reduction parameters from Equation 6.22 and Equations 6.32 through 

6.34 are presented again below.   
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To present the limitations, the way in which the reduction parameters were 

derived must first be considered.  The buckling load of the beam was determined by first 

neglecting the effect of initial imperfections.  Section properties were based on the 

compression zone depth, the longitudinal mild reinforcing and prestressing strands.  The 

secant modulus of elasticity of the concrete was used.  Therefore, the inelastic lateral-

torsional buckling load was determined for the case of zero imperfections where the term 
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“inelastic” refers to the flexural cracking of the concrete and the nonlinear material 

properties of the concrete (modulus of elasticity).  

As sections that have greater slenderness or a larger precompression were 

considered, the compression zone depth at buckling was larger and the secant modulus of 

elasticity of the concrete approached the initial modulus of elasticity of the concrete.  

When either the slenderness or precompression became large enough, the entire cross-

section was effective when calculating the section properties; and the secant modulus of 

elasticity of the concrete was equivalent to the initial modulus of elasticity of the 

concrete.  At this point the critical buckling moment was equivalent to the elastic lateral-

torsional buckling moment.  Essentially the lateral-torsional buckling load would be the 

same as if the beam was assumed to be a linear-elastic material that could not crack. 

 The effect of initial imperfections on the critical buckling moment was 

determined by plotting several load versus lateral displacement curves for several 

different initial imperfection conditions.  The results of the imperfections parametric 

analyses were used to develop reduction parameters for initial lateral displacement and 

initial rotation as shown qualitatively in Figure 8.1.  The reduction parameters acted to 

reduce the critical buckling moment with zero initial imperfections. 
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Figure 8.1 – Reduction of buckling moment due to increasing initial imperfections 

 

 The reduction to the zero initial imperfection buckling load due to initial 

imperfections stemmed from the effect of initial imperfections on the extent of cracking, 

the angle of neutral axis, the progression of cracking, and the reduction of the modulus of 

elasticity from initial to the secant modulus.  For beams with greater slenderness, the 

inelastic behavior was present for a smaller portion of the load versus lateral 

displacement curve as shown in Figure 8.2.  Consider qualitatively an example case 

where beam 1, represented by curve 1 in Figure 8.2, had less slenderness than beam 2, 

represented by curve 2 in Figure 8.2.  Beam 2 will buckle at a larger ratio of applied 
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moment to the theoretical elastic buckling moment than beam 1 because less severe 

inelastic behavior will occur in the case of beam 2. 

 

 

Figure 8.2 – Effect of slenderness on the ratio of buckling moment to the theoretical 
elastic buckling moment 

 

 As the beam slenderness increases, the ratio of buckling moment to elastic 

buckling moment will approach 1.0.  At a certain slenderness no inelastic behavior will 

occur, and the elastic buckling load will govern.  A similar example can be considered to 
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investigate the effect of precompression as shown in Figure 8.3.  Two beams were 

compared that had equivalent slenderness ratio; however, beam 1, represented by curve 1 

in Figure 8.3, had less precompression than beam 2, represented by curve 2 in Figure 8.3.  

Beam 2 will buckle at a larger ratio of applied moment to the theoretical elastic buckling 

moment than beam 1 because less severe inelastic behavior will occur in the case of beam 

2.  Essentially, the larger precompression will cause the beam to have a large 

compression zone. 

 

 

Figure 8.3 – Effect of precompression on the ratio of buckling moment to the theoretical 
elastic buckling moment 
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For the case of elastic lateral-torsional buckling, initial imperfections affect the 

load versus lateral displacement and load versus rotation response, but not the maximum 

load achieved, as shown in Figure 8.4.  In Figure 8.4, curve 1 represents a beam with less 

severe initial imperfections than curve 2 and curve 2 represents a beam with less severe 

initial imperfection than curve 3.   

 

 

Figure 8.4 – Effect of initial imperfections of elastic lateral-torsional buckling response 
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 Because the initial imperfections for an elastic case do not affect the maximum 

load achieved, the reduction parameters for initial imperfections do not apply for the 

elastic case.  The reduction parameters were derived for cases where inelastic behavior 

was anticipated.   

 The author hypothesizes that there is a transition between the elastic buckling load 

and the inelastic buckling load.  The lateral-torsional buckling load calculated by the 

simplified equation and reduced by the associated reduction parameters was based on a 

reinforced concrete or prestressed concrete beams that had significant cracking behavior.   

Consider first a beam with zero initial imperfections and significant prestressing 

force such that there was no cracking behavior.  For prestressed concrete bridge girders, 

the prestressing force is large enough that no flexural cracking is developed under the 

self-weight and the neutral axis would be below the bottom flange.  The beam would then 

buckle elastically. If the buckling load was slightly less than the cracking load, the neutral 

axis would be slightly below the bottom of the cross-section and perfectly horizontal as 

shown in Figure 8.5.   

Now consider the same beam configuration but with initial imperfections. The 

beam will not buckle at the elastic buckling load as was discussed and presented in 

Figure 8.4 because the neutral axis will no longer be horizontal and cracking could occur 

at the corner of the cross-section as shown in Figure 8.5.   
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Figure 8.5 – Cracking behavior during transition behavior between elastic and inelastic 
lateral-torsional buckling 

  

The reduction in stiffness due to the cracking behavior shown in Figure 8.5 would 

be less than the reduction predicted by the reduction parameters from the simplified 

equation.  The reduction parameters would therefore be conservative; however, the 

reduction parameters potentially could be overly conservative because the reduction 

parameters were developed for prestressed concrete and reinforced concrete beams that 

were fully cracked.  The difference between reinforced concrete and prestressed concrete 

beams would be the extent or depth of cracking.  The depth of cracking and the 

associated effect on the lateral-torsional buckling load was inherent to the simplified 

equation because it was a function of the calculated depth of the compression zone.  

Additional research is required on the transition behavior.   
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 There is additional transition behavior to be considered for the case of large initial 

imperfections and no anticipation of flexural cracking in the bottom flange.  For example, 

if the initial imperfections are large enough, the load versus lateral displacement response 

could cause the modulus of rupture of the concrete to be exceeded at one edge of the top 

flange of a prestressed concrete bridge girder as shown in Figure 8.6.   

 

 

Figure 8.6 – Top flange cracking due to excessive initial imperfections 
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The reduction parameters introduced in this research do not apply to such a case 

because the parameters were derived for flexural cracking initiating at the bottom flange 

and progressing upward through the beam.  Instead, a reduction to stiffness should be 

based the weak-axis moment of inertia reduction equation from Mast (1993) given by 

Equation 1.66 and presented again here as: 

 

  ( )θ5.21II yeff +=  (8.5) 

  

Equation 8.5 was derived by using experimental results for several prestressed 

concrete bridge girders that were continually rotated at their end to determine the weak-

axis displacement characteristics.  When the girder reached a large enough angle, the top 

flange on the convex side of the girder began to crack and there was a loss of weak-axis 

stiffness.  Equation 8.5 was determined by a fit to the experimental data (Mast, 1993). 

Additional research is required to determine the validity of Equation 8.5 as a stiffness 

reduction parameter for lateral-torsional buckling when cracking of the top flange is 

anticipated. 

8.1.2 PCI BT-72 Lateral-Torsional Buckling Parametric Study 

To investigate the potential of lateral-torsional buckling for a typical bridge girder 

cross-section, a PCI BT-72 was studied parametrically using the rollover analysis by 

Mast (1993).  A PCI BT-54 was not studied parametrically because girder spans for BT-

54’s are typically less than 140-ft. (42.7 m) in practice.  From preliminary analyses, a 
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span of 140-ft. (42.7 m) was not long enough to cause a BT-54 to be prone to lateral-

torsional buckling.  Figure 8.7 shows the ratio of applied load to self-weight load that 

would cause lateral-torsional buckling of span for a BT-72 with 40 ½-in. (12.7 mm) 

diameter prestressing strands for several different initial imperfection conditions.   The 

applied load to self-weight load ratio for each of the representative conditions was 

computed as the ratio of the critical uniform load that caused buckling over the self-

weight uniform load of the girder.  Therefore, an applied load to self-weight load ratio of 

1.0 corresponded to the self-weight of the girder causing buckling.  The different initial 

imperfection conditions used are listed below. 

1. The girder with zero imperfections.   

2. The girder with the maximum allowable sweep of 1/8-in. (3.2 mm) per 10-

ft. (3.0 m) of length and no rotation.   

3. The girder with the maximum rotation at midspan as the allowable sweep 

over the height of the cross-section, but no sweep applied in the reduction 

parameters.   

4. The girder with the maximum sweep of 1/8-in. (3.2 mm) per 10-ft. (3.0 m) 

of length and maximum rotation at midspan as the allowable sweep over 

the height of the cross-section in addition to 0.05-in. (1.3 mm) per 10-ft. 

(3.0 m) of length of additional sweep due to thermal effects  (standard 

imperfections).  The 0.05-in. (1.3 mm) per 10-ft. (3.0 m) of length was 

approximated by using data from the BT-54 thermal deformation study 
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from Chapter 3 where thermal deformations were measured as 

approximately 0.5-in. (13 mm) for the 100-ft. long girder.   

5. The girder with standard imperfections, including the imperfections from 

thermal deformation, in addition to a bearing rotation of 0.005 radians that 

was representative of the rotation caused by the support flatness tolerance.  

The support flatness tolerance that is presented in Chapter 1 allows for 

1/16-in. (1.6 mm) perturbations in the concrete surface.  A 24-in. (610 

mm) bearing was assumed, and the worst case of a 1/16-in. (1.6 mm) 

increased elevation on one side of the bearing and a 1/16-in. (1.6 mm) 

decreased elevation on the other side of the bearing was assumed, which 

resulted in approximately a 0.005 radian initial bearing rotation.  

6.  The girder with standard imperfections, including imperfections due to 

thermal deformation, plus an additional 0.05 radians of initial rotation at 

the supports were applied to consider an extreme condition.  The extreme 

condition was in the range of initial bearing rotation angles for the girders 

at the Arizona bridge collapse (Oesterle et al., 2007).  The addition of a 

large initial end rotation was representative of the case of imperfections in 

the girder causing additional rotation of the girder due to the compliance 

of the bearing pad.  Furthermore, a rounded bottom flange would allow a 

girder to “roll” to a significant initial end rotation.   
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Figure 8.7 –Lateral-torsional buckling load over self-weight loads for BT-72 girder with 
40 ½-in. diameter strands and with lateral bracing at the supports 

 

 The line labeled as “Cracking” in Figure 8.7 represents the applied load to self-

weight load ratio in which cracking would occur for the cross-section given the assumed 

prestressing force.  Below the “Cracking” curve, the cross-section was not cracked and 

above the curve, the cross-section was cracked.  Figure 8.7 shows that at spans greater 

than 160-ft. (48.8 m), with standard initial imperfections or extreme initial imperfections, 

lateral-torsional buckling could occur for a girder braced at the ends.  However, at spans 

exceeding 160-ft. (48.8 m), more prestressing force would typically be used than what 

was used in the analysis for the plot of Figure 8.7.  Therefore, a similar plot is shown in 

Figure 8.8 for a BT-72 with 40 0.6-in. (15.2 mm) diameter prestressing strands, an 

increase of 42% in area of strands and in the amount of prestressing force.   
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Figure 8.8 – BT-72 lateral-torsional buckling loads for 40 0.6-in. diameter strands with 
lateral bracing at the supports 

 

 Figure 8.8 shows that with standard imperfections or extreme initial 

imperfections, spans exceeding 170-ft. (51.8 m) are predicted to be in danger of lateral-

torsional buckling.  However, that is not necessarily the case.  For points in Figure 8.8 

that are above the cracking curve, the cross-section has cracked, and, therefore, the 

simplified equation is applicable because inelastic behavior is present.  For points below 

the cracking curve, the cross-section has not cracked, and, therefore, the simplified 

equation does not apply.  For those cases, the elastic lateral-torsional buckling load would 

be the true buckling load if it was not for the aforementioned hypothesized transition 

behavior that is depicted in Figure 8.5.  Therefore, the simplified equation applies to 

cases in Figures 8.7 and 8.8 where the ratio of uniform buckling load to self-weight load 
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is below unity and above the cracking curve.  In Figure 8.8, it is shown that there is such 

a possibility when the span is greater than 180-ft. (801 m) because the factor of safety 

against cracking is less than unity.  However, for girders in excess of 180-ft. (801 m), a 

larger prestressing force would be used because design practice is such that prestressed 

bridge girders will not crack under self-weight alone.  Because of the amount of 

prestressing in typical long span girders and the transition from inelastic buckling to 

elastic buckling, typical bridge girder cross-sections with typical prestressing forces and 

typical initial imperfections will not be in danger of lateral-torsional buckling with the 

ends properly braced.  Bracing stiffness and strength criterion needs to be developed and 

is beyond the scope of this research.  For unusual cases or if a high factor of safety is 

desired, the simplified analytical technique would provide a conservative factor of safety.  

8.2 Unbraced Girder Rollover Discussion 

 The author concludes that the Arizona girders collapsed due to rollover.  It is 

predicted in Section 8.1 that lateral-torsional buckling failures are unlikely for AASHTO 

and PCI BT bridge girders because such girders are designed to have no cracking under 

self-weight and because the cross-sectional geometries are not slender enough for elastic 

lateral-torsional buckling to occur for typical spans.  However, any new bridge girder 

geometric design should be checked for the elastic lateral-torsional buckling capacity.  

Rollover failures are more feasible than lateral-torsional buckling failures for prestressed 

concrete bridge girders and are possible when no cracking behavior is expected.  For 

girders that are being placed on supports, the estimation of the bearing pad rotational 

stiffness is of utmost importance.   
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8.2.1 Determination of Bearing Pad Rotational Stiffness 

To determine the rotational stiffness of a bearing pad, an axial stiffness of the 

bearing pad must be determined first.  AASHTO (2007) specified that elastomeric 

bearing pads must have a shear modulus between 95 psi to 200 psi (0.655 MPa to 1.379 

MPa).  The shape factor of the bearing pad as specified by AASHTO (2007) is presented 

in Equation 8.6. 

 

 ( )WLh

LW
S

ri +
=

2
 (8.6) 

 

In Equation 8.6, L is the length of the bearing pad, W is the width of the bearing pad, and 

hri is the thickness of an individual layer of elastomer.  AASHTO (2007) states that the 

bearing pad response is nonlinear; however, the compressive modulus for an elastomeric 

bearing pad can be estimated as: 

 

 26GSEbp =  (8.7) 

 

In Equation 8.7, G is the shear modulus for the elastomer.  The vertical or axial stiffness 

was then determined using Yazdani et al. (2000): 
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 In Equation 8.8, Ax is the cross-sectional area of the bearing pad and H is the total 

height of the elastomer layers.  It was assumed that the rotation was sufficiently small 

such that uplift did not occur, and, therefore, the rotational stiffness of the bearing pad 

was calculated by Yazdani et al. (2000): 
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In Equation 8.9, Ix is the moment of inertia about the axis that was parallel to the 

longitudinal axis of the girder.    

The rollover load calculated by using Mast (1993) for the PCI BT-54 test girder 

from this study shown in Figure 7.40 was based on the experimental vertical stiffness test 

on the bearing pad.  The vertical stiffness used in the analysis was 4573 kip/in (801 

kN/mm) and the rotational stiffness was 219,500 kip-in/rad (24,800kN-m/rad).  However, 

using the conservative value of the shear modulus as 95 psi (0.655 MPa) from AASHTO 

(2007) and the analysis technique from Yazdini et al. (2000), the theoretical vertical 

stiffness of the bearing pad was determined to be 7296 kip/in (1278 kN/mm) and the 

theoretical rotational stiffness was determined to be 350,200 kip-in/rad (39,570 kN-

m/rad).  The predicted stiffness was greater than the experimentally determined bearing 

pad stiffness because the bearing pad exhibited nonlinear behavior.  For small loads, the 
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stiffness properties were reduced; however, in the case of bearing pad design, the load on 

the bearing from an in service bridge was significantly larger than the self-weight of the 

girder.  Therefore, the theoretical stiffness of the bearing pad over-predicted the bearing 

pad stiffness properties at relatively low applied loads.   

The current experimental measurement of elastomeric bearing pad stiffness by the 

Georgia Department of Transportation is to load the elastomeric bearing pad to 150% of 

the design service load for the bearing pad and to measure the final axial (vertical) 

shortening of the bearing pad.  No preload is used, that is the dial gages that are used to 

measure the vertical displacement of the bearing pad at each of the four corners of the 

bearing pad are zeroed when there is zero load on the bearing pad.  From the 

experimental results, the axial and rotational stiffness are calculated based on the method 

outlined in AASHTO (2007).  Therefore, the nonlinear stiffness behavior at low loads is 

not captured by the method because the total bearing pad vertical displacement is 

averaged over the entire loading to 150% of the design service load.  The experimental 

vertical stiffness of the bearing pad was 9387 kip/in (1644 kN/mm) when the load on the 

bearing pad exceeded 80 kips (356 kN), corresponding to a shear modulus of 122 psi 

(MPa).  A shear modulus of 122 psi (MPa) was well within the designated range of 

allowable shear moduli presented in AASHTO (2007).  However, the maximum load a 

single bearing experienced during the experiment was 86 kips (383 kN).  In fact, for the 

bridge girders that collapsed in Arizona (Oesterle et al., 2007) the ratio of self-weight 

load to service load was approximately 0.31.   
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8.2.2 Rollover Sensitivity to Bearing Pad Stiffness 

The stiffness parameters that should be used in the rollover analysis ideally would 

not be the assumed linear bearing pad stiffness based on relatively large loads on the 

bearing pad.  The use of a high stiffness value would be unconservative.  Additional 

research is required to determine bearing pad axial and rotational stiffnesses with applied 

loads in the range of girder self-weights.  Figure 8.9 shows the rollover analysis by Mast 

(1993) on a 100-ft. (30.5 m) long PCI BT-54 bridge girder for the experimental bearing 

pads used by the author as a function of the assumed rotational stiffness to depict the 

relatively low sensitivity.    
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Figure 8.9 – Factor of safety against rollover under self-weight vs. 24-in. (610 mm) 
bearing pad rotational stiffness 
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The sensitivity to rotational stiffness was based on the 24-in. (610 mm) wide 

bearing pad used in the experiments.  The effect an 18-in. (457 mm) wide bearing pad 

had on the rollover behavior was considered, and, furthermore, the sensitivity of the 

rollover load to reasonable rotational stiffness approximations for an 18-in. (457 mm) 

wide bearing pad was investigated. 

A lower bound approximation for the rotational stiffness for an 18-in. by 10-in 

(457 mm by 254 mm) bearing pad was determined to be 77,160 kip-in./rad (8718 kN-

m/rad) as labeled in Figure 8.10.  Figure 8.10 shows the sensitivity to the assumed 

rotational stiffness.  The predicted factor of safety against rollover under self-weight 

loading using Mast (1993) for the BT-54 was 2.56.  The rollover factor of safety reduced 

39% if an 18-in. (457 mm) wide bearing pad was used as opposed to the 24-in. (610 mm) 

wide bearing pad.   
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Figure 8.10 – Factor of safety against rollover under self-weight vs. 18-in. (457 mm) 
bearing pad rotational stiffness  

 

Figure 8.10 shows that the sensitivity to the assumed rotational stiffness was 

higher for the 18-in. (457 mm) wide bearing pad.  To determine whether the sensitivity of 

the rollover failure load to the estimated bearing pad rotational stiffness is too large, a 

factor of safety needs to be established.  Additional research is required to establish an 

adequate factor of safety.  Mast (1993) recommends a factor of safety of 1.5 against 

rollover; however, Mast stated that this factor of safety was based on experience.   

8.2.3 Rollover with respect to Non-Uniform Bearing 

All of the rollover analyses were predicated on the assumption that the bottom 

flange was flat and provided a uniform bearing surface.  The effective rotational stiffness 

would be less for a rounded bottom flange.  Mast (1993) stipulated that if the load was 
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outside of the kern (the bearing pad has uplifted), then the shape factor should be 

computed as the perimeter of the area that is in contact with the bearing pad.  Although 

the proposition needs to be verified, the author proposes that a similar consideration be 

made for girders with imperfect bottom flanges.  Research needs to be done to verify the 

requirement, and, furthermore, a survey of initial bottom flange inaccuracies needs to be 

performed to quantify the extent of the imperfections in practice.     
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CHAPTER 9 

CONCLUSIONS & RECOMMENDATIONS 

9.1 Summary 

 An experimental and analytical study was performed to determine the stability 

behavior of prestressed concrete beams.  Two stability phenomenons were investigated: 

(1) lateral-torsional buckling and (2) rollover.  An emphasis was placed on the effects of 

initial imperfections on the stability behavior; the effect elastomeric bearing pads and 

support rotational stiffness was investigated.  The experimental study consisted of testing 

six 40-in. (1016 mm) deep, 4-in. (102 mm) wide, 32-ft. (9.75 m) long rectangular 

prestressed concrete beams with varying prestressing force and prestressing strand 

eccentricity and testing one 100-ft. (30.5 m) long PCI BT-54 bridge girder.  Elastic and 

nonlinear analyses were performed on the seven test specimens, on a hypothetical 

rectangular beam with a series of varying initial imperfections and a PCI BT-72 with 

varying imperfections. 

 The first set of experiments was performed on the six rectangular beams.  The 

beams were designed to fail by lateral-torsional buckling.  The boundary conditions were 

constructed so that the test setup replicated classical theory; at each support lateral 

translation, vertical translation and torsional rotation were restrained.  The beams were 

free to rotate about the horizontal and vertical axes.  The results showed that the 

prestressing strands did not restrain the beams from buckling out-of-plane or destabilize 

the beam like in the case of a beam-column.  The beams buckled after flexural cracking 

had occurred and did so at a load much less than what elastic lateral-torsional buckling 
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theory predicted.  The reinforced concrete analytical methods by Hansell and Winter 

(1959) and by Sant and Bletzacker (1961) over-predicted the buckling loads because the 

effect of initial imperfections was not considered.  Initial imperfections were shown to 

decrease the inelastic lateral-torsional buckling load due to a rotated neutral axis, 

additional torsion on the cross-section and progressive rotation that led to a larger 

component of flexure about the weak-axis (P-delta effect).   

 A material and geometric nonlinear, incremental load analysis was performed on 

the six rectangular beams.  The nonlinear analyses matched the experimental load versus 

lateral displacement and load versus rotation behavior, and the analysis predicted the 

experimental maximum load within an error of 2%.   

 The nonlinear analysis was extrapolated to several different initial imperfection 

conditions to parametrically study the effect of initial lateral displacement and initial 

rotation on the inelastic lateral-torsional buckling load.  A simplified expression for 

lateral-torsional stability of beams with initial imperfections was developed based on an 

elastic stability expression (Goodier, 1941 and 1942).  The data from the parametric 

study were used to develop reduction parameters for both initial sweep and initial 

rotation.  A reduction parameter was derived for the reduction to the weak-axis stiffness 

due to a rotated neutral axis and reduction parameters were fit to reduce the lateral-

torsional buckling load for initial lateral displacement and initial rotation.  A simple 

procedure was presented to calculate the zero imperfection inelastic lateral-torsional 

buckling load and the reduction parameters were applied to determine the inelastic 

lateral-torsional buckling load of the imperfect case.  The simplified technique predicted 

the buckling loads of the rectangular experimental beams of this study very well with a 
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maximum error of 7.5% and an average absolute error of 4.8%.  The simplified technique 

prediction for the experimental results from König and Pauli (1990) resulted in a 

maximum error of 8.4% and an average absolute error of 4.2%.  The simplified equation 

predicted the experimental results from reinforced concrete beams by Kalkan (2009) with 

a maximum error of 13.3% and an average absolute error of 4.1%.   

 The first experiment with the PCI BT-54 was a study on the deformation of the 

girder due to solar radiation.  Solar radiation on the top and side of the girder, wind 

speed, internal strain, air temperature, internal temperature and surface temperature were 

recorded to determine additional sweep or rotation in the girder due to non-uniform 

heating.  The research showed that the initial sweep of the 101-ft. (30.8 m) PCI BT-54 

girder increased up to 40% due to the effect of solar radiation on the girder, an additional 

sweep of 0.0515-in. (1.31 mm) per 10-ft. (3.05 m) of girder length.  However, only 

0.000212 radians of additional rotation was developed due to the non-uniform heating of 

the girder.     

 The PCI BT-54 was tested under midspan point load to examine its rollover 

behavior.  For the stability experiment, full torsional restraint was not provided at the 

supports.  Instead, torsional restraint was only provided by the couple created by the 

bottom flange and the elastomeric bearing pads.  The girder was first loaded to 29 kips 

(129 kN) and the rigid body rotation of the girder was significantly more than anticipated.  

The large rigid body rotation was due to the lack of flatness of the bottom flange of the 

girder at the supports which allowed the girder to “roll” on the elastomeric bearing pad.  

A retrofit was performed to provide a flat bearing surface.  Upon the second loading of 

the girder, the load versus lateral displacement and load versus rotation response 
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corresponded well with the prediction from the nonlinear incremental analysis that 

included a bearing pad model.  A rollover failure occurred well before an inelastic lateral-

torsional buckling mode was anticipated.  In fact, the girder never cracked during the 

testing.  The nonlinear incremental analysis did not predict the rollover failure because of 

the assumption made in the elastomeric bearing pad model.  Imperfect bearing conditions 

were not modeled and nonlinear bearing stiffness behavior at large rotations was most 

likely inaccurate.  The rollover methodology proposed by Mast (1993) predicted the 

rollover limit state very well.   

 From the research, it was apparent that rollover is the controlling stability 

phenomenon for prestressed concrete bridge girders.  The nonlinear lateral-torsional 

stability failure is unlikely because prestressed concrete bridge girders are designed to not 

crack under self-weight alone.  Therefore, the inelastic lateral-torsional buckling 

simplified equation initial imperfection reduction parameters do not apply to bridge 

girders with large flanges. Instead, the elastic lateral-torsional buckling predictions 

should be used.  However, the elastic lateral-torsional buckling loads were found to be 

greater than the rollover limit for girders with no end support lateral bracing.  

9.2 Conclusions 

 The following conclusions were made based on the experimental and analytical 

research.   

1. For prestressing strands fully bonded to the concrete, the prestressing force did 

not have a destabilizing effect on the beams.  In fact, the prestressing strands 

increased the stability of the beams because the prestressing caused a larger 
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compression zone depth, and, therefore, a higher lateral and torsional stiffness.  

Any prestressing strand design (force and strand location) that increases the 

compression zone depth increases the lateral-torsional buckling stability of the 

cross-section. 

2. Imperfections had a significant effect on the stability behavior of prestressed 

concrete beams.  For inelastic lateral-torsional buckling, imperfections caused a 

rotated neutral axis angle, and, therefore, reduced the weak-axis moment of inertia 

more than was predicted with a rectangular compression zone.  Furthermore, 

increased initial imperfections increased that rate of additional lateral 

displacement and rotation, thereby increasing the torsion on the cross-section 

which inevitably led to torsional cracking when the beams reached unstable 

behavior.  The initial imperfections significantly affected the load versus lateral 

displacement and load versus rotation behavior.  The rate of increase of lateral 

displacement and rotation increases due to increased initial imperfections, and, 

therefore, lead to rollover at lower loads.  The BT-54 girder reached a rollover 

behavior without becoming inelastic. 

3. The existing analytical methods to predict the lateral-torsional buckling loads of 

prestressed concrete and reinforced concrete beams were inadequate.  The 

methods that were reasonable neglected the effect initial imperfections had on the 

stability behavior.  The existing methods thus serve as upper bounds and are not 

conservative.   
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4. A material and geometric nonlinear incremental-load analysis was performed to 

predict the load versus lateral displacement and load versus rotation behavior of 

prestressed concrete beams in flexure.  The analysis predicted the maximum loads 

well with a maximum error of 2%.  The analysis predicted the lateral 

displacement and rotation behavior well; however, there were some 

inconsistencies between the experimental and analytical load-deflection curves 

because of the assumptions made in the analysis and experimental error.   

5. The simplified equation predicted the buckling loads of the rectangular 

experimental beams of this study well with a maximum error of 7.5% and an 

average absolute error of 4.8%.  The simplified equation was also compared with 

the experimental results for the reinforced concrete and prestressed concrete 

beams from König and Pauli (1990) and the reinforced concrete beams from 

Kalkan (2009).  The simplified equation prediction for the experimental results 

from König and Pauli (1990) resulted in a maximum error of 8.4% and an average 

absolute error of 4.2%.  The simplified equation tended to slightly under-predict 

the buckling load of the flanged cross-sections of the experimental study by 

König and Pauli (1990).  The simplified equation predicted the experimental 

results from Kalkan (2009) with a maximum error of 13.3% and an average 

absolute error of 4.1%.  Note that the reduction parameters from Equations 6.22, 

6.32 and 6.33 were developed and calibrated for a specific range of initial sweep 

and initial rotation, and, therefore, if these maximums are exceeded, the reduction 

parameters are not necessarily accurate due to a lack of verification.  The limit on 

the maximum initial sweep is 5/16-in. (7.94 mm) per 10-ft. (3.05 m) of span, 
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which is 150% larger than the PCI tolerance (PCI, 2000).  The limit on the 

maximum initial rotation is θi/h < 0.8.   

6. The nonlinear incremental analysis was applied to the BT-54 girder experiment 

and the analytical results matched very well with the experimental load versus 

lateral displacement and load versus rotation when the shear displacement of the 

bearing pads and the end rotation of the girder due to the compliance of the 

bearing pads were omitted.  The nonlinear incremental analysis predicted the 

general trend of the end rotation behavior due to the bearing pad compliance but 

did not match perfectly because of the assumptions and simplifications used in the 

bearing pad analytical model.   

7. Rollover behavior controlled for the BT-54 experimental girder and rollover will 

control for typical bridge girders and typical bridge girder conditions because 

prestressed concrete bridge girders are designed to not crack under self-weight.  

For girders that are extremely long, and for new bridge girder cross-section 

geometries, elastic lateral-torsional buckling should be checked even if the ends 

are braced.   

8. It is hypothesized from this research that there is a transition between inelastic 

lateral-torsional buckling and elastic lateral-torsional buckling for cases where 

flexural cracking is not anticipated.  In such a transition case, the inelastic 

simplified stability analysis will under-predict the buckling load because the 

cracking will be less extensive than the conditions that the simplified equation 

was based on and the elastic buckling load will over-predict the buckling load.   
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9. The nonlinear incremental analysis can be used to predict the lateral-torsional 

buckling load and the rollover behavior assuming the bearing pad stiffness model 

used is accurate.  The analytical procedure by Mast (1993) predicted the rollover 

load well, but the procedure is dependent on the assumed rotational stiffness of 

the support.   

10. The rollover behavior was very sensitive to bearing pad width.  Using a wider 

bearing pad increases the factor of safety against rollover significantly.  The 18-

in. (457 mm) wide bearing pads used as bearings for the girders that collapsed in 

Arizona coupled with the large initial bearing rotations were probably the most 

significant contributing factors to the collapse.  Furthermore, a rounded bottom 

flange will significantly increase the equilibrium rotation when the girder is 

placed, thereby causing a girder to become more unstable.   

11. The research showed that the initial sweep of the 101-ft. (30.8 m) PCI BT-54 

girder increased up to 40% due to the effect of solar radiation on the girder.  Little 

additional initial rotation was observed during the study.   

9.3 Recommendations 

 The following recommendations are made for the analysis and design of slender 

reinforced and prestressed concrete members.   

 9.3.1 Analysis & Design Recommendations 

1.  Use the simplified Equation 6.34 including the reduction parameters from 

Equation 6.22, 6.32 and 6.33 given below that take into account initial 
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imperfections to estimate the inelastic lateral-torsional buckling load of slender 

reinforced concrete and prestressed concrete beams.  The inelastic lateral-

torsional buckling load simplified analysis should be used when flexural cracking 

is anticipated.  Note that the reduction parameters from Equations 6.22, 6.32 and 

6.33 were developed and calibrated for a specific range of initial sweep and initial 

rotation, and, therefore, if these maximums are exceeded, the reduction 

parameters are not necessarily accurate due to a lack of verification.  The limit on 

the maximum initial sweep is 5/16-in. (7.94 mm) per 10-ft. (3.05 m) of span, 

which is 150% larger than the PCI tolerance (PCI, 2000).  The limit on the 

maximum initial rotation is θi/h < 0.8.    
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2. To increase the lateral-torsional buckling load of a slender reinforced concrete or 

prestressed concrete beam, the span can be decreased, intermediate bracing can be 

added, the geometry can be changed to decrease the slenderness, or prestressing 

force can be increased.  Increasing the prestressing force results in a higher 

cracking moment and a larger compression zone, thereby increasing the weak-

axis moment of inertia and torsion constant so long as the effects of prestressing 

do not cause tension in the compression flange.   

3. For cases where the inelastic behavior (concrete cracking) is not expected, initial 

imperfections will not reduce the lateral-torsional buckling load for most cases, 

and, therefore, the elastic lateral-torsional buckling load applies.  The specific 

cases where initial imperfections could still reduce the lateral-torsional buckling 

load are if the initial imperfections are so large that cracking initiates at the top 

flange or if the stresses in the bottom flange are very close to the rupture stress, 

and, therefore, imperfections can cause cracking at the corner of the bottom 

flange.  For cracking of the top flange, different stiffness reduction parameters are 

required because the simplified equation was developed for flexural cracking 

progressing from the bottom flange.  For a small amount of cracking at the corner 

of the bottom flange, the reduction parameters of the simplified equation would 

under-predict the lateral-torsional buckling load. 

4. For prestressed concrete bridge girders, rollover will control over lateral-torsional 

buckling for cases where the ends are not laterally braced.  Prestressed concrete 

bridge girders are designed to not crack under self-weight; therefore, the elastic 

lateral-torsional buckling load applies.  For AASHTO and PCI BT bridge girder 
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cross-sections, the elastic lateral-torsional buckling load will be greater than the 

self-weight, thus rollover controls.  Furthermore, the rollover methodology from 

Mast (1993) predicted the rollover load of the BT-54 from this research, and, 

therefore, should continue to be used as the method to predict the factor of safety 

against rollover failure. 

5. Lack of flatness of the bottom flange of a prestressed concrete bridge girder was 

shown in this research to increase the initial rotation of the girder which can cause 

a premature rollover failure.  Using an embedded steel plate in the bottom flange 

at the location of bearing is recommended to remove the effect of imperfections in 

forming the concrete of the bottom flange.  Furthermore, the embedded steel 

plates have additional benefits in the fabrication of prestressed concrete bridge 

girders such as the reduction of bearing zone cracking (Kelly, 2006). 

6. From rollover analyses using Mast (1993), the width of the elastomeric bearing 

pads should be selected as the width of the bottom flange of the prestressed 

concrete bridge girder (minus the edge chamfers).  The factor of safety against 

rollover failure for a 100-ft. (30.5 m) PCI BT-54 was 39% lower for an 18-in. 

(457 mm) wide elastomeric bearing pad as opposed to a 24-in. (610 mm) wide 

elastomeric bearing pad 

7. Future long-span prestressed concrete bridge girder geometries should have 

increased bottom flange widths to decrease susceptibility to rollover failures of 

girders while being erected.  Increasing the bottom flange width is the most 

effective way to change the geometry and increase the factor of safety against 
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rollover of the girder.  The weak-axis moment of inertia is affected favorably by 

an increase in the bottom flange width and the larger bottom flange width allows 

for a wider elastomeric bearing pad to be used.  The implementation of a wider 

bottom flange only at the support locations coupled with a wider bearing pad 

provide the best economy with respect to the use of materials in increasing the 

factor of safety against rollover of a prestressed concrete bridge girder; however, 

an efficient and economical fabrication methodology to create a wider bottom 

flange only at a specific location needs to be explored.   

8. A prestressed concrete bridge girder should be laterally braced adequately at the 

supports as soon as possible after the girder is erected.  Such bracing will reduce 

the possibility of rollover failures. 

9.3.2 Future Research Recommendations 

1. Finite element modeling should be done to further verify the simplified equation 

(Equation 6.34) and to improve upon the equation.  Furthermore, the transition 

behavior between inelastic and elastic buckling can be investigated by the use of 

finite element modeling that has been verified with fully inelastic experiments.   

2. An experimental study needs to be performed on the axial and rotational stiffness 

of elastomeric bearing pads at loads in the range of the self-weight of a 

prestressed concrete bridge girder.  Because the assumed rotational stiffness is 

important to the rollover behavior it is crucial to have an accurate prediction of 

the actual support rotational stiffness.  Traditionally the elastomeric bearing pad 

stiffness is found by assuming a linear axial stiffness based on the loading the 
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elastomeric bearing pads will encounter under service conditions; however, 

rollover failures occur under the self-weight of the girders alone when the 

stiffness of the bearing pad has been shown to be nonlinear.    

3. The extent of bottom flange flatness error must be determined from a survey of 

prestressed concrete girders from many different precast plants.  The extent of the 

bottom flange flatness error can be used to help determine if requiring an 

embedded steel plate is necessary.   

4. A criterion is required for the initial rotation of prestressed concrete bridge 

girders.  The PCI Bridge Design Manual (2003) specifically states a tolerance on 

initial sweep in a prestressed concrete girder, but does not explicitly state a 

tolerance on initial rotation. 

5. A criterion is necessary to determine the required lateral bracing strength and 

stiffness that will prevent a rollover failure.  It is stipulated in Section 9.3.1 that a 

prestressed concrete bridge girder should be laterally braced adequately at the 

supports to prevent rollover failures due to unforeseen circumstances.  Therefore, 

“adequate” bracing must be defined. 

6. Methods to increase the factor of safety against rollover of a prestressed concrete 

bridge girder when the girder is hanging from a crane or when the girder is in 

transport needs to be researched.  This study focused on prestressed concrete 

girders supported from below on rollers or elastomeric bearing pads; however, 

hanging girders and girders in transport are also prone to rollover failures.   
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APPENDIX A 

SUMMARY OF SPECIMEN CHARACTERISTICS 
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Figure A.4 – Initial horizontal displacement at top of Beam B1A 
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Figure A.5 – Initial horizontal displacement at bottom of Beam B1A 
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Figure A.6 – Initial horizontal displacement at top of Beam B1B 
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Figure A.7 – Initial horizontal displacement at bottom of Beam B1B 
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Figure A.8 – Initial horizontal displacement at top of Beam B2A 
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Figure A.9 – Initial horizontal displacement at bottom of Beam B2A 
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Figure A.10 – Initial horizontal displacement at top of Beam B2B 
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Figure A.11 – Initial horizontal displacement at bottom of Beam B2B 
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Figure A.12 – Initial horizontal displacement at top of Beam C2A 
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Figure A.13 – Initial horizontal displacement at bottom of Beam C2A 
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Figure A.14 – Initial horizontal displacement at top of Beam C2B 
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Figure A.15 – Initial horizontal displacement at bottom of Beam C2B 
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Figure A.16 – Prestressing strand stress-strain curve from mill certificate 



 379 

 

F
ig

ur
e 

A
.1

7 
– 

B
T

-5
4 

de
ta

ile
d 

de
si

gn
 d

ra
w

in
g 



 380 

0 20 40 60 80 100
0

1

2

Sine Curve
Measured Imperfections

ft x( )

in

∆ top

in

x

ft

z

ft
, 

 

Figure A.18 – Initial horizontal displacement at top of BT-54 with level supports 
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Figure A.19 – Initial horizontal displacement at bottom of BT-54 with level supports 
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Figure A.20 – Initial rotation of BT-54 with level supports 
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Figure A.21 – Initial horizontal displacement at top of BT-54 with rotated supports 
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Figure A.22 – Initial horizontal displacement at bottom of BT-54 with rotated supports 

 

0 20 40 60 80 100
0.05

0.06

0.07

Sine Curve
Measured Imperfections

fθ x( )

θ

x

ft

z

ft
, 

 

Figure A.23 – Initial rotation of BT-54 with initially rotated supports 
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APPENDIX B 

GRAVITY LOAD SIMULATOR DESIGN & DETAILS 

 

 The design of the gravity load simulator required selecting the geometry such that 

the capacity could be reached, the required lateral sway could be achieved and the 

mechanism would function properly.  To achieve a capacity that was much larger than 

previous gravity load simulators, the gravity load simulator was essentially designed as 

two parallel frames where the hydraulic ram was located between them.  It was necessary 

for such geometry for two reasons: to reduce the load in each frame of the gravity load 

simulator in half because bulky members would inhibit the free movement of the gravity 

load simulator, and, secondly, the high loads required the use of a high capacity hydraulic 

ram which was large itself.  There was no way to fit a large-capacity hydraulic ram in one 

frame; however, with two frames, the distance between them was selected based on the 

size of the hydraulic ram.   

There was a secondary advantage to design the gravity load simulator’s geometry 

this way.  Previous gravity load simulators, due to the rigid triangular frame undergoing 

significant compression forces, were susceptible to out-of-plane buckling.  In this design, 

the rigid triangular frames were braced to each other which restricted the ability for the 

rigid triangular frames to buckle about their pin locations, but, instead, they would have 

to overcome the resistance of two sets of pins separated by a relatively large distance 

which provided a significant couple.  Details of this buckling phenomenon were 

discussed in Yaramici et al. (1967).  Furthermore, detailed calculation procedures for 
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determining the geometric characteristics, as well as some “rules of thumb”, were 

presented in Stoddard (1997).  The detailed design drawings are presented in Figures B.1 

through B.16. 
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APPENDIX C 

ADDITIONAL RECTANGULAR BEAM MEASUREMENTS & DATA 
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Figure C.1 – Load vs. vertical displacement Beam B2A, loading #1 
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Figure C.2 – Load vs. vertical displacement Beam B2A, loading #2 
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Figure C.3 – Load vs. vertical displacement Beam B2A, loading #3 
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Figure C.4 – Load vs. vertical displacement Beam B1A 
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Figure C.5 – Load vs. vertical displacement Beam C2A 
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Figure C.6 – Load vs. vertical displacement Beam B1B 
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Figure C.7 – Load vs. vertical displacement Beam B2B 
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Figure C.8 – Load vs. vertical displacement Beam C2B 

 

 

Figure C.9 – LVDT nomenclature for rectangular beam tests 
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Table C.1 - Actual LVDT gage lengths for rectangular beams (inches) 

LVDT # B2A B1A C2A B1B B2B C2B 
L1 10 3/16 10 13/16 10 1/16 10 1/8 9 31/32 10 
L2 10 10 7/8 10 1/32 10 3/16 10 1/8 9 31/32 
L3 10 1/32 10 3/4 10 10 1/8 10 10 
L4 9 29/32 10 13/16 10 10 1/32 9 31/32 10 1/16 
L5 10 1/32 10 11/16 9 29/32 10 1/32 9 31/32 10 1/32 
L6 9 15/16 10 23/32 9 29/32 9 7/8 10 1/16 10 1/32 
L7 9 31/32 10 13/16 10 1/16 10 10 1/32 10 
L8 9 15/16 10 3/4 10 5/32 10 10 1/32 9 15/16 
L9 10 10 27/32 9 31/32 9 31/32 9 15/16 10 
L10 10 3/32 10 27/32 10 1/16 9 31/32 10 1/16 10 1/16 
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APPENDIX D 

EXAMPLE SIMPLIFIED EQUATION CALCULATION 

 

Beam C2A: 

Input Properties - 

psifc 11281'=  Concrete compressive strength 

ksiEc 5156=  Initial concrete modulus of elasticity  

.4inb =  Width of cross-section 

.4.31 ftL =  Span of beam 

.5.35 ind =  Depth of mild steel reinforcing 

.5.1 indt =  Depth of mild steel reinforcing at top of cross-section 

.20indp =  Depth of prestressing strands 

216.3 inAs =  Area of mild steel reinforcing at the bottom of cross-section 

279.0 inAt =  Area of mild steel reinforcing at the top of cross-section 

2328.0 inAps =  Area of prestressing steel  

ksif y 3.70=  Yield stress of the mild steel reinforcement  
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ksif psi 3.158=  Initial stress in prestressing strands after losses  

23.41 =C  Factor for concentrated load at midspan  

00.12 =C  Factor for simply-supported end conditions  

Calculations - 

001555.0=cε  Concrete strain at extreme compression fiber (iterated)  

416.0
0

==
ε
εcx  Ratio of extreme compression strain to strain at maximum 

 stress from Thorenfeldt et al. (1987) 

ksi
x

xf
f c
c 196.7

1

'8.1
2

=
+

=  Concrete stress in extreme compression fiber  

  from Thorenfeldt et al. (1987) 

( )
5.05.0,

1ln
max

2

1 =






 +=
x

xβ  Average stress under the stress block  

 from Thorenfeldt et al. (1987) 

( )
3

1

3

1
,5.0

tan2
1 1

1
2

1

2 =







>−−=

−

elseif
x

xx
k β

β
 Center of gravity of compression 

 zone from Thorenfeldt et al. (1987) 

.678.14 inc =  Compression zone depth (iterated)  

310016.6 −×=
−

+=
c

cdp
csesu εεε  Strain in prestressing strands  

ksif ps 45.174=  Stress in prestressing strands  

  from stress-strain curve in Figure A.16 
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31003.2 −×=−=
c

cd
cs εε  Strain in mild steel reinforcing 

310396.1 −×−=
−

=
c

cdt
cst εε  Strain in mild steel reinforcing at top of cross-section 

( ) ksifEf ysss 86.58,min == ε  Stress in mild steel reinforcing 

( ) ksifEf ysstst 49.40,min −== ε  Stress in mild steel reinforcing at top of cross-section 

kipfAfAT pspsss 23.243=+=  Tension in cross-section 

kipfAbcfC ststc 23.243'1 =+= β  Compression in cross-section 

Check if C = T:  If equivalent – continue, else – iterate compression zone depth 

( ) ( ) ( ) inkipdckfAckdfAckdfAM tsttppspsssa ⋅=−+−+−= 6667222   

 Internal moment in cross-section 

3
sec 1003.2 −×==

c

cfE
ε

 Concrete secant modulus of elasticity 

 

25

2323

sec 10824.31
1212

inkip
M

Mcb

M

Mhb
EB

a

R

a

R ⋅×=




































−








+
















=   

Weak-axis flexural stiffness (no effect of reinforcement because it is located at centroid) 
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( )

25

23

232323

sec

10665.9

35.01
3

3335.01
3

35.01
3

12

inkip

c

bcb

M

M

M

M

M

M

c

bcb

h

bhb

E
C

a

R

a

R

a

R

⋅×=


































 −







+























+








−



























 −







−







 −








+
=

ν

  

 Torsional stiffness 

976.074.11 =−=
C

B

L
A

α
 Effect of load application height 

inkipBCA
LC

C
M cr ⋅== 6659

2

1  Buckling moment for case of zero imperfections 

Check if Mcr = Ma:  If equivalent – continue, else – iterate extreme compression strain 

.313.0 inui =  Initial lateral displacement at midspan  

radi 01652.0012217.00043.0 =+=θ  Initial rotation at midspan 
 (includes applied load angle error) 

251 10991.2
2

tan
3

1
1 inkip

I

I
BB

gy

igx
r ⋅×=



































−= −

π
θ

 Reduced weak-axis stiffness 

889.01
31.0

=






−=∆
L

ui
r  Reduction for initial lateral displacement 

646.05.36 ==Θ − ier
θ  Reduction for initial rotation 
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inkipCBA
LC

C
M rrrb ⋅=Θ∆= 3380

2

1  Buckling moment including imperfections 

kip
L

MMP swbb 8.32
4

13.1

35.1 =






 −=  Buckling load including imperfections 

  
 (1.35/1.13 ratio corrects for difference in moment gradient between applied point load  
 and self-weight uniform load) 
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APPENDIX E 

ADDITIONAL DATA & PHOTOGRAPHS FOR BT-54 

EXPERIMENT 
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Figure E.1 – BT-54 load vs. vertical displacement 
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Figure E.2 – LVDT nomenclature for BT-54 

 

 

Table E.1 - Actual LVDT gage lengths for BT-54 (inches) 

LVDT # BT-54 
L1 9 31/32 
L2 10 1/32 
L3 10 
L4 10 
L5 10 
L6 10 
L7 10 1/32 
L8 10 1/16 
L9 10 
L10 10 1/16 
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L3 

L4 

L5 

L6 

L7 

L8 
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L10 

(a) South Side (b) North Side 
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Figure E.3 – Photograph of BT-54 LVDTs 

 



 419 

 

Figure E.4 – Aerial view of BT-54 experimental setup 
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Figure E.5 – BT-54 end view showing initial rotation 
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Figure E.6 – Extent of uplift of BT-54, Test #1 
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APPENDIX F 

BEARING PAD VERTICAL DISPLACEMENT CORRECTION 

PROCEDURE 

 

 The string potentiometers measuring the vertical displacement of the bearing pads 

required a correction to the raw data.  The correction was necessary because the string 

potentiometers were located a distance of 2-in. (51 mm) from the front edge of the 

bearing pad, and, therefore, approximately 8-in. (203 mm) from the center of rotation of 

the bearing pad as shown in Figure F.1. 

 

 

Figure F.1 – Bearing pad vertical displacement locations 

8” 
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When the girder was loaded, strong-axis flexural behavior caused rotation about 

the ideally pinned ends thus additional vertical displacement was measured by the string 

potentiometers.  The vertical displacement due to the rotation about the strong-axis must 

be removed from the raw data to accurately interpret the uplift behavior of the girder on 

the bearing pad.  The vertical displacement due to the strong-axis rotation was calculated 

using Equation F.1. 

 

  x
IE

PL

xc
cor 16

2

=δ  (F.1) 

 

In Equation F.1, “x” is the distance the string potentiometers were from the center of 

rotation along the longitudinal axis and δcor is the vertical displacement correction that 

must be subtracted from the measured data by the string potentiometers.  The distance 

“x” was taken as 8-in. (203 mm); however, the value is approximate because the center of 

rotation should vary during loading and the initial stress distribution in the bearing pad 

was unknown.  The uncorrected raw data compared with the analytical results from 

Chapter 7 are shown in Figure F.2. 
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Figure F.2 – Uncorrected bearing pad vertical displacements at edges 

 

Figure F.2 would make it appear that during the experiment, both sides of the 

bearing pad compressed at approximately the same rate with no end rotation.  Then at 

some critical level, once side of the bearing pad reversed displacement direction 

inevitably leading to uplift.  On the other hand, the analytical results show that after the 

self-weight was applied, one edge of the girder bottom flange immediately was 

displacing in the uplift direction.  
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APPENDIX G 

NONLINEAR ANALYSIS FLOWCHARTS 

 

Start 

θ(1) = Initial rotation at midspan 

u(1) =  Initial sweep at midspan 

θend(0) = Initial end rotation 

L = Span of beam 

fc’ = Concrete compressive strength 

Ec = Concrete initial modulus of elasticity 

Es = Steel modulus of elasticity 

Eps = Prestressing steel modulus of elasticity 

ν = Concrete Poisson’s ratio 

elements = # of segments 

Geometric dimensions 

M(1) = Msw  

u(1, j) = u(i) sin(π x(j)/L) 

 

θ(1, j) = θ(i) sin(π x(j)/L) 

 

j = 1 

No 

Yes 

j = elements + 1 j = j + 1 

Formulate global stiffness matrix, [K]  

for the appropriate boundary conditions 

using symmetry 

Calculate moment and torque at each node 

or cross-sectional location 

Formulate incremental load vector, {∆P}. 

For a concentrated load & symmetry, half the 

incremental concentrated load is applied at the 

midspan node with dPcos(θi) in the vertical direction 

and dPcos(θi) in the horizontal direction.  A constant 

torque is applied at midspan with increments of 

additional torque along the length to compensate for 

deformed configuation of beam. 

dU = [K]-1{∆P} 

U(i) = dU+U(i-1) 

i = 2 
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Figure G.1 – Nonlinear incremental analysis flowchart 

 

End 

U = Beam displacements and rotations at each node 

Section properties at each node - Ix, Iy, J 

c = Depth of neutral axis at each node 

E =  Average element tangent modulus of elasticity at each node 

φ = Neutral axis at each node 

dedge =  Bearing pad axial shortening at compressed edge 

θBP =  Bearing pad rotation 

j = 1 

cd(i, j), φ(i, j), Ec(i, j), Ix(i, j), Iy(i, j), curve(i, j) 
From fiber element subroutine 

c(i, j) = min(h, cd(i, j) - b/2 tan(φ(i, j))) 

bz(i, j) = min(b, cd(i, j) / tan(φ(i, j))) 

Gc(i, j) = Ec(i, j) / (2(1 + ν)) 

J(i, j) 

From torsion constant subroutine 

No 

Yes 

j = elements + 1 j = j + 1 

α(i) = ytop + camber - v(i, 5) 

TBP(i) = P(i)/2(u(i, 5) + α(i)(θ(i, 5) + θBP(i - 1))) + ybotsin(θBP(i - 1)) + 0.7854wswLu(i, 5) 

θBP(i), dedge(i) 

From bearing pad stiffness subroutine 

ShearDisp(i) = (P(i) + wswL)/2 sin(θBP(i)) / KBPshear 

Formulate global stiffness matrix, [K] 

for the appropriate boundary conditions 

using symmetry 

No 

Yes 

u(i, 5) > Limit  i = i + 1 
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Start 

curve(i) = curve(i-1) + δcurve  

(δcurve= small incr.) 

θ = Rotation of cross-section 

M =  Applied moment at cross-section 

φ(k-1) = Neutral axis angle from previous load increment 

curve(i-1) = Curvature from previous load increment 

Input element properties - x(z), y(z), Ac(z), Aps(z), As(z) 

cd(i) = dn(i)/cos(φ(k-1)) 

elements = # of elements 

z = 1 

yn(z) = abs((x(z)-b/2)tan(φ(k-1)))+(ybot-cd(i))  

 

de(z) = abs((y(z)-yn(z))cos(φ(k-1))) 

yn(z) >= y(z) 

e(i,z) = curve(i)de(z)  e(i,z) = -curve(i)de(z)  

fc (i,z) = function(e(i,z)) 
(Apply concrete material model)  

Ecwt (i,z) = Ac(z) * function(fc (i,z), e(i,z)) 

(Used slope of concrete stress-strain 

curve; concrete area used to get 

fps (i,z) = function(e(i,z)) 

(Apply prestressing strand 

material model)  

fs (i,z) = Es(e(i,z)) 

 

z = z + 1 z = elements 

No 

Yes 

Yes 

No 

i = 1 
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Figure G.2 – Fiber analysis subroutine flowchart 

End 

No 
abs(fp(i)) = 0 + error 

Yes 

dn(i+1) = dn(i) + (dn(i) - dn(i-1))fp(i)/(fp(i) - fp(i-1)) 
(secant algorithm)  
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=

=
elements

z
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 )()()()( ixsixpsixcix MMMM ++=

 )()()()( iysiypsiyciy MMMM ++=

 

 

 

( )
)(

)(
)( tan

ix

iy
im M

M
f −= θ

No 
abs(fm(i)) = 0 + error 

Yes 

φ(i+1) = φ(i) + (φ(i) - φ(i-1))fm(i)/(fm(i) - fm(i-1)) 
(secant algorithm)  

 

 

2
)(

2
)()( iyixi MMM +=

No 
abs(M(i)) = M + error 

Yes 

c = Depth of neutral axis 

E =  Average element tangent modulus of elasticity 

φ= Neutral axis 

curve = Curvature (to be used in next load increment) 

Section properties - Ix, Iy 

i = i + 1 
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Figure G.3 – Bearing pad model subroutine flowchart 

Start 

θBP(i) = θBP(i-1) + δθBP  

(δθBP = small incr.) 

dedge(i) = dedge(i-1) + δdedge 

(δdedge = small incr.) 

Fstrip(j) = f(d(i,j))  
(f(d(i,j)) = strip force as function of 

depth from assumed material model) 

θBP(i-1) = Bearing pad rotation from previous 

load increment 

PBP = Axial load on bearing pad 

TBP = Torque on bearing pad about center of 

bearing pad 

d(i,j) = dedge(i) + xθBP(i)  
(x = distance of strip “j” from 

edge of bearing pad) 

End 

No 

Yes 

 

 

(n = number of strips) 

( )∑
=

=
n

j
jstriptotal FF

1

Ftotal = PBP + 

Mstrip(j) = Fstrip(j)(w/2 - x) 
(w = bearing pad width) 

 

 

(n = number of strips) 

( )∑
=

=
n

j
jstriptotal MM

1

M total = TBP + 

θBP = Bearing pad rotation 

dedge = Bearing pad axial shortening at         

compressed edge 

Yes 

No 
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Start 

φ = Neutral axis angle 

b =  Width of cross-section 

h = Height of cross-section 

bz = width of compression zone 

(equals b if trapezoidal compression zone) 

cd = maximum edge compression zone depth 

δt = Perimeter strip thickness (user determined) 

J = Torsion constant 
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Figure G.4 – Torsion constant subroutine flowchart 
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APPENDIX H 

NONLINEAR ANALYSIS MATRIX & SECTION PROPERTY 

FORMULATION 

 

 For each load increment of the nonlinear analysis, the global stiffness matrix of 

the system had to be reformulated based on the new material and section properties for 

each segment.  The node and segment numbering is shown in Figure H.1.  In Figure H.1 

the boxed in number represent the segment numbering.  Furthermore, details of the 

symmetric boundary conditions are presented in Section 6.2.2 and in Figure 6.2 

 

 

Figure H.1 – Node and segment numbering 
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The following process was repeated for each load increment.  Note that the axial 

degree of freedom was neglected leaving only five degrees of freedom for each node.  

First the stiffness matrix of each segment formulated as follows: 
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The associated displacement vector was as follows: 
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 Once all four of the stiffness matrices for each of the segments were formulated, 

they were combined to form the global stiffness matrix of the system using common 

degrees of freedom.  Furthermore, the restrained degrees of freedom at the support and at 

the point of symmetry were removed from the global stiffness matrix.   

 Within the fiber model, the location of the local neutral axis for the local x-axis 

and y-axis had to be determined to compute the section properties.  To determine the 

local x-axis and local y-axis at a specific node location, the first moment of area was 

taken about a reference x-axis and y-axis where the cracked area of concrete was not 

considered.  Once the local x-axis and local y-axis were determined, the moments of 
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inertia, Ix and Iy could be determined from Equations H.1 and H.2.  The torsion constant 

was based on the method by Dooley (1979) and is discussed in Chapter 6. 
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 Once all four of the stiffness matrices for each of the segments were formulated, 

they were combined to form the global stiffness matrix of the system using common 

degrees of freedom.  Furthermore, the restrained degrees of freedom at the support and at 

the point of symmetry were removed from the global stiffness matrix.   

 Geometric nonlinear was taken into consideration by updating the incremental 

load vector for each load increment.  As the lateral displacement and rotation of the 

cross-section became greater with load increments, so did the applied torque on the 

system.  Furthermore, as the rotation increased at midspan, a larger component of the 

global vertical load acted about the local weak-axis of the beam as shown in Figure H.2. 
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Figure H.2 – Local components of vertically applied load 
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