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SUMMARY 

The solution of linear system of equations is at the core of finite element (FE) 

analysis software. While engineers have been increasing the size and complexity of their 

models, the growth in the speed of a single computer processor has slowed. Today, 

computer manufacturers have increased overall processor performance by increasing the 

number of processing units in a computer using so-called multi-core processors. A FE 

analysis solver is needed which takes full advantage of these multi-core processors.   

In this study, a direct solution procedure is proposed and developed which 

exploits the parallelism that exists in current symmetric multiprocessing (SMP) multi-

core processors. Several algorithms are proposed and developed to improve the 

performance of the direct solution of FE problems. A high-performance sparse direct 

solver is developed which allows experimentation with the newly developed and existing 

algorithms. The performance of the algorithms is investigated using a large set of FE 

problems. Furthermore, operation count estimations are developed to further assess 

various algorithms.   

A multifrontal method is adopted for the parallel factorization and triangular 

solution on SMP multi-core processors. A triangular solution algorithm that is especially 

efficient for the solution with multiple loading conditions is developed. Furthermore, a 

new mapping algorithm is designed to find independent factorization tasks that are 

assigned to the CPU cores in order to minimize the parallel factorization time. As the 

factorization and triangular solution times are reduced by the use of parallel algorithms, 

other components of FE analysis such as assembly of the stiffness matrix become a 

bottleneck for improving the overall performance. An assembled stiffness matrix is not 

required by the developed solver. Instead, element stiffness matrices and element 

connectivity information are the inputs. The developed solver never assembles the entire 
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structural stiffness matrix but assembles frontal matrices on each core. This reduces not 

only the execution time but also the memory requirement for the assembly.   

Finally, an out-of-core version of the solver is developed to reduce the memory 

requirements for the solution. I/O is performed asynchronously without blocking the 

thread that makes the I/O request. Asynchronous I/O allows overlapping factorization and 

triangular solution computations with I/O. The performance of the developed solver is 

demonstrated on a large number of test problems. A problem with nearly 10 million 

degree of freedoms is solved on a low price desktop computer using the out-of-core 

version of the direct solver. Furthermore, the developed solver usually outperforms a 

commonly used shared memory solver. 

 

 

 

 



1 
 

CHAPTER 1 

INTRODUCTION 

1.1 Problem Definition 

As computational power continues to increase, the size and complexity of analysis 

problems also increase. Realistic simulations require complex models and responsive 

software is desired. Large-scale structural simulations can be performed in a reasonable 

time using software which takes advantage of the computational potential of modern 

processors.  

The efficient use of modern processors can be challenging due to the sophisticated 

hardware architectures and existence of multiple processing units. Recently, multi-core 

processors have been introduced into commodity laptop and desktop computers for 

higher performance. Today, 6-core and dual quad-core PC’s are available, and processor 

manufacturers are planning to increase the number of cores to meet the ever-increasing 

demand for performance [1-3]. The additional cores caused a paradigm shift in the 

programming practice. Parallel algorithms are required to harness the computational 

power introduced by multi-core and many-core processors. Starting from the components 

with the largest execution time, software built for single core processors must be 

redesigned in order to benefit from the emerging computational power introduced by the 

multi-core and many-core processors.  

The solution of linear system of equations is the most computationally intensive 

component of finite element analysis (FEA) software. A sparse direct solver optimized 

for the structures and tuned for multi-core processors will improve the efficiency of FEA 

software significantly. An efficient sparse direct solver will increase the speed of linear 

analysis with multiple right-hand-side (RHS) vectors. In addition, the efficiency of the 
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time history analysis and non-linear analysis will also improve, where the solution is 

performed repetitively for different RHS vectors. 

1.2 Background 

1.2.1 High-Performance Computing  

The technology for PCs and Workstations has improved enormously since the 

development of the first computer. In addition to the consistent increase in the transistor 

density, major architectural and organizational improvements have occurred. In modern 

computers, the organization of the computational units allows performing multiple 

instructions per one clock cycle, and the performance gap between the processor and 

main memory [4] is hidden with the introduction of high speed memories (caches) 

between the processor and the main memory. These advancements in computer 

architecture have dramatically improved performance. Hennessy and Patterson [5] 

estimated that by 2002, the computers were approximately seven times faster than what 

would have been without these improvements.  

Due to the complex hardware architectures, developing programs which approach 

the peak speeds of modern processors may be challenging. The computational resources 

must be used in an optimal fashion to achieve high performance. For example, 

unnecessary random memory accesses shall be prevented since repeated random memory 

accesses degrade the performance because of memory access latencies. In addition, 

programs can be reorganized into blocks of independent instructions to harness 

instruction level parallelism. Furthermore, SIMD (Single Instruction Multiple Data) 

instruction sets can be exploited to efficiently perform a single arithmetic operation on 

multiple data. These optimizations are harnessed in numerical libraries tuned for specific 

hardware architectures [6-8]. A convenient way to obtain high performance from a 

computer is to use the libraries tuned for specific computer architectures.  
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Linear algebra and other numerical operations can be performed efficiently by 

using the BLAS (Basic Linear Algebra Subprograms) and LAPACK [9] (Linear Algebra 

PACKage) libraries tuned for a specific architecture. BLAS includes standard subroutines 

for common vector and matrix operations [10-12]. LAPACK includes subroutines for 

solution of linear systems, least-square solutions and eigenvalue problems [9]. CPU 

vendors provide highly tuned BLAS libraries such as MKL [6], ACML [7], and ESSL 

[8], which can be used to produce high performance programs. In addition to the vendor 

provided BLAS libraries, other BLAS implementations that are tuned for specific 

architectures exist. For example, GotoBLAS [13-14] includes optimized BLAS3 kernels 

that aim to reduce TLB (Translation Look-aside Buffer) misses in matrix multiplication. 

ATLAS [15] is automatically tuned software that implements BLAS and some of the 

LAPACK subroutines. In the tuning phase, ATLAS chooses the fastest way to do a 

BLAS operation among the alternatives [16]. ATLAS also exploits the cache hierarchies 

of modern processors [16] for a high-performance BLAS.  

There are three levels of BLAS subroutines, which are for vector-vector 

(BLAS1), matrix-vector (BLAS2), and matrix-matrix (BLAS3) operations. Among these, 

BLAS3 gives the best throughput since the ratio of computations to memory access is 

largest for BLAS3. A high computation to memory access ratio is beneficial to cache-

hierarchies of the modern processors. For sufficiently large matrices, optimized BLAS3 

kernels can run at a speed close to peak machine speed [13, 17]. Other benefits of using 

BLAS libraries are robustness, portability, and readability of the code [18]. 

We perform numerical experiments to illustrate the high performance of the 

BLAS3 kernels. Figure 1.1 shows the performance of the MKL BLAS subroutines for an 

Intel quad-core processor. Only one core is used for the results shown in Figure 1.1 , and 

the clock speed of a core is 2.4 GHz. SIMD (Single Instruction Multiple Data) 

instructions allow performing four double precision floating point operations per clock 

cycle, therefore, each core can potentially perform 9.6 billion double precision floating 
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point operations per second (9.6 GFlop/sec or 9600 MIPS). This is an upper limit found 

by assuming that there are no cache misses and no memory latencies. As shown in Figure 

1.1, BLAS3 matrix-matrix multiplication runs at a speed close to the peak performance of 

a single core. On the other hand, the peak speeds for BLAS1 and BLAS2 are about one-

half of the machine peak speed. Furthermore, BLAS1 and BLAS2 speeds decrease as the 

size of the matrix and vector increases. BLAS1 speed starts decreasing as the total 

memory for vectors exceeds the capacity of the L1 Cache (32 Kbyte). BLAS2 speed, on 

the other hand, starts decreasing as the memory for the matrix exceeds the capacity of the 

L2 Cache (4096 Kbyte). As shown in Figure 1.1, BLAS3 gives a sustained performance 

for a wide range of matrix sizes. Therefore, the performance of BLAS3 is typically more 

predictable compared to BLAS1 and BLAS2, which is a desirable feature for estimating 

workloads in order to have a balanced workload assignment.  

 

Figure 1.1: The performance of MKL BLAS subroutines. Test runs are performed 

on Intel Core 2 Quad Q6600 using only one CPU core.  
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1.2.2 Multi-core and Many-core Processors 

Recently, major CPU manufacturers announced that the demand for increased 

performance will be met by packing multiple processing units into a chip in addition to 

the improvements in the performance of a single processing unit [1-2]. While automatic 

performance improvements can be obtained due to increased clock speeds and past 

architectural advancements, programs must be restructured to harness full computational 

power of the multi-core processors. This requires redesign of the software developed for 

uniprocessors which involves finding code segments which may be executed in parallel. 

Furthermore, the software developers shall consider the architecture of the machine to 

fully benefit from the computational power introduced by the multi-core processors.  

First generation multi-core processors are a subset of symmetric multiprocessing 

(SMP) architecture. Initially two identical cores are integrated onto a single die. The 

cores can share some circuitry such as L2 caches and front side bus (FSB). The 

architecture of a dual-core machine is depicted in Figure 1.2. Here, both processors can 

access the main memory at high speeds. Furthermore, synchronization and cache 

coherency can be performed efficiently since the cores are on the same die. All cores 

have direct access to the main memory via the shared FSB. Therefore, any task can be 

scheduled efficiently at any processor independent of the location of the data used by the 

task.  

 

Figure 1.2: Example SMP dual-core processor. Cores access the memory via the 

shared bus.  
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L1 Cache L1 Cache

L2 Cache
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The SMP architecture is suitable for multi-core machines with a small number of 

cores. As the number of cores in the system is increased, the shared bus quickly becomes 

a bottleneck. Main memory connected to each core with the shared bus can serve only 

one processor at a time. Consequently, the cores starve of data if they all try to access the 

memory at the same time. Memory can be organized differently to solve this problem. 

Non-uniform memory access (NUMA) is an alternative way to organize the memory for 

multiple processors. In NUMA machines, each processor has local memory that can be 

accessed in a fast fashion. In addition, non-local memory can be accessed via a special 

interconnection. However, access to a non-local memory location is slow. An example 

system with NUMA architecture is shown in Figure 1.3. Here, four cores have a fast 

connection to the local memory and a processor can access a non-local memory bank via 

the special interconnection, which is slower than an access to the local memory.  

 

Figure 1.3: A possible architecture for a NUMA system 

The exploitation of data locality is crucial to obtain high performance with the 

NUMA architectures. The tasks shall primarily access the data on the local memory. An 

access to a non-local memory shall be restricted since the processors remain idle until the 

data arrives from a non-local memory location. Therefore, programming for NUMA is 

similar to programming for clusters for which the data used by each task is distributed 

among processors.   
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Asanovic et al. [19] discussed the challenges for future many-core systems and 

gave recommendations about emerging multi-core processors. They stated that 

programming models shall make it easy to write efficient parallel programs and the focus 

of a programming model shall be to increase programmer productivity for highly parallel 

architectures. They also stated that it is important to develop software that can be tuned 

automatically for multi-core architectures. Automatically tuned software already exists 

for single core systems. For example, Vuduc et al. [20-21] provided automatically tuned 

sparse matrix vector multiplication and triangular solution kernels for single core 

systems. For emerging multi-core architectures, Williams et al. [22] discussed the auto 

tuning of sparse matrix kernels.  

Hill and Marty [23] discussed the importance of speeding up serial code in the 

multi-core era. Their results were based on the Amdahl’s law for symmetric and 

asymmetric multi-core chips. All processing units are identical in a symmetric multi-core 

chip, whereas, the computational power/capability of the processing units is not uniform 

for an asymmetric multi-core chip. They stressed the greater potential of asymmetric 

multi-core chips compared to symmetric chips for obtaining high performance from 

architectures with many-cores. They stated that the serial portion of the code will quickly 

become the bottleneck for many-core chips, and systems with the combination of cores 

with high serial performance and less powerful parallel cores will scale better since high 

performance cores can prevent the serial code from becoming the bottleneck. 

Balakrishnan et al. [24] stated that the asymmetry is beneficial to improve the 

performance of serial portions of the code. They also stated that current software neglects 

the asymmetry and software developers typically develop their code for symmetric cores. 

This negatively impacts the workload balancing for asymmetric processors since some 

cores are faster than the others. Balakrishnan et al. [24] stated that the applications shall 

be aware of the asymmetry and shall dynamically adapt to the computing resources. 

Kumar et al. [25] discussed that the asymmetric cores are more adaptable to different 
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workloads. Moreover, they showed that asymmetric cores are more energy efficient 

compared to symmetric cores.  

GPGPUs (general purpose computing on graphics processing units) allow 

asymmetric computing with desktop and laptop computers. GPUs (graphics processing 

units) are massively parallel architectures with hundreds of cores. Today, peak 

performance of GPUs is greater than several terra flops for single precision floating point 

operations. Furthermore, GPUs can also perform double precision floating point 

operations. GPUs can be programmed easily using frameworks such as CUDA [26-27] 

and OpenCL [28]. CUDA implements a subset of BLAS kernels, which allows the easy 

use of GPUs for numerical applications. Garland et al. [29] discussed the effective use of 

CUDA for speeding up various scientific applications that have data-parallel algorithms. 

Figure 1.4 shows an example asymmetric multi-core processor. The system has 

dual socket quad-core processer and two GPUs. Here, in addition to the computational 

units being asymmetric, the interconnection of the computational units can be asymmetric 

also. Asymmetry aware algorithms are crucial to obtain high performance from such 

systems.   

 

Figure 1.4: Example heterogeneous multi-core processors. The system has two 

sockets with quad-core processors and two GPUs available for general purpose 

computing.  
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Multithreaded BLAS subroutines in MKL[6] can be used to obtain high 

performance from today’s SMP multi-core processors. The LAPACK implementation in 

MKL relies on multithreaded BLAS [30]. Buttari et al. [30] stated that the use of 

multithreaded BLAS is not enough for a scalable LAPACK. They proposed parallel 

linear algebra algorithms that exploit parallelism at a lower level. A dense matrix was 

divided into square tiles and a directed acyclic graph was used to represent the 

algorithmic dependency between the tasks associated with the tiles. A critical path was 

identified in the dependency graph and high priorities were assigned for the tasks on the 

critical path. The tasks were scheduled asynchronously and dynamically. Tiled 

algorithms scale better than the ACML [7] counterparts for Cholesky, QR and LU 

factorizations. Currently, the tiled algorithms are implemented in the PLASMA project 

[31].  

Ltaief et al. [32] discussed a scalable dense Cholesky factorization algorithm that 

uses both CPUs and GPUs. The transfer rate can be a bottleneck for high performance 

computations on GPU since the data is first allocated in the main memory by CPU before 

transferring it to GPU. Then, the data is transferred via a shared connection. Ltaief et al. 

[32] used static scheduling to minimize the data transfer between the CPU and GPU. This 

hybrid Cholesky factorization, which uses both CPU and GPU, ran significantly faster 

than the CPU only counterpart. The source file for their algorithm can be obtained from 

the MAGMA project website [33].  

Finally, Hill and Marty [23] illustrated the high potential of the dynamic multi-

core chips that can utilize the cores either in serial mode or in parallel mode. Ipek et al. 

[34] presented a reconfigurable multiprocessor where independent processors can be used 

to form a processer with higher serial performance, or they can be used in parallel as 

needed at runtime.   



10 
 

1.2.3 Solution of Linear System of Equations 

The system of linear equations arising from a linear solution of a structure with n 

degree of freedoms is written as: 

 ����d� = �f� (1.1) 

where K is the n by n stiffness matrix, f is a vector of size n, which stores the 

loading at each degree of freedom (dof), and d is a vector of size n, which stores the 

unknown displacements corresponding to the loading. If the structure is subjected to 

multiple loading conditions, d and f are both n by nrhs matrices, where nrhs is the 

number of right-hand-side vectors, which is equal to the number of loading conditions. 

There are mainly two methods for solving a system of linear equations: iterative 

and direct methods. Iterative methods are scalable and require less memory compared to 

direct methods, which make them a better choice for solving very large problems with 

limited computational resources. However, the convergence of iterative methods depends 

on the preconditioner used for a problem, and the execution time is unpredictable due to 

their iterative nature. Additionally, iterative methods can be inefficient for analyzing 

structures with multiple load cases since the entire solution must be restarted for each 

RHS vector.  

The direct methods, on the other hand, factorize stiffness matrix and once the 

factorization is complete, the system of equations can be solved efficiently for multiple 

RHS vectors by forward elimination and back substitution. The sparsity of the system is 

used to minimize the arithmetic operations and data storage required for the solution. 

These methods have high numerical precision and guarantee the solution within a 

predictable amount of time if computational resources are adequate. Because of these 

advantages, direct methods are preferred in most linear structural analysis software.  
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1.2.4 Direct Methods for Sparse Linear Systems 

The oldest direct method is LU factorization [35], where the matrix K is factored 

into lower and upper triangular matrices, L and U. If K is symmetric and positive 

definite, the factorization can be written as LLT, which is called the Cholesky 

factorization. Cholesky factorization requires fewer arithmetic operations compared to 

the LU factorization. For indefinite symmetric matrices, the root-free Cholesky 

factorization is suitable, where the decomposition can be written as LDLT [18]. Finally, 

orthogonal methods such as QR factorization are used for solving least square problems 

[35]. 

Only non-zero entries are stored during the sparse factorization and the sparsity 

should be preserved for an efficient factorization. The nonzero entries in the matrix can 

be stored using several different schemes. Some common storage schemes are band 

matrix, profile matrix (also called skyline, variable band, and envelope matrix), element 

matrix representation, and packed sparse vectors representing the columns and rows of a 

sparse matrix [36]. Figure 1.5 illustrates variable band and band storage schemes for a 

simple problem with 2D quadrilateral elements. There is no single storage scheme that 

performs well for all types of problems. Some storage schemes may be suitable for 

problems with certain characteristics. For example, the band storage scheme is suitable 

for long and narrow meshes.  

 

Figure 1.5: Variable band and band storage scheme for an example problem. 
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The storage scheme determines the algorithms used in different phases of a sparse 

direct solver. A typical sparse direct solver is composed of four phases [37]: 

1. Preprocessing phase – determines pivot ordering which minimizes the time 

and storage needed by the solution 

2. Analysis phase – determines the memory requirements and constructs the data 

structures that will be used in the factorization and solution phase  

3. Numerical factorization phase – determines the factors, L  

4. Triangular solution phase – performs forward elimination and back 

substitution using the factors, L, found in numerical factorization phase. 

If the matrix is positive definite, the phases of a solver are distinct and a pivot 

ordering found in preprocessing phase can be used for the numerical factorization without 

numerical stability concerns. For indefinite matrices, on the other hand, a pivot ordering 

determined in the preprocessing phase may be altered in order to ensure the numerical 

stability.  

A general approach for the solution of sparse matrices is to use sparse data 

structures throughout the direct solution including the inner loops of the factorization and 

solution. This reduces the performance since arithmetic operations on sparse vectors 

require indirect addressing. The drawbacks of indirect addressing are explained by 

Dongarra et al. [18] using the FORTRAN code shown below: 

DO 10 I = 1,K 

  W(I) = W(I) + ALPHA * A(ICN(I)) 

10  CONTINUE 

Here, the entries of the packed sparse vector A are accessed by the indices stored 

in the vector ICN. The compilers usually have no knowledge about the indices stored in 

the vector ICN. Therefore, the loop cannot be reorganized for high instruction level 

parallelism, i.e., the compiler cannot unroll the loop. In addition, if values are assigned to 
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A(ICN(I)), automatic parallelization will not take place since repeated reference may be 

made to the same memory location.  

The indirect referencing can be reduced if the columns with common sparsity 

pattern are treated as a single pivot block. Pivot blocks with same sparsity pattern are 

called supernodes. Indirect referencing is avoided for the factorization operations within a 

supernode. Figure 1.6 illustrates the supernodes for the example problem shown in Figure 

1.5. Here, the 16x16 stiffness matrix is partitioned into 4 supernodes. The supernodes can 

be partitioned into dense matrix blocks and arithmetic operations on dense matrix blocks 

can be performed using tuned BLAS3 kernels.  

 

Figure 1.6: For the example problem in Figure 1.5, the supernode partitioning of 

the stiffness matrix. Supernodes are marked with thick dashed lines.  

A direct factorization scheme regardless of whether it uses supernodes or columns 

as pivots can be classified according to the direction of the column updates. In a left-

looking (fan-in) algorithm, a pivot receives updates from the previous pivots just before 

the factorization of the pivot. In a right-looking (fan-out) algorithm, as soon as the 

factorization of a pivot is finished, multipliers are calculated and the subsequent pivots 

are updated immediately. In other words, while a right-looking algorithm accesses to data 

on the right of a pivot, a left-looking algorithm accesses to data on the left. The left-

looking schemes are usually more efficient compared to the right looking schemes since 
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their memory access patterns are more cache friendly [38-39]. Nevertheless, the 

performance difference between the factorization schemes is insignificant compared to 

the benefits obtained by blocking the columns of a coefficient matrix (supernodal 

schemes) [40].  

Band and profile solvers are employed for the band and profile matrix storage 

schemes respectively. These schemes avoid the indirect referencing, however the 

efficiency depends on band or profile minimization algorithms. The Cuthill-McKee [41] 

algorithm is widely used for band minimization. The Reverse Cuthill-McKee [42], 

Gibbs-Poole-Stockmeyer [43] and Sloan’s method [44] can be used for profile 

minimization. Compared to packed storage schemes, more nonzero entries may be stored 

in the factors of the band or profile matrices. The main advantage of the band and profile 

schemes is that the storage scheme is preserved if no column interchanges, i.e., pivoting 

for numerical stability, are performed during the factorization [36].  

For an element matrix representation of a stiffness matrix, a frontal solver [45] 

may be suitable, in which a subset of elements is assembled to a frontal matrix and 

factorization is performed for fully assembled dofs. The arithmetic operations are 

performed on dense matrices and only a small portion of the stiffness matrix is kept in the 

memory. Similar to band or profile solvers, the element assembly order is important for 

an efficient frontal solution. Several element ordering algorithms are proposed [46-50] to 

reduce the CPU time and storage required for the frontal method.  

The indirect addressing is avoided in frontal method since all arithmetic 

operations are performed on a dense frontal matrix. However, if elements cannot be 

ordered to have a narrow front width, the space and time complexity of the frontal 

method may be prohibitive. Duff and Reid [51] extended the concept of a single frontal 

matrix by allowing to work on multiple frontal matrices at a time. This permitted the use 

of any fill-in minimization algorithm while retaining the efficiency of dense matrix 

operations on frontal matrices.  
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The variable elimination in the multifrontal method is similar to condensation of 

the elements assembled to the frontal matrix. The fully summed dofs are condensed, and 

the condensed stiffness matrix is stored for future condensation steps. The condensed 

stiffness matrix is called the update matrix since it will be used to update the pivots in the 

later stages of the solver. The assembly sequence of elements and update matrices can be 

represented by a tree structure, which is called the assembly tree [51]. A parent node in 

the assembly tree can only be processed after all of its children are assembled to the 

corresponding frontal matrix.  

Figure 1.7 shows a sample assembly tree for a condensation sequence of a sample 

4x4 mesh. Leaf nodes of the assembly tree represent the finite elements, whereas, the 

internal nodes represent the intermediate elements (super-elements) obtained by the 

assembly and condensation of the children nodes. Once all children of an element are 

processed, its stiffness matrix can be assembled and fully summed dofs of the element 

can be condensed. The assembly tree shows the dependency between the factorization 

and triangular solution operations. Factorization at a parent node depends on the 

factorization of its children. The dependency between the tree nodes is the same for 

forward elimination. The order is reversed for back substitution where operations at the 

children nodes depend on the operations at the parent.  
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Figure 1.7: The assembly tree for a condensation sequence of a sample mesh  

A postorder traversal of an assembly tree allows using a stack data structure to 

store the update matrices efficiently. The multifrontal method requires a working space 

for storing the stack of update matrices and the frontal matrix. The maximum value of 

this working space throughout the course of the factorization is the working storage 

requirement of the multifrontal method [52]. The working storage can be significant for 

3D problems, and it may be larger than the factors for linear programming problems [53]. 

The traversal of the assembly tree affects the minimum storage required for the 

multifrontal method. Liu [54] proposed an optimal postordering of the assembly tree that 

gives the minimum working storage if the frontal matrix of a parent element is created 

after the elimination operations at its children. Guermouche and L’Excellent [55] 

extended his work by allowing allocation of the frontal matrix of a parent element after 

the elimination of any children. Alternatively, the working storage can be reduced by 

altering the structure of the assembly tree [56]. 

In the multifrontal method, all algebraic operations are performed on a dense 

frontal matrix. The cost of using efficient dense matrix operations is the assembly steps 

performed at the nodes other than the leaves of the assembly tree. These are extra data 

movement operations since a stiffness matrix can be formed alternatively by assembling 
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the original finite elements at once. Several algorithms are proposed to reduce these extra 

assembly operations by merging a parent node with its children according to some 

amalgamation criteria. Duff and Reid [51] proposed an algorithm that merges a parent 

node with its eldest child in the postorder traversal if the number of the eliminated 

variables for both of them is below a certain amalgamation parameter. Ashcraft [57] used 

an amalgamation criterion that allows merging a parent element with any of its children if 

the number of logical zero entries introduced by merging is below a certain limiting 

number. Although the number of floating point operations increases with the node 

amalgamation, the benefits obtained from the reduction of assembly operations that 

typically use indirect addressing generally overcomes the increased number of floating 

point operations.  

The space and number of arithmetic operations required for the factorization is 

minimized by employing a fill-in reduction algorithm in the preprocessing stage of sparse 

direct methods. These algorithms seek a pivot ordering that minimizes the number of fill-

ins introduced to the factors. There are mainly two approaches for reducing fill-ins: local 

ordering and global ordering. Local techniques are greedy algorithms that choose the best 

alternative for the next pivot based on some heuristic function. Global techniques, on the 

other hand, recursively find pivot columns that decouple the rest of the columns in a 

coefficient matrix, when the pivot columns are removed from the coefficient matrix. The 

two techniques can be combined to produce hybrid algorithms. Duff and Scott [58] and 

Gould and Scott [59] reported that the hybrid orderings produce better orderings for large 

scale test problems used in their numerical experiments.  

The number of arithmetic operations required for the factorization of a pivot 

column is proportional to the square of the number of non-zero entries below the diagonal 

of symmetric coefficient matrix. To limit the amount of arithmetic operations required for 

the factorization, the next pivot can be chosen among the columns with minimum number 

of non-zero entries. This local technique is called the minimum degree ordering 
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algorithm. Several improvements are made to improve the quality of the orderings and 

runtime of the original algorithm. George and Liu [60] provided a detailed summary of 

these improvements. Liu [61] improved the runtime of the algorithm by allowing 

multiple elimination of the pivots that are from independent sets of low degree columns. 

Elimination of these pivots will not affect the degree of each other therefore costly degree 

update operations can be postponed. This algorithm is commonly referred to as multiple 

minimum degree (MMD) algorithm. MMD gives identical quality orderings in less time 

compared to the original minimum degree ordering algorithm.  

In a minimum degree algorithm, the tie-breaking strategy for the matrix columns 

with same degree affects the quality of the ordering produced. Usually the minimum 

degree algorithm is implemented to choose the pivot according to their initial ordering. 

Lui [60] proposed preordering the nodes with Reverse Cuthill-McKee to improve the 

quality of the orderings produced by minimum degree algorithm. Furthermore, compared 

to random permutations, the row-by-row initial ordering of a 2D grid produced higher 

quality orderings [60]. Cavers [62] evaluated several tie-breaking strategies and 

recommended using the deficiency information to produce orderings consistently better 

than an arbitrary selection.  

Amestoy et al. [63] proposed an alternative minimum degree heuristic that uses 

the approximate degree information of the matrix columns instead of the exact degrees. 

The algorithm is called approximate minimum degree, AMD, ordering and AMD 

ordering runs significantly faster since computing the approximate degree is 

computationally cheaper than computing the exact degree. In addition, the quality of the 

orderings is comparable to the ones produced by MMD.  

In addition to the minimum degree heuristics, heuristics that attempt to minimize 

the fill-ins have been studied. Rothberg and Eisenstat [64] and Ng and Raghavan [65] 

reported that heuristics based on the minimization of the local fill-ins produce better 
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orderings compared to minimum degree heuristic. However, the execution time of these 

algorithms is typically worse than the algorithms based on the minimum degree heuristic.  

The global ordering techniques are top-down sparse matrix ordering algorithms 

that perform domain decomposition to find pivots that do not introduce fill-ins to each 

other. This scheme for reducing the fill-ins was first proposed by George [66], which is 

known as nested dissection. George proved that the nested dissection yields operation 

counts asymptotically close to the optimal orderings for 2D grid problems. However, the 

runtime of the nested dissection is significantly worse than the minimum degree 

algorithms, making a complete nested dissection prohibitive for the matrix-orderings. 

Therefore, instead of the original nested dissection algorithm, an incomplete nested 

dissection algorithm is used in the hybrid ordering techniques. 

In general, the hybrid approach uses graph partitioning techniques such as nested 

dissection to keep the number of fill-ins low at the higher levels of the assembly tree. 

After a certain number of nested dissections, a local ordering technique such as minimum 

degree is used to order the partitions obtained with nested dissections. Finally, the 

separators found in the nested dissection steps are ordered. Several improvements are 

made to the hybrid matrix ordering approach, which can be found in references [67-71].  

The choice of fill-in minimization algorithm (also called as matrix ordering) 

influences the efficiency of the numerical factorization and triangular solution phases. 

The choice is usually between minimum degree algorithms, which are simple and fast, 

and hybrid orderings, which are more elaborate and usually produce better orderings. 

Duff and Scott [58] summarized the automatic selection strategy of some direct solver 

packages. They also proposed their own strategy for selecting the optimum node ordering 

algorithm. Observing that the minimum degree algorithm gives satisfactory results for 

small and very sparse matrices, they used experimental criterion based on the size of the 

coefficient matrix and average number of entries in the columns. For single or small 

number of factorizations and solves, their strategy produced better total execution time 
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compared to the strategy of choosing the best ordering algorithm among several 

alternatives executed for the coefficient matrix. Their work did not consider fill-in 

minimization heuristics. 

Finally, Boman et al. [72] discussed recent advances in parallel partitioning, load 

balancing and matrix ordering. They employed hypergraphs to represent sparse matrices 

and demonstrate the superiority of an alternative coarsening scheme for multilevel matrix 

orderings.  

1.2.5 Parallel Direct Solution 

According to Dongarra et al. [18], three levels of parallelism are available for the 

sparse solvers: system level, matrix level, and sub-matrix level. First, system level 

parallelism is exploited by subdividing the underlying problem into loosely coupled 

components. This is called substructuring in structural analysis. Second, matrix level 

parallelism is achieved by exploiting the sparsity pattern of a coefficient matrix. Nested 

dissection is used to reduce the factorization and solution of the matrix into independent 

steps. Third, sparse matrix operations can be performed as a series of dense matrix 

operations on submatrices. Then, the parallelism at the submatrix level can be exploited 

by using parallel versions of the Level 3 BLAS. These kernels are distributed by most of 

the CPU vendors, which are optimized for a specific parallel architecture. Most modern 

sparse codes use BLAS kernels for a scalable and portable implementation.  

The parallelism due to the sparsity can be represented by using the elimination 

tree defined for the sparse matrix [73]. Each node of the elimination tree corresponds to a 

pivot column in the sparse matrix. The node j in the elimination tree is the parent of node 

i if j is first entry below the diagonal of the column i of the factors. The computations are 

independent for the tree nodes that are not ancestors or descendants of each other.  

Heath et al. [74] reviewed parallel algorithms for solving sparse symmetric 

positive definite systems on shared and distributed memory computers. In their paper, the 
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parallel implementation of all four phases of the solver is discussed. They suggested that 

although the factorization phase takes most of the time of a solver, the parallelization of 

the other phases would eventually become important since factorization times are 

reduced on a regular basis with efficient parallel implementations. Additionally, the 

solution phase may take considerable time when the system is solved for multiple load 

vectors.  

The structure of the elimination tree can be adjusted to increase the amount of 

parallelism. Liu [56] proposed a fill-in preserving ordering that uses tree rotations to 

minimize the parallel completion time. Other fill-in preserving orderings are given in 

studies [75-76] for optimal parallel factorization times. Nevertheless, Heath et al. [74] 

suggested that the equivalent tree orderings have minor effect on the amount of 

parallelism and the node ordering algorithm mainly shapes the features of the parallelism.  

A pivot ordering algorithm which merely aims to minimize the fill-in may not be 

ideal for the parallel solution [74]. Guermouche et al. [77] investigated the effect of node 

ordering algorithms on the shape of the assembly tree and the memory usage of a parallel 

multifrontal solver. Conforming to the previous research performed by Gupta et al. [78] 

and Karypis and Kumar [79], the top-down ordering algorithms provide well-balanced 

and short assembly trees, which are desirable for parallel processing. Guermouche et al. 

[77] also reported that deep unbalanced assembly trees produced by the bottom-up 

heuristics such as minimum degree and minimum fill have fewer memory requirements. 

1.2.6 Substructure Level Parallelism   

The substructuring is employed to extend the parallelism to the computations 

before and after the direct solution of the linear systems. Typical computations prior to 

the direct solution are the calculation of element stiffness matrices, assembling the global 

stiffness matrix, and constructing the global load vector. Similarly, once the solution is 
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complete, the results are used in the post-processing stage, in which computations such as 

finding element internal stresses and element nodal responses are performed.  

The parallel implementation of the substructuring method is given in References 

[80-82]. In the substructuring method, a structural model is subdivided into non-

overlapping substructures. The condensation of substructures can be performed 

independently. Therefore, the parallelism at the condensation phase is trivial. However, 

there may be a significant data dependency at the interface solution. Some studies [83-84] 

used a serial solver for the interface problem due to the high data dependency at this 

level. However, this approach is not scalable since the time required for the interface 

solution increases with the number of substructures.  

For an efficient substructuring, the condensation times of the substructures must 

be close to each other. This is not an easy problem since the condensation times are 

unknown before the pivot-orderings for the substructures are found. Hendrickson [85] 

discussed the lack of expressiveness of graph representations used in the most of the 

partitioning algorithms. He argued that an undirected graph with weighted edges and 

nodes is not representative enough for the communication volume between partitions and 

amount of computation at each partition. Therefore, traditional partitioning strategies 

such as minimizing the graph edges will not necessarily minimize the communication 

time between partitions. Similarly, balancing the vertex sums at each partition may not 

give subdomains with balanced computational loads. Hendrickson and Kolda [86] 

discussed alternative partitioning approaches and their potential to address the problems 

with the traditional partitioning approach.  

The problems involving adaptive mesh refinement and contact detection have 

features that change over time. This leads to fluctuations in computational loads of the 

partitions, which can be tackled by a dynamic load balancing algorithm [87]. Dynamic 

load balancing adds additional constraint to the partitioning such as minimizing the 

number of objects moved between the partitions.  
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Yang and Hsieh [84] proposed an iterative partition optimization method for 

direct substructuring. After finding the initial partitions, the number of arithmetic 

operations required for condensation was computed using the symbolic factorization 

features of the SPOOLES [88]. The weights of the elements were adjusted according to 

the operation counts found for each substructure. Later, the partitions were modified by 

using the partitioning packages JOSTLE [89] and METIS [69]. While METIS restarts the 

partitioning from the scratch, JOSTLE has the feature to adjust the partitions from the 

previous iterations. Iteratively refining the partitions using JOSTLE generally provided 

balanced partitions with less iteration. Refining the partitions by moving a small number 

of elements between the partitions shows similarities to the dynamic partitioning that try 

to minimize the number of objects moved between partitions. 

Kurc and Will [90] proposed a workload balancing scheme for the condensation 

of the substructures. The METIS partitioning library was used for initial partitioning of 

the nodal graph representing the structure. Later, the node weights of partitions were 

adjusted according to the estimated operation counts. The PARMETIS [91] library was 

used for repartitioning according to the adjusted node weights. The diffusion and scratch-

remap repartitioning algorithms were investigated. They found that scratch-remap gives 

more computationally balanced substructures. Moreover, the number of interface 

equations was smaller compared to the diffusion algorithm. They also stated that time 

spent in the repartitioning iterations was insignificant compared to the improvements 

obtained in the condensation times. 

1.2.7 Survey of Sparse Direct Solvers 

In past years, a number of direct sparse solver packages have been developed. The 

capabilities and algorithms used in the solver packages vary. Table 1.1 shows the main 

features of some of the current public domain direct solvers.  
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The solver packages usually involve several ordering algorithms available to the 

user. The user may choose from the ordering algorithms offered by the solver or a custom 

pivot ordering may be provided. Some packages offer a default strategy for ordering, in 

case the user is reluctant to make a choice among ordering algorithms. Some packages try 

several ordering algorithms and choose the one that produce the best results since there is 

no single ordering algorithm that consistently provides the best orderings in a reasonable 

time. A better strategy may be to try a computationally cheap local ordering algorithm 

first, and then running a global ordering algorithm if the local ordering is not satisfactory. 

CHOLMOD employs a similar strategy by initially ordering the pivots with AMD 

algorithm. If the quality of the ordering is below a certain criteria or the number of 

equations is large, a global ordering algorithm is executed.  

 

Code Algorithm Matrix type Platform 

CHOLMOD [92-93] Left Hermitian Serial 

PASTIX [94-95] Left Hermitian Distributed memory 

PSPASES [78, 96] Multifrontal Hermitian Distributed memory 

PARDISO [97-98] Left-right 
Hermitian, Symmetric 
pattern, Unsymmetric 

Shared memory 

WSMP [99-100] Multifrontal Hermitian, Unsymmetric 
Shared/Distributed 

memory 

Oblio [101] 
Left, Right, 
Multifrontal 

Symmetric Serial 

UMFPACK [102-
103] 

Multifrontal Unsymmetric Serial 

SPOOLES [88, 104] Left looking 
Symmetric, Symmetric 

pattern 
Shared/Distributed 

memory 

SuperLU [105-106] Left Unsymmetric Serial 

MUMPS [107-108] Multifrontal 
Symmetric, Symmetric 

pattern 
Distributed memory 

TAUCS [109-110] 
Left, 

Multifrontal 
Symmetric, 

Unsymmetric 
Distributed memory 

Table 1.1: Features of the direct sparse solver packages 
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Gould et al. [111] evaluated the performance of state-of-the-art direct solvers for 

symmetric matrices. The solvers were executed on a single processor for matrices of 

order greater than 10,000. In their experiments with positive definite matrices, the 

factorization time of WSMP was usually found to be better than the other solvers. 

However, the preprocessing phase required significant time for this package since WSMP 

executes both nested dissection and minimum fill-in algorithms and the pivot-ordering 

with the lower number of non-zeros is chosen. In general, the factorization times are 

closely related to the number of non-zero entries in the factors, and the difference 

between the factorization algorithms (left-looking, right-looking or multifrontal) was not 

very significant. The total solution time was also compared for a single right hand side 

vector. Balancing the time spent in all phases of the solver, CHOLMOD produced the 

best overall performance. The time spent in the preprocessing phase of WSMP reduced 

its overall performance. PARDISO gave the second best factorization and overall 

solution time among direct solvers evaluated by Gould et al. [111].  

The serial and parallel performance of some solvers were experimentally 

evaluated on 24-processor IBM RS6000 by Gupta and Muliadi [112]. The relatively new 

solvers, MUMPS and WSMP, performed significantly better, usually by an order of 

magnitude. The performance difference was related to the efficient use of the Level 3 

BLAS kernels in the more recent solver packages.  

The performance of two distributed memory solvers, MUMPS and SuperLU, was 

evaluated by Amestoy et al. [113]. Allowing artificial non-zero entries to increase the size 

of the dense matrix blocks, MUMPS performed better than SuperLU. Efficiency of the 

BLAS3 kernels usually offsets the additional computations as a result of the extra zero 

entries stored in the larger dense matrix blocks used by MUMPS. SuperLU uses complex 

data structures to store the nonzero entries only, which may be beneficial for matrices 

with irregular sparsity pattern. MUMPS performed better for small number of processors 

since it has lower communication overhead. However, SuperLU was expected to be more 
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scalable since it exploits the parallelism better with the cost of larger communication 

demands.   

There is no recent study that compares the performance of the state-of-the-art 

solvers on modern multi-core processors. Moreover, previous studies evaluated the solver 

performance for the sparse matrices from different fields, not particularly focusing on the 

problems arising from structural mechanics. Most of the test matrices used in these 

studies can be found at University of Florida sparse matrix collection [114] in an 

assembled format.  

In order to use an available direct solver package, the complete stiffness matrix 

usually needs to be assembled. Among solvers discussed in this section, only MUMPS 

allows the element matrix representation while all other solvers require a fully assembled 

sparse matrix. The complete assembly of the stiffness matrix can be prohibitive for large 

scale problems. Additionally, for some cases, the time for assembling a stiffness matrix 

can be comparable to the time for the factorization of the stiffness matrix. While 

evaluating the performance of a direct solver, in addition to time spent in the phases of 

the solver, the time spent and memory requirements for building the stiffness matrix of a 

structure must be considered. 

1.2.8 Design of the Solver Packages 

The primary concern in the design of a direct solver is the performance of the 

solver. Scott and Hu [37] discussed the features of an ideal solver package, other than the 

efficiency in terms of CPU time and memory. In addition to a comprehensive 

documentation aimed for both experienced and inexperienced users, the features of an 

ideal solver are summarized as: 

Simplicity: The algorithmic details of the solver package should be hidden from 

the user. The interface of the solver package should be designed for a user with no or 

little knowledge about the sparse linear solver algorithms. Object-oriented programming 
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techniques can be used to hide the implementation details. Instead of using arrays holding 

the implementation details, an object can be passed as the single input argument to a 

phase of the solver. However, the properties of the objects must be accessible for 

advanced users.  

Clarity: The symbolic factorization and numerical factorization phases shall be 

separated to allow the reuse of a symbolic factorization. Similarly, the solve phase and 

factorization phase shall be distinct to allow solution for multiple right hand sides.  

Smartness: Good default values for the input parameters such as the ordering 

algorithm, blocking and pivoting strategy shall be chosen automatically. An optional 

error checking for the input data must be offered.  

Flexibility: The experienced user shall have the flexibility to experiment with the 

different ordering strategies. The information about the matrix inertia, level of accuracy, 

and nonzero entries in factors shall be accessible.  

Persistence: This is ability of the solver to recover from failure. For example, if 

there is not enough memory, then the user shall be informed with a proper error code. If 

the solver has an out-of-core factorization option, it can automatically switch to the out-

of-core factorization algorithm in case the problem cannot be solved using the main 

memory only. 

Robustness: Iterative refinement shall be performed automatically. The residuals 

and condition number estimates shall also be provided. 

Safety: The solver package should be thread-safe. Additionally, memory leaks 

should be avoided.  

Scott and Hu [37] summarized the interface, documentation, and matrix input 

format of the state-of-the-art solvers. They concluded that none of the current solvers 

meets the criteria of an ideal solver.  

George and Liu [115] proposed an object-oriented design for the user interface 

design of sparse matrix package. Objects were used to hide the implementation details of 
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the functions and a standard interface was provided by overloading the function names 

for different types of objects. Both standard and experienced users were considered in 

their design. Two main classes were offered for the standard user: Solver and Problem. 

Problem class holds the linear system of equations that will be solved. It allows entering, 

modifying and querying the entries of the sparse matrix and right hand side vectors. 

Solver class accepts a problem instance as input and produces a solution. The function 

Solve is overloaded for different types of solver, which calls the functions for the pivot 

ordering, symbolic factorization, matrix input, factorization, and forward/backward 

substitution. These functions are accessible for the research purpose and they can be 

ignored by a standard user. Considering researchers, the design also allows accessing low 

level objects used in the different phases of the solver such as graphs, pivot ordering, and 

elimination tree.   

For the local ordering algorithms, Kumfert and Pothen [116] provided an object 

oriented framework. For a minimum priority ordering, they indentified three main 

classes: quotient graph, bucket sorter, and priority strategy. Quotient graph holds the 

compressed quotient graph representing the non-zero entries in the coefficient matrix 

during the factorization, bucket sorter holds item-key pairs sorted according to the key 

values, and priority strategy represents the local heuristic to choose the next pivot. Their 

design allows using different priority strategy at different stages of the ordering 

algorithm. An algorithm that allows multiple eliminations can be used initially, when 

there are many independent sets of vertices satisfying the pivot selection criterion. As the 

graph gets tightly connected, approximate degree orderings that typically does not allow 

multiple eliminations can be employed.  

The main struggle in their design was to provide a common interface for the 

adjacent vertices in the elimination graph. An adjacent vertex in the elimination graph 

corresponds to a vertex reachable by a path of eliminated vertices in the quotient graph. 

Those paths are referred to as reachable paths and a set of vertices that are reachable via 
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such paths are referred to as reachable set of a vertex. Initially, the class 

ReachableSetIterator provided a standard way to access the reachable sets of a vertex. 

However, the overhead of the iterator forced them to provide lower level accesses to the 

adjacency lists of the quotient graph. With the cost of increasing the coupling between 

the classes, this provided the desired performance. Compared to Lui’s minimum degree 

code, GENMMD [61], their implementation takes more time by a factor of three to four 

on average. Their design allows measuring the different components of the algorithm and 

most expensive part of the code was found to be the update for the quotient graph.  

Dobrian et al. [101] discussed the design of an efficient object oriented software 

for direct solution of sparse systems. The solver was developed mainly in C++, however 

the core factorization operations were optimized with a C or FORTRAN compiler, which 

were only a small portion of the code but took most of the execution time. For the 

remaining part of the code, the complexity was tackled using the object oriented design 

techniques. The main classes are organized into a single inheritance tree with two main 

branches: DataStructure and Algorithm, which are both derived from the Object class. 

Each object can print itself and it returns the error status in case of request. The 

DataStructure provides interface for data validation and resetting the data structure. The 

Algorithm provides common interface for the execution of every algorithm and it stores 

the running time of the algorithm. Some algorithm classes, such as the factorization 

algorithms, are composed of several algorithm objects. The multifrontal factorization 

algorithm, for example, is composed of algorithm classes for computing the elimination 

trees, performing symbolic factorization, and performing the numerical factorization.  

One of the design requirements of Dobrian et al. [101] is easy integration of the 

different matrix formats. For this purpose, all matrix classes are derived from a base 

matrix class that has the sparse matrix data. Each derived matrix class has a constructor 

that accepts base matrix class and constructs the sparse matrix in the format the class 

represents. This prevents cyclic coupling between the classes representing different 
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matrix formats. A similar approach is followed for handling different graph formats and 

matrices and graphs can be built from each other by using the constructors that accept the 

base graph and matrix classes.  

Ashcraft and Grimes [88] developed an object oriented sparse matrix library, 

SPOOLES, which supports serial, multithreaded, and MPI environments. For the 

preprocessing phase, minimum degree, nested dissection and multisection orderings are 

provided. The library is within the public domain and there are no licensing restrictions.  

Sala et al. [117] proposed an interface library between direct solver libraries and 

the applications that require a direct solver for serial and distributed systems. The 

interface involves three phases, preordering and symbolic factorization, numerical 

factorization, and solution. The abstract classes that define the interface are provided. 

These are a map class representing local to global mapping, a vector class, a square 

matrix class, a linear system of equations class, and a solver class. A concrete 

implementation of the interfaces can be found in the webpage of the AMESOS project 

[118]. The interfaces are provided for the direct solver libraries LAPACK [9], 

UMFPACK [103], TAUCS [110], PARDISO [98], SuperLU [106], DSCPACK [119], 

SCALAPACK [120] ,and MUMPS [108]. 

1.3 Objective and Scope 

The main objective of this research is to develop a direct solution procedure 

which exploits the parallelism that exists in current SMP multi-core processors and is 

efficient for solving the linear system of equations that occur in finite element problems. 

In order to accomplish this objective, the following tasks were performed and are further 

described in subsequent chapters of this study:  

• Determine the factors which contribute to the performance of the direct solver  

A direct solver is typically composed of four phases: preprocessing, analysis, 

numerical factorization, and triangular solution. The performance of all four phases 
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contributes to the overall performance of the solver. Therefore, the performance of each 

phase is investigated and approaches to improve the performance of these phases are 

described. The contribution from each phase to the overall execution time is studied. 

Furthermore, the factors that affect the parallel performance of the solver on SMP multi-

core architectures are studied.  

• Investigate the performance of matrix ordering algorithms for finite element 

problems.  

As explained in Section 1.2.4, there are various matrix ordering algorithms 

available in the literature. The matrix ordering algorithm greatly determines the memory 

and CPU time required for the factorization. The matrix ordering algorithms that yield 

minimum storage and factorization time requirements are determined. A suite of finite 

element models are used to determine the optimal algorithms.  

• Improve solver performance by incorporating FE model information  

A general purpose sparse solver is oblivious to the FE model underlying a linear 

system of equations. Therefore, the information about the finite element model is not 

used if a general purpose sparse solver is used for the solution. This information can be 

useful to improve the performance of a direct solver. For example, the coordinate 

information of the nodes in the finite element model can be used for an initial node 

numbering for the matrix-ordering programs. Local matrix-ordering algorithms usually 

produce pivot-orderings resulting in fewer fill-ins in the factors if this initial node 

numbering is used. In addition, the general characteristics of finite element models such 

as multiple dofs at a node and limited connectivity of elements can be exploited to 

improve the performance of a direct solver. For example, the size of data structures used 

in the solver package can be reduced significantly by the use of a coarser model formed 

by merging adjacent elements with each other and by the use of a supervariable graph. 

This will reduce the space and time required for the matrix ordering algorithms. The 



32 
 

solver package exploits these opportunities to improve the overall performance of the 

direct solution. 

• Implement a high performance solver package which allows experimenting 

with alternative matrix-ordering and factorization algorithms.  

The developed solver package has two primary goals: high-performance of the 

core factorization subroutines and flexibility in the preprocessing phase. The high-

performance of the core factorization subroutines is achieved by employing the 

BLAS/LAPACK kernels tuned for specific computer architecture. By using the tuned 

BLAS/LAPACK kernels, a parallel multifrontal scheme is developed for an efficient 

numerical solution on SMP multi-core processors. The solver package is also 

maintainable and extensible for easy implementation of emerging preprocessing 

algorithms for the direct solution of sparse linear systems. Object-oriented design 

principles are used to allow easy implementation of other preprocessing algorithms.  

• Improve the performance of triangular solution phase for multiple RHS 

vectors.  

The design of structures typically includes analysis of FE models for multiple 

RHS vectors. Therefore, it is crucial to emphasize the efficiency of the triangular solution 

for multiple RHS vectors. A triangular solution scheme that is especially efficient for the 

triangular solution of multiple RHS vectors is developed.  

• Improve the performance of assembly operations for the stiffness matrix. 

As the execution time of numerical solution decreases by the use of parallel 

algorithms, other components of the FE analysis software will become a bottleneck, such 

as the assembly of the stiffness matrix. The developed code works with the element 

connectivity information and element stiffness matrices instead of an assembled global 

stiffness matrix. In fact, the global stiffness matrix is never assembled, and the assembly 

operations are interleaved with the factorization steps. In this scheme, the parallelism is 
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easily extended to the assembly operations since they are interleaved with the numerical 

factorization operations, which are performed in parallel. 

• Develop a performance model for the direct solution of structures on SMP 

multi-core processors.  

It is important to understand the performance of an application for workload 

balancing on multi-core processors. A performance model is built to predict the 

performance of the factorization phase on SMP multi-core processors. The execution 

time of factorization can be predicted by the use of the developed performance model. 

The estimated performance is compared with the actual performance of the solver. This 

helps to determine unpredictable performance degradations due to the limited 

computational resources. Based on the estimated execution times, the parallelism can be 

exploited in an optimal fashion to minimize the factorization times on SMP multi-core 

processors. In addition, the performance model is used to choose the pivot-ordering that 

will minimize the estimated factorization time among alternative pivot-orderings found 

by different preprocessing strategies.  

• Tune the solver package according to the results obtained from the numerical 

experiments. 

Numerical experiments are performed for the solution of FE models. Based on the 

results from the numerical experiments, the optimal parameters for the algorithms are 

determined for the solution of FE models. The execution time of the developed code is 

compared with a state-of-the-art direct solver.  

• Develop recommendations for obtaining high-performance from multi-core 

architectures other than SMP.  

Preliminary analyses are performed for heterogeneous multi-core architectures 

having GPGPUs. Recommendations are developed to obtain high performance from 

these multi-core architectures.  
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1.4 Thesis Outline 

The remainder of the thesis is organized as follows. Chapter 2 discusses factors 

contributing to the performance of a direct solver and implementation of the direct solver 

developed in this study. Performance evaluation methodology is also explained in 

Chapter 2. Chapters 3-5 discuss the implementation of the preprocessing phase, analysis 

phase and factorization & triangular solution phases respectively. The algorithms and 

data structures used in each phase are discussed. Chapters 3-5 also discuss approaches to 

improve the performance of a direct solver for the solution FE problems. Chapter 6 

evaluates the performance of various algorithms for the sparse direct solution of FE 

problems. Among various alternatives, the algorithms that yield favorable factorization 

times are presented in Chapter 6. Chapter 7 demonstrates the performance of developed 

code on a number of test problems. Chapter 8 gives the results from the preliminary 

experiments for performing factorizations using GPGPUs. Finally, Chapter 9 summarizes 

the achievements and gives recommendations for future work.  
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CHAPTER 2 

PERFORMANCE, IMPLEMENTATION, AND TESTING 

METHODOLOGY 

In this chapter, the factors contributing to the performance of sparse solvers are 

discussed. The methodology for improving the performance of the sparse direct solver is 

explained. Implementation of the solver and test problems are briefly discussed.  

2.1 High-Performance Sparse Direct Solution 

As discussed in Chapter 1, high performance relative to the machine peak speed 

can be achieved if the ratio of computations to memory access is high. The ratio of 

floating point operations required for the factorization (flop) to the number of non-zeros 

in the factorized stiffness matrix (non-zero) is a measure of computations per memory 

access. This ratio (flop/non-zero) varies depending on the size of the FE models. Figure 

2.1 shows the flop/non-zero ratios for example 2D grids with 4-node quadrilateral 

elements. As shown in Figure 2.1, the flop/non-zero ratio increases as the model size 

increases. Therefore, there is the potential to have factorization speeds close to the 

machine peak speed for sufficiently large FE models. For these models, high performance 

factorization can be achieved by employing BLAS3 kernels [17]. Chen et al. [92] stated 

that for sparse matrices with the flop/non-zero ratios larger than 40, the use of BLAS 

based factorization is more advantageous compared to non-BLAS based factorization. 

The critical flop/non-zero value is determined based on the numerical experiments shown 

in Figure 2.2. As shown in Figure 2.2, the BLAS based factorization is significantly faster 

than the non-BLAS based factorization for problems with large flop/non-zero ratios. For 

the example FE problems shown in Figure 2.1, problems larger than 20×20 grid have 

flop/non-zero ratio larger than 40, the critical value given by Chen et al. [92]. The 
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flop/non-zero ratio is even larger for plane frame problems and 3D models. 

Consequently, a BLAS based factorization algorithm is suitable for most of the practical 

FE problems solved with today’s computers. 

 

 

Figure 2.1: The flop/non-zero ratios for 2D grid models with 4-node quadrilateral 

elements. There are 2 dofs per node.  
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Figure 2.2: For University of Florida Sparse Matrix Collection [114], relative 

performance of the BLAS based factorization and the non-BLAS based factorization. 

Figure is taken from Chen et al. [92].  

Two main factors contribute to the high performance of sparse factorization: 

minimization of number of floating point operations required for factorization and 

maximization of the factorization speed. For the former, a pivot-ordering is found, which 

aims to minimize the flop and non-zero. For the latter, BLAS3 kernels are employed in 

order to achieve a high factorization speed. Although factorization operations typically 

correspond to the largest portion of the overall operation count of a sparse solver, the 

execution time of the remaining code can be significant due to relatively low speed of 

handling sparse data structures. An efficient numerical factorization code minimizes the 

time spend in the subroutines other than the BLAS3 kernels which are employed for the 

factorization operations. In this study, the factorization speed is further increased by 

effectively exploiting the parallelism in multi-core computers.  
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2.2 Other Considerations for Achieving High-Performance  

As previously discussed, the solver package consists of preprocessing, analysis, 

numerical factorization, and triangular solution phases. The main design goal of a high-

performance solver package is to minimize the time spent in the solver package. The 

numerical factorization is typically the most computationally intensive component of a 

solver package. However, the time spent in the preprocessing and analysis phases may be 

comparable to the time for numerical factorization, especially for some 2D problems. 

Moreover, the triangular solution may take a significant amount of time if there are a 

large number of RHS vectors. Therefore, the time spent in all phases of the solver 

package must be considered in order to achieve high-performance.  

The contributions of the various components of the solver package to the overall 

execution time are demonstrated using two simple example problems. The overall 

performance for two matrix ordering programs is illustrated for an example 2D problem 

as shown in Table 2.1. The time spent at different phases of the solver for the numerical 

factorization and triangular solution with four threads is given in Table 2.1. The second 

row of the Table 2.1 shows the solver execution times for a local ordering. For the local 

ordering, the approximate minimum fill-in (AMF) algorithm in the SCOTCH library 

[121] is used. The third row of the Table 2.1 shows the solver execution times for the 

hybrid ordering algorithm in METIS library [69] (HMETIS). The local ordering AMF 

runs faster than the hybrid ordering HMETIS, but it may produce pivot-orderings that are 

not suitable for parallel processing. As shown in Table 2.1, the four-thread factorization 

time for HMETIS ordering is smaller than factorization time for AMF ordering. 

However, factorization plus matrix-ordering time for the AMF ordering is smaller 

compared to the HMETIS ordering due to the small matrix-ordering time for AMF. 

Therefore, the use of AMF ordering will minimize the overall execution time if the 

factorization and triangular solution are performed only once. However, if the 

factorization is repeated multiple times, then the factorization time will dominate the 
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overall execution time. In this case, it may be desirable to use a more time consuming 

preprocessing algorithm if it helps to reduce the factorization times. For example, the 

overall time with HMETIS ordering will be better than the one for AMF ordering if the 

factorization is repeated for more than 8 times for the example problem shown in Table 

2.1.  

As it is illustrated in the previous example, even though HMETIS execution times 

are greater than the factorization times, the extra time spent in the matrix ordering phase 

is worthwhile if the factorization is repeated. Therefore, the type of analysis shall be 

considered for a strategy that minimizes overall solver time. Namely, if the factorization 

and triangular solution are performed multiple times, for example, nonlinear analysis, the 

time spent in the numerical factorization and triangular solution phases may dominate the 

overall execution time. In this case, additional time can be spent in the preprocessing and 

analysis phases in order to minimize the numerical factorization and triangular solution 

times. On the other hand, if the solution is performed only once, the extra time spent in 

the preprocessing and analysis phases may increase the overall execution time 

significantly. This is especially true for parallel factorization and triangular solution, for 

which the contributions of the serial preprocessing and analysis times increase due to the 

time reductions in the numerical factorization and triangular solution phases. 

 

Ordering 
Algorithm 

Ordering 
Time 

Factorization 
Time 

Overall Time 
(Factorization 
& Ordering) 

Solution 
Time  

(100 RHS) 

Overall 
Time for 
Solution 

AMF 1.00 3.52 4.52 7.21 11.73 
HMETIS 8.09 2.54 10.63 4.40 15.03 

Table 2.1: Four-thread execution time of the solver package for alternative matrix 

ordering programs. Test problem is 50×10000 grid with 2D 4-node quadrilateral 

elements. All units are seconds. 
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As shown in the previous example, the execution time of the matrix-ordering 

program may affect the overall performance for 2D problems with numerical 

factorization times comparable to the hybrid matrix ordering times. On the other hand, 

for large 3D problems, the time spent in the matrix ordering program is typically small 

compared to the time spent in the factorization phase. Therefore, the overall performance 

is usually governed by the time spent in the factorization phase, and more elaborate 

matrix ordering strategies can be employed to minimize the factorization time at the 

expense of extra time spent in the preprocessing phase. Table 2.2 shows the overall 

performance for an example 3D problem. As shown in Table 2.2, the factorization time 

usually dominates the overall execution time. For this problem, a matrix ordering strategy 

that executes alternative matrix ordering programs and picks the best result among the 

pivot-orderings is more likely to minimize the overall execution time compared to the use 

of a single matrix-ordering algorithm.  

 

Ordering 
Algorithm 

Ordering 
Time 

Factorization 
Time 

Overall Time 
(Factorization 
& Ordering)  

Solution 
Time  

(100 RHS) 

Overall 
Time for 
Solution 

AMF 0.05 15.73 15.78 2.60 18.38 
HMETIS 0.32 6.41 6.73 1.68 8.41 

Table 2.2: Four-thread execution time of the solver package for alternative matrix 

ordering programs. Test problem is 30×30×30 grid with 3D 8-node solid elements. All 

units are seconds. 

 

In this study, strategies to improve the overall performance of the solver are 

discussed. In addition to the numerical factorization and solution phases, the performance 

of the preprocessing and analyze phases is evaluated. Although parallel implementations 

of hybrid matrix ordering libraries exist, such as PARMETIS [91] and PT-Scotch [122], 

all matrix ordering programs are executed in the serial mode. Therefore, the parallel 
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execution times of the hybrid matrix ordering programs will be less than the serial 

execution times given in this study.  

2.3 Performance Evaluation  

The execution time of the numerical factorization depends on two factors: floating 

point operations (flop) required for factorization and the speed (GFlop/sec) of numerical 

factorization. Matrix ordering programs aim to minimize the flop and efficient algorithms 

are employed to perform the numerical factorization and solution as fast as possible. As 

stated in the previous section, the time spent in the matrix ordering stage can also 

contribute to the overall execution time of the solver and must be considered when we 

evaluate the performance of the solver package. The performance of the solver package is 

evaluated using the following performance criteria:  

• Non-zero – number of non-zero entries in the lower-diagonal after the 

factorization.  

• Factorization flop – number of floating point operations required for Cholesky 

decomposition.  

• Solution flop – number of floating point operations required for numerical 

solution. 

• Ordering time – execution time of the matrix ordering strategy. 

• Factorization time – execution time for the numerical factorization.  

• Solution time – execution time for the numerical solution.  

• Overall time – total time required for the matrix ordering strategy, numerical 

factorization and numerical solution.  

The first three performance criteria are theoretical values and are calculated at the 

preprocessing and analysis phases prior to the factorization. The remaining performance 

criteria are found by measuring the execution time of different components of the direct 

solver. All execution times are wall clock times. The matrix ordering programs typically 
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aim to minimize the non-zeros introduced to the factors. The non-zero performance 

criterion can be used to compare the results from different matrix ordering programs. 

Furthermore, the non-zero is a measure of memory required for the factorization. 

Factorization flop is the theoretical operation count required for the numerical 

factorization. Similarly, solution flop is the theoretical operation count required for the 

numerical solution.  

For all performance criteria, a smaller value is better. A value for a performance 

criterion is compared with the smallest performance criterion obtained for a test problem. 

Two types of plots are used to compare the performance of alternative configurations: 

normalized performance plots and performance profiles [123].  

Normalized performance plots present the performance of configurations 

normalized according to the best results for all test problems used in the performance 

evaluation. Normalized plots help to see how a configuration performs for a test problem 

compared to the configuration that gives the best results. For the normalized performance 

plots, if the value on the y axis is 1.0 for a configuration, then that configuration gives the 

best results for the problem given on the x axis. When there are a large number of test 

problems, we may want to compare the overall performance of the configurations rather 

than the performance for individual test problems. The performance profile proposed by 

Dolan and More [123] is used to evaluate the overall performance of alternative solution 

strategies for a test suite. For a given performance criterion, pi(α) is the performance 

profile of the ith configuration, which is typically a solution strategy. For ith configuration, 

pi(α) gives the percentage of the test problems that is within the α times the best 

performance criterion. For example, pi(1) gives the percentage of test problems for which 

the ith configuration produces the best results. Similarly, pi(2) gives the percentage of test 

problems that the ith configuration produces results within two times the best result. By 

definition, pi(α) is a non-decreasing function. The performance profile has been used to 
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evaluate the performance of direct solvers and matrix ordering strategies in previous 

studies [58, 111]. 

The performance plots are demonstrated using an illustrative example. 

Hypothetical performances of three different configurations are given in Table 2.3. Here, 

Configuration 3 gives the best performance for all models except from Model 1. Figure 

2.3 shows the normalized performance plots. Here, the superiority of Configuration 3 for 

three out of four models is apparent. Figure 2.3 also shows that the Configuration 2 gives 

the best result for the model that Configuration 3 fails to give the best result. The relative 

performance of the configurations can be compared for each model by using the Figure 

2.3. The performance profiles for the example configurations are shown in Figure 2.4. 

Figure 2.4 shows that Configuration 3 gives the best results for 75% of the models and 

Configuration 2 gives the best performance for the remaining 25%, which is only one 

problem in our example. Figure 2.4 also shows that the performance of Configuration 1 

and Configuration 2 is similar for 75% of the models. For the remaining 25% of the 

models, Configuration 1 performs better than Configuration 2.  

 

Configuration No. Model 1 Model 2 Model 3 Model 4 
1 2.0 1.5 2.5 3.0 
2 1.75 1.75 2.25 3.5 
3 2.5 1.40 2.0 2.0 

Table 2.3: An illustrative example for performance plots. The values for a 

performance criterion are shown for three configurations and four models.  
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Figure 2.3: Normalized performance plots for the illustrative example given in 

Table 2.3.  

 

Figure 2.4: Performance profile for the illustrative example given in Table 2.3. 
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2.4 Software Optimization 

The numerical factorization and triangular solution phases of the direct solver are 

optimized for an efficient solution of the structures on SMP multi-core processors. We 

usually avoid optimization at the code level, i.e., we do not perform low level 

optimizations such as loop unrolling. Instead, we try to employ the most efficient 

algorithms and data structures for the sparse direct solution of structures on multi-core 

processors. We also tune the parameters of the algorithms for the best performance on 

finite element problems.  

A structured approach is followed in order to tune the solver package. The 

performance optimization methodology described by Tersteeg et al. [124] is used. The 

optimization is performed iteratively as shown in Figure 2.5. Here, each iteration designs, 

implements and verifies only one change to the code.  

 

Figure 2.5: An iteration for the performance optimization [124]  

A workload representing the realistic problems is required to measure 

performance and test the enhancements to the program. Tersteeg et al. [124] 

characterized the effective workloads as measurable, repeatable, static, and 

representative. For the tuning of the solver package, a large number of test structures are 

used. The test structures cover problems with different dimensions and node topology. 

Both 2D and 3D models composed of different element types are created for the test 

suite. See Section 2.6 and Appendix A for a detailed description of the test problems. The 
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performance data for the code is gathered using timers embedded with the code and 

AMD CodeAnalyst [125].  

It is important to preserve the correctness of the solver after each attempt to 

increase the efficiency. A set of smaller structural model test problems are used to check 

the correctness of the solver package after each modification.  

2.5 Implementation of the Solver Package 

Sparse solver packages utilize sophisticated algorithms for the manipulation of the 

sparse data structures. However, the majority of the execution time is consumed in the 

core numerical factorization code, which is a small portion of the sparse solver code. For 

this reason, emphasis is placed on improving the performance of the core numerical 

factorization code. The complexity of the rest of the program is tackled using the object-

oriented software design techniques. The design of the software addresses the following 

key considerations: 

• High performance at the core factorization and solution routines.  

• Flexibility in the preprocessing phase. The solver package allows 

experimenting with different preprocessing algorithms and different graph 

representations of structures.   

• Clear distinction between the phases of the direct solver. This allows 

executing factorization and solution phases multiple times for a pivot-ordering 

found in the preprocessing phase.  

• Measuring the execution time and memory requirements for the solution. 

Calculation of the performance criterion for a solution strategy.  

• Portability and sustained performance at different platforms. 

• Element connectivity and element matrices are taken as input to the solver 

package. The user is not required to build the stiffness matrix of the structure. 



47 
 

The stiffness matrix is assembled in an efficient fashion within the solver 

package. 

• Use of external matrix-ordering libraries such as METIS, SCOTCH, CAMD, 

and etc.  

• Implementation of hybrid factorization schemes.   

• Configurable algorithms that allow experimenting with alternative values for 

the algorithm parameters.  

• Support for command line interface for executing the solver within scripts.  

The solver package is developed in C++, which supports objects and generic 

programming. Generic programming allows using abstraction without paying a 

performance penalty for virtual functions. Efficient and reusable mathematical libraries 

are developed using this technique such as the graph and matrix-ordering library 

developed by Lee et.al. [126]. C++ also allows developing performance critical 

components at a low level. For example, frequent dynamic memory allocation is avoided. 

Instead of dynamic allocation of small objects, total memory is allocated in large amounts 

and segments of the large memory block are used as necessary. The numerical 

factorization and solution is performed using tuned BLAS/LAPACK kernels (MKL [6]). 

The high performance can be sustained by the use of BLAS kernels tuned for a system. 

The solver package is named as SES (Super Element Solver). The solver is 

composed of three main components:  

1. Interface package for inputting the structural model and interaction with the 

solver package 

2. Preprocessing package for finding pivot ordering 

3. Solution package for performing factorization, condensation, forward 

elimination, and back substitution. 

Figure 2.6 depicts the interaction between the packages. Each package uses the 

objects for storing the results. By merely relying on these objects, a direct link between 
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the packages is prevented. The preprocessing package returns an elimination tree object 

as the result of preprocessing. Then, an assembly tree object is built using the elimination 

tree, and the assembly tree is used for the symbolic and numerical factorization. In order 

to store the performance criteria for the solver package, a class that records the 

performance of different components is implemented. The class is designed as a singleton 

object, and any component of the solver can access the single instance of the class via a 

static interface.  

 

Figure 2.6: Main components of the SES solver package  

Tasks performed by different components of the solver package are summarized 

as:  

SES Interface 

• Read the input structure from a data stream  

• Apply an initial ordering for the nodes and elements of the structure  

• Provide data streams to the solver package for outputting performance and 

program state  
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• Construct an efficient representation of the FE problem, which is used by SES 

preprocessing and solution packages  

• Provide an interface for preprocessing and solution of problem with different 

strategies 

• Provide an interface to modify element matrices and perform factorization for 

the same problem.  

SES Preprocessing 

• Fill-in reduction using local and hybrid ordering techniques 

• Perform mesh coarsening.  

• Construct the elimination tree, a tree storing the partial ordering of the 

elimination steps.  

• Partition the structural model into a number of partitions.  

• Record the execution time for the preprocessing algorithms.   

SES Solution 

• Perform symbolic factorization 

• Build the assembly tree, a tree storing the assembly sequence of the elements. 

• Find balanced workloads for parallel numerical factorization and solution.  

• Find performance criterion for a given assembly tree. 

• Perform symbolic factorization, condensation, and solution. 

• Store statistics for symbolic factorization, condensation, and solution 

• Assemble the element stiffness matrices 

• Perform numerical factorization, condensation, and solution 

• Record the execution time of factorization, condensation, and solution 

2.6 Test Suites 

A large number of test problems are used for evaluating the performance of the 

alternative solution strategies and for tuning the solver package. Both 2D and 3D 
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problems are generated for the experiments. The solver uses the node connectivity 

information (topology) of the structure and does not depend on finite element 

formulations. Therefore, generalized element types are used to construct the test 

problems. Each generalized element may represent different finite element formulations 

from various applications. The models are constructed using the following generalized 

element types: 

1. 2D quadrilateral element with 4 nodes and 2 variables at each node  

2. 2D frame elements with 2 nodes and 3 variables at each node  

3. 3D solid elements with 4 nodes and 3 variables at each node  

4. 3D frame elements with 2 nodes and 6 variables at each node 

The number of variables at each node does not affect the pivot orderings of matrix 

ordering programs since a supervariable graph is used for the matrix ordering programs. 

However, the number of fill-ins and operation counts increase for a pivot ordering as the 

number of variables at each node increases. Therefore, small differences in the pivot 

orderings may have a larger impact on the operation count for models with a larger 

number of variables at each node.  

In order to measure the numerical factorization times with satisfactory precision, 

the test problems should be large enough. Therefore, test problems are chosen to have 

factorization times greater than 0.05 seconds on the system where the numerical 

experiments are performed. Additionally, to prevent performance degradation due to the 

memory limitations, the number of entries in the lower diagonal factors is limited to 

6.7.108 for 2D problems. 6.7.108 double precision entries approximately require 5 GB 

memory. For 3D problems, the limit for number of factors is 8.108, which is equivalent to 

6 GB memory. These restrictions are for performing factorization using only the main 

memory (8 GB in the test setup). 

There are 670 test problems having regular geometries with various aspect ratios. 

The model dimensions are summarized in Table 2.4. The number of elements in x, y and 
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z directions is given in this table. The models are generated for all possible unique 

combinations of the dimensions given in Table 2.4. As an example, 3D models with 10 

elements in the x, y and z directions (10×10×10) are shown in Figure 2.7 for solid and 

frame elements. The detailed statistics for the uniform test problems can be found in 

Appendix A. 

In addition to the test problems with regular geometries, test problems with 

irregular geometries are also used for the experiments. There are 86 irregular models that 

can be solved using only the main memory, which are composed of 21 problems with 2D 

quadrilateral elements, 21 problems with 2D frame elements, 22 problems with 3D solid 

elements, and 22 problems with 3D Frame elements. The properties of test problems with 

irregular geometries are also given in Appendix A.  
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Element 
Type 

Number of 
Models 

Model No. Dimensions 

2D 
quadrilateral  

56 1-56 
{20, 30, 40, 50, 60, 70, 80, 90}× 

{1000, 2000, 3000, 4000, 5000, 7500, 10000} 
2D 

quadrilateral 
27 57-83 

{100, 200, 300, 400, 500, 1000}× 
{100, 200, 300, 400, 500, 1000, 1500} 

2D frame 56 84-139 
{20, 30, 40, 50, 60, 70, 80, 90}× 

{1000, 2000, 3000, 4000, 5000, 7500, 10000} 

2D frame 27 140-166 
{100, 200, 300, 400, 500, 1000}× 

{100, 200, 300, 400, 500, 1000, 1500} 

3D solid 70 167-236 
{5, 10, 15, 20}× 
{5, 10, 15, 20}× 

{75, 100, 125, 150, 175, 200, 250} 

3D solid 119 237-355 
{10, 15, 20, 25, 30, 35}× 
{10, 15, 20, 25, 30, 35}× 

{10, 15, 20, 25, 30, 35, 40, 45, 50} 

3D solid 63 356-418 
{25, 50, 75, 100, 125, 150}× 
{25, 50, 75, 100, 125, 150}× 

{4, 5, 6} 

3D frame 70 419-488 
{5, 10, 15, 20}× 
{5, 10, 15, 20}× 

{75, 100, 125, 150, 175, 200, 250} 

3D frame 119 489-607 
{10, 15, 20, 25, 30, 35}× 
{10, 15, 20, 25, 30, 35}× 

{10, 15, 20, 25, 30, 35, 40, 45, 50} 

3D frame 63 608-670 
{25, 50, 75, 100, 125, 150}× 
{25, 50, 75, 100, 125, 150}× 

{4, 5, 6} 

Table 2.4: Test problems with regular geometries that can be solved using 8 

Gbyte main memory only. 

 

 

Figure 2.7: For 3D solid and 3D frame elements, 10×10×10 FE models with 

regular geometries 
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It’s not feasible to use all test problems for a large number of numerical 

experiments performed for tuning the solver package. For tuning the solver package, 40 

regular test problems are selected among the 670 regular problems. Table 2.5 shows the 

selected problems. This test suite is referred to as benchmark suite of 40 test problems 

throughout this study.  

 

2D quadrilateral 2D frame 3D solid 3D frame 
1. q20×5000 11. f20×5000 21. s5×10×100 31. f5x10x100 
2. q20×10000 12. f20×10000 22. s15×15×250 32. f15×15×250 
3. q50×1000 13. f50×1000 23. s20×20×150 33. f20×20×150 
4. q50×10000 14. f50×10000 24. s10×15×50 34. f10×15×50 
5. q90×1000 15. f90×1000 25. s15×30×50 35. f15×30×50 
6. q90×5000 16. f90×5000 26. s20×20×20 36. f20×20×20 
7. q200×300 17. f200×300 27. s20×30×40 37. f20×30×40 
8. q300×1000 18. f300×1000 28. s30×30×30 38. f30×30×30 
9. q500×500 19. f500×500 29. s75×150×5 39. f75×150×5 
10. q500×1500 20. f500×1500 30. s125×125×6 40. f125×125×6 

Table 2.5: Benchmark suite of 40 test problems. The test suite is used to tune the 

solver package. 

Once the solver is tuned, the performance of the solver package is demonstrated 

using 8 large test problems that were not used before. Figure 2.8 shows the 8 large test 

problems, which are composed of 2 models with 2D quadrilateral elements, 2 models 

with 2D frame elements, 2 models with solid elements, and 2 models with 3D frame 

elements. The problem sizes are chosen so that the 8 GB main memory is enough for an 

in-core factorization and triangular solution with 100 RHS vectors. Table 2.6 shows the 

statistics for the large test problems. Finally, the performance of the out-of-core solution 

is evaluated for 8 very large problems for which the solution cannot be performed using 

only the main memory. The geometry of the very large problems is similar to the ones 

shown in Figure 2.8. However, more elements are used for creating these problems. 

Table 2.7 shows the statistics for the very large test problems.  

For all test problems, the variables at the bottom nodes are not active (support 

nodes), i.e., they do not contribute to the coefficient matrix. The rest of the nodes are 
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active. Due to the finite element discretization, the coefficient matrices of models are 

structurally symmetric. The coefficient matrix is numerically symmetric if the element 

matrices are also symmetric. In this study, it is assumed that the coefficient matrix is also 

numerically symmetric.  

 

Model Name 
Number of 

Dofs 
Median 

Bandwidth 
Non-zero for 

HMETIS 
Flop for 
HMETIS 

Q2DL1 1.49E+06 664 1.70E+08 1.25E+11 
Q2DL2 1.93E+06 840 1.91E+08 1.18E+11 
F2DL1 2.07E+06 301 1.83E+08 1.22E+11 
F2DL2 2.06E+06 502 1.98E+08 1.80E+11 
S3DL1 522,900 1353 5.05E+08 1.34E+12 
S3DL2 883,560 1413 5.22E+08 1.03E+12 
F3DL1 751,008 809 4.70E+08 1.31E+12 
F3DL2 424,848 734 3.87E+08 1.65E+12 

Table 2.6: Statistics for the benchmark suite with 8 large problems. Benchmark 

suite is used to evaluate the performance of the in-core solution. 

 

Model Name 
Number of 

Dofs 
Median 

Bandwidth 
Non-zero for 

HMETIS 
Flop for 
HMETIS 

Q2DVL1 4.83E+06 602 6.12E+08 7.32E+11 
Q2DVL2 4.50E+06 602 4.94E+08 5.06E+11 
F2DVL1 9.99E+06 301 9.24E+08 7.20E+11 
F2DVL2 9.94E+06 502 1.01E+09 1.17E+12 
S3DVL1 1.15E+06 3110 1.37E+09 5.66E+12 
S3DVL2 2.21E+06 3135 1.56E+09 5.37E+12 
F3DVL1 4.00E+06 969 2.30E+09 7.07E+12 
F3DVL2 1.65E+06 361 1.35E+09 5.31E+12 

Table 2.7: Statistics for the benchmark suite with 8 very large problems. 

Benchmark suite is used to evaluate the performance of the out-of-core solution. 
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Q2DL1 

 

Q2DL2 

 

Figure 2.8: Large test problems.  
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F2DL1           F2DL2 

 

Figure 2.8 (cont.): Large test problems  
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S3DL1 

   

S3DL2 

Figure 2.8 (cont.): Large test problems  
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F3DL1 

 

F3DL2 

 

Figure 2.8 (cont.): Large test problems  
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CHAPTER 3 

PREPROCESSING PHASE 

The first phase of a general sparse solver is the preprocessing phase in which a 

pivot-ordering is determined that minimizes the execution time and memory requirements 

of the numerical factorization. A matrix ordering program can be used for this purpose. 

We also make use of the graph partitioning and mesh coarsening algorithms in the 

preprocessing phase. Our solver package unifies all these algorithms to find a pivot-

ordering that minimizes the execution time of the numerical factorization. After a pivot-

ordering is found, the preprocessing phase constructs an elimination tree [73].  

3.1 Graph Representation of the Structures 

The matrix ordering programs typically use a graph representing the nonzero 

structure of the sparse coefficient matrix. The coefficient matrix is the structural stiffness 

matrix, K, for the structural problems. In the graph representing the nonzero structure of 

the K, there is an edge between the graph vertices i and j if Ki,j is nonzero. As the 

factorization progresses, additional nonzero entries are introduced in K (fill-ins). The fill-

ins introduce new edges between the vertices of the graph. The factorization can be 

modeled with a sequence of such graphs obtained by removing the vertex corresponding 

to the current pivot column and adding edges between all adjacent vertices of that vertex. 

Such graphs are called elimination graphs and they are useful for conceptual 

understanding of the fill-ins introduced during the factorization steps. An example of 

elimination graph is shown in Figure 3.1 for a simple structure which is also shown in 

this figure. As shown in Figure 3.1, the elimination graph has 16 vertices, the same 

number of vertices as the number of dofs in the example structure (or the number of 

columns of the stiffness matrix). The use of the elimination graph with a local ordering 
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algorithm is generally prohibitive since the size of the elimination graph grows in an 

unpredictable fashion as additional edges corresponding to the fill-ins are added to the 

graph. Instead of the elimination graph, a more compact representation called the quotient 

graph is more suitable for the local ordering algorithms [127]. A quotient graph stores the 

adjacency information by keeping the eliminated vertices in the graph to represent the 

edges added to their adjacent vertices. The elimination graph and quotient graph are 

identical in the beginning of the factorization, but unlike the elimination graph, in the 

later stages of the factorization, the quotient graph does not require a memory space 

larger than the memory required to store the original graph. 

 

 

Figure 3.1: The graph representation of the stiffness matrix of the simple structure 

with 8 nodes. (a) the simple structure (b) stiffness matrix for the simple structure, (c) the 

elimination graph for the stiffness matrix. There are two dofs at each node other than the 

nodes with the supports. 

 

For structural problems, the stiffness matrix columns corresponding to the dofs of 

a node typically have the same sparsity pattern. This is apparent in the example structure 
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shown in Figure 3.1. Here, the stiffness matrix entries for the dofs corresponding to a 

node are grouped into 2×2 dense matrix blocks. Instead of the graph shown in Figure 3.1, 

we can use a graph representing the nonzero pattern of 2×2 blocked stiffness matrix. In 

this compact graph representation, the blocks are represented with a weighted vertex 

where the weight of a vertex is equal to the number of dofs at a node and the edges 

represent the node connectivity information of the FE model. The size of the graph can be 

further reduced by compressing the nodes connected to the same set of elements into a 

single vertex in the graph. This compact representation of the coefficient matrix is called 

as supervariable graph [46, 128]. The matrix ordering programs run faster if a 

supervariable graph is used instead of the elimination graph since the supervariable graph 

is a compressed form of the elimination graph. Ashcraft [129] discussed the use of graph 

compression to reduce the execution time of the minimum degree orderings.  

As an alternative to the supervariable graph, we can employ graphs representing 

the element connectivity of the structures for the partitioning algorithms. Several graph 

types have been used which have vertices for the elements and edges for the element 

connectivity information. An element communication graph [46, 130-131] connects the 

two elements if they share a node. A dual graph [47, 132] is a compact representation of 

the finite element mesh which has edges between the vertices only if k dimensional 

elements share k-1 dimensional boundaries. The vertices of the dual graph corresponding 

to elements with different dimension (i.e., frame element mixed with quadrilateral or 

solid elements) may be disconnected even though the elements share a node in the FE 

model. In this case, the element connectivity information cannot be represented correctly 

by the use of dual graph. The number of edges in an element communication graph is 

larger than the one in a dual graph for the same FE mesh. However, it provides a better 

representation for the fill-ins introduced during the factorization since there is an edge for 

each shared node of two adjacent elements. Additionally, unlike the dual graph, the 

connectivity information of the elements is never lost. Some other graph representations 
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and improvements to the dual graph are proposed by Kaveh and Rosta [130] and Topping 

and Ivanyi [133]. More information about the graph representations of finite element 

models can be found in References [46, 130-131, 134]. 

As an illustrative example, different graph representations of a structure are 

shown in Figure 3.2. Since there are typically more nodes than the elements in a 

structure, the supervariable graph is the largest among three alternative graph 

representations shown in Figure 3.2. As shown in Figure 3.2, the number of vertices for 

the element communication graph and dual graph is the same since the vertices represents 

the elements in the structure. However, the dual graph typically has fewer edges since 

there is an edge in the dual graph if only the connected elements share an edge in the 

finite element mesh. 

 

 

Figure 3.2 Graph representations of an example structure: (a) supervariable graph, 

(b) element communication graph, and (c) dual graph.  

 

The SES solver package developed in this study allows using either supervariable 

or element communication graphs for the preprocessing algorithms. A dual graph is not 

implemented due to its limitations described previously. The matrix-ordering programs 
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that can be used in the SES solver package typically work with a supervariable graph. 

Partitioning and mesh coarsening algorithms described in the subsequent chapters can be 

used with either a supervariable or an element communication graph representing a 

structure (or a substructure). 

3.2 Initial Node Numbering  

The local matrix ordering algorithms choose the next pivot-column in a greedy 

fashion based on a heuristic function value such as minimum degree or minimum fill-in. 

There may be multiple candidate columns with the same heuristic function value at a 

stage of a local matrix ordering algorithm. The tie-breaking strategy for the multiple pivot 

candidates affects the quality of the ordering. A minimum degree algorithm typically 

chooses the next pivot according to the initial numbering of the columns if there is a tie 

between the candidate pivots. Therefore, the initial numbering of the graph vertices 

affects the quality of the pivot-orderings produced by a minimum degree ordering 

algorithm. George and Liu [60] showed that the two initial node numberings, the 

numbering of nodes based on the coordinate information and reverse Cuthill-McKee 

ordering, yield favorable fill-ins for the minimum degree ordering of an example square 

grid. These initial node numberings typically produced pivot-orderings with fewer fill-ins 

compared to the random node permutations.  

The performance of various matrix ordering programs are evaluated using 

benchmark suites with FE test problems. In performance evaluations, the effect of initial 

node numbering can be eliminated by using the median result among several pivot-

orderings found for different random node permutations. However, as stated previously, 

random node permutations may result in pivot-orderings yielding larger fill-ins compared 

to the original node numbering, especially for the local matrix ordering programs [63]. In 

the SES solver package, three types of initial node numberings are implemented:  
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• Random permutations – the nodes are shuffled randomly based on a random 

number generator with a seed value given by the user. 

• Coordinate based node numbering – the nodes are ordered according to the 

ascending values of the x, y, and z coordinates. Here, first the nodes with the 

minimum y and z coordinates are ordered in ascending values for the x 

coordinates. Next, the y coordinate is incremented and the ordering according 

to the x coordinates is repeated. Finally, the z coordinate is incremented and 

the ordering is repeated for the nodes with second smallest z values. The 

coordinate based numbering is illustrated in Figure 3.3 for an example 

structure.  

• Cuthill-McKee (CMK) and reverse CMK orderings – the nodes are ordered by 

using the CMK subroutine in the BOOST graph library [135].  

• Node numbering in the input structure – the original numbering of the nodes 

in the input structure is used.  

 

 

Figure 3.3: The initial numbering of the nodes based on the coordinate 

information of an example structure.  
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The initial node numbering algorithms reassign the numbers to the nodes in the 

input structure. The preprocessing algorithms are executed for the graph with the nodes 

numbered according to one of the initial node numberings described above. The effect of 

initial node numbering is illustrated later in Chapter 6. 

3.3 Matrix Ordering Programs 

There are several public domain matrix ordering programs that implement local 

heuristics and hybrid orderings. The SES solver package allows using the following 

matrix ordering programs developed by other researchers: 

• AMF – Approximate minimum fill-in ordering in SCOTCH library [121]  

• MMD – Multiple minimum-degree ordering in METIS library [69]  

• BOOST-MMD – Multiple minimum-degree ordering in BOOST libraries 

[135] 

• AMD – Approximate minimum degree ordering [63]  

• HAMF – Hybrid ordering in SCOTCH library [121]  

• HMETIS – Hybrid ordering in METIS library [69]  

The first four matrix ordering programs shown above are based on the local 

heuristics. The last two programs, HAMF and HMETIS, are hybrid matrix ordering 

subroutines in the SCOTCH and METIS libraries respectively. The SES package allows 

experimenting with alternative parameters for the matrix-ordering programs. In this 

section, matrix-ordering programs are briefly explained and their adjustable parameters 

are discussed.  

Performing factorization operations on a small number of pivot columns is not as 

fast as performing factorization on larger column blocks. Therefore, the pivot columns 

are coalesced (node amalgamation) in order to increase the size of the block sizes on 

which the factorization is performed [57]. The SCOTCH library can perform the node 

amalgamation within the matrix ordering programs. Namely, the minimum size of the 
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supernodes found with AMF can be set by the user. The parameter cmin determines the 

minimum size of the supernodes. If a supernode is smaller than cmin, it is merged with its 

parent in the elimination tree. The amalgamation of the supernodes typically introduces 

fictitious fill-ins in the coefficient matrix and the number of fictitious fill-ins can be 

controlled by the fratio parameter in AMF. The fratio determines the upper limit for the 

fill-in ratio with respect to the non-zero entries in the pivot columns. If the fill-in ratio is 

larger than fratio, then the node amalgamation is not performed even if a supernode is 

smaller than cmin. One of the advantages of node amalgamation is the increased 

efficiency of the BLAS3 kernels since the BLAS3 kernels run faster as the size of the 

dense matrix increases. Node amalgamation also reduces the size of the assembly tree 

and the number of update operations for the multifrontal method.  

The SCOTCH library has an option to compress the input graph. The compressed 

graph is used if the ratio of the size of the compressed graph to the size of the original 

graph is below the parameter cratio. The graph compression can speed up the matrix-

ordering programs.  

MMD algorithms allow simultaneous elimination of the independent vertices in 

the elimination graph. The independent node elimination is controlled by the parameter 

delta. The parameter delta is the degree difference between the node(s) with the 

minimum degree and other nodes that can be eliminated simultaneously. Multiple 

eliminations of the nodes typically reduce the execution time of the minimum degree 

ordering. Local heuristics AMD and AMF do not allow multiple eliminations. MMD and 

BOOST-MMD are essentially the same ordering programs with different 

implementations. BOOST-MMD is implemented by using the C++ templates of the 

BOOST graph library. MMD typically executes faster than BOOST MMD since it is a 

low-level C program.  

Hybrid matrix ordering HAMF is the default matrix ordering strategy in the 

SCOTCH library. In HAMF, nested dissections are performed until the partitions are 



67 
 

small enough. Then, the partitions are ordered using an approximate minimum fill-in 

ordering [70]. HAMF allows setting the stopping criteria for the nested dissections. If a 

partition found with the nested dissections has number of nodes smaller than the vertnum 

parameter, the partitioning is stopped and the partition is ordered with the local ordering. 

A distinct feature of the HAMF is that the exact connectivity information of the graph 

nodes at the boundaries is used for the local ordering of the partitions. The use of exact 

information typically increases the quality of the hybrid ordering [70]. As previously 

explained, the parameters for the AMF determine the features of the local ordering used 

for the partitions. It should be noted that SCOTCH library also allows using an AMD 

ordering for the local ordering of the partitions. The SES solver package allows the use of 

both AMF and AMD for the ordering of the partitioned graphs. Nevertheless, AMF 

typically yields fewer fill-ins at a cost of increased execution time.  

Hybrid ordering HMETIS is similar to HAMF except that the MMD algorithm is 

used for local ordering of the partitions instead of AMF. The options for HMETIS allow 

controlling the matching algorithm, refinement algorithm, initial partitioning algorithm, 

and number of partitions at each step of nested dissection. Typically, default options of 

the HMETIS give satisfactory results. For the hybrid ordering HMETIS, the SES solver 

package allows using either a compressed graph (METIS_NodeWND subroutine in 

METIS [69]) or an uncompressed graph (METIS_NodeND subroutine in METIS [69]). 

For the METIS_NodeWND subroutine, it is assumed that the graph is already 

compressed and the graph vertices have weights representing the number of variables at 

each vertex. On the other hand, for the METIS_NodeND subroutine, the compression is 

applied within the METIS package.  

A supervariable graph is employed for all matrix ordering programs implemented 

in the SES solver package. Although the SCOTCH library allows using a mesh 

representation of the structure, this feature has not yet been implemented. George [60] 

stated that the use of a mesh representation for the finite element problems can reduce the 
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memory requirements of ordering algorithms, especially for the meshes with higher-order 

elements.  

3.4 Graph Partitioning 

Graph partitioning can be used to increase the concurrency of the sparse direct 

solution. If a hybrid matrix-ordering program is used for fill-in reduction, the graph 

partitioning is performed implicitly to find disconnected graph vertices corresponding to 

the pivot columns that does not introduce fill-in to each other. Therefore, the elimination 

tree produced by a hybrid ordering program is suitable for exploiting tree-level 

parallelism [74, 77]. To illustrate this point, Figure 3.4 shows the partitions found with 

HMETIS hybrid ordering for a 2D model. As shown in Figure 3.4, HMETIS finds 64 

partitions for which the factorization steps can be performed in parallel.  

Graph partitioning can also be performed at a structural level to harness parallel 

processing in the pre-processing and post-processing stages. An element communication 

graph can be used to partition the structure into independent components. In order to 

obtain partitions with balanced workloads, node weights of the element communication 

graph should be a close approximation to the computational work related to an element. 

As an alternative to the element communication graph, a supervariable graph can be used 

for partitioning of the structure. However, this may result in duplication of boundary 

elements in neighbouring partitions.  

The SES solver package allows using partitioning algorithms from the METIS 

graph partitioning library. SES provides interfaces for k-way partitioning and recursive 

nested dissection in METIS. Either an element communication or a supervariable graph 

representation of a structure can be used for partitioning. If a supervariable graph is used, 

the boundary elements are assigned to a partition according to partitioning of the element 

nodes. Namely, an element is assigned to the partition that has the majority of element 

nodes.  
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Some preliminary experiments are performed to investigate the efficiency of 

explicit partitioning for the numerical factorization. Figure 3.5 shows the 64 partitions 

found with METIS by using the element communication graph. Similarly, Figure 3.6 

shows the 64 partitions found by using the supervariable graph. If Figure 3.5 and Figure 

3.6 are compared with Figure 3.4, we see that METIS partitioning subroutines creates 

irregular boundaries between the partitions compared to the partition boundaries found in 

the HMETIS hybrid ordering. Consequently, the number of nonzero entries in the factors 

is larger than the one found with HMETIS hybrid ordering for the explicit partitioning of 

the structures (non-zeros are given below the figures). The difference is mainly due to the 

different goals of the partitioning and matrix ordering algorithms. The main goal of a 

partitioning algorithm is to find balanced partitions. This may not produce the minimum 

non-zero since minimizing the edge cuts is more important than the balanced partitions 

for fill-in minimization. Bruce et al. [136] also stated the importance of allowing some 

imbalance between the partitions for minimizing the fill-ins.  

 

Figure 3.4: Partitions found with the HMETIS hybrid ordering for q100×100. 

Non-zero = 1.285E6 for the hybrid ordering with the partitions illustrated above. 
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Figure 3.5: 64 partitions found with METIS recursive nested dissections on the 

element communication graph for q100×100. Non-zero = 1.673E6 after ordering 

partitions and separators with AMF. 

 

 

Figure 3.6: 64 partitions found with METIS recursive nested dissections on the 

supervariable graph for q100×100. Non-zero = 1.579E6 after ordering partitions and 

separators with AMF. 
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As illustrated in the previous examples, the application of explicit partitioning 

may increase the number of non-zeros compared to the implicit partitioning of the hybrid 

ordering programs. The main goal for performing explicit partitioning is to increase the 

degree of parallelism. However, the pivot orderings found with hybrid matrix ordering 

programs are already suitable for parallel processing. Therefore, partitioning may not be 

essential for high-performance in parallel factorization. Table 3.1 shows the parallel 

factorization performance for preprocessing q500×500 test problem with and without 

partitioning. There are four cores in the test machine, therefore the FE mesh is partitioned 

into four independent components. A thread is spawned for each core and the 

factorization of the partitions is performed simultaneously on four cores. As shown in 

Table 3.1, partitioning the FE mesh with METIS package increases the factorization flop. 

Therefore, both parallel and serial factorization times are increased compared to no 

partitioning. We further investigate the efficiency of the partitioning algorithms for a 

benchmark suite.  

 

 

Preprocessing 
Algorithms 

Non-zero 
(107) 

Factorization 
Flop (GFlop) 

Serial Factorization 
Time (sec) 

Four-Thread 
Factorization 

Time (sec) 

AMF 5.55 23.07 4.96 1.84 

METIS 5.07 22.47 4.82 1.48 

4 Partitions + 
AMF 

7.50 57.07 10.98 4.04 

4 Partitions + 
METIS 

6.32 33.92 6.64 2.09 

Table 3.1: Effect of explicit partitioning on the numerical factorization times for 

the problem q500×500.  
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3.5 Mesh Coarsening 

Guney and Will [134] proposed a solution scheme that uses a structural model 

comprising super-elements created by merging adjacent elements in the original 

structural model. The new super-elements created by the coarsening scheme are larger 

than the original finite elements (the super-elements have more nodes compared to the 

original elements) and the graph representation of the coarsened mesh, namely, the 

supervariable or element communication graphs, is typically smaller than the size of the 

graph representation of the original mesh. Therefore, the preprocessing phase executes 

substantially faster if a coarser model is used instead of the original model. The 

coarsening scheme also improves the efficiency of the multifrontal factorization. The 

effect of coarsening is similar to node amalgamation in the multifrontal method [57]. The 

coarsening enlarges the frontal matrices at the leaves of the assembly tree since super-

elements are larger than the original finite elements used to construct the assembly tree 

for the original mesh. Similarly, the number of assembly tree nodes are reduced since the 

number of super elements at the coarsened mesh is smaller than the number of original 

finite elements. Therefore, the number of update operations performed for assembly tree 

nodes is reduced if a coarsened mesh is employed for the numerical solution. 

Additionally, the BLAS3 kernels typically run faster since the frontal matrix sizes are 

large compared to the frontal matrices for the original finite element mesh.  

In this study, two alternative coarsening algorithms are implemented. The first is 

the adaptation of the coarsening algorithm originally proposed by Guney and Will [134]. 

Here, the original elements are merged with their adjacent elements. The steps of the 

element based coarsening algorithm are given as follows:  

1. Visit elements in the increasing order of their x, y and z coordinate. Let’s call 

currently visited element as e. 
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2. If e and its adjacent elements, Adj(e), are not already coalesced with some 

other element then e is eligible for coarsening, go to step 3. Otherwise e is not 

eligible, go to step 1. 

3. Merge e and all of its adjacent elements to form super-element E = {e U 

Adj(e)}.  

4. Repeat steps 2 to 4 until all original elements are visited. 

Figure 3.7 illustrates the steps of coarsening on an example problem. The first 

element that is eligible for merging with its adjacency is element 1. For e representing 

element 1, Adj(e) has elements 2, 5 and 6 and the coarsened element E is the union of 

elements 1, 2, 5 and 6. As shown in Figure 3.7, Adj(E) are marked so that when these 

elements are visited later in Step 1, the criterion given at Step 2 can be checked easily. 

When the coarsening is completed, there are 4 super-elements in the coarsened mesh 

compared to the 16 elements in the original finite element mesh.  

The main disadvantage of element based coarsening is that we do not have direct 

control on number of nodes eliminated at super-elements formed by coarsening of the 

finite elements. An alternative to element based coarsening is coarsening based on the 

node connectivity information. This is similar to the element based coarsening. However, 

the elements are now merged by first finding the nodes that will be eliminated at each 

super-element. This allows choosing the number of nodes eliminated at super-elements. 

The steps in the node based coarsening algorithm are given as follows: 

1. Visit nodes in the increasing order of their x, y and z coordinate. Let’s call 

currently visited node as n. 

2. If n is not already coalesced with some other node, then n is eligible for 

coarsening, go to step 3. Otherwise, n is not eligible, go to step 1. 

3. Merge all elements connected to n to form super-element, E, with the nodes 

{ n U Adj(n)}.  

4. Repeat steps 2 to 4 until all original nodes are visited. 
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The steps of node based coarsening are depicted in Figure 3.8 for the same 

example mesh used to demonstrate the element based coarsening in Figure 3.7. Here, the 

coarsening algorithm first picks the node with the smallest x, y and z coordinates. Then, it 

merges all elements connected to this node (elements 1 and 5). The newly formed super-

element contains the eligible node and its adjacent nodes. The nodes of the newly formed 

super-element are marked as not eligible. This allows easy determination of the node 

eligibility at the Step 2 of the node based coarsening algorithm given above.  

 

 

 

Figure 3.7: Element based coarsening for a sample 5×5 mesh. Each row in the 

figure illustrates selecting an eligible element and merging it with its adjacent elements.  
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Figure 3.8: Node based coarsening for a sample 5×5 mesh. There is a node at each 

corner of an element and bottom nodes are fully restrained. Each row in the figure 

illustrates selecting an eligible node and merging the elements connected to it.  

The coarsening schemes illustrated in Figure 3.7 and Figure 3.8 use a single 

eligible element and node respectively at each step of the coarsening. Aggressive 

coarsening schemes can be employed by using multiple eligible elements/nodes at each 

coarsening step. The eleco parameter of the SES solver package determines the number 

of eligible elements selected at each element based coarsening step. Figure 3.9 shows the 
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coarsened mesh obtained for different eleco values for an example 50×50 quadrilateral 

mesh. As shown in Figure 3.9, a coarser mesh is obtained as we increase the eleco value. 

Similarly, the nodeco parameter determines the number nodes eliminated at each super-

element for a node based coarsening algorithm. Figure 3.10 shows the coarsened mesh 

for different nodeco values. As shown in Figure 3.10, coarser meshes are obtained as we 

increase the nodeco value. In Figure 3.10, the white spots for the nodeco = 8 show the 

elements that are not merged with any elements.  

 

   

Figure 3.9: The element based coarsening for eleco=1, 2, and 4 from left to right 

respectively. The original model is q50×50. Each super-element in the coarsened mesh is 

painted with a different color. 

 

   

Figure 3.10: The node based coarsening for nodeco=1, 4, and 8 from left to right 

respectively. The original model is q50×50. Each super-element in the coarsened mesh is 

painted with a different color. 
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Next, we demonstrate the effect of the coarsening on four example test problems. 

Pivot-orderings are found with HMETIS for the numerical experiments in this section. 

For the test problem q500×500, Table 3.2 and Table 3.3 show the effect of coarsening 

strategies on different stages of the solver package for element based coarsening and 

node based coarsening schemes respectively. As shown in Table 3.2 and Table 3.3, both 

coarsening algorithms can greatly reduce the matrix-ordering time, about three times 

faster than the one for the original mesh. Moreover, analysis and factorization times are 

reduced significantly. However, the number of eliminated nodes at super-elements should 

be carefully chosen for node based coarsening algorithms since the coarsening may 

significantly increase the factorization flop and time. For example, the factorization flop 

and time for nodeco = 3 in Table 3.3 are significantly larger than the ones for the original 

mesh. For problem q500×500, nodeco = 4 and 8 give the best factorization times for node 

based coarsening. For element based coarsening, the best performance is obtained if a 

single element is merged with its adjacency at each coarsening step.  

For the test problem f500×500, Table 3.4 and Table 3.5 show the effect of 

coarsening strategies for the element and node based coarsening schemes respectively. 

The element based coarsening does not improve the performance of the numerical 

factorization for this problem. Whereas, the node based coarsening can reduce the matrix 

ordering, analysis, and factorization times.  

Compared to the performance on 2D problems, the improvements due to the 

coarsening scheme are less significant for 3D problems. Table 3.6 and Table 3.7 show the 

performance of coarsening strategies for s15×15×250 for element and node based 

coarsening schemes respectively. While some improvement can be observed in matrix 

ordering and analysis times for the element based coarsening scheme, the benefits of the 

coarsening are offset by the increase in the factorization times due to the increase in the 

flop for factorization. As shown in Table 3.7, the node based coarsening scheme also 

increases the factorization times for the s15×15×250 test problem.   
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Table 3.8 and Table 3.9 show the performance of coarsening strategies for 

f20×20×20 for element and node based coarsening schemes respectively. For this 

problem, the element based coarsening scheme is not beneficial for reducing the 

factorization time, whereas, the node based coarsening with single eliminated node at 

each super-element reduces the factorization time.  

The numerical experiments illustrate that benefits of coarsening are different for 

problems with different dimensionality. For 2D problems, a more aggressive coarsening 

can be applied with larger number of elements eliminated at each super-element. On the 

other hand, for 3D problems, the factorization flop grows dramatically if an aggressive 

coarsening scheme is employed, which merges a large number of elements to form super-

elements. A coarsening scheme that eliminates a single node at each super-element 

usually gives the most favorable results for 3D problems. Further numerical experiments 

are performed in Chapter 6 in order to determine the effect of eleco and nodeco 

parameters on the execution time of the solver package.  

 

 

eleco 
Matrix Ordering 

Time (sec) 
Analysis 

Time (sec) 
Factorization 
Time (sec) 

Number of 
Tree Nodes 

Flop (109) for 
Factorization 

0 1.91 3.99 6.36 130,823 21.64 
1 0.70 1.70 5.19 55,693 20.86 
2 0.54 0.86 5.68 19,232 28.13 
3 0.55 0.77 5.7 17,872 29.04 

Table 3.2: Performance of the element based coarsening scheme for q500×500. 
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nodeco 
Matrix Ordering 

Time (sec) 
Analysis 

Time (sec) 
Factorization 
Time (sec) 

Number of 
Tree Nodes 

Flop (109) for 
Factorization 

1 1.67 3.48 5.87 125,336 21.32 
2 1.13 2.41 5.88 83,342 24.05 
3 1.25 2.23 9.18 71,145 46.33 
4 0.69 1.69 5.26 55,673 22 
5 0.96 1.83 6.79 58,613 30.77 
6 0.65 1.43 6.28 41,845 28.45 
7 0.93 1.35 8.99 36,675 45.97 
8 0.56 1.46 5.37 45,744 22.27 
9 0.41 0.72 5.85 15,789 28.88 

Table 3.3: Performance of the node based coarsening scheme for q500×500. 

 

 

eleco 
Matrix Ordering 

Time (sec) 
Analysis 

Time (sec) 
Factorization 
Time (sec) 

Number of 
Tree Nodes 

Flop (109) for 
Factorization 

0 1.39 4.54 11.42 192,829 46.05 
1 0.97 3.07 12.80 112,949 63.37 
2 1.06 1.44 11.34 33,424 60.45 
3 1.1 1.38 11.7 29,894 62.89 

Table 3.4: Performance of the element based coarsening scheme for f500×500. 

 

 

nodeco 
Matrix Ordering 

Time (sec) 
Analysis 

Time (sec) 
Factorization 
Time (sec) 

Number of 
Tree Nodes 

Flop (109) for 
Factorization 

1 0.80 3.96 10.89 191,559 50.33 
2 1.01 2.92 10.16 111,416 47.62 
3 1.01 2.38 11.31 84,669 55.73 
4 1.12 2.18 12.4 70,339 63.68 
5 0.88 1.96 9.65 64,990 47.65 
6 0.76 1.54 10.16 51,009 50.14 
7 1.02 1.6 12.29 48,360 63.15 
8 0.37 1.23 9.2 40,168 45.17 
9 0.63 1.02 10.5 21,240 55.33 

Table 3.5: Performance of the node based coarsening scheme for f500×500. 
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eleco 
Matrix Ordering 

Time (sec) 
Analysis 

Time (sec) 
Factorization 
Time (sec) 

Number of 
Tree Nodes 

Flop (109) for 
Factorization 

0 0.8 1.08 24.29 19,050 142.99 
1 0.51 0.5 29.24 8,307 179.09 
2 0.29 0.29 30.66 3,968 191.96 
3 0.27 0.25 28.1 3,472 176.29 

Table 3.6: Performance of the element based coarsening scheme for s15×15×250. 

 

 

nodeco 
Matrix Ordering 

Time (sec) 
Analysis 

Time (sec) 
Factorization 
Time (sec) 

Number of 
Tree Nodes 

Flop (109) for 
Factorization 

1 1.10 0.87 25.71 15,977 156.23 
2 1.01 0.7 29.89 11,462 180.21 
3 1.40 0.79 61.38 10,112 384.21 
4 1.37 0.73 67.74 8,786 429.46 
5 1.54 0.7 71.68 8,234 449.89 
6 1.42 0.64 70.93 7,509 445.26 
7 1.51 0.61 68.42 7,040 425.49 
8 1.38 0.57 69.45 6,160 439.02 
9 1.33 0.36 69.68 3,379 451.52 

Table 3.7: Performance of the node based coarsening scheme for s15×15×250. 

 

 

eleco 
Matrix Ordering 

Time (sec) 
Analysis 

Time (sec) 
Factorization 
Time (sec) 

Number of 
Tree Nodes 

Flop (109) for 
Factorization 

0 0.06 0.2 7.32 6,014 40.38 
1 0.06 0.16 10.17 3,656 62.57 
2 0.06 0.1 11.73 1,445 73.79 
3 0.06 0.09 12.67 1,275 78.43 

Table 3.8: Performance of the element based coarsening scheme for f20×20×20. 
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nodeco 
Matrix Ordering 

Time (sec) 
Analysis 

Time (sec) 
Factorization 
Time (sec) 

Number of 
Tree Nodes 

Flop (109) for 
Factorization 

1 0.04 0.19 6.23 6,057 35.47 
2 0.06 0.15 10.47 3,475 65.94 
3 0.06 0.14 12.2 2,745 77.17 
4 0.06 0.13 12 2,415 74.69 
5 0.07 0.12 11.61 2,283 70.67 
6 0.07 0.11 11.91 2,069 73.35 
7 0.07 0.11 11.61 1,841 70.71 
8 0.08 0.11 12.72 1,663 73.82 
9 0.07 0.08 12.55 1035 77.27 

Table 3.9: Performance of the node based coarsening scheme for f20×20×20. 

 

3.6 Object Oriented Design of the Preprocessing Phase 

The SES solver package allows the use of coarsening, matrix-ordering, and 

partitioning algorithms in any order for different regions of the structure. This flexibility 

is achieved by an object oriented design for the preprocessing phase. The complete 

design of the preprocessing phase is not given for the sake of brevity. The overall design 

of the preprocessing phase is explained in the following paragraphs.  

The important classes are described as follows: 

• PreProTre – holds all preprocessing algorithms except the initial node 

numbering applied to the structure. 

• EleSet – stores the element and node connectivity information for the 

structure.  

• EleSubSet – stores a subset of elements in the EleSet, includes all elements in 

the model if there is no partitioning algorithm   

• PreProAlgo – abstract base class for all preprocessing algorithms.  

• PreProResult – any class derived from PreProAlgo stores its results in this 

class. It provides a common interface for storing the results of preprocessing 

algorithms. 

• EliTree – stores the elimination tree constructed by the preprocessing phase 
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Figure 3.11 shows the interaction between the main classes designed to allow a 

flexible preprocessing phase. All preprocessing algorithms are derived from a single 

parent class called PreProAlgo. There are mainly two types of preprocessing algorithms: 

partitioning algorithms and matrix ordering algorithms. The partitioning algorithms 

subdivide the elements stored in the EleSubset class. The matrix ordering algorithms, on 

the other hand, condense a set of elements in the EleSubset class. The preprocessing 

algorithms that are applied to a structure are stored in a tree structure stored in 

PreProTree class. PreProTree holds the PreProTreeNode objects, which stores the 

EleSubset and the preprocessing algorithm that will be applied to an EleSubset. If a 

partitioning algorithm is assigned to a tree node, then the tree node also stores a bottom-

up ordering algorithm to order separators found during the partitioning.  

The results from the prepossessing algorithms are stored in the class called 

PreProResult. This class is responsible for updating the EleSubset according to the results 

from preprocessing algorithms. By the use of PreProResult, a preprocessing algorithm 

does not directly update the EleSet. This design simplifies implementation of new 

partitioning, coarsening, and matrix ordering algorithms since a preprocessing algorithm 

class is loosely coupled with the rest of the system.  

An elimination tree [73] is built after the preprocessing is completed for the 

structure. An EliTree class instance keeps the elimination tree for the pivot-ordering 

found in the preprocessing phase. Namely, EliTree object stores the final result of the 

preprocessing phase, and other components of the solver package accesses EliTree 

object. The analysis and numerical solution phases do not access any other objects 

described in this section.  
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Figure 3.11: Main classes for the preprocessing package of the SES solver.  
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CHAPTER 4 

ANALYSIS PHASE 

After a pivot ordering is found in the preprocessing phase, a solution strategy and 

the data structures for the numerical solution are constructed in the analysis phase. The 

analysis phase constructs the assembly tree, builds the data structures for the numerical 

solution, determines the memory requirements, estimates the time required for the 

numerical factorization, and assigns an appropriate amount of work to each thread for the 

numerical solution.  

4.1 Data Structures  

4.1.1 Assembly Tree 

The assembly tree represents the dependency between the partial factorization 

tasks [73]. The assembly tree is similar to the elimination tree except that the assembly 

tree typically contains fewer nodes since some nodes in the elimination tree are merged 

while building the assembly tree. The tree library developed by Peeters [137] is used for 

the implementation of the assembly tree. Figure 4.1 shows the tree implementation 

designed by Peeters [137]. The tree implementation is based on the linked lists. Here, 

doubly linked lists are used to store previous and next siblings of the tree nodes. In 

addition, a parent node holds two pointers to its first and last child. The assembly tree 

data structure allows building and modifying the assembly tree easily. Several tree 

traversal algorithms are also implemented in the tree library. Various tree traversals can 

be performed by using tree iterators that are similar to the iterators in standard c++ 

library.  
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In the SES solver package, assembly tree nodes store information required for the 

mapping, factorization and triangular solution algorithms. The information stored in the 

assembly tree nodes is given as follows:  

• Eliminated and remaining nodes – The partial factorization on a frontal matrix 

is the condensation of the dofs corresponding to the eliminated nodes stored at 

the assembly tree node. The remaining nodes have the remaining dofs after 

the condensation. The number of eliminated and remaining nodes can be 

found efficiently by using the algorithm described by Gilbert et al. [138]. For 

a coefficient matrix with nz nonzero entries, the time complexity of their 

algorithm is almost linear. The eliminated and remaining nodes are found in 

the preprocessing phase during the construction of the elimination tree.  

• Estimated partial factorization time – The partial factorization times are found 

by using a performance model. The time estimations are used in the mapping 

algorithm. 

• Estimated subtree partial factorization time – The subtree partial factorization 

times are found by summing up the partial factorization times of the children 

assembly tree nodes. The time estimations are used in the mapping algorithm.  

• Thread ID – The thread ID that will perform the numerical and symbolic 

factorization and triangular solution is stored in the assembly tree node. 

• Number of threads used in the partial factorization and triangular solution of a 

frontal matrix – Multithreaded MKL kernels are employed for the partial 

factorization of some of the assembly tree nodes. The number of threads for 

the multithreaded MKL is stored in the tree nodes. 

• FE’s associated with the partial factorization of the frontal matrix – The FE’s 

associated with a tree node are found in the preprocessing phase while 

constructing the elimination tree for a given pivot-ordering. Prior to the partial 
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factorization corresponding to a tree node, the FE’s are assembled into the 

frontal matrix.  

• The local indices for the parent frontal matrix – The local indices are used for 

the assembly of the children update matrices and FE’s associated with the 

frontal matrix. The local indices are further explained in Chapter 4.1.4. 

• Synchronization requirements (optional) – If a thread should wait for other 

threads before the partial factorization of a tree node, then this information is 

stored in the tree node.  

 

 

Figure 4.1: The implementation of the assembly tree. from the tree.hh library 

documentation [137].  

Figure 4.2 illustrates the assembly tree using a 4×4 mesh. Here, FE’s are shown in 

gray colour and they are not considered as assembly tree nodes. The FE’s are stored at 

the leaves of the assembly tree. The black nodes shown in Figure 4.2 are assembly tree 

nodes for a nested dissection matrix ordering. The information stored in two example 

assembly tree nodes is also shown in Figure 4.2. Here, Node-24 is a subtree node. The 
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independent subtrees are assigned to threads for parallel factorization. A node within a 

subtree assigned to a thread is referred to as subtree node. Synchronization between 

threads is not required prior to the partial factorization of the subtree nodes. On the other 

hand, Node-25 is a high-level tree node. A tree node is referred to as high-level tree node 

if it is above the independent subtrees assigned to the threads. All threads should 

complete their partial factorization steps before the partial factorization starts at the 

Node-25. Therefore, Node-25 stores the information that synchronization between the 

threads is required prior to its partial factorization. As described in the subsequent 

Chapter, the numerical factorization, forward elimination, and back substitution 

algorithms each require a single synchronization point. Therefore, there is a single tree 

node that requires synchronization prior to the partial factorization of the corresponding 

frontal matrix.  

 

Figure 4.2: Assembly tree structure for the example 4×4 mesh. The gray nodes 

represent the finite elements in the model. There are four subtrees processed by different 

threads.  
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The assembly tree is built using the elimination tree constructed in the 

preprocessing phase. The nodes of the elimination tree are merged if the merge does not 

introduce any logically zero entries in the factors. This is referred to as the fundamental 

supernode partitioning by Ashcraft [57]. It is possible and often desirable to relax the 

condition of no logical nonzero and allow additional logically zero entries in the factors. 

This is called node amalgamation and is further discussed in Section 4.2.  

4.1.2 Supervariables   

The supervariables are a set of variables (dofs) that are connected to the same 

element set. Compared to the use of original variables, the use of supervariables reduces 

the analysis phase execution time. Figure 4.3 shows the supervariables for a subset of 

elements from a FE mesh. Here, four nodes are shared between Element-1 and Element-

2. Instead of treating the dofs for four nodes separately, we can treat them as a single 

entity, which is called a supervariable. The supervariables are found for an input 

structure. It is also possible to perform a search to find the new supervariables formed 

after some elimination steps. However, Reid and Scott [139] stated that finding 

supervariables after each elimination step is a costly operation and increases the analysis 

phase execution time.  

In finite element models, dofs corresponding to each node belongs to the same 

supervariable. The analyze phase of the SES solver package exploits supervariables by 

working with the nodes instead of the dofs. The assembly tree construction, node 

amalgamation, and local index computations (Chapter 4.1.4) are performed using the 

nodes instead of dofs. In most FE analyses, the number of dofs is the same at all the 

nodes. For example, there are 6 dofs at each node except from the nodes having restraints 

for 3D frame analysis. This structure is exploited in the SES solver package by storing 

the number dofs for the nodes that are partially restrained in an array. For the remaining 

nodes with the same number of dofs, only a single variable holds the number of dofs.   
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Figure 4.3: The supervariables for four elements isolated from the rest of a FE 

mesh.  

4.1.3 Factors, Frontal Matrix, and Update Matrix Stack   

A multifrontal method is employed for the numerical factorization. In the 

multifrontal method, partial factorizations are performed on dense frontal matrices. Once 

the factors corresponding to a pivot column block are computed, they are not accessed 

again until the triangular solution. Therefore, entire factors are not required to be stored 

in main memory. This section discusses the frontal matrix and the data structures related 

to the multifrontal method. The numerical factorization and triangular solution uses the 

data structures. However, the memory requirements for the data structures are determined 

in the analysis phase.  

The frontal matrix is mainly composed of three components: diagonal factors, LB, 

off-diagonal factors, Loff, and Schur complement, S (see Chapter 5 for a detailed 
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description of each component). Once the partial factorization is completed for a frontal 

matrix, only S is required for the subsequent partial factorization steps. If the partial 

factorizations of the assembly tree nodes are performed in a postorder tree traversal order, 

then a stack data structure can be used to store S. As stated previously, after the partial 

factorization of a frontal matrix, diagonal and off-diagonal factors are not required until 

the triangular solution.  

Figure 4.4 shows the data structures used for the multifrontal factorization. We 

design three classes for the abstraction of the three items shown in Figure 4.4. Here, the 

frontal matrix class physically stores the S matrix only. Our frontal matrix 

implementation does not hold the factors physically. The frontal matrix has a reference to 

the factors, which are stored in a separate memory location. Frontal matrix objects have a 

pointer to the memory location storing the corresponding factors. A distinct class is 

responsible for storing the factors and providing pointers for the frontal matrix (Factors 

in Figure 4.4). Once the partial factorization is completed, no data copy is required for the 

factors since the frontal matrix works with the pointers. On the other hand, S is copied to 

the update matrix stack. Although LB and S are symmetric matrices, packed storage 

scheme is not employed for the partial factorization operations on these matrices. This is 

due to the performance consideration for MKL Cholesky decomposition [140] and the 

unavailability of a BLAS3 rank-k update subroutine for packed storage scheme. 

However, the partial factorization operations are performed for only lower diagonal 

entries. In addition, only S, the lower diagonal part of the Schur complement, is copied to 

the update matrix stack to save some memory for the storage of the update matrices.  
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Figure 4.4: Data structures used for multifrontal method.  

The size of the frontal matrix depends on the number of eliminated and remaining 

dofs for an assembly tree node and it varies during the numerical factorization. The size 

of the update matrix stack also varies during the numerical factorization depending on the 

number of active frontal matrices at a certain point during the factorization. At any point 

during the factorization, the summation of the frontal matrix size and update matrix stack 

size is the active memory requirement. Assuming that calculated factors are stored on 

disk, the maximum of such active memory requirements is the total memory requirement 

of the multifrontal method. This assumes that the memory is perfectly shared between the 

frontal matrix and update matrix stack during the factorization steps. It should be noted 

that the current implementation of the SES uses separate memory locations for the frontal 

matrix and the update matrix stack. Therefore, there is no overlap between the frontal 
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matrix memory and update matrix memory. Consequently, the active memory 

requirement for the SES solver package is the summation of maximum frontal matrix size 

and maximum update stack size.  

4.1.4 Frontal Matrix Indices 

Prior to the partial factorization of a frontal matrix, the update matrices 

corresponding to the children tree nodes are assembled into the frontal matrix. The 

assembly of the update matrices are performed using the eliminated and remaining dof 

indices stored in the parent and children assembly tree nodes. As described previously, 

the node indices are used instead of the dof indices in order to improve the speed and 

memory requirements of analysis phase. There are two types of indices associated with a 

frontal matrix: global and local indices. The global indices are the eliminated and 

remaining node numbers for the partial factorization (or condensation) of a frontal 

matrix. They are stored in two sorted arrays for eliminated and remaining nodes. Sorting 

the node indices allows merging the node indices of two tree nodes in linear time. The 

local indices are used for the assembly of the children update matrices. The local indices 

are the location of an update matrix entry at the frontal matrix of the parent assembly tree 

node. The local indices are found by using the sorted node indices. Finding the local 

indices can be performed in linear time for sorted global node indices at parent and 

children tree nodes. For an assembly tree node, the local indices are found for the 

remaining nodes only. Figure 4.5 shows the global and local indices for example 

assembly tree nodes. The eliminated nodes are marked with blue color and node numbers 

inside the matrix shows the global indices for the example assembly tree nodes. The local 

indices for children nodes are also shown at the left of the children frontal matrices.   

The local indices are used for the assembly of the children update matrices if node 

blocking is not performed for the parent frontal matrix (see subsequent Section 4.3 for a 

detailed description of node blocking). The local indices are also found for each finite 
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element required for the partial factorization of a frontal matrix. Element stiffness 

matrices are assembled at the numerical factorization phase by using the local indices 

found in the analysis phase. For large frontal matrices, it is more efficient to perform the 

update matrix assembly operations on dense matrix blocks instead of individual matrix 

entries. For this purpose, nodes are partitioned into node blocks, which are the node sets 

that are adjacent at the frontal matrices corresponding to parent and the child assembly 

tree nodes. Node blocks can be assembled to the frontal matrix efficiently by using BLAS 

kernels. The node blocks are shown in Figure 4.5 for the local indices at the children tree 

nodes. There are two node blocks for each child, which are shown within the rectangular 

boxes in Figure 4.5. Section 4.3 further explains the node blocking and how the node 

blocks are found based on the local indices.  

 

 

Figure 4.5: The global and local indices for the example assembly tree nodes. The 

local indices for children are shown on the left of the frontal matrices.  
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4.2 Node Amalgamation 

The creation and storage of the update matrices is the overhead required for the 

use of dense matrix kernels in the multifrontal method. The overhead for creating small 

frontal matrices and storing their update matrices can be reduced by the amalgamation of 

tree nodes with a small number of eliminated and remaining dofs. Various amalgamation 

schemes are proposed in the literature. Ashcraft and Grimes [57] merged tree nodes if the 

number of logical zero entries introduced by the amalgamation is below a threshold 

value. New supernodes created by the node amalgamation are called relaxed supernodes. 

Duff [141] merged the nodes in the assembly tree if the number of eliminated variables at 

a tree node is less than a threshold value. Reid and Scott [139] merged a child node with 

its parent if number of eliminated variables at the parent and child nodes are both less 

than a threshold value. They reported that this criterion gave better results compared to 

checking the number of variables at the child node only. The logically zero entries 

introduced to the factors are not taken into account in their node amalgamation scheme.  

In this study the node amalgamation criterion given by Reid and Scott [139] is 

employed. A child node is merged with its parent if the number of eliminated dofs is 

smaller than a certain value (smin) for both of them. The nodes of the assembly tree are 

visited in pre-order traversal fashion and the amalgamation criteria are checked for all 

children of a visited node. If the nodes are visited in a pre-order tree traversal for the node 

amalgamation algorithm, then this usually gives fewer update operations compared to the 

postorder tree traversal. In our amalgamation scheme, a pre-order tree traversal is used 

and the children of a tree node are visited in an arbitrary fashion. The amalgamation 

criterion is rechecked for an assembly tree node that is amalgamated. Further 

amalgamation is performed for an amalgamated tree node if it can be merged with its 

new children.  

If smin is too large, then the number of extra arithmetic operations required for 

logically zero entries will overshadow the benefits of node amalgamation. There is no 
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single smin value that gives the best results for all types of problems. Numerical 

experiments are required to determine an optimal range for the parameter. Duff [141] 

reported modest gains in factorization times for different amalgamation parameters. 

Moreover, the critical value for node amalgamation was not obvious in his study. Duff 

[141] concluded that the amalgamation is not essential and good performance can be 

obtained without amalgamation. 

We illustrate the impact of node amalgamation using the problem f500×500. 

Table 4.1 shows the effect of node amalgamation for the example problem. As shown in 

Table 4.1, the number of update operations decreases constantly as we increase smin. The 

node amalgamation decreases the factorization times up to smin=25. As smin gets larger 

than 25, the factorization times tend to increase. In Chapter 6, further numerical 

experiments are performed in order to determine the optimal amount of node 

amalgamation.  

 

 

 

smin 
Number of 
Tree Nodes 

Flop (109) for 
Factorization 

Update 
Size (108) 

Factorization 
Times (sec) 

0 192829 46.05 1.92 10.71 
5 147955 46.19 1.77 10.42 
10 95468 46.52 1.56 9.85 
15 82970 46.68 1.51 9.83 
20 70755 47.09 1.45 9.79 
25 59237 47.61 1.38 9.65 
30 55326 47.91 1.35 9.67 
35 47707 48.52 1.3 9.9 
40 42741 49.17 1.25 9.88 

Table 4.1: Effect of node amalgamation for f500×500 
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It should be noted that the SCOTCH matrix ordering subroutines allow inputting 

the minimum size of the supernodes (parameter cmin determines the minimum size of the 

supernodes for each pivot). In this case, node amalgamation typically is not necessary 

since the number of eliminated nodes at the tree nodes is guaranteed to be larger than 

cmin. However, this option for SCOTCH matrix ordering subroutines is not used since it 

typically yields larger factorization times compared to the explicit node amalgamation. 

4.3 Node Blocking 

The initial version of the multifrontal code assembled the update matrices into the 

frontal matrices by using the local indices (see Section 4.1.4). In this case, for the 

assembly of each update matrix entry, the row and column indices of the entry is first 

read from the array storing the local indices. The code that uses the local indices for the 

assembly of update matrices is shown in Figure 4.6. The indices for the entries in the 

update matrix are read at lines 9 and 10 in Figure 4.6. This is indirect addressing and it is 

not efficient for cache hierarchy. In addition, the above code has three branches (if 

statements at lines 11, 18 and 19), which is not desirable for machines with deep 

instruction pipeline architectures. Finally, the access to the frontal matrix entries at line 

20 is performed in a random fashion, which prevents exploiting the instruction level 

parallelism or SIMD instruction sets.  

The profile information of the multifrontal code is shown in Table 4.2 for the test 

problem f500×500. As shown in this table, most of the time (64.6%) is spent on the MKL 

BLAS/LAPACK kernels. The subroutine that takes the most of the time after the MKL 

functions is the update matrix assembly code shown in Figure 4.6. This subroutine takes 

18.9% of the total factorization time. Finally, a significant time is spent in memory copy 

and memory set operations (memcopy and memset). The memory operations are mainly 

used to copy Schur complements to the update matrix stack. 
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1 AssembleToLowerDiagonal(...)  
2 { 
3  ef::Int_t iTo; 
4  ef::Int_t jTo;    
5 for(ef::UsInt_t i = 0 ; i<assemblyIndicesNum ; ++i) 
6 {  
7  for(ef::UsInt_t j = i ; j<assemblyIndicesNum ; ++j) 
8  {      
9   iTo = assemblyIndices[i]; 
10   jTo = assemblyIndices[j]; 
11   if( jTo < iTo ){ 
12    std::swap(iTo,jTo); 
13   } 
14 
15    iTo -= columnOffset; 
16    jTo -= rowOffset; 
17 
18    if( iTo<m_ColNum && jTo<m_RowNum ){ 
19     if( iTo>=0 && jTo>=0 ){ 
20          m_Entry[ iTo*m_LeadingDim + jTo ] +=  
21                         *packedMatrixEntries; 
22     } 
23    } 
24    ++packedMatrixEntries; 
25   } 
26  } 
27} 
 

Figure 4.6: The c++ code that uses local indices for the assembly of update 

matrices.  

 

 

Subroutine(s) 
% of the Total 

Factorization Time 
BLAS/LAPACK 64.6 

AssembleToLowerDiagonal 18.9 
memset 5.4 

memcopy 4.2 
Other 6.9 

Table 4.2: Profile information for the multifrontal factorization of f500x500, 

without node blocking  
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The linear algebra subroutines in MKL are already optimized and further 

optimization of memory copy and set operations are out of the scope of this study. 

However, the time spent in the AssembleToLowerDiagonal function given in Table 4.2 

can be reduced. For example, instead of reading the index of each element, the elements 

of the update matrix can be assembled in continuous dense matrix blocks. If the blocks 

are used for the assembly, the index of a block is read once and all entries within the 

block are assembled to the corresponding location in the frontal matrix. The larger the 

block sizes are the more efficient the assembly operations will be. This will also allow the 

use of BLAS1 subroutines for the assembly of the update matrices. However, in order to 

fully exploit the blocked assembly operations a node blocking algorithm is required. The 

node blocking algorithm reorders the nodes in frontal matrices so that the assembly 

operations can be performed on continuous data blocks. An algorithm that reorders and 

groups the local indices of a frontal matrix is designed and implemented to allow 

performing the update matrix assembly operations on large continuous data blocks.  

The blocking algorithm reorders the nodes in parent and children tree nodes so 

that the local indices are continuous at the children assembly tree nodes. First, the nodes 

at a parent assembly tree node are partitioned into disjoint sets according to the children 

tree nodes that contain the nodes. Each set represents a unique combination of the 

children tree nodes that contains all nodes in the set. Therefore, the total number of sets is 

equal to 2N, where N is the number of children tree nodes. The nodes within each set 

correspond to a node block for which assembly operations can be performed all at once. 

The sets are ordered to maximize the adjacent node blocks at the children tree nodes. The 

blocking can be performed recursively for the children of the assembly tree node. 

However, the node blocking for the child tree node must consider the ordering of the 

node sets found at the parent tree node.   

The node blocking algorithm is illustrated with a simple example shown in Figure 

4.7. Figure 4.7 shows the root of an example assembly tree and its three children nodes. 
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The local indices for the children tree nodes are also shown in Figure 4.7. There are 8 

node sets since the example assembly tree node has three children (23=8). The nodes 

within the node sets are shown in Figure 4.8. After node sets are found, the sets are 

ordered in the increasing lexicographic order according to the set names given at the 

bottom of the Figure 4.8. The name of a set is given according to the index of the children 

tree nodes that contains the nodes in the set. For example, if the nodes only belong to 

child 1, then the name of the set is Set-001. Similarly, if the nodes belong to child 1 and 

child 2 only, then the name of the set is Set-011. The lexicographic ordering usually 

yields continuous node blocks for the tree nodes with small number of children. The node 

sets that contain nodes from a child tree node are assigned to that tree node according to 

the lexicographic ordering of the node sets. The node blocking is performed recursively 

for the children tree nodes. The sets are found in the same fashion for the eliminated 

nodes at the children. However, for the remaining nodes at a children assembly tree node, 

a hierarchical structure of the node sets are constructed in order to preserve the ordering 

found at the assembly tree node. For the remaining nodes at a children tree node, the node 

sets are found for each node set found at the parent assembly tree node. A tree structure is 

used to store the hierarchical node set information. The head of each node set tree 

represents the first creation of a node set, which corresponds to a subset of eliminated 

nodes at an assembly tree node. The children of a node at the node set tree are the node 

sets found at the children assembly tree nodes.  

Once all node sets are found and are lexicographically ordered, the nodes in the 

frontal matrices are renumbered starting from the leaf nodes of the node set trees. Figure 

4.9 shows the node indices in the frontal matrices of the parent node and children nodes 

after the node blocking is applied for the illustrative example shown in Figure 4.7. In 

Figure 4.9, the parent frontal matrix entries that receive update from different children 

tree nodes are marked with different colours. As shown in Figure 4.9, the assembly of 

child 3 benefits most from the node blocking. After applying the node blocking, the entire 
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update matrix for child 3 can be assembled to the frontal matrix by making a single call 

to BLAS3 dense matrix addition subroutine. Although it looks like that children 1 and 2 

do not benefit much from the node blocking, this is due to the small number of nodes 

used for the sake of this simple illustrative example. For sufficiently large frontal 

matrices, the blocking improves the efficiency of update operations for all children nodes. 

 

 

 

 

Figure 4.7: An example assembly tree node and its children. The parent node is 

the root of the assembly tree. The local indices for the remaining nodes at the children are 

shown.  
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Figure 4.8: Node sets for the remaining nodes at the children for the example tree 

nodes.  

 

 

Figure 4.9: Node blocks found for the example assembly tree nodes  
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Table 4.3 shows the profile information of the multifrontal factorization after 

implementing the node blocking. If the code profile information shown in Table 4.3 is 

compared with the one in Table 4.2, we observe that the time spent in the assembly of the 

update matrices is reduced from 18.9% to 3.9% after employing the node blocks for the 

assembly of the update matrices. In addition, the blocked assembly increases the time 

spent in the optimized BLAS library as shown in Table 4.3.  

 

Subroutine(s) 
% of the Total 

Factorization Time 
BLAS/LAPACK 79.5 
BlockedAssembly 3.5 

Memset 4.6 
Memcopy 4.4 

Other 8 

Table 4.3: Profile information for the multifrontal factorization of f500×500 with 

node blocking 

 

The time required for node blocking may be large for the tree nodes with a large 

number of children nodes since the number of node partitions grows exponentially with 

the number of the children nodes. Fortunately, the assembly trees for the FE problems 

generally have a small number of children. Therefore, the exponential growth is usually 

not a problem. However, the node amalgamation may flatten the assembly tree, creating 

parent nodes with a large number of children nodes with small frontal matrices. 

Considering that the tree nodes with large number of children nodes typically have small 

frontal matrices, the node blocking is not performed for the frontal matrices smaller than 

a threshold value. A cut off value for the node blocking, blkmin, is used as the stopping 

criteria for the node blocking. The node blocking is not applied to a tree node and all of 

its descendants if the size of the frontal matrix is smaller than blkmin. Table 4.4 shows 

factorization and analysis times for the problem f500×500 with alternative blkmin values. 

The node amalgamation parameter smin is taken as 10 for the example problem. As 
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shown in Table 4.4, as the blkmin value increase the analysis time decreases since fewer 

node blocks are found for smaller blkmin values. The bottom row of Table 4.4 shows 

analysis and factorization times with no node blocking. As shown in Table 4.4, the 

factorization time tends to increase even for small blkmin values.  

According to execution times given in Table 4.4, a blkmin value can be chosen to 

minimize analysis plus factorization phase times. For the current implementation of the 

solver package, numerical experiments show that a cut-off value of 50 usually gives 

satisfactory analysis plus factorization times and yet the factorization performance is not 

compromised significantly (see Chapter 6.6 for the details). However, the current 

implementation of the analysis phase is not optimized. The analysis phase execution time 

may be insignificant compared to the overall execution time of the solver for an 

optimized analysis phase.  

 

blkmin 
Analysis 

Time (sec) 
Factorization 

Time (sec) 
0 1.89 9.28 
25 1.83 9.30 
50 1.43 9.37 
75 1.19 9.49 
100 1.07 9.5 
125 1.03 9.51 
150 1.00 9.59 
∞ 0.96 10.16 

Table 4.4: The cut off point for the node blocking for the test problem f500×500 

 

4.4 Estimation of the Factorization Time 

As it is discussed in the subsequent Chapter 4.5, partial factorization time 

estimations of the assembly tree nodes are used to find a subtree to thread mapping that 

minimizes the factorization time. Moreover, factorization time estimations are helpful to 

monitor the performance of the multifrontal solver. The actual factorization times can be 

compared with the estimated factorization times to determine any unanticipated 
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performance degradations. For example, the performance can be hindered by 

computational resource limitations, such as cache conflicts. Finally, predicting the 

factorization time prior to the actual factorization is a user-friendly feature for a direct 

solver. The user may want to build a simpler finite element model to get the results in a 

timely fashion if the predicted factorization time is too large. Alternatively, in order to 

reduce the factorization time, an alternative preprocessing strategy may be employed, or a 

system with higher computational power can be used for the FE analysis.  

4.4.1 Partial Factorization Time 

We use the experimental speed of BLAS/LAPACK subroutines used for the 

partial factorization in order to estimate the partial factorization time for a frontal matrix. 

The partial factorization speeds are determined by executing BLAS/LAPACK 

subroutines on the test system. The BLAS/LAPACK subroutines are executed for 

hypothetical frontal matrices with different numbers of eliminated and remaining 

variables. The partial factorization times are recorded for the execution of the 

corresponding MKL subroutines. The partial factorization times are too small to measure 

with sufficient accuracy for the partial factorization of a small frontal matrix. In order to 

measure the execution time accurately, partial factorization is performed for multiple 

times within a loop. A large number of repetitions may be required to measure the partial 

factorization times of the small frontal matrices with sufficient accuracy. Then, the 

average execution time is found by dividing the total execution time of repeated partial 

factorizations to the number of repetitions. The partial factorization speeds of frontal 

matrices that have less than 1000 remaining variables are shown in Figure 4.10. As 

shown in Figure 4.10, the speed of partial factorization varies greatly for small frontal 

matrices. For example, the speed varies between 1 GFlop/sec and 7 GFlop/sec for frontal 

matrices with 50 eliminated variables. Figure 4.11 shows the speed of partial 

factorization for frontal matrices with more than 1000 remaining variables. As shown in 
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Figure 4.11, the variation in the partial factorization speed is small for frontal matrices 

with large number of remaining variables. Figure 4.10 and Figure 4.11 also show that the 

partial factorization performance increases as the frontal matrix size increase. This is true 

even for frontal matrices with 50 eliminated variables. The theoretical machine peak 

speed is 9.6 GFlop/sec for a single core of the test system. As shown in Figure 4.11, the 

partial factorization runs at 8.6 GFlop/sec for sufficiently large matrices, which is close to 

the machine peak speed.  

 

 

 

Figure 4.10: Performance of partial factorization, up to 1000 remaining variables. 
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Figure 4.11: Performance of partial factorization, between 1000 and 10000 

remaining variables. 

The partial factorization time for a frontal matrix is found by dividing the 

theoretical operation count for the partial factorization by the approximated speed for the 

partial factorization. The partial factorization speed of a frontal matrix is estimated based 

on the known partial factorization speeds of the frontal matrices with similar number of 

eliminated and remaining variables. The experimental partial factorization speeds are 

stored in a table. Table 4.5 shows an example table constructed based on a small set of 

experiments on the test system. Each entry in this table is the speed of partial 

factorization in terms of GFlop/sec for a frontal matrix with a specific number of 

eliminated and remaining variables. The columns and rows of Table 4.5 correspond to 

number of eliminated and remaining variables respectively. In order to determine the 

speed of a frontal matrix, first, the speed of frontal matrices with similar number of 
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approximation is performed to estimate the partial factorization speed. Figure 4.12 

illustrates the piece-wise approximation of the partial factorization speed with �′ 
eliminated variables and �′ remaining variables. In Figure 4.12, x-axis is the number of 

eliminated variables and the y-axis is the number of remaining variables. The z values are 

the partial factorization speed. Known partial factorization speeds are shown with dots. 

We approximate �′ (the estimated speed for a given frontal matrix) based on the known 

values of partial factorization speeds. The frontal matrices with the closest number of 

eliminated and remaining variables are used for the approximation. In Figure 4.12, the 

closest numbers of eliminated and remaining variables are: (x1, y1), (x2, y2), (x3, y3), and 

(x4, y4). The Lagrange polynomials given in Equation 4.1 are used to determine the 

approximate speed �′.  
The partial factorization times are recorded for a number of frontal matrices to 

determine the known values of the partial factorization speeds. As shown in Figure 4.10, 

the performance of MKL functions varies greatly for small numbers of eliminated and 

remaining variables. Therefore, a large number of test runs with small increments of 

number of eliminated and remaining variables are performed to capture the behaviour of 

the partial factorization speed within the range of [2,500] eliminated variables. 

 

 

Number of 
Remaining 
Variables 

Number of Eliminated Variables 

2000 3000 4000 5000 

0 7.69068 8.0135 8.14555 8.25766 
1000 8.07826 8.23716 8.29783 8.33763 
2000 8.29528 8.33914 8.34696 8.45212 
3000 8.36739 8.34284 8.46438 8.49085 
4000 8.44095 8.49388 8.50022 8.51074 
5000 8.4862 8.52627 8.53178 8.5578 

Table 4.5: Example table for partial factorization speeds of different frontal 

matrix sizes. Table values are given in GFlop/sec.  
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Figure 4.12: The approximation of the partial factorization speed, �′, based on the 

known values of �. 

 

  �′��� = ��� ��� ��� ���� ��� ���
�� ���

    

  �′��� = ��� ��� ��� ���� ��� ���
�� ���

   (4.1) 

  �′ = ��� ��� ���������� ��� ������
�� ���

    

 

Table 4.6 compares the estimated and actual partial factorization times for 

different frontal matrix sizes. The frontal matrix sizes shown in this table are not used in 

the numerical experiments to determine the speed of the partial factorization, except for 

the rows with 500 eliminated variable. As shown in this table, on average, the partial 

factorization times is estimated with 0.56% of error. For the factorization of a FE mesh, 
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the execution time for the large matrices has a greater impact on the total execution time. 

Therefore, a small error is desirable for the large frontal matrices. As shown in Table 4.6, 

the error is small for both large and small frontal matrices.  

 

Number of 
Eliminated 
Variables 

Number of 
Remaining 
Variables 

Actual Partial 
Factorization 

Time (milli-sec) 

Estimated 
Partial 

Factorization 
Time (milli-sec) 

% Difference 

50 50 9.36E-02 9.55E-02 2.01 
50 150 3.24E-01 3.24E-01 0.01 
50 250 6.86E-01 6.74E-01 -1.72 
50 350 1.16E+00 1.16E+00 0.02 
50 450 1.77E+00 1.76E+00 -0.72 
300 0 1.59E+00 1.60E+00 0.44 
300 500 1.75E+01 1.74E+01 -0.61 
300 1000 5.14E+01 5.09E+01 -0.91 
300 1500 1.03E+02 1.02E+02 -0.77 
300 2000 1.70E+02 1.71E+02 0.53 
500 0 6.83E+00 6.58E+00 -3.77 
500 500 3.92E+01 3.88E+01 -1.08 
500 1000 1.02E+02 1.01E+02 -0.74 
500 1500 1.93E+02 1.93E+02 0.38 
500 2000 3.14E+02 3.13E+02 -0.25 
650 0 1.49E+01 1.40E+01 -5.87 
650 500 6.32E+01 6.14E+01 -2.87 
650 1000 1.51E+02 1.49E+02 -1.22 
650 1500 2.75E+02 2.73E+02 -0.77 
650 2000 4.38E+02 4.36E+02 -0.46 
1500 0 1.52E+02 1.52E+02 0.15 
1500 2000 1.42E+03 1.41E+03 -0.26 
1500 4000 4.03E+03 4.04E+03 0.41 
1500 6000 7.99E+03 8.10E+03 1.41 
2500 0 6.58E+02 6.64E+02 0.87 
2500 2000 3.34E+03 3.33E+03 -0.11 
2500 4000 8.32E+03 8.29E+03 -0.33 
2500 6000 1.55E+04 1.56E+04 0.60 

Avg.: -0.56 
Max: 2.01 
Min: -5.87 

Table 4.6: Partial factorization time estimations for executing MKL kernels with a 

single thread. 
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For the parallel factorization, the tree nodes close to the root of the assembly tree 

are processed using the multithreaded BLAS/LAPACK subroutines. The tree nodes close 

to the root node usually have a large number of eliminated variables compared to the 

lower levels of the assembly tree. Another set of numerical experiments is performed to 

determine the speedup of the MKL functions using four threads. The experiments are 

performed for frontal matrices having 50 or more eliminated variables. Figure 4.13 and 

Figure 4.14 show the experimental speedup for the partial factorization as a function of 

total flop required for the partial factorization. Figure 4.13 is for flop values smaller than 

1 GFlop, and Figure 4.14 is for flop values larger than 1 GFlop. In addition to the 

experimental speedup, both figures show an approximation to the speedup. The 

approximation is found by fitting a power function to the experimental speedup values. 

The approximation for the speedup is given as follows:  

 

1.018.0 15.0 −⋅= flopspeedup  

If 9.0<speedup then 9.0=speedup  

If 7.3>speedup then 7.3=speedup  

 

Four thread partial factorization times are estimated by multiplying the speedup 

approximation with the speed estimation for one thread partial factorization of a frontal 

matrix. Table 4.7 shows the accuracy of the predictions for partial factorization with four 

threads. The average error in estimations is 0.83% for the frontal matrix sizes shown in 

Table 4.7. As shown in Table 4.7, the partial factorization time is underestimated for 

large frontal matrices with a small number of remaining variables. It is important to 

accurately predict the partial factorization times of large frontal matrices since the partial 

factorization for large frontal matrices correspond to a significant portion of the total 

factorization time. In addition, the partial factorization is performed using multithreaded 
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MKL kernels for the high-level tree nodes. In order to improve the predictions, the 

speedup approximation can be modified by considering the number of remaining 

variables. However, in this study, the simple speedup approximation that is only a 

function of flop for partial factorization is used.  

 

Figure 4.13: Partial factorization speedups using four threads (flop is between 0 

and 1E9)   

 

Figure 4.14: Partial factorization speedups using four threads (flop is between 1E9 

and 3E9)   
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Number of 
Eliminated 
Variables 

Number of 
Remaining 
Variables 

Actual Partial 
Factorization 

Time (milli-sec) 

Estimated Partial 
Factorization 

Time (milli-sec) 
% Difference 

50 50 9.90E-02 8.75E-02 -11.59 
50 150 1.98E-01 2.27E-01 14.69 
50 250 3.85E-01 4.09E-01 6.32 
50 350 4.75E-01 6.36E-01 33.97 
50 450 6.10E-01 9.00E-01 47.51 
300 0 7.94E-01 8.46E-01 6.52 
300 500 6.68E+00 6.08E+00 -8.93 
300 1000 1.54E+01 1.49E+01 -2.86 
300 1500 2.94E+01 2.75E+01 -6.37 
300 2000 4.73E+01 4.62E+01 -2.27 
500 0 2.82E+00 2.74E+00 -2.95 
500 500 1.31E+01 1.19E+01 -8.79 
500 1000 2.97E+01 2.74E+01 -7.81 
500 1500 5.56E+01 5.23E+01 -6.04 
500 2000 8.80E+01 8.46E+01 -3.82 
650 0 5.65E+00 5.15E+00 -8.82 
650 500 2.04E+01 1.76E+01 -13.95 
650 1000 4.43E+01 4.02E+01 -9.20 
650 1500 7.98E+01 7.37E+01 -7.54 
650 2000 1.22E+02 1.18E+02 -3.23 
1500 0 4.99E+01 4.11E+01 -17.60 
1500 2000 3.92E+02 3.82E+02 -2.76 
1500 4000 1.08E+03 1.09E+03 1.27 
1500 6000 2.16E+03 2.19E+03 1.28 
2500 0 2.00E+02 1.79E+02 -10.23 
2500 2000 9.25E+02 9.01E+02 -2.63 
2500 4000 2.23E+03 2.24E+03 0.61 
2500 6000 4.13E+03 4.22E+03 2.07 

Avg.: -0.83 
Max: 47.51 
Min: -17.60 

Table 4.7: Partial factorization time estimations for executing MKL kernels with 

four threads. 

4.4.2 Serial Factorization Time 

Although the number of flop required for partial factorization dominates the total 

operation count for numerical factorization, the execution time of the other components 

can be significant. This is due to the relatively slow speeds of the components other than 

the partial factorization operations. If optimized BLAS3 kernels are used for the partial 

factorization, then the partial factorization is performed at a speed close to the machine 

peak. On the other hand, the speed for finite element and update matrix assembly 
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operations are significantly slower than the partial factorization speeds since the 

assembly operations are mainly memory-bound operation, for which obtaining speeds 

close to the machine peak is difficult due to limited opportunities to exploit data locality. 

The total factorization times are underestimated if we merely consider the partial 

factorization times. This is especially true for problems with large non-zero/flop ratios. 

For these problems, the number of assembly operations relative to flop is high. Figure 

4.15 shows the execution time of the different components of the multifrontal 

factorization for the benchmark suite of 40 test problems. The execution times given in 

Figure 4.15 are normalized according to the total factorization time. As shown in Figure 

4.15, the time spent for handling the update matrices may be a significant portion of the 

overall factorization time for some test problems. The time spent in update matrix 

operations is especially high for small 2D problems. For larger problems and 3D 

problems, the time spent for handling update matrices corresponds to a smaller portion of 

the overall factorization time.  

Figure 4.15 also shows the time spent in the assembly of FE matrices in terms of 

the overall factorization time. Similar to the time spent for the update matrices, the time 

spent in the assembly of FE matrices can be significant for the smaller 2D problems (it is 

larger than 10% of the total factorization time for Models 1&2). The time spent in FE 

matrix operations, update matrix operations, and partial factorization subroutines adds up 

to most of the factorization time. The remaining code takes less than 1% of the total 

factorization time for all test problems in the benchmark suite.  

The partial factorization operations required for factorization of a test problem is 

simulated in order to experimentally determine the time spent in the MKL subroutines. 

Partial factorization simulations are performed for the dense matrix sizes same as the 

frontal matrix sizes corresponding to an assembly tree. MKL time shown in Figure 4.15 

is the simulated partial factorization times. The simulated partial factorization time is 

expected to match with the estimated MKL times, which are estimated based on the 
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approximation method described in the previous section. As shown in Figure 4.15, the 

partial factorization time estimations are usually in accordance with the actual partial 

factorization times. If we sum the simulated MKL partial factorization times and the time 

spent in the assembly operations for FE and update matrices, the sum corresponds to a 

fraction of the actual factorization times as shown in Figure 4.15. The main reason for 

that is the simulated partial factorization times is an optimistic measure of the time spent 

in the partial factorization subroutines during the actual factorization. For the simulated 

partial factorization, the partial factorization is repeatedly performed on frontal matrices 

that occupy the same memory location. Therefore, there is mainly compulsory cache 

misses for the simulated partial factorizations. A compulsory cache miss is a failed 

attempt to read data from the cache for the first reference to a memory location. 

However, there is also capacity misses and conflict misses during the actual numerical 

factorization caused by the entries of the update matrices and FE matrices. Those cache 

misses are failed attempt to read a data from the cache caused by the replacement of the 

referenced data with some other data. During the actual factorization, the frontal matrix 

entries are replaced with the entries of the update matrix stack and FE matrices. On the 

other hand, for the simulated partial factorization, there is no update matrix stack and FE 

matrices to replace the entries of the frontal matrix. Therefore, the simulated partial 

factorizations have smaller execution time compared to the actual time for the partial 

factorization of the frontal matrices. We assume that the partial factorization is performed 

10% less efficient than the optimistic MKL predictions. This is to close the performance 

gap between the simulated partial factorization times and the actual factorization times 

shown in Figure 4.15. 
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Figure 4.15: The execution time of different components of the solver normalized 

according to the total factorization time. The plot is for the benchmark suite of 40 test 

problems (HMETIS)  

Next, we calculate the average speed of the update matrix operations and FE 

assembly operations by using the execution time and number of floating point operations 

required for these operations. Figure 4.16 shows the average speed of the FE and update 

matrix operations in terms of flop/sec. Our performance model for the numerical assumes 

a constant speed for the FE and update matrix operations. According to the results shown 

in Figure 4.16, we choose a constant speed of 0.04 GFlop/sec for the FE assembly 

operations and 0.32 GFlop/sec for the update matrix operations. However, neither 

operation has a constant speed in reality. For example, for smaller 2D problems, the 

speed of update operations is slow as it is shown in Figure 4.16 for Model 1&2. The size 

of the frontal matrices is typically small for the small problems. Consequently, the node 

blocks are small for small frontal matrices and the assembly of the update operations is 
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slower for smaller node blocks. Therefore, a performance model that considers speed 

variation of the FE and update matrix operations will yield more realistic factorization 

time estimations. 

In our performance model, we calculate the estimated overall factorization time 

by summing up the time spent for each assembly tree node. For each assembly tree node, 

the factorization time is estimated by summing up the estimated partial factorization time, 

estimated update matrix operations time and estimated FE assembly time. Figure 4.17 

shows the estimated factorization times normalized according to the actual factorization 

times for the same benchmark suite. 

 

 

Figure 4.16: The average speed of the update matrix and FE assembly operations 

for the benchmark suite of 40 test problems (HMETIS)  
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Figure 4.17: Factorization time estimations normalized according to the actual 

factorization times for the benchmark suite of 40 test problems (HMETIS)  
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performance of the matrix ordering programs as shown in Table 4.8. HMETIS yields the 

most favorable estimated factorization time and factorization time. The solution 

performance of different matrix ordering programs is similar to their factorization 

performance as shown in Table 4.8.  

 

Matrix 
Ordering 
Program 

Factorization 
Operation Count 

(GFlop) 

Estimated 
Factorization 
Time (sec) 

Factorization 
Time (sec) 

Solution Time 
with 100 RHS 

(sec) 

Update Matrix 
Operation 

Count (GFlop) 
AMF 299.87 56.7 63.2 14.5 3.42 
AMD 489.88 71.1 70.1 14.5 1.17 
MMD 424.11 63.2 63.0 14.4 1.24 

HMETIS 330.09 48.9 48.3 12.3 0.96 
HAMF 356.89 55.3 55.4 13.6 1.51 

Table 4.8: Choosing the best pivot-ordering among alternatives based on the 

estimated factorization time (f75×150×5) 

4.4.3 Multithreaded Factorization Time  

Subtrees of the assembly tree are assigned to threads if multiple threads are used 

for the factorization. An example subtree with thread mapping is shown in Figure 4.18 

for an example assembly tree. Here, the partial factorization for the subtrees is performed 

by using serial BLAS/LAPACK kernels. Therefore, the execution time for the subtrees is 

estimated by summing up the estimated partial factorization times of the tree nodes as it 

is described in the previous section. The parallel factorization time for the subtrees is 

determined by the subtree with the largest serial execution time.  

For the tree nodes at a higher level than the subtree nodes, the factorization is 

performed using all available threads by using the multithreaded BLAS/LAPACK 

kernels. The speedup approximation found in Chapter 4.4.1 is used to determine the 

multithreaded partial factorization times. The speedup is not applied to the time required 

for copying the update matrices to the stack since this portion of the code is executed 

serially. Although multithreaded BLAS kernels are used for the assembly of the update 

matrices to the frontal matrix, we neglect the speedup for this operation too. The pseudo 
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code for estimating the multithreaded factorization time is given in Figure 4.19. In Figure 

4.19, the subtree factorization times are found in the first loop. The last loop in the code 

calculates the partial factorization time for the tree nodes above the subtrees (nodes 25, 

26, and 27 in Figure 4.18). For calculating the total factorization time, the execution time 

for the top level nodes is added to the maximum subtree factorization time.   

The estimated multithreaded factorization times are usually smaller than the 

actual factorization times. In other words, the multithreaded factorization performs worse 

than the expectations. The underestimation of the multithreaded factorization time is 

explained in Chapter 7.   

 

 

Figure 4.18: Four thread factorization of an example assembly tree.  
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The function that calculates the estimated parallel factorization time  
INPUT: 
   subtree_nodes: arrays storing the subtree nodes that can be processed independently  
   top_level_nodes: the tree nodes above the subtree nodes  
RETURNS: 
   estimated parallel execution time for given subtree_nodes and top_level_nodes. 

function estimate_exe_time(subtree_nodes, top_level_nodes) 
i ≔ 0 
for i ≔ 0 to number of subtrees 

subtree_exe_times[i] ≔ 0 
for each subtree_node in subtree_nodes[i] 

subtree_exe_times[i] ≔ subtree_exe_times[i] + estimate_facto(subtree_node) 
 estimate_update(subtree_node) + estimate_FE_assembly(subtree_node) 

end for 
end for 
subtree_exe_time := max(sub_tree_exe_times)  
top_exe_time ≔ 0 
for each tree_node in top_level_nodes 

flop ≔ flop required for the factorization of the tree_node 
speedup ≔ estimate_speedup(flop) 
top_exe_time ≔ top_exe_time + estimate_facto(tree_node)/speedup +  

estimate_update(tree_node) + estimate_FE_assembly(subtree_node) 
end for 
return subtree_exe_time + top_exe_time 
 

Figure 4.19: The pseudo code for estimating the multithreaded factorization time.   

4.5 Mapping Algorithm 

Two levels of parallelism are exploited in the SES direct sparse solver: tree-level 

parallelism and dense matrix level parallelism. The tree-level parallelism is performing 

the partial factorization in parallel for the tree nodes between which there is no 

dependency. The dense matrix level parallelism is exploited by the use of the 

multithreaded MKL linear algebra kernels. If we exploit only the tree level parallelism, 

then this is not a scalable approach since the majority of the computations are performed 

at the top three levels of the assembly tree [142-143]. Therefore, exploiting parallelism at 

the top level assembly tree nodes is essential for a scalable direct sparse solver. The 

existing parallel sparse solvers usually exploit the dense matrix level parallelism. For 

example, the MUMPS sparse solver exploits the parallelism at high-level tree nodes by 

computing the Schur complement in parallel for large frontal matrices [143-144]. In 

addition, the factorization of the root node is performed in parallel using the 
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ScaLAPACK kernels. The root node is partitioned and distributed among the processors 

in 2D block cyclic distribution [145]. The PARDISO [97] and PASTIX [94] solvers 

exploits further parallelism by splitting large supernodes close to the root of the assembly 

tree. Recently, Hogg et al. [146] proposed a DAG driven scheme for parallel sparse 

Cholesky Decomposition on multi-core processors. The scheme is similar to the tiled 

algorithms proposed by Buttari et al. [30] and it schedules the factorization tasks based 

on a dependency graph for the tasks associated with dense matrix blocks. This approach 

is typically more scalable compared to merely relying on the multithreaded performance 

of the BLAS3 kernels [30].  

In order to exploit the tree-level parallelism, the subtrees that can be processed 

independently can be found by using the mapping algorithm proposed by Geist and Ng 

[147]. In this scheme, the subtrees are explored in the decreasing order of their workloads 

and a subtree is assigned to the processor with the lightest workload. This is called bin-

packing heuristic, where subtrees are assigned to the bins with the lightest workloads. 

The bin-packing is repeated until the load imbalance ratio of the bins is smaller than a 

user-specified tolerance value.  

After the subtrees are found with the bin-packing heuristic, the tree nodes above 

the subtrees remain to be mapped to the processors. Pothen and Sun [148] proposed a 

mapping algorithm that maps the tree nodes above the subtrees by considering the 

communication costs. In the current implementation of the SES solver package, the high-

level tree nodes are processed by the main thread only, which employs the multithreaded 

BLAS/LAPACK kernels for the partial factorization. In other words, the tree-level 

parallelism is not exploited for the high-level tree nodes. This gives satisfactory speedups 

for the SMP multi-core processors. However, for NUMA multi-core architectures a 

mapping algorithm that considers the data locality of the high-level tree nodes may be 

required for high-performance. The mapping algorithm proposed by Pothen and Sun 

[148] can be used for this purpose.  
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Parallel solvers either use a static scheduling, such as PASTIX, or a combination 

of dynamic and static scheduling, such as MUMPS and PARDISO. The dynamic 

scheduling is especially useful when the workload cannot be predicted accurately prior to 

the numerical factorization due to the delayed factorization of the supernodes for 

numerical stability concerns. On the other hand, if the workload predictions are accurate 

and the workload of the processors is balanced, the static scheduling yields a good 

performance (for example, see Kurc et al. [81] and Hennon et al. [94]). SES solver 

package determines the tasks that will be scheduled in the processors statically by using 

the partial factorization time predictions. This typically assures a balanced workload 

among the threads. Previous sections explain how the factorization times are predicted by 

using the experimental execution times for the BLAS/LAPACK subroutines.  

The SES scheduling algorithm aims to exploit two-levels of parallelism in an 

optimal fashion so that the parallel factorization time is minimized. We determine when 

to switch to tree-level parallelism from dense-matrix level parallelism based on the 

estimated factorization times. The mapping algorithm is iterative and it searches for a 

subtree to thread mapping that minimizes the estimated parallel execution time. The 

iteration starts at the head node of the assembly tree. At this point, the entire tree is 

considered as a subtree and it is processed by a single thread. At each iteration step, 

independent subtrees that can be processed in parallel are found by performing a breadth 

first search. The tree nodes are assigned to the processors in a decreasing order of the 

estimated subtree factorization times in a cyclic fashion. We use a priority queue to hold 

the independent subtrees and to assign the subtrees to the processers in the decreasing 

order of the subtree processing time. The priority queue is also used for performing the 

breadth first search. Figure 4.20 shows the successive steps of the search performed 

within the mapping algorithm for an example assembly tree. The serial execution time 

estimations for the tree nodes are also shown in Figure 4.20. At each step of the search, 

the parallel factorization time is predicted by using our performance model. The search is 



123 
 

continued until the parallel execution time stops decreasing. The pseudo code for the 

mapping algorithm is given in Figure 4.21. 

The mapping algorithm may assign multiple subtrees to a thread. The numerical 

factorization waits until all threads finish their work on the subtrees assigned to them. 

Then, the high-level tree nodes are processed by using multithreaded BLAS/LAPACK 

kernels with maximum available number of threads. As it is stated earlier, we do not 

exploit tree-level parallelism for the tree nodes above the subtrees. If the 

synchronizations within the BLAS/LAPACK kernels are not considered, the factorization 

using the subtree to thread mapping requires a single synchronization between the 

threads. The only synchronization point is before starting to process the first high-level 

assembly tree node. The subtree to thread mapping found for the factorization is also 

used for forward elimination and back substitution. For the back substitution, the tasks 

are processed in the reverse order of the factorization. The use of the same mapping 

simplifies the implementation for the forward elimination and back substitution. The 

items and data structures that are created for the numerical factorization can also be used 

in the triangular solution such as: 

• Synchronization constructs for the threads 

• The tree-traversal found in the symbolic factorization  

• The factors calculated by threads 

• The frontal matrices  

• The subtree to thread mapping  

The main disadvantage of using the same mapping is that it may lead to workload 

imbalances in forward elimination and back substitution phases since the relative 

execution times of the factorization and triangular solution may not be similar for two 

different assembly tree nodes. 



124 
 

 

 

 

 

Figure 4.20: The search for the independent subtrees that can be processed in 

parallel.  
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INPUT: 
   root_node: the root node of the assembly tree 
   n: the number of additional iterations after an increase in estimated factorization time is 
detected  
OUTPUT: 
   top_level_nodes: the tree nodes that are processed with multithreaded BLAS/LAPACK 
   subtree_nodes: arrays storing subtree nodes that can be processed independently  
   parallel_facto_time: parallel factorization time 

 
initialize the top_level_nodes and subtree_nodes to an empty set 
initialize the priority_queue with the root_node  
counter ≔ 0 
while counter < n 

removed_node := extract the first element in the priority_queue  
(a) add the children of the removed_node to the priority_queue 
(b) add the removed_node to the top_level_nodes_candidate 
(c) assign the nodes in the priority_queue to the subtree_nodes_candidate in decreasing 

order of the tree execution times in a cyclic distribution 
/* use the estimate_time function given in Figure 4.19 to predict execution time */ 
time := estimate_time(top_level_nodes_candidate, subtree_nodes_candidate) 

 
if time > best_time  

counter := counter + 1 
else 

best_time := time  
subtree_nodes := subtree_nodes_candidate 
top_level_nodes := top_level_nodes_candidate 
counter := 0 

end if  
 

end while 
parallel_facto_time := best_time 
 
Figure 4.21: The pseudo code for subtree to thread mapping algorithm. 

 

4.6 Symbolic Factorization 

The numerical factorization and triangular solution are simulated in the symbolic 

factorization in order to determine the memory requirements and data structures for the 

numerical solution. First, an assembly order is found for each thread based on the 

subtrees found in the mapping algorithm. We employ postorder tree traversals for the 

subtrees and the assembly tree nodes above the subtrees. Current implementation of the 

SES solver package does not employ an optimal postorder traversal to minimize the 

active memory requirement. In future versions of the solver package, the memory 
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minimizing schemes developed by Liu [55] and Guermouche and L'excellent [54] will be 

employed.  

Once the ordering of the partial factorization operations is found for threads, 

memory required for the frontal matrix, update matrix stack, RHS vectors, and factors is 

determined. The memory requirements are calculated in parallel for the data structures 

corresponding to each thread. Finally, the local indices are found for frontal matrices.  
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CHAPTER 5 

FACTORIZATION 

& 

TRIANGULAR SOLUTION PHASES 

Once a strategy for the parallel numerical solution is determined in the analysis 

phase, the stiffness matrix is factorized using the multifrontal method [51]. The 

unknowns are then found by performing forward elimination and back substitution. This 

chapter discusses the numerical factorization and triangular solution algorithms and their 

implementation.  

5.1 Numerical Factorization  

The multifrontal method [51] is employed for the numerical factorization. The 

multifrontal method is the generalization of Irons’ frontal method [45] which allows the 

use of multiple frontal matrices. In the multifrontal method, the numerical factorization is 

reduced to a series of partial factorization operations on dense frontal matrices. The 

partial factorization on a frontal matrix is performed by finding the factors for the fully 

assembled dofs and finding the Schur complement for partially assembled dofs. The fully 

assembled dofs are the dofs for which all connected elements have been assembled in the 

frontal matrix. They are also called the eliminated dofs. On the other hand, the partially 

assembled dofs are the dofs for which all connected elements are not assembled. They are 

also called remaining dofs. The partial factorization is similar to the condensation of a 

frontal matrix where the condensed dofs are fully assembled dofs and the remaining dofs 

are partially assembled dofs. Typically, we exploit the supernodes and there are multiple 

dofs eliminated at a frontal matrix. Therefore, we can use a blocked form of the partial 

factorization that can be written as [52]:  
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The matrix on the left hand side of Equation 5.1 is called the frontal matrix. The 

frontal matrix is composed of the dense matrices Bne x ne, Vnr x ne , and Cnr x nr  where ne 

and nr are the number of eliminated and remaining dofs respectively. B is a square matrix 

corresponding to the eliminated dofs, C is a square matrix corresponding to the remaining 

dofs, and V is a rectangular matrix which couples the eliminated and remaining dofs. 

After the partial factorization is completed, B stores the diagonal factors LB, V stores the 

off-diagonal factors VLB
-T, and C stores the Schur complement C–VB-1VT.  

The LAPACK and BLAS3 subroutines are used for performing the partial 

factorization shown in Equation 5.1. Symmetric diagonal factors, LB, in Equation 5.1 are 

computed with a call to the dpotrf function in LAPACK. This function computes the 

Cholesky factors of a symmetric Hermitian matrix. An efficient implementation of this 

function divides matrix B into blocks sized such that the blocks fit into the memory cache 

of the machine [149]. Once the diagonal factors, LB, are found, the off-diagonal factors, 

VLB
-T, are computed using the dtrsm function in BLAS3. The dtrsm function finds the 

off-diagonal factors by solving the following equation for Loff: 

   (011()% = $  (5.2) 

From the above equation, Loff can be written as: 

(011 = $()�% 

Finally, the Schur complement, S, can be found by: 

 2 = & − $#��$% = & − (011(011%    (5.3) 

where Loff, off diagonal factors, is substituted for VLB
-T. The dsyrk function in 

BLAS3 is used for the rank nc update of the C matrix given in Equation 5.3.  

The matrices B and C are symmetric and a packed storage scheme can be 

employed for their storage. In packed storage scheme, either the upper or lower diagonal 
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entries of a dense matrix are stored. However, B and C are stored as if they are full 

matrices since there is no BLAS3 kernel for rank-k update that uses the packed storage 

scheme. Additionally, the LAPACK implementation in the Intel’s MKL library performs 

better when a full matrix storage scheme is employed [140].   

Next, we give the number of floating point operations required for the partial 

factorization of a frontal matrix with ne eliminated variables and nr remaining variables. 

For dense frontal matrices, the number of floating point operations required for 

calculating the diagonal factors LB is given as: 
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where the first term on the left hand side is number of floating point operations 

required to find the factors for the current pivot. The second term is number of update 

operations performed for the columns on the right side of the pivot column.  

The off-diagonal factors Loff is computed by performing a triangular solution with 

nr RHS vectors. The number of floating point operations required for the Loff is given as: 
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Finally, the number of floating point operations required for the calculation of the 

S in Equation 5.3 is given as: 
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where the nested summation represents the number of entries in the S. The 2ne 

term inside the summation is the number of floating point operations required for 

calculating each entry in the S. The total number of floating point operations required for 

the partial factorization is the summation of the Equations 5.4-6 and is given below: 
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The majority of arithmetic operations are to compute LB if ne is large relative to 

nr. On the other hand, if nr is larger than ne, the majority of operations are to compute S. 

Table 5.1 gives the operation counts for computing LB, Loff and S in terms of the total 

operation count required for partial factorization. As shown in Table 5.1, the majority of 

the operations are for computing S if ne/nr is smaller than 0.8. As the ratio ne/nr 

increases, the operation count ratio for computing S decreases.  

 

ne/nr LB Ratio Loff Ratio S Ratio 
0.2 0.011 0.165 0.824 
0.4 0.037 0.275 0.688 
0.6 0.07 0.349 0.582 
0.8 0.106 0.397 0.497 
1 0.143 0.428 0.429 

1.2 0.179 0.447 0.373 
1.4 0.214 0.458 0.328 
1.6 0.247 0.463 0.29 
1.8 0.278 0.464 0.258 
2 0.308 0.461 0.231 
3 0.429 0.428 0.143 
4 0.516 0.387 0.097 
5 0.581 0.349 0.07 

Table 5.1: For frontal matrices with different ne/nr ratios, the operation counts for 

computing LB, Loff and S given in terms of total operation count for the partial 

factorization  

 

For four example test problems, Table 5.2 shows the mean ne/nr ratios for the 

assembly tree constructed by using the HMETIS matrix ordering. As shown in Table 5.2, 

mean ne/nr ratios are smaller than 0.4 for 2D example problems and they are smaller than 

0.2 for 3D example test problems. For the assembly tree of the example problems, the 

ne/nr ratio is usually larger than the mean ratio for the tree nodes close to the root. The 

ne/nr ratio is infinity for the root tree node since there are no remaining variables at the 
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root. The root node is not included in the statistics shown in Table 5.2. Table 5.3 shows 

the total operation counts for the factorization of the assembly tree constructed with 

HMETIS ordering. As shown in Table 5.3, the majority of the factorization operations are 

for computing the Schur complement S. This is expected since the mean for ne/nr ratios 

are small as shown in Table 5.2. For the test problems shown in Table 5.3, about 70% of 

the operations are for computing the S matrices. The operation counts for computing LB 

at the root node is larger than the sum of the operation counts for computing LB at the 

remaining tree nodes. For 3D problems shown in Table 5.3, the operation counts for 

computing LB at the root node are more than 85% of the sum operation counts for 

computing LB at all tree nodes including the root tree node.  

 

 

Model Name 
Mean  
ne/nr 

Standard 
Deviation 

ne/nr 

Maximum 
ne/nr 

Minimum 
ne/nr 

q500×500 0.302 0.170 1.5 0.008 
f500×500 0.376 0.187 1.8 0.002 

s30×30×30 0.098 0.053 0.5 0.038 
f30×30×30 0.172 0.058 0.625 0.002 

Table 5.2: Assembly tree statistics for the example test problems  

 

 

Model Name 
Operation Count 

LB (GFlop) 
Operation Count 

Loff (GFlop) 
Operation Count 

S (GFlop) 
Total Operation 
Count (GFlop) 

q500×500 1.726 4.548 15.113 21.385 
f500×500 4.806 9.661 31.778 46.245 

s30×30×30 25.968 22.883 91.698 140.549 
f30×30×30 51.683 72.750 314.333 438.767 

Table 5.3: Arithmetic operation counts for the factorization of the example test 

problems  
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A partial factorization is performed for each frontal matrix corresponding to an 

assembly tree node. The dependencies between the partial factorization tasks are shown 

in Figure 5.1 for an example assembly tree. For the factorization, the tree nodes are 

visited in a postorder tree traversal, for which the children of an assembly tree node are 

visited before the parent node. A single active frontal matrix is used for the numerical 

factorization for the serial factorization. For multithreaded factorization, the active frontal 

matrices are as many as the number of threads used for the factorization if the tree-level 

parallelism is exploited. A stack data structure can be used to store S since a postorder 

tree traversal is employed. The stack data structure that stores S matrices is referred to as 

update matrix stack. Prior to a partial factorization, the update matrices of the children are 

popped from the stack and assembled into the frontal matrix.  

 

 

Figure 5.1: Direction of the dependencies between the factorization and triangular 

solution tasks for the example assembly tree. 

 

For multithreaded multifrontal factorization, each thread has its own frontal 

matrix and update matrix stack. The size and structure of the update matrix stacks are 

determined in the analysis phase of the solver package. Similarly, the size of the frontal 

matrix is determined in the analysis phase during the symbolic factorization. Once the 

total memory requirements are determined, memory is allocated for the frontal matrices 
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and update matrix stacks prior to the numerical factorization. There is no need for the 

memory reallocation since a static scheduling is employed and the operations performed 

by each thread are predetermined in the symbolic factorization phase. We also avoid the 

dynamic memory allocations during the numerical factorization. As dynamic memory 

allocations typically require system level synchronization of memory, a large number of 

dynamic memory allocations for small blocks of memory is typically inefficient 

compared to allocating large memory blocks at the same time.  

Figure 5.2 shows the pseudo code for multithreaded factorization. This code is 

executed in parallel by multiple threads. Each thread works on an exclusive set of tree 

nodes, which is given as an input to the code shown in Figure 5.2. The tree nodes are held 

in an array and they are stored according to a post-traversal tree node ordering, which is 

found in the analysis phase. Before processing each node in the array, first, it is checked 

whether synchronization is required for the partial factorization of the current tree node. 

If the partial factorization of a frontal matrix must wait for other threads, the frontal 

matrix is constructed after the dependent threads have finished. If the frontal matrix of a 

child tree node is processed by the current thread then the update matrix of the child is 

popped from the update matrix stack of the current thread. Otherwise, a search is required 

to make sure that we assemble the correct update matrix. Our implementation does not 

require synchronization constructs for accesses to the update matrix stack. The 

synchronizations shown in Figure 5.2 guarantee that only a single thread accesses an 

update matrix stack at a time. The construction of the frontal matrix is finalized by 

assembling all finite elements that contains the fully assembled dofs. After the frontal 

matrix is constructed, a partial factorization is performed by using the LAPACK/BLAS 

subroutines described previously. Once the factors are found, they are stored for later use 

in the triangular solution. Once S is found for the frontal matrix, it is pushed to the update 

matrix stack since it will be required during the partial factorization of the parent 

assembly tree node.  
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There are two important requirements that must be enforced for the correct 

execution of the multifrontal factorization code given in Figure 5.2. First, the partial 

factorization of high-level tree nodes should be in the reverse order of the partial 

factorization of the subtree tree nodes for the main thread. This is to ensure that the stack 

data structure can be used for the tree nodes above the subtrees. Second, for a parent 

assembly tree node, ordering of its children nodes should be in accordance with the 

ordering of the tree nodes that is given as input. Otherwise, pops from the update matrix 

stack may bring an update matrix that belongs to a child node that is a sibling of the 

desired child node. The analysis phase finds postorder tree traversals for the threads that 

satisfy these two requirements. 
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The multithreaded multifrontal factorization algorithm  
INPUT: 
   current_thread_id: the thread ID currently executing the function   
   tree_nodes: the assembly tree nodes assigned to the current thread (in postorder traversal)   
   LB, Loff, S: the frontal matrix blocks for the current thread  
   update_stacks: the update stacks for all threads  
   max_thread_num: the number of threads used for the numerical factorization  
OUTPUT: 
   factors: the factors found by the multifrontal factorization, each thread has its own copy.   

/* traverse all nodes assigned to the thread */ 
for each tree_node in tree_nodes  

/* wait until all children nodes that the tree node depends are processed */ 
if requires_wait(tree_node) then wait_for_threads(tree_node) end if 
/* traverse all children nodes of the current tree node */ 
for each child_node of the tree_node 

/* get the thread id that processed the children node. */ 
thread_id := get_thread(child_node)  
/* pop the update matrix from the corresponding update stack. This is S computed at the 
children tree node*/ 
if thread_id = current_thread_id then 

update_matrix:=pop(update_stacks[thread_id]) 
otherwise 

/* find the child node’s update matrix in the update matrix stack */ 
update_matrix:=find(child_node, update_stacks[thread_id]) 

end if 
assemble(update_matrix, LB) 
assemble(update_matrix, Loff) 
assemble(update_matrix, S) 

end for 
/* traverse FE’s for the tree node*/ 
for each element_matrix stored in the tree_node  

assemble(element_matrix, LB) 
assemble(element_matrix, Loff) 
assemble(element_matrix, S) 

end for 
/* if it is a high-level tree node then use all threads available for partial factorization */ 
if is_subtree_node(tree_node) then set_blas_lapack_thread_num(1)  
otherwise set_blas_lapack_thread_num(max_thread_num) end if 
/* make the LAPACK and BLAS calls required for the partial factorization */ 
LB:= dpotrf(LB) 
Loff:=dtrsm(Loff, LB) 
S:=dsyrk(Loff, S) 
/* store the results of partial factorization*/ 
store_diagonal(tree_node, LB, factors) 
store_off_diagonal(tree_node, Loff

,, factors) 
push(S, update_stacks[current_thread_id]) 
/* notify the threads that waits for this tree node */ 
if requires_notification(tree_node) then notify_threads(tree_node) end if 

end for 
 
Figure 5.2: The pseudo code for multithreaded numerical factorization algorithm 
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5.2 Triangular Solution 

Once the factors are calculated, the triangular solution can be performed by 

forward elimination and back substitution. The forward elimination for an assembly tree 

node can start as soon as the factors corresponding to fully assembled dofs are computed. 

Alternatively, the factorization and forward elimination can be separated by starting the 

forward elimination after all factorization steps are completed. The back substitution, on 

the other hand, must wait until all forward elimination tasks are completed.  

5.2.1 Forward Elimination 

The efficiency of BLAS3 kernels are extended to the triangular solution with 

multiple RHS vectors. We employ frontal RHS matrices to perform forward elimination 

and back substitution operations efficiently on dense matrix blocks. The algorithm is 

similar to the numerical factorization. However, now, in addition to the frontal matrices 

that store the factors for the eliminated dofs, we also have a RHS frontal matrix that 

stores the loads and partial results for the eliminated and remaining dofs. For the forward 

elimination steps, the frontal matrix and loads on the corresponding dofs are written in a 

blocked form as follows: 

 " () 0
(011 3' "4546

' =  "7576
' (5.8) 

where Fe and Fr store the loads updated with the partial solution on the eliminated 

and remaining dofs respectively. The matrices Fe and Fr are ne by nrhs and nr by nrhs 

matrices respectively. The right-hand side matrix in Equation 5.8 is referred to as RHS 

frontal matrix. When the forward elimination steps are complete, Fe stores Ye, the results 

of the forward elimination for the fully assembled dofs. Fr, on the other hand, stores Yr, 

the contribution from the current assembly tree node to the forward elimination steps at 

the parent assembly tree node. Matrix X in Equation 5.8 is not required for the forward 
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elimination and back substitution. For forward elimination, the dense matrix operations 

on the frontal matrix are given as follows: 

  45 =  ()��75 (5.9) 

  768 =  76 −  (011 45 (5.10) 

where Ye is the results from the forward elimination and Fr
u is the contribution 

from the currently processed tree node to the forward elimination steps at the parent tree 

node. In a way, Fr
u is similar to S, the Schur complement, which is the update matrix for 

the parent tree node. We do not need extra memory to store Ye and Fr
u since Ye and Fr

u 

are written on Fe and Fr respectively. Before starting the operations on the frontal matrix 

for another assembly tree node, Ye is stored to a separate memory location for a later use 

in the back substitution.  

The BLAS3 dtrsm and dgemm functions are used to perform operations shown in 

Equations 5.9 and 5.10 respectively. It should be noted that using the suitable BLAS2 

kernels will be more efficient if the structure has a small number of loading conditions. In 

addition, the efficiency of BLAS3 kernels will not shift the extra time spent to store the 

RHS update matrices Fr
u
 for a small number of RHS vectors. Therefore, our approach is 

especially efficient for the solution of multiple RHS vectors.  

Next, we give the number of floating point operations required for the forward 

elimination steps on the frontal matrix. The dense matrix Ye in Equation 5.9 is computed 

by performing forward elimination on a dense matrices. For a dense square coefficient 

matrix with the size ne, the number of floating point operations required for forward 

elimination with nrhs RHS vectors is given as follows: 

  ( ) nrhsneinrhs
ne

i

2

1

1)1(2∑
=

=+−   (5.11) 

The number of floating point operations required for the operations shown in 

Equation 5.10 is given as follows: 
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 nrhsnrnene
nr

i

nrhs

j

⋅⋅⋅=∑∑
= =

22
1 1

  (5.12) 

where the term inside the summation represents the number of operation 

performed to compute each entry of the Fr
u. The total number of floating point operations 

required for the back substitution is the summation of Equation 5.11-12 and is given as 

follows:  

   ( ) nrhsnrnene ⋅⋅⋅+ 22   (5.13) 

As shown in the above equation, the operation counts for forward elimination 

increases linearly as we increase the number of RHS vectors (nrhs). A fill-in 

minimization scheme will also minimize the operation count for forward elimination 

since a fill-in minimization scheme aims to reduce ne2/2 + ne.nr, the number of nonzero 

for the pivot columns. For the example test problems, Table 5.4 shows the total operation 

counts for the forward elimination with 100 RHS. As shown in Table 5.4, the operation 

count for computing Fr
u in Equation 5.10 is significantly larger than the operation count 

for computing Ye in Equation 5.9. This is mainly due to small mean ne/nr ratios of the 

assembly tree nodes as shown in Table 5.2. If the operation counts in Table 5.3 and Table 

5.4 are compared, the total operation count for forward elimination with 100 RHS vectors 

is comparable to the total operation count for the factorization of 2D example test 

problems. On the other hand, for 3D test problems, the factorization operation counts are 

significantly larger than the operation counts for the forward elimination with 100 RHS 

vectors as shown in the tables. The operation counts for alternative number of RHS 

vectors can be found by linearly scaling the operation counts given for 100 RHS vectors 

in Table 5.4.  
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Model Name 
Operation Count 

Ye (GFlop) 
Operation Count 

Fr
u (GFlop) 

Total Operation 
Count (GFlop) 

q500×500 1.845 9.632 11.476 
f500×500 2.885 13.495 16.380 

s30×30×30 2.968 12.067 15.035 
f30×30×30 4.840 23.534 28.375 

Table 5.4: For example test problems, operation counts for the forward 

elimination with 100 RHS vectors 

 

As it is stated in the previous Chapter, the mapping found for the factorization is 

also used for the triangular solution. This implicitly assumes that the workload for 

triangular solution is directly proportional to the workload for the partial factorization. If 

the operation counts for the partial factorization and forward elimination are compared, 

one can see that this is not always the case. However, for large tree nodes with similar 

ne/nr ratios, the triangular solution flop is almost directly proportional to the partial 

factorization flops. This point is illustrated by plotting the triangular solution flops in 

terms of the partial factorization flops. Figure 5.3 shows the flop for the forward 

elimination with 100 RHS vectors normalized according to the partial factorization flop. 

The relative flop is given for different ne/nr ratios in Figure 5.3. As shown in Figure 5.3, 

the relative flops are different for two frontal matrices with significantly different ne/nr 

ratios. However, if the ne/nr ratios are the same, the relative flop becomes very similar 

for two frontal matrices as long as the frontal matrix sizes differs in only by a small 

constant.  
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Figure 5.3: The flop required for the triangular solution with 100 RHS vectors 

given in terms of the flop required for the partial factorization.  

After demonstrating the assumptions of the mapping algorithm for the triangular 

solution, we now discuss the implementation of the forward elimination. As it is shown in 

Figure 5.1 for an example assembly tree, the dependency between the forward 

elimination tasks is the same as the one for the factorization tasks. Therefore, the 

postorder tree traversal used in the numerical factorization can also be used for the 

forward elimination. The use of postorder traversal for forward elimination allows storing 

the Fr
u in an update matrix stack data structure that is similar to the one used in the 

factorization phase. The pseudo code for the multithreaded forward elimination is shown 

in Figure 5.4. First, Fe in the current RHS frontal matrix is initialized according to the 

loads on the structure. Then, the RHS frontal matrix blocks, Fe and Fr, are updated 

according to the Fr
u computed at the children tree nodes. Once, the RHS frontal matrix is 

constructed and the factors for the current assembly tree node are restored, the forward 

elimination is performed by making the BLAS3 calls described previously.  
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The multithreaded forward elimination algorithm  
INPUT: 
   current_thread_id: the thread id of the current thread 
   factors: factors calculated in the numerical factorization phase  
   tree_nodes: the assembly tree nodes assigned to the current thread (postorder traversal order)  
   Fe, Fr: the RHS frontal matrix for the current thread 
   rhs_update_stacks: the update stacks for the RHS vectors for all threads 
OUTPUT: 
   y: the results found by forward elimination  

/* traverse all nodes assigned to the thread */ 
for each tree_node in tree_nodes  

/*Wait until all children nodes that the tree node depends are processed */ 
if requires_wait(tree_node) = true 

wait_for_threads(tree_node)  
end if 
assemble(loads_at_eliminated_dofs, Fe) 
for each child_node of the tree_node 

/*Get the thread id that processed the children node */ 
thread_id:=get_thread(child_node)  
/*Pop the update matrix from the corresponding update stack */  
if thread_id = current_thread_id  

Fr
u:= pop(rhs_update_stacks[thread_id]) 

else 
/*find the child node’s update matrix in the update matrix stack*/ 
Fr

u:=find(child_node, rhs_update_stacks[thread_id]) 
end if 
assemble(Fr

u, Fe) 
assemble(Fr

u, Fr) 
end for 
/*Get the stored factors for the current frontal matrix*/ 
LB:=restore_diagonal(tree_node, factors) 
Loff:= restore_off_diagonal(tree_node, factors) 
/*If it is a high-level tree node then use all threads available for partial factorization */ 
if is_subtree_node(tree_node) then set_blas_lapack_thread_num(1)  
otherwise set_blas_lapack_thread_num(max_thread_num) end if 
/*Call the BLAS3 functions for the forward elimination */ 
Fe:=dtrsm(LB, Fe) 
Fr

u:=dgemm(Fr
, Loff 

, Fe)
 

/*Store the results from the forward elimination*/  
push(Fr

u, load_update_stacks[current_thread_id]) 
add Fe to the y 
/*Notify the threads that waits for this tree node */ 
if requires_notification(tree_node) = true 

notify_threads(tree_node)  
end if 

end for 
 
Figure 5.4: The pseudo code for multithreaded forward elimination algorithm. 
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As described in Chapter 4.3, node blocking improves the performance of the 

assembly of the update matrices for the multifrontal factorization. We can also exploit the 

node blocks for the triangular solution of a frontal matrix. This will improve the 

efficiency of the assembly of the Fr
u matrices corresponding to children tree nodes. The 

storage scheme for the RHS vectors determines the size of the continuous matrix blocks 

that can be assembled at once. Consequently, the benefits from the node blocking depend 

on how the RHS vectors are stored. To illustrate this point, Figure 5.5 shows two 

alternative schemes for storing the RHS vectors. Here, it is assumed that the RHS matrix 

is stored in a column oriented fashion which is the case for all dense matrices used in the 

SES solver package. The storage scheme shown in Figure 5.5(a) is for the forward 

elimination formulation on a frontal matrix given in Equation 5.8. For the storage scheme 

shown in Figure 5.5(a), the loads of a RHS vector are adjacent in the array storing the 

RHS matrix. In other words, the loads on a dof corresponding to adjacent RHS vectors 

are separated by ne+nr elements in the array storing the RHS matrix. This limits the use 

of node blocking to a single RHS vector. For the triangular solution of multiple RHS 

vectors, there is a more efficient storage scheme, which is given in Figure 5.5(b). Here, 

the transpose of the right hand-side vectors are stored. In this scheme, all loads 

corresponding to a dof are adjacent. The assembly of the Fr
u blocks can be performed 

efficiently for all RHS vectors at once. This storage scheme allows the efficient use of 

BLAS1 kernels for the assembly of the Fr
u’s.  

In order to use the storage scheme shown in Figure 5.5(b), the forward 

elimination formulations given in Equations 5.9 and 5.10 must be modified as follows:  

  49% =  75%()�% (5.14) 

  768% =  76% −  45%(011 % (5.15) 
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The BLAS3 functions are the same for the modified equations given above. 

However, the parameters of the BLAS3 functions should be changed. Now, the transpose 

of the factors are used in the corresponding BLAS3 functions.  

 

Figure 5.5: Alternative storage schemes for the RHS vectors.  

5.2.2 Back Substitution 

After forward elimination is finished, the solution is completed by a back 

substitution. For the back substitution steps, the frontal matrix and RHS vectors can be 

written in the blocked matrix form as follows: 

  "()% (011%
0 3 ' ":5:6

' =  "4546
' (5.16) 

where De and Dr are displacements corresponding to the eliminated and remaining 

dofs. De is ne by nrhs matrix and Dr is nr by nrhs matrix. The back substitution for the 

current frontal matrix determines De. The entries of Ye are the values computed in the 

forward elimination phase from Equation 5.9. Dr stores the displacements for the 

remaining dofs, which are found at an ancestor of the current tree node. X and Yr are not 

used for the back substitution operations on the frontal matrix. Matrix operations for the 

back substitution are given as: 

 458 =  45 −  (011% :6 (5.17) 
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  :5 =  ()�%458 (5.18) 

The BLAS3 dgemm and dtrsm functions are used to perform operations given in 

Equations 5.17 and 5.18 respectively. After the displacement matrix De is computed, it is 

disassembled to Dr matrices of the children elements (Dr
c). The number of floating point 

operations required for the back substitution is the same as the ones for the forward 

elimination, which are given in Equation 5.11 and Equation 5.12. 

As shown in Figure 5.1, the back substitution starts from the parent node in the 

assembly tree and then continues in the reverse direction of the factorization and forward 

elimination. Therefore, instead of the postorder tree traversal used in the factorization and 

forward elimination, the reverse of the postorder tree traversal is used in the back 

substitution. The pseudo code for the multithreaded back substitution is given in Figure 

5.7. Here, the RHS update matrix stack that stores Fr
u for the forward elimination can be 

used to store Dr
c matrices where Dr

c matrices are the Dr matrices used in the back 

substitution steps at the children tree nodes. Dr
c matrices are placed on the stack in the 

reverse order of the placements in the forward elimination steps. As shown in Figure 5.7, 

before the back substitution operations, the results found in forward elimination are 

restored. Then, the Dr
c is popped from the RHS update matrix stack and it is restored at 

the RHS frontal matrix Dr. Back substitution operations for the assembly tree are 

performed by using the matrices De, Dr, LB, and Loff. After the back substitution 

operations are completed, the RHS frontal matrix blocks De and Dr are assembled to the 

Dr
c . Dr

c will be used during the back substitution operations on the children tree nodes.  

Similar to the storage scheme in the forward elimination, the transpose of the 

RHS frontal matrix is stored for the back substitution in order to exploit the node blocks 

for multiple RHS vectors. The formulation for the transpose RHS frontal matrices are 

given as follows:  

 458% =  45% −  :6%(011 (5.19) 
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  :5% =  458 %()�� (5.20) 

The BLAS3 functions are the same for the transposed equations. However, the 

function parameters are different than the ones for the Equations 5.19 and 5.20.  

The triangular solution algorithm developed in this study is especially efficient for 

the solution with a large number of RHS vectors. The main advantage of this scheme is 

that the BLAS3 functions are performed on large dense matrices. The use of update 

matrix stacks for the RHS vectors is the overhead for performing operations on dense 

frontal matrices. For systems with a large number of RHS vectors, the increased 

performance of BLAS3 kernels improves the overall performance for the triangular 

solution regardless of the extra operations required for handling the update matrices. This 

point is illustrated by comparing the solution time of the proposed scheme with the 

solution time of the PARDISO solver. Figure 5.6 gives the triangular solution time of the 

SES solver package in terms of the solution time of the PARDISO solver for the test 

problem f500×500. As shown in Figure 5.6, PARDISO is faster for the triangular 

solution with 10 RHS vectors. However, as the number of RHS vectors increases, the 

performance of SES relative to PARDISO increases.  
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Figure 5.6: SES triangular solution time relative to the PARDISO triangular 

solution time for the problem f500×500. 
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The multithreaded back substitution algorithm  
INPUT: 
   current_thread_id: the thread id of the current thread 
   factors: factors calculated in the numerical factorization phase  
   y: the results found in the forward elimination  
   tree_nodes: the assembly tree nodes (in reverse postorder traversal order)  
   De, Dr: the RHS frontal matrix for the current thread 
   rhs_update_stacks: the update stacks for the RHS vectors for all threads 
OUTPUT: 
   d: the unknowns(displacements) found by back substitution  

/* Traverse all nodes assigned to the thread */ 
for each tree_node in tree_nodes  

/*Wait until all children nodes that the tree node depends are processed */ 
if requires_wait(tree_node) = true 

wait_for_notification(tree_node)  
end if 
/*Get the stored factors*/ 
LB:=restore_diagonal_factors(factors) 
Loff:= restore_off_diagonal_factors(factors) 
/*Get the forward elimination results for the current tree node*/ 
De:=get(tree_node, y) 
/*Pop the calculated unknowns stored by the parent*/ 
Dr:=pop(rhs_update_stacks[thread_id]) 
/*If it is a high-level tree node then use all threads available for partial factorization */ 
if is_subtree_node(tree_node) then set_blas_lapack_thread_num(1)  
otherwise set_blas_lapack_thread_num(max_thread_num) end if 
De:=dgemm(De, Loff, Dr) 
De:=dtrsm(LB, De) 
Store De in d  
for each child_node of the tree_node 

/*Dissemble De for the child node*/ 
Dr

c:=dissemble(child_node, De) 
/*Dissemble Dr for the child node*/ 
Dr

c:=dissemble(child_node, Dr) 
/*Get the thread id that will process the children node*/ 
thread_id:=get_thread(child_node)  
/*Push the calculated unknowns to the update stack of the child*/  
push(Dr

c, rhs_update_stacks[thread_id]) 
end for 
/*Notify the threads that waits for this tree node*/ 
if requires_notification(tree_node) = true 

notify_threads(tree_node)  
end if 

end for 
 
Figure 5.7: The pseudo code for the multithreaded back substitution algorithm. 
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5.3 Using a File Storage for the Factors  

For 3D problems, the memory required to store the factors increases dramatically 

as the number of elements used in three dimensions increases. Figure 5.8 shows the 

memory required for storing the factors for problems with cubic geometry modelled with 

8-node solid elements. The x-axis shows the number of elements used for each dimension 

of the cube. In Figure 5.8, the memory required to store the factors shows a cubic growth 

as a function of the number of elements on one side of the cube. For example, the 

memory size required to store the factors is about 10 Gbytes for a cubic model with 60 

elements on each side, whereas, it is 25 Gbytes for the model with 75 elements on each 

side. Figure 5.8 also shows the storage requirements if the factors are not stored in the 

main memory. The active memory is the memory required for holding the frontal matrix 

and update matrix stacks. As shown in Figure 5.8, the active memory requirement can be 

significantly smaller than the memory required to store the factors. In a naive 

implementation of the multifrontal method, both active memory and the factors will be 

stored in the main memory. Therefore, the total memory required for storing the floating 

point numbers is the summation of the two plots given in Figure 5.8. The memory 

requirements of the space frame models are even larger since there are 6 dofs at each 

node for space frames.  

In the multifrontal method, the factors can be written to disk after the partial 

factorization is completed for a frontal matrix. This can significantly reduce the memory 

requirements for the numerical solution. The factors will be read from the disk when they 

are needed again during the triangular solution. If we employ a secondary storage for the 

factors, the maximum memory required by the solver is a function of the maximum size 

of the frontal matrix and update matrix stack, which may be significantly smaller than the 

memory required for the factors as shown in Figure 5.8. 
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Figure 5.8: The memory requirements for the factorization of cubic geometry 8 

node solid element models. HMETIS is used for the pivot-ordering.  

In order to reduce the memory requirements of the multifrontal solver, an out-of-

core multifrontal method is implemented by writing the computed factors to a file. This is 

a partial out-of-core implementation since the frontal matrix and update matrices are 

always kept in the main memory. For a fully out-of-core solver implementation, the 

frontal matrix and update matrices can also be written to a secondary storage when there 

is not enough memory to store them.  

Acharya et al. [150] discussed tuning I/O intensive parallel applications. They 

demonstrated the efficiency of one coalesced large I/O request instead of a number of 

small I/O requests. They stated that with code restructuring, small I/O requests can be 

converted to larger coalesced I/O requests. According to their study, for the large I/O 

requests, the effect of I/O interface on performance was not as significant as it is for the 

small I/O requests. They also reported that prefetching data and writing-behind can 

improve the performance of I/O intensive applications. We considered these 

optimizations for writing and reading the computed factors.  
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For writing factors to a file, we consider two alternative approaches: synchronous 

and asynchronous I/O. In the synchronous I/O, a thread enters to a wait state until the I/O 

request is completed. In asynchronous I/O, on the other hand, the thread continues to 

execute after a successful I/O request. Once an asynchronous I/O request is served by the 

system, the thread is signalled. The signal state can be queried anytime by the thread to 

check whether an I/O request is completed. If the I/O request is completed, the operations 

on the requested data are performed. 

In order to guarantee a truly asynchronous behaviour on Windows systems, the 

I/O operations should be explicitly buffered [151]. Therefore, we used a factor buffer to 

store the computed factors before writing them to a file. Figure 5.9 shows the data 

structures used to write the factors to the disk. As shown in Figure 5.9, the computed 

factors are first copied to the factor buffer. When the buffer size exceeds a certain limit, it 

is flushed to a file on the disk. By copying the factors to a buffer first, we reduce the 

number of file accesses and increase the size of the data written to the disk at each I/O 

request. These are expected to improve the performance of I/O intensive applications as 

described by Acharya et al. [150]. There are some caveats for using an explicit file buffer 

on Windows systems [151]. First, the number of bytes accessed should be a multiple of 

the volume sector size. Second, buffer addresses shall be aligned on addresses in memory 

that is a multiple of the volume sector size. Our buffer implementation for the factors 

satisfies these requirements.   

In order to better exploit the asynchronous I/O, we used two factor buffers. A 

buffer is used as a disk cache for holding the factors that are currently written to a file. 

Meanwhile, the other buffer is used as a temporary storage for the factors that are 

recently calculated or will be calculated soon. Once the buffer caching for the disk is 

completely flushed to a file, the two buffers are swapped. After swapping the buffers, the 

buffer that was holding the most recent factors serves as a disk cache and vice versa.  
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Figure 5.9: Data accesses for partial factorization on a frontal matrix  

For the triangular solution, the factors need to be read from the file. We can use 

either synchronous or asynchronous I/O for reading the factors from the file. Similar to 

writing factors to a file, an explicit file buffer is required for guaranteeing truly 

asynchronous reading. Figure 5.10 shows the data structures used for reading the factors 

from a file. As shown in Figure 5.10, we use a factor buffer to read the factors for the 

triangular solution. In addition, since we know what factors will be needed at the next 

step, we can fetch the data before it is required. Compared to the I/O requests right before 

the operations on the required data, a prefetching scheme can potentially reduce the 

waiting time for vital data, which are the factors computed in the numerical factorization 

phase. We again used two buffers to read the factors. The factors are read in large blocks 

by using the double buffer structure described before and used for storing the factors.  
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Figure 5.10: Data accesses for partial forward elimination on a frontal matrix  

The number of disk reads will be halved if the forward elimination for a frontal 

matrix is performed right after the partial factorization of the frontal matrix. In this case, 

the factors are read from the file only once during the back substitution. We employ this 

scheme in order to minimize the disk writes. The disk writes can be further reduced by 

creating a factor buffer as large as the available memory size and not writing the factors 

to a file unless the memory required to store factors exceeds the available memory. 

However, this scheme is not implemented yet.  

For the multifrontal solver, the memory required for the update matrix stack can 

be reduced by employing the scheme described by Guermouche and L'excellent [55]. 

This will further reduce the active memory required for the multifrontal solver and 

increase the size of the problems that can be solved using the out-of-core solver. 

However, this scheme is not implemented in the solver package yet.  
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CHAPTER 6 

PERFORMANCE OF VARIOUS ALGORITHMS 

In this chapter, numerical experiments are performed to evaluate the performance 

of alternative algorithms for a large number of 2D and 3D FE problems. The algorithms 

that produce favorable execution times are presented. Approaches to improve the overall 

efficiency of the sparse direct solution are discussed.  

6.1 Performance of Matrix Ordering Programs  

6.1.1 Program Parameters  

Matrix-ordering programs have adjustable parameters and the SES solver package 

allows experimenting with these parameters as described in Section 3.3. Here, we 

investigate the performance of using different values for some of these parameters for the 

matrix ordering programs.   

6.1.1.1 Graph Compression     

A graph compression reduces the size of the input graph and typically reduces the 

execution time of matrix-ordering programs [129, 136]. Here, we investigate the effect of 

graph compression for the HMETIS matrix ordering program. Figure 6.1 shows the 

performance profiles for non-zero with graph compression and no graph compression. 

The benchmark suite of 40 test problems is used for the numerical experiments. As 

shown in Figure 6.1, graph compression usually yields pivot-orderings with slightly more 

non-zeros. For a test problem, compressing the input graph yields a non-zero value 1.14 

times the non-zero without compression. Figure 6.2 shows the impact of graph 

compression on flop for HMETIS matrix ordering program. As shown in Figure 6.2, 

graph compression usually yields higher flop values for HMETIS. Compared to the non-
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zero, the difference between the flop values is more significant. For a single problem in 

our benchmark suite, graph compression yields flop values 1.5 times the flop found 

without graph compression.  

 

Figure 6.1: Performance profile, p(α): Non-zero for HMETIS with and without 

graph compression, benchmark suite of 40 test problems  

Although the graph compression usually increases the non-zero and flop for the 

pivot-orderings, the execution time of the HMETIS is smaller if the graph compression is 

employed. For the benchmark suite of 40 test problems, the matrix-ordering may be 1.7× 

slower if the graph is not applied. The reduction in matrix ordering time may be 

important since time spent in the matrix-ordering time may correspond to a significant 

portion of the solver execution time, especially for 2D problems. However, for 2D 

problems, local orderings typically yields better pivot-orderings with respect to non-zero 

and flop. For 3D problems, the matrix ordering times may be significantly smaller than 

the factorization times especially for large problems. Therefore, it may be desirable to 

reduce the factorization times at a relatively small cost of matrix ordering times for 3D 
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problems. For the hybrid ordering program HAMF, the graph compression has minor 

impact both on the matrix-ordering times and the quality of the pivot-orderings.  

 

Figure 6.2: Performance profile, p(α): Flop for HMETIS with and without graph 

compression, benchmark suite of 40 test problems  

6.1.1.2 Nested Dissections Stopping Criteria, vertnum, for HAMF 

In the hybrid matrix ordering programs, HMETIS and HAMF, the nested 

dissections are performed until the partitions are smaller than a threshold value. Once the 

partitions are found with incomplete nested dissections, the partitioned graphs are ordered 

using a local matrix ordering program. The stopping criterion, vertnum, for the nested 

dissections is an input for the HAMF matrix ordering program. For partitions smaller 

than the vertnum value, the nested dissections are stopped and a local matrix-ordering is 

used for the partitions. We investigate the performance of HAMF for alternative values of 

vertnum. Figure 6.3 shows the flop for alternative values of vertnum parameter. As shown 

in Figure 6.3, there is no single vertnum value that gives the best flop for all test problems 

in the benchmark suite. The performance profiles for vertnum values smaller than 500 are 
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similar as shown in Figure 6.3. The execution time of HAMF typically decreases as we 

increase the vertnum values. This is due to the fact that the time consuming graph 

partitioning algorithm is executed fewer times as we increase the vertnum values. In the 

limit, if vertnum is equal to the size of the input graph, then the local ordering algorithm 

is applied to the entire graph and no graph partitioning is applied. Observing that the 

performance for alternative vertnum values are similar within the range of 50 to 350, we 

use the default vertnum value in the SCOTCH library, which is vertnum=240.  

 

Figure 6.3: Performance profile, p(α): Flop for HAMF with alternative values for 

vertnum, benchmark suite of 40 test problems 

6.1.1.3 Node Amalgamation within SCOTCH Library 

Matrix ordering programs in SCOTCH package can find pivot-orderings with 

amalgamated supernodes. The cmin and frat parameters control the amount of node 

amalgamation within SCOTCH (see Chapter 3 for details). The numerical experiments 
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are performed to compare the SCOTCH amalgamation and explicit node amalgamation 

described in Chapter 4.2.  The numerical experiments on benchmark problems show that 

the explicit node amalgamation typically yields fewer update operations to flop ratios 

compared to node amalgamation within the SCOTCH package. Consequently, the 

factorization time for explicit amalgamation is usually smaller than the amalgamation 

within the SCOTCH package.  

6.1.1.4 Multiple Elimination Parameter, delta, in MMD 

Alternative values for delta parameter of the MMD program are investigated for 

the benchmark suite of 40 test problems. Figure 6.4 shows the impact of different delta 

values on flop found with MMD. As shown in Figure 6.4, there is no single delta value 

that yields the best flop for all test problems. In addition, the matrix ordering times are 

similar for different delta values. For the remainder of this study, delta = 4 is used unless 

otherwise is stated.  
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Figure 6.4: Performance profile, p(α): Flop for MMD with different delta values, 

benchmark suite of 40 test problems 

6.1.2 Effect of Initial Node Numbering 

As it is discussed in Chapter 3.2, the initial numbering of the nodes impacts the 

fill-ins for a pivot-ordering found by the matrix-ordering programs. First, we investigate 

the impact of node numberings described in Chapter 3.2 for the local orderings. Figure 

6.5 shows the impact of initial node numbering for AMF ordering. As shown in Figure 

6.5, coordinate based ordering for the initial node numbering yields to the most favorable 

flop values for approximately 90% of the test problems with regular geometries. Figure 

6.6 shows the impact of initial node numberings for MMD ordering. Similar to the results 

for AMF, coordinate based initial node numbering produces the minimum flop values for 

the majority of the test problems with regular geometries. For the CAMD ordering, on the 

other hand, the improvements in flop values due to the coordinate based initial numbering 

are not as significant as it is for the other two local ordering programs. Figure 6.7 shows 

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

F
ra

ct
io

n 
of

 P
ro

bl
em

s

Performance Profile: Flop

 

 

delta = 0
delta = 1
delta = 2
delta = 3
delta = 4
delta = 5
delta = 6
delta = 10



159 
 

the impact of initial node numberings for CAMD ordering. Here, the performance 

profiles for coordinate based ordering and reverse Cuthill-McKee ordering are similar. In 

addition, the gap between the coordinate based ordering and random node permutations is 

smaller for CAMD compared to the performance gap between them for AMF and MMD.  

The performance profiles for the best pivot-ordering chosen among 15 random 

node permutations are also given in Figure 6.5-6.7. As shown in these figures, the use of 

best pivot-ordering among the alternatives for the random node permutations does not 

improve the performance of the local orderings significantly. The flop for a single 

random node permutation is comparable to the best flop chosen among 15 random node 

permutations. Furthermore, the coordinate based node ordering and reverse Cuthill-

McKee ordering yield better performance profiles for flop compared to the one for 

choosing the best flop among 15 random node permutations.  

Numerical experiments on the models with irregular geometries also illustrate the 

efficiency of the coordinate based ordering. For AMF, Figure 6.8 shows the performance 

profiles for the flop for the models with irregular geometries. As shown in Figure 6.8, 

coordinate based initial node numbering yields the most favorable flop for most of the 

test problems. For other local orderings AMD and MMD, the relative performance of 

initial node numberings for irregular geometries is similar to the ones for the regular 

geometries.  
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Figure 6.5: Performance profile, p(α): Flop for AMF with different initial node 

numberings, 670 test problems with regular geometries 
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Figure 6.6: Performance profile, p(α): Flop for MMD with different initial node 

numberings, 670 test problems with regular geometries 

 

Figure 6.7: Performance profile, p(α): FLOP for CAMD with different initial node 

numberings, 670 test problems with regular geometries 
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Figure 6.8: Performance profile, p(α): Flop for AMF with different initial node 

numberings, 86 test problems with irregular geometries 

Next, we investigate the impact of alternative initial node numberings on pivot-

orderings found with the hybrid matrix ordering programs, HMETIS and HAMF. Figure 

6.9 shows the impact of initial node numberings on the flop produced by the HMETIS. 

Figure 6.10 shows the same information for HAMF. Unlike the local ordering programs, 

the coordinate based ordering offers no advantage for the HMETIS and HAMF orderings. 

For these hybrid ordering programs, the coordinate based orderings yield flop values 

comparable to the random node permutations. Therefore, it is concluded that the hybrid 

ordering programs are less affected by the initial node numberings and they are more 

robust in that sense. However, as shown in Figure 6.9 and 6.10, a smaller flop value can 

be obtained by executing the hybrid ordering programs for several random node 

permutations and using the best pivot ordering that gives the smallest flop value. 

Nevertheless, this approach offers moderate improvements for the flop values. As shown 
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in Figure 6.9 and 6.10, a random node permutation yields a flop value that is within 1.5 

times the best flop value found for the random node permutations. For about 90% of the 

test problems with uniform geometry, a random node permutation yields flops within 1.2 

times the best.  

 

 

Figure 6.9: Performance profile, p(α): FLOP for HMETIS with different initial 

node numberings, 670 test problems with regular geometries  
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Figure 6.10: Performance profile, p(α): FLOP for HAMF with different initial 

node numberings, 670 test problems with regular geometries  

6.1.3 Matrix Ordering for Serial Factorization  

The serial factorization performance of alternative matrix ordering programs are 

evaluated. A coordinate based initial node numbering is used for the comparison of the 

matrix ordering programs. The relative performance of matrix ordering programs varies 

depending on the model dimensionality and average node connectivity of the test 

problems.  

6.1.3.1 2D Models 

For five matrix ordering programs, Figure 6.11 shows the performance profiles 

for non-zero. This figure shows the results for 2D models with uniform geometries. As 

shown in Figure 6.11, AMF gives the best non-zero for about 80% of the test problems. 

Furthermore, it is within 1.05 of the best non-zero among results from the remaining four 
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matrix ordering programs. Consequently, AMF ordering usually minimizes the 

factorization memory requirements for 2D models with regular geometries.  

 

Figure 6.11: Performance profile, p(α): Non-zero for alternative matrix ordering 

programs, 166 2D test problems with regular geometries 

Figure 6.11 shows the performance profiles for flop. The relative performance of 

matrix ordering programs for non-zero is similar to the one for the flop. As shown in 

Figure 6.12, AMF gives the best flop for about 80% of the test problems. Compared to 

the hybrid ordering programs, HAMF and HMETIS, local orderings, AMF, AMD, and 

MMD, usually yield fewer flop values. The flop is a measure of the factorization time. 

Therefore, the performance of matrix ordering programs in terms of minimization of the 

factorization time is expected to be similar to that for flop. The performance profiles for 

the PARDISO factorization times are shown in Figure 6.13. As expected, the 

performance profiles for factorization times are qualitatively similar to the performance 

profiles for the flop. The performance profiles for SES factorization times are similar to 

those for PARDISO.  
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Figure 6.12: Performance profile, p(α): Flop for alternative matrix ordering 

programs, 166 2D test problems with regular geometries 

 

Figure 6.13: Performance profile, p(α): PARDISO factorization time for 

alternative matrix ordering programs, 166 2D test problems with regular geometries 
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We also perform numerical experiments on test problems with irregular 

geometries. Figure 6.14 shows the performance profile for the PARDISO factorization 

times. As shown in Figure 6.14, AMF and MMD orderings usually give the best 

factorization times for 2D models with irregular geometries.  

Although AMF gives favorable factorization times for both regular and irregular 

geometries, it is known that it is the most time-consuming local ordering. We evaluate the 

overall execution time for factorization with alternative matrix ordering programs. Figure 

6.15 and Figure 6.16 show the performance profiles for overall execution times for the 

2D test problems with regular and irregular geometries respectively. As shown in Figure 

6.15, AMF produces favorable overall execution times for 2D test problems with regular 

geometries. As shown in Figure 6.16, the performance profiles for overall execution 

times for AMF and MMD are similar for 2D models with regular geometries. Both AMF 

and MMD provide favorable overall execution times compared to other matrix ordering 

programs.  

 

Figure 6.14: Performance profile, p(α): PARDISO factorization time for 

alternative matrix ordering programs, 42 2D test problems with irregular geometries 
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Figure 6.15: Performance profile, p(α): PARDISO factorization time plus matrix 

ordering time for alternative matrix ordering programs, 166 2D test problems with 

regular geometries 

 

 

Figure 6.16: Performance profile, p(α): PARDISO factorization time plus matrix 

ordering time for alternative matrix ordering programs, 42 2D test problems with 

irregular geometries 
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Finally, we show the matrix ordering execution times for 2D test problems with 

regular geometries. Figure 6.17 shows the ordering times given in terms of the 

factorization times. The factorization times are for the pivot-ordering found by the 

corresponding matrix ordering program. As shown in Figure 6.17, the local orderings 

take significantly less time compared to the hybrid matrix ordering programs. AMF takes 

the longest execution time among local ordering programs. However, AMF execution 

time is still significantly smaller than the execution time of the hybrid matrix ordering 

programs. AMD was expected to give matrix ordering times better than MMD 

counterpart since AMD is computationally cheaper [63]. Contrary to expectations, the 

execution time of AMD is not better than the execution time of MMD. We believe that 

this is due to the use of supervariable graph. The use of supervariable graph can 

significantly reduce MMD execution times [129], but it does not have a significant 

impact on the execution time of AMD ordering [63].  

As shown in Figure 6.17, the ordering time for hybrid matrix ordering programs, 

HAMF and HMETIS, may be larger than the factorization times for 2D test problems. In 

addition, HAMF generally takes more time than HMETIS. HAMF performs partitioning 

for two alternative random node permutations in order to produce higher quality pivot 

orderings. This yields pivot-orderings with fewer non-zeros but at a cost of increased 

execution time.  

In Figure 6.17, Models 1-83 are for models with 2D quadrilateral elements and 

Models 84-166 are models with 2D frame elements. For the models with each element 

type, the model sizes usually get larger as the model number increases. As shown in 

Figure 6.17, the ratio of ordering time to factorization time reduces as the model size 

increases. In other words, the factorization time dominates the overall execution time of 

the solver for large 2D test problems.  
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Figure 6.17: Ordering times in terms of factorization times for 2D test problems 

with regular geometries.  

In summary, the local ordering AMF produces favorable pivot orderings with 

respect to non-zero and flop in reasonable times for 2D test problems. AMF can also be 

used to minimize the matrix ordering plus factorization times of 2D problems. For 2D 

test problems, the hybrid ordering programs, HAMF and HMETIS, do not offer an 

advantage over AMF despite their higher execution times.  

6.1.3.2 3D Models 

AMF proved to be efficient for 2D test problems. Among all local orderings, it 

yielded the most favorable flop and non-zero for the 2D test problems. However, for 3D 

test problems, flop and non-zero for AMF may be significantly higher than the ones for 

the hybrid ordering programs HAMF and HMETIS. The relative performance of the 

matrix ordering programs depends on the average node connectivity of the 3D problems. 

A similar metric, average number of elements at the columns of the coefficient matrix, is 

used to choose between a local ordering and hybrid ordering in the study of Duff and 
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Scott [58]. In our test suite, the FE models with frame elements have a lower average 

node connectivity value compared to the models with solid elements.  

For 3D solid models with regular geometries, Figure 6.18 shows the performance 

profile for non-zero for three matrix ordering programs that produces favorable pivot-

orderings for 3D test problems. As shown in Figure 6.18, HAMF gives the smallest non-

zero for about 85% of the 3D solid models with uniform geometries. However, the 

performance profile for HMETIS is similar to HAMF. As shown in Figure 6.18, AMF 

yields significantly worse non-zero values for a majority of the 3D solid models with 

regular geometries. 

 

Figure 6.18: Performance profile, p(α): Non-zero for alternative matrix ordering 

programs, 252 3D solid models with regular geometries.  

Similarly, Figure 6.19 shows the performance profiles for the factorization time 

for the 3D solid models with regular geometries. Although HAMF gives the best 

factorization times for the majority of the test problems, the performance of HMETIS is 
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than 2 times the best factorization time for about 40% of the 3D solid test problems with 

regular geometries.  

 

Figure 6.19: Performance profile, p(α): PARDISO factorization time for 

alternative matrix ordering programs, 252 3D solid models with regular geometries.  

Next, we show the performance of the three matrix ordering programs for the 3D 

solid test problems with irregular geometries. Figure 6.20 and Figure 6.21 show the 

performance profiles for non-zero and PARDISO factorization time respectively. Similar 

to the test problems with regular geometries, HAMF gives the best non-zero and 

factorization times for the majority of the 3D solid models with irregular geometries. The 

performance of HMETIS is slightly worse than the HAMF as shown in Figure 6.20 and 

Figure 6.21.  
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and numerical factorization. Figure 6.22 shows the performance profile for the overall 

execution time for 3D solid models with irregular geometries. As shown in Figure 6.22, 

the overall time for HMETIS is similar to overall time for HAMF although HAMF 

yielded better factorization times for the test problems used for Figure 6.22.  

 

 

Figure 6.20: Performance profile, p(α): Non-zero for alternative matrix ordering 

programs, 22 3D solid models with irregular geometries. 
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Figure 6.21: Performance profile, p(α): PARDISO factorization time for 

alternative matrix ordering programs, 22 3D solid models with irregular geometries. 

 

Figure 6.22: Performance profile, p(α): PARDISO factorization time plus matrix 

ordering time for alternative matrix ordering programs, 22 3D solid models with irregular 

geometries. 
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For 3D frame models, the relative performance of the three matrix ordering 

programs, AMF, HAMF, and HMETIS, is different than the relative performance for the 

3D solid models. For 3D frame models with regular geometries, Figure 6.23 and Figure 

6.24 show the performance profiles for the non-zero and PARDISO factorization times 

respectively. As shown in these figures, for majority of the models with 3D frame 

elements, AMF gives the most favorable pivot-orderings with respect to non-zero and 

factorization time. For the remaining 3D frame models, HMETIS gives the most 

favorable pivot orderings. As shown in Figure 6.24, AMF and HMETIS may yield 2 

times the best factorization time.  

 

 

Figure 6.23: Performance profile, p(α): Non-zero for alternative matrix ordering 

programs, 22 3D frame models with irregular geometries. 
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Figure 6.24: Performance profile, p(α): PARDISO factorization time for 

alternative matrix ordering programs, 22 3D frame models with irregular geometries. 

The relative performance of AMF and HMETIS depends on the average node 

adjacency of the models. Table 6.1 shows the performance of AMF and HMETIS for 

regular models having average node adjacency below a certain value. The first column of 

Table 6.1 gives the limit for average node connectivity. Each row of Table 6.1 gives the 

performance of AMF and HMETIS for models having average node adjacencies less than 

the value given in the first column of Table 6.1. As shown in Table 6.1, as the limit for 

average node connectivity increases, the percentage of problems for which AMF gives 

the best results decreases. For example, there are 10 regular models for which the average 

node connectivity is below 5.4 and AMF ordering yields best factorization for all of these 

models. For these models, HMETIS may yield a factorization time which is 1.62× the 

factorization time for AMF. If the limit for the average node adjacency is taken as 5.5, 

AMF gives the best results for 79.49% of such models. This percentage further decreases 

as the average node adjacency of the models increases.   
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Maximum 
Average 

Node 
Adjacency 

Number 
of 

Models 

% of Problems 
AMF Gives 

the Best 
Factorization 

Time 

Worst Case 
Factorization 

Time for 
AMF 

% of Problems 
HMETIS 

Gives the Best 
Factorization 

Time 

Worst Case 
Factorization 

Time for 
HMETIS 

5.4 10 100% 1×best 0% 1.62×best 
5.45 21 80.95% 1.17×best 19.05% 1.62×best 
5.5 39 79.49% 1.41×best 20.51% 1.62×best 
5.55 59 81.36% 1.41×best 18.64% 1.62×best 
5.6 88 78.41% 1.48×best 20.45% 1.62×best 
5.65 118 77.97% 1.48×best 21.19% 2.05×best 
5.7 145 74.48% 1.48×best 24.83% 2.05×best 
5.75 182 70.88% 1.61×best 28.57% 2.05×best 
5.8 225 63.56% 2.04×best 36% 2.05×best 
5.85 252 57.14% 2.04×best 42.46% 2.05×best 

Table 6.1: Performance of matrix ordering programs AMF and HMETIS for 3D 

frame models with different average node adjacencies  

 

For irregular geometries, the relative performance of three matrix ordering 

programs, AMF, METIS, and HAMF, is similar to the relative performance for the 

models with regular geometries. For three matrix ordering programs, Figure 6.25 and 

Figure 6.26 show the performance profiles for non-zeros and PARDISO factorization 

times respectively. Similar to regular geometries, AMF ordering gives favorable results 

for irregular geometries with low average node adjacencies.  

Finally, Figure 6.27 shows the execution times for the three matrix ordering 

programs. Here, the ordering times are given in terms of the factorization times. As 

shown in Figure 6.27, the ordering times for hybrid orderings, HAMF and HMETIS, may 

be comparable to the corresponding factorization times for smaller 3D models. As we 

increase the model size (the model size typically increases between the model numbers 

shown on the x-axis of Figure 6.27), the ratio of ordering times to factorization times 

decreases. Since for large 3D problems, the ordering times are significantly smaller than 

the factorization times, trying alternative matrix ordering programs has the potential to 
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minimize the factorization times with a relatively small cost of additional matrix ordering 

times.  

In summary, the hybrid ordering programs, HAMF and HMETIS, yield favorable 

factorization times for 3D models with solid elements. Although the HAMF yields the 

best factorization times for majority of the 3D solid models, the factorization times for 

HMETIS are similar to the ones for HAMF. AMF cannot compete with the hybrid 

ordering programs for 3D models with solid elements. However, AMF may yield best 

non-zero and factorization times for 3D models with frame elements, especially for the 

models with small average node adjacencies. For the remaining 3D frame models, 

HMETIS usually yields the best factorization times. The matrix ordering times for large 

3D models are significantly smaller than the factorization times of these models. 

Therefore, it may be desirable to execute several matrix ordering programs in order to 

minimize the factorization times.  

 

Figure 6.25: Performance profile, p(α): Non-zero for alternative matrix ordering 

programs, 22 3D frame models with irregular geometries.  
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Figure 6.26: Performance profile, p(α): PARDISO factorization time for 

alternative matrix ordering programs, 22 3D frame models with irregular geometries.  

 

Figure 6.27: Matrix ordering time given in terms of the factorization time.  
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6.1.3.3 Transition between 2D and 3D 

The numerical experiments show that AMF ordering performs well for 2D 

models. However, it may not yield favorable results for 3D models, especially for the 

ones with large average node adjacency. We perform numerical experiments on several 

test problems to determine the performance of AMF for 3D models with 2D-like 

geometries, in other words, 3D models with a small number of elements in the third 

dimension. We do a preliminary study to determine the threshold for number of elements 

in the third dimension after which the hybrid ordering HMETIS becomes the better 

choice. Figure 6.28 and Figure 6.29 show some performance parameters for AMF 

ordering normalized according to the performance parameters for HMETIS. Figure 6.28 

is for models with quadrilateral and solid elements. The number of elements in x and z 

directions are the same for all models and only the number of elements in y direction 

changes. As shown in Figure 6.28, the relative AMF performance is similar for models 

with up to 6 elements in y direction (we consider s100×4×200 as an exception). For 

s100×6×200, AMF factorization time and flop are significantly worse than HMETIS 

counterparts. Therefore, we consider 6 elements in third dimension as a threshold value 

after which the performance of AMF becomes worse than HMETIS. Figure 6.29 shows 

the relative performance of AMF for 2D and 3D frame models. Similar to the results 

given in Figure 6.28, the relative performance of AMF decreases as the number of 

elements in y direction approaches 6.  

The numerical experiments in this section illustrate that the AMF has the potential 

to reduce the factorization time and non-zero for 3D models with 2D-like geometries. 

More numerical experiments are required to provide more accurate threshold values in 

order to determine 2D-like models for which the use of AMF may be advantageous. The 

extension of AMF efficiency to 2D-like geometries is a desirable feature since AMF has 

significantly smaller execution times compared to the hybrid matrix ordering programs. 
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The execution time of the hybrid ordering programs is significant compared to the 

factorization time for 2D and 2D-like models.  

 

 

 

Figure 6.28: Performance parameters for AMF normalized according to the 

results of HMETIS for 2D and 2D-Like models with quadrilateral and solid elements 

respectively 
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Figure 6.29: Performance parameters of AMF normalized according to the results 

of HMETIS for 2D and 2D-Like models with 2D frame and 3D frame elements 

respectively 

6.1.4 Matrix Ordering for Parallel Factorization 

As discussed in the previous sections, the local ordering AMF may yield 

favorable serial factorization times for certain models. However, the local orderings 

typically produce long and unbalanced assembly trees, which reduce the amount of tree-

level parallelism that can be exploited for parallel factorization [74, 77, 136]. Our 

mapping algorithm automatically chooses between the tree level parallelism and matrix 

level parallelism. Even though the assembly tree corresponding to a local ordering is not 

suitable for tree-level parallelism, current SMP architectures may allow obtaining 

satisfactory parallel performance by primarily exploiting the matrix level parallelism. 
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Therefore, a pivot-ordering with a local ordering may still give a better multithreaded 

factorization time compared to the hybrid ordering.  

Numerical experiments for serial factorization show that AMF minimizes the 

factorization times for majority of 2D models and HMETIS produces favorable 

factorization times for 3D models. In this section, we investigate whether the relative 

serial factorization time for AMF and HMETIS changes for parallel factorization. Figure 

6.30 shows the ratio of AMF factorization time to HMETIS factorization time for serial 

and parallel factorization with SES solver package. If the ratio is less than one, then the 

factorization for AMF ordering is faster than the factorization with HMETIS ordering. As 

shown in Figure 6.30, the AMF to HMETIS factorization time ratios typically increase 

for the multithreaded factorization. The increase in the factorization time ratios indicates 

that the HMETIS matrix ordering improves the performance of four-thread factorization 

even though it may not be the best choice for the serial factorization. The relative 

performance increase is dramatic for some models such as Models 1, 2, 11, 12, 21, 31, 

and 39. Compared to the serial factorization, the number of models for which AMF gives 

the best factorization times reduces for the multithreaded factorization. For the serial 

factorization, AMF gives the best factorization times for 23 models. On the other hand, 

for the multithreaded factorization, AMF gives the best factorization times for 11 models. 

HMETIS is now the better alternative for the multithreaded factorization of the 12 

models for which the AMF ordering yields better serial factorization times. 

The next question to be answered is whether the matrix ordering program that 

produces better multithreaded factorization times can be predetermined prior to the 

numerical factorization. It is hard to determine which matrix ordering program will 

perform better merely based on the properties of the FE model since the multithreaded 

factorization times depend on the assembly tree structure, which is found after the 

analysis phase. Nevertheless, the parallel factorization time predictions computed in the 

analysis phase can be used to estimate the best pivot-ordering among the results from 
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alternative matrix-ordering programs. Figure 6.31 shows the estimated and actual 

factorization performance of AMF relative to HMETIS for four-thread factorization. As 

shown in Figure 6.31, the relative performance estimates are inaccurate for some models. 

This is mainly due to the inaccuracies in the predicted parallel factorization times and 

further discussed in the subsequent Chapter. Nevertheless, the factorization time 

estimations usually predict which matrix ordering will give the best parallel factorization 

times for the problems in the benchmark suite. Figure 6.32 shows the performance 

profiles for choosing the pivot-ordering among the results of HMETIS and AMF based 

on the serial and parallel estimated factorization times. Figure 6.32 also shows the 

performance profile for the best factorization time, which intersects with the y-axis. As 

shown in Figure 6.32, the strategy that chooses the pivot-orderings based on the 

estimated parallel factorization times usually gives the best factorization times. 

Therefore, multithreaded factorization time predictions in the analysis phase can be used 

to choose among alternative pivot-orderings with different matrix ordering programs. The 

performance profiles also show that choosing the pivot-ordering based on the estimated 

serial factorization times may lead to multithreaded factorization times up to 1.9 times the 

best factorization time.  
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Figure 6.30: AMF factorization times relative to HMETIS factorization times for 

serial and multithreaded numerical factorization, benchmark suite of 40 test problems.  
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Figure 6.31: Estimated four-thread factorization times for AMF relative to the 

four-thread factorization times for METIS, benchmark suite of 40 test problems.  
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Figure 6.32: Multithreaded factorization performance profiles of alternative 

strategies for choosing the best pivot-ordering among the results of AMF and HMETIS, 

benchmark suite of 40 test problems.  

6.2 Execution Time of Analysis Phase 

The execution time of the PARDISO analysis phase is compared with the 

execution time for the PARDISO factorization. The analysis phase in PARDISO also 

includes time required for memory allocation for the factorization phase. However, the 

memory allocation time is insignificant compared to the total analysis time. Figure 6.33 

shows the analysis times normalized according to the factorization times for 670 test 

problems with regular geometries (see Section 2.6 for a detailed description of the test 

problems with regular geometries). The analysis time can be larger than the factorization 

time for test problems which have small factorization time (smaller than 0.25 sec). The 

analysis time is usually a fraction of the factorization time for the test problems having 

factorization times larger than 5.0 sec.  
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Figure 6.33: Analysis time divided by the factorization time for PARDISO.  
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the relationship between the normalized analysis time and number of dofs for 2D test 

problems. As shown Figure 6.34, as the number of dofs increases the relative execution 

time of the analysis phase decreases. For 2D problems having less than 30,000 dofs, the 

analysis phase takes more than 20% of the time required for the factorization. Figure 6.35 

shows the same plot as Figure 6.34 for 3D test problems. As shown in Figure 6.35, the 

analysis time is less than 20% of the factorization time for the 3D test problems having 
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Figure 6.34: Relationship between the number of dofs and relative PARDISO 

analysis time for 2D test problems with regular geometries.  

 

Figure 6.35: Relationship between the number of dofs and relative PARDISO 

analysis time for 3D test problems with regular geometries. 
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6.3 Optimal Coarsening 

The optimal amount of coarsening depends on the dimensionality of the model. 

For 2D models, multiple nodes can be eliminated at each super-element formed by 

merging adjacent elements in the original model. On the other hand, for 3D models, the 

non-zero and flop increase dramatically if we perform an aggressive coarsening which 

eliminates several nodes at each super-element. The parameters nodeco and eleco control 

the amount of coarsening for element based and node based coarsening respectively. 

Numerical experiments are performed with different nodeco and eleco values to evaluate 

the efficiency of the coarsening schemes for the HMETIS and AMF matrix ordering 

programs.  

For 2D problems in the benchmark suite of 40 test problems, Figure 6.36 shows 

the performance profiles for factorization with different nodeco values. This figure shows 

the performance profiles for nodeco = 1, 4, 8, and 9. These are the nodeco values that 

may yield the best factorization times. The pivot-ordering is found by HMETIS for the 

results shown in Figure 6.36. As shown in Figure 6.36, nodeco=1 gives best performance 

profile for the factorization with HMETIS orderings. The performance profiles for 

nodeco = 1, 8, and 9 shown in Figure 6.36 are similar. The use of original mesh may 

yield factorization times 1.6 times the best factorization time as shown in Figure 6.36. 

This worst case factorization time is for the test problem q500×1500. For q500×1500, the 

use of original mesh yield flop values almost 2 times the flop values for the node based 

coarsening with nodeco=1. Consequently, the factorization time for the original mesh is 

significantly larger than the factorization time for the coarsened mesh.  

The impact of coarsening on HMETIS matrix ordering times is shown Figure 6.37 

for 2D test problems. As shown in Figure 6.37, for coarsening schemes with nodeco = 8 

and 9, HMETIS takes significantly smaller time compared to the execution time for the 

original mesh. The coarsening scheme with nodeco=8 makes HMETIS run about 3 times 
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faster for half of the 2D problems in the benchmark suite. The less aggressive coarsening 

schemes such as nodeco=1 and nodeco=2 also reduce the HMETIS ordering times.  

The element based coarsening also improves the factorization times for 2D 

problems processed with HMETIS. For the element based coarsening, improvements in 

the factorization times are similar to the improvements for the node based coarsening. For 

2D problems, the use of eleco=1 and eleco=4 usually yields favorable factorization times 

for the HMETIS ordering.  

 

Figure 6.36: For 2D problems, performance profiles for factorization times with 

alternative nodeco values, HMETIS ordering. 2D models in the benchmark suite of 40 

test problems are used.  
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Figure 6.37: For 2D problems, performance profile for matrix ordering times with 

alternative nodeco values, HMETIS ordering. 2D models in the benchmark suite of 40 

test problems are used. 

The effect of coarsening for the local ordering AMF is also investigated for 2D 

problems since AMF ordering usually yields favorable serial factorization times for 2D 

problems. Figure 6.38 shows the factorization times for alternative nodeco values for 

AMF matrix ordering. As shown in Figure 6.38, nodeco=1 provides favorable 

factorization times for AMF matrix ordering. The factorization times for nodeco=4, 8, 

and 9 are significantly worse than the alternatives, nodeco=0 and 1, as shown in Figure 

6.38. For 2D test problems, Figure 6.39 compares the AMF matrix ordering times for 

different nodeco values. As shown in Figure 6.39, coarsening scheme with nodeco=1 can 

reduce the matrix ordering times significantly. For 2D problems, the element based 

coarsening usually gives factorization times worse than the factorization times for the 

original mesh for the matrix ordering program AMF.  
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Figure 6.38: For 2D problems, performance profile for factorization times with 

alternative nodeco values, AMF ordering. 2D models in the benchmark suite of 40 test 

problems are used. 
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Figure 6.39: For 2D problems, performance profile for matrix ordering times with 

alternative nodeco values, AMF ordering. 2D models in the benchmark suite of 40 test 

problems are used. 
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times significantly for the AMF matrix ordering.  

Next, we investigate the factorization and matrix ordering times for coarsening 

schemes with alternative nodeco and eleco values for 3D problems. Figure 6.40 shows 

the performance profile for factorization times for pivot-ordering found with the 

HMETIS matrix ordering program. As shown in Figure 6.40, nodeco=1 and original 
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mesh yields favorable factorization times. More aggressive coarsening schemes usually 

increases the factorization times. As shown in Figure 6.40, even the element based 

coarsening with eleco=1 increases the factorization times for ordering 3D problems with 

HMETIS matrix ordering. Figure 6.41 shows the matrix ordering times for alternative 

nodeco and eleco values. As shown in Figure 6.41, the node based coarsening scheme 

with nodeco=1 do not reduce the matrix ordering times significantly for 3D problems 

ordered with the HMETIS matrix ordering. Element based coarsening scheme may 

reduce the factorization times as shown in Figure 6.41. However, as shown in Figure 

6.40, the factorization performance is typically worse than the one for the original mesh 

for the element based coarsening.  

 

 

Figure 6.40: For 3D problems, performance profile for factorization times with 

alternative nodeco and eleco values, HMETIS ordering. 3D models in the benchmark 

suite of 40 test problems are used. 
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Figure 6.41: For 3D problems, performance profile for matrix ordering times with 

alternative nodeco and eleco values, HMETIS ordering. 3D models in the benchmark 

suite of 40 test problems are used. 
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crucial as it is for 2D models since the matrix ordering times are typically smaller than 

the numerical factorization times for 3D models. 

The performance profiles for coarsening schemes show that there is no single 

value for eleco or nodeco parameters that gives the best factorization times. The 

coarsening schemes with different nodeco or eleco values minimize the factorization 

times for different FE models. We can use this property to construct a matrix ordering 

strategy to minimize the factorization time for a FE model. In this strategy, for an input 

FE model, matrix ordering program is executed for alternative coarsened meshes and the 

pivot-ordering that is expected to yield the best factorization performance is used for the 

numerical factorization. Next, we illustrate the performance of such a strategy that 

chooses the best pivot-ordering based on the flop values calculated for alternative 

coarsened meshes.  

For the AMF matrix ordering, Figure 6.42 shows factorization time performance 

profile for the strategy that chooses the best pivot-ordering and performance profile for 

using the original mesh. As shown in Figure 6.42, for the AMF ordering, the factorization 

times can be improved by a factor of 2.7 by choosing the pivot-ordering that gives the 

minimum flop. The dramatic improvements in the factorization times shown in Figure 

6.42 are mainly for the 3D test problems.  

For the HMETIS matrix ordering, Figure 6.43 shows factorization time 

performance profile for the strategy that chooses the best pivot-ordering and performance 

profile for using the original mesh. As shown in Figure 6.43, choosing the best pivot-

ordering strategy can improve the factorization times for about 60% of the test problems. 

The reductions in factorization times are modest except from a single test problem for 

which the factorization becomes 1.6 times faster than the use of original mesh for 

HMETIS. For HMETIS ordering, trying more alternatives for nodeco and eleco 

parameters offers little improvement in the factorization times, especially for 3D 

problems.  
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Figure 6.42: Performance profile for factorization time for choosing the best 

pivot-ordering among coarsened and original meshes. Pivot-orderings are found with 

AMF. The results are for benchmark suite of 40 test problems. 

 

Figure 6.43: Performance profile for factorization time for choosing the best 

pivot-ordering among coarsened and original meshes. Pivot-orderings are found with 

HMETIS. The results are for benchmark suite of 40 test problems. 
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6.4 Optimal Node Amalgamation  

The optimal value for smin is investigated in order to minimize the factorization 

time. See Section 6.4 for the description of the node amalgamation parameter, smin. For 

the results presented in this section, node blocking is applied for the node amalgamation 

parameter blkmin is set to 50.  

Figure 6.44 shows the performance profile for the factorization times for various 

smin values. In Figure 6.44, the performance profile for smin=0 represents factorization 

without node amalgamation. Figure 6.44 shows that using smin=25 gives the most 

favorable factorization times. The factorization performance slightly degrades for smin 

values larger than 25. However, the performance profiles are similar for smin values 

larger than 10 as shown in Figure 6.44. As shown in Figure 6.44, the factorization times 

without node amalgamation may be larger than 1.6 times the factorization times with an 

optimal node amalgamation.  

Figure 6.45 shows the ratio of factorization times with and without node 

amalgamation. Figure 6.46 shows the ratio of update operations to factorization 

operations for multifrontal factorization with and without node amalgamation. As shown 

in Figure 6.45 and Figure 6.46, the node amalgamation is especially useful for 2D 

problems for which the ratio of update operations to factorization operations are large. 

The ratio is large especially for smaller 2D problems. As this ratio decreases, the 

performance gains due to node amalgamation become less significant. Figure 6.46 clearly 

demonstrates the effect of node amalgamation for the problems in the benchmark suite. It 

increases the number of floating point operations performed for each update matrix 

assembly operation. In a way, it improves the numerical factorization performance by 

increasing computations per memory access ratio. As illustrated previously, a high value 

of computations per memory access is desired for the modern processors with memory 

hierarchies. As shown in Figure 6.45, compared to no node amalgamation, the node 



200 
 

amalgamation never increases factorization times for the test problems in the benchmark 

suite.  

 

 

Figure 6.44: For various smin values, performance profile for the factorization 

time, benchmark suite of 40 test problems.  
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Figure 6.45: The factorization times for smin=0 given relative to the factorization 

times for smin=25, benchmark suite of 40 test problems.  
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Figure 6.46: Ratio of update operations to factorization operations for smin=0 and 

smin=25, benchmark suite of 40 test problems.  
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factorization times for smaller 2D test problems with small multithreaded factorization 

times. The multithreaded factorization times varies significantly from a test run to 

another for small 2D test problems since the execution time of multithreaded BLAS 

kernels varies greatly for the small frontal matrices in the small test problems. In 

addition, the speed of multithreaded BLAS3 kernels increase as we increase the frontal 

matrix sizes. However, for significantly large 2D problems, explicit graph partitioning 

almost always increases the four-thread factorization times. As shown in Figure 6.48, 

explicit graph partitioning increases the multithreaded factorization times for all 3D test 

problems (Models 21 to 40).  

 

 

Figure 6.47: Performance profile p(α): Factorization flop for HMETIS ordering 

with and without graph partitioning.  
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Figure 6.48: Normalized four-thread factorization time for HMETIS ordering with 

and without graph partitioning.  
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In this section, the performance of the factorization and analysis phase is 

investigated for different blkmin values. Figure 6.49 shows the normalized factorization 

times for different blkmin values. Here, blkmin=0 means that node blocking algorithm is 

executed for all tree nodes and blkmin=∞ means that node blocking algorithm is never 

executed for any tree nodes. As shown in Figure 6.49, blkmin=0 usually gives the best 

factorization times. Figure 6.50 shows the performance profiles for the factorization 

times. Figure 6.50 also shows that applying node blocking to all tree nodes produces the 

best factorization times for most of the test problems. As shown in Figure 6.49 and 

Figure 6.50, turning off the node blocking (blkmin = ∞) may yield factorization times 

about 25% longer than the factorization times with node blocking for all tree nodes. 

Figure 6.49 shows that the node blocking reduces the factorization times for both 2D and 

3D problems.  

 

Figure 6.49: Normalized factorization time for different blkmin values, 

benchmark suite of 40 test problems. 
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Figure 6.50: Performance profile for the factorization times for different blkmin 

values, benchmark suite of 40 test problems. 

Normalized total time spent in analysis and numerical factorization phases is 
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significantly reduces the overall performance for 2D problems (models 1 to 20). This is 

due to the fact that execution time for analysis phase is comparable with the factorization 
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3D problems. Figure 6.52 shows the performance profiles for analysis phase execution 

time plus factorization time. As shown in Figure 6.52, the use of blkmin=150 gives the 

best overall execution time for the current implementation of the analysis phase of the 

SES solver package. This value may change if we implement a more efficient analysis 

phase, which was not the main focus of this study. The performance profiles for using 

blkmin= 50, 100, 200, and 250 is similar to the one for using blkmin = 150. Therefore, 

blkmin = 50 can be used if the performance of the factorization phase is the main 

emphasis.  
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Figure 6.51: Normalized factorization plus analysis times for different blkmin 

values, benchmark suite of 40 test problems. 

 

Figure 6.52: Performance profile for the factorization plus analysis times for 

different blkmin values, benchmark suite of 40 test problems. 
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6.7 Discussion of Results 

The graph compression usually increased the flop for the pivot-orderings found 

by HMETIS. Consequently, the factorization times usually increased if a compressed 

graph is used with HMETIS. Nevertheless, the graph compression reduced the matrix 

ordering time. Therefore, it may reduce the overall execution time for 2D problems with 

significant HMETIS times relative to the factorization times. However, the local ordering 

AMF usually yielded the most favorable serial factorization times for 2D test problems. 

Moreover, for large test problems, ordering times were insignificant compared to the 

factorization times. Therefore, the graph compression can be avoided without any 

significant increase in the matrix ordering times for large 3D FE models.  

The stopping criteria for nested dissections, vertnum, did not have a major effect 

on the factorization times. Therefore, the default value of vertnum=240, can be used for 

the hybrid matrix ordering program in the SCOTCH library.  

For the node amalgamation algorithm discussed in Section 4.2, the amalgamation 

parameter smin=25 usually produced the most favorable factorization times. The node 

amalgamation improved the factorization performance of the 2D problems and small 3D 

problems for which ratio of number of update operations to flop is large. For the 

remaining 3D problems, the factorization time improvements were limited. The 

application of the node amalgamation within the SCOTCH library typically increased the 

factorization times compared to the explicit node amalgamation given in Section 4.2. 

For the local matrix ordering programs, AMF, AMD, and MMD, initial 

numbering of the nodes based on the coordinate information proved to minimize the non-

zero and flop. The improvements were significant for the matrix ordering programs AMF 

and MMD. For the hybrid matrix ordering programs, there was no single initial node 

numbering that consistently yields favorable non-zero or flop. Nevertheless, the non-zero 

and flop can be minimized by trying alternative random node permutations for the hybrid 

matrix ordering programs.  
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Compared to five matrix ordering programs, AMF usually yielded favorable 

factorization times for 2D test problems. It also yielded favorable factorization times for 

3D test problems with 2D-like geometries and 3D test problems for which nodes are 

connected to a small number of adjacent nodes. For the remaining 3D test problems, 

HMETIS usually yielded favorable factorization times. Furthermore, HMETIS usually 

gave the pivot orderings at half time of other hybrid matrix ordering program, HAMF.  

The time spent in the hybrid matrix ordering programs was comparable to the 

factorization times for smaller 2D test problems. On the other hand, the factorization time 

usually dominated the total execution time for large 2D FE models and for most of the 

3D FE models. Therefore, it is crucial to minimize the factorization time for large 2D FE 

models and for 3D models. To minimize the factorization times, alternative matrix 

ordering strategies can be executed and the pivot-ordering yielding the best estimated 

factorization time can be used for the factorization and triangular solution.  

Numerical experiments showed that the ratio of the analysis time to the 

factorization time decreases as the number of dofs in a FE model increases. For 3D FE 

models having more than 30,000 dofs, the analysis phase took less than 10% of the 

factorization time for the PARDISO solver.   

The coarsening scheme proved to reduce the matrix ordering times. Furthermore, 

using a coarser scheme in the matrix ordering programs yielded favorable factorization 

times for the majority of the test problems. The reduction in factorization times were 

illustrated for a scheme that chooses the pivot-ordering among the results of the matrix 

ordering programs executed for the original and coarsened meshes.  

It was shown that performing the node blocking selectively reduces the analysis 

time but increases the factorization time. The node blocking cut-off value of 50 

(blkmin=50) gave satisfactory overall execution time without a significant decrease in the 

factorization times.   
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CHAPTER 7 

SOLVER PERFORMANCE  

Numerical experiments are performed to demonstrate the performance of the SES 

solver package. The performance of the SES solver package is compared with the 

PARDISO solver package. PARDISO is a high performance sparse direct solver for 

shared memory processors. Gould et al. [111] illustrated PARDISO’s efficiency for serial 

direct solution of a symmetric system of equations. We compare the numerical 

factorization times with the estimated factorization times and PARDISO factorization 

times. The efficiency of the triangular solution is also illustrated. Finally, the 

performance of an out-of-core version of the solver is demonstrated for eight very large 

test problems.  

7.1 In-core Solver 

In the multifrontal method, the factors can be written to the disk as soon as they 

are computed, which reduces the memory footprint for the numerical factorization and 

triangular solution. However, this typically degrades the performance. The performance 

of the SES solver is first evaluated keeping the factors in the main memory.   

7.1.1 Serial Solver 

The single thread performance of the multifrontal solver is evaluated for the 

benchmark suite of 40 test problems. Figure 7.1 shows the factorization speed for the 

PARDISO and SES solver packages. In order to make this comparison as fair as possible, 

HMETIS ordering is used for both solver packages which is the default ordering in 

PARDISO. The SES solver is provided with a pivot-ordering found by HMETIS ordering 

with the graph compression. As shown in Figure 7.1, the factorization speeds of the SES 

and PARDISO solvers greatly depend on the test problem. The factorization speed is 



211 
 

usually high for large problems. The frontal matrices are large for large problems and the 

BLAS3 kernels run faster for larger frontal matrices as shown in Section 4.4.1. The 

factorization speeds are also influenced by the number of operations required for the 

update matrices per each arithmetic operation required for the factorization. As this ratio 

increases, the speed of factorization decreases since the update matrix copy and assembly 

operations performed at slower speeds compared to the partial factorization. This is 

mainly due to the low speeds of memory copy operations relative to the BLAS3 speeds 

for partial factorization. The ratios of update matrix operations to factorization operations 

have been previously shown in Figure 6.46 in the previous Chapter. The problems with a 

large ratio of update matrix operations to factorization operations in Figure 6.46 usually 

have smaller factorization speeds in Figure 7.1.  

As shown in Figure 7.1, the factorization speeds for PARDISO and SES are 

similar even though two solver packages implement different factorization schemes. 

Namely, PARDISO implements a mixture of left and right looking schemes while SES 

implements a multifrontal method. The use of a different factorization scheme does not 

make a significant difference on the speeds of the factorization. This finding is similar to 

the findings of Gould et al. [111]. Figure 7.1 also shows the upper bound for the speed of 

multifrontal factorization. The upper bound is found by executing the BLAS3 kernels for 

the frontal matrices corresponding to the assembly trees built for the test problems. The 

overhead of handling sparse data structures (such as assembly of update matrices) and 

assembly of the FE matrices are neglected for finding the upper bounds. As shown in 

Figure 7.1, the factorization speeds qualitatively follow the upper bounds. Therefore, the 

low factorization speeds for smaller test problems is partly due to the low speeds of 

BLAS3 kernels on small frontal matrices. The factorization speed approaches the upper 

bound for large problems where the ratio of factorization operations to memory accesses 

increases.  
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As the number of RHS vectors increases, the triangular solution speed also 

increases due to the increase in the size of the frontal matrices for which the BLAS3 

operations are performed. Figure 7.2 shows the speed of the solution phase for 100 RHS 

vectors. Compared to the factorization speed, the speed variations between the test 

problems are smaller for the solution with 100 RHS vectors. Figure 7.2 also shows that 

the back substitution is slightly faster than the forward elimination. The relative 

performance of forward elimination and back substitution is similar for the PARDISO 

solver package. Figure 7.2 further shows the upper bound for the speed of forward 

elimination and back substitution. The performance difference between forward 

elimination and back substitution is also visible in the upper bound plots of the triangular 

solution speeds for the 3D problems (Models 21 to 40).  
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Figure 7.1: Speed of single thread factorization for SES and PARDISO solver. 

Pivot-orderings are found with HMETIS. Benchmark suite of 40 test problems.  

 

Figure 7.2: For SES solver package, speed of single thread solution for 100 RHS 

vectors. Pivot-orderings are found with HMETIS. Benchmark suite of 40 test problems. 
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Figure 7.3 shows the performance profiles for the serial factorization times with 

SES and PARDISO solver packages. As shown in Figure 7.3, SES gives the best 

factorization times for 80% of the test problems. The factorization times for SES solver 

are within the 1.2 times the factorization times with the PARDISO package except from 

one problem out of 40 test problems in the benchmark suite. PARDISO gives a 

significantly better factorization time for the test problem f30×30×30 (Model No. 38). 

For this problem, the PARDISO factorization flop is significantly smaller than the SES 

factorization flop. The number of arithmetic operations required for factorization (flop) 

mainly determines the factorization times since the speed of factorization is similar for 

both solvers as shown in Figure 7.2. Namely, PARDISO requires 383.41 GFlop for 

numerical factorization while SES requires 540.23 GFlop using HMETIS with graph 

compression and 438.76 GFlop using HMETIS without graph compression.  

 

Figure 7.3: Performance profile for serial factorization times. Pivot-ordering is 

found with HMETIS. Benchmark suite of 40 test problems. 
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The comparison of the factorization times is not a fair performance assessment 

since SES interleaves the stiffness matrix assembly operations with the numerical 

factorization steps. Therefore, the factorization times already include the time required 

for the assembly of the FE stiffness matrices for the SES solver package. For a fair 

comparison, the overall time required for stiffness matrix assembly and factorization is 

used to evaluate the performance of the numerical factorization phases of the solver 

packages. Figure 7.4 shows the performance of the numerical factorization plus assembly 

times for the serial execution of the solvers. As shown in Figure 7.4, the performance of 

SES is significantly better than the performance of the PARDISO when the time required 

for the assembly is considered.  

 

 

Figure 7.4: Performance profile for serial factorization plus assembly times. 

Pivot-ordering is found with HMETIS. Benchmark suite of 40 test problems. 
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the triangular solution phase. PARDISO gives triangular solution times that are larger 

than 2 times of the SES triangular solution times for about 50% of the benchmark 

problems.  

For selected test problems, the execution times of the SES and PARDISO solver 

are given in Table 7.1 and Table 7.2 respectively. The execution time of matrix ordering 

program and analysis phase are also shown in the tables.  

 

 

Figure 7.5: Performance profile for serial triangular solution times for 100 RHS 

vectors. Pivot-ordering is found with HMETIS.  

 

Model Name 
Matrix-
Ordering 

Time (sec) 

Analysis 
Time 
(sec) 

Factorization 
Time (sec) 

Triangular 
Solution Time 

(sec) 

Total Time 
(sec) 

q500×500 1.7 0.8 4.7 4.6 11.8 
f500×500 1.3 1.2 9.0 6.6 18.1 

s30×30×30 0.3 0.3 20.0 4.7 25.3 
f30×30×30 0.2 0.3 76.6 10.4 87.5 

Table 7.1: Serial execution time of the different phases of the SES solver  
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Model Name 
Matrix-
Ordering 

Time (sec) 

Analysis 
Time 
(sec) 

Factorization 
Time (sec) 

Triangular 
Solution Time 

(sec) 

Total Time 
(sec) 

q500×500 1.8 1.1 5.5 10.0 18.4 
f500×500 2.1 1.4 8.7 14.9 27.1 

s30×30×30 0.6 0.4 21.6 5.7 28.3 
f30×30×30 0.4 0.6 55.6 10.6 67.2 

Table 7.2: Serial execution time of the different phases of the PARDISO solver 

 

Finally, we evaluate the serial in-core performance of the SES solver package for 

8 large test problems given in Chapter 2. For the SES solver package, the AMF matrix 

ordering is used for 2D test problems. As illustrated in Chapter 6, the AMF ordering 

usually produces pivot orderings with favorable non-zero and flop for 2D test problems. 

Furthermore, its execution time is significantly smaller than the HMETIS matrix ordering 

program. For 3D test problems, the HMETIS matrix ordering is used. Graph compression 

is not applied for HMETIS since this may increase the flop and non-zero for an input 

model (see Chapter 6). For the SES solver package, a strategy is used which minimizes 

the factorization time by selecting the best pivot-ordering among several alternatives. In 

this strategy, node based coarsening is applied to the original FE meshes for the 

nodeco=1 and 2 values. The pivot-ordering that yields the best estimated factorization 

time is chosen among the results of the matrix ordering programs for the original and 

coarsened meshes. This pivot ordering is used for numerical factorization and triangular 

solution. Table 7.3 shows the configurations that produced the pivot-ordering with best 

estimated factorization time for these test problems. As shown in Table 7.3, matrix 

ordering programs executed for the coarsened meshes yielded the best estimated 

factorization times for half of the large test problems. For 2D models (first four models in 

Table 7.3), the AMF ordering yielded estimated factorization times better than the 

HMETIS counterpart. 
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Model 
No./Name 

Preprocessing 
Configuration 

Estimated 
Factorization Time 

1.Q2DL1 nodeco=1 + AMF 15.79 
2.Q2DL2 AMF 19.14 
3.F2DL1 nodeco=2 + AMF 20.36 
4.F2DL2 nodeco=1 + AMF 21.94 
5.S3DL1 HMETIS 190.21 
6.S3DL2 nodeco=1 + HMETIS 151.45 
7.F3DL1 HMETIS 170.59 
8.F3DL2 HMETIS 233.92 

Table 7.3: Preprocessing configuration that produces the best estimated serial 

factorization times for the benchmark suite of 8 large test problems.  

 

Figure 7.6 shows the factorization times for the 8 large test problems normalized 

according to the ‘PARDISO factorization plus stiffness matrix assembly’ times. Figure 

7.6 also shows the PARDISO factorization times without including the time required for 

the assembly of the stiffness matrix. As stated previously, the SES solver package 

interleaves stiffness matrix assembly operations with the numerical factorization 

operations. Therefore, factorization times for SES solver package already include 

stiffness matrix assembly times. As shown in Figure 7.6, factorization with SES 

outperforms factorization with PARDISO for 7 out of 8 large test problems even if the 

assembly time is not included with the PARDISO factorization times. If the assembly 

times are also included, SES outperforms PARDISO for all test problems. Using the 

factorization time minimization strategy, SES can be 1.75 times faster than the PARDISO 

solver package. The speedup of SES is mainly due to smaller flops in the preprocessing 

phase of the SES solver. As stated previously, both solvers run at similar speeds at the 

numerical factorization phase (excluding the speed of assembly operations for 

PARDISO). Therefore, relative serial factorization performance is greatly determined by 

the number of floating point operations required for factorization.  

Figure 7.6 also shows the estimated factorization times for the SES solver 

package. As shown in Figure 7.6, the estimated factorization times closely follows the 
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actual factorization times. Therefore, the performance of the numerical factorization 

meets the expectations for single thread factorization of this set of large test problems.  

 

Figure 7.6: Serial numerical factorization times normalized according to the 

PARDISO numerical factorization plus assembly times for 8 large test problems. SES 

factorization times (in seconds) are also shown in the blue boxes.  

Figure 7.7 shows the triangular solution times with 100 RHS vectors normalized 

according to the PARDISO triangular solution times. As shown in Figure 7.7, SES solver 

package consistently outperforms PARDISO solver. SES solver package is especially 

efficient for the triangular solution of 2D test problems. For these problems, the 

preprocessing strategy employed for the SES solver reduces the floating point operations 

required for the solution. SES performs triangular solution 2.55 times faster than 

PARDISO for Model 4 (F2DL2) as shown in Figure 7.7. If we compare the factorization 

times with triangular solution times shown in Figure 7.6 and 7.7 respectively, we observe 
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that the triangular solution with 100 RHS vectors has comparable execution times with 

respect to the numerical factorization times for 2D models. Therefore, it is especially 

important to improve the performance of triangular solution with a large number of RHS 

vectors for 2D test models. As shown in Figure 7.7, the SES solver package performs the 

triangular solution of the 2D models significantly faster than PARDISO (the speedup is 

larger than 2 for all 2D test problems).   

It should be noted that triangular solution phase of the SES solver package is 

tuned for the solution of large number of RHS vectors. For a small number of RHS 

vectors, the triangular solution with PARDISO usually outperforms the SES solver 

package (see Section 5.2.2. for details).  

 

Figure 7.7: Serial triangular solution times normalized according to the PARDISO 

triangular solution times for 8 large test problems. SES triangular solution times (in 

seconds) are also shown in blue boxes.  
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7.1.2 Multithreaded Solver 

In this section, the performance of four-thread factorization and triangular 

solution is presented for the SES solver package. Figure 7.8 shows the speed of four-

thread factorization for the SES and PARDISO solver packages for benchmark suite of 

40 test problems. As shown in Figure 7.8, the four-thread factorization speed for SES is 

better than PARDISO except from Model 34. Figure 7.9 shows the speed of triangular 

solution with 100 RHS vectors using four threads. As shown in Figure 7.8 and Figure 7.9 

the four-thread factorization and triangular solution speeds typically increase as the size 

of the problems increase.  

Next, we compare the four-thread execution times of the SES and PARDISO 

solver packages. For SES and PARDISO, the performance profiles for the four-thread 

factorization times are shown in Figure 7.10. The factorization times for PARDISO do 

not include the time required for the assembly of the stiffness matrix. SES gives 

significantly better four-thread factorization times compared to PARDISO even though 

the stiffness matrix assembly times are not included for PARDISO factorization. Figure 

7.11 shows the factorization plus assembly times for the two solver packages. As shown 

in Figure 7.11, PARDISO factorization times are more than 2 times the SES factorization 

times for about 40% of the test problems. Figure 7.12 shows performance profile for the 

solution times for 100 RHS vectors. As shown in Figure 7.12, SES generally outperforms 

PARDISO for the triangular solution with 100 RHS vectors. PARDISO triangular 

solution times are larger than 2 times the SES counterparts for about 50% of the problems 

in the benchmark suite. For a single test problem (f500×1500), the solution time for SES 

is about 30 times faster than the one for PARDISO. This is due to the excessive paging of 

PARDISO for the solution of this particular problem. 
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Figure 7.8: Speed of four-thread factorization for SES and PARDISO solver.  

 

Figure 7.9: For SES solver, speed of four-thread solution with 100 RHS vectors 
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Figure 7.10: Performance profile for four thread factorization times for SES and 

PARDISO solver 

 

Figure 7.11: Performance profile for four thread factorization plus assembly times 

for the SES and PARDISO solvers.  
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Figure 7.12: Performance profile for four-thread solution times for the SES and 

PARDISO solvers. 

Next, we demonstrate the four-thread numerical factorization and triangular 

solution performance of the SES solver package on 8 large test problems described in 

Chapter 2. We compare the multithreaded performance of the SES solver with the 

PARDISO solver. For the SES solver package, we find alternative pivot-orderings for 

different preprocessing configurations and choose the pivot-ordering that yields the best 

estimated multithreaded factorization time. Table 7.4 shows the configuration that yields 

the best estimated four-thread factorization times for the benchmark suite of 8 large test 

problems. As shown in Table 7.4, AMF gives the best estimated factorization time for 3 

out of 4 2D test problems. HMETIS yields better four-thread factorization time for the 

test problem F2DL2 for which the AMF was superior for serial factorization as it was 

shown in Table 7.3.  

Figure 7.13 shows the four-thread factorization times normalized according to 

‘PARDISO factorization plus assembly’ times. As shown in Figure 7.13, SES 
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consistently outperforms PARDISO even though the assembly times are not included for 

the PARDISO solver. If we include the assembly times for the PARDISO, SES is more 

than 2 times faster than PARDISO for half of the large test problems as shown in Figure 

7.13. For the PARDISO solver, the percentage of assembly times increases for the four-

thread factorization compared to the serial factorization since the assembly operations are 

performed in a serial fashion. Figure 7.13 also shows the estimated four-thread 

factorization times for the SES solver package. As shown in Figure 7.13, the numerical 

factorization is slower than what it is predicted to be. We discuss the difference between 

the estimated and actual performance in the following section.  

Figure 7.14 shows the four-thread triangular solution times normalized according 

to the PARDISO triangular solution times. As shown in Figure 7.14, SES generally 

outperforms PARDISO for the triangular solution with 100 RHS vectors. SES triangular 

solution is 3.2 times faster than PARDISO triangular solution for the test problem 

Q2DL2.  

 

Model 
No./Name 

Preprocessing 
Configuration 

Estimated 
Factorization 

Time (seconds) 
1.Q2DL1 nodeco=1 + AMF 4.37 
2.Q2DL2 nodeco=1 + AMF 5.20 
3.F2DL1 HMETIS 5.93 
4.F2DL2 nodeco=1 + AMF 5.92 
5.S3DL1 HMETIS 49.87 
6.S3DL2 HMETIS 39.76 
7.F3DL1 nodeco=1 + HMETIS 45.95 
8.F3DL2 nodeco=1 + HMETIS 63.96 

Table 7.4: Preprocessing configuration that produces the best estimated four-

thread factorization times for the benchmark suite with 8 large test problems.  
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Figure 7.13: Four-thread numerical factorization times normalized according to 

the PARDISO numerical factorization plus assembly times for 8 large test problems. SES 

factorization times (in seconds) are also shown in the blue boxes. 
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Figure 7.14: Four-thread triangular solution times normalized according to the 

PARDISO numerical factorization plus assembly times for 8 large test problems. SES 

triangular times (in seconds) are also shown in the blue boxes. 

Both PARDISO and SES solver packages require more memory for a four-thread 

solution compared to the single thread solution. The increase in memory requirement is 

less significant for the PARDISO solver package compared to SES. The number of active 

frontal matrices and update matrix stacks are as many as the number of threads assigned 

to the independent subtrees for the SES solver package. The use of multiple frontal 

matrices and update matrix stacks increases the active memory requirement of the SES 

numerical factorization phase. Table 7.5 shows the memory requirements for factors, 

frontal matrices and update matrix stacks of the SES solver package. Table 7.5 gives the 
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problem F3DL2, four-thread factorization requires 1.33 times the memory required for 

the serial factorization.  

 

Model 
No./Name 

Memory (Gbytes) 
for Serial 

Factorization 

Memory (Gbytes) 
for Four-thread 
Factorization 

Increase in 
Memory 

Requirement 
1.Q2DL1 1.98 2.18 ×1.10  
2.Q2DL2 2.23 2.42 ×1.09 
3.F2DL1 2.24 2.35 ×1.05 
4.F2DL2 2.42 2.73 ×1.13 
5.S3DL1 5.68 6.67 ×1.17 
6.S3DL2 5.75 6.54 ×1.14 
7.F3DL1 5.47 6.78 ×1.24 
8.F3DL2 4.99 6.65 ×1.33 

Table 7.5: Serial and multithreaded memory requirements of the SES 

factorization.  

7.1.3 Analysis of the Multithreaded Performance  

As shown in Figure 7.13, SES four-thread numerical factorization takes slightly 

longer than the estimated numerical factorization time. The reasons for this unanticipated 

performance degradation are investigated. The estimated and actual factorization times 

are compared for the subtree and high-level assembly tree nodes. As described 

previously, the subtree tree nodes are processed in parallel by employing single-threaded 

BLAS3 kernels. On the other hand, the high-level tree nodes are processed by employing 

multi-threaded BLAS3 kernels within the main thread. Figure 7.15 shows the subtree 

factorization times and estimated subtree factorization times for the benchmark suite with 

8 large test problems. The subtree factorization times given in Figure 7.15 are normalized 

according to the overall time required for the factorization. As shown in Figure 7.15, the 

subtree factorization times may take between 64%-96% of the total factorization time for 

the four-thread factorization of the test problems. As shown in Figure 7.15, the subtree 

factorization executes slower than the expected performance. In the worst case, the actual 

subtree factorization time is 36% larger than the estimated subtree factorization time 
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(Model 8). The factorization of the subtrees is performed simultaneously by executing 

single-threaded BLAS3 kernels. We simulate the subtree partial factorization operations 

by executing serial BLAS3 kernels simultaneously by different threads. The experiments 

with BLAS3 kernels show that the performance is degraded if multiple threads execute 

BLAS3 kernels independently. The performance is degraded even if the number of 

threads executing serial BLAS3 kernels is smaller than the number of physical cores in 

the system. As an example, in our test system with four cores, we observe about 10% 

increase in the partial factorization time for the simultaneous partial factorization of three 

frontal matrices with 500 eliminated and 1000 remaining variables. The performance 

degradation of BLAS3 kernels may be the due to the memory bus and cache contention 

of the threads. Consequently, we conjecture that the computational resource contention 

due to simultaneous execution of BLAS3 kernels contribute to the performance 

degradation of the numerical factorization. Presumably, the resource contention also 

slows down the speed of the update matrix copy and assembly operations. The current 

performance model does not consider the performance degradation due to the 

computational resource contentions during the simultaneous factorization operations on 

the subtrees. Hence, the underestimation of the subtree factorization times is the main 

reason for the under prediction of the overall execution times.  

Figure 7.16 shows the actual and estimated high-level tree node factorization 

times normalized according to the total factorization time. As shown in Figure 7.16, the 

high-level factorization times are significantly overestimated for Models 3 and 8 since the 

speedup model for the BLAS3 kernels is simply a function of partial factorization 

operation counts. Furthermore, the performance model does not consider the speedup of 

update matrix assembly operations. Even though the high-level factorization times are 

predicted accurately or overestimated, the total factorization times are underestimated 

due to the performance degradation of the subtree factorization explained previously.  
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Figure 7.15: Estimated and actual subtree factorization times normalized 

according to the total numerical factorization time for the benchmark suite with 8 large 

test problems (HMETIS)   
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Figure 7.16: Estimated and actual high-level tree node factorization times 

normalized according to the total numerical factorization time for the benchmark suite 

with 8 large test problems (HMETIS)  

For the benchmark suite with 8 large test problems, the SES speedups for four 

thread numerical factorization and triangular solution are given in Figure 7.17. For four-

thread factorization, the SES numerical factorization speedup is around 3.3 for all 8 large 

test problems as shown in Figure 7.17. Unlike speedups for the numerical factorization, 

the speedups for forward elimination and back substitution vary significantly for the large 

test problems. In the triangular solution phase, we use the mapping found for the 

numerical factorization. Therefore, the variation in speedups is expected since the 

workload between the threads is not necessarily balanced for the triangular solution.  
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speedups for numerical factorization given in Figure 7.17 and Figure 7.18, we observe 

that the speedups for the SES solver package are higher than the ones for the PARDISO 

solver. PARDISO employs a dynamic scheduling, whereas, in the SES solver package we 

employ a subtree to thread mapping based on the estimated subtree factorization times. 

As shown in Figure 7.17, our static mapping generally gives better speedup values 

compared to the PARDISO’s dynamic scheduling for the numerical factorization phase. 

For the triangular solution phase, on the other hand, the difference between the SES and 

PARDISO speedups is not as significant as it is for the numerical factorization phase.  

 

 

Figure 7.17: Speedup for four-thread execution of the SES solver package for 100 

RHS vectors, the benchmark suite with 8 large test problems, HMETIS ordering 
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Figure 7.18: Speedup for four-thread execution of the PARDISO solver package 

for 100 RHS vectors, the benchmark suite with 8 large test problems, HMETIS ordering 

Next, we investigate the imbalance between the workloads statically assigned to 

the threads in the mapping algorithm. After a mapping is found for the threads, no 

additional load balancing is performed. However, it is possible to minimize workload 
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workload. We can potentially use the estimated factorization times for such a load 

balancing. Figure 7.19 shows the idealized speedups of such a load balancing approach. 
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scheme. Figure 7.19 is for HMETIS matrix ordering program and the results are similar 

for the AMF matrix ordering program for the benchmark suite with 8 large test problems. 

Considering the overhead and complexity that will be introduced by the implementation 

of a load balancing algorithm, it is questionable whether the implementation of additional 

load balancing is necessary.  

 

 

Figure 7.19: The effect of subtree factorization time imbalances on the 

factorization speedups for the benchmark suite with 8 large test problems using HMETIS 

ordering 
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7.2 Out-of-core Solver  

The performance of out-of-core solver is demonstrated on the 8 very large test 

problems given in Chapter 2. The properties of the test problems are given again in Table 

7.6. Although the out-of-core solver may allow numerical solution and triangular 

factorization of even larger 2D problems, the memory required for the preprocessing 

phase is the main restriction on further increasing the size of 2D test problems. For the 

out-of-core solver, the forward elimination is performed just after the factors are 

computed for a frontal matrix. As stated previously, this scheme requires fewer disk 

reads. The I/O operations are performed asynchronously in order to overlap disk 

operations with the computations. Tree-level parallelism is not exploited for the out-of-

core multifrontal solver since this typically degrades the performance due to excessive 

I/O requests of the threads assigned to the subtrees. Therefore, parallelism is exploited 

only at the dense matrix level by the use of four-thread BLAS/LAPACK subroutines 

(MKL).  

 

Model Name 
Number of 

Dofs 
Non-zero for 

HMETIS 

Memory for 
Factors 

(GBytes) 

Flop for 
HMETIS 

1.Q2DVL1 4,830,000 6.12E+08 4.56 7.32E+11 
2.Q2DVL2 4,500,000 4.94E+08 3.68 5.06E+11 
3.F2DVL1 9,990,000 9.24E+08 6.88 7.20E+11 
4.F2DVL2 9,940,000 1.01E+09 7.51 1.17E+12 
5.S3DVL1 1,150,000 1.37E+09 10.19 5.66E+12 
6.S3DVL2 2,210,000 1.56E+09 11.61 5.37E+12 
7.F3DVL1 4,000,000 2.30E+09 17.12 7.07E+12 
8.F3DVL2 1,650,000 1.35E+09 10.08 5.31E+12 

Table 7.6: 8 very large test problems used for evaluating the performance of the 

out-of-core solver.  

 

The performance of an out-of-core scheme can be evaluated effectively by 

comparing the out-of-core performance with the in-core performance. However, these 

very large problems cannot be solved using only main memory. Therefore, we used the 
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estimated serial factorization times in order to evaluate the performance of the out-of-

core solver. Figure 7.20 shows the out-of-core solver solution times in terms of estimated 

serial factorization time. For the results shown in Figure 7.20, the solution is performed 

for 10 RHS vectors and the serial factorization time estimation assumes an infinite 

memory. As shown in Figure 7.20, the out-of-core performance for 2D test problems is 

worse than what it would be for a serial in-core factorization with an infinite amount of 

memory. According to the relative out-of-core performance given in Figure 7.20, solving 

the 2D problems on a machine with a larger memory will perform significantly better 

than the out-of-core solver. For example, Model 3 can be solved about 10× faster than the 

speed of out-of-core solver by employing a multithreaded in-core solver on a machine 

with sufficient amount of memory (assuming that in-core solver has a speedup of 3). On 

the other hand, the out-of-core SES solver performs better than the estimated serial 

factorization time for 3D test problems (Models 5 to 8). Therefore, for 3D problems, the 

speed increase by the use of a system with sufficient amount of memory is not as drastic 

as it is for the 2D problems.  

The relatively low performance on the 2D test problems is due to the large 

numbers of I/O operations for each factorization operation. In order to obtain high 

performance from an out-of-core solver, a sufficient number of operations should be 

performed between I/O requests. Otherwise, the performance gap between the CPU and 

disk hinders the performance. Figure 7.21 shows the non-zero to flop ratios for the very 

large test problems. A high non-zero to flop ratio indicates that the number of disk 

accesses for each factorization operation is large, which degrades the performance of the 

out-of-core solver. The non-zero to flop ratio given in Figure 7.21 qualitatively follows 

the SES out-of-core solution performance relative to in-core solver performance given in 

Figure 7.20. 
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Figure 7.20: For very large test problems, SES out-of-core solution time 

(factorization plus triangular solution with 10 RHS vectors) given in terms of estimated 

single-thread factorization time assuming infinite memory  
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Figure 7.21: For very large test problems, the ratio of non-zero (in factorized 

stiffness matrix) to flop (floating point operations required for factorization).  

The benchmark suite with very large test problems is also solved with the 

PARDISO solver package. However, PARDISO failed to solve 6 out of 8 of the very 

large test problems exiting with an error message saying that there is not enough memory 

for the preprocessing phase. PARDISO finds the solution only for Models 5 and 8, which 

are the models with the fewest dofs among the 8 very large test problems. For Models 5 

and 8, the PARDISO solution takes 1655.32 sec and 1530.06 sec respectively while the 

SES solution takes 532.62 and 585.86 respectively as shown in Figure 7.20. In other 

words, the PARDISO solutions are about 3 times slower for the two test problems.  
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CHAPTER 8  

FACTORIZATION USING A GPGPU  

8.1 GPGPU Computing 

Recently, graphical processing units have become available for general purpose 

computing (GPGPU). Data-parallel computations can be accelerated by using a system 

with GPGPUs. The GPGPU can be treated as a co-processor to perform some of the 

factorization tasks in the multifrontal method. The subsequent section discusses the 

results from a preliminary investigation of the performance gains obtained using a 

GPGPU for the partial factorization.  

8.2 Partial Factorizations on GPGPUs  

The partial factorizations of the frontal matrix are the most time consuming 

component of the Cholesky Decomposition with the multifrontal method. GPGPUs are 

ideally suited for performing these computations since they typically have a high ratio of 

computations per data access. The computation of the off-diagonal factors and Schur 

complement can be performed on the GPGPU using the corresponding CUBLAS library 

functions [152] to replace the computations performed on CPU using the MKL library. 

The diagonal factors are computed on CPU (host) since this is a LAPACK subroutine. 

The update matrix operations and assembly of FE matrices should also be performed on 

the host since these are memory bound operations including branches which are not 

suitable for GPGPU computing.  

Preliminary numerical experiments are performed in order to evaluate potential 

performance gains by the implementation of a GPGPU accelerated multifrontal solver. 

The system used for the numerical experiments has an Intel Xeon X5550 Quad-core 

Nehalem processor as the host and an Nvidia S1070 Tesla unit as the GPGPU device. 
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Tesla unit has 960 processors and the peak double-precision performance of the unit is 

between 311 and 345 Gflop/sec. Each CPU core runs at a speed of 2.66 GHz with hyper-

threading disabled. Intel MKL libraries [6] are used for the comparison of the GPGPU 

partial factorization times with the host partial factorization times. The experiments are 

performed using one host CPU core only.  

The performance of multifrontal method accelerated with the GPGPU is 

compared with the CPU performance. Computing the off-diagonal factors and Schur 

complement on the GPGPU requires copying the already computed diagonal factors and 

assembled off-diagonal factors to the GPGPU. This copying of the data to the GPGPU 

may take a significant amount of time. Figure 8.1 shows the speed of partial factorization 

without including the time required to transfer the data to the GPGPU. As shown in 

Figure 8.1, performing partial factorization on the GPGPU outperforms single-core 

factorization for frontal matrices having more than 400 columns. Furthermore, GPGPU 

partial factorization is approximately three times faster than the single-core counterpart 

for frontal matrices having more than 4000 columns. Figure 8.2 shows the speed of 

partial factorization including the time required for the data transfer. As shown in Figure 

8.2, the effective speed of GPGPU partial factorization is reduced when the data transfer 

time is included. The speed decrease in percentage is larger for smaller frontal matrices 

due to the data transfer latency and small amount of computations on GPGPU.  

As shown in Section 4.4.1, the partial factorization with four threads can give a 

speedup larger than 3.5 over the single-threaded counterpart for sufficiently large 

matrices (matrices in the order of thousands). Therefore, the use of four-thread BLAS3 

kernels for partial factorization is likely to outperform (or at least yield the same 

performance as) the GPGPU partial factorization.  
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Figure 8.1: The speed of GPGPU and singe CPU core partial factorization without 

considering the data transfer time between host and device. For the frontal matrices, the 

ratio of number of remaining variables to number of eliminated variables is three.  

 

Figure 8.2: The speed of GPGPU and single CPU core partial factorization 

including the data transfer time between host and device. For the frontal matrices, the 

ratio of number of remaining variables to number of eliminated variables is three.  
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The performance of GPGPU accelerated partial factorization is investigated for a 

set of test problems shown in Table 8.1. As stated previously, only the off-diagonal 

factors and the Schur complement are computed on the GPGPU. The diagonal factors are 

computed on the host CPU. As shown in Table 8.1, computation of the Schur 

complement is has the largest number of floating point operations for the partial 

factorization. The operation counts given in Table 8.1 are for the pivot ordering found by 

the hybrid matrix ordering program in the METIS library [69]. The assembly trees are 

constructed for the test problems and the partial factorization operations associated with 

the assembly tree nodes are performed using the GPGPU and a single CPU core.  

Figure 8.3 compares the speed for performing partial factorization operations on a 

single CPU core and a GPGPU. Figure 8.3 also shows the effective speed of GPGPU 

factorization if the time required for copying the data to GPGPU is also included. As 

shown in Figure 8.3, the speed of partial factorization on a GPGPU increases as the 

model size increases. The GPGPU speedup over a single CPU core can be as high as 3 

for the largest test problem. However, the use of four-thread BLAS kernels is likely to 

give at least the same speed as the GPGPU partial factorization.  

 

 

Model Name 
Diagonal 
Factors 
(GFlop) 

Off-diagonal 
Factors 
(GFlop) 

Schur 
Complement 

(GFlop) 

Total Partial 
Factorization 

(GFlop) 
s15×15×50 4.19 3.68 10.95 18.83 
f15×15×50 11.52 10.78 54.16 76.46 
s30×30×30 25.93 22.93 91.86 140.72 
s100×50×13 34.13 68.46 212.36 314.94 
f30×30×30 64.31 83.71 396.45 544.48 
s50×50×50 544.89 498.16 1934.88 2977.92 
f45×45×45 993.80 897.08 5031.14 6922.03 

Table 8.1: Test problems used to evaluate the performance of GPGPU accelerated 

partial factorization  



 

Figure 8.3: Performance of GPGPU accelerated partial factorization for the test 

problems given in Table 8
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: Performance of GPGPU accelerated partial factorization for the test 
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CHAPTER 9 

SUMMARY AND FUTURE DIRECTIONS 

9.1 Summary and Conclusions 

This study proposed and developed a direct solution procedure which exploited 

the parallelism that exists in current symmetric multiprocessing (SMP) multi-core 

processors. The performance of the direct solver developed in this study demonstrated on 

a large suite of test problems, including problems with 100 load cases. A sparse direct 

solver is typically composed of four phases: preprocessing phase, analysis phase, 

numerical factorization phase, and triangular solution phase. Approaches to improve the 

performance of all four phases were discussed. Furthermore, the contribution of each 

phase to the overall execution time of direct solver was studied.  

The first phase of a sparse direct solver, the preprocessing phase, determines a 

pivot-ordering which attempts to minimize the memory and CPU time requirements of 

the solution. There are several matrix ordering algorithms to find a pivot-ordering. The 

performance of alternative matrix ordering programs were evaluated using large number 

of 2D and 3D FE test problems. The effect of the different matrix ordering programs on 

both serial and parallel factorization times was determined. As noted in the previous 

research, the numerical experiments showed that local matrix ordering programs are 

sensitive to the initial node numberings. Among the initial node numberings investigated, 

numbering the nodes according to the node coordinates usually minimized the memory 

and CPU time requirements for the factorization and triangular solution. The 

improvements in CPU time and memory were significant for the local matrix ordering 

programs AMF and MMD but moderate for the local matrix ordering AMD. There was 

no single initial node numbering that consistently yielded favorable factorization times 

for the hybrid matrix ordering programs, HAMF and HMETIS. However, the quality of 



245 
 

the pivot-orderings could be improved by choosing the best pivot-ordering among the 

results from random initial node permutations.  

In this study, the matrix-ordering programs AMF, MMD, CAMD, HMETIS and 

HAMF were used to find the pivot-ordering for the factorization and triangular solution. 

Among the matrix ordering programs investigated in this study, AMF usually minimized 

the CPU time and memory requirements for the serial solution of 2D test problems. 

Furthermore, AMF performed well for 3D test problems with 2D-like geometry and 3D 

models with small average node adjacency, models for which nodes have a small number 

of adjacent nodes. For the remaining 3D test problems, the hybrid matrix ordering 

program HMETIS yielded favorable CPU time and memory requirements.  

In previous studies, hybrid matrix orderings were preferred for the parallel 

factorization instead of local matrix orderings since the assembly trees produced by a 

local ordering are not suitable for exploiting tree-level parallelism. However, this study 

showed that although it is true that the local orderings are relatively less suitable for 

parallel processing, a local matrix-ordering program can still minimize the parallel 

factorization and triangular solution time for current SMP multi-core processors with a 

small number of cores. For example, the hybrid matrix ordering HMETIS yielded better 

parallel factorization times for only some but not all of the test problems for which the 

local matrix ordering AMF gave the best serial factorization times. A preprocessing 

scheme that selects the best pivot-ordering among the results of hybrid and local matrix 

ordering programs was developed. The developed scheme performs the selection based 

on the estimated parallel factorization times.  

A coarsening scheme was proposed to reduce the execution time of the matrix 

ordering programs and analysis phase. The impact of alternative mesh coarsening 

schemes on the quality of the pivot-orderings is determined. The numerical experiments 

showed that the coarsening scheme yielded better factorization times for the majority of 

the 2D test problems compared to using the original mesh in the matrix ordering 
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programs. A preprocessing scheme that employs alternative coarsening schemes to 

minimize the CPU time and memory requirements of the solution was developed.  

The multifrontal method was adopted for parallel factorization and triangular 

solution of FE problems. Both tree-level and dense matrix level parallelism were 

exploited to improve the efficiency of the parallel solver. A mapping algorithm that 

automatically chooses between the two levels of parallelism was proposed, which 

attempts to minimize the parallel execution time based on the performance model 

constructed for a SMP multi-core processor. The performance model considers the 

contributions from the update matrix assembly times, FE assembly times, and partial 

factorization times for predicting the overall factorization time. The developed 

performance model accurately predicted the serial factorization times of the test 

problems. However, parallel factorization took longer than the predicted execution time. 

This unanticipated performance degradation in parallel factorization is mainly due to the 

resource contention (contention of memory bus or shared caches) on SMP multi-core 

processor. It is conjectured that resource contention may hinder the scalability for SMP 

multi-core processors with larger number of cores. To offset this degradation, the 

performance model and the mapping algorithm can be modified in the light of the 

performance degradation measured for a machine.  

The performance model developed in this study can be used to choose among 

pivot-orderings produced by alternative matrix ordering programs or preprocessing 

strategies. For the test problem f75×150×5, selecting a pivot-ordering based on the 

factorization operation count yielded factorization times significantly worse than a 

selection based on the estimated factorization times. It was shown that the factorization 

time is affected by the number of update matrix operations and size of the frontal 

matrices. The performance model developed in this study incorporated these factors to 

predict factorization times accurately.  
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General purpose direct solver packages usually work with an assembled 

coefficient matrix. Therefore, the stiffness matrix should be assembled prior to the 

execution of the solver package. The assembly of the stiffness matrix may take 

significant time and also require storage of the assembled stiffness matrix. The developed 

solver package does not require an assembled stiffness matrix and it works with the 

element stiffness matrices. The frontal matrices are assembled in parallel on each core. 

For reducing the overall execution time, performing the assembly in parallel becomes 

especially important as the execution times of the factorization and triangular solution 

phases are decreased by employing parallel algorithms.  

The performance of triangular solution phase may be overlooked in the 

development of a sparse solver since the triangular solution time is often insignificant 

compared to the numerical factorization. Nevertheless, the numerical experiments 

showed that the triangular solution time for multiple RHS vectors may be comparable to 

the factorization time. A triangular solution algorithm that is efficient for solution with a 

large number of RHS vectors was developed. The efficiency of optimized BLAS3 kernels 

was extended to the triangular solution phase by performing the forward elimination and 

back substitution operations on dense frontal matrices.   

In the multifrontal method, the factors can be written to a secondary storage as 

soon as they are calculated. An out-of-core solver that takes advantage of this property of 

the multifrontal method was developed in order to reduce the memory requirements of 

the solver. The factors were written to the disk asynchronously to overlap factorization 

computations with I/O. The performance of in-core and out-of-core versions of the solver 

was evaluated using test problems with various sizes and element types. The performance 

of the developed solver was demonstrated by comparing the execution times with a 

commonly used shared memory solver, PARDISO. The developed code outperformed the 

PARDISO solver for almost every test problem. In addition, some of the large problems 

that could not be solved with PARDISO due to memory requirements could be solved 
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using the developed solver. A test problem with more than 10 million dofs was solved on 

a low price desktop computer using the out-of-core solver developed in this study.   

9.2 Recommendations for Future Work 

The sparse direct solver developed in this study implements several approaches to 

improve the performance of the sparse direct solution of finite element (FE) problems. 

However, high-performance sparse direct solution is an active area of research and the 

direct solver can hardly be considered as complete. The performance of the solver can be 

potentially improved by implementing existing and emerging algorithms. In addition, 

further research is required to develop a robust and high performance solver on future 

multi-core and many-core architectures. The recommendations for the future research are 

as follows:  

• Extend work to Eigen Solution of FE Problems 

Modal analysis of the structures requires computing eigenvectors and eigenvalues 

corresponding to the modal shapes and natural frequencies of the structures respectively. 

Finding eigenvectors and eigenvalues is a computationally intensive procedure, 

especially if a large number of eigenvectors and eigenvalues will be found. An eigen 

solution scheme which exploits parallelism in multi-core processors and is efficient for 

FE problems can be developed.   

• Many-core and heterogeneous architectures  

It is most likely that the demand for increased performance will be met by 

increasing the number of processing units in computers. A parallel solver which takes 

advantage of the emerging parallel computer architectures is crucial for the efficient 

solution of FE models progressing in complexity and size. The developed solver package 

can be modified for an efficient solution on NUMA architectures. For the NUMA 

architecture, the mapping algorithm should be modified to guarantee that the tasks 

assigned to the processors primarily access local memory. Furthermore, a sparse solver 
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that makes use of the GPGPUs may offer a performance improvement. Preliminary 

investigations were performed for performing some of the partial factorization tasks on 

GPGPUs. A sparse solver that treats GPGPUs as co-processors can be developed as 

shown in the preliminary investigations given in Chapter 8. 

• Improve the performance of the analysis and preprocessing phases  

The developed code is designed to allow for experimenting with various 

algorithms in the preprocessing and analysis phases. The performance of the 

preprocessing and analysis phases can be improved at an expense of reduced flexibility. It 

may even be possible to improve the performance without compromising the flexibility. 

The algorithms proposed by Liu [73] and Gilbert et al. [138] can be implemented to 

improve the performance of the analysis phase. To our knowledge, these are the best 

known algorithms for building the elimination tree and calculating the non-zeros in the 

factors. Furthermore, the matrix ordering can be performed in parallel by employing the 

multithreaded version of the SCOTCH library. It is crucial to parallelize the 

preprocessing and analysis phases of a direct solver since these two phases become a 

bottleneck as the numerical factorization and triangular solution times are decreased.  

• A strategy that automatically selects the matrix ordering program  

The numerical experiments with matrix ordering programs show that there is no 

single program that gives the best results for all FE problems. A strategy that selects the 

matrix ordering program that is most suitable for an input structure will reduce the overall 

execution time of the sparse direct solver. The model features such as model 

dimensionality and average node adjacency can be used in order to predetermine the most 

favorable matrix ordering program for an input FE problem. Further numerical 

experiments are required to determine other model features that will help to construct 

such an automatic selection strategy. Moreover, different matrix ordering programs may 

be desirable for different regions of the FE model. For example, 2D-Like regions in a 3D 

FE model, such as diaphragms, can be efficiently pre-processed with the local ordering 
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algorithm AMF. A preprocessing strategy that chooses the best matrix ordering program 

for different regions of the FE model also has the potential to further reduce the 

factorization times.  

• Improvements to the mapping algorithm  

As discussed previously, the subtree factorization times are larger than the 

anticipated times. A mapping algorithm that considers the performance degradation of the 

subtree factorization will potentially yield better parallel factorization times. 

Furthermore, the degree of tree-level parallelism may be reduced to prevent associated 

resource contentions. Instead of tree-level parallelism, dense matrix level parallelism can 

be exploited for the threads assigned to the subtrees in order to reduce memory bus 

contention. For example, for a quad-core processor, only two threads could be spawned 

to factorize independent subtrees instead of four threads and two-thread BLAS/LAPACK 

kernels would be called for the partial factorization tasks on independent subtrees.  

• A program for automatic construction of the performance model  

The mapping algorithm relies on the performance model constructed for the SMP 

multi-core processors. Presently, this is done manually by performing test runs on the test 

system. For a complete solver implementation, a program that automatically constructs 

the performance model for any computer is required. The program will perform a limited 

test runs with BLAS/LAPACK kernels to determine the partial factorization 

performance. Furthermore, the speed of update matrix operations and assembly of FE 

matrices can be determined by executing benchmark codes which represent these 

operations.  

• Improvements to the numerical factorization and solution phases  

Currently, the multifrontal scheme developed in this study does not employ a 

memory minimizing scheme for the update matrix stack. The memory minimizing 

schemes proposed by Guermouche and L'excellent [55] can be implemented to reduce the 

active memory requirements of the multifrontal solver. Furthermore, instead of allocating 
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separate memory locations for the frontal matrix and update matrix stack, the memory 

can be shared between the two in order to reduce the memory footprint of the solver. The 

triangular solution phase will also benefit from these modifications. Currently, the 

triangular solution phase is optimized for multiple RHS vectors. A triangular solution that 

is tuned for solution of single RHS vector can improve the triangular solution 

performance for non-linear or transient analyses.  

• Improvements to the out-of-core solver  

Currently, the out-of-core solver writes only the computed factors to disk. The 

out-of-core solver could also write the update matrix stack and frontal matrix to the disk. 

The update matrix stack and frontal matrix can be written to the disk asynchronously 

since asynchronous I/O is proved to be efficient for the current out-of-core 

implementation. Furthermore, the solver can automatically determine when to switch to 

the out-of-core mode based on the available memory and memory required for the 

solution of an input problem.   

• Test problems with mixed elements 

All test problems used to evaluate the performance of various algorithms are 

composed of a single FE type. The test problems with mixed elements, such as frames 

and plates, can be added to the test suites.  
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APPENDIX A : 

TEST PROBLEMS 

A.1  Test Problems with Regular Geometry 

The geometry of regular test problems is rectangular in 2D and prismatic in 3D. 

In other words, the number of elements in x, y and z directions is the same at any 

location. Figure A.1 shows the geometry of the example models with regular geometries. 

Figure A.2 and A.3 shows the non-zero pattern for the 2D test problems q100×100 and 

f100×100 respectively. Figure A.4 and A.5 shows the non-zero pattern for the 3D test 

problems s10×10×10 and f10×10×10 respectively.  

Table A.1 gives the properties of the 2D test problems with quadrilateral 

elements. Table A.2 gives the properties of the 2D test problems with frame elements. 

Table A.3 gives the properties of the 3D test problems with 8 node solid elements. And 

finally, Table A.4 gives the properties of the 3D test problems with 3D frame elements. 

The last column in these tables shows the number of non-zero entries in the lower 

diagonal stiffness matrix. The non-zero is computed by assuming that all entries of 

element stiffness matrices are non-zero.  
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Figure A.1: Selected test problems with regular geometry.  
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Figure A.2: Non-zero patterns for the test problem q100×100 (original ordering 

and AMD matrix ordering). The non-zero patterns for the upper diagonal factors are also 

given at the bottom.     
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Figure A.3: Non-zero patterns for the test problem f100×100 (original ordering 

and AMD matrix ordering). The non-zero patterns for the upper diagonal factors are also 

given at the bottom.    
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Figure A.4: Non-zero patterns for the test problem s10×10×10 (original ordering 

and AMD matrix ordering). The non-zero patterns for the upper diagonal factors are also 

given at the bottom.     
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Figure A.5: Non-zero patterns for the test problem f10×10×10 (original ordering 

and AMD matrix ordering). The non-zero patterns for the upper diagonal factors are also 

given at the bottom.     
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Model 
No. 

Model Name 
No. of 

Elements 
No. of Dofs 

Non-zero 
in K (1e6) 

1 q20×1000  20000 42000 0.39 
2 q20×2000  40000 84000 0.77 
3 q20×3000 60000 126000 1.16 
4 q20×4000 80000 168000 1.55 
5 q20×5000 100000 210000 1.93 
6 q20×7500 150000 315000 2.9 
7 q20×10000 200000 420000 3.87 
8 q30×1000 30000 62000 0.58 
9 q30×2000 60000 124000 1.15 
10 q30×3000 90000 186000 1.73 
11 q30×4000 120000 248000 2.31 
12 q30×5000 150000 310000 2.88 
13 q30×7500 225000 465000 4.33 
14 q30×10000 300000 620000 5.77 
15 q40×1000 40000 82000 0.77 
16 q40×2000 80000 164000 1.53 
17 q40×3000 120000 246000 2.3 
18 q40×4000 160000 328000 3.07 
19 q40×5000 200000 410000 3.83 
20 q40×10000 300000 615000 5.75 
21 q40×15000 400000 820000 7.67 
22 q50×1000 50000 102000 0.96 
23 q50×2000 100000 204000 1.91 
24 q50×3000 150000 306000 2.87 
25 q50×4000 200000 408000 3.83 
26 q50×5000 250000 510000 4.78 
27 q50×7500 375000 765000 7.18 
28 q50×10000 500000 1020000 9.57 
29 q60×1000 60000 122000 1.15 
30 q60×2000 120000 244000 2.29 
31 q60×3000 180000 366000 3.44 
32 q60×4000 240000 488000 4.59 
33 q60×5000 300000 610000 5.73 
34 q60×7500 450000 915000 8.6 
35 q60×10000 600000 1220000 11.47 
36 q70×1000 70000 142000 1.34 
37 q70×2000 140000 284000 2.67 
38 q70×3000 210000 426000 4.01 
39 q70×4000 280000 568000 5.35 
40 q70×5000 350000 710000 6.68 
41 q70×7500 525000 1065000 10.03 
42 q70×10000 700000 1420000 13.37 

Table A.1: 2D quadrilateral element models with regular geometry  
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Model 
No. 

Model Name 
No. of 

Elements 
No. of Dofs 

Non-zero 
in K (1e6) 

43 q80×1000 80000 162000 1.53 
44 q80×2000 160000 324000 3.05 
45 q80×3000 240000 486000 4.58 
46 q80×4000 320000 648000 6.11 
47 q80×5000 400000 810000 7.63 
48 q80×7500 600000 1215000 11.45 
49 q80×10000 800000 1620000 15.27 
50 q90×1000 90000 182000 1.72 
51 q90×2000 180000 364000 3.43 
52 q90×3000 270000 546000 5.15 
53 q90×4000 360000 728000 6.87 
54 q90×5000 450000 910000 8.58 
55 q90×7500 675000 1365000 12.88 
56 q90×10000 900000 1820000 17.17 
57 q100×100 10000 20200 0.19 
58 q100×200 20000 40400 0.38 
59 q100×300 30000 60600 0.57 
60 q100×400 40000 80800 0.76 
61 q100×500 50000 101000 0.95 
62 q100×1000 100000 202000 1.91 
63 q100×1500 150000 303000 2.86 
64 q200×200 40000 80400 0.76 
65 q200×300 60000 120600 1.14 
66 q200×400 80000 160800 1.52 
67 q200×500 100000 201000 1.9 
68 q200×1000 200000 402000 3.8 
69 q200×1500 300000 603000 5.71 
70 q300×300 90000 180600 1.71 
71 q300×400 120000 240800 2.28 
72 q300×500 150000 301000 2.85 
73 q300×1000 300000 602000 5.7 
74 q300×1500 450000 903000 8.56 
75 q400×400 160000 320800 3.04 
76 q400×500 200000 401000 3.8 
77 q400×1000 400000 802000 7.6 
78 q400×1500 600000 1203000 11.41 
79 q500×500 250000 501000 4.75 
80 q500×1000 500000 1002000 9.5 
81 q500×1500 750000 1503000 14.25 
82 q1000×1000 1000000 2002000 18.99 
83 q1000×1500 1500000 3003000 28.5 

 

Table A.1 (cont.): 2D quadrilateral element models with regular geometry 
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Model 
No. 

Model Name 
No. of 

Elements 
No. of Dofs 

Non-zero 
in K (1e6) 

84 f20×1000 41000 63000 0.49 
85 f20×2000 82000 126000 0.99 
86 f20×3000 123000 189000 1.48 
87 f20×4000 164000 252000 1.98 
88 f20×5000 205000 315000 2.47 
89 f20×7500 307500 472500 3.71 
90 f20×10000 410000 630000 4.95 
91 f30×1000 61000 93000 0.73 
92 f30×2000 122000 186000 1.47 
93 f30×3000 183000 279000 2.2 
94 f30×4000 244000 372000 2.94 
95 f30×5000 305000 465000 3.67 
96 f30×7500 457500 697500 5.51 
97 f30×10000 610000 930000 7.35 
98 f40×1000 81000 123000 0.97 
99 f40×2000 162000 246000 1.95 
100 f40×3000 243000 369000 2.92 
101 f40×4000 324000 492000 3.9 
102 f40×5000 405000 615000 4.87 
103 f40×7500 607500 922500 7.31 
104 f40×10000 810000 1230000 9.75 
105 f50×1000 101000 153000 1.21 
106 f50×2000 202000 306000 2.43 
107 f50×3000 303000 459000 3.64 
108 f50×4000 404000 612000 4.86 
109 f50×5000 505000 765000 6.07 
110 f50×7500 757500 1147500 9.11 
111 f50×10000 1010000 1530000 12.15 
112 f60×1000 121000 183000 1.45 
113 f60×2000 242000 366000 2.91 
114 f60×3000 363000 549000 4.36 
115 f60×4000 484000 732000 5.82 
116 f60×5000 605000 915000 7.27 
117 f60×7500 907500 1372500 10.91 
118 f60×10000 1210000 1830000 14.55 
119 f70×1000 141000 213000 1.69 
120 f70×2000 282000 426000 3.39 
121 f70×3000 423000 639000 5.08 
122 f70×4000 564000 852000 6.78 
123 f70×5000 705000 1065000 8.47 
124 f70×7500 1057500 1597500 12.71 
125 f70×10000 1410000 2130000 16.95 

Table A.2: 2D frame element models with regular geometry 
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Model 
No. 

Model Name 
No. of 

Elements 
No. of Dofs 

Non-zero 
in K (1e6) 

126 f80×1000 161000 243000 1.93 
127 f80×2000 322000 486000 3.87 
128 f80×3000 483000 729000 5.8 
129 f80×4000 644000 972000 7.74 
130 f80×5000 805000 1215000 9.67 
131 f80×7500 1207500 1822500 14.51 
132 f80×10000 1610000 2430000 19.35 
133 f90×1000 181000 273000 2.17 
134 f90×2000 362000 546000 4.35 
135 f90×3000 543000 819000 6.52 
136 f90×4000 724000 1092000 8.7 
137 f90×5000 905000 1365000 10.87 
138 f90×7500 1357500 2047500 16.31 
139 f90×10000 1810000 2730000 21.75 
140 f100×100 20100 30300 0.24 
141 f100×200 40200 60600 0.48 
142 f100×300 60300 90900 0.72 
143 f100×400 80400 121200 0.97 
144 f100×500 100500 151500 1.21 
145 f100×1000 201000 303000 2.41 
146 f100×1500 301500 454500 3.62 
147 f200×200 80200 120600 0.96 
148 f200×300 120300 180900 1.44 
149 f200×400 160400 241200 1.92 
150 f200×500 200500 301500 2.41 
151 f200×1000 401000 603000 4.81 
152 f200×1500 601500 904500 7.22 
153 f300×300 180300 270900 2.16 
154 f300×400 240400 361200 2.88 
155 f300×500 300500 451500 3.6 
156 f300×1000 601000 903000 7.21 
157 f300×1500 901500 1354500 10.82 
158 f400×400 320400 481200 3.84 
159 f400×500 400500 601500 4.8 
160 f400×1000 801000 1203000 9.61 
161 f400×1500 1201500 1804500 14.42 
162 f500×500 500500 751500 6 
163 f500×1000 1001000 1503000 12.01 
164 f500×1500 1501500 2254500 18.02 
165 f1000×1000 2001000 3003000 24.01 
166 f1000×1500 3001500 4504500 36.01 

 

Table A.2 (cont.): 2D frame element models with regular geometry 
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Model 
No. 

Model Name 
No. of 

Elements 
No. of Dofs 

Non-zero 
in K (1e6) 

167 s5×5×75 1875 8100 0.26 
168 s5×5×100 2500 10800 0.35 
169 s5×5×125 3125 13500 0.44 
170 s5×5×150 3750 16200 0.52 
171 s5×5×175 4375 18900 0.61 
172 s5×5×200 5000 21600 0.7 
173 s5×5×250 6250 27000 0.87 
174 s5×10×75 3750 14850 0.5 
175 s5×10×100 5000 19800 0.67 
176 s5×10×125 6250 24750 0.84 
177 s5×10×150 7500 29700 1.01 
178 s5×10×175 8750 34650 1.18 
179 s5×10×200 10000 39600 1.35 
180 s5×10×250 12500 49500 1.69 
181 s5×15×75 5625 21600 0.75 
182 s5×15×100 7500 28800 1 
183 s5×15×125 9375 36000 1.25 
184 s5×15×150 11250 43200 1.51 
185 s5×15×175 13125 50400 1.76 
186 s5×15×200 15000 57600 2.01 
187 s5×15×250 18750 72000 2.51 
188 s5×20×75 7500 28350 0.99 
189 s5×20×100 10000 37800 1.33 
190 s5×20×125 12500 47250 1.66 
191 s5×20×150 15000 56700 2 
192 s5×20×175 17500 66150 2.33 
193 s5×20×200 20000 75600 2.66 
194 s5×20×250 25000 94500 3.33 
195 s10×10×75 7500 27225 0.98 
196 s10×10×100 10000 36300 1.31 
197 s10×10×125 12500 45375 1.64 
198 s10×10×150 15000 54450 1.96 
199 s10×10×175 17500 63525 2.29 
200 s10×10×200 20000 72600 2.62 
201 s10×10×250 25000 90750 3.28 
202 s10×15×75 11250 39600 1.45 
203 s10×15×100 15000 52800 1.94 
204 s10×15×125 18750 66000 2.43 
205 s10×15×150 22500 79200 2.91 
206 s10×15×175 26250 92400 3.4 
207 s10×15×200 30000 105600 3.89 
208 s10×15×250 37500 132000 4.87 

Table A.3: 3D solid element models with regular geometry 
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Model 
No. 

Model Name 
No. of 

Elements 
No. of Dofs 

Non-zero 
in K (1e6) 

209 s10×20×75 15000 51975 1.92 
210 s10×20×100 20000 69300 2.57 
211 s10×20×125 25000 86625 3.22 
212 s10×20×150 30000 103950 3.86 
213 s10×20×175 35000 121275 4.51 
214 s10×20×200 40000 138600 5.16 
215 s10×20×250 50000 173250 6.45 
216 s15×15×75 16875 57600 2.15 
217 s15×15×100 22500 76800 2.88 
218 s15×15×125 28125 96000 3.6 
219 s15×15×150 33750 115200 4.32 
220 s15×15×175 39375 134400 5.05 
221 s15×15×200 45000 153600 5.77 
222 s15×15×250 56250 192000 7.22 
223 s15×20×75 22500 75600 2.85 
224 s15×20×100 30000 100800 3.81 
225 s15×20×125 37500 126000 4.77 
226 s15×20×150 45000 151200 5.73 
227 s15×20×175 52500 176400 6.69 
228 s15×20×200 60000 201600 7.65 
229 s15×20×250 75000 252000 9.57 
230 s20×20×75 30000 99225 3.78 
231 s20×20×100 40000 132300 5.06 
232 s20×20×125 50000 165375 6.33 
233 s20×20×150 60000 198450 7.6 
234 s20×20×175 70000 231525 8.87 
235 s20×20×200 80000 264600 10.15 
236 s20×20×250 100000 330750 12.69 
237 s10×10×10 1000 3630 0.12 
238 s10×10×15 1500 5445 0.19 
239 s10×10×20 2000 7260 0.25 
240 s10×10×25 2500 9075 0.32 
241 s10×10×30 3000 10890 0.39 
242 s10×10×35 3500 12705 0.45 
243 s10×10×40 4000 14520 0.52 
244 s10×10×45 4500 16335 0.58 
245 s10×10×50 5000 18150 0.65 

 

Table A.3 (cont.): 3D solid element models with regular geometry 
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Model 
No. 

Model Name 
No. of 

Elements 
No. of Dofs 

Non-zero 
in K (1e6) 

246 s10×15×15 2250 7920 0.28 
247 s10×15×20 3000 10560 0.38 
248 s10×15×25 3750 13200 0.47 
249 s10×15×30 4500 15840 0.57 
250 s10×15×35 5250 18480 0.67 
251 s10×15×40 6000 21120 0.77 
252 s10×15×45 6750 23760 0.87 
253 s10×15×50 7500 26400 0.96 
254 s10×20×20 4000 13860 0.5 
255 s10×20×25 5000 17325 0.63 
256 s10×20×30 6000 20790 0.76 
257 s10×20×35 7000 24255 0.89 
258 s10×20×40 8000 27720 1.02 
259 s10×20×45 9000 31185 1.15 
260 s10×20×50 10000 34650 1.28 
261 s10×25×25 6250 21450 0.78 
262 s10×25×30 7500 25740 0.95 
263 s10×25×35 8750 30030 1.11 
264 s10×25×40 10000 34320 1.27 
265 s10×25×45 11250 38610 1.43 
266 s10×25×50 12500 42900 1.59 
267 s10×30×30 9000 30690 1.13 
268 s10×30×35 10500 35805 1.33 
269 s10×30×40 12000 40920 1.52 
270 s10×30×45 13500 46035 1.71 
271 s10×30×50 15000 51150 1.9 
272 s10×35×35 12250 41580 1.54 
273 s10×35×40 14000 47520 1.77 
274 s10×35×45 15750 53460 1.99 
275 s10×35×50 17500 59400 2.22 
276 s15×15×15 3375 11520 0.41 
277 s15×15×20 4500 15360 0.56 
278 s15×15×25 5625 19200 0.7 
279 s15×15×30 6750 23040 0.85 
280 s15×15×35 7875 26880 0.99 
281 s15×15×40 9000 30720 1.14 
282 s15×15×45 10125 34560 1.28 
283 s15×15×50 11250 38400 1.43 

 

Table A.3 (cont.): 3D solid element models with regular geometry 
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Model 
No. 

Model Name 
No. of 

Elements 
No. of Dofs 

Non-zero 
in K (1e6) 

284 s15×20×20 6000 20160 0.74 
285 s15×20×25 7500 25200 0.93 
286 s15×20×30 9000 30240 1.13 
287 s15×20×35 10500 35280 1.32 
288 s15×20×40 12000 40320 1.51 
289 s15×20×45 13500 45360 1.7 
290 s15×20×50 15000 50400 1.89 
291 s15×25×25 9375 31200 1.16 
292 s15×25×30 11250 37440 1.4 
293 s15×25×35 13125 43680 1.64 
294 s15×25×40 15000 49920 1.88 
295 s15×25×45 16875 56160 2.12 
296 s15×25×50 18750 62400 2.36 
297 s15×30×30 13500 44640 1.68 
298 s15×30×35 15750 52080 1.97 
299 s15×30×40 18000 59520 2.25 
300 s15×30×45 20250 66960 2.54 
301 s15×30×50 22500 74400 2.82 
302 s15×35×35 18375 60480 2.29 
303 s15×35×40 21000 69120 2.62 
304 s15×35×45 23625 77760 2.96 
305 s15×35×50 26250 86400 3.29 
306 s20×20×20 8000 26460 0.98 
307 s20×20×25 10000 33075 1.24 
308 s20×20×30 12000 39690 1.49 
309 s20×20×35 14000 46305 1.75 
310 s20×20×40 16000 52920 2 
311 s20×20×45 18000 59535 2.26 
312 s20×20×50 20000 66150 2.51 
313 s20×25×25 12500 40950 1.54 
314 s20×25×30 15000 49140 1.86 
315 s20×25×35 17500 57330 2.18 
316 s20×25×40 20000 65520 2.49 
317 s20×25×45 22500 73710 2.81 
318 s20×25×50 25000 81900 3.13 
319 s20×30×30 18000 58590 2.23 
320 s20×30×35 21000 68355 2.61 
321 s20×30×40 24000 78120 2.99 
322 s20×30×45 27000 87885 3.37 
323 s20×30×50 30000 97650 3.75 
324 s20×35×35 24500 79380 3.04 
325 s20×35×40 28000 90720 3.48 
326 s20×35×45 31500 102060 3.92 
327 s20×35×50 35000 113400 4.36 

 

Table A.3 (cont.): 3D solid element models with regular geometry 
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Model 
No. 

Model Name 
No. of 

Elements 
No. of Dofs 

Non-zero 
in K (1e6) 

328 s25×25×25 15625 50700 1.92 
329 s25×25×30 18750 60840 2.32 
330 s25×25×35 21875 70980 2.71 
331 s25×25×40 25000 81120 3.11 
332 s25×25×45 28125 91260 3.5 
333 s25×25×50 31250 101400 3.9 
334 s25×30×30 22500 72540 2.77 
335 s25×30×35 26250 84630 3.25 
336 s25×30×40 30000 96720 3.72 
337 s25×30×45 33750 108810 4.19 
338 s25×30×50 37500 120900 4.67 
339 s25×35×35 30625 98280 3.78 
340 s25×35×40 35000 112320 4.33 
341 s25×35×45 39375 126360 4.88 
342 s25×35×50 43750 140400 5.44 
343 s30×30×30 27000 86490 3.32 
344 s30×30×35 31500 100905 3.89 
345 s30×30×40 36000 115320 4.45 
346 s30×30×45 40500 129735 5.02 
347 s30×30×50 45000 144150 5.59 
348 s30×35×35 36750 117180 4.53 
349 s30×35×40 42000 133920 5.19 
350 s30×35×45 47250 150660 5.85 
351 s30×35×50 52500 167400 6.51 
352 s35×35×35 42875 136080 5.28 
353 s35×35×40 49000 155520 6.04 
354 s35×35×45 55125 174960 6.81 
355 s35×35×50 61250 194400 7.58 
356 s25×25×4 2500 8112 0.26 
357 s25×25×5 3125 10140 0.34 
358 s25×25×6 3750 12168 0.42 
359 s25×50×4 5000 15912 0.52 
360 s25×50×5 6250 19890 0.68 
361 s25×50×6 7500 23868 0.84 
362 s25×75×4 7500 23712 0.78 
363 s25×75×5 9375 29640 1.02 
364 s25×75×6 11250 35568 1.25 
365 s25×100×4 10000 31512 1.04 
366 s25×100×5 12500 39390 1.36 
367 s25×100×6 15000 47268 1.67 
368 s25×125×4 12500 39312 1.31 
369 s25×125×5 15625 49140 1.7 
370 s25×125×6 18750 58968 2.09 
371 s25×150×4 15000 47112 1.57 
372 s25×150×5 18750 58890 2.03 
373 s25×150×6 22500 70668 2.5 

 

Table A.3 (cont.): 3D solid element models with regular geometry 
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Model 
No. 

Model Name 
No. of 

Elements 
No. of Dofs 

Non-zero 
in K (1e6) 

374 s50×50×4 10000 31212 1.04 
375 s50×50×5 12500 39015 1.35 
376 s50×50×6 15000 46818 1.66 
377 s50×75×4 15000 46512 1.56 
378 s50×75×5 18750 58140 2.03 
379 s50×75×6 22500 69768 2.49 
380 s50×100×4 20000 61812 2.08 
381 s50×100×5 25000 77265 2.7 
382 s50×100×6 30000 92718 3.32 
383 s50×125×4 25000 77112 2.59 
384 s50×125×5 31250 96390 3.37 
385 s50×125×6 37500 115668 4.15 
386 s50×150×4 30000 92412 3.11 
387 s50×150×5 37500 115515 4.04 
388 s50×150×6 45000 138618 4.97 
389 s75×75×4 22500 69312 2.33 
390 s75×75×5 28125 86640 3.03 
391 s75×75×6 33750 103968 3.73 
392 s75×100×4 30000 92112 3.11 
393 s75×100×5 37500 115140 4.04 
394 s75×100×6 45000 138168 4.97 
395 s75×125×4 37500 114912 3.88 
396 s75×125×5 46875 143640 5.04 
397 s75×125×6 56250 172368 6.2 
398 s75×150×4 45000 137712 4.66 
399 s75×150×5 56250 172140 6.05 
400 s75×150×6 67500 206568 7.44 
401 s100×100×4 40000 122412 4.14 
402 s100×100×5 50000 153015 5.38 
403 s100×100×6 60000 183618 6.61 
404 s100×125×4 50000 152712 5.17 
405 s100×125×5 62500 190890 6.72 
406 s100×125×6 75000 229068 8.26 
407 s100×150×4 60000 183012 6.2 
408 s100×150×5 75000 228765 8.06 
409 s100×150×6 90000 274518 9.91 
410 s125×125×4 62500 190512 6.46 
411 s125×125×5 78125 238140 8.39 
412 s125×125×6 93750 285768 10.32 
413 s125×150×4 75000 228312 7.74 
414 s125×150×5 93750 285390 10.06 
415 s125×150×6 112500 342468 12.38 
416 s150×150×4 90000 273612 9.29 
417 s150×150×5 112500 342015 12.07 
418 s150×150×6 135000 410418 14.85 

 

Table A.3 (cont.): 3D solid element models with regular geometry  
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Model 
No. 

Model Name 
No. of 

Elements 
No. of Dofs 

Non-zero 
in K (1e6) 

419 f5×5×75 7200 16200 0.31 
420 f5×5×100 9600 21600 0.42 
421 f5×5×125 12000 27000 0.53 
422 f5×5×150 14400 32400 0.63 
423 f5×5×175 16800 37800 0.74 
424 f5×5×200 19200 43200 0.84 
425 f5×5×250 24000 54000 1.05 
426 f5×10×75 13575 29700 0.59 
427 f5×10×100 18100 39600 0.79 
428 f5×10×125 22625 49500 0.99 
429 f5×10×150 27150 59400 1.18 
430 f5×10×175 31675 69300 1.38 
431 f5×10×200 36200 79200 1.58 
432 f5×10×250 45250 99000 1.97 
433 f5×15×75 19950 43200 0.87 
434 f5×15×100 26600 57600 1.16 
435 f5×15×125 33250 72000 1.45 
436 f5×15×150 39900 86400 1.74 
437 f5×15×175 46550 100800 2.03 
438 f5×15×200 53200 115200 2.31 
439 f5×15×250 66500 144000 2.89 
440 f5×20×75 26325 56700 1.14 
441 f5×20×100 35100 75600 1.52 
442 f5×20×125 43875 94500 1.91 
443 f5×20×150 52650 113400 2.29 
444 f5×20×175 61425 132300 2.67 
445 f5×20×200 70200 151200 3.05 
446 f5×20×250 87750 189000 3.82 
447 f10×10×75 25575 54450 1.11 
448 f10×10×100 34100 72600 1.48 
449 f10×10×125 42625 90750 1.85 
450 f10×10×150 51150 108900 2.22 
451 f10×10×175 59675 127050 2.59 
452 f10×10×200 68200 145200 2.96 
453 f10×10×250 85250 181500 3.7 
454 f10×15×75 37575 79200 1.62 
455 f10×15×100 50100 105600 2.17 
456 f10×15×125 62625 132000 2.71 
457 f10×15×150 75150 158400 3.25 
458 f10×15×175 87675 184800 3.8 
459 f10×15×200 100200 211200 4.34 
460 f10×15×250 125250 264000 5.43 

Table A.4: 3D frame element models with regular geometry 

  



269 
 

Model 
No. 

Model Name 
No. of 

Elements 
No. of Dofs 

Non-zero 
in K (1e6) 

461 f10×20×75 49575 103950 2.14 
462 f10×20×100 66100 138600 2.86 
463 f10×20×125 82625 173250 3.57 
464 f10×20×150 99150 207900 4.29 
465 f10×20×175 115675 242550 5 
466 f10×20×200 132200 277200 5.72 
467 f10×20×250 165250 346500 7.15 
468 f15×15×75 55200 115200 2.38 
469 f15×15×100 73600 153600 3.18 
470 f15×15×125 92000 192000 3.97 
471 f15×15×150 110400 230400 4.77 
472 f15×15×175 128800 268800 5.57 
473 f15×15×200 147200 307200 6.37 
474 f15×15×250 184000 384000 7.96 
475 f15×20×75 72825 151200 3.14 
476 f15×20×100 97100 201600 4.19 
477 f15×20×125 121375 252000 5.24 
478 f15×20×150 145650 302400 6.29 
479 f15×20×175 169925 352800 7.34 
480 f15×20×200 194200 403200 8.39 
481 f15×20×250 242750 504000 10.49 
482 f20×20×75 96075 198450 4.14 
483 f20×20×100 128100 264600 5.52 
484 f20×20×125 160125 330750 6.91 
485 f20×20×150 192150 396900 8.29 
486 f20×20×175 224175 463050 9.68 
487 f20×20×200 256200 529200 11.06 
488 f20×20×250 320250 661500 13.83 
489 f10×10×10 3410 7260 0.14 
490 f10×10×15 5115 10890 0.22 
491 f10×10×20 6820 14520 0.29 
492 f10×10×25 8525 18150 0.37 
493 f10×10×30 10230 21780 0.44 
494 f10×10×35 11935 25410 0.51 
495 f10×10×40 13640 29040 0.59 
496 f10×10×45 15345 32670 0.66 
497 f10×10×50 17050 36300 0.74 

 

Table A.4 (cont.): 3D frame element models with regular geometry   
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Model 
No. 

Model Name 
No. of 

Elements 
No. of Dofs 

Non-zero 
in K (1e6) 

498 f10×15×15 7515 15840 0.32 
499 f10×15×20 10020 21120 0.43 
500 f10×15×25 12525 26400 0.54 
501 f10×15×30 15030 31680 0.65 
502 f10×15×35 17535 36960 0.75 
503 f10×15×40 20040 42240 0.86 
504 f10×15×45 22545 47520 0.97 
505 f10×15×50 25050 52800 1.08 
506 f10×20×20 13220 27720 0.56 
507 f10×20×25 16525 34650 0.71 
508 f10×20×30 19830 41580 0.85 
509 f10×20×35 23135 48510 0.99 
510 f10×20×40 26440 55440 1.14 
511 f10×20×45 29745 62370 1.28 
512 f10×20×50 33050 69300 1.42 
513 f10×25×25 20525 42900 0.88 
514 f10×25×30 24630 51480 1.06 
515 f10×25×35 28735 60060 1.23 
516 f10×25×40 32840 68640 1.41 
517 f10×25×45 36945 77220 1.59 
518 f10×25×50 41050 85800 1.77 
519 f10×30×30 29430 61380 1.26 
520 f10×30×35 34335 71610 1.47 
521 f10×30×40 39240 81840 1.69 
522 f10×30×45 44145 92070 1.9 
523 f10×30×50 49050 102300 2.11 
524 f10×35×35 39935 83160 1.71 
525 f10×35×40 45640 95040 1.96 
526 f10×35×45 51345 106920 2.21 
527 f10×35×50 57050 118800 2.46 
528 f15×15×15 11040 23040 0.47 
529 f15×15×20 14720 30720 0.63 
530 f15×15×25 18400 38400 0.79 
531 f15×15×30 22080 46080 0.95 
532 f15×15×35 25760 53760 1.11 
533 f15×15×40 29440 61440 1.27 
534 f15×15×45 33120 69120 1.43 
535 f15×15×50 36800 76800 1.58 
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Model 
No. 

Model Name 
No. of 

Elements 
No. of Dofs 

Non-zero 
in K (1e6) 

536 f15×20×20 19420 40320 0.83 
537 f15×20×25 24275 50400 1.04 
538 f15×20×30 29130 60480 1.25 
539 f15×20×35 33985 70560 1.46 
540 f15×20×40 38840 80640 1.67 
541 f15×20×45 43695 90720 1.88 
542 f15×20×50 48550 100800 2.09 
543 f15×25×25 30150 62400 1.29 
544 f15×25×30 36180 74880 1.55 
545 f15×25×35 42210 87360 1.81 
546 f15×25×40 48240 99840 2.07 
547 f15×25×45 54270 112320 2.33 
548 f15×25×50 60300 124800 2.59 
549 f15×30×30 43230 89280 1.85 
550 f15×30×35 50435 104160 2.16 
551 f15×30×40 57640 119040 2.47 
552 f15×30×45 64845 133920 2.79 
553 f15×30×50 72050 148800 3.1 
554 f15×35×35 58660 120960 2.51 
555 f15×35×40 67040 138240 2.88 
556 f15×35×45 75420 155520 3.24 
557 f15×35×50 83800 172800 3.6 
558 f20×20×20 25620 52920 1.09 
559 f20×20×25 32025 66150 1.37 
560 f20×20×30 38430 79380 1.65 
561 f20×20×35 44835 92610 1.92 
562 f20×20×40 51240 105840 2.2 
563 f20×20×45 57645 119070 2.48 
564 f20×20×50 64050 132300 2.75 
565 f20×25×25 39775 81900 1.7 
566 f20×25×30 47730 98280 2.04 
567 f20×25×35 55685 114660 2.39 
568 f20×25×40 63640 131040 2.73 
569 f20×25×45 71595 147420 3.07 
570 f20×25×50 79550 163800 3.42 
571 f20×30×30 57030 117180 2.44 
572 f20×30×35 66535 136710 2.85 
573 f20×30×40 76040 156240 3.26 
574 f20×30×45 85545 175770 3.67 
575 f20×30×50 95050 195300 4.08 
576 f20×35×35 77385 158760 3.31 
577 f20×35×40 88440 181440 3.79 
578 f20×35×45 99495 204120 4.27 
579 f20×35×50 110550 226800 4.75 

 

Table A.4 (cont.): 3D frame element models with regular geometry  
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Model 
No. 

Model Name 
No. of 

Elements 
No. of Dofs 

Non-zero 
in K (1e6) 

580 f25×25×25 49400 101400 2.11 
581 f25×25×30 59280 121680 2.54 
582 f25×25×35 69160 141960 2.96 
583 f25×25×40 79040 162240 3.39 
584 f25×25×45 88920 182520 3.82 
585 f25×25×50 98800 202800 4.24 
586 f25×30×30 70830 145080 3.03 
587 f25×30×35 82635 169260 3.54 
588 f25×30×40 94440 193440 4.05 
589 f25×30×45 106245 217620 4.56 
590 f25×30×50 118050 241800 5.07 
591 f25×35×35 96110 196560 4.11 
592 f25×35×40 109840 224640 4.71 
593 f25×35×45 123570 252720 5.3 
594 f25×35×50 137300 280800 5.89 
595 f30×30×30 84630 172980 3.62 
596 f30×30×35 98735 201810 4.23 
597 f30×30×40 112840 230640 4.83 
598 f30×30×45 126945 259470 5.44 
599 f30×30×50 141050 288300 6.05 
600 f30×35×35 114835 234360 4.91 
601 f30×35×40 131240 267840 5.62 
602 f30×35×45 147645 301320 6.33 
603 f30×35×50 164050 334800 7.04 
604 f35×35×35 133560 272160 5.71 
605 f35×35×40 152640 311040 6.54 
606 f35×35×45 171720 349920 7.36 
607 f35×35×50 190800 388800 8.18 
608 f25×25×4 7904 16224 0.32 
609 f25×25×5 9880 20280 0.4 
610 f25×25×6 11856 24336 0.49 
611 f25×50×4 15604 31824 0.63 
612 f25×50×5 19505 39780 0.79 
613 f25×50×6 23406 47736 0.96 
614 f25×75×4 23304 47424 0.93 
615 f25×75×5 29130 59280 1.19 
616 f25×75×6 34956 71136 1.44 
617 f25×100×4 31004 63024 1.24 
618 f25×100×5 38755 78780 1.58 
619 f25×100×6 46506 94536 1.91 
620 f25×125×4 38704 78624 1.55 
621 f25×125×5 48380 98280 1.97 
622 f25×125×6 58056 117936 2.38 
623 f25×150×4 46404 94224 1.86 
624 f25×150×5 58005 117780 2.36 
625 f25×150×6 69606 141336 2.86 

 

Table A.4 (cont.): 3D frame element models with regular geometry  
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Model 
No. 

Model Name 
No. of 

Elements 
No. of Dofs 

Non-zero 
in K (1e6) 

626 f50×50×4 30804 62424 1.23 
627 f50×50×5 38505 78030 1.57 
628 f50×50×6 46206 93636 1.9 
629 f50×75×4 46004 93024 1.84 
630 f50×75×5 57505 116280 2.34 
631 f50×75×6 69006 139536 2.83 
632 f50×100×4 61204 123624 2.45 
633 f50×100×5 76505 154530 3.11 
634 f50×100×6 91806 185436 3.77 
635 f50×125×4 76404 154224 3.06 
636 f50×125×5 95505 192780 3.88 
637 f50×125×6 114606 231336 4.7 
638 f50×150×4 91604 184824 3.67 
639 f50×150×5 114505 231030 4.65 
640 f50×150×6 137406 277236 5.64 
641 f75×75×4 68704 138624 2.75 
642 f75×75×5 85880 173280 3.49 
643 f75×75×6 103056 207936 4.23 
644 f75×100×4 91404 184224 3.66 
645 f75×100×5 114255 230280 4.64 
646 f75×100×6 137106 276336 5.63 
647 f75×125×4 114104 229824 4.57 
648 f75×125×5 142630 287280 5.8 
649 f75×125×6 171156 344736 7.02 
650 f75×150×4 136804 275424 5.48 
651 f75×150×5 171005 344280 6.95 
652 f75×150×6 205206 413136 8.42 
653 f100×100×4 121604 244824 4.87 
654 f100×100×5 152005 306030 6.18 
655 f100×100×6 182406 367236 7.48 
656 f100×125×4 151804 305424 6.08 
657 f100×125×5 189755 381780 7.71 
658 f100×125×6 227706 458136 9.34 
659 f100×150×4 182004 366024 7.28 
660 f100×150×5 227505 457530 9.24 
661 f100×150×6 273006 549036 11.2 
662 f125×125×4 189504 381024 7.58 
663 f125×125×5 236880 476280 9.62 
664 f125×125×6 284256 571536 11.66 
665 f125×150×4 227204 456624 9.09 
666 f125×150×5 284005 570780 11.54 
667 f125×150×6 340806 684936 13.98 
668 f150×150×4 272404 547224 10.9 
669 f150×150×5 340505 684030 13.83 
670 f150×150×6 408606 820836 16.76 

 

Table A.4 (cont.): 3D frame element models with regular geometry 
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A.2  Test Problems with Irregular Geometry 

Figure A.6 shows selected 2D test problems with irregular geometries. FE Models 

shown in Figure A.6 are for quadrilateral elements. FE Models with frame elements have 

the same geometry. Figure A.7 shows selected 3D test problems with irregular 

geometries. FE Models shown in Figure A.7 are for solid elements. FE Models with 3D 

frame elements have the same geometry.   

Figure A.8 shows the non-zero pattern for the test problem q-varying-4. Similarly, 

Figure A.9 shows the non-zero pattern for the test problem s-bldg58. 
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Figure A.6: Selected 2D test problems with quadrilateral elements.    
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Figure A.7: Selected 3D test problems with solid elements.   
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Figure A.8: Non-zero pattern for the test problem q-varying-4 (original ordering 

and AMD matrix ordering). 
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Figure A.9: Non-zero pattern for the test problem s-bldg58 (original ordering and 

AMD matrix ordering).     
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Model Name 
No. of 

Elements 
No. of 
Dofs 

Non-zero 
in K (1e6) 

q5×3 54600 117090 1.06 
q5×5 91000 195150 1.77 
q5×10 182000 390300 3.55 
q5×15 273000 585450 5.32 
q5×20 364000 780600 7.1 
q10×3 101850 218460 1.98 
q10×5 169750 364100 3.31 
q10×10 339500 728200 6.62 
q10×15 509250 1092300 9.93 
q10×20 679000 1456400 13.24 
q20×3 196350 421200 3.82 
q20×5 327250 702000 6.38 
q20×10 654500 1404000 12.76 
q20×15 981750 2106000 19.14 
q20×20 1309000 2808000 25.52 

q-varying-1 55900 112060 1.05 
q-varying-2 229550 459980 4.35 
q-varying-3 279500 560300 5.3 
q-varying-4 450700 903920 8.56 
q-varying-5 987500 1980700 18.77 
q-varying-6 1975000 3961400 37.55 

Table A.5: 2D quadrilateral element models with irregular geometry    
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Model Name 
No. of 

Elements 
No. of 
Dofs 

Non-zero 
in K (1e6) 

f5×3 111930 175635 1.34 
f5×5 186550 292725 2.23 
f5×10 373100 585450 4.47 
f5×15 559650 878175 6.7 
f5×20 746200 1170900 8.93 
f10×3 208680 327690 2.5 
f10×5 347800 546150 4.16 
f10×10 695600 1092300 8.32 
f10×15 1043400 1638450 12.49 
f10×20 1391200 2184600 16.65 
f20×3 402180 631800 4.81 
f20×5 670300 1053000 8.02 
f20×10 1340600 2106000 16.03 
f20×15 2010900 3159000 24.05 
f20×20 2681200 4212000 32.07 

f-varying-1 111930 168090 1.33 
f-varying-2 459540 689970 5.51 
f-varying-3 559650 840450 6.71 
f-varying-4 902660 1355880 10.83 
f-varying-5 1977850 2971050 23.73 
f-varying-6 3955700 5942100 47.48 

Table A.6: 2D frame element models with irregular geometry   
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Model Name 
No. of 

Elements 
No. of 
Dofs 

Non-zero in 
K (1e6) 

s-3×1-5 47600 191355 6.48 
s-5×1-5 72800 292725 9.92 
s-10×1-5 135800 546150 18.5 
s-3×1-10 119000 420981 15.44 
s-5×1-10 182000 643995 23.62 
s-1×1-20 112000 377937 14.28 

s-shorter-1×1-20 40000 136017 5.07 
s-shorter-1×1-40 80000 265557 10.06 

s-I-section-1 52500 191925 6.88 
s-I-section-2 24500 89565 3.18 
s-I-section-3 105000 383850 13.81 

s-bldg58 84768 351150 11.64 
s-bldg59 79488 307920 10.64 

s-columns-on-slab-1 9056 31050 0.58 
s-columns-on-slab-2 37280 117750 4.08 

s-varying3d-1 16680 53100 1.89 
s-varying3d-2 48600 157674 5.93 
s-varying3d-3 58320 188520 7.15 
s-varying3d-4 70920 224340 8.68 
s-varying3d-5 38808 122598 4.65 
s-varying3d-6 25944 83178 3.06 
s-varying3d-7 11476 38985 1.26 

Table A.7: 3D solid element models with irregular geometry    
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Model Name 
No. of 

Elements 
No. of 
Dofs 

Non-zero in 
K (1e6) 

f-3×1-5 172090 382710 7.45 
f-5×1-5 262990 585450 11.38 
f-10×1-5 490240 1092300 21.2 
f-3×1-10 393610 841962 16.93 
f-5×1-10 601510 1287990 25.86 
f-1×1-20 359910 755874 15.46 

f-shorter-1×1-20 126870 272034 5.38 
f-shorter-1×1-40 249670 531114 10.58 

f-I-section-1 182325 383850 7.81 
f-I-section-2 85085 179130 3.63 
f-I-section-3 364650 767700 15.64 

f-bldg58 300200 702300 12.75 
f-bldg59 257304 615840 10.6 

f-columns-on-slab-1 29630 62100 1.02 
f-columns-on-slab-2 115650 235500 4.73 

f-varying3d-1 52060 106200 2.15 
f-varying3d-2 153606 315348 6.54 
f-varying3d-3 183880 377040 7.85 
f-varying3d-4 220420 448680 9.41 
f-varying3d-5 120506 245196 5.1 
f-varying3d-6 81350 166356 3.42 
f-varying3d-7 37359 77970 1.52 

Table A.8: 3D frame element models with irregular geometry  
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APPENDIX B : 

UTILITY PROGRAMS 

In addition to the direct solver package SES, the following programs are 

developed throughout this study:  

• Utility Library 

The utility library provides abstractions for dense matrices (packed and full), 

handling sparse indices, multithreading, assembly on dense matrices, and partial 

factorization operations. The MKL library is linked to the utility library. Therefore, there 

is no connection between the direct solver package and the BLAS libraries. The direct 

solver package calls the factorization subroutines in the utility libraries, which makes the 

BLAS library calls (MKL).  

• Input Generator 

An input generator is developed to easily create test problems with different 

geometries. The input generator creates models with unit size elements. The input 

generator can be used to create models with 2D quadrilateral, 2D frame, 3D solid and 3D 

frame elements. Models with regular prismatic geometries can be created easily using 

command line arguments. For irregular geometries, an input file is required. The output 

of the input generator is an input file for the direct solver package, which contains 

element stiffness matrices, element connectivity information, node coordinates and 

support conditions.  

• Input Converter 

The input converter converts a SES input file to the matrix market coordinate 

sparse matrix format [156].  
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• SES Viewer 

SES Viewer is a 3D visualization tool for the test problems and results of the 

preprocessing algorithms. It employs OpenSceneGraph library [157] for 3D graphics. All 

figures illustrating the geometry of the test problems are produced using SES Viewer. 

Furthermore, any pivot-ordering found in the preprocessing phase can be monitored in a 

step-by-step fashion using the 3D GUI of the SES Viewer. Figure B.1 shows a screenshot 

from SES Viewer. 

 

 

Figure B.1: A screenshot from SES Viewer. A 3D cubic model is at the top and 

the monitoring of a pivot-ordering for the model is at the bottom.  
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• BLAS/LAPACK Performance Evaluation 

The performance of BLAS and LAPACK subroutines in the MKL library can be 

evaluated using the performance evaluation program. This program executes the desired 

BLAS/LAPACK subroutine repeatedly inside a loop. The execution time of the 

subroutine is recorded. The program gives the speed of a BLAS/LAPACK by dividing 

the operation count required for the subroutine by the execution time.  

• Partial Factorization Simulator  

This program takes an assembly tree and simulates the partial factorization 

operations using corresponding BLAS/LAPACK subroutines. It gives the partial 

factorization time for an assembly tree. It also gives the operation counts for the partial 

factorization and average partial factorization speeds.  
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