HIGH-PERFORMANCE DIRECT SOLUTION
OF FINITE ELEMENT PROBLEMSON
MULTI-CORE PROCESSORS

A Dissertation
Presented to
The Academic Faculty

by

Murat Efe Guney

In Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy in the
School of Civil and Environmental Engineering

Georgia Institute of Technology
August 2010



HIGH-PERFORMANCE DIRECT SOLUTION
OF FINITE ELEMENT PROBLEMSON
MULTI-CORE PROCESSORS

Approved by:

Dr. Kenneth M. Will, Advisor Dr. Richard Vuduc

School of Civil and Environmental School of Computational Science and
Engineering Engineering

Georgia Institute of Technology Georgia Institute of Technology

Dr. Donald W. White Dr. Ozgur Kurc

School of School of Civil and Civil Engineering Department
Environmental Engineering Middle East Technical University,
Georgia Institute of Technology Ankara, Turkey

Dr. Leroy Z. Emkin

School of School of School of Civil and
Environmental Engineering

Georgia Institute of Technology

Date Approved: May 3, 2010



ACKNOWLEDGEMENTS

First and foremost, | would like to thank my advidor. Kenneth M. Will, for his
support and patience. I'm grateful for his contimsiqguidance and trust. He always
encouraged me to explore different fields and nragiePhD experience as exciting as it
could be. Under his supervision, I've got more thdrat I've dreamed.

| also would like to thank Dr. Richard Vuduc forshsupport and guidance. He
provided me insights about various topics in higinffprmance computing. I'm also
grateful to him for giving me access to his compusources.

| also would like to thank Dr. Ozgur Kurc. His prews work provided me insight
about parallel computing in structural mechanicsie Fyears ago, it all started with
reading his thesis and browsing his code.

| also would like to thank Dr. Donald White for hisupport and
recommendations. | admire his knowledge and ingpiral will miss our discussions
about structural stability and second-order analysi

| also would like to thank Dr. Leroy Emkin for talg the time to serve on my
qualifications and committee. His comments and goes make me to continuously
increase the size of my test problems.

| would like to thank my friend and roommate, CaQagur, for his never-ending
support. He is in half of my fun memories of thestpa years. | also wish to thank Erinc
Atilla for being a true friend for more than 20 yga/Ne owe him a lot for his support and
guidance after we came to A-town. | also express dagpest gratitude to Sorian

Enriquez for her support and caring. Furthermoreould like to thank my office mates,



Gwang-Seok Na, Ben Deaton, Jong-Han Lee, Mustafakaaa, Jennifer Modugno and
Jennifer Dunbeck. Delicious cakes baked by Jersifggve me the energy required to
finish this dissertation. | also would like to tlkaall of my colleagues in School of Civil
& Environmental Engineering, especially Jie-Eun Hdon Hurff, Andres Sanchez,
Gence Genc, Masahiro Kurata, Sibel Kerpicci, YoarkXim, Shane Johnson, Towhid
Ahammad, Murat Engindeniz, Yavuz Mentes, llker kKalk Cem Ozan, Juan Jimenez,
Akhil Sharma, Robert Moser, Murat Eroz, and Ozam@=lik.

Words cannot express my heartfelt gratitude to elgued parents, Sevtap Guney
and Sukru Guney, and my dearest brother, Emre Guvtey reviewed some parts of this
dissertation. None of this would have been possilifleout their unconditional love and

support.



TABLE OF CONTENTS

ACKNOWLEDGEMENTS ...t e e e e e ii
LIST OF TABLES ... .ottt e e e e e e e e e e nrn e iX
LIST OF FIGURES ... eeeeee et e e e e e e eneaans Xii
SUMMARY e et e e s XXii
CHAPTER 1 INTRODUCTION ....uuiiiiiiiiiie ettt e e e e e e e e e esmme s 1
1.1 Problem Definition............eviiiiiiiiiseeee e 1
1.2 BacKgroUNnd ... e 2
1.2.1 High-Performance COMPULING......ccccoieieiiiceeeeeiieieeee e e e e eeeeeeeeeeeaneeens 2
1.2.2 Multi-core and Many-Core ProCeSSOIS ........cuuuuuuiiiiieeeeeeeeiieeeeeeiannns 5
1.2.3 Solution of Linear System of Equations .......ccccceeeeeeeeeiiivvieeeeeiinns 10

1.2.4 Direct Methods for Sparse Linear SysStems ... voeeeeeeiiieeneennnn. 11

1.2.5 Parallel DireCt SOIULION .....cu.eeeiee e 20
1.2.6 Substructure Level ParalleliSm ..........oviccee e 21
1.2.7 Survey of Sparse Direct SOIVErS ..........oocceeeeeeieiiiiieeen 23

1.2.8 Design of the Solver Packages..............meeeerniiiiiinieeeeeeeneeeeeen. 26

1.3 ODbjJeCtiVe and SCOPE .....coveiieeeeeeeie e mmmmm s e e e e e e e e e e e e e e eeeeeaaeeen s eeean 30
1.4 ThesSiS OULIINE ...ttt e eee e 34
CHAPTER 2 PERFORMANCE, IMPLEMENTATION, AND TESTING
METHODOLOGY ...ttt oo e ettt e e e e e e st e e e e e e s tbae e e e e eeeennnns 35
2.1 High-Performance Sparse Direct Solution.........cc...vviiiiiiiiiiieeeeeereeeeeiiiins 35
2.2 Other Considerations for Achieving High-Performance.......................... 38
2.3 Performance EValuation..............c..eeei e eeeeessiiieie e 41
2.4 Software OPtMIZatioN .......coooieiiiiiii e eceee e 45



2.5 Implementation of the Solver Package .......ccccoeiiiiiiiiiiiiiiiiiii 46
2.6 TSt SUIES ...ttt e e e 49
CHAPTER 3 PREPROCESSING PHASE ... 29
3.1 Graph Representation of the Structures ..........ccoevvvvveiiiiiiiciiiiee e, 59
3.2 Initial NOde NUMDEING ...cuuuiiiiiiiiee e eeennees 63
3.3 Matrix Ordering Programs.............uuuuuurmmmmmmeiniieeeeeeeeeeeseeeeseennnnnnnnnn 65
3.4 Graph PartitionNing..........uuuuuuuuuies i e e e ee et ee e e e 68
3.5 MeSh COAISENING ...cociieeeeeeeiieeeeeeeeee sttt e e e e e e e e e e e e aaeeeeeeessnennns 72
3.6 Object Oriented Design of the Preprocessing Phase.............cccceevvvivnnnes 81
CHAPTER 4 ANALYSIS PHASE ... ..o et 84
4.1 Data SIUCLUIES .....ouiiiiiiiiii e immmmmmr s e e e e e e e e e e e ee b ennanneees 84
4.1.1 ASSEMDIY TIEE ..o e e e e e e e e e e 84
4.1.2 SUPEVaNabIES.....ccooiii e 88
4.1.3 Factors, Frontal Matrix, and Update Matrix Stack....................... 89
4.1.4 Frontal MatrixX INAICES..........uuuiiiiiiiiiiiieeeeiiieeeee e 92
4.2 Node AMAlgamation ...........uuueiiiiieeeeeeeeeeeeiiiirs e e e e e e e e e e eeeeeeearaeeeennn—.- 94
4.3 NOde BIOCKING .....ooviiiiiiii e 96
4.4 Estimation of the Factorization TiMe ........cceeeeiiiiiiiieee e 103
4.4.1 Partial Factorization TIMe.........ooooiii e 104
4.4.2 Serial Factorization TIME...........oocuvveemmmmm e e e 112
4.4.3 Multithreaded Factorization TiMEe ............ooumeeeeeemimmmmmeeeeeieeeeeenns 118
72N Y \V/ =T o] o1 g To J07Y o o 11 1 o 4 120
4.6 SYmDOIIC FaCLOrZAtiON .....ccceeiiiiieeeii s s e e e e e e e e e e e eeeeeeeeanee e 125
CHAPTER 5 FACTORIZATION & TRIANGULAR SOLUTION PHASE .............. 127
5.1 Numerical FaCtOMNZAatioN............cccoeiiiii et 127

Vi



5.2 Triangular SOIUtION ..........oooiiiiiiiiiii e eeees 136

5.2.1 Forward Elimination ............couviuiiiiiiiieeee e e e 136
5.2.2 BacCK SUDSHTULION ....uuuiiiiiieeeeeeece e et 143
5.3 Using a File Storage for the FaCtors ........cccceeveeeiiiiiiiiieeeeceee e 148

CHAPTER 6 PERFORMANCE OF VARIOUS ALGORITHMS...vvciiiiiiiiieeeeen. 153

6.1 Performance of Matrix Ordering Programs ....ccecceeooooeeeeeeeeeeeeeeeveeeennnnnn. 153
6.1.1 Program Parameters ..........cooooiiiiiiin e 153
6.1.1.1 Graph COmMPreSSION........uuuuuiiiiiiieeee e e 153

6.1.1.2 Nested Dissections Stopping Critena;tnum, for HAMF .... 155

6.1.1.3 Node Amalgamation within SCOTCH Library .................. 156

6.1.1.4 Multiple Elimination Parametedelta, in MMD...................... 157
6.1.2 Effect of Initial Node NUMDEriNg .............ommmmeeeeeeeeeeeeeeiiiiiinnnnn 158
6.1.3 Matrix Ordering for Serial Factorization ..................euvvviiiiennnnnnn. 164

6.1.3.1 2D MOUAEIS .....uviiiiiiiiiiiiiiiiiieeee e 164

6.1.3.2 3D MOAEIS .....ouiiiiiiiiiiiiiiiiice e 170

6.1.3.3 Transition between 2D and 3D..........cceenvceeeeevneeneennnnn... 180

6.1.4 Matrix Ordering for Parallel Factorization .............cccceevvvveviniinnne 182
6.2 Execution Time of AnalysiS PhasSe ...........comeeeeiiiiiiiieeeeeeiciiiieiiiiiiinnnns 187
6.3 Optimal COArSENING .......cciiiiiiiiiiiiiiirer e 190
6.4 Optimal Node Amalgamation ...........ccoooeeeeeemmmeiiiiee e 199
6.5 Partitioning for Parallel Processing ..........ocoovviiiiiiiiiiiiiiineeeeeeceeeeeeiiiee 20
6.6 Cut-off for Node BIOCKING ........uuuuumiiiii i e e e e e 204
6.7 DisSCUSSION Of RESUILS .......coviiiiiiiiiiii e 208
CHAPTER 7 SOLVER PERFORMANCE ...t 210
7.1 IN-COME SOIVET....uuiiiiiiiiiiiiiiiee e e s ettt e e e e e e e e e 210

Vil



T. 1L SEHAI SOIVEE ... e et 1@
7.1.2 MUIthreaded SOIVEL .....oneeie e 221

7.1.3 Analysis of the Multithreaded Performance ......cccccvvvuunnnnn... 228

7.2 OUL-Of-COIE SOIVET ....cceiiiiiiiiiii et 235
CHAPTER 8 FACTORIZATION USING A GPGPU ...t 239
8.1 GPGPU COMPULING .evvviiiiiiiiieiie e eeeeeeeeeeeeeee e ee e e e e e e e e aaeeees 239
8.2 Partial Factorizations on GPGPUS............cueiiiiiiiiiiiiie 239
CHAPTER 9 SUMMARY AND FUTURE DIRECTIONS.......ccaeiiiiiieeeeeeen 244
9.1 Summary and CONCIUSIONS .......oiiiiiiiiiieiiiieeieeeee e r4
9.2 Recommendations for FUture Work.............cccccceuvvieeeeeiiniieeiee e 248
AppendiX A: TEST PROBLEMS ........oiiieeeeeeeeee et ee e 252
A.1 Test Problems with Regular Geometry.........ccccceeeiiiiiieieeeiiiiccceeeee e 252
A.2 Test Problems with Irregular GEOMELrY ......coeeeiiiiiiiiiiiiiiiiiieeee e 274
Appendix B: UTILITY PROGRAMS .......ooiiiiiiiiiieeeiiiiiieeeeet e 283
REFERENGCES ... ettt e e e e e e e e 286

viii



Table 1.1:

Table 2.1:

Table 2.2:

Table 2.3:

Table 2.4:

Table 2.5:

Table 2.6:

Table 2.7:

Table 3.1:

Table 3.2:
Table 3.3:
Table 3.4:
Table 3.5:
Table 3.6:
Table 3.7:

Table 3.8:

LIST OF TABLES

Features of the direct sparse SOIVEGIES ............eeiiiiieiiiiiiiiiiiieeeeiiiee 24

Four-thread execution time of the sopamkage for alternative matrix
ordering programs. Test problem is 50x10000 grith ®D 4-node
guadrilateral elements. All units are SECONAS. o .cevveeeeevviiiiiiiiiiin, 39

Four-thread execution time of the sopaskage for alternative matrix
ordering programs. Test problem is 30x30x30 grith\8D 8-node solid
elements. All UNItS are SECONMS. ........uuummmmeeiriiiiiieeeee e e e e e e e e eeeeeeeaaaeanns 40

An illustrative example for performarptets. The values for a performance
criterion are shown for three configurations angrfimodels. ..................... 43

Test problems with regular geometries tlan be solved using 8 Gbyte main
MEMOTY ONIY. 1ottt s e e e e e e e e e e s smmmenr s s e e e e e e e eeeeeeeeeeeessesssennnnnnnes 52

Benchmark suite of 40 test problems. t€kesuite is used to tune the solver
72103 = T 1= U 53

Statistics for the benchmark suite Bitarge problems. Benchmark suite is
used to evaluate the performance of the in-congisaol. ............................ 54

Statistics for the benchmark suite \Bitrery large problems. Benchmark suite
is used to evaluate the performance of the oubod-solution. .................. 54

Effect of explicit partitioning on themerical factorization times for the

problem g500X500. .........ccceiiiiiiiiieeie e ————- 71

Performance of the element based caagseoheme for g500x500............. 78
Performance of the node based coarseolmgme for g500x500.................. 79
Performance of the element based caagseoheme for f500x500. ............ 79
Performance of the node based coarseomgme for f500x500. ................. 79
Performance of the element based caaggeoheme for s15x15%250......... 80
Performance of the node based coarseolmgme for s15x15x250.............. 80
Performance of the element based caagseoheme for f20x20x20. .......... 80



Table 3.9:
Table 4.1:

Table 4.2:

Table 4.3:

Table 4.4:

Table 4.5:

Table 4.6:

Table 4.7:

Table 4.8:

Table 5.1:

Table 5.2:

Table 5.3:

Table 5.4:

Table 6.1:

Table 7.1:
Table 7.2:

Table 7.3:

Table 7.4:

Performance of the node based coarseolmgme for f20x20x20. ............... 81
Effect of node amalgamation for f500%X500............cccovvvvvvviiiiiiiiiiinnenn. 95

Profile information for the multifronti&ctorization of f500x500, without
[gToTo L= o] [T (1 T PSS 97

Profile information for the multifrontictorization of f500x500 with node
BIOCKING ... 102

The cut off point for the node blockiiog the test problem f500x500........ 103

Example table for partial factorizatgpeeds of different frontal matrix sizes.
Table values are given in GFIOP/SEC. ......ccceeeeiiiiee e 107

Partial factorization time estimatiooséxecuting MKL kernels with a single
1101 €27 Vo R PUPURRRRP 109

Partial factorization time estimatioaséxecuting MKL kernels with four
ENFEAUS. .ot ———————— 112

Choosing the best pivot-ordering amdtegraatives based on the estimated
factorization time (f75X150X5) .......ccuuiiiiimiumiiiiiiiiiiieee e 118

For frontal matrices with differem/nr ratios, the operation counts for
computingL g, Lo andS given in terms of total operation count for the

partial faCtoriZatioN ............eeiiiie e e e e e e e ————- 130
Assembly tree statistics for the exangdé problems..........cccceeeeiviieennnnn. 113
Arithmetic operation counts for the @aiation of the example test problems

........................................................................................................... 131
For example test problems, operatiomtsofor the forward elimination with

100 RHS VECIOIS ...ttt ee et e e e e e 139
Performance of matrix ordering progra&i and HMETIS for 3D frame

models with different average node adjacencies..........cccccuvvvvveiinnnnnn. 177
Serial execution time of the differehaipes of the SES solver.................... 216
Serial execution time of the differehaipes of the PARDISO solver.......... 217

Preprocessing configuration that prodube best estimated serial
factorization times for the benchmark suite of @éatest problems. ........ 218

Preprocessing configuration that prodube best estimated four-thread
factorization times for the benchmark suite witla@e test problems. .... 225



Table 7.5: Serial and multithreaded memory requetets of the SES factorization. ... 228

Table 7.6: 8 very large test problems used foruatalg the performance of the out-of-

(o] (=101 1VL=] FRTT TR 235

Table 8.1: Test problems used to evaluate the pedioce of GPGPU accelerated partial

Table A.1:
Table A.2:
Table A.3:
Table A.4:
Table A.5:
Table A.6:
Table A.7:

Table A.8:

FACTOMZALION ... 242
2D quadrilateral element models withulaggeometry.............cccevvvvvvineees 258
2D frame element models with regulargesy ............ccccvvviiiiviiciiinneenn. 260
3D solid element models with regularmetry ..............ccccoeeevviivvieviiinnnnns 226
3D frame element models with regularmgeny ...........ccccceeeveiiiiieeiieinnnnee. 268
2D quadrilateral element models witegular geometry ............ccccceeeeennn. 279
2D frame element models with irregul@ognetry ............cccceeeeiieeeeeneneeennn. 280
3D solid element models with irregulaogetry............ccceeeeeiiiieeeiiiiiinnnnns 281
3D frame element models with irregul@oetry ........ccccooeeeeeeiiiiiiiiiiiiiinns 282

Xi



Figure 1.1:

Figure 1.2:

Figure 1.3:

Figure 1.4:

Figure 1.5:

Figure 1.6:

Figure 1.7:

Figure 2.1:

Figure 2.2:

Figure 2.3:

Figure 2.4:
Figure 2.5:
Figure 2.6:

Figure 2.7:

Figure 2.8:

LIST OF FIGURES

Page
The performance of MKL BLAS subroutin€sst runs are performed on
Intel Core 2 Quad Q6600 using only one CPU COfEuervvvrviiiiiieeeeeeeeeeen, 4
Example SMP dual-core processor. Cacesss the memory via the shared
DUS. e ————— 5
A possible architecture for a NUMA SYBL..........cooviiiiiiiiiiiiiiieeee e 6
Example heterogeneous multi-core psmras The system has two sockets
with quad-core processors and two GPUs availallgdoeral purpose
(o0 101 01U 1 {1 o R OSSP 8
Variable band and band storage schemanfexample problem. ................ 11
For the example problem in Figure thB,supernode partitioning of the
stiffness matrix. Supernodes are marked with tdeshed lines. ............... 13
The assembly tree for a condensatiqunesee of a sample mesh................ 16
The flop/non-zero ratios for 2D gridaets with 4-node quadrilateral
elements. There are 2 dofs per NOde. .....oooeceeeiiiiiiiiii s 36
For University of Florida Sparse Mat@gllection [114], relative
performance of the BLAS based factorization andnitve-BLAS based
factorization. Figure is taken from Chen et al.][92...........ovvviiiiiiiiinnnnnn. 37
Normalized performance plots for thestrative example given in Table 2.3.
............................................................................................................. 44
Performance profile for the illustratigxample given in Table 2.3.............. 44
An iteration for the performance op#iation [124] ............coevvvvvvvvvniennn. 45
Main components of the SES solver pgeka.............ccccccceeeiiiennnnne 48,
For 3D solid and 3D frame elements,103+40 FE models with regular
JEOMEBLIIES ..ottt e e e e e e e e e e e e e e eeeeeeeesebbessnnnnnsnee 52
Large test problems. ... cceeeeec s 55

Xii



Figure 3.1:

The graph representation of the sti#$maatrix of the simple structure with 8
nodes. (a) the simple structure (b) stiffness mdtn the simple structure,

(c) the elimination graph for the stiffness matitkere are two dofs at each
node other than the nodes with the SUPPOMS. ceeeeeeevvvvvviiciiiii e 60

Figure 3.2 Graph representations of an exampletsiier (a) supervariable graph, (b)

Figure 3.3:

Figure 3.4:

Figure 3.5:

Figure 3.6:

Figure 3.7:

Figure 3.8:

Figure 3.9:

element communication graph, and (c) dual graph............ccccovvvvvvvnnnnns 62

The initial numbering of the nodes loase the coordinate information of an
EXAMPIE SITUCTUIE. ..uveeiii e ceeeeeer e e e e e 64

Partitions found with the HMETIS hybddiering for q100x100. Non-zero =
1.285E6 for the hybrid ordering with the partitiatgstrated above. ......... 69

64 partitions found with METIS recuesinested dissections on the element
communication graph for g100x100. Non-zero = 1.6¥&fer ordering
partitions and separators With AMF. ..o 70

64 partitions found with METIS recussivested dissections on the
supervariable graph for q100x100. Non-zero = 1.%/&fer ordering
partitions and separators With AMF. .........coeeeeiiiiiiiiiiiiiee e 70

Element based coarsening for a samgertesh. Each row in the figure
illustrates selecting an eligible element and nreggf with its adjacent
BIEBMEBNLS. .. e 74

Node based coarsening for a samplentedh. There is a node at each corner
of an element and bottom nodes are fully restraigadh row in the figure
illustrates selecting an eligible node and merghegelements connected to

PRSPPI 75
The element based coarseningltmo=1, 2, and 4 from left to right
respectively. The original model is q50x50. Eachestelement in the
coarsened mesh is painted with a different calar.............cccooovvvvvinnnnnnnn. 76

Figure 3.10: The node based coarseningnédeco=1, 4, and 8 from left to right

respectively. The original model is g50x50. Eacpestelement in the

coarsened mesh is painted with a different calQrt............ccccccooooeeeinnnnniin. 76
Figure 3.11: Main classes for the preprocessingauge of the SES solver.................... 83
Figure 4.1: The implementation of the assembly. tireen the tree.hh library

documentation [L37]. ..cccoeviiiiieeeiiiiii i cmmmmm e e e e e e e 86
Figure 4.2: Assembly tree structure for the exardplé mesh. The gray nodes represent

the finite elements in the model. There are folntr®es processed by
different threads. ..........evveeeiiii e 87

Xiii



Figure 4.3: The supervariables for four elemerdtated from the rest of a FE mesh. ... 89
Figure 4.4: Data structures used for multifront&thod. ....................coeeeiiiiiiiiiivs oo 91

Figure 4.5: The global and local indices for tharaple assembly tree nodes. The local
indices for children are shown on the left of thenfal matrices. ............... 93

Figure 4.6: The c++ code that uses local indiceshfe assembly of update matrices. ... 97

Figure 4.7: An example assembly tree node andhitdren. The parent node is the root
of the assembly tree. The local indices for theai®mg nodes at the
Children are SNOWN. ..........uiiiiiiiiiiiiiieee e 100

Figure 4.8: Node sets for the remaining nodeseatttildren for the example tree nodes.

........................................................................................................... 101
Figure 4.9: Node blocks found for the example asdgtnee nodes ..........ccceeveeeeeeeen. 101
Figure 4.10: Performance of partial factorizatiop,to 1000 remaining variables. ...... 105

Figure 4.11: Performance of partial factorizatibetween 1000 and 10000 remaining
VANADIES. .o 106

Figure 4.12: The approximation of the partial faitation speed;’, based on the known
VaAlUBS OfZ. . 08L

Figure 4.13: Partial factorization speedups usmg threads (flop is between 0 and 1E9)
........................................................................................................... 111

Figure 4.14: Partial factorization speedups usoug threads (flop is between 1E9 and
K] ) RSP EPRRSPR 111

Figure 4.15: The execution time of different comg@ats of the solver normalized
according to the total factorization time. The p$otor the benchmark suite
of 40 test problems (HMETIS) .......ooiiiiii e 115

Figure 4.16: The average speed of the update matdX¥-E assembly operations for the
benchmark suite of 40 test problems (HMETIS).ccccaeiviiiiiiiiiiineiieiiieee. 116

Figure 4.17: Factorization time estimations norgeli according to the actual
factorization times for the benchmark suite of d§t problems (HMETIS)
........................................................................................................... 117

Figure 4.18: Four thread factorization of an exagdsembly tree..........cccoeeeveeeenen. 119

Figure 4.19: The pseudo code for estimating thdithtéaded factorization time. ...... 120

Figure 4.20: The search for the independent subthest can be processed in parallel. 124

Xiv



Figure 4.21: The pseudo code for subtree to thmegoping algorithm. ....................... 125

Figure 5.1: Direction of the dependencies betwberfdctorization and triangular
solution tasks for the example assembly tree...........cccoooeeiiiiiiiiiiiininnn, 132
Figure 5.2: The pseudo code for multithreaded nigakfactorization algorithm ....... 135
Figure 5.3: The flop required for the triangulalusion with 100 RHS vectors given in
terms of the flop required for the partial factation. ................cccceeeee. 140
Figure 5.4: The pseudo code for multithreaded fodvedimination algorithm............. 141
Figure 5.5: Alternative storage schemes for the REISOrS. ........ccccceevveiiieeeeiinnnnn. 431
Figure 5.6: SES triangular solution time relativgtte PARDISO triangular solution time
for the problem f500X500. .......uuiiiiiie e 461
Figure 5.7: The pseudo code for the multithreadssk Isubstitution algorithm. .......... 147
Figure 5.8: The memory requirements for the faztiion of cubic geometry 8 node
solid element models. HMETIS is used for the pigadering. ................. 149
Figure 5.9: Data accesses for partial factorizabiom frontal matrix...............cc...oeeee. 15
Figure 5.10: Data accesses for partial forward ieton on a frontal matrix ............. 152
Figure 6.1: Performance profilp(a): Non-zero for HMETIS with and without graph
compression, benchmark suite of 40 test problems..............cccccovvvees 154
Figure 6.2: Performance profilp(a): Flop for HMETIS with and without graph
compression, benchmark suite of 40 test problems..............cccccovveees 155
Figure 6.3: Performance profilp(a): Flop for HAMF with alternative values for
vertnum, benchmark suite of 40 test problems ..., 156
Figure 6.4: Performance profilp(a): Flop for MMD with differentdelta values,
benchmark suite of 40 test problems ... 158
Figure 6.5: Performance profilp(a): Flop for AMF with different initial node
numberings, 670 test problems with regular geometri......................... 160
Figure 6.6: Performance profilp(a): Flop for MMD with different initial node
numberings, 670 test problems with regular geometri......................... 161
Figure 6.7: Performance profilp(a): FLOP for CAMD with different initial node
numberings, 670 test problems with regular geometri......................... 161
Figure 6.8: Performance profilp(a): Flop for AMF with different initial node

numberings, 86 test problems with irregular geor@egtr.......................... 162

XV



Figure 6.9: Performance profilp(a): FLOP for HMETIS with different initial node
numberings, 670 test problems with regular geom®tri........................ 163

Figure 6.10: Performance profilg(a): FLOP for HAMF with different initial node
numberings, 670 test problems with regular geomtri........................ 164

Figure 6.11: Performance profilg(a): Non-zero for alternative matrix ordering
programs, 166 2D test problems with regular gede®etr..............cccc...... 165

Figure 6.12: Performance profilg(a): Flop for alternative matrix ordering programs,
166 2D test problems with regular geometries. ccoo....ooovvvvvvvveciiieeeennn. 166

Figure 6.13: Performance profilg(a): PARDISO factorization time for alternative
matrix ordering programs, 166 2D test problems watjular geometries 166

Figure 6.14: Performance profilg(a): PARDISO factorization time for alternative
matrix ordering programs, 42 2D test problems \wvitligular geometries 167

Figure 6.15: Performance profilg(a): PARDISO factorization time plus matrix ordering
time for alternative matrix ordering programs, b test problems with
rEQUIAr EOMETIIES .. .. e e ettt e e e e e e e e e e e e e e eeeeeseeeees 168

Figure 6.16: Performance profilg(a): PARDISO factorization time plus matrix ordering
time for alternative matrix ordering programs, 42 t2st problems with
iIrregular QEOMELIIES .......vuvieeiiiiieie e e e e e e e e e e e e e e e e e eeeas 168

Figure 6.17: Ordering times in terms of factoriaattimes for 2D test problems with
[=To [ Fo T [=To] g 1=y U 1= PP 170

Figure 6.18: Performance profilg(a): Non-zero for alternative matrix ordering
programs, 252 3D solid models with regular georastti..............cccce...... 171

Figure 6.19: Performance profilg(a): PARDISO factorization time for alternative
matrix ordering programs, 252 3D solid models wégular geometries. 172

Figure 6.20: Performance profilg(a): Non-zero for alternative matrix ordering
programs, 22 3D solid models with irregular geoimsstr......................... 173

Figure 6.21: Performance profilg(a): PARDISO factorization time for alternative
matrix ordering programs, 22 3D solid models witkegular geometries. 174

Figure 6.22: Performance profilg(a): PARDISO factorization time plus matrix ordering
time for alternative matrix ordering programs, Z2 $blid models with
Irregular QEOMELIIES. ....cceuuiiiiiiiiiiee e e 174

Figure 6.23: Performance profilg(a): Non-zero for alternative matrix ordering
programs, 22 3D frame models with irregular georestr....................... 175

XVi



Figure 6.24: Performance profilg(a): PARDISO factorization time for alternative
matrix ordering programs, 22 3D frame models witagular geometries.
........................................................................................................... 176

Figure 6.25: Performance profilg(a): Non-zero for alternative matrix ordering
programs, 22 3D frame models with irregular georestr....................... 178

Figure 6.26: Performance profilg(a): PARDISO factorization time for alternative
matrix ordering programs, 22 3D frame models witagular geometries.
........................................................................................................... 179

Figure 6.27: Matrix ordering time given in termsté factorization time. .................. 179

Figure 6.28: Performance parameters for AMF nomedliaccording to the results of
HMETIS for 2D and 2D-Like models with quadrilateeadd solid elements
(1S 0 1=Tod 11/ 181

Figure 6.29: Performance parameters of AMF norradlaccording to the results of
HMETIS for 2D and 2D-Like models with 2D frame aBD frame elements
FESPECHIVEIY ..ot ettt e e e e e e e e e e e e e e e e eeeeeees 182

Figure 6.30: AMF factorization times relative to HIWIS factorization times for serial
and multithreaded numerical factorization, benchnsaiite of 40 test
[T 0] 1= 0 1T UPP 185

Figure 6.31: Estimated four-thread factorizationgs for AMF relative to the four-thread
factorization times for METIS, benchmark suite 6ftést problems. ....... 186

Figure 6.32: Multithreaded factorization performamecofiles of alternative strategies for
choosing the best pivot-ordering among the resdlsSMF and HMETIS,
benchmark suite of 40 test problems. ... 187

Figure 6.33: Analysis time divided by the factotiaa time for PARDISO.................. 188

Figure 6.34: Relationship between the number of dof relative PARDISO analysis
time for 2D test problems with regular geometries..........cccceeevvveeeeeenn. 189

Figure 6.35: Relationship between the number of dof relative PARDISO analysis
time for 3D test problems with regular geometries..........cccceeevveeeeeeenn. 189

Figure 6.36: For 2D problems, performance profitedactorization times with
alternativenodeco values, HMETIS ordering. 2D models in the benchmar
suite of 40 test problems are USed. ... 191

Figure 6.37: For 2D problems, performance profilerhatrix ordering times with
alternativenodeco values, HMETIS ordering. 2D models in the benchkmar
suite of 40 test problems are USed. .......ccceeeeevveeieiiiiiiiiiieie e 192

XVil



Figure 6.38: For 2D problems, performance profilefactorization times with
alternativenodeco values, AMF ordering. 2D models in the benchmaiikes
of 40 test problems are USEd.............. e eeeeieeiiiiiie e 193

Figure 6.39: For 2D problems, performance profilerhatrix ordering times with
alternativenodeco values, AMF ordering. 2D models in the benchmaiikes
of 40 test problems are USEd.............. o e e e eeeeeveiieiceee e e e e eeae 194

Figure 6.40: For 3D problems, performance profilefactorization times with
alternativenodeco andeleco values, HMETIS ordering. 3D models in the
benchmark suite of 40 test problems are used. .cecee.cooeeeeeeeeiiiiiiiiiiinins 195

Figure 6.41: For 3D problems, performance profilerhatrix ordering times with
alternativenodeco andeleco values, HMETIS ordering. 3D models in the
benchmark suite of 40 test problems are used. .ceuee.oooeeeeeeeeeeiiiieeeeninnns 196

Figure 6.42: Performance profile for factorizatione for choosing the best pivot-
ordering among coarsened and original meshes.-Brdetrings are found
with AMF. The results are for benchmark suite oftd§t problems.......... 198

Figure 6.43: Performance profile for factorizatione for choosing the best pivot-
ordering among coarsened and original meshes.-Brdetings are found
with HMETIS. The results are for benchmark suité0ftest problems. .. 198

Figure 6.44: For various smin values, performanoélp for the factorization time,
benchmark suite of 40 test problems. ..., 200

Figure 6.45: The factorization times fanin=0 given relative to the factorization times
for smin=25, benchmark suite of 40 test problems. ... .ceveeeeeevennnnn.. 201

Figure 6.46: Ratio of update operations to factdion operations fasmin=0 and
smin=25, benchmark suite of 40 test problems. ..eeeiieeeeieeinniinnnnn.. 202

Figure 6.47: Performance profia): Factorization flop for HMETIS ordering with and
without graph partitioning...........covvvviiecceii e 203

Figure 6.48: Normalized four-thread factorizationd for HMETIS ordering with and
without graph partitioning..........cccovvvvicceiie e 204

Figure 6.49: Normalized factorization time for @éiféntblkmin values benchmark suite
Of 40 teSt ProbIEMS. .....ccoiieeee e ———- 205

Figure 6.50: Performance profile for the factorizattimes for differenblkmin values,
benchmark suite of 40 test problems. ..., 206

Figure 6.51: Normalized factorization plus analysises for differenblkmin values,
benchmark suite of 40 test problems. ..o, 207

XVili



Figure 6.52: Performance profile for the factorizatplus analysis times for different
blkmin values, benchmark suite of 40 test problems.......................... 207

Figure 7.1: Speed of single thread factorizatianI&S and PARDISO solver. Pivot-
orderings are found with HMETIS. Benchmark suitel@ftest problems. 213

Figure 7.2: For SES solver package, speed of sthgbad solution for 100 RHS vectors.
Pivot-orderings are found with HMETIS. Benchmarkewf 40 test
1] 0] 1= 0 0T PPPT 213

Figure 7.3: Performance profile for serial factatian times. Pivot-ordering is found
with HMETIS. Benchmark suite of 40 test problems...........cccccceeeeennn. 214

Figure 7.4: Performance profile for serial factatian plus assembly times. Pivot-
ordering is found with HMETIS. Benchmark suite 6f#st problems. ... 215

Figure 7.5: Performance profile for serial triaragudolution times for 100 RHS vectors.
Pivot-ordering is found with HMETIS. .......coiien 216

Figure 7.6: Serial numerical factorization timesmalized according to the PARDISO
numerical factorization plus assembly times foa@é test problems. SES
factorization times (in seconds) are also showthénblue boxes. ............ 219

Figure 7.7: Serial triangular solution times nonzed according to the PARDISO
triangular solution times for 8 large test proble®ES triangular solution

times (in seconds) are also shown in blue boXeS.........ccoovviiiiiiiinnnnnns 220
Figure 7.8: Speed of four-thread factorization3&S and PARDISO solver. ............. 222
Figure 7.9: For SES solver, speed of four-threddti®em with 100 RHS vectors......... 222

Figure 7.10: Performance profile for four threadidaization times for SES and
PARDISO SOIVET ... se e e e e e e e e e e e e eeeeeeeenees 223

Figure 7.11: Performance profile for four threadtésization plus assembly times for the
SES and PARDISO SOIVEIS. ....ccooiiiieieieeeeeeeeee e 223

Figure 7.12: Performance profile for four-threatuson times for the SES and
PARDISO SOIVEIS. ..ottt e e e e e eeeeeeees 224

Figure 7.13: Four-thread numerical factorizationds normalized according to the
PARDISO numerical factorization plus assembly tifoes3 large test
problems. SES factorization times (in secondspie shown in the blue
DOXES. e e 226

Figure 7.14: Four-thread triangular solution timesmalized according to the PARDISO

numerical factorization plus assembly times foa@é test problems. SES
triangular times (in seconds) are also shown irbtbe boxes. ................. 227

XixX



Figure 7.15: Estimated and actual subtree factboizaimes normalized according to the
total numerical factorization time for the benchknamite with 8 large test
Problems (HMETIS) ...cooeiiiiiiiiiciie e 230

Figure 7.16: Estimated and actual high-level tregenfactorization times normalized
according to the total numerical factorization tifoethe benchmark suite
with 8 large test problems (HMETIS) .........meeeeeeemmiiiiiiiiiineeeeeeeeeeeen 231

Figure 7.17: Speedup for four-thread executiorhef$ES solver package for 100 RHS
vectors, the benchmark suite with 8 large testlprab, HMETIS ordering
........................................................................................................... 232

Figure 7.18: Speedup for four-thread executiorhefRARDISO solver package for 100
RHS vectors, the benchmark suite with 8 largepesblems, HMETIS
(o] =1 11T R 233

Figure 7.19: The effect of subtree factorizationgiimbalances on the factorization
speedups for the benchmark suite with 8 largepiegilems using HMETIS
(o]0 (=] o1 o T SO 234

Figure 7.20: For very large test problems, SESofuere solution time (factorization
plus triangular solution with 10 RHS vectors) giverierms of estimated
single-thread factorization time assuming infimtemory ....................... 237

Figure 7.21: For very large test problems, theoratinon-zero (in factorized stiffness
matrix) to flop (floating point operations requiréa factorization). ........ 238

Figure 8.1: The speed of GPGPU and singe CPU @t@apfactorization without
considering the data transfer time between hostenite. For the frontal
matrices, the ratio of number of remaining varialitenumber of eliminated
variables IS three. ... 241

Figure 8.2: The speed of GPGPU and single CPU mant&al factorization including the
data transfer time between host and device. Fadirdinéal matrices, the ratio
of number of remaining variables to number of ehated variables is three.

........................................................................................................... 241
Figure 8.3: Performance of GPGPU accelerated péatitorization for the test problems

OIVEN IN TAbIE 8. 1. i s s e e e e e e e e e e e e e e e e e eseae e ans 243
Figure A.1: Selected test problems with regulamgetoy..............ccccoeeveiiiiiiniiinnnnnee. 253

Figure A.2: Non-zero patterns for the test problg®©0x100 (original ordering and
AMD matrix ordering). The non-zero patterns for thgper diagonal factors
are also given at the bottom. ..........ooviceccee e 254

XX



Figure A.3: Non-zero patterns for the test probf@f0x100 (original ordering and AMD
matrix ordering). The non-zero patterns for the erpgiagonal factors are
also given at the DOttOM. ...t 255

Figure A.4: Non-zero patterns for the test probleb®x10x10 (original ordering and
AMD matrix ordering). The non-zero patterns for thgper diagonal factors
are also given at the bottom. ..........oovvccccee i 256

Figure A.5: Non-zero patterns for the test probldx10x10 (original ordering and
AMD matrix ordering). The non-zero patterns for tigper diagonal factors

are also given at the bottom. ..........ooiiieeeeiii e 257
Figure A.6: Selected 2D test problems with quatkitd elements. ... 275
Figure A.7: Selected 3D test problems with solgh@nts. ............ccccceeiiiiiinnn. 276

Figure A.8: Non-zero pattern for the test problemagying-4 (original ordering and
AMD MaALtriX OFAEIING). weveeunuiiieeee e e e e e e e emeemee et e e e e e e e e e e e e e eeeeeeeaeeee 277

Figure A.9: Non-zero pattern for the test probletndg58 (original ordering and AMD
MALITX OFAEIING). weveeeiiiieie e ettt e e e e e e e e e e eeeeeeeeeeannnas 278

Figure B.1: A screenshot from SES Viewer. A 3D cubiodel is at the top and the
monitoring of a pivot-ordering for the model istbé bottom. .................. 284

XXi



SUMMARY

The solution of linear system of equations is & tore of finite element (FE)
analysis software. While engineers have been isgrgahe size and complexity of their
models, the growth in the speed of a single compptecessor has slowed. Today,
computer manufacturers have increased overall psocgerformance by increasing the
number of processing units in a computer usingadled multi-core processors. A FE
analysis solver is needed which takes full advant#ghese multi-core processors.

In this study, a direct solution procedure is psymb and developed which
exploits the parallelism that exists in current syatric multiprocessing (SMP) multi-
core processors. Several algorithms are proposet dmveloped to improve the
performance of the direct solution of FE problershigh-performance sparse direct
solver is developed which allows experimentatiothwihe newly developed and existing
algorithms. The performance of the algorithms igestigated using a large set of FE
problems. Furthermore, operation count estimatiares developed to further assess
various algorithms.

A multifrontal method is adopted for the parallelctiorization and triangular
solution on SMP multi-core processors. A triangwalution algorithm that is especially
efficient for the solution with multiple loading kditions is developed. Furthermore, a
new mapping algorithm is designed to find indepemndactorization tasks that are
assigned to the CPU cores in order to minimizeptellel factorization time. As the
factorization and triangular solution times areusatl by the use of parallel algorithms,
other components of FE analysis such as assembtiieottiffness matrix become a
bottleneck for improving the overall performancen Assembled stiffness matrix is not
required by the developed solver. Instead, elenstiffness matrices and element

connectivity information are the inputs. The deypeld solver never assembles the entire

XXil



structural stiffness matrix but assembles frontatrines on each core. This reduces not
only the execution time but also the memory reguemst for the assembly.

Finally, an out-of-core version of the solver isvéleped to reduce the memory
requirements for the solution. 1/O is performed resyonously without blocking the
thread that makes the 1/O request. Asynchronousllfwvs overlapping factorization and
triangular solution computations with 1/0. The mermhance of the developed solver is
demonstrated on a large number of test problemproblem with nearly 10 million
degree of freedoms is solved on a low price deskwmpputer using the out-of-core
version of the direct solver. Furthermore, the dgwed solver usually outperforms a

commonly used shared memory solver.
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CHAPTER 1

INTRODUCTION

1.1 Problem Definition

As computational power continues to increase, iteand complexity of analysis
problems also increase. Realistic simulations requomplex models and responsive
software is desired. Large-scale structural simutatcan be performed in a reasonable
time using software which takes advantage of thmprdational potential of modern
processors.

The efficient use of modern processors can beeamgilhg due to the sophisticated
hardware architectures and existence of multiptegssing units. Recently, multi-core
processors have been introduced into commodityopa@nd desktop computers for
higher performance. Today, 6-core and dual quad-B&@’s are available, and processor
manufacturers are planning to increase the numbeores to meet the ever-increasing
demand for performance [1-3]. The additional cocesised a paradigm shift in the
programming practice. Parallel algorithms are regfliito harness the computational
power introduced by multi-core and many-core preces Starting from the components
with the largest execution time, software built fsingle core processors must be
redesigned in order to benefit from the emergingmatational power introduced by the
multi-core and many-core processors.

The solution of linear system of equations is thestrcomputationally intensive
component of finite element analysis (FEA) softwakesparse direct solver optimized
for the structures and tuned for multi-core prooessvill improve the efficiency of FEA
software significantly. An efficient sparse diretclver will increase the speed of linear

analysis with multiple right-hand-side (RHS) vestoin addition, the efficiency of the



time history analysis and non-linear analysis wibo improve, where the solution is

performed repetitively for different RHS vectors.

1.2 Background

1.2.1 High-Performance Computing

The technology for PCs and Workstations has impmtoseormously since the
development of the first computer. In addition he tonsistent increase in the transistor
density, major architectural and organizational novements have occurred. In modern
computers, the organization of the computationaksuallows performing multiple
instructions per one clock cycle, and the perforceagap between the processor and
main memory [4] is hidden with the introduction bigh speed memories (caches)
between the processor and the main memory. Thesaneeiments in computer
architecture have dramatically improved performaneennessy and Patterson [5]
estimated that by 2002, the computers were appiaeiy seven times faster than what
would have been without these improvements.

Due to the complex hardware architectures, devetpprograms which approach
the peak speeds of modern processors may be djialleThe computational resources
must be used in an optimal fashion to achieve hpgiformance. For example,
unnecessary random memory accesses shall be prdva@nte repeated random memory
accesses degrade the performance because of memoegs latencies. In addition,
programs can be reorganized into blocks of independnstructions to harness
instruction level parallelism. Furthermore, SIMDin@e Instruction Multiple Data)
instruction sets can be exploited to efficientlyfpen a single arithmetic operation on
multiple data. These optimizations are harnessediimerical libraries tuned for specific
hardware architectures [6-8]. A convenient way twam high performance from a

computer is to use the libraries tuned for specdimputer architectures.



Linear algebra and other numerical operations campdrformed efficiently by
using the BLAS (Basic Linear Algebra Subprogranms) BAPACK [9] (Linear Algebra
PACKage) libraries tuned for a specific architeetBLAS includes standard subroutines
for common vector and matrix operations [10-12].AA&CK includes subroutines for
solution of linear systems, least-square solutiand eigenvalue problems [9]. CPU
vendors provide highly tuned BLAS libraries suchMi&L [6], ACML [7], and ESSL
[8], which can be used to produce high performarograms. In addition to the vendor
provided BLAS libraries, other BLAS implementationisat are tuned for specific
architectures exist. For example, GotoBLAS [13-it]Judes optimized BLAS3 kernels
that aim to reduce TLB (Translation Look-aside Buffmisses in matrix multiplication.
ATLAS [15] is automatically tuned software that ilements BLAS and some of the
LAPACK subroutines. In the tuning phase, ATLAS ckes the fastest way to do a
BLAS operation among the alternatives [16]. ATLAIScaexploits the cache hierarchies
of modern processors [16] for a high-performanc&BL

There are three levels of BLAS subroutines, whiale #$or vector-vector
(BLAS1), matrix-vector (BLAS2), and matrix-matriBILAS3) operations. Among these,
BLAS3 gives the best throughput since the raticahputations to memory access is
largest for BLAS3. A high computation to memory ess ratio is beneficial to cache-
hierarchies of the modern processors. For suffiljidarge matrices, optimized BLAS3
kernels can run at a speed close to peak macheexldfh3, 17]. Other benefits of using
BLAS libraries are robustness, portability, anddagality of the code [18].

We perform numerical experiments to illustrate thigh performance of the
BLAS3 kernels. Figure 1.1 shows the performancthefMKL BLAS subroutines for an
Intel quad-core processor. Only one core is usethioresults shown in Figure 1.1 , and
the clock speed of a core is 2.4 GHz. SIMD (Singistruction Multiple Data)
instructions allow performing four double precisifioating point operations per clock

cycle, therefore, each core can potentially perf@:6 billion double precision floating
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point operations per second (9.6 GFlop/sec or 98R5). This is an upper limit found
by assuming that there are no cache misses ancemmry latencies. As shown in Figure
1.1, BLAS3 matrix-matrix multiplication runs at peed close to the peak performance of
a single core. On the other hand, the peak speed®lAS1 and BLAS2 are about one-
half of the machine peak speed. Furthermore, BLASA BLAS2 speeds decrease as the
size of the matrix and vector increases. BLAS1 dpsiarts decreasing as the total
memory for vectors exceeds the capacity of the h&h€ (32 Kbyte). BLAS2 speed, on
the other hand, starts decreasing as the memotiidanatrix exceeds the capacity of the
L2 Cache (4096 Kbyte). As shown in Figure 1.1, BI3A@ves a sustained performance
for a wide range of matrix sizes. Therefore, thdggemance of BLAS3 is typically more
predictable compared to BLAS1 and BLAS2, which deairable feature for estimating

workloads in order to have a balanced workloadgassent.

Speed of BLAS Kernels for Single Thread Execution

12

10 | Machine Peak =9.6 GFlop/Sec

GFlop/Sec

]
|
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Matrix/Vector Size
== BLAS1 (daxpy) =#=BLAS2 (dgemv) BLAS3 (dgemm)

Figure 1.1: The performance of MKL BLAS subroutin€sst runs are performed

on Intel Core 2 Quad Q6600 using only one CPU core.



1.2.2 Multi-coreand Many-cor e Processors

Recently, major CPU manufacturers announced thatdégmand for increased
performance will be met by packing multiple progegsunits into a chip in addition to
the improvements in the performance of a singlegssing unit [1-2]. While automatic
performance improvements can be obtained due teeased clock speeds and past
architectural advancements, programs must be otgtad to harness full computational
power of the multi-core processors. This requisstesign of the software developed for
uniprocessors which involves finding code segmeritich may be executed in parallel.
Furthermore, the software developers shall condigerarchitecture of the machine to
fully benefit from the computational power introgulcby the multi-core processors.

First generation multi-core processors are a sutfseymmetric multiprocessing
(SMP) architecture. Initially two identical coreseaintegrated onto a single die. The
cores can share some circuitry such as L2 cachdsframt side bus (FSB). The
architecture of a dual-core machine is depicteBiigure 1.2. Here, both processors can
access the main memory at high speeds. Furthernmsyre;hronization and cache
coherency can be performed efficiently since thees@are on the same die. All cores
have direct access to the main memory via the dhagB. Therefore, any task can be

scheduled efficiently at any processor independgéttie location of the data used by the

task.
Corel Core2
L1 Cache L1 Cache
L2 Cache
1 1
Bus II II
Main Memory
Figure 1.2: Example SMP dual-core processor. Cacesss the memory via the
shared bus.



The SMP architecture is suitable for multi-core haes with a small number of
cores. As the number of cores in the system isas®d, the shared bus quickly becomes
a bottleneck. Main memory connected to each coth thie shared bus can serve only
one processor at a time. Consequently, the coaegestf data if they all try to access the
memory at the same time. Memory can be organiz#drelntly to solve this problem.
Non-uniform memory access (NUMA) is an alternativay to organize the memory for
multiple processors. In NUMA machines, each promebssis local memory that can be
accessed in a fast fashion. In addition, non-locaimory can be accessed via a special
interconnection. However, access to a non-local amgrfocation is slow. An example
system with NUMA architecture is shown in Figur&.1Here, four cores have a fast
connection to the local memory and a processolacagass a non-local memory bank via

the special interconnection, which is slower tharaecess to the local memory.

Corel | Core2 Core5| Coreb
Core3| Cored Core7| Core8
Memory Memory

Interconnection

Figure 1.3: A possible architecture for a NUMA &yat

The exploitation of data locality is crucial to abt high performance with the
NUMA architectures. The tasks shall primarily accdse data on the local memory. An
access to a non-local memory shall be restrictecksihe processors remain idle until the
data arrives from a non-local memory location. Ef@e, programming for NUMA is
similar to programming for clusters for which thatal used by each task is distributed

among processors.



Asanovic et al. [19] discussed the challenges @ture many-core systems and
gave recommendations about emerging multi-core guasmrs. They stated that
programming models shall make it easy to writecedfit parallel programs and the focus
of a programming model shall be to increase progranproductivity for highly parallel
architectures. They also stated that it is impdrtardevelop software that can be tuned
automatically for multi-core architectures. Automally tuned software already exists
for single core systems. For example, Vuduc ef2&-21] provided automatically tuned
sparse matrix vector multiplication and trianguksolution kernels for single core
systems. For emerging multi-core architecturesligivils et al. [22] discussed the auto
tuning of sparse matrix kernels.

Hill and Marty [23] discussed the importance of exieg up serial code in the
multi-core era. Their results were based on the &mhid law for symmetric and
asymmetric multi-core chips. All processing units alentical in a symmetric multi-core
chip, whereas, the computational power/capabilitthe processing units is not uniform
for an asymmetric multi-core chip. They stresseel gineater potential of asymmetric
multi-core chips compared to symmetric chips fotaobing high performance from
architectures with many-cores. They stated thasémal portion of the code will quickly
become the bottleneck for many-core chips, andemystwith the combination of cores
with high serial performance and less powerful {baraores will scale better since high
performance cores can prevent the serial code ftmeooming the bottleneck.
Balakrishnan et al. [24] stated that the asymmasrybeneficial to improve the
performance of serial portions of the code. Thep atated that current software neglects
the asymmetry and software developers typicallyettgy their code for symmetric cores.
This negatively impacts the workload balancing &symmetric processors since some
cores are faster than the others. Balakrishnah g4 stated that the applications shall
be aware of the asymmetry and shall dynamicallypada the computing resources.

Kumar et al. [25] discussed that the asymmetrieg@re more adaptable to different
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workloads. Moreover, they showed that asymmetri;e€care more energy efficient
compared to symmetric cores.

GPGPUs (general purpose computing on graphics gsotg units) allow
asymmetric computing with desktop and laptop computGPUs (graphics processing
units) are massively parallel architectures withndreds of cores. Today, peak
performance of GPUs is greater than several t&yps for single precision floating point
operations. Furthermore, GPUs can also perform ldoydsecision floating point
operations. GPUs can be programmed easily usimgefnaorks such as CUDA [26-27]
and OpenCL [28]. CUDA implements a subset of BLASels, which allows the easy
use of GPUs for numerical applications. Garlandlef29] discussed the effective use of
CUDA for speeding up various scientific applicasdhat have data-parallel algorithms.

Figure 1.4 shows an example asymmetric multi-coozgssor. The system has
dual socket quad-core processer and two GPUs. lieagdition to the computational
units being asymmetric, the interconnection ofdbmputational units can be asymmetric

also. Asymmetry aware algorithms are crucial toawbthigh performance from such

systems.
Corel| Core2 Core5| Coreb
Core3| Cored Core7| Core8
RAM RAM

1117
m GPUI iGPU w
EER

Figure 1.4: Example heterogeneous multi-core psmrss The system has two

sockets with quad-core processors and two GPUslaéalai for general purpose

computing.



Multithreaded BLAS subroutines in MKL[6] can be dseéo obtain high
performance from today’'s SMP multi-core processdhe LAPACK implementation in
MKL relies on multithreaded BLAS [30]. Buttari ef. §30] stated that the use of
multithreaded BLAS is not enough for a scalable B&K. They proposed parallel
linear algebra algorithms that exploit parallelista lower level. A dense matrix was
divided into square tiles and a directed acycliapr was used to represent the
algorithmic dependency between the tasks assocwitédthe tiles. A critical path was
identified in the dependency graph and high piiesiivere assigned for the tasks on the
critical path. The tasks were scheduled asynchrslgoland dynamically. Tiled
algorithms scale better than the ACML [7] counterpdor Cholesky, QR and LU
factorizations. Currently, the tiled algorithms amgplemented in the PLASMA project
[31].

Ltaief et al. [32] discussed a scalable dense Ghgléactorization algorithm that
uses both CPUs and GPUs. The transfer rate canblogtlaneck for high performance
computations on GPU since the data is first alledat the main memory by CPU before
transferring it to GPU. Then, the data is trang@via a shared connection. Ltaief et al.
[32] used static scheduling to minimize the daaasfer between the CPU and GPU. This
hybrid Cholesky factorization, which uses both C&td GPU, ran significantly faster
than the CPU only counterpart. The source filetf@ir algorithm can be obtained from
the MAGMA project website [33].

Finally, Hill and Marty [23] illustrated the highopential of the dynamic multi-
core chips that can utilize the cores either imasenode or in parallel mode. Ipek et al.
[34] presented a reconfigurable multiprocessor whedependent processors can be used
to form a processer with higher serial performaraethey can be used in parallel as

needed at runtime.



1.2.3 Solution of Linear System of Equations

The system of linear equations arising from a lireedution of a structure with

degree of freedoms is written as:

[KI{d} = {f} (1.1)

whereK is then by n stiffness matrixf is a vector of siz&, which stores the
loading at each degree of freedom (dof), a@nd a vector of sizen, which stores the
unknown displacements corresponding to the loadihghe structure is subjected to
multiple loading conditionsd and f are bothn by nrhs matrices, whererhs is the
number of right-hand-side vectors, which is eqoahe number of loading conditions.

There are mainly two methods for solving a systérinear equations: iterative
and direct methods. Iterative methods are scakatderequire less memory compared to
direct methods, which make them a better choicesédving very large problems with
limited computational resources. However, the cogeece of iterative methods depends
on the preconditioner used for a problem, and #ez@tion time is unpredictable due to
their iterative nature. Additionally, iterative rheds can be inefficient for analyzing
structures with multiple load cases since the ergolution must be restarted for each
RHS vector.

The direct methods, on the other hand, factoridéhaess matrix and once the
factorization is complete, the system of equatioas be solved efficiently for multiple
RHS vectors by forward elimination and back substth. The sparsity of the system is
used to minimize the arithmetic operations and dabaage required for the solution.
These methods have high numerical precision andagtee the solution within a
predictable amount of time if computational resesrare adequate. Because of these

advantages, direct methods are preferred in muoesadistructural analysis software.
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1.2.4 Direct Methodsfor SparseLinear Systems

The oldest direct method is LU factorization [3&ere the matriX is factored
into lower and upper triangular matricds,and U. If K is symmetric and positive
definite, the factorization can be written &d.7, which is called the Cholesky
factorization. Cholesky factorization requires fevegithmetic operations compared to
the LU factorization. For indefinite symmetric megés, the root-free Cholesky
factorization is suitable, where the decompositian be written as DL " [18]. Finally,
orthogonal methods such as QR factorization ard tmesolving least square problems
[35].

Only non-zero entries are stored during the sptast@rization and the sparsity
should be preserved for an efficient factorizatibhe nonzero entries in the matrix can
be stored using several different schemes. Somemoommstorage schemes are band
matrix, profile matrix (also called skyline, varlalband, and envelope matrix), element
matrix representation, and packed sparse vectpregenting the columns and rows of a
sparse matrix [36]. Figure 1.5 illustrates variabnd and band storage schemes for a
simple problem with 2D quadrilateral elements. Bhiex no single storage scheme that
performs well for all types of problems. Some sgeraschemes may be suitable for
problems with certain characteristics. For examffle, band storage scheme is suitable

for long and narrow meshes.
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Figure 1.5: Variable band and band storage schemanfexample problem.
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The storage scheme determines the algorithms onsgifferent phases of a sparse
direct solver. A typical sparse direct solver isnpmsed of four phases [37]:

1. Preprocessing phase — determines pivot orderinghwhiinimizes the time

and storage needed by the solution

2. Analysis phase — determines the memory requirenardonstructs the data

structures that will be used in the factorization golution phase

3. Numerical factorization phase — determines theofact

4. Triangular solution phase — performs forward eliation and back

substitution using the factors, found in numerical factorization phase.

If the matrix is positive definite, the phases o$aver are distinct and a pivot
ordering found in preprocessing phase can be wsdatié numerical factorization without
numerical stability concerns. For indefinite matscon the other hand, a pivot ordering
determined in the preprocessing phase may be @ltererder to ensure the numerical
stability.

A general approach for the solution of sparse medriis to use sparse data
structures throughout the direct solution including inner loops of the factorization and
solution. This reduces the performance since asgtlumoperations on sparse vectors
require indirect addressing. The drawbacks of ewliraddressing are explained by

Dongarra et al. [18] using the FORTRAN code showiow:
DO 10 | = 1,K
WI) = WI) + ALPHA * A(ICN(I))
10 CONTI NUE

Here, the entries of the packed sparse vector Aaecessed by the indices stored
in the vector ICN. The compilers usually have nowledge about the indices stored in
the vector ICN. Therefore, the loop cannot be raoized for high instruction level

parallelism, i.e., the compiler cannot unroll tbep. In addition, if values are assigned to
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A(ICN(I)), automatic parallelization will not takglace since repeated reference may be
made to the same memory location.

The indirect referencing can be reduced if the mols with common sparsity
pattern are treated as a single pivot block. Pblotks with same sparsity pattern are
called supernodes. Indirect referencing is avoidedhe factorization operations within a
supernode. Figure 1.6 illustrates the supernodethéoexample problem shown in Figure
1.5. Here, the 286 stiffness matrix is partitioned into 4 superrmdehe supernodes can
be partitioned into dense matrix blocks and arittien@perations on dense matrix blocks

can be performed using tuned BLAS3 kernels.

N\
N\

I
| - supernode
.|

r—=—=2

Figure 1.6: For the example problem in Figure 1h&, supernode partitioning of

the stiffness matrix. Supernodes are marked wittk tthashed lines.

A direct factorization scheme regardless of whetheses supernodes or columns
as pivots can be classified according to the dwacof the column updates. In a left-
looking (fan-in) algorithm, a pivot receives updafeom the previous pivots just before
the factorization of the pivot. In a right-lookin@an-out) algorithm, as soon as the
factorization of a pivot is finished, multiplierseacalculated and the subsequent pivots
are updated immediately. In other words, whileghtrdlooking algorithm accesses to data
on the right of a pivot, a left-looking algorithntaesses to data on the left. The left-

looking schemes are usually more efficient compaoethe right looking schemes since

13



their memory access patterns are more cache fyief@B-39]. Nevertheless, the
performance difference between the factorizatidmesees is insignificant compared to
the benefits obtained by blocking the columns otcaefficient matrix (supernodal
schemes) [40].

Band and profile solvers are employed for the band profile matrix storage
schemes respectively. These schemes avoid theeabhdneferencing, however the
efficiency depends on band or profile minimizatelgorithms. The Cuthill-McKee [41]
algorithm is widely used for band minimization. Tireverse Cuthill-McKee [42],
Gibbs-Poole-Stockmeyer [43] and Sloan’s method [44h be used for profile
minimization. Compared to packed storage schemes monzero entries may be stored
in the factors of the band or profile matrices. Thain advantage of the band and profile
schemes is that the storage scheme is preserveddblumn interchanges, i.e., pivoting
for numerical stability, are performed during tlaetbrization [36].

For an element matrix representation of a stiffrasdrix, a frontal solver [45]
may be suitable, in which a subset of elementsssembled to a frontal matrix and
factorization is performed for fully assembled doféhe arithmetic operations are
performed on dense matrices and only a small podfdhe stiffness matrix is kept in the
memory. Similar to band or profile solvers, thened®t assembly order is important for
an efficient frontal solution. Several element ondg algorithms are proposed [46-50] to
reduce the CPU time and storage required for thadi method.

The indirect addressing is avoided in frontal mdthsince all arithmetic
operations are performed on a dense frontal makiowever, if elements cannot be
ordered to have a narrow front width, the space taim& complexity of the frontal
method may be prohibitive. Duff and Reid [51] exted the concept of a single frontal
matrix by allowing to work on multiple frontal mates at a time. This permitted the use
of any fill-in minimization algorithm while retaing the efficiency of dense matrix

operations on frontal matrices.
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The variable elimination in the multifrontal methtdsimilar to condensation of
the elements assembled to the frontal matrix. Tilg summed dofs are condensed, and
the condensed stiffness matrix is stored for futtwadensation steps. The condensed
stiffness matrix is called the update matrix siitceill be used to update the pivots in the
later stages of the solver. The assembly sequengleraents and update matrices can be
represented by a tree structure, which is calledagsembly tree [51]. A parent node in
the assembly tree can only be processed afterfats e@hildren are assembled to the
corresponding frontal matrix.

Figure 1.7 shows a sample assembly tree for a csatien sequence of a sample
4x4 mesh. Leaf nodes of the assembly tree reprekentirtite elements, whereas, the
internal nodes represent the intermediate eleméniper-elements) obtained by the
assembly and condensation of the children nodese @H children of an element are
processed, its stiffness matrix can be assemblddidly summed dofs of the element
can be condensed. The assembly tree shows the dismsnbetween the factorization
and triangular solution operations. Factorizatidnaaparent node depends on the
factorization of its children. The dependency bemwéhe tree nodes is the same for
forward elimination. The order is reversed for backstitution where operations at the

children nodes depend on the operations at theapare
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Figure 1.7: The assembly tree for a condensatiquesece of a sample mesh

A postorder traversal of an assembly tree allowsgua stack data structure to
store the update matrices efficiently. The multiitad method requires a working space
for storing the stack of update matrices and tbatél matrix. The maximum value of
this working space throughout the course of thdofaration is the working storage
requirement of the multifrontal method [52]. Therkiog storage can be significant for
3D problems, and it may be larger than the fadmréinear programming problems [53].
The traversal of the assembly tree affects the mum storage required for the
multifrontal method. Liu [54] proposed an optimalspordering of the assembly tree that
gives the minimum working storage if the frontaltmaof a parent element is created
after the elimination operations at its childrenueBnouche and L’Excellent [55]
extended his work by allowing allocation of therftal matrix of a parent element after
the elimination of any children. Alternatively, theorking storage can be reduced by
altering the structure of the assembly tree [56].

In the multifrontal method, all algebraic operasoare performed on a dense
frontal matrix. The cost of using efficient densatnx operations is the assembly steps
performed at the nodes other than the leaves oaseembly tree. These are extra data

movement operations since a stiffness matrix cafotreed alternatively by assembling
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the original finite elements at once. Several athors are proposed to reduce these extra
assembly operations by merging a parent node wsthchildren according to some
amalgamation criteria. Duff and Reid [51] proposadalgorithm that merges a parent
node with its eldest child in the postorder tramené the number of the eliminated
variables for both of them is below a certain araalgtion parameter. Ashcraft [57] used
an amalgamation criterion that allows merging a&ptelement with any of its children if
the number of logical zero entries introduced byrgimgy is below a certain limiting
number. Although the number of floating point operas increases with the node
amalgamation, the benefits obtained from the redocof assembly operations that
typically use indirect addressing generally overesnthe increased number of floating
point operations.

The space and number of arithmetic operations reduor the factorization is
minimized by employing a fill-in reduction algorithin the preprocessing stage of sparse
direct methods. These algorithms seek a pivot argehat minimizes the number of fill-
ins introduced to the factors. There are mainly approaches for reducing fill-ins: local
ordering and global ordering. Local techniquesgaeedy algorithms that choose the best
alternative for the next pivot based on some hgarignction. Global techniques, on the
other hand, recursively find pivot columns that @lgue the rest of the columns in a
coefficient matrix, when the pivot columns are remub from the coefficient matrix. The
two techniques can be combined to produce hybgdrahms. Duff and Scott [58] and
Gould and Scott [59] reported that the hybrid oirtlgs produce better orderings for large
scale test problems used in their numerical expartm

The number of arithmetic operations required fog factorization of a pivot
column is proportional to the square of the nunmdferon-zero entries below the diagonal
of symmetric coefficient matrix. To limit the amdwf arithmetic operations required for
the factorization, the next pivot can be chosenragrtbe columns with minimum number

of non-zero entries. This local technique is caltb@ minimum degree ordering
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algorithm. Several improvements are made to imptbeequality of the orderings and
runtime of the original algorithm. George and L&0] provided a detailed summary of
these improvements. Liu [61] improved the runtimie tiee algorithm by allowing
multiple elimination of the pivots that are frondependent sets of low degree columns.
Elimination of these pivots will not affect the deg of each other therefore costly degree
update operations can be postponed. This algorighcommonly referred to as multiple
minimum degree (MMD) algorithm. MMD gives identicgiiality orderings in less time
compared to the original minimum degree orderirggpathm.

In a minimum degree algorithm, the tie-breakin@tstgy for the matrix columns
with same degree affects the quality of the ordemnoduced. Usually the minimum
degree algorithm is implemented to choose the paeobrding to their initial ordering.
Lui [60] proposed preordering the nodes with Rexetathill-McKee to improve the
guality of the orderings produced by minimum degakgrithm. Furthermore, compared
to random permutations, the row-by-row initial aidg of a 2D grid produced higher
guality orderings [60]. Cavers [62] evaluated saletie-breaking strategies and
recommended using the deficiency information todpa® orderings consistently better
than an arbitrary selection.

Amestoy et al. [63] proposed an alternative minimdegree heuristic that uses
the approximate degree information of the matrifuoms instead of the exact degrees.
The algorithm is called approximate minimum degrédID, ordering and AMD
ordering runs significantly faster since computirige approximate degree is
computationally cheaper than computing the exagtese In addition, the quality of the
orderings is comparable to the ones produced by MMD

In addition to the minimum degree heuristics, h&igs that attempt to minimize
the fill-ins have been studied. Rothberg and Eis¢r{$4] and Ng and Raghavan [65]

reported that heuristics based on the minimizabbrthe local fill-ins produce better
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orderings compared to minimum degree heuristic. élet, the execution time of these
algorithms is typically worse than the algorithnaséd on the minimum degree heuristic.

The global ordering techniques are top-down sparag&ix ordering algorithms
that perform domain decomposition to find pivotattdo not introduce fill-ins to each
other. This scheme for reducing the fill-ins wastfiproposed by George [66], which is
known as nested dissection. George proved thahdélséed dissection yields operation
counts asymptotically close to the optimal ordesifgy 2D grid problems. However, the
runtime of the nested dissection is significantlpree than the minimum degree
algorithms, making a complete nested dissectiomipitive for the matrix-orderings.
Therefore, instead of the original nested dissactdgorithm, an incomplete nested
dissection algorithm is used in the hybrid ordet®chniques.

In general, the hybrid approach uses graph partitgptechniques such as nested
dissection to keep the number of fill-ins low aé thigher levels of the assembly tree.
After a certain number of nested dissections, allordering technique such as minimum
degree is used to order the partitions obtainedh wigsted dissections. Finally, the
separators found in the nested dissection step®rdexed. Several improvements are
made to the hybrid matrix ordering approach, wiuah be found in references [67-71].

The choice of fill-in minimization algorithm (alsoalled as matrix ordering)
influences the efficiency of the numerical factatisn and triangular solution phases.
The choice is usually between minimum degree algms, which are simple and fast,
and hybrid orderings, which are more elaborate aswhlly produce better orderings.
Duff and Scott [58] summarized the automatic sedecstrategy of some direct solver
packages. They also proposed their own strateggdiecting the optimum node ordering
algorithm. Observing that the minimum degree athomi gives satisfactory results for
small and very sparse matrices, they used expetaheriterion based on the size of the
coefficient matrix and average number of entriegshe columns. For single or small

number of factorizations and solves, their stratpgyduced better total execution time
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compared to the strategy of choosing the best mmglealgorithm among several
alternatives executed for the coefficient matrixheif work did not consider fill-in
minimization heuristics.

Finally, Boman et al. [72] discussed recent advankgarallel partitioning, load
balancing and matrix ordering. They employed hypsplys to represent sparse matrices
and demonstrate the superiority of an alternatosgsening scheme for multilevel matrix

orderings.

1.25 Paralle Direct Solution

According to Dongarra et al. [18], three levelgpafallelism are available for the
sparse solvers: system level, matrix level, and-raabrix level. First, system level
parallelism is exploited by subdividing the underty problem into loosely coupled
components. This is called substructuring in stmadt analysis. Second, matrix level
parallelism is achieved by exploiting the spargéttern of a coefficient matrix. Nested
dissection is used to reduce the factorization soidtion of the matrix into independent
steps. Third, sparse matrix operations can be pedd as a series of dense matrix
operations on submatrices. Then, the parallelisthetsubmatrix level can be exploited
by using parallel versions of the Level 3 BLAS. $a&ernels are distributed by most of
the CPU vendors, which are optimized for a spegécallel architecture. Most modern
sparse codes use BLAS kernels for a scalable andh® implementation.

The parallelism due to the sparsity can be reptedeby using the elimination
tree defined for the sparse matrix [73]. Each noidihe elimination tree corresponds to a
pivot column in the sparse matrix. The ngde the elimination tree is the parent of node
i if j is first entry below the diagonal of the columof the factors. The computations are
independent for the tree nodes that are not ansestalescendants of each other.

Heath et al. [74] reviewed parallel algorithms feolving sparse symmetric

positive definite systems on shared and distributedhory computers. In their paper, the
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parallel implementation of all four phases of tléver is discussed. They suggested that
although the factorization phase takes most ofithe of a solver, the parallelization of
the other phases would eventually become imporsamte factorization times are
reduced on a regular basis with efficient paralleplementations. Additionally, the
solution phase may take considerable time whersyséem is solved for multiple load
vectors.

The structure of the elimination tree can be adgigb increase the amount of
parallelism. Liu [56] proposed a fill-in preserviraydering that uses tree rotations to
minimize the parallel completion time. Other fill-preserving orderings are given in
studies [75-76] for optimal parallel factorizatitimes. Nevertheless, Heath et al. [74]
suggested that the equivalent tree orderings hawerneffect on the amount of
parallelism and the node ordering algorithm mastigpes the features of the parallelism.

A pivot ordering algorithm which merely aims to nmmze the fill-in may not be
ideal for the parallel solution [74]. Guermouchekt[77] investigated the effect of node
ordering algorithms on the shape of the assembb/dnd the memory usage of a parallel
multifrontal solver. Conforming to the previous easch performed by Gupta et al. [78]
and Karypis and Kumar [79], the top-down orderingoathms provide well-balanced
and short assembly trees, which are desirabledmllel processing. Guermouche et al.
[77] also reported that deep unbalanced assembbs tproduced by the bottom-up

heuristics such as minimum degree and minimunhélle fewer memory requirements.

1.2.6 SubstructureLeve Paralldism

The substructuring is employed to extend the pasth to the computations
before and after the direct solution of the linegstems. Typical computations prior to
the direct solution are the calculation of elensiffness matrices, assembling the global

stiffness matrix, and constructing the global la@dtor. Similarly, once the solution is
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complete, the results are used in the post-praugssage, in which computations such as
finding element internal stresses and element nedg@lonses are performed.

The parallel implementation of the substructuringtimod is given in References
[80-82]. In the substructuring method, a structunabdel is subdivided into non-
overlapping substructures. The condensation of teutisres can be performed
independently. Therefore, the parallelism at thedemsation phase is trivial. However,
there may be a significant data dependency antieeface solution. Some studies [83-84]
used a serial solver for the interface problem tuéhe high data dependency at this
level. However, this approach is not scalable sitheetime required for the interface
solution increases with the number of substructures

For an efficient substructuring, the condensatiores of the substructures must
be close to each other. This is not an easy proldiexre the condensation times are
unknown before the pivot-orderings for the subgstres are found. Hendrickson [85]
discussed the lack of expressiveness of graph septations used in the most of the
partitioning algorithms. He argued that an undedcgraph with weighted edges and
nodes is not representative enough for the commtiarc volume between partitions and
amount of computation at each partition. Therefdraditional partitioning strategies
such as minimizing the graph edges will not neadgsainimize the communication
time between partitions. Similarly, balancing thertex sums at each partition may not
give subdomains with balanced computational loddendrickson and Kolda [86]
discussed alternative partitioning approaches hed potential to address the problems
with the traditional partitioning approach.

The problems involving adaptive mesh refinement aodtact detection have
features that change over time. This leads to datcdns in computational loads of the
partitions, which can be tackled by a dynamic |lbathncing algorithm [87]. Dynamic
load balancing adds additional constraint to thetifgening such as minimizing the

number of objects moved between the partitions.
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Yang and Hsieh [84] proposed an iterative partitmptimization method for
direct substructuring. After finding the initial pigions, the number of arithmetic
operations required for condensation was computgdguthe symbolic factorization
features of the SPOOLES [88]. The weights of tlemants were adjusted according to
the operation counts found for each substructuagerl,the partitions were modified by
using the partitioning packages JOSTLE [89] and N&E[B9]. While METIS restarts the
partitioning from the scratch, JOSTLE has the fematw adjust the partitions from the
previous iterations. Iteratively refining the padns using JOSTLE generally provided
balanced partitions with less iteration. Refinihg partitions by moving a small number
of elements between the partitions shows simiégito the dynamic partitioning that try
to minimize the number of objects moved betweetitpars.

Kurc and Will [90] proposed a workload balancindgname for the condensation
of the substructures. The METIS partitioning lityravas used for initial partitioning of
the nodal graph representing the structure. Ldber,node weights of partitions were
adjusted according to the estimated operation sourite PARMETIS [91] library was
used for repartitioning according to the adjustedenweights. The diffusion and scratch-
remap repartitioning algorithms were investigat€dey found that scratch-remap gives
more computationally balanced substructures. Magothe number of interface
equations was smaller compared to the diffusiomrélyn. They also stated that time
spent in the repartitioning iterations was insigraiht compared to the improvements

obtained in the condensation times.

1.2.7 Survey of Sparse Direct Solvers

In past years, a number of direct sparse solvdtguges have been developed. The
capabilities and algorithms used in the solver pgek vary. Table 1.1 shows the main

features of some of the current public domain disetvers.
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The solver packages usually involve several ordealgorithms available to the
user. The user may choose from the ordering algustoffered by the solver or a custom
pivot ordering may be provided. Some packages @ffdefault strategy for ordering, in
case the user is reluctant to make a choice amatgging algorithms. Some packages try
several ordering algorithms and choose the oneptivatuce the best results since there is
no single ordering algorithm that consistently pde¢ the best orderings in a reasonable
time. A better strategy may be to try a computatilyncheap local ordering algorithm
first, and then running a global ordering algorittirthe local ordering is not satisfactory.
CHOLMOD employs a similar strategy by initially @wng the pivots with AMD
algorithm. If the quality of the ordering is beloavcertain criteria or the number of

equations is large, a global ordering algorithraxecuted.

Code Algorithm Matrix type Platform
CHOLMOD [92-93] Left Hermitian Serial
PASTIX [94-95] Left Hermitian Distributed memory
PSPASES [78, 96] Multifrontal Hermitian Distributesemory

Hermitian, Symmetric

PARDISO [97-98] Leftright | ttern. Unsymmetric

Shared memory

WSMP [99-100] Multifrontal | Hermitian, Unsymmetric Shared/Distributed
memory
. Left, Right, . .
Oblio [101] Multifrontal Symmetric Serial
UMFPlAOC::%I]< [102- Multifrontal Unsymmetric Serial

SPOOLES [88, 104]|  Left looking Symmetric, Symmetric| Shared/Distributed

pattern memory
SuperLU [105-106] Left Unsymmetric Serial
MUMPS [107-108] Multifrontal Symmel;rzﬁe?zmmetrlc Distributed memory
Left, Symmetric, o
TAUCS [109-110] Multifrontal Unsymmetric Distributed memory

Table 1.1: Features of the direct sparse solvekgupes
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Gould et al. [111] evaluated the performance dfestd-the-art direct solvers for
symmetric matrices. The solvers were executed amgle processor for matrices of
order greater than 10,000. In their experimentsh vpbsitive definite matrices, the
factorization time of WSMP was usually found to better than the other solvers.
However, the preprocessing phase required signifitae for this package since WSMP
executes both nested dissection and minimum fillgorithms and the pivot-ordering
with the lower number of non-zeros is chosen. Inegal, the factorization times are
closely related to the number of non-zero entriesthe factors, and the difference
between the factorization algorithms (left-lookimgyht-looking or multifrontal) was not
very significant. The total solution time was alsampared for a single right hand side
vector. Balancing the time spent in all phaseshef golver, CHOLMOD produced the
best overall performance. The time spent in th@naeessing phase of WSMP reduced
its overall performance. PARDISO gave the secondt actorization and overall
solution time among direct solvers evaluated byl@Getial. [111].

The serial and parallel performance of some solweese experimentally
evaluated on 24-processor IBM RS600Gupta and Muliadi [112]. The relatively new
solvers, MUMPS and WSMP, performed significanthyttée usually by an order of
magnitude. The performance difference was relatethe¢ efficient use of the Level 3
BLAS kernels in the more recent solver packages.

The performance of two distributed memory solvéts§MPS and SuperLU, was
evaluated by Amestoy et §l.13]. Allowing artificial non-zero entries to inease the size
of the dense matrix blocks, MUMPS performed betitan SuperLU. Efficiency of the
BLAS3 kernels usually offsets the additional conapioins as a result of the extra zero
entries stored in the larger dense matrix bloclkesiusy MUMPS. SuperLU uses complex
data structures to store the nonzero entries amtych may be beneficial for matrices
with irregular sparsity pattern. MUMPS performedtbefor small number of processors

since it has lower communication overhead. HoweSaperLU was expected to be more
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scalable since it exploits the parallelism bettéthwhe cost of larger communication
demands.

There is no recent study that compares the perfmcmaf the state-of-the-art
solvers on modern multi-core processors. Morequ&vious studies evaluated the solver
performance for the sparse matrices from diffefihds, not particularly focusing on the
problems arising from structural mechanics. Mosttleé test matrices used in these
studies can be found at University of Florida spamsatrix collection [114] in an
assembled format.

In order to use an available direct solver package,complete stiffness matrix
usually needs to be assembled. Among solvers dieduis this section, only MUMPS
allows the element matrix representation whileo#ttler solvers require a fully assembled
sparse matrix. The complete assembly of the ssfneatrix can be prohibitive for large
scale problems. Additionally, for some cases, thne tfor assembling a stiffness matrix
can be comparable to the time for the factorizatadnthe stiffness matrix. While
evaluating the performance of a direct solver,dditon to time spent in the phases of
the solver, the time spent and memory requiremintbuilding the stiffness matrix of a

structure must be considered.

1.2.8 Design of the Solver Packages

The primary concern in the design of a direct soigethe performance of the
solver. Scott and Hu [37] discussed the featuremnatieal solver package, other than the
efficiency in terms of CPU time and memory. In dmdi to a comprehensive
documentation aimed for both experienced and ingempeed users, the features of an
ideal solver are summarized as:

Smplicity: The algorithmic details of the solver packageustidoe hidden from
the user. The interface of the solver package shbaldesigned for a user with no or

little knowledge about the sparse linear solvepatgms. Object-oriented programming
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techniques can be used to hide the implementagtails. Instead of using arrays holding
the implementation details, an object can be passethe single input argument to a
phase of the solver. However, the properties of dbgects must be accessible for
advanced users.

Clarity: The symbolic factorization and numerical factatian phases shall be
separated to allow the reuse of a symbolic fackion. Similarly, the solve phase and
factorization phase shall be distinct to allow $iolu for multiple right hand sides.

Smartness. Good default values for the input parameters saglthe ordering
algorithm, blocking and pivoting strategy shall tleosen automatically. An optional
error checking for the input data must be offered.

Flexibility: The experienced user shall have the flexibilityekperiment with the
different ordering strategies. The information abitve matrix inertia, level of accuracy,
and nonzero entries in factors shall be accessible.

Persistence: This is ability of the solver to recover fromltaie. For example, if
there is not enough memory, then the user shalifbemed with a proper error code. If
the solver has an out-of-core factorization optibrcan automatically switch to the out-
of-core factorization algorithm in case the probleannot be solved using the main
memory only.

Robustness: Iterative refinement shall be performed autonaiyc The residuals
and condition number estimates shall also be peakid

Safety: The solver package should be thread-safe. Additip, memory leaks
should be avoided.

Scott and Hu [37] summarized the interface, docuatem, and matrix input
format of the state-of-the-art solvers. They codelli that none of the current solvers
meets the criteria of an ideal solver.

George and Liu [115] proposed an object-orientesigihefor the user interface

design of sparse matrix package. Objects were wshitle the implementation details of
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the functions and a standard interface was provibdedverloading the function names
for different types of objects. Both standard amgegienced users were considered in
their design. Two main classes were offered forstamdard user: Solver and Problem.
Problem class holds the linear system of equatioaiswill be solved. It allows entering,
modifying and querying the entries of the sparsdrisnand right hand side vectors.
Solver class accepts a problem instance as inplperduces a solution. The function
Solve is overloaded for different types of solwshich calls the functions for the pivot
ordering, symbolic factorization, matrix input, fadzation, and forward/backward
substitution. These functions are accessible fer rdsearch purpose and they can be
ignored by a standard user. Considering researdnersiesign also allows accessing low
level objects used in the different phases of tiees such as graphs, pivot ordering, and
elimination tree.

For the local ordering algorithms, Kumfert and RotH116] provided an object
oriented framework. For a minimum priority orderinthey indentified three main
classes: quotient graph, bucket sorter, and pyi@itategy. Quotient graph holds the
compressed quotient graph representing the non-@efies in the coefficient matrix
during the factorization, bucket sorter holds itkey pairs sorted according to the key
values, and priority strategy represents the lbealristic to choose the next pivot. Their
design allows using different priority strategy different stages of the ordering
algorithm. An algorithm that allows multiple elinations can be used initially, when
there are many independent sets of vertices siaistiie pivot selection criterion. As the
graph gets tightly connected, approximate degrderorgs that typically does not allow
multiple eliminations can be employed.

The main struggle in their design was to provideoaxmon interface for the
adjacent vertices in the elimination graph. An aedpd vertex in the elimination graph
corresponds to a vertex reachable by a path ofirdited vertices in the quotient graph.

Those paths are referred to as reachable patha aatlof vertices that are reachable via
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such paths are referred to as reachable set of reexvelnitially, the class
ReachableSetlterator provided a standard way tesacthe reachable sets of a vertex.
However, the overhead of the iterator forced themrbvide lower level accesses to the
adjacency lists of the quotient graph. With thetadsincreasing the coupling between
the classes, this provided the desired performaBoepared to Lui's minimum degree
code, GENMMD [61], their implementation takes mairee by a factor of three to four
on average. Their design allows measuring the réiffecomponents of the algorithm and
most expensive part of the code was found to bepldate for the quotient graph.

Dobrian et al. [101] discussed the design of aitiefit object oriented software
for direct solution of sparse systems. The solvas @eveloped mainly in C++, however
the core factorization operations were optimizethvai C or FORTRAN compiler, which
were only a small portion of the code but took mostthe execution time. For the
remaining part of the code, the complexity was ledthkusing the object oriented design
techniques. The main classes are organized intogéesnheritance tree with two main
branches: DataStructure and Algorithm, which arth lerived from the Object class.
Each object can print itself and it returns theoerstatus in case of request. The
DataStructure provides interface for data validaémd resetting the data structure. The
Algorithm provides common interface for the exegntof every algorithm and it stores
the running time of the algorithm. Some algorithtasses, such as the factorization
algorithms, are composed of several algorithm dbjethe multifrontal factorization
algorithm, for example, is composed of algorithrassles for computing the elimination
trees, performing symbolic factorization, and perfmg the numerical factorization.

One of the design requirements of Dobrian et @1]1s easy integration of the
different matrix formats. For this purpose, all matclasses are derived from a base
matrix class that has the sparse matrix data. Badlred matrix class has a constructor
that accepts base matrix class and constructspieses matrix in the format the class

represents. This prevents cyclic coupling betwdem ¢lasses representing different
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matrix formats. A similar approach is followed foandling different graph formats and
matrices and graphs can be built from each othersing the constructors that accept the
base graph and matrix classes.

Ashcraft and Grimes [88] developed an object oednsparse matrix library,
SPOOLES, which supports serial, multithreaded, &mEl environments. For the
preprocessing phase, minimum degree, nested dmsertd multisection orderings are
provided. The library is within the public domaindathere are no licensing restrictions.

Sala et al. [117] proposed an interface libraryMeetn direct solver libraries and
the applications that require a direct solver ferid and distributed systems. The
interface involves three phases, preordering anmhbsiic factorization, numerical
factorization, and solution. The abstract clas$ed tlefine the interface are provided.
These are a map class representing local to gloiagping, a vector class, a square
matrix class, a linear system of equations clasg] a solver class. A concrete
implementation of the interfaces can be found m webpage of the AMESOS project
[118]. The interfaces are provided for the directiver libraries LAPACK [9],
UMFPACK [103], TAUCS [110], PARDISO [98], SuperLU(6], DSCPACK [119],
SCALAPACK [120] ,and MUMPS [108].

1.3 Objective and Scope

The main objective of this research is to develodiract solution procedure
which exploits the parallelism that exists in catr&MP multi-core processors and is
efficient for solving the linear system of equasgadhat occur in finite element problems.
In order to accomplish this objective, the follogitasks were performed and are further
described in subsequent chapters of this study:

» Determine the factors which contribute to the penfance of the direct solver

A direct solver is typically composed of four phsisereprocessing, analysis,

numerical factorization, and triangular solutiorheT performance of all four phases
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contributes to the overall performance of the solféerefore, the performance of each
phase is investigated and approaches to improvepéhni®rmance of these phases are
described. The contribution from each phase toaverall execution time is studied.
Furthermore, the factors that affect the paralegfgrmance of the solver on SMP multi-
core architectures are studied.

* Investigate the performance of matrix ordering athms for finite element

problems.

As explained in Section 1.2.4, there are varioudrimardering algorithms
available in the literature. The matrix orderingaithm greatly determines the memory
and CPU time required for the factorization. Thetrraordering algorithms that yield
minimum storage and factorization time requiremerts determined. A suite of finite
element models are used to determine the optirgali#ims.

* Improve solver performance by incorporating FE maa®rmation

A general purpose sparse solver is oblivious toRBanodel underlying a linear
system of equations. Therefore, the informationualibe finite element model is not
used if a general purpose sparse solver is usethdosolution. This information can be
useful to improve the performance of a direct soleéor example, the coordinate
information of the nodes in the finite element modan be used for an initial node
numbering for the matrix-ordering programs. Localtnx-ordering algorithms usually
produce pivot-orderings resulting in fewer fill-ine the factors if this initial node
numbering is used. In addition, the general chargstics of finite element models such
as multiple dofs at a node and limited connectiofyelements can be exploited to
improve the performance of a direct solver. Fomeple, the size of data structures used
in the solver package can be reduced significantlyhe use of a coarser model formed
by merging adjacent elements with each other anthbyse of a supervariable graph.

This will reduce the space and time required fa thatrix ordering algorithms. The
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solver package exploits these opportunities to anprthe overall performance of the
direct solution.

* Implement a high performance solver package whithwa experimenting

with alternative matrix-ordering and factorizatialgorithms.

The developed solver package has two primary gdadgi-performance of the
core factorization subroutines and flexibility ihet preprocessing phase. The high-
performance of the core factorization subroutinesachieved by employing the
BLAS/LAPACK kernels tuned for specific computer litecture. By using the tuned
BLAS/LAPACK kernels, a parallel multifrontal schem® developed for an efficient
numerical solution on SMP multi-core processors.e Téolver package is also
maintainable and extensible for easy implementatain emerging preprocessing
algorithms for the direct solution of sparse linegrstems. Object-oriented design
principles are used to allow easy implementatioatbér preprocessing algorithms.

* Improve the performance of triangular solution ghder multiple RHS

vectors.

The design of structures typically includes analysi FE models for multiple
RHS vectors. Therefore, it is crucial to emphasmeeefficiency of the triangular solution
for multiple RHS vectors. A triangular solution sohe that is especially efficient for the
triangular solution of multiple RHS vectors is degeed.

* Improve the performance of assembly operationgh@istiffness matrix.

As the execution time of numerical solution decesaby the use of parallel
algorithms, other components of the FE analysisnsoé will become a bottleneck, such
as the assembly of the stiffness matrix. The deezlocode works with the element
connectivity information and element stiffness netas instead of an assembled global
stiffness matrix. In fact, the global stiffness mais never assembled, and the assembly

operations are interleaved with the factorizatiteps. In this scheme, the parallelism is
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easily extended to the assembly operations sireg dre interleaved with the numerical
factorization operations, which are performed irafial.

* Develop a performance model for the direct solutdrstructures on SMP

multi-core processors.

It is important to understand the performance ofagplication for workload
balancing on multi-core processors. A performancedeh is built to predict the
performance of the factorization phase on SMP nualte processors. The execution
time of factorization can be predicted by the ut¢he developed performance model.
The estimated performance is compared with theahgterformance of the solver. This
helps to determine unpredictable performance degi@ats due to the limited
computational resources. Based on the estimatetliBae times, the parallelism can be
exploited in an optimal fashion to minimize thettazation times on SMP multi-core
processors. In addition, the performance modeke&duo choose the pivot-ordering that
will minimize the estimated factorization time angoalternative pivot-orderings found
by different preprocessing strategies.

* Tune the solver package according to the resulisimdd from the numerical

experiments.

Numerical experiments are performed for the solugbFE models. Based on the
results from the numerical experiments, the optipamiameters for the algorithms are
determined for the solution of FE models. The ekeautime of the developed code is
compared with a state-of-the-art direct solver.

* Develop recommendations for obtaining high-perfaroea from multi-core

architectures other than SMP.

Preliminary analyses are performed for heterogemeuulti-core architectures
having GPGPUs. Recommendations are developed tinobigh performance from

these multi-core architectures.
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1.4 ThesisOutline

The remainder of the thesis is organized as folldlsapter 2 discusses factors
contributing to the performance of a direct solaed implementation of the direct solver
developed in this study. Performance evaluationhowilogy is also explained in
Chapter 2. Chapters 3-5 discuss the implementatidhe preprocessing phase, analysis
phase and factorization & triangular solution plsasespectively. The algorithms and
data structures used in each phase are discuskaptets 3-5 also discuss approaches to
improve the performance of a direct solver for #wution FE problems. Chapter 6
evaluates the performance of various algorithmstifi@ sparse direct solution of FE
problems. Among various alternatives, the algorghimat yield favorable factorization
times are presented in Chapter 6. Chapter 7 denabestthe performance of developed
code on a number of test problems. Chapter 8 dgivesresults from the preliminary
experiments for performing factorizations using GRG. Finally, Chapter 9 summarizes

the achievements and gives recommendations forefutork.
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CHAPTER 2
PERFORMANCE, IMPLEMENTATION, AND TESTING

METHODOLOGY

In this chapter, the factors contributing to thef@enance of sparse solvers are
discussed. The methodology for improving the pentomce of the sparse direct solver is

explained. Implementation of the solver and tesbjams are briefly discussed.

2.1 High-Performance Spar se Direct Solution

As discussed in Chapter 1, high performance redativthe machine peak speed
can be achieved if the ratio of computations to mgmaccess is high. The ratio of
floating point operations required for the factatian (flop) to the number of non-zeros
in the factorized stiffness matrix (non-zero) isna@asure of computations per memory
access. This ratio (flop/non-zero) varies dependindghe size of the FE models. Figure
2.1 shows the flop/non-zero ratios for example 2y with 4-node quadrilateral
elements. As shown in Figure 2.1, the flop/non-zextio increases as the model size
increases. Therefore, there is the potential toehi@ctorization speeds close to the
machine peak speed for sufficiently large FE madeéds these models, high performance
factorization can be achieved by employing BLAS8nkés [17]. Chen et al. [92] stated
that for sparse matrices with the flop/non-zeraogatarger than 40, the use of BLAS
based factorization is more advantageous comparatn-BLAS based factorization.
The critical flop/non-zero value is determined lshea the numerical experiments shown
in Figure 2.2. As shown in Figure 2.2, the BLASdzh$actorization is significantly faster
than the non-BLAS based factorization for problesith large flop/non-zero ratios. For
the example FE problems shown in Figure 2.1, probléarger than 20x20 grid have

flop/non-zero ratio larger than 40, the criticallue given by Chen et al. [92]. The
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flop/non-zero ratio is even larger for plane franpeoblems and 3D models.

Consequently, a BLAS based factorization algoriierauitable for most of the practical

FE problems solved with today’s computers.

160

100

Flop / Non-zero
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Model Dimensions

Figure 2.1: The flop/non-zero ratios for 2D grid eshets with 4-node quadrilateral

elements. There are 2 dofs per node.
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Figure 2.2: For University of Florida Sparse Mat@ollection [114], relative
performance of the BLAS based factorization and riba-BLAS based factorization.

Figure is taken from Chen et al. [92].

Two main factors contribute to the high performamesparse factorization:
minimization of number of floating point operatiomsequired for factorization and
maximization of the factorization speed. For thexfer, a pivot-ordering is found, which
aims to minimize the flop and non-zero. For theéelatBLAS3 kernels are employed in
order to achieve a high factorization speed. Algiodactorization operations typically
correspond to the largest portion of the overakrapon count of a sparse solver, the
execution time of the remaining code can be sigaifi due to relatively low speed of
handling sparse data structures. An efficient nicakfactorization code minimizes the
time spend in the subroutines other than the BLA&3els which are employed for the
factorization operations. In this study, the faation speed is further increased by

effectively exploiting the parallelism in multi-ec@computers.
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2.2 Other Considerationsfor Achieving High-Performance

As previously discussed, the solver package cansispreprocessing, analysis,
numerical factorization, and triangular solutiorapés. The main design goal of a high-
performance solver package is to minimize the tspent in the solver package. The
numerical factorization is typically the most congtionally intensive component of a
solver package. However, the time spent in therpogssing and analysis phases may be
comparable to the time for numerical factorizatiespecially for some 2D problems.
Moreover, the triangular solution may take a sigaiit amount of time if there are a
large number of RHS vectors. Therefore, the timenspn all phases of the solver
package must be considered in order to achievegeglormance.

The contributions of the various components ofgblver package to the overall
execution time are demonstrated using two simplamgte problems. The overall
performance for two matrix ordering programs iggtrated for an example 2D problem
as shown in Table 2.1. The time spent at diffepases of the solver for the numerical
factorization and triangular solution with four élads is given in Table 2.1. The second
row of the Table 2.1 shows the solver executioresirfor a local ordering. For the local
ordering, the approximate minimum fill-in (AMF) agthm in the SCOTCH library
[121] is used. The third row of the Table 2.1 shdis solver execution times for the
hybrid ordering algorithm in METIS library [69] (HEITIS). The local ordering AMF
runs faster than the hybrid ordering HMETIS, buhdy produce pivot-orderings that are
not suitable for parallel processing. As shown ablg 2.1, the four-thread factorization
time for HMETIS ordering is smaller than factoripast time for AMF ordering.
However, factorization plus matrix-ordering timer fthe AMF ordering is smaller
compared to the HMETIS ordering due to the smaltrix@rdering time for AMF.
Therefore, the use of AMF ordering will minimizeetioverall execution time if the
factorization and triangular solution are performedly once. However, if the
factorization is repeated multiple times, then faetorization time will dominate the
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overall execution time. In this case, it may beirddde to use a more time consuming
preprocessing algorithm if it helps to reduce thetdrization times. For example, the
overall time with HMETIS ordering will be betterah the one for AMF ordering if the

factorization is repeated for more than 8 timestli@ example problem shown in Table
2.1.

As it is illustrated in the previous example, eteough HMETIS execution times
are greater than the factorization times, the extna spent in the matrix ordering phase
is worthwhile if the factorization is repeated. Téfere, the type of analysis shall be
considered for a strategy that minimizes overdltesotime. Namely, if the factorization
and triangular solution are performed multiple tami®r example, nonlinear analysis, the
time spent in the numerical factorization and tgalar solution phases may dominate the
overall execution time. In this case, additionaldican be spent in the preprocessing and
analysis phases in order to minimize the numef@etiorization and triangular solution
times. On the other hand, if the solution is perfed only once, the extra time spent in
the preprocessing and analysis phases may incrdaseoverall execution time
significantly. This is especially true for paralkalctorization and triangular solution, for
which the contributions of the serial preprocessind analysis times increase due to the

time reductions in the numerical factorization amangular solution phases.

Ordering | Ordering | Factorization OveraII_ T|me SoI_ut|on QveraII
Algorithm Time Time (Factonzr_;ltlon Time T|me_f0r
& Ordering) (100RHYS) Solution
AMF 1.00 3.52 4.52 7.21 11.73
HMETIS 8.09 2.54 10.63 4.40 15.03

Table 2.1: Four-thread execution time of the sopexrkage for alternative matrix
ordering programs. Test problem is 50x10000 grithw2D 4-node quadrilateral

elements. All units are seconds.
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As shown in the previous example, the executioretwoh the matrix-ordering
program may affect the overall performance for 2Eobfems with numerical
factorization times comparable to the hybrid matmdering times. On the other hand,
for large 3D problems, the time spent in the matmeering program is typically small
compared to the time spent in the factorizationsphdherefore, the overall performance
is usually governed by the time spent in the faz&tion phase, and more elaborate
matrix ordering strategies can be employed to mirenthe factorization time at the
expense of extra time spent in the preprocessiragghTable 2.2 shows the overall
performance for an example 3D problem. As showifiahle 2.2, the factorization time
usually dominates the overall execution time. s problem, a matrix ordering strategy
that executes alternative matrix ordering programg picks the best result among the
pivot-orderings is more likely to minimize the oatrexecution time compared to the use

of a single matrix-ordering algorithm.

Ordering | Ordering | Factorization Overall_ T”.“e Sol_utlon Qverall
Algorithm Time Time (Factonzr_;ltlon Time T|me_f0r
& Ordering) (100 RHYS) Solution
AMF 0.05 15.73 15.78 2.60 18.38
HMETIS 0.32 6.41 6.73 1.68 8.41

Table 2.2: Four-thread execution time of the soperkage for alternative matrix
ordering programs. Test problem is 30x30x30 grithv@D 8-node solid elements. All

units are seconds.

In this study, strategies to improve the overaltfgrenance of the solver are
discussed. In addition to the numerical factor@atnd solution phases, the performance
of the preprocessing and analyze phases is evdlualiough parallel implementations
of hybrid matrix ordering libraries exist, suchR&ARMETIS [91] and PT-Scotch [122],

all matrix ordering programs are executed in theakenode. Therefore, the parallel
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execution times of the hybrid matrix ordering prgs will be less than the serial

execution times given in this study.

2.3 Performance Evaluation

The execution time of the numerical factorizati@pends on two factors: floating
point operations (flop) required for factorizatiand the speed (GFlop/sec) of numerical
factorization. Matrix ordering programs aim to nmvize the flop and efficient algorithms
are employed to perform the numerical factorizatma solution as fast as possible. As
stated in the previous section, the time spenthm rmatrix ordering stage can also
contribute to the overall execution time of theveoland must be considered when we
evaluate the performance of the solver package p&hermance of the solver package is
evaluated using the following performance criteria:

* Non-zero — number of non-zero entries in the lodiagonal after the

factorization.

» Factorization flop — number of floating point op@ras required for Cholesky

decomposition.

* Solution flop — number of floating point operatiorequired for numerical

solution.

* Ordering time — execution time of the matrix ordgrstrategy.

* Factorization time — execution time for the numarfactorization.

* Solution time — execution time for the numericdugon.

* Overall time — total time required for the matrisdering strategy, numerical

factorization and numerical solution.

The first three performance criteria are theorétredues and are calculated at the
preprocessing and analysis phases prior to therfaation. The remaining performance
criteria are found by measuring the execution tohdifferent components of the direct

solver. All execution times are wall clock time$elmatrix ordering programs typically
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aim to minimize the non-zeros introduced to thetdexc The non-zero performance
criterion can be used to compare the results fraifierdnt matrix ordering programs.
Furthermore, the non-zero is a measure of memoquimned for the factorization.

Factorization flop is the theoretical operation mbuequired for the numerical

factorization. Similarly, solution flop is the thetical operation count required for the
numerical solution.

For all performance criteria, a smaller value igtdre A value for a performance
criterion is compared with the smallest performaagrion obtained for a test problem.
Two types of plots are used to compare the perfoomaf alternative configurations:
normalized performance plots and performance @®{il23].

Normalized performance plots present the performamé configurations
normalized according to the best results for al f@oblems used in the performance
evaluation. Normalized plots help to see how a igonétion performs for a test problem
compared to the configuration that gives the bestlts. For the normalized performance
plots, if the value on the y axis is 1.0 for a ¢gufation, then that configuration gives the
best results for the problem given on the x axihieWthere are a large number of test
problems, we may want to compare the overall perémce of the configurations rather
than the performance for individual test probleffise performance profile proposed by
Dolan and More [123] is used to evaluate the oV@eiformance of alternative solution
strategies for a test suite. For a given perforraagriterion, pi(a) is the performance
profile of the 1" configuration, which is typically a solution segy. For {' configuration,
pi(a) gives the percentage of the test problems thawiikin the a times the best
performance criterion. For exampj®(1) gives the percentage of test problems for which
the {" configuration produces the best results. Simi|ai2) gives the percentage of test
problems that the" configuration produces results within two timese thest result. By

definition, pi(a) is a non-decreasing function. The performancéilprbas been used to
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evaluate the performance of direct solvers and immatrdering strategies in previous
studies [58, 111].

The performance plots are demonstrated using amstrditive example.
Hypothetical performances of three different confagions are given in Table 2.3. Here,
Configuration 3 gives the best performance fomadidels except from Model 1. Figure
2.3 shows the normalized performance plots. Haee stiperiority of Configuration 3 for
three out of four models is apparent. Figure 2s® ahows that the Configuration 2 gives
the best result for the model that Configuratidiai& to give the best result. The relative
performance of the configurations can be compaoecéch model by using the Figure
2.3. The performance profiles for the example gpmfations are shown in Figure 2.4.
Figure 2.4 shows that Configuration 3 gives thet besults for 75% of the models and
Configuration 2 gives the best performance for dmaining 25%, which is only one
problem in our example. Figure 2.4 also shows thatperformance of Configuration 1
and Configuration 2 is similar for 75% of the malefFor the remaining 25% of the

models, Configuration 1 performs better than Canfigion 2.

Configuration No. | Model 1 | Model 2 | Model 3 | Model 4
1 2.0 1.5 2.5 3.0
2 1.75 1.75 2.25 3.5
3 2.5 1.40 2.0 2.0

Table 2.3: An illustrative example for performanpkts. The values for a

performance criterion are shown for three configars and four models.
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Normalized Performance for the lllustrative Example
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Figure 2.3: Normalized performance plots for tHastrative example given in

Table 2.3.
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Figure 2.4: Performance profile for the illustratigxample given in Table 2.3.
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2.4 Software Optimization

The numerical factorization and triangular solutgirases of the direct solver are
optimized for an efficient solution of the struaaron SMP multi-core processors. We
usually avoid optimization at the code level, i.et¢ do not perform low level
optimizations such as loop unrolling. Instead, we tb employ the most efficient
algorithms and data structures for the sparse tdg@lation of structures on multi-core
processors. We also tune the parameters of theitalgs for the best performance on
finite element problems.

A structured approach is followed in order to tuthe solver package. The
performance optimization methodology described bysieeg et al. [124] is used. The
optimization is performed iteratively as shown igl¥e 2.5. Here, each iteration designs,

implements and verifies only one change to the code

Gather Performance

/’ Data \

Analyze Data and
Identify Issues

= =

Implement Generate Alternative
Enhancement to Resolve the Issudg

Test Results

Figure 2.5: An iteration for the performance optiation [124]

A workload representing the realistic problems isquired to measure
performance and test the enhancements to the pnogieersteeg et al. [124]
characterized the effective workloads as measuralsepeatable, static, and
representative. For the tuning of the solver paekagarge number of test structures are
used. The test structures cover problems with miffe dimensions and node topology.
Both 2D and 3D models composed of different elentgpés are created for the test

suite. See Section 2.6 and Appendix A for a dedadlescription of the test problems. The
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performance data for the code is gathered usingrénembedded with the code and
AMD CodeAnalyst [125].

It is important to preserve the correctness of $bkver after each attempt to
increase the efficiency. A set of smaller strudtumadel test problems are used to check

the correctness of the solver package after eadificetion.

2.5 Implementation of the Solver Package

Sparse solver packages utilize sophisticated algos for the manipulation of the
sparse data structures. However, the majority efetkecution time is consumed in the
core numerical factorization code, which is a smpalition of the sparse solver code. For
this reason, emphasis is placed on improving thdopeance of the core numerical
factorization code. The complexity of the restlué program is tackled using the object-
oriented software design techniques. The desigheftoftware addresses the following
key considerations:

* High performance at the core factorization and tsmhuroutines.

* Flexibility in the preprocessing phase. The solvpackage allows
experimenting with different preprocessing alganth and different graph
representations of structures.

* Clear distinction between the phases of the dirgaiver. This allows
executing factorization and solution phases mudttphes for a pivot-ordering
found in the preprocessing phase.

* Measuring the execution time and memory requiremdat the solution.
Calculation of the performance criterion for a $ioln strategy.

» Portability and sustained performance at diffepatforms.

* Element connectivity and element matrices are ta®mnput to the solver

package. The user is not required to build théngtiis matrix of the structure.
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The stiffness matrix is assembled in an efficieedhion within the solver
package.

* Use of external matrix-ordering libraries such aBIN5, SCOTCH, CAMD,

and etc.

* Implementation of hybrid factorization schemes.

» Configurable algorithms that allow experimentinglwalternative values for

the algorithm parameters.

» Support for command line interface for executing $blver within scripts.

The solver package is developed in C++, which stippobjects and generic
programming. Generic programming allows using ausion without paying a
performance penalty for virtual functions. Effictesnd reusable mathematical libraries
are developed using this technique such as thehgeaml matrix-ordering library
developed by Lee etal. [126]. C++ also allows dmweg performance critical
components at a low level. For example, frequentadyic memory allocation is avoided.
Instead of dynamic allocation of small objectsatobhemory is allocated in large amounts
and segments of the large memory block are usedteagssary. The numerical
factorization and solution is performed using tulB2d\S/LAPACK kernels (MKL [6]).
The high performance can be sustained by the uB&AS kernels tuned for a system.

The solver package is named as SESBpér Element Solver). The solver is
composed of three main components:

1. Interface package for inputting the structural mag®d interaction with the

solver package

2. Preprocessing package for finding pivot ordering

3. Solution package for performing factorization, censation, forward

elimination, and back substitution.

Figure 2.6 depicts the interaction between the pgek. Each package uses the
objects for storing the results. By merely relyimg these objects, a direct link between
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the packages is prevented. The preprocessing packaigrns an elimination tree object
as the result of preprocessing. Then, an assemd#yobject is built using the elimination
tree, and the assembly tree is used for the symbalil numerical factorization. In order
to store the performance criteria for the solveckpge, a class that records the
performance of different components is implementédu class is designed as a singleton
object, and any component of the solver can adtessingle instance of the class via a

static interface.
B
Read
v [
Interact

SES

Interface
T Command Line
Construct Interface
FE Problem

Factorize/

Preprocess Solve

|
SES Find
Preprocessing S;Eﬁson 4
Find
| 4 F o[ Soion |
Construct Construct  Use
Use ¢ ‘

‘ Elimination Tree }—‘ ‘ Assembly Tree ‘

Figure 2.6: Main components of the SES solver pgeka

Tasks performed by different components of the esopackage are summarized
as:

SES Interface

* Read the input structure from a data stream

* Apply an initial ordering for the nodes and elensemitthe structure

* Provide data streams to the solver package foruttiig performance and

program state
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Construct an efficient representation of the FEbfgm, which is used by SES
preprocessing and solution packages

Provide an interface for preprocessing and solutibproblem with different
strategies

Provide an interface to modify element matrices pedorm factorization for

the same problem.

SES Preprocessing

Fill-in reduction using local and hybrid orderirechniques

Perform mesh coarsening.

Construct the elimination tree, a tree storing fhaetial ordering of the
elimination steps.

Partition the structural model into a number oftipians.

Record the execution time for the preprocessingratgns.

SES Solution

Perform symbolic factorization

Build the assembly tree, a tree storing the assesdgjuence of the elements.
Find balanced workloads for parallel numerical daiziation and solution.
Find performance criterion for a given assemblg.tre

Perform symbolic factorization, condensation, aoidtson.

Store statistics for symbolic factorization, conskion, and solution
Assemble the element stiffness matrices

Perform numerical factorization, condensation, swoidtion

Record the execution time of factorization, con@d¢ios, and solution

2.6 Test Suites

A large number of test problems are used for ev@gahe performance of the

alternative solution strategies and for tuning swver package. Both 2D and 3D
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problems are generated for the experiments. Theesalses the node connectivity
information (topology) of the structure and doest rmepend on finite element

formulations. Therefore, generalized element types used to construct the test
problems. Each generalized element may repres#atatit finite element formulations

from various applications. The models are constdiaising the following generalized
element types:

1. 2D quadrilateral element with 4 nodes and 2 vaesalt each node

2. 2D frame elements with 2 nodes and 3 variablesett aode

3. 3D solid elements with 4 nodes and 3 variablesieh @ode

4. 3D frame elements with 2 nodes and 6 variablesett aode

The number of variables at each node does nottaffeivot orderings of matrix
ordering programs since a supervariable graphesd @& the matrix ordering programs.
However, the number of fill-ins and operation cauimicrease for a pivot ordering as the
number of variables at each node increases. Theresmall differences in the pivot
orderings may have a larger impact on the operatmmt for models with a larger
number of variables at each node.

In order to measure the numerical factorizatiore8nwith satisfactory precision,
the test problems should be large enough. Therefest problems are chosen to have
factorization times greater than 0.05 seconds an giistem where the numerical
experiments are performed. Additionally, to prevpetformance degradation due to the
memory limitations, the number of entries in thevéo diagonal factors is limited to
6.710° for 2D problems. 6:10° double precision entries approximately require 5 GB
memory. For 3D problems, the limit for number oftfas is 8.0°, which is equivalent to
6 GB memory. These restrictions are for performfiactorization using only the main
memory (8 GB in the test setup).

There are 670 test problems having regular geoesetvith various aspect ratios.

The model dimensions are summarized in Table Zhé.fMumber of elements in x, y and
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z directions is given in this table. The models gemerated for all possible unique
combinations of the dimensions given in Table 2g.an example, 3D models with 10
elements in the x, y and z directions (10x10x1@) slrown in Figure 2.7 for solid and
frame elements. The detailed statistics for théoam test problems can be found in
Appendix A.

In addition to the test problems with regular getias, test problems with
irregular geometries are also used for the experisndhere are 86 irregular models that
can be solved using only the main memory, whichcaraposed of 21 problems with 2D
guadrilateral elements, 21 problems with 2D frateenents, 22 problems with 3D solid
elements, and 22 problems with 3D Frame elemetis.pfoperties of test problems with

irregular geometries are also given in Appendix A.

51



El.l?;:)eem Nl&”&%gsm Model No. Dimensions
2D e 156 {20, 30, 40, 50, 60, 70, 80, 90}
quadrilateral {1000, 2000, 3000, 4000, 5000, 7500, 10040}
2D ”7 5783 {100, 200, 300, 400, 500, 1000}x
quadrilateral {100, 200, 300, 400, 500, 1000, 1500}
{20, 30, 40, 50, 60, 70, 80, 90}x
2D frame 56 84-139 | 11000, 2000, 3000, 4000, 5000, 7500, 10000}
{100, 200, 300, 400, 500, 1000}x
2D frame 21 140-166 {100, 200, 300, 400, 500, 1000, 1500}
{5, 10, 15, 20}x
3D solid 70 167-236 {5, 10, 15, 20}x
{75, 100, 125, 150, 175, 200, 250}
{10, 15, 20, 25, 30, 35}x
3D solid 119 237-355 {10, 15, 20, 25, 30, 35}x
{10, 15, 20, 25, 30, 35, 40, 45, 50}
{25, 50, 75, 100, 125, 150}
3D solid 63 356-418 {25, 50, 75, 100, 125, 150}x
{4, 5, 6}
{5, 10, 15, 20}x
3D frame 70 419-488 {5, 10, 15, 20}x
{75, 100, 125, 150, 175, 200, 250}
{10, 15, 20, 25, 30, 35}x
3D frame 119 489-607 {10, 15, 20, 25, 30, 35}x
{10, 15, 20, 25, 30, 35, 40, 45, 50}
{25, 50, 75, 100, 125, 150}
3D frame 63 608-670 {25, 50, 75, 100, 125, 150}x
{4, 5, 6)

Table 2.4: Test problems with regular geometriest tan be solved using 8

Gbyte main memory only.
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Figure 2.7: For 3D solid and 3D frame elements, 113:40 FE models with

regular geometries
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It's not feasible to use all test problems for agéa number of numerical
experiments performed for tuning the solver pack&ge tuning the solver package, 40
regular test problems are selected among the @j0areproblems. Table 2.5 shows the
selected problems. This test suite is referredstbbenchmark suite of 40 test problems

throughout this study.

2D quadrilateral 2D frame 3D solid 3D frame
1. g20x5000 11. f20x5000 21.s5x10x100 315x10x100
2. g20x10000 12. f20x10000 22.515x15%250 32f15x15x250
3. q50x1000 13. f50x1000 23.520%x20%150 33f20x20x150
4. 50x10000 14. f50x10000 24.510x15%50 34 f10x15x50
5. q90x1000 15. f90x1000 25.515x30x50 35f15x30x50
6. g90x5000 16. f90x5000 26.520%x20%20 36.20x20%20
7. g200x300 17. f200x300 27.s20x30x40 37£20x30x40
8. (300x1000 18. f300x1000 28.530x30%30 38.f30x30%30
9. (500x500 19. f500x500 29.575%x150%5 39f75x150%5
10. g500x1500 20. f500x1500 30.5125x125%6 40f125x125x6

Table 2.5: Benchmark suite of 40 test problems. fEsé suite is used to tune the
solver package.

Once the solver is tuned, the performance of tiheespackage is demonstrated
using 8 large test problems that were not usedrbeféigure 2.8 shows the 8 large test
problems, which are composed of 2 models with 2Rdglateral elements, 2 models
with 2D frame elements, 2 models with solid elerse@ind 2 models with 3D frame
elements. The problem sizes are chosen so th& @ main memory is enough for an
in-core factorization and triangular solution witB0 RHS vectors. Table 2.6 shows the
statistics for the large test problems. Finallye grerformance of the out-of-core solution
is evaluated for 8 very large problems for which #olution cannot be performed using
only the main memory. The geometry of the very éapgoblems is similar to the ones
shown in Figure 2.8. However, more elements aral dee creating these problems.
Table 2.7 shows the statistics for the very laggt problems.

For all test problems, the variables at the bottwydes are not active (support

nodes), i.e., they do not contribute to the cogffit matrix. The rest of the nodes are
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active. Due to the finite element discretizatidme ttoefficient matrices of models are
structurally symmetric. The coefficient matrix isimerically symmetric if the element
matrices are also symmetric. In this study, itasuemed that the coefficient matrix is also

numerically symmetric.

Model Name Number of Medie}n Non-zero for Flop for

Dofs Bandwidth HMETIS HMETIS
Q2DL1 1.49E+06 664 1.70E+08 1.25E+11
Q2DL2 1.93E+06 840 1.91E+08 1.18E+11
F2DL1 2.07E+06 301 1.83E+08 1.22E+11
F2DL2 2.06E+06 502 1.98E+08 1.80E+11
S3DL1 522,900 1353 5.05E+08 1.34E+12
S3DL2 883,560 1413 5.22E+08 1.03E+12
F3DL1 751,008 809 4.70E+08 1.31E+12
F3DL2 424,848 734 3.87E+08 1.65E+12

Table 2.6: Statistics for the benchmark suite vittarge problems. Benchmark

suite is used to evaluate the performance of tfwiae solution.

Model Name Number of Medie}n Non-zero for Flop for

Dofs Bandwidth HMETIS HMETIS
Q2DVL1 4.83E+06 602 6.12E+08 7.32E+11
Q2DVL2 4.50E+06 602 4.94E+08 5.06E+11
F2DVL1 9.99E+06 301 9.24E+08 7.20E+11
F2DVL2 9.94E+06 502 1.01E+09 1.17E+12
S3DVL1 1.15E+06 3110 1.37E+09 5.66E+12
S3DVL2 2.21E+06 3135 1.56E+09 5.37E+12
F3DVL1 4.00E+06 969 2.30E+09 7.07E+12
F3DVL2 1.65E+06 361 1.35E+09 5.31E+12

Table 2.7: Statistics for

the benchmark suite w&hvery large problems.
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Benchmark suite is used to evaluate the performahtiee out-of-core solution.




Q2DL1

Q2DL2

Figure 2.8: Large test problems.
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F2DL1 F2DL2

Figure 2.8 (cont.): Large test problems
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S3DL1

S3DL2

Figure 2.8 (cont.): Large test problems
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F3DL1

F3DL2

Figure 2.8 (cont.): Large test problems
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CHAPTER 3

PREPROCESSING PHASE

The first phase of a general sparse solver is thprpcessing phase in which a
pivot-ordering is determined that minimizes theak®sn time and memory requirements
of the numerical factorization. A matrix orderingpgram can be used for this purpose.
We also make use of the graph partitioning and nesrsening algorithms in the
preprocessing phase. Our solver package unifieshale algorithms to find a pivot-
ordering that minimizes the execution time of thunerical factorization. After a pivot-

ordering is found, the preprocessing phase cortstaurcelimination tree [73].

3.1 Graph Representation of the Structures

The matrix ordering programs typically use a grappresenting the nonzero
structure of the sparse coefficient matrix. Thefecent matrix is the structural stiffness
matrix, K, for the structural problems. In the graph reprasgrnie nonzero structure of
the K, there is an edge between the graph verticasdj if K;; is nonzero. As the
factorization progresses, additional nonzero estre introduced iK (fill-ins). The fill-
ins introduce new edges between the vertices ofgtheh. The factorization can be
modeled with a sequence of such graphs obtainedrogving the vertex corresponding
to the current pivot column and adding edges beatvedleadjacent vertices of that vertex.
Such graphs are called elimination graphs and they useful for conceptual
understanding of the fill-ins introduced during tfeetorization steps. An example of
elimination graph is shown in Figure 3.1 for a sienptructure which is also shown in
this figure. As shown in Figure 3.1, the eliminatigraph has 16 vertices, the same
number of vertices as the number of dofs in themgta structure (or the number of

columns of the stiffness matrix). The use of thenglation graph with a local ordering
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algorithm is generally prohibitive since the sizetloe elimination graph grows in an
unpredictable fashion as additional edges corregipgnto the fill-ins are added to the
graph. Instead of the elimination graph, a more gachrepresentation called the quotient
graph is more suitable for the local ordering alpons [127]. A quotient graph stores the
adjacency information by keeping the eliminatedtiges in the graph to represent the
edges added to their adjacent vertices. The eltiomagraph and quotient graph are
identical in the beginning of the factorization,tlunlike the elimination graph, in the
later stages of the factorization, the quotientpraoes not require a memory space

larger than the memory required to store the oaigynaph.
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Figure 3.1: The graph representation of the stdnmatrix of the simple structure
with 8 nodes. (a) the simple structure (b) stiffnasatrix for the simple structure, (c) the
elimination graph for the stiffness matrix. There awo dofs at each node other than the

nodes with the supports.

For structural problems, the stiffness matrix cahsncorresponding to the dofs of

a node typically have the same sparsity patteris iBhapparent in the example structure
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shown in Figure 3.1. Here, the stiffness matrixrieatfor the dofs corresponding to a
node are grouped into 2x2 dense matrix blockse&usof the graph shown in Figure 3.1,
we can use a graph representing the nonzero pattétr2 blocked stiffness matrix. In
this compact graph representation, the blocks epeesented with a weighted vertex
where the weight of a vertex is equal to the nundfedofs at a node and the edges
represent the node connectivity information of BiEemodel. The size of the graph can be
further reduced by compressing the nodes conndotélte same set of elements into a
single vertex in the graph. This compact represemtaf the coefficient matrix is called
as supervariable graph [46, 128]. The matrix ordgerprograms run faster if a
supervariable graph is used instead of the elinanajraph since the supervariable graph
is a compressed form of the elimination graph. Astt¢129] discussed the use of graph
compression to reduce the execution time of thermim degree orderings.

As an alternative to the supervariable graph, weeraploy graphs representing
the element connectivity of the structures for plaetitioning algorithms. Several graph
types have been used which have vertices for thmexits and edges for the element
connectivity information. An element communicatigraph [46, 130-131] connects the
two elements if they share a node. A dual graph 182] is a compact representation of
the finite element mesh which has edges betweervéhices only ifk dimensional
elements sharke-1 dimensional boundaries. The vertices of the dugbly corresponding
to elements with different dimension (i.e., framlengent mixed with quadrilateral or
solid elements) may be disconnected even thougleldmaents share a node in the FE
model. In this case, the element connectivity imfation cannot be represented correctly
by the use of dual graph. The number of edges ielament communication graph is
larger than the one in a dual graph for the samenEEh. However, it provides a better
representation for the fill-ins introduced durifg tfactorization since there is an edge for
each shared node of two adjacent elements. Additignunlike the dual graph, the

connectivity information of the elements is nevastl Some other graph representations
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and improvements to the dual graph are proposdtalbgh and Rosta [130] and Topping
and Ivanyi [133]. More information about the grampresentations of finite element
models can be found in References [46, 130-131], 134

As an illustrative example, different graph repreagons of a structure are
shown in Figure 3.2. Since there are typically madges than the elements in a
structure, the supervariable graph is the largesorg three alternative graph
representations shown in Figure 3.2. As shown guig 3.2, the number of vertices for
the element communication graph and dual grapheisame since the vertices represents
the elements in the structure. However, the duaplgrtypically has fewer edges since
there is an edge in the dual graph if only the eated elements share an edge in the

finite element mesh.

13]14]15] 16

911011} 12
516|718
1121314

(@) (b) (c)
Figure 3.2 Graph representations of an exampletsirer (a) supervariable graph,

(b) element communication graph, and (c) dual graph

The SES solver package developed in this studyvallessing either supervariable
or element communication graphs for the preproogsalgorithms. A dual graph is not
implemented due to its limitations described praslyg. The matrix-ordering programs
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that can be used in the SES solver package typiealtk with a supervariable graph.
Partitioning and mesh coarsening algorithms deedrib the subsequent chapters can be
used with either a supervariable or an element comcation graph representing a

structure (or a substructure).

3.2 Initial Node Numbering

The local matrix ordering algorithms choose thetrn@xot-column in a greedy
fashion based on a heuristic function value suctiasmum degree or minimum fill-in.
There may be multiple candidate columns with theesdeuristic function value at a
stage of a local matrix ordering algorithm. Thelireaking strategy for the multiple pivot
candidates affects the quality of the ordering. AMimum degree algorithm typically
chooses the next pivot according to the initial benmg of the columns if there is a tie
between the candidate pivots. Therefore, the Initiambering of the graph vertices
affects the quality of the pivot-orderings produceg a minimum degree ordering
algorithm. George and Liu [60] showed that the tmdial node numberings, the
numbering of nodes based on the coordinate infeomaand reverse Cuthill-McKee
ordering, yield favorable fill-ins for the minimudegree ordering of an example square
grid. These initial node numberings typically prodd pivot-orderings with fewer fill-ins
compared to the random node permutations.

The performance of various matrix ordering prograare evaluated using
benchmark suites with FE test problems. In perforceaevaluations, the effect of initial
node numbering can be eliminated by using the medésult among several pivot-
orderings found for different random node permotai However, as stated previously,
random node permutations may result in pivot-ordgiyielding larger fill-ins compared
to the original node numbering, especially for libeal matrix ordering programs [63]. In

the SES solver package, three types of initial nageberings are implemented:
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* Random permutations — the nodes are shuffled ralydbased on a random
number generator with a seed value given by the use

» Coordinate based node numbering — the nodes as¥eardiccording to the
ascending values of the x, y, and z coordinatese Hest the nodes with the
minimum y and z coordinates are ordered in ascgndelues for the X
coordinates. Next, the y coordinate is incrememted the ordering according
to the x coordinates is repeated. Finally, the ardimate is incremented and
the ordering is repeated for the nodes with secemdllest z values. The
coordinate based numbering is illustrated in FigBt8 for an example
structure.

e Cuthill-McKee (CMK) and reverse CMK orderings — thedes are ordered by
using the CMK subroutine in the BOOST graph librgr§5s].

* Node numbering in the input structure — the origimambering of the nodes

in the input structure is used.

Figure 3.3: The initial numbering of the nodes llasen the coordinate

information of an example structure.
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The initial node numbering algorithms reassign nioenbers to the nodes in the
input structure. The preprocessing algorithms aex@ted for the graph with the nodes
numbered according to one of the initial node numnigs described above. The effect of

initial node numbering is illustrated later in Chepb.

3.3 Matrix Ordering Programs

There are several public domain matrix orderinggpamns that implement local
heuristics and hybrid orderings. The SES solverkpge allows using the following
matrix ordering programs developed by other re$easc

*  AMF — Approximate minimum fill-in ordering in SCOTClibrary [121]

*  MMD — Multiple minimum-degree ordering in METIS iy [69]

* BOOST-MMD - Multiple minimum-degree ordering in BAO libraries

[135]

* AMD - Approximate minimum degree ordering [63]

* HAMF — Hybrid ordering in SCOTCH library [121]

e« HMETIS - Hybrid ordering in METIS library [69]

The first four matrix ordering programs shown abare based on the local
heuristics. The last two programs, HAMF and HMETEe hybrid matrix ordering
subroutines in the SCOTCH and METIS libraries retipely. The SES package allows
experimenting with alternative parameters for thatrir-ordering programs. In this
section, matrix-ordering programs are briefly expda and their adjustable parameters
are discussed.

Performing factorization operations on a small namdif pivot columns is not as
fast as performing factorization on larger columacks. Therefore, the pivot columns
are coalesced (node amalgamation) in order to asereéhe size of the block sizes on
which the factorization is performed [57]. The SQTH library can perform the node

amalgamation within the matrix ordering programsmtly, the minimum size of the
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supernodes found with AMF can be set by the udee. Jarametecmin determines the
minimum size of the supernodes. If a supernodealsr thancmin, it is merged with its
parent in the elimination tree. The amalgamationhef supernodes typically introduces
fictitious fill-ins in the coefficient matrix andhe number of fictitious fill-ins can be
controlled by thdratio parameter in AMF. Thé&atio determines the upper limit for the
fill-in ratio with respect to the non-zero entriesthe pivot columns. If the fill-in ratio is
larger thanfratio, then the node amalgamation is not performed @vansupernode is
smaller thancmin. One of the advantages of node amalgamation isirtbeeased
efficiency of the BLAS3 kernels since the BLAS3 tels run faster as the size of the
dense matrix increases. Node amalgamation alsaceedine size of the assembly tree
and the number of update operations for the matttal method.

The SCOTCH library has an option to compress tpatigraph. The compressed
graph is used if the ratio of the size of the caesped graph to the size of the original
graph is below the parameteratio. The graph compression can speed up the matrix-
ordering programs.

MMD algorithms allow simultaneous elimination ofetindependent vertices in
the elimination graph. The independent node elititonais controlled by the parameter
delta. The parametedelta is the degree difference between the node(s) with
minimum degree and other nodes that can be elisdnaimultaneously. Multiple
eliminations of the nodes typically reduce the exien time of the minimum degree
ordering. Local heuristics AMD and AMF do not allenultiple eliminations. MMD and
BOOST-MMD are essentially the same ordering programwith different
implementations. BOOST-MMD is implemented by usithg C++ templates of the
BOOST graph library. MMD typically executes fastatan BOOST MMD since it is a
low-level C program.

Hybrid matrix ordering HAMF is the default matrixdering strategy in the

SCOTCH library. In HAMF, nested dissections aref@aned until the partitions are
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small enough. Then, the partitions are orderedgusim approximate minimum fill-in
ordering [70]. HAMF allows setting the stoppingteria for the nested dissections. If a
partition found with the nested dissections has Imemof nodes smaller than thkertnum
parameter, the partitioning is stopped and thatpartis ordered with the local ordering.
A distinct feature of the HAMF is that the exachoectivity information of the graph
nodes at the boundaries is used for the local mgleaf the partitions. The use of exact
information typically increases the quality of thgbrid ordering [70]. As previously
explained, the parameters for the AMF determineféla¢ures of the local ordering used
for the partitions. It should be noted that SCOT{WHary also allows using an AMD
ordering for the local ordering of the partitioitie SES solver package allows the use of
both AMF and AMD for the ordering of the partitiahgraphs. Nevertheless, AMF
typically yields fewer fill-ins at a cost of incread execution time.

Hybrid ordering HMETIS is similar to HAMF exceptatthe MMD algorithm is
used for local ordering of the partitions instedd\MF. The options for HMETIS allow
controlling the matching algorithm, refinement aigum, initial partitioning algorithm,
and number of partitions at each step of nesteskedi®n. Typically, default options of
the HMETIS give satisfactory results. For the hglwrdering HMETIS, the SES solver
package allows using either a compressed graph (SIENodeWND subroutine in
METIS [69]) or an uncompressed graph (METIS_Nodediroutine in METIS [69]).
For the METIS NodeWND subroutine, it is assumedt th@ graph is already
compressed and the graph vertices have weightsesemtiing the number of variables at
each vertex. On the other hand, for the METIS_NddenNbroutine, the compression is
applied within the METIS package.

A supervariable graph is employed for all matridening programs implemented
in the SES solver package. Although the SCOTCHalyrallows using a mesh
representation of the structure, this feature hatsyat been implemented. George [60]

stated that the use of a mesh representation ddiirttie element problems can reduce the
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memory requirements of ordering algorithms, esplgdiar the meshes with higher-order

elements.

3.4 Graph Partitioning

Graph partitioning can be used to increase the wosiccy of the sparse direct
solution. If a hybrid matrix-ordering program isedsfor fill-in reduction, the graph
partitioning is performed implicitly to find discaected graph vertices corresponding to
the pivot columns that does not introduce fill-ingach other. Therefore, the elimination
tree produced by a hybrid ordering program is bletafor exploiting tree-level
parallelism [74, 77]. To illustrate this point, ki@ 3.4 shows the partitions found with
HMETIS hybrid ordering for a 2D model. As shownkigure 3.4, HMETIS finds 64
partitions for which the factorization steps carpeeformed in parallel.

Graph partitioning can also be performed at a ttratlevel to harness parallel
processing in the pre-processing and post-proggssages. An element communication
graph can be used to partition the structure inttependent components. In order to
obtain partitions with balanced workloads, nodeghts of the element communication
graph should be a close approximation to the coatjpmal work related to an element.
As an alternative to the element communication lgrapsupervariable graph can be used
for partitioning of the structure. However, this yneesult in duplication of boundary
elements in neighbouring partitions.

The SES solver package allows using partitionirgpaihms from the METIS
graph partitioning library. SES provides interfades k-way partitioning and recursive
nested dissection in METIS. Either an element compation or a supervariable graph
representation of a structure can be used fortjwanitng. If a supervariable graph is used,
the boundary elements are assigned to a partiioording to partitioning of the element
nodes. Namely, an element is assigned to the ipartihat has the majority of element

nodes.

68



Some preliminary experiments are performed to itigate the efficiency of
explicit partitioning for the numerical factorizati. Figure 3.5 shows the 64 partitions
found with METIS by using the element communicatignaph. Similarly, Figure 3.6
shows the 64 partitions found by using the supélebe graph. If Figure 3.5 and Figure
3.6 are compared with Figure 3.4, we see that MEJd8itioning subroutines creates
irregular boundaries between the partitions conmgpéwehe partition boundaries found in
the HMETIS hybrid ordering. Consequently, the numifenonzero entries in the factors
is larger than the one found with HMETIS hybrid erdg for the explicit partitioning of
the structures (non-zeros are given below the éiglurThe difference is mainly due to the
different goals of the partitioning and matrix ondg algorithms. The main goal of a
partitioning algorithm is to find balanced partiie This may not produce the minimum
non-zero since minimizing the edge cuts is moreoitgnt than the balanced partitions
for fill-in minimization. Bruce et al. [136] alsaaed the importance of allowing some

imbalance between the partitions for minimizing tilens.

Figure 3.4: Partitions found with the HMETIS hybriadering for q100x100.
Non-zero = 1.285E6 for the hybrid ordering with geetitions illustrated above.
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Figure 3.5: 64 partitions found with METIS recussinested dissections on the
element communication graph for g100x100. Non-zerol.673E6 after ordering

partitions and separators with AMF.

Figure 3.6: 64 partitions found with METIS recuesimested dissections on the
supervariable graph for q100x100. Non-zero = 1.%/9Her ordering partitions and

separators with AMF.
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As illustrated in the previous examples, the agpion of explicit partitioning
may increase the number of non-zeros comparecetortplicit partitioning of the hybrid
ordering programs. The main goal for performinglexppartitioning is to increase the
degree of parallelism. However, the pivot orderifigsnd with hybrid matrix ordering
programs are already suitable for parallel procgssiherefore, partitioning may not be
essential for high-performance in parallel factatian. Table 3.1 shows the parallel
factorization performance for preprocessing q50@x&xst problem with and without
partitioning. There are four cores in the test nraghtherefore the FE mesh is partitioned
into four independent components. A thread is sgawifor each core and the
factorization of the partitions is performed sinamiéously on four cores. As shown in
Table 3.1, partitioning the FE mesh with METIS pagé increases the factorization flop.
Therefore, both parallel and serial factorizatiomels are increased compared to no
partitioning. We further investigate the efficienoy the partitioning algorithms for a

benchmark suite.

Preprocessing Non-zero Factorization | Serial Factorization Four-Thrgad
Algorithms (10%) Flop (GFlop) Time (sec) Factorization
Time (sec)
AMF 5.55 23.07 4.96 1.84
METIS 5.07 22.47 4.82 1.48
4 Partitions +
AME 7.50 57.07 10.98 4.04
4 Partitions +
METIS 6.32 33.92 6.64 2.09

Table 3.1: Effect of explicit partitioning on theimerical factorization times for

the problem g500x500.
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3.5 Mesh Coarsening

Guney and Will [134] proposed a solution schemé tls®s a structural model
comprising super-elements created by merging adfaeements in the original
structural model. The new super-elements createthéycoarsening scheme are larger
than the original finite elements (the super-eletsidrave more nodes compared to the
original elements) and the graph representatiorthef coarsened mesh, namely, the
supervariable or element communication graphsypeally smaller than the size of the
graph representation of the original mesh. Theegfthie preprocessing phase executes
substantially faster if a coarser model is usedeax$ of the original model. The
coarsening scheme also improves the efficiencyhef multifrontal factorization. The
effect of coarsening is similar to node amalgammaiiothe multifrontal method [57]. The
coarsening enlarges the frontal matrices at theeke®af the assembly tree since super-
elements are larger than the original finite elet®arsed to construct the assembly tree
for the original mesh. Similarly, the number of@sbly tree nodes are reduced since the
number of super elements at the coarsened meshaides than the number of original
finite elements. Therefore, the number of updaterajons performed for assembly tree
nodes is reduced if a coarsened mesh is employedthi® numerical solution.
Additionally, the BLAS3 kernels typically run fastsince the frontal matrix sizes are
large compared to the frontal matrices for theingabfinite element mesh.

In this study, two alternative coarsening algorithane implemented. The first is
the adaptation of the coarsening algorithm oridynpioposed by Guney and Will [134].
Here, the original elements are merged with thdja@nt elements. The steps of the
element based coarsening algorithm are given &s\fel

1. Visit elements in the increasing order of theigyxand z coordinate. Let’s call

currently visited element a&s
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2. If e and its adjacent elementAdj(e), are not already coalesced with some
other element theais eligible for coarsening, go to step 3. Otheexdss not
eligible, go to step 1.

3. Merge e and all of its adjacent elements to form supemelgt E = {e U
Adj(e)}.

4. Repeat steps 2 to 4 until all original elementsvasied.

Figure 3.7 illustrates the steps of coarsening mrexaample problem. The first
element that is eligible for merging with its adgacy is element 1For e representing
element 1 Adj(e) has elements 2, 5 and 6 and the coarsened eldmisnthe union of
elements 1, 2, 5 and 6. As shown in Figure Bd(E) are marked so that when these
elements are visited later in Step 1, the critegouen at Step 2 can be checked easily.
When the coarsening is completed, there are 4 siperents in the coarsened mesh
compared to the 16 elements in the original fieiement mesh.

The main disadvantage of element based coarsesitigi we do not have direct
control on number of nodes eliminated at super-etgsformed by coarsening of the
finite elements. An alternative to element basedrsening is coarsening based on the
node connectivity information. This is similar teetelement based coarsening. However,
the elements are now merged by first finding thdesothat will be eliminated at each
super-element. This allows choosing the numberoales eliminated at super-elements.
The steps in the node based coarsening algoritergiaen as follows:

1. Visit nodes in the increasing order of their x,ydaz coordinate. Let’s call

currently visited node as

2. If nis not already coalesced with some other nodey thés eligible for

coarsening, go to step 3. Otherwisés not eligible, go to step 1.
3. Merge all elements connectedrido form super-elemeng, with the nodes
{n U Adj(n)}.

4. Repeat steps 2 to 4 until all original nodes aséedl.
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The steps of node based coarsening are depictédgure 3.8 for the same
example mesh used to demonstrate the element baaeskning in Figure 3.7. Here, the
coarsening algorithm first picks the node with ¢heallest x, y and z coordinates. Then, it
merges all elements connected to this node (elesrieand 5). The newly formed super-
element contains the eligible node and its adjanedes. The nodes of the newly formed
super-element are marked as not eligible. Thiswalleasy determination of the node

eligibility at the Step 2 of the node based coarsgalgorithm given above.

13|14 1516 13141516 13|14 1516
[
9 |10]11]12 9 |10]11]12 9 1@ 11 12
|
s{e|7]s 7|8 | 7| 8
17
@234 Gi=1EE 3| a
[
@)| 141516 | 15 | 16 15| 16
T 18
9| 1@ 11 12 ’ 11|12 11 12
| |
7| 8 7|8 7| 8
17 17 17
3| 4 3|a 3] 4
15| 16 15 [ 16 15| 16
18 18 18 ‘
11 12 11 | 12 1112
7| 8 ’
17 ® 17 %) 17 19
[ 15 -
18 18 18 20
11121 )
17 19 17 19 17 19

Figure 3.7: Element based coarsening for a samf@ertesh. Each row in the

figure illustrates selecting an eligible elemend amerging it with its adjacent elements.
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Figure 3.8: Node based coarsening for a samplentedh. There is a node at each
corner of an element and bottom nodes are fullyragged. Each row in the figure

illustrates selecting an eligible node and mergihgelements connected to it.

The coarsening schemes illustrated in Figure 34 Rigure 3.8 use a single
eligible element and node respectively at each stepghe coarsening. Aggressive
coarsening schemes can be employed by using neukiglible elements/nodes at each
coarsening step. Thaeco parameter of the SES solver package determinesuimder

of eligible elements selected at each element besadening step. Figure 3.9 shows the
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coarsened mesh obtained for differetdco values for an example 50x50 quadrilateral
mesh. As shown in Figure 3.9, a coarser mesh =t as we increase thkeco value.
Similarly, thenodeco parameter determines the number nodes elimindtedch super-
element for a node based coarsening algorithm.r&i§ul0 shows the coarsened mesh
for differentnodeco values. As shown in Figure 3.10, coarser meshesl#gned as we
increase thenodeco value. In Figure 3.10, the white spots for tiweleco = 8 show the

elements that are not merged with any elements.

Figure 3.9: The element based coarseninggliao=1, 2, and 4 from left to right

respectively. The original model is g50x50. Eacpestelement in the coarsened mesh is

painted with a different color.

Figure 3.10: The node based coarseninghfmleco=1, 4, and 8 from left to right

respectively. The original model is g50x50. Eacpestelement in the coarsened mesh is

painted with a different color.
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Next, we demonstrate the effect of the coarsenmpar example test problems.
Pivot-orderings are found with HMETIS for the numal experiments in this section.
For the test problem g500x500, Table 3.2 and Tal8eshow the effect of coarsening
strategies on different stages of the solver pazkag element based coarsening and
node based coarsening schemes respectively. Asnsimowable 3.2 and Table 3.3, both
coarsening algorithms can greatly reduce the mandering time, about three times
faster than the one for the original mesh. Morepaealysis and factorization times are
reduced significantly. However, the number of eliated nodes at super-elements should
be carefully chosen for node based coarsening itlgos since the coarsening may
significantly increase the factorization flop armché¢. For example, the factorization flop
and time fomodeco = 3 in Table 3.3 are significantly larger than tmes for the original
mesh. For problem q500x50@ydeco = 4 and 8 give the best factorization times fodeno
based coarsening. For element based coarsenindpetiieperformance is obtained if a
single element is merged with its adjacency at €aesening step.

For the test problem f500x500, Table 3.4 and T&hte show the effect of
coarsening strategies for the element and nodedbasa@sening schemes respectively.
The element based coarsening does not improve én®rmance of the numerical
factorization for this problem. Whereas, the nodsda coarsening can reduce the matrix
ordering, analysis, and factorization times.

Compared to the performance on 2D problems, theaawgments due to the
coarsening scheme are less significant for 3D prabl Table 3.6 and Table 3.7 show the
performance of coarsening strategies for s15x15x@0element and node based
coarsening schemes respectively. While some impnewné can be observed in matrix
ordering and analysis times for the element basadsening scheme, the benefits of the
coarsening are offset by the increase in the fexdbon times due to the increase in the
flop for factorization. As shown in Table 3.7, thede based coarsening scheme also

increases the factorization times for the s15x15x28t problem.
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Table 3.8 and Table 3.9 show the performance ofseoéng strategies for
f20x20x20 for element and node based coarseningnseh respectively. For this
problem, the element based coarsening scheme isb&wéficial for reducing the
factorization time, whereas, the node based coexgamith single eliminated node at
each super-element reduces the factorization time.

The numerical experiments illustrate that beneditg€oarsening are different for
problems with different dimensionality. For 2D phkeims, a more aggressive coarsening
can be applied with larger number of elements elated at each super-element. On the
other hand, for 3D problems, the factorization fgmews dramatically if an aggressive
coarsening scheme is employed, which merges a tangder of elements to form super-
elements. A coarsening scheme that eliminates glesinode at each super-element
usually gives the most favorable results for 3Dbpems. Further numerical experiments
are performed in Chapter 6 in order to determine d¢ffect of eleco and nodeco

parameters on the execution time of the solver pgek

Matrix Ordering Analysis Factorization| Number of | Flop (10) for

eleco Time (sec) Time (sec) Time (sec) Tree Nodes | Factorization
0 1.91 3.99 6.36 130,823 21.64
1 0.70 1.70 5.19 55,693 20.86
2 0.54 0.86 5.68 19,232 28.13
3 0.55 0.77 5.7 17,872 29.04

Table 3.2: Performance of the element based caagenheme for g500%500.
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nodeco Matrix Ordering Analysis Fa_ctorization Number of Flop (1_(?) f_or
Time (sec) Time (sec) | Time (sec) Tree Nodes | Factorization
1 1.67 3.48 5.87 125,336 21.32
2 1.13 241 5.88 83,342 24.05
3 1.25 2.23 9.18 71,145 46.33
4 0.69 1.69 5.26 55,673 22
5 0.96 1.83 6.79 58,613 30.77
6 0.65 1.43 6.28 41,845 28.45
7 0.93 1.35 8.99 36,675 45.97
8 0.56 1.46 5.37 45,744 22.27
9 0.41 0.72 5.85 15,789 28.88

Table 3.3: Performance of the node based coarssohgme for g500x500.

deco Matrix Ordering | Analysis | Factorization] Number of | Flop (109) for
Time (sec) Time (sec) | Time (sec) | Tree Nodes | Factorization
0 1.39 4.54 11.42 192,829 46.05
1 0.97 3.07 12.80 112,949 63.37
2 1.06 1.44 11.34 33,424 60.45
3 1.1 1.38 11.7 29,894 62.89

Table 3.4: Performance of the element based caagenheme for f500x500.

Matrix Ordering Analysis Factorization| Number of Flop (10) for
nodeco : . . 7
Time (sec) Time (sec) Time (sec) | Tree Nodes | Factorization
1 0.80 3.96 10.89 191,559 50.33
2 1.01 2.92 10.16 111,416 47.62
3 1.01 2.38 11.31 84,669 55.73
4 1.12 2.18 12.4 70,339 63.68
5 0.88 1.96 9.65 64,990 47.65
6 0.76 1.54 10.16 51,009 50.14
7 1.02 1.6 12.29 48,360 63.15
8 0.37 1.23 9.2 40,168 45.17
9 0.63 1.02 10.5 21,240 55.33

Table 3.5: Performance of the node based coarseohmgme for f500x500.
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deco Matrix Ordering Analysis Factorization| Number of | Flop (10) for
Time (sec) Time (sec) Time (sec) | Tree Nodes| Factorization

0 0.8 1.08 24.29 19,050 142.99
1 0.51 0.5 29.24 8,307 179.09
2 0.29 0.29 30.66 3,968 191.96
3 0.27 0.25 28.1 3,472 176.29

Table 3.6: Performance of the element based caagenheme for s15x15x250.

nodeco Matrix Ordering Analysis Fa_ctorization Number of Flop (1_(?) f_or
Time (sec) Time (sec)| Time (sec) | Tree Nodes| Factorization

1 1.10 0.87 25.71 15,977 156.23
2 1.01 0.7 29.89 11,462 180.21
3 1.40 0.79 61.38 10,112 384.21
4 1.37 0.73 67.74 8,786 429.46
5 1.54 0.7 71.68 8,234 449.89
6 1.42 0.64 70.93 7,509 445.26
7 151 0.61 68.42 7,040 425.49
8 1.38 0.57 69.45 6,160 439.02
9 1.33 0.36 69.68 3,379 451.52

Table 3.7: Performance of the node based coarssohgme for s15x15x250.

deco Matrix Ordering | Analysis | Factorization| Number of Flop (10) for
Time (sec) Time (sec)| Time (sec) | Tree Nodes| Factorization
0 0.06 0.2 7.32 6,014 40.38
1 0.06 0.16 10.17 3,656 62.57
2 0.06 0.1 11.73 1,445 73.79
3 0.06 0.09 12.67 1,275 78.43

Table 3.8: Performance of the element based coaggeoheme for f20x20x20.
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nodeco Matrix Ordering Analysis Fa_ctorization Number of Flop (1_(?) f_or

Time (sec) Time (sec)| Time (sec) | Tree Nodes| Factorization
1 0.04 0.19 6.23 6,057 35.47
2 0.06 0.15 10.47 3,475 65.94
3 0.06 0.14 12.2 2,745 77.17
4 0.06 0.13 12 2,415 74.69
5 0.07 0.12 11.61 2,283 70.67
6 0.07 0.11 11.91 2,069 73.35
7 0.07 0.11 11.61 1,841 70.71
8 0.08 0.11 12.72 1,663 73.82
9 0.07 0.08 12.55 1035 77.27

Table 3.9: Performance of the node based coarssohgme for f20x20x20.

3.6 Object Oriented Design of the Preprocessing Phase

The SES solver package allows the use of coarsemradrix-ordering, and
partitioning algorithms in any order for differergions of the structure. This flexibility
is achieved by an object oriented design for thepmcessing phase. The complete
design of the preprocessing phase is not givethoisake of brevity. The overall design
of the preprocessing phase is explained in theviollg paragraphs.

The important classes are described as follows:

 PreProTre — holds all preprocessing algorithms m@ixdle initial node

numbering applied to the structure.

* EleSet — stores the element and node connectivitgrmation for the

structure.

* EleSubSet — stores a subset of elements in theeEleBludes all elements in

the model if there is no partitioning algorithm

* PreProAlgo — abstract base class for all prepracgsdgorithms.

* PreProResult — any class derived from PreProAlgoestits results in this

class. It provides a common interface for storing tesults of preprocessing
algorithms.

» EliTree — stores the elimination tree constructedhe preprocessing phase
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Figure 3.11 shows the interaction between the mksses designed to allow a
flexible preprocessing phase. All preprocessingrtigms are derived from a single
parent class called PreProAlgo. There are maintytipes of preprocessing algorithms:
partitioning algorithms and matrix ordering algbnits. The partitioning algorithms
subdivide the elements stored in the EleSubses.cldse matrix ordering algorithms, on
the other hand, condense a set of elements in lg®ubset class. The preprocessing
algorithms that are applied to a structure areestoin a tree structure stored in
PreProTree class. PreProTree holds the PreProTdeeMbjects, which stores the
EleSubset and the preprocessing algorithm that béllapplied to an EleSubset. If a
partitioning algorithm is assigned to a tree ndtlen the tree node also stores a bottom-
up ordering algorithm to order separators foundmduthe partitioning.

The results from the prepossessing algorithms #@yeed in the class called
PreProResult. This class is responsible for updatie EleSubset according to the results
from preprocessing algorithms. By the use of PrBesult, a preprocessing algorithm
does not directly update the EleSet. This designpkiies implementation of new
partitioning, coarsening, and matrix ordering aitjons since a preprocessing algorithm
class is loosely coupled with the rest of the syste

An elimination tree [73] is built after the prepessing is completed for the
structure. An EliTree class instance keeps theietitton tree for the pivot-ordering
found in the preprocessing phase. Namely, EliTreea stores the final result of the
preprocessing phase, and other components of tlverspackage accesses EliTree
object. The analysis and numerical solution phasesot access any other objects

described in this section.
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PreProTree

Hold the element set and corresponding
preprocessing tree nodes (Structurer)
= Add/remove preprocessingalgorithms forthe EleSet.
= Processthe preprocessingtree intop-down and
bottom-up fashion.
= Holdsthe PreProTreeNodesrepresentingasub-set of
elements duringthe preprocessing stage

L 2

Has
1

Creates
1.*
PreProTreeNode
_‘ Represents subset of elements at different
stages of the preprocessing
Top-down & ?
bottom-up Top-down &
2 bottom-up
2
g
PreProAlgo '§
Abstract class for the preprocessing Z
algorithms ©
= Have the abstract method forthe §
preprocessing z
o

PreProResult

Store the results and perform the updates

on EleSet according to the results obtained
from preprocessing

= Update asubset of the EleSetaccording to

the results

Preproces:

EleSet

A set of connected elements
Storesthe connection between the
elements, nodes and element with
nodes.
Returnthe element communication
graph and supervariable graph for a
subsetof elements.

Belonging to Create
1
1
EleSubset

Subset of elements from the EleSet
Storesthe elementindexes of the subset
Provide elementadjacency and node
adjacency of the elementsubsets
Update ElesSetaccordingwhenthereis a
requestfrom PreProResult.

Update EleSupsSet

EliTree
Elimination tree for a pivot-
ordering

= Create the super-elementand
super-nodes efficiently according
tothe given pivot-ordering

= Storethe created super-elements
andsuper-nodes

Figure 3.11: Main classes for the preprocessingggge of the SES solver.
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CHAPTER 4

ANALYSISPHASE

After a pivot ordering is found in the preprocegsphase, a solution strategy and
the data structures for the numerical solutionamestructed in the analysis phase. The
analysis phase constructs the assembly tree, binédslata structures for the numerical
solution, determines the memory requirements, e@dés the time required for the
numerical factorization, and assigns an appropaateunt of work to each thread for the

numerical solution.

4.1 Data Structures

4.1.1 Assembly Tree

The assembly tree represents the dependency betiveepartial factorization
tasks [73]. The assembly tree is similar to theniglation tree except that the assembly
tree typically contains fewer nodes since some siadéhe elimination tree are merged
while building the assembly tree. The tree librdeyeloped by Peeters [137] is used for
the implementation of the assembly tree. Figure ghitws the tree implementation
designed by Peeters [137]. The tree implementastidmased on the linked lists. Here,
doubly linked lists are used to store previous aedt siblings of the tree nodes. In
addition, a parent node holds two pointers toirst fand last child. The assembly tree
data structure allows building and modifying theseambly tree easily. Several tree
traversal algorithms are also implemented in tke tibrary. Various tree traversals can
be performed by using tree iterators that are ammib the iterators in standard c++

library.
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In the SES solver package, assembly tree nodes istormation required for the

mapping, factorization and triangular solution aitjons. The information stored in the

assembly tree nodes is given as follows:

Eliminated and remaining nodes — The partial fazédion on a frontal matrix
is the condensation of the dofs correspondingecetiminated nodes stored at
the assembly tree node. The remaining nodes haveethaining dofs after
the condensation. The number of eliminated and ir@n nodes can be
found efficiently by using the algorithm describleg Gilbert et al. [138]. For
a coefficient matrix withnz nonzero entries, the time complexity of their
algorithm is almost linear. The eliminated and remmg nodes are found in
the preprocessing phase during the constructidheoélimination tree.
Estimated partial factorization time — The parfadtorization times are found
by using a performance model. The time estimatamesused in the mapping
algorithm.

Estimated subtree partial factorization time — Ehbtree partial factorization
times are found by summing up the partial factaiaratimes of the children
assembly tree nodes. The time estimations areindbd mapping algorithm.
Thread ID — The thread ID that will perform the renmmal and symbolic
factorization and triangular solution is storedhe assembly tree node.
Number of threads used in the partial factorizatiad triangular solution of a
frontal matrix — Multithreaded MKL kernels are empéd for the partial
factorization of some of the assembly tree nodée Aumber of threads for
the multithreaded MKL is stored in the tree nodes.

FE’s associated with the partial factorization lué frontal matrix — The FE’s
associated with a tree node are found in the poegsing phase while

constructing the elimination tree for a given preotlering. Prior to the partial
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factorization corresponding to a tree node, thesFe assembled into the
frontal matrix.

* The local indices for the parent frontal matrix keTlocal indices are used for
the assembly of the children update matrices and BEsociated with the
frontal matrix. The local indices are further expéad in Chapter 4.1.4.

* Synchronization requirements (optional) — If a #treshould wait for other
threads before the partial factorization of a mede, then this information is

stored in the tree node.

first chald first chald
head = node = node

I
i I
next sibling I
prev sibling |

I

node node

next sibling

prev sibling
last child

node
[
|
|
|
|
|
|
|
|
I

node

Figure 4.1: The implementation of the assembly.tfe@m the tree.hh library

documentation [137].

Figure 4.2 illustrates the assembly tree using&mesh. Here, FE’s are shown in
gray colour and they are not considered as assetrddynodes. The FE’s are stored at
the leaves of the assembly tree. The black nodearsin Figure 4.2 are assembly tree
nodes for a nested dissection matrix ordering. ifi@mation stored in two example

assembly tree nodes is also shown in Figure 4.2e,Hdode-24 is a subtree node. The
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independent subtrees are assigned to threads fallgbdactorization. A node within a
subtree assigned to a thread is referred to agesulbibde. Synchronization between
threads is not required prior to the partial faic@ion of the subtree nodes. On the other
hand, Node-25 is a high-level tree node. A treeeniedeferred to as high-level tree node
if it is above the independent subtrees assignedhé¢othreads. All threads should
complete their partial factorization steps befdne partial factorization starts at the
Node-25. Therefore, Node-25 stores the informatiwat synchronization between the
threads is required prior to its partial factoriaat As described in the subsequent
Chapter, the numerical factorization, forward efiation, and back substitution
algorithms each require a single synchronizatiomtpd herefore, there is a single tree
node that requires synchronization prior to theiglafactorization of the corresponding

frontal matrix.

Node-25

Factorization Time =20
Subtree Time = 60

FE: None

Subtree Node: No
Synchronization: Yes

25

27

26

Node-24

Factorization Time=10
Subtree Time = 10
FE:11,12

Subtree Node: Yes
Synchronization: No

21 22 24
17 18 ‘ 20
5 6 7 8 11 12
1 2 3 4 13 14 15 16
Subtrees

Figure 4.2: Assembly tree structure for the exan®id mesh. The gray nodes
represent the finite elements in the model. Theegf@ur subtrees processed by different

threads.
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The assembly tree is built using the eliminatioeetrconstructed in the
preprocessing phase. The nodes of the eliminateenadre merged if the merge does not
introduce any logically zero entries in the factarhis is referred to as the fundamental
supernode partitioning by Ashcraft [57]. It is pdés and often desirable to relax the
condition of no logical nonzero and allow additibleayically zero entries in the factors.

This is called node amalgamation and is furthecudised in Section 4.2.

4.1.2 Supervariables

The supervariables are a set of variables (dofs) dhe connected to the same
element set. Compared to the use of original vlaglihe use of supervariables reduces
the analysis phase execution time. Figure 4.3 shbessupervariables for a subset of
elements from a FE mesh. Here, four nodes are dlmmtsveen Element-1 and Element-
2. Instead of treating the dofs for four nodes s&tp#y, we can treat them as a single
entity, which is called a supervariable. The supeables are found for an input
structure. It is also possible to perform a sedcchind the new supervariables formed
after some elimination steps. However, Reid andttSEH39] stated that finding
supervariables after each elimination step is dyoperation and increases the analysis
phase execution time.

In finite element models, dofs corresponding toheaode belongs to the same
supervariable. The analyze phase of the SES sph&kage exploits supervariables by
working with the nodes instead of the dofs. Theeaddy tree construction, node
amalgamation, and local index computations (Chagtér4) are performed using the
nodes instead of dofs. In most FE analyses, thebeurof dofs is the same at all the
nodes. For example, there are 6 dofs at each nampefrom the nodes having restraints
for 3D frame analysis. This structure is exploitedhe SES solver package by storing
the number dofs for the nodes that are partiayragned in an array. For the remaining

nodes with the same number of dofs, only a singl@able holds the number of dofs.
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Figure 4.3: The supervariables for four elementdaied from the rest of a FE

mesh.

4.1.3 Factors, Frontal Matrix, and Update Matrix Stack

A multifrontal method is employed for the numericictorization. In the
multifrontal method, partial factorizations are foemed on dense frontal matrices. Once
the factors corresponding to a pivot column blook eomputed, they are not accessed
again until the triangular solution. Therefore,ienfactors are not required to be stored
in main memory. This section discusses the fromiairix and the data structures related
to the multifrontal method. The numerical factotiaa and triangular solution uses the
data structures. However, the memory requiremenmtghe data structures are determined
in the analysis phase.

The frontal matrix is mainly composed of three comgnts: diagonal factorkg,
off-diagonal factors,Lo, and Schur complemen§ (see Chapter 5 for a detailed
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description of each component). Once the partetofization is completed for a frontal
matrix, only S is required for the subsequent partial factoraratsteps. If the partial
factorizations of the assembly tree nodes are pwdd in a postorder tree traversal order,
then a stack data structure can be used to Stofes stated previously, after the partial
factorization of a frontal matrix, diagonal and-dfagonal factors are not required until
the triangular solution.

Figure 4.4 shows the data structures used for thkifrontal factorization. We
design three classes for the abstraction of theetitems shown in Figure 4.4. Here, the
frontal matrix class physically stores th8 matrix only. Our frontal matrix
implementation does not hold the factors physicallye frontal matrix has a reference to
the factors, which are stored in a separate metoggation. Frontal matrix objects have a
pointer to the memory location storing the corregpog factors. A distinct class is
responsible for storing the factors and providimgngers for the frontal matrixHactors
in Figure 4.4). Once the patrtial factorization @npleted, no data copy is required for the
factors since the frontal matrix works with thergers. On the other han8,is copied to
the update matrix stack. Althoudhs and S are symmetric matrices, packed storage
scheme is not employed for the partial factorizatiperations on these matrices. This is
due to the performance consideration for MKL Chkyedecomposition [140] and the
unavailability of a BLAS3 rank-k update subroutifier packed storage scheme.
However, the partial factorization operations aexfgrmed for only lower diagonal
entries. In addition, onl$, the lower diagonal part of the Schur complemisntppied to

the update matrix stack to save some memory fostitrage of the update matrices.
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Grgws = Physical Storage
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Figure 4.4: Data structures used for multifrontaitinod.

The size of the frontal matrix depends on the nunobeliminated and remaining
dofs for an assembly tree node and it varies dutiegnumerical factorization. The size
of the update matrix stack also varies during tina@rical factorization depending on the
number of active frontal matrices at a certain pduring the factorization. At any point
during the factorization, the summation of the fedmatrix size and update matrix stack
size is the active memory requirement. Assuming tadculated factors are stored on
disk, the maximum of such active memory requireménthe total memory requirement
of the multifrontal method. This assumes that tlenory is perfectly shared between the
frontal matrix and update matrix stack during thetérization steps. It should be noted
that the current implementation of the SES usearsép memory locations for the frontal

matrix and the update matrix stack. Therefore,eherno overlap between the frontal
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matrix memory and update matrix memory. Consequenthe active memory
requirement for the SES solver package is the suramaf maximum frontal matrix size

and maximum update stack size.

4.1.4 Frontal Matrix Indices

Prior to the partial factorization of a frontal mat the update matrices
corresponding to the children tree nodes are adsdmhto the frontal matrix. The
assembly of the update matrices are performed ubimgliminated and remaining dof
indices stored in the parent and children assentbl/ nodes. As described previously,
the node indices are used instead of the dof isdiceorder to improve the speed and
memory requirements of analysis phase. There avdypes of indices associated with a
frontal matrix: global and local indices. The glbbadices are the eliminated and
remaining node numbers for the partial factorizati@r condensation) of a frontal
matrix. They are stored in two sorted arrays fanglated and remaining nodes. Sorting
the node indices allows merging the node indicesvof tree nodes in linear time. The
local indices are used for the assembly of thedofil update matrices. The local indices
are the location of an update matrix entry at thatal matrix of the parent assembly tree
node. The local indices are found by using theesbrtode indices. Finding the local
indices can be performed in linear time for sortgobal node indices at parent and
children tree nodes. For an assembly tree node/ate indices are found for the
remaining nodes only. Figure 4.5 shows the global &ocal indices for example
assembly tree nodes. The eliminated nodes are ohavitle blue color and node numbers
inside the matrix shows the global indices for éiample assembly tree nodes. The local
indices for children nodes are also shown at thie@fahe children frontal matrices.

The local indices are used for the assembly otthilelren update matrices if node
blocking is not performed for the parent frontaltma(see subsequent Section 4.3 for a

detailed description of node blocking). The loaadlices are also found for each finite
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element required for the partial factorization offrantal matrix. Element stiffness
matrices are assembled at the numerical factooizgthase by using the local indices
found in the analysis phase. For large frontal ro@s: it is more efficient to perform the
update matrix assembly operations on dense malwicke instead of individual matrix
entries. For this purpose, nodes are partitiontml nede blocks, which are the node sets
that are adjacent at the frontal matrices corregipgnto parent and the child assembly
tree nodes. Node blocks can be assembled to thefmmatrix efficiently by using BLAS
kernels. The node blocks are shown in Figure 4.5he local indices at the children tree
nodes. There are two node blocks for each childchvare shown within the rectangular
boxes in Figure 4.5. Section 4.3 further explaims node blocking and how the node

blocks are found based on the local indices.

10/12]25/30|40|45 50|56
12
25
30
40
45
50
56

~NO O A WO N O

Parent

Child 1 Child 2 Child 3

16(25|30|50 56 18|30/40|50/56 15|25/30|45/50|56
25 30 25
3130 4 |40 31|30
50 50 5|45
7156 7 56 50
71|56

Figure 4.5: The global and local indices for tharaple assembly tree nodes. The

local indices for children are shown on the leftle# frontal matrices.
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4.2 Node Amalgamation

The creation and storage of the update matrictiseioverhead required for the
use of dense matrix kernels in the multifrontal moett The overhead for creating small
frontal matrices and storing their update matricas be reduced by the amalgamation of
tree nodes with a small number of eliminated amdaiaing dofs. Various amalgamation
schemes are proposed in the literature. AshcraftGimes [57] merged tree nodes if the
number of logical zero entries introduced by thealgamation is below a threshold
value. New supernodes created by the node amalganaat called relaxed supernodes.
Duff [141] merged the nodes in the assembly treleafnumber of eliminated variables at
a tree node is less than a threshold value. RaldSaott [139] merged a child node with
its parent if number of eliminated variables at gagent and child nodes are both less
than a threshold value. They reported that thieiwon gave better results compared to
checking the number of variables at the child nodé. The logically zero entries
introduced to the factors are not taken into actoutheir node amalgamation scheme.

In this study the node amalgamation criterion gibgnReid and Scott [139] is
employed. A child node is merged with its parenthé number of eliminated dofs is
smaller than a certain valusr§n) for both of them. The nodes of the assembly &mee
visited in pre-order traversal fashion and the gaalation criteria are checked for all
children of a visited node. If the nodes are visitea pre-order tree traversal for the node
amalgamation algorithm, then this usually givesdewpdate operations compared to the
postorder tree traversal. In our amalgamation sehexrpre-order tree traversal is used
and the children of a tree node are visited in dntrary fashion. The amalgamation
criterion is rechecked for an assembly tree nodat tis amalgamated. Further
amalgamation is performed for an amalgamated toek nif it can be merged with its
new children.

If smin is too large, then the number of extra arithmeperations required for
logically zero entries will overshadow the benefifsnode amalgamation. There is no
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single smin value that gives the best results for all typespofblems. Numerical
experiments are required to determine an optimadjgafor the parameter. Duff [141]
reported modest gains in factorization times foifedent amalgamation parameters.
Moreover, the critical value for node amalgamatiegs not obvious in his study. Duff
[141] concluded that the amalgamation is not essleahd good performance can be
obtained without amalgamation.

We illustrate the impact of node amalgamation udimg problem f500x500.
Table 4.1 shows the effect of node amalgamatiortferexample problem. As shown in
Table 4.1, the number of update operations decseasestantly as we increasain. The
node amalgamation decreases the factorization tupegssmin=25. Assmin gets larger
than 25, the factorization times tend to incredse.Chapter 6, further numerical
experiments are performed in order to determine dpdimal amount of node

amalgamation.

min Number of Flop (10°) for Update Factorization
TreeNodes | Factorization | Size(10°) Times (sec)
0 192829 46.05 1.92 10.71
5 147955 46.19 1.77 10.42
10 95468 46.52 1.56 9.85
15 82970 46.68 1.51 9.83
20 70755 47.09 1.45 9.79
25 59237 47.61 1.38 9.65
30 55326 47.91 1.35 9.67
35 47707 48.52 1.3 9.9
40 42741 49.17 1.25 9.88

Table 4.1: Effect of node amalgamation for f500x500
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It should be noted that the SCOTCH matrix ordesnfgroutines allow inputting
the minimum size of the supernodes (parameten determines the minimum size of the
supernodes for each pivot). In this case, node ganation typically is not necessary
since the number of eliminated nodes at the trekesias guaranteed to be larger than
cmin. However, this option for SCOTCH matrix orderingosoutines is not used since it

typically yields larger factorization times compauie the explicit node amalgamation.

4.3 Node Blocking

The initial version of the multifrontal code assdetbthe update matrices into the
frontal matrices by using the local indices (see&ti®a 4.1.4). In this case, for the
assembly of each update matrix entry, the row atdnen indices of the entry is first
read from the array storing the local indices. Thde that uses the local indices for the
assembly of update matrices is shown in Figure A& indices for the entries in the
update matrix are read at lines 9 and 10 in FiguBe This is indirect addressing and it is
not efficient for cache hierarchy. In addition, tabove code has three branch#s
statements at lines 11, 18 and 19), which is nairalele for machines with deep
instruction pipeline architectures. Finally, thec@ss to the frontal matrix entries at line
20 is performed in a random fashion, which prevesxploiting the instruction level
parallelism or SIMD instruction sets.

The profile information of the multifrontal code seown in Table 4.2 for the test
problem f500x500. As shown in this table, mosthaf ime (64.6%) is spent on the MKL
BLAS/LAPACK kernels. The subroutine that takes thest of the time after the MKL
functions is the update matrix assembly code shiowkigure 4.6. This subroutine takes
18.9% of the total factorization time. Finally, igreficant time is spent in memory copy
and memory set operations (memcopy and memset)mEmeory operations are mainly

used to copy Schur complements to the update metack.
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1 Assenbl eToLower Di agonal (...)

2 {

3 ef::Int_t iTo;

4 ef::Int_t jTo;

5 for(ef::Uslnt_t i =0 ; i<assenblylndicesNum; ++i)
6

7 for(ef::Uslnt_t j =i ; j<assenblylndicesNum; ++)
8 {

9 i To = assenbl yl ndi ces[i];

10 jTo = assenblylndices[j];

11 if( jTo < iTo ){

12 std::swap(i To,j To);

13 }

14

15 i To -= col umO f set;

16 jTo -= rowO f set;

17

18 i f( i To<m Col Num && j To<m RowNum ) {

19 if( iTo>=0 && j To>=0 ){

20 mEntry[ i To*rmLeadingDim+ jTo ] +=
21 *packedMat ri XEntri es;
22 }

23

24 ++packedMat ri xEntri es;

25 }

26 }

27}

Figure 4.6: The c++ code that uses local indicestiie@ assembly of update

matrices.
. % of the Total
Subroutine(s) Factorization Time
BLAS/LAPACK 64.6
AssembleTolLowerDiagona| 18.9
memset 5.4
memcopy 4.2
Other 6.9

Table 4.2: Profile information for the multifrontdctorization of f500x500,

without node blocking
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The linear algebra subroutines in MKL are alreadytimized and further
optimization of memory copy and set operations @ué of the scope of this study.
However, the time spent in the AssembleToLowerDmagidunction given in Table 4.2
can be reduced. For example, instead of readinghttex of each element, the elements
of the update matrix can be assembled in contingeumse matrix blocks. If the blocks
are used for the assembly, the index of a blodlea once and all entries within the
block are assembled to the corresponding locatiotihé frontal matrix. The larger the
block sizes are the more efficient the assemblyaiss will be. This will also allow the
use of BLAS1 subroutines for the assembly of théaty matrices. However, in order to
fully exploit the blocked assembly operations aebtbcking algorithm is required. The
node blocking algorithm reorders the nodes in fibmhatrices so that the assembly
operations can be performed on continuous date&k®lokn algorithm that reorders and
groups the local indices of a frontal matrix is igaed and implemented to allow
performing the update matrix assembly operationgage continuous data blocks.

The blocking algorithm reorders the nodes in paserd children tree nodes so
that the local indices are continuous at the caildassembly tree nodes. First, the nodes
at a parent assembly tree node are partitioneddisfoint sets according to the children
tree nodes that contain the nodes. Each set repseseunique combination of the
children tree nodes that contains all nodes irs#teTherefore, the total number of sets is
equal to 2, where N is the number of children tree nodes. fibées within each set
correspond to a node block for which assembly dfmers can be performed all at once.
The sets are ordered to maximize the adjacent bloa&s at the children tree nodes. The
blocking can be performed recursively for the aoid of the assembly tree node.
However, the node blocking for the child tree nadest consider the ordering of the
node sets found at the parent tree node.

The node blocking algorithm is illustrated withimple example shown in Figure

4.7. Figure 4.7 shows the root of an example asbetrde and its three children nodes.
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The local indices for the children tree nodes dse ahown in Figure 4.7. There are 8
node sets since the example assembly tree nodéhtess children (2=8). The nodes
within the node sets are shown in Figure 4.8. Aftede sets are found, the sets are
ordered in the increasing lexicographic order atiogy to the set names given at the
bottom of the Figure 4.8. The name of a set isrgaecording to the index of the children
tree nodes that contains the nodes in the setekample, if the nodes only belong to
child 1, then the name of the set is Set-001. @tyil if the nodes belong to child 1 and
child 2 only, then the name of the set is Set-Ollie lexicographic ordering usually
yields continuous node blocks for the tree nodek amall number of children. The node
sets that contain nodes from a child tree nodeassegned to that tree node according to
the lexicographic ordering of the node sets. Theenblocking is performed recursively
for the children tree nodes. The sets are founthénsame fashion for the eliminated
nodes at the children. However, for the remainiades at a children assembly tree node,
a hierarchical structure of the node sets are oactsd in order to preserve the ordering
found at the assembly tree node. For the remaimaigs at a children tree node, the node
sets are found for each node set found at the passembly tree node. A tree structure is
used to store the hierarchical node set informatibme head of each node set tree
represents the first creation of a node set, whmiesponds to a subset of eliminated
nodes at an assembly tree node. The children ofda at the node set tree are the node
sets found at the children assembly tree nodes.

Once all node sets are found and are lexicogralphicedered, the nodes in the
frontal matrices are renumbered starting from #a hodes of the node set trees. Figure
4.9 shows the node indices in the frontal matrmfethe parent node and children nodes
after the node blocking is applied for the illustra example shown in Figure 4.7. In
Figure 4.9, the parent frontal matrix entries tteteive update from different children
tree nodes are marked with different colours. Aswshin Figure 4.9, the assembly of

child 3 benefits most from the node blocking. Afsgplying the node blocking, the entire
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update matrix for child 3 can be assembled to tbeté&l matrix by making a single call
to BLAS3 dense matrix addition subroutine. Althouglooks like that children 1 and 2
do not benefit much from the node blocking, thiglige to the small number of nodes
used for the sake of this simple illustrative exémg-or sufficiently large frontal

matrices, the blocking improves the efficiency ptiate operations for all children nodes.

OINOOBDWN -

Child 2 @ Child 3
4157 115/6|8 11314|7/|8
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Figure 4.7: An example assembly tree node andhilslren. The parent node is
the root of the assembly tree. The local indicegtHe remaining nodes at the children are

shown.
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Child 1 Child 2

(1U2U3) =0

Child 3

Set-001 ={2} Set-010={6} Set-011 ={5}

Set-100 ={3} Set-101 ={4,7} Set-110={1,8}

Figure 4.8: Node sets for the remaining nodesectttildren for the example tree

nodes.
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Figure 4.9: Node blocks found for the example asdgtnee nodes
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Table 4.3 shows the profile information of the nftdntal factorization after
implementing the node blocking. If the code profidormation shown in Table 4.3 is
compared with the one in Table 4.2, we observettietime spent in the assembly of the
update matrices is reduced from 18.9% to 3.9% ait@ploying the node blocks for the
assembly of the update matrices. In addition, tloekded assembly increases the time

spent in the optimized BLAS library as shown in [Eadb.3.

. % of the Total
Subroutine(s) Factorization Time
BLAS/LAPACK 79.5
BlockedAssembly 3.5
Memset 4.6
Memcopy 4.4
Other 8

Table 4.3: Profile information for the multifront&ctorization of f500x500 with

node blocking

The time required for node blocking may be largetf@ tree nodes with a large
number of children nodes since the number of nadétipns grows exponentially with
the number of the children nodes. Fortunately,abgembly trees for the FE problems
generally have a small number of children. Thersftine exponential growth is usually
not a problem. However, the node amalgamation rtadieh the assembly tree, creating
parent nodes with a large number of children nodés small frontal matrices.
Considering that the tree nodes with large numbehibdren nodes typically have small
frontal matrices, the node blocking is not perfodniier the frontal matrices smaller than
a threshold value. A cut off value for the nodecking, blkmin, is used as the stopping
criteria for the node blocking. The node blockisgnot applied to a tree node and all of
its descendants if the size of the frontal matsibsmaller tharblkmin. Table 4.4 shows
factorization and analysis times for the proble@0%500 with alternativélkmin values.

The node amalgamation paramesain is taken as 10 for the example problem. As
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shown in Table 4.4, as thotkmin value increase the analysis time decreases séweer f
node blocks are found for smallbtkmin values. The bottom row of Table 4.4 shows
analysis and factorization times with no node biogk As shown in Table 4.4, the
factorization time tends to increase even for sibiéthin values.

According to execution times given in Table 4.4llanin value can be chosen to
minimize analysis plus factorization phase times. the current implementation of the
solver package, numerical experiments show thatiteoff value of 50 usually gives
satisfactory analysis plus factorization times gatithe factorization performance is not
compromised significantly (see Chapter 6.6 for thetails). However, the current
implementation of the analysis phase is not op&aiZl he analysis phase execution time
may be insignificant compared to the overall executtime of the solver for an

optimized analysis phase.

bikmin Analysis Faqtorization
Time (sec) Time (sec)
0 1.89 9.28
25 1.83 9.30
50 1.43 9.37
75 1.19 9.49
100 1.07 9.5
125 1.03 9.51
150 1.00 9.59
0 0.96 10.16

Table 4.4: The cut off point for the node blockiieg the test problem f500x500

4.4 Estimation of the Factorization Time

As it is discussed in the subsequent Chapter 4dftiap factorization time
estimations of the assembly tree nodes are usédd@ subtree to thread mapping that
minimizes the factorization time. Moreover, factation time estimations are helpful to
monitor the performance of the multifrontal solv€he actual factorization times can be

compared with the estimated factorization times determine any unanticipated
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performance degradations. For example, the perfocsmacan be hindered by
computational resource limitations, such as cacbeflicts. Finally, predicting the
factorization time prior to the actual factorizatics a user-friendly feature for a direct
solver. The user may want to build a simpler filstement model to get the results in a
timely fashion if the predicted factorization tinetoo large. Alternatively, in order to
reduce the factorization time, an alternative pvepssing strategy may be employed, or a

system with higher computational power can be disethe FE analysis.

441 Partial Factorization Time

We use the experimental speed of BLAS/LAPACK subrmms used for the
partial factorization in order to estimate the @fiactorization time for a frontal matrix.
The partial factorization speeds are determined dxecuting BLAS/LAPACK
subroutines on the test system. The BLAS/LAPACK reubnes are executed for
hypothetical frontal matrices with different numbeof eliminated and remaining
variables. The partial factorization times are rded for the execution of the
corresponding MKL subroutines. The partial factatian times are too small to measure
with sufficient accuracy for the partial factorimat of a small frontal matrix. In order to
measure the execution time accurately, partialofazdtion is performed for multiple
times within a loop. A large number of repetitianay be required to measure the partial
factorization times of the small frontal matricesthwsufficient accuracy. Then, the
average execution time is found by dividing thealt@xecution time of repeated patrtial
factorizations to the number of repetitions. Thetiphfactorization speeds of frontal
matrices that have less than 1000 remaining vasabre shown in Figure 4.10. As
shown in Figure 4.10, the speed of partial factdian varies greatly for small frontal
matrices. For example, the speed varies betweeRldpzec and 7 GFlop/sec for frontal
matrices with 50 eliminated variables. Figure 4.&hhows the speed of partial

factorization for frontal matrices with more tha@0D remaining variables. As shown in
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Figure 4.11, the variation in the partial factotiaa speed is small for frontal matrices
with large number of remaining variables. Figurgdand Figure 4.11 also show that the
partial factorization performance increases adrthh@al matrix size increase. This is true
even for frontal matrices with 50 eliminated valesh The theoretical machine peak
speed is 9.6 GFlop/sec for a single core of thesgstem. As shown in Figure 4.11, the
partial factorization runs at 8.6 GFlop/sec forfisigntly large matrices, which is close to

the machine peak speed.

7.6 > 4

6.6 =

5.6

. of Eliminated Var.=50
=#—No. of Eliminated Var.=100
36 =#=No. of Eliminated Var.=150
/ =>¢=No. of Eliminated Var.=200
2.6 =#=No. of Eliminated Var.=250 []
=®-No. of Eliminated Var.=500

1.6 H
No. of Eliminated Var.=1000

4.6 -

GFlop/sec
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o

Number of Remaining Variables

Figure 4.10: Performance of partial factorizatiop,to 1000 remaining variables.
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Figure 4.11: Performance of partial factorizatidetween 1000 and 10000

remaining variables.

The partial factorization time for a frontal matrig found by dividing the
theoretical operation count for the partial factation by the approximated speed for the
partial factorization. The partial factorizationeggl of a frontal matrix is estimated based
on the known partial factorization speeds of tlwntal matrices with similar number of
eliminated and remaining variables. The experinepéatial factorization speeds are
stored in a table. Table 4.5 shows an example t@nstructed based on a small set of
experiments on the test system. Each entry in thide is the speed of partial
factorization in terms of GFlop/sec for a frontaktmx with a specific number of
eliminated and remaining variables. The columns e of Table 4.5 correspond to
number of eliminated and remaining variables respaly. In order to determine the
speed of a frontal matrix, first, the speed of fabrmatrices with similar number of

eliminated and remaining variables are read from tdble. Next, a piece-wise linear
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approximation is performed to estimate the parfadtorization speed. Figure 4.12
illustrates the piece-wise approximation of the tiphrfactorization speed withx'’
eliminated variables ang' remaining variables. In Figure 4.12, x-axis is thenber of
eliminated variables and the y-axis is the numlbeemaining variables. The z values are
the partial factorization speed. Known partial éaitation speeds are shown with dots.
We approximate’ (the estimated speed for a given frontal matrix3ea on the known
values of partial factorization speeds. The fromteltrices with the closest number of
eliminated and remaining variables are used forajy@roximation. In Figure 4.12, the
closest numbers of eliminated and remaining vaemlalre: X;, y1), (X2, ¥2), (X3, ¥3), and
(X4, Y4). The Lagrange polynomials given in Equation 4r& ased to determine the
approximate speed.

The partial factorization times are recorded fanuember of frontal matrices to
determine the known values of the partial factdimaspeeds. As shown in Figure 4.10,
the performance of MKL functions varies greatly fmall numbers of eliminated and
remaining variables. Therefore, a large numberest tuns with small increments of
number of eliminated and remaining variables amfop@med to capture the behaviour of

the partial factorization speed within the rang¢20500] eliminated variables.

Number of Number of Eliminated Variables

Remaining

Variables 2000 3000 4000 5000

0 7.69068 8.0135 8.14555 8.25766

1000 8.07826 8.23716 8.29783 8.33763
2000 8.29528 8.33914 8.34696 8.45212
3000 8.36739 8.34284 8.46438 8.49085
4000 8.44095 8.49388 8.50022 8.51074
5000 8.4862 8.52627 8.53178 8.5578

Table 4.5: Example table for partial factorizatispeeds of different frontal

matrix sizes. Table values are given in GFlop/sec.
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z: Gflop/sec for partial factorization
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Figure 4.12: The approximation of the partial faiztation speedz’, based on the

known values of.

' _ (x’ —Xl )Zl +(x2 X/ )ZZ
Z1-2 =

Xz —X1

(xr —X3 )23 +(x4 —x1 )24

Z,3_4 = p— (41)
7 = (y’ Y1 )2’1—2"'(}’3 —y! )2’3—4
B Y3 =1

Table 4.6 compares the estimated and actual pdd@brization times for
different frontal matrix sizes. The frontal matgizes shown in this table are not used in
the numerical experiments to determine the spedatieopartial factorization, except for
the rows with 500 eliminated variable. As shownthis table, on average, the partial

factorization times is estimated with 0.56% of erfeor the factorization of a FE mesh,
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the execution time for the large matrices has atgrampact on the total execution time.
Therefore, a small error is desirable for the ldrgatal matrices. As shown in Table 4.6,

the error is small for both large and small fromtedtrices.

Number of Number of Actual Partial E%;ﬂ?;?d
Eliminated Remaining Factorization o % Difference
Variables Variables | Time (milli-sec) | . actorization
Time (milli-sec)
50 50 9.36E-02 9.55E-02 2.01
50 150 3.24E-01 3.24E-01 0.01
50 250 6.86E-01 6.74E-01 -1.72
50 350 1.16E+00 1.16E+00 0.02
50 450 1.77E+00 1.76E+00 -0.72
300 0 1.59E+00 1.60E+00 0.44
300 500 1.75E+01 1.74E+01 -0.61
300 1000 5.14E+01 5.09E+01 -0.91
300 1500 1.03E+02 1.02E+02 -0.77
300 2000 1.70E+02 1.71E+02 0.53
500 0 6.83E+00 6.58E+00 -3.77
500 500 3.92E+01 3.88E+01 -1.08
500 1000 1.02E+02 1.01E+02 -0.74
500 1500 1.93E+02 1.93E+02 0.38
500 2000 3.14E+02 3.13E+02 -0.25
650 0 1.49E+01 1.40E+01 -5.87
650 500 6.32E+01 6.14E+01 -2.87
650 1000 1.51E+02 1.49E+02 -1.22
650 1500 2.75E+02 2.73E+02 -0.77
650 2000 4.38E+02 4.36E+02 -0.46
1500 0 1.52E+02 1.52E+02 0.15
1500 2000 1.42E+03 1.41E+03 -0.26
1500 4000 4.03E+03 4.04E+03 0.41
1500 6000 7.99E+03 8.10E+03 141
2500 0 6.58E+02 6.64E+02 0.87
2500 2000 3.34E+03 3.33E+03 -0.11
2500 4000 8.32E+03 8.29E+03 -0.33
2500 6000 1.55E+04 1.56E+04 0.60
Avg.: -0.56
Max: 2.01
Min: -5.87

Table 4.6: Partial factorization time estimatioos éxecuting MKL kernels with a

single thread.
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For the parallel factorization, the tree nodeselmsthe root of the assembly tree
are processed using the multithreaded BLAS/LAPAQKrsutines. The tree nodes close
to the root node usually have a large number ohiahted variables compared to the
lower levels of the assembly tree. Another setwhaerical experiments is performed to
determine the speedup of the MKL functions usingr fthreads. The experiments are
performed for frontal matrices having 50 or morinelated variables. Figure 4.13 and
Figure 4.14 show the experimental speedup for Hrégb factorization as a function of
total flop required for the partial factorizatidrigure 4.13 is for flop values smaller than
1 GFlop, and Figure 4.14 is for flop values larglean 1 GFlop. In addition to the
experimental speedup, both figures show an appm@b@m to the speedup. The
approximation is found by fitting a power functitm the experimental speedup values.

The approximation for the speedup is given as fadto

speedup = 018 Oflop °*° - 0.1
If speedup < 0.9then speedup =09

If speedup > 3.7then speedup = 3.7

Four thread partial factorization times are estedaby multiplying the speedup
approximation with the speed estimation for onedlrpartial factorization of a frontal
matrix. Table 4.7 shows the accuracy of the preshstfor partial factorization with four
threads. The average error in estimations is 0.83%he frontal matrix sizes shown in
Table 4.7. As shown in Table 4.7, the partial fagadion time is underestimated for
large frontal matrices with a small number of remvay variables. It is important to
accurately predict the partial factorization tinoédarge frontal matrices since the partial
factorization for large frontal matrices correspaida significant portion of the total

factorization time. In addition, the partial fadgiation is performed using multithreaded
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MKL kernels for the high-level tree nodes. In orderimprove the predictions, the
speedup approximation can be modified by considetimle number of remaining
variables. However, in this study, the simple spgedpproximation that is only a

function of flop for partial factorization is used.

4
1 & Experimental Speedup -
05 e Speedup Approximation -
0 .
0.00E+00 5.00E+08 1.00E+09
Flop

Figure 4.13: Partial factorization speedups usmg threads (flop is between O

and 1E9)

< Experimental Speedup ]

e Speedup Approximation

O 1 1
1.00E+09 1.10E+10 2.10E+10
Flop

Figure 4.14: Partial factorization speedups usmg threads (flop is between 1E9
and 3E9)

111



Number of | Number of Actual Partial Estimated Partial
Eliminated | Remaining Factorization Factorization % Difference
Variables Variables Time (milli-sec) Time (milli-sec)
50 50 9.90E-02 8.75E-02 -11.59
50 150 1.98E-01 2.27E-01 14.69
50 250 3.85E-01 4.09E-01 6.32
50 350 4.75E-01 6.36E-01 33.97
50 450 6.10E-01 9.00E-01 47.51
300 0 7.94E-01 8.46E-01 6.52
300 500 6.68E+00 6.08E+00 -8.93
300 1000 1.54E+01 1.49E+01 -2.86
300 1500 2.94E+01 2.75E+01 -6.37
300 2000 4.73E+01 4.62E+01 -2.27
500 0 2.82E+00 2.74E+00 -2.95
500 500 1.31E+01 1.19E+01 -8.79
500 1000 2.97E+01 2.74E+01 -7.81
500 1500 5.56E+01 5.23E+01 -6.04
500 2000 8.80E+01 8.46E+01 -3.82
650 0 5.65E+00 5.15E+00 -8.82
650 500 2.04E+01 1.76E+01 -13.95
650 1000 4.43E+01 4.02E+01 -9.20
650 1500 7.98E+01 7.37E+01 -7.54
650 2000 1.22E+02 1.18E+02 -3.23
1500 0 4.99E+01 4.11E+01 -17.60
1500 2000 3.92E+02 3.82E+02 -2.76
1500 4000 1.08E+03 1.09E+03 1.27
1500 6000 2.16E+03 2.19E+03 1.28
2500 0 2.00E+02 1.79E+02 -10.23
2500 2000 9.25E+02 9.01E+02 -2.63
2500 4000 2.23E+03 2.24E+03 0.61
2500 6000 4.13E+03 4.22E+03 2.07
Avg.: -0.83
Max: 47.51
Min: -17.60

Table 4.7: Partial factorization time estimations éxecuting MKL kernels with

four threads.

4.4.2 Serial Factorization Time

Although the number of flop required for partiattfarization dominates the total
operation count for numerical factorization, thee@xtion time of the other components
can be significant. This is due to the relativdbsspeeds of the components other than
the partial factorization operations. If optimizB4AS3 kernels are used for the partial
factorization, then the partial factorization isfpemed at a speed close to the machine

peak. On the other hand, the speed for finite eteénaed update matrix assembly
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operations are significantly slower than the pérfactorization speeds since the
assembly operations are mainly memory-bound omerafor which obtaining speeds
close to the machine peak is difficult due to leditopportunities to exploit data locality.
The total factorization times are underestimatedvé merely consider the partial
factorization times. This is especially true fooplems with large non-zero/flop ratios.
For these problems, the number of assembly opesatielative to flop is high. Figure
4.15 shows the execution time of the different congmts of the multifrontal
factorization for the benchmark suite of 40 tesibpems. The execution times given in
Figure 4.15 are normalized according to the taatdrization time. As shown in Figure
4.15, the time spent for handling the update megrimay be a significant portion of the
overall factorization time for some test problenifie time spent in update matrix
operations is especially high for small 2D problerger larger problems and 3D
problems, the time spent for handling update megraorresponds to a smaller portion of
the overall factorization time.

Figure 4.15 also shows the time spent in the aslyeofi-E matrices in terms of
the overall factorization time. Similar to the timpent for the update matrices, the time
spent in the assembly of FE matrices can be sagmfifor the smaller 2D problems (it is
larger than 10% of the total factorization time Models 1&2). The time spent in FE
matrix operations, update matrix operations, artigddactorization subroutines adds up
to most of the factorization time. The remainingledakes less than 1% of the total
factorization time for all test problems in the bemark suite.

The partial factorization operations required factbrization of a test problem is
simulated in order to experimentally determine tinee spent in the MKL subroutines.
Partial factorization simulations are performed fioe dense matrix sizes same as the
frontal matrix sizes corresponding to an assemiglg. tMKL time shown in Figure 4.15
is the simulated partial factorization times. Thendated partial factorization time is

expected to match with the estimated MKL times, cuhare estimated based on the
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approximation method described in the previousieectAs shown in Figure 4.15, the
partial factorization time estimations are usuatlyaccordance with the actual partial
factorization times. If we sum the simulated MKLrpel factorization times and the time
spent in the assembly operations for FE and upadatieices, the sum corresponds to a
fraction of the actual factorization times as shawrkigure 4.15. The main reason for
that is the simulated partial factorization timesn optimistic measure of the time spent
in the partial factorization subroutines during #etual factorization. For the simulated
partial factorization, the partial factorizationrespeatedly performed on frontal matrices
that occupy the same memory location. Thereforeteths mainly compulsory cache
misses for the simulated partial factorizations.cémpulsory cache miss is a failed
attempt to read data from the cache for the fieference to a memory location.
However, there is also capacity misses and contflisises during the actual numerical
factorization caused by the entries of the updaagrioes and FE matrices. Those cache
misses are failed attempt to read a data from dlcbec caused by the replacement of the
referenced data with some other data. During theahéactorization, the frontal matrix
entries are replaced with the entries of the updat#ix stack and FE matrices. On the
other hand, for the simulated partial factorizatithere is no update matrix stack and FE
matrices to replace the entries of the frontal maffherefore, the simulated partial
factorizations have smaller execution time compacedhe actual time for the partial
factorization of the frontal matrices. We assuna the partial factorization is performed
10% less efficient than the optimistic MKL predarts. This is to close the performance
gap between the simulated partial factorizatioreinrand the actual factorization times

shown in Figure 4.15.
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Figure 4.15: The execution time of different comgts of the solver normalized
according to the total factorization time. The ptfor the benchmark suite of 40 test

problems (HMETIS)

Next, we calculate the average speed of the updlatteix operations and FE
assembly operations by using the execution timenamaber of floating point operations
required for these operations. Figure 4.16 showsatlerage speed of the FE and update
matrix operations in terms of flop/sec. Our perfanoe model for the numerical assumes
a constant speed for the FE and update matrix tpesa According to the results shown
in Figure 4.16, we choose a constant speed of GBlbp/sec for the FE assembly
operations and 0.32 GFlop/sec for the update maiperations. However, neither
operation has a constant speed in reality. For plgnior smaller 2D problems, the
speed of update operations is slow as it is showkigure 4.16 for Model 1&2. The size
of the frontal matrices is typically small for teenall problems. Consequently, the node

blocks are small for small frontal matrices and dssembly of the update operations is
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slower for smaller node blocks. Therefore, a penmmce model that considers speed
variation of the FE and update matrix operationt yweld more realistic factorization
time estimations.

In our performance model, we calculate the estichateerall factorization time
by summing up the time spent for each assemblynoele. For each assembly tree node,
the factorization time is estimated by summinghgpdstimated partial factorization time,
estimated update matrix operations time and esth&E assembly time. Figure 4.17
shows the estimated factorization times normaliaecbrding to the actual factorization

times for the same benchmark suite.
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Figure 4.16: The average speed of the update meatdxFE assembly operations
for the benchmark suite of 40 test problems (HMBTIS
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Figure 4.17: Factorization time estimations norgeli according to the actual

factorization times for the benchmark suite of dét pproblems (HMETIS)

The factorization time estimations can be usechtmbse among alternative pivot-
orderings found in the preprocessing phase of dhees Table 4.8 shows the estimated
and actual factorization times with alternative mxabrdering programs for the test
problem f75x150x5. The operation counts and satuiimes are also given in Table 4.8.
As shown in Table 4.8, the estimated factorizatiomes are a better indicator for the
relative factorization performance compared to diperation counts for the numerical
factorization. Among five matrix ordering prograstsown in Table 4.8, AMF yields the
smallest operation count (299.87 GFlops). Althotlgh operation count for HMETIS is
larger than the one for AMF (356.89/299.87=1.198METIS vyields a better
factorization time (63.2/48.3=1.31x). This is due the large number of update
operations for the factorization with AMF matrix dering program (3.42 GFlop
compared to 0.96 Gflop of HMETIS). The developedfgrenance model incorporates
time spent in the update matrix operations and essfally predicts the factorization
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performance of the matrix ordering programs as shiowlable 4.8. HMETIS yields the
most favorable estimated factorization time andtdidzation time. The solution
performance of different matrix ordering progranss dimilar to their factorization

performance as shown in Table 4.8.

Matrix Factorization Estimated Factorization Solution Time | Update Matrix
Ordering | Operation Count| Factorization Time (sec) with 100 RHS Operation
Program (GFlop) Time (sec) (sec) Count (GFlop)

AMF 299.87 56.7 63.2 14.5 3.42

AMD 489.88 71.1 70.1 14.5 1.17

MMD 424.11 63.2 63.0 144 1.24
HMETIS 330.09 48.9 48.3 12.3 0.96

HAMF 356.89 55.3 55.4 13.6 1.51

Table 4.8: Choosing the best pivot-ordering amohgrraatives based on the

estimated factorization time (f75x150x%5)

4.4.3 Multithreaded Factorization Time

Subtrees of the assembly tree are assigned todthieenultiple threads are used
for the factorization. An example subtree with Hdtenapping is shown in Figure 4.18
for an example assembly tree. Here, the partiabferation for the subtrees is performed
by using serial BLAS/LAPACK kernels. Therefore, weecution time for the subtrees is
estimated by summing up the estimated partial feagttion times of the tree nodes as it
is described in the previous section. The parddetorization time for the subtrees is
determined by the subtree with the largest sexiatetion time.

For the tree nodes at a higher level than the sehtodes, the factorization is
performed using all available threads by using theltithreaded BLAS/LAPACK
kernels. The speedup approximation found in Chaptérl is used to determine the
multithreaded partial factorization times. The shgeis not applied to the time required
for copying the update matrices to the stack sthee portion of the code is executed
serially. Although multithreaded BLAS kernels arged for the assembly of the update

matrices to the frontal matrix, we neglect the slogefor this operation too. The pseudo
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code for estimating the multithreaded factorizatiome is given in Figure 4.19. In Figure
4.19, the subtree factorization times are founthafirst loop. The last loop in the code
calculates the partial factorization time for tiheet nodes above the subtrees (nodes 25,
26, and 27 in Figure 4.18). For calculating thaltédctorization time, the execution time
for the top level nodes is added to the maximuntreelfactorization time.
The estimated multithreaded factorization times aseally smaller than the

actual factorization times. In other words, the tittuleaded factorization performs worse
than the expectations. The underestimation of thdtittmeaded factorization time is

explained in Chapter 7.

Multithreaded BLAS/LAPACK using all 4 threads

27
Thread Jhread 2 Thread}/ Jhread 4
2 22 2 24
17 18 \\. 1 \ 2 \
5 6 7 8 9 10 11 12
1 2 3 4 13 14 15 16

Figure 4.18: Four thread factorization of an exargdsembly tree.
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The function that calculates the estimated pardibrization time
INPUT:
subtree_nodes: arrays storing the subtree nodes that can beepsed independently
top_level nodes: the tree nodes above the subtree nodes
RETURNS:
estimatedoarallel execution time for givesubtree nodes andtop level nodes.
function estimate_exe_tima(btree_nodes, top_|level _nodes)
i=0
for i :== 0to number of subtrees
subtree_exe timeg[i] :== 0
for each subtree_node in subtree_nodeq[i]
subtree_exe timeq[i] := subtree_exe timeg[i] + estimate_fact@Ubtree node)
estimate_updatsfbtree node) + estimate_ FE_assembiybtree _node)

end for
end for
subtree_exe time := max&ub_tree exe times)
top_exe time:=0
for each tree_nodein top_level _nodes
flop := flop required for the factorization of tlieee_node
speedup := estimate_speeduipgp)
top_exe_time=top_exe_time + estimate_facticge _node)/speedup +
estimate_update node) + estimate_ FE_assemidybtree _node)
end for
return subtree_exe time + top_exe time

Figure 4.19: The pseudo code for estimating thdithteéaded factorization time.

4.5 Mapping Algorithm

Two levels of parallelism are exploited in the Sd#ifect sparse solver: tree-level
parallelism and dense matrix level parallelism. Tiee-level parallelism is performing
the partial factorization in parallel for the treemdes between which there is no
dependency. The dense matrix level parallelism xploted by the use of the
multithreaded MKL linear algebra kernels. If we Biponly the tree level parallelism,
then this is not a scalable approach since thenhauf the computations are performed
at the top three levels of the assembly tree [1413-1Therefore, exploiting parallelism at
the top level assembly tree nodes is essentiahfecalable direct sparse solver. The
existing parallel sparse solvers usually explog ttense matrix level parallelism. For
example, the MUMPS sparse solver exploits the [gdisth at high-level tree nodes by
computing the Schur complement in parallel for ¢éafgontal matrices [143-144]. In

addition, the factorization of the root node is fpened in parallel using the
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ScaLAPACK kernels. The root node is partitioned digdributed among the processors
in 2D block cyclic distribution [145]. The PARDIS(®7] and PASTIX [94] solvers
exploits further parallelism by splitting large gmpodes close to the root of the assembly
tree. Recently, Hogg et al. [146] proposed a DA@alr scheme for parallel sparse
Cholesky Decomposition on multi-core processorse Shheme is similar to the tiled
algorithms proposed by Buttari et al. [30] anddhedules the factorization tasks based
on a dependency graph for the tasks associateddeitee matrix blocks. This approach
is typically more scalable compared to merely redyon the multithreaded performance
of the BLAS3 kernels [30].

In order to exploit the tree-level parallelism, thigbtrees that can be processed
independently can be found by using the mappingralgn proposed by Geist and Ng
[147]. In this scheme, the subtrees are exploreédardecreasing order of their workloads
and a subtree is assigned to the processor withgitest workload. This is called bin-
packing heuristic, where subtrees are assignetieadins with the lightest workloads.
The bin-packing is repeated until the load imbagaratio of the bins is smaller than a
user-specified tolerance value.

After the subtrees are found with the bin-packiegristic, the tree nodes above
the subtrees remain to be mapped to the procedRotisen and Sun [148] proposed a
mapping algorithm that maps the tree nodes aboeestibtrees by considering the
communication costs. In the current implementatbthe SES solver package, the high-
level tree nodes are processed by the main thnelgdwhich employs the multithreaded
BLAS/LAPACK kernels for the partial factorizatiorin other words, the tree-level
parallelism is not exploited for the high-leveldreodes. This gives satisfactory speedups
for the SMP multi-core processors. However, for N&Nhulti-core architectures a
mapping algorithm that considers the data localitghe high-level tree nodes may be
required for high-performance. The mapping algonitbroposed by Pothen and Sun

[148] can be used for this purpose.
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Parallel solvers either use a static schedulingh @is PASTIX, or a combination
of dynamic and static scheduling, such as MUMPS BARDISO. The dynamic
scheduling is especially useful when the workloadnot be predicted accurately prior to
the numerical factorization due to the delayed diazation of the supernodes for
numerical stability concerns. On the other handhef workload predictions are accurate
and the workload of the processors is balanced,sthgc scheduling yields a good
performance (for example, see Kurc et al. [81] &@hnon et al. [94]). SES solver
package determines the tasks that will be schedualéite processors statically by using
the partial factorization time predictions. Thigigally assures a balanced workload
among the threads. Previous sections explain hevetttorization times are predicted by
using the experimental execution times for the BUAS ACK subroutines.

The SES scheduling algorithm aims to exploit tweele of parallelism in an
optimal fashion so that the parallel factorizattone is minimized. We determine when
to switch to tree-level parallelism from dense-mxalevel parallelism based on the
estimated factorization times. The mapping algaritis iterative and it searches for a
subtree to thread mapping that minimizes the estich@arallel execution time. The
iteration starts at the head node of the assenmbb. tAt this point, the entire tree is
considered as a subtree and it is processed bggke shread. At each iteration step,
independent subtrees that can be processed irighara found by performing a breadth
first search. The tree nodes are assigned to theegsors in a decreasing order of the
estimated subtree factorization times in a cydshion. We use a priority queue to hold
the independent subtrees and to assign the sulitreébe processers in the decreasing
order of the subtree processing time. The priagitue is also used for performing the
breadth first search. Figure 4.20 shows the suneesteps of the search performed
within the mapping algorithm for an example assentl@de. The serial execution time
estimations for the tree nodes are also showngnrEi4.20. At each step of the search,

the parallel factorization time is predicted byngsour performance model. The search is

122



continued until the parallel execution time stogsréasing. The pseudo code for the
mapping algorithm is given in Figure 4.21.

The mapping algorithm may assign multiple subtieea thread. The numerical
factorization waits until all threads finish thework on the subtrees assigned to them.
Then, the high-level tree nodes are processed ing usultithreaded BLAS/LAPACK
kernels with maximum available number of threads. iAis stated earlier, we do not
exploit tree-level parallelism for the tree nodevowe the subtrees. If the
synchronizations within the BLAS/LAPACK kernels aret considered, the factorization
using the subtree to thread mapping requires alesisgnchronization between the
threads. The only synchronization point is befdegtsig to process the first high-level
assembly tree node. The subtree to thread mappungdffor the factorization is also
used for forward elimination and back substitutiéor the back substitution, the tasks
are processed in the reverse order of the factaizaThe use of the same mapping
simplifies the implementation for the forward elmation and back substitution. The
items and data structures that are created fonuheerical factorization can also be used
in the triangular solution such as:

» Synchronization constructs for the threads

* The tree-traversal found in the symbolic factoiizat

* The factors calculated by threads

* The frontal matrices

* The subtree to thread mapping

The main disadvantage of using the same mappitigaist may lead to workload
imbalances in forward elimination and back substtu phases since the relative
execution times of the factorization and triangugalution may not be similar for two

different assembly tree nodes.
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Figure 4.20: The search for the independent subttiegt can be processed in

parallel.
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INPUT:
root_node: the root node of the assembly tree
n: the number of additional iterations after an @ase in estimated factorization time is
detected
OUTPUT:
top_level_nodes: the tree nodes that are processed with multiteeéd&LAS/LAPACK
subtree_nodes: arrays storing subtree nodes that can be prog¢ésdependently
parallel_facto time: parallel factorization time

initialize thetop_level _nodes andsubtree_nodesto an empty set
initialize thepriority_queue with theroot_node
counter :=0
while counter <n
removed_node ;= extract the first element in thiority _queue
(a) add the children of theemoved node to thepriority queue
(b) add theremoved node to thetop level nodes candidate
(c) assign the nodes in thariority queue to the subtree nodes candidate in decreasing
order of the tree execution times in a cyclic disttion
/* use the estimate_time function given in Figur&dto predict execution time */
time := estimate_timégp_level_nodes candidate, subtree_nodes candidate)

if time > best_time
counter :=counter + 1

else
best_time :=time
subtree_nodes := subtree_nodes_candidate
top_level nodes:=top level _nodes candidate
counter :=0

end if

end while
parallel_facto time:=best_time

Figure 4.21: The pseudo code for subtree to thneagping algorithm.

4.6 Symbolic Factorization

The numerical factorization and triangular solutame simulated in the symbolic

factorization in order to determine the memory reguents and data structures for the

numerical solution. First, an assembly order isnfbdor each thread based on the

subtrees found in the mapping algorithm. We empglogtorder tree traversals for the

subtrees and the assembly tree nodes above theesibCurrent implementation of the

SES solver package does not employ an optimal mestdraversal to minimize the

active memory requirement. In future versions oé #olver package, the memory
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minimizing schemes developed by Liu [55] and Guearain@ and L'excellent [54] will be
employed.

Once the ordering of the partial factorization @pens is found for threads,
memory required for the frontal matrix, update nxastack, RHS vectors, and factors is
determined. The memory requirements are calculetgzhrallel for the data structures

corresponding to each thread. Finally, the locdides are found for frontal matrices.
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CHAPTER S
FACTORIZATION
&

TRIANGULAR SOLUTION PHASES

Once a strategy for the parallel numerical solui®letermined in the analysis
phase, the stiffness matrix is factorized using thaltifrontal method [51]. The
unknowns are then found by performing forward atiation and back substitution. This
chapter discusses the numerical factorization gadgular solution algorithms and their

implementation.

5.1 Numerical Factorization

The multifrontal method [51] is employed for thenmerical factorization. The
multifrontal method is the generalization of Irorigdntal method [45] which allows the
use of multiple frontal matrices. In the multifrahtnethod, the numerical factorization is
reduced to a series of partial factorization openst on dense frontal matrices. The
partial factorization on a frontal matrix is perfoed by finding the factors for the fully
assembled dofs and finding the Schur complemenddially assembled dofs. The fully
assembled dofs are the dofs for which all conneeleahents have been assembled in the
frontal matrix. They are also called the eliminateds. On the other hand, the partially
assembled dofs are the dofs for which all conneelehents are not assembled. They are
also called remaining dofs. The partial factoriaatis similar to the condensation of a
frontal matrix where the condensed dofs are fulyeanbled dofs and the remaining dofs
are partially assembled dofs. Typically, we expth@é supernodes and there are multiple
dofs eliminated at a frontal matrix. Therefore, van use a blocked form of the partial

factorization that can be written as [52]:
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The matrix on the left hand side of Equation 5.ta#led the frontal matrix. The
frontal matrix is composed of the dense matriBgS« ne, Vir x ne» aNdCrr x nr Wherene
andnr are the number of eliminated and remaining da$peetively.B is a square matrix
corresponding to the eliminated dofsjs a square matrix corresponding to the remaining
dofs, andV is a rectangular matrix which couples the elimidaéed remaining dofs.
After the partial factorization is completdsl stores the diagonal factots, V stores the
off-diagonal factor8/Lg ", andC stores the Schur complemeébtVB™'V'.

The LAPACK and BLAS3 subroutines are used for peniaog the partial
factorization shown in Equation 5.1. Symmetric diagl factorsl g, in Equation 5.1 are
computed with a call to the dpotrf function in LABK. This function computes the
Cholesky factors of a symmetric Hermitian matrixa Afficient implementation of this
function divides matriB into blocks sized such that the blocks fit inte themory cache
of the machine [149]. Once the diagonal factarg,are found, the off-diagonal factors,
VLg ", are computed using the dtrsm function in BLASBe ®trsm function finds the

off-diagonal factors by solving the following eqigat for L of:
Lol =V (5.2)
From the above equatiob can be written as:
Lot = VL'
Finally, the Schur complemer§, can be found by:
S=C—-VB T =C— LygLT (5.3)

whereL o, off diagonal factors, is substituted fgiLg". The dsyrk function in
BLAS3 is used for the ramnhkc update of th€€ matrix given in Equation 5.3.
The matricesB and C are symmetric and a packed storage scheme can be

employed for their storage. In packed storage seheimther the upper or lower diagonal
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entries of a dense matrix are stored. Howef2egnd C are stored as if they are full
matrices since there is no BLAS3 kernel for ranligklate that uses the packed storage
scheme. Additionally, the LAPACK implementationthre Intel's MKL library performs
better when a full matrix storage scheme is empuldg40].

Next, we give the number of floating point operatorequired for the partial
factorization of a frontal matrix withe eliminated variables anat remaining variables.
For dense frontal matrices, the number of floatimgint operations required for

calculating the diagonal factoks; is given as:

2

ne . Je ne®* ne’ ne
I+ 1(1—-1) = + + 54
Z; Z; (D=5 (54)

where the first term on the left hand side is numidfefloating point operations
required to find the factors for the current pivbhe second term is number of update
operations performed for the columns on the rigie sf the pivot column.

The off-diagonal factork o is computed by performing a triangular solutiorihwi
nr RHS vectors. The number of floating point operaioequired for thé o is given as:

nri (2(i -1) +1) =ne?nr (5.5)

i=1

Finally, the number of floating point operationgju@ed for the calculation of the

Sin Equation 5.3 is given as:

nrnr

Y>> 2ne=nelhr? + nelhr (5.6)

i=1 j=i

where the nested summation represents the numbamntoés in theS. The Ze
term inside the summation is the number of floatpmnt operations required for
calculating each entry in tt#& The total number of floating point operations regdifor

the partial factorization is the summation of tlggugtions 5.4-6 and is given below:
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r]—23+ne2nr +n—§2+neﬁhr2 + nelir +% (5.7)
The majority of arithmetic operations are to conedug if ne is large relative to
nr. On the other hand, iir is larger thame, the majority of operations are to comp8&te
Table 5.1 gives the operation counts for computiggL o andS in terms of the total
operation count required for partial factorizatids shown in Table 5.1, the majority of
the operations are for computirty if ne/nr is smaller than 0.8. As the ratiwe/nr

increases, the operation count ratio for compuidgcreases.

ne/nr Lg Ratio L . Ratio SRatio
0.2 0.011 0.165 0.824
0.4 0.037 0.275 0.688
0.6 0.07 0.349 0.582
0.8 0.106 0.397 0.497
1 0.143 0.428 0.429
1.2 0.179 0.447 0.373
1.4 0.214 0.458 0.328
1.6 0.247 0.463 0.29
1.8 0.278 0.464 0.258
2 0.308 0.461 0.231
3 0.429 0.428 0.143
4 0.516 0.387 0.097
5 0.581 0.349 0.07

Table 5.1: For frontal matrices with differem#/nr ratios, the operation counts for
computing Lg, Lot and S given in terms of total operation count for thertia

factorization

For four example test problems, Table 5.2 showsntleanne/nr ratios for the
assembly tree constructed by using the HMETIS matridering. As shown in Table 5.2,
meanne/nr ratios are smaller than 0.4 for 2D example proklamd they are smaller than
0.2 for 3D example test problems. For the assertibly of the example problems, the
ne/nr ratio is usually larger than the mean ratio far ttree nodes close to the root. The

ne/nr ratio is infinity for the root tree node since fhe@re no remaining variables at the
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root. The root node is not included in the statssghown in Table 5.2. Table 5.3 shows
the total operation counts for the factorizationtleé assembly tree constructed with
HMETIS ordering. As shown in Table 5.3, the majpuof the factorization operations are
for computing the Schur complemeatThis is expected since the mean theinr ratios
are small as shown in Table 5.2. For the test prablshown in Table 5.3, about 70% of
the operations are for computing t8enatrices. The operation counts for computing
at the root node is larger than the sum of the aifmer counts for computingg at the
remaining tree nodes. For 3D problems shown in &&bh8, the operation counts for
computingLg at the root node are more than 85% of the sumatiper counts for

computingL g at all tree nodes including the root tree node.

Mean Standard Maximum Minimum
Model Name Deviation
ne/nr ne/nr ne/nr
ne/nr

g500x500 0.302 0.170 1.5 0.008
f500x500 0.376 0.187 1.8 0.002
s30x30x30 0.098 0.053 0.5 0.038
f30x30x%30 0.172 0.058 0.625 0.002

Table 5.2: Assembly tree statistics for the exandé problems

Model Name Operation Count| Operation Count| Operation Count| Total Operation
Lg (GFlop) L ot (GFlop) S (GFlop) Count (GFlop)
g500x500 1.726 4.548 15.113 21.385
f500x500 4.806 9.661 31.778 46.245
5$30x30x%30 25.968 22.883 91.698 140.549
f30x30x%30 51.683 72.750 314.333 438.767

Table 5.3: Arithmetic operation counts for the éaiation of the example test

problems
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A partial factorization is performed for each frahmatrix corresponding to an
assembly tree node. The dependencies between tti@ fectorization tasks are shown
in Figure 5.1 for an example assembly tree. Forfdwotorization, the tree nodes are
visited in a postorder tree traversal, for which dhildren of an assembly tree node are
visited before the parent node. A single activentab matrix is used for the numerical
factorization for the serial factorization. For ritllreaded factorization, the active frontal
matrices are as many as the number of threadsfaséloe factorization if the tree-level
parallelism is exploited. A stack data structure ba used to stor8 since a postorder
tree traversal is employed. The stack data stredhat store§ matrices is referred to as
update matrix stack. Prior to a partial factoriaatithe update matrices of the children are

popped from the stack and assembled into the framarix.

t .
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Figure 5.1: Direction of the dependencies betwéerfactorization and triangular

solution tasks for the example assembly tree.

For multithreaded multifrontal factorization, eatiread has its own frontal
matrix and update matrix stack. The size and siracof the update matrix stacks are
determined in the analysis phase of the solver ggekSimilarly, the size of the frontal
matrix is determined in the analysis phase durhregydymbolic factorization. Once the

total memory requirements are determined, memoallesated for the frontal matrices
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and update matrix stacks prior to the numericalofémation. There is no need for the
memory reallocation since a static scheduling ipleged and the operations performed
by each thread are predetermined in the symbaotiofaation phase. We also avoid the
dynamic memory allocations during the numericakdagzation. As dynamic memory
allocations typically require system level synchration of memory, a large number of
dynamic memory allocations for small blocks of meynos typically inefficient
compared to allocating large memory blocks at Hmestime.

Figure 5.2 shows the pseudo code for multithreddetbrization. This code is
executed in parallel by multiple threads. Eachatrevorks on an exclusive set of tree
nodes, which is given as an input to the code shaviaigure 5.2. The tree nodes are held
in an array and they are stored according to atpasérsal tree node ordering, which is
found in the analysis phase. Before processing aadk in the array, first, it is checked
whether synchronization is required for the parfisaitorization of the current tree node.
If the partial factorization of a frontal matrix stuwait for other threads, the frontal
matrix is constructed after the dependent threade finished. If the frontal matrix of a
child tree node is processed by the current thtkad the update matrix of the child is
popped from the update matrix stack of the curtiergiad. Otherwise, a search is required
to make sure that we assemble the correct updatexm@ur implementation does not
require synchronization constructs for accessesth® update matrix stack. The
synchronizations shown in Figure 5.2 guarantee ¢ty a single thread accesses an
update matrix stack at a time. The constructiorthef frontal matrix is finalized by
assembling all finite elements that contains the/ fassembled dofs. After the frontal
matrix is constructed, a partial factorization exformed by using the LAPACK/BLAS
subroutines described previously. Once the facdmedound, they are stored for later use
in the triangular solution. Onceis found for the frontal matrix, it is pushed tetupdate
matrix stack since it will be required during thargml factorization of the parent

assembly tree node.
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There are two important requirements that must hreed for the correct
execution of the multifrontal factorization codevenm in Figure 5.2. First, the partial
factorization of high-level tree nodes should betlwe reverse order of the partial
factorization of the subtree tree nodes for thenntiaiead. This is to ensure that the stack
data structure can be used for the tree nodes ahevsubtrees. Second, for a parent
assembly tree node, ordering of its children noslesuld be in accordance with the
ordering of the tree nodes that is given as inPdaherwise, pops from the update matrix
stack may bring an update matrix that belongs thild node that is a sibling of the
desired child node. The analysis phase finds pdstdree traversals for the threads that

satisfy these two requirements.
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The multithreaded multifrontal factorization algbm
INPUT:
current_thread _id: the thread ID currently executing the function
tree_nodes: the assembly tree nodes assigned to the cutmesad (in postorder traversal)
Lg, Lo, S: the frontal matrix blocks for the current thread
update_stacks: the update stacks for all threads
max_thread num: the number of threads used for the numerical fazttion
OUTPUT:
factors: the factors found by the multifrontal factorizatj each thread has its own copy.
/* traverse all nodes assigned to the thread */
for each tree nodein tree_nodes
/* wait until all children nodes that the tree natipends are processed */
if requires_waitfee _node) then wait_for_threads(ee node) end if
/* traverse all children nodes of the current tneele */
for each child_node of thetree_node
[* get the thread id that processed the children nidde.
thread id ;= get_threadtild _node)
[* pop the update matrix from the corresponding updtaek. This isS computed at the
children tree node*/
if thread_id = current_thread_tiden
update_matrix:=pop(pdate_stackgthread _id])
otherwise
/* find the child node’s update matrix in the upelatatrix stack */
update_matrix:=find(child_node, update_stackg[thread _id])
end if
assembla(pdate_matrix, L g)
assemblafpdate_matrix, L o)
assemblafpdate_matrix, S)
end for
[* traverse FE’s for the tree node*/
for each element_matrix stored in théree node
assembleflement_matrix, Lg)
assembleflement_matrix, L o)
assembleflement_matrix, S)
end for
[* if it is a high-level tree node then use allehds available for partial factorization */
if is_subtree_node(tree_nodbgn set_blas_lapack thread_n(in
otherwise set_blas_lapack_thread n(max thread num) end if
/* make the LAPACK and BLAS calls required for thartial factorization */
Lg:= dpotrflLg)
L or:=dtrsmqL ofr, Lg)
S:=dsyrkl o, S)
[* store the results of partial factorization*/
store_diagonalfee node, L g, factors)
store_off_diagonal(ee node, L ', factors)
push§, update stackgcurrent_thread id])
* notify the threads that waits for this tree ndde
if requires_notificatiorifee_node) then notify threadsfee node) end if
end for

Figure 5.2: The pseudo code for multithreaded nigakfactorization algorithm
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5.2 Triangular Solution

Once the factors are calculated, the triangulautewl can be performed by
forward elimination and back substitution. The fard elimination for an assembly tree
node can start as soon as the factors correspotalingy assembled dofs are computed.
Alternatively, the factorization and forward elimation can be separated by starting the
forward elimination after all factorization step® a&ompleted. The back substitution, on

the other hand, must wait until all forward elimtioa tasks are completed.

5.2.1 Forward Elimination

The efficiency of BLAS3 kernels are extended to thangular solution with
multiple RHS vectors. We employ frontal RHS matsi¢e perform forward elimination
and back substitution operations efficiently on seematrix blocks. The algorithm is
similar to the numerical factorization. Howeverwjan addition to the frontal matrices
that store the factors for the eliminated dofs, al® have a RHS frontal matrix that
stores the loads and partial results for the elt@d and remaining dofs. For the forward
elimination steps, the frontal matrix and loadstio& corresponding dofs are written in a

blocked form as follows:

o llx] =[x 59
whereF. andF; store the loads updated with the partial solutiorthe eliminated
and remaining dofs respectively. The matriegsandF, arene by nrhs andnr by nrhs
matrices respectively. The right-hand side matnEQguation 5.8 is referred to as RHS
frontal matrix. When the forward elimination steg® completel- storesY,, the results
of the forward elimination for the fully assemblddfs. F,, on the other hand, stor¥s,

the contribution from the current assembly treeentmlthe forward elimination steps at

the parent assembly tree node. Makixn Equation 5.8 is not required for the forward
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elimination and back substitution. For forward ehation, the dense matrix operations

on the frontal matrix are given as follows:
Y, = Lp'F. (5.9)
F'= F. — Lo Ye (5.10)

whereY. is the results from the forward elimination alRd is the contribution
from the currently processed tree node to the fatvedimination steps at the parent tree
node. In a wayF," is similar toS, the Schur complement, which is the update matrix for
the parent tree node. We do not need extra mersosyoteY . andF," sinceY. andF"
are written orF. andF, respectively. Before starting the operations anftbntal matrix
for another assembly tree nodg, is stored to a separate memory location for a lade
in the back substitution.

The BLAS3 dtrsm and dgemm functions are used ttoparoperations shown in
Equations 5.9 and 5.10 respectively. It should beeah that using the suitable BLAS2
kernels will be more efficient if the structure remsmall number of loading conditions. In
addition, the efficiency of BLAS3 kernels will nshift the extra time spent to store the
RHS update matrices" for a small number of RHS vectors. Therefore, qupraach is
especially efficient for the solution of multipleHS vectors.

Next, we give the number of floating point operatiaequired for the forward
elimination steps on the frontal matrix. The demssrix Y in Equation 5.9 is computed
by performing forward elimination on a dense maicFor a dense square coefficient
matrix with the sizene, the number of floating point operations requifed forward

elimination withnrhs RHS vectors is given as follows:
nrhsY " (2(i —1) +1) =ne’nrhs (5.11)
i=1

The number of floating point operations required floe operations shown in
Equation 5.10 is given as follows:
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nr nrhs

D> 2ne=2[helhr (rhs (5.12)

i=1 j=1

where the term inside the summation represents nilnaber of operation
performed to compute each entry of th& The total number of floating point operations
required for the back substitution is the summabtéfquation 5.11-12 and is given as

follows:
(ne2 +2[he Dhr) [hrhs (5.13)

As shown in the above equation, the operation ot forward elimination
increases linearly as we increase the number of Rtd&ors f(rhs). A fill-in
minimization scheme will also minimize the operatioount for forward elimination
since a fill-in minimization scheme aims to redme&?2 + nenr, the number ohonzero
for the pivot columns. For the example test proldemable 5.4 shows the total operation
counts for the forward elimination with 100 RHS. #&sown in Table 5.4, the operation
count for computing=" in Equation 5.10 is significantly larger than the @ien count
for computingYein Equation 5.9. This is mainly due to small me®mnr ratios of the
assembly tree nodes as shown in Table 5.2. If pleeation counts in Table 5.3 and Table
5.4 are compared, the total operation count fawvéod elimination with 100 RHS vectors
is comparable to the total operation count for thetorization of 2D example test
problems. On the other hand, for 3D test probldhes factorization operation counts are
significantly larger than the operation counts tiloe forward elimination with 100 RHS
vectors as shown in the tables. The operation eotort alternative number of RHS
vectors can be found by linearly scaling the openatounts given for 100 RHS vectors

in Table 5.4.
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Model Name Operation Count| Operation Count| Total Operation
Y. (GFlop) F." (GFlop) Count (GFlop)
g500x500 1.845 9.632 11.476
f500x500 2.885 13.495 16.380
5$30x30x%30 2.968 12.067 15.035
f30x30x%30 4.840 23.534 28.375

Table 5.4: For example test problems, operationntouor the forward

elimination with 100 RHS vectors

As it is stated in the previous Chapter, the magpound for the factorization is
also used for the triangular solution. This imghciassumes that the workload for
triangular solution is directly proportional to thwrkload for the partial factorization. If
the operation counts for the partial factorizateond forward elimination are compared,
one can see that this is not always the case. Hawéw large tree nodes with similar
ne/nr ratios, the triangular solution flop is almosteditly proportional to the partial
factorization flops. This point is illustrated byotiing the triangular solution flops in
terms of the partial factorization flops. Figure3 5shows the flop for the forward
elimination with 100 RHS vectors normalized accogdio the partial factorization flop.
The relative flop is given for differeme/nr ratios in Figure 5.3. As shown in Figure 5.3,
the relative flops are different for two frontal tnees with significantly differenhe/nr
ratios. However, if thene/nr ratios are the same, the relative flop becomes sinylar
for two frontal matrices as long as the frontal mxasizes differs in only by a small

constant.
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Figure 5.3: The flop required for the triangulatusion with 100 RHS vectors

given in terms of the flop required for the parfedtorization.

After demonstrating the assumptions of the mappiggrithm for the triangular
solution, we now discuss the implementation offtvevard elimination. As it is shown in
Figure 5.1 for an example assembly tree, the deperyd between the forward
elimination tasks is the same as the one for tletofaation tasks. Therefore, the
postorder tree traversal used in the numericalofeaation can also be used for the
forward elimination. The use of postorder travefealforward elimination allows storing
the " in an update matrix stack data structure thatirslar to the one used in the
factorization phase. The pseudo code for the rhudttded forward elimination is shown
in Figure 5.4. FirstFe in the current RHS frontal matrix is initializeg@arding to the
loads on the structure. Then, the RHS frontal madbtocks, F. and F,, are updated
according to thé," computed at the children tree nodes. Once, the fRbiBal matrix is
constructed and the factors for the current assetné node are restored, the forward

elimination is performed by making the BLAS3 callsscribed previously.
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The multithreaded forward elimination algorithm

INPUT:
current_thread _id: the thread id of the current thread
factors: factors calculated in the numerical factorizatrase
tree_nodes: the assembly tree nodes assigned to the cuimexad (postorder traversal order)
Fe, F,: the RHS frontal matrix for the current thread
rhs update stacks: the update stacks for the RHS vectors for aialds

OUTPUT:
y: the results found by forward elimination

/* traverse all nodes assigned to the thread */
for each tree_nodein tree_nodes
/*Wait until all children nodes that the tree natkpends are processed */
if requires_waitftee node) =true
wait_for_threadsfee node)
end if
assembldfads at eliminated_dofs, F¢)
for each child_node of thetree _node
/*Get the thread id that processed the children fibde
thread _id:=get_threadthild_node)
[*Pop the update matrix from the corresponding upstatek */
if thread_id = current_thread id
F.":= popfhs_update stackgthread id])
else
/*find the child node’s update matrix in the updatatrix stack*/
F.“:=find(child_node, rhs_update stacksthread id])
end if
assemblef,", Fo)
assemble{,", F,)
end for
[*Get the stored factors for the current frontaltmixa/
Lg:=restore_diagonaiee_node, factors)
L= restore_off _diagonahiee _node, factors)
[*If it is a high-level tree node then use all thds available for partial factorization */
if is_subtree_node(tree_nodbgn set_blas_lapack thread_n(in
otherwise set_blas_lapack_thread n(max thread num) end if
/*Call the BLAS3 functions for the forward eliminati®y/
Fe.=dtrsm(Lg, Fe)
Fru::dgemmFr' Loff ' Fe)
[*Store the results from the forward elimination*/
pushf,", load_update stackgcurrent_thread id])
addFcto they
/*Notify the threads that waits for this tree node
if requires_notificatiorifee_node) =true
notify_threadsfee node)
end if
end for

Figure 5.4: The pseudo code for multithreaded fodvedimination algorithm.
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As described in Chapter 4.3, node blocking improtres performance of the
assembly of the update matrices for the multifrbfatetorization. We can also exploit the
node blocks for the triangular solution of a frdntaatrix. This will improve the
efficiency of the assembly of tHg" matrices corresponding to children tree nodes. The
storage scheme for the RHS vectors determinesizkens the continuous matrix blocks
that can be assembled at once. Consequently, tiefitsefrom the node blocking depend
on how the RHS vectors are stored. To illustrate foint, Figure 5.5 shows two
alternative schemes for storing the RHS vectorseHeis assumed that the RHS matrix
is stored in a column oriented fashion which is¢hse for all dense matrices used in the
SES solver package. The storage scheme shown ureFig5(a) is for the forward
elimination formulation on a frontal matrix givem Equation 5.8. For the storage scheme
shown in Figure 5.5(a), the loads of a RHS vecterajacent in the array storing the
RHS matrix. In other words, the loads on a dof egponding to adjacent RHS vectors
are separated hyet+nr elements in the array storing the RHS matrix. Tinmts the use
of node blocking to a single RHS vector. For thangular solution of multiple RHS
vectors, there is a more efficient storage schemmch is given in Figure 5.5(b). Here,
the transpose of the right hand-side vectors aoeedt In this scheme, all loads
corresponding to a dof are adjacent. The assenfbllgedm" blocks can be performed
efficiently for all RHS vectors at once. This stpeascheme allows the efficient use of
BLAS1 kernels for the assembly of tRg's.

In order to use the storage scheme shown in Figu®&b), the forward

elimination formulations given in Equations 5.9 @&n@l0 must be modified as follows:
Y. = FILET (5.14)

FUT' = F.T— Y, "L " (5.15)
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The BLAS3 functions are the same for the modifiepiagions given above.
However, the parameters of the BLASS functions &hbe changed. Now, the transpose

of the factors are used in the corresponding BLASB8tions.
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2 12 . ne. . he+nr
Fe ! Fe ‘ 1
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Figure 5.5: Alternative storage schemes for the REelSors.

5.2.2 Back Substitution

After forward elimination is finished, the solutioils completed by a back
substitution. For the back substitution steps,fthatal matrix and RHS vectors can be

written in the blocked matrix form as follows:

T T
| r (516
whereD, andD; are displacements corresponding to the eliminateldramaining
dofs. De is ne by nrhs matrix andD; is nr by nrhs matrix. The back substitution for the
current frontal matrix determind3.. The entries ofY, are the values computed in the
forward elimination phase from Equation 5B, stores the displacements for the
remaining dofs, which are found at an ancestohefdurrent tree nod& andY, are not

used for the back substitution operations on tbatél matrix. Matrix operations for the

back substitution are given as:

Y& = Yo — LoD, (5.17)
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D, = L3TYY (5.18)

The BLAS3 dgemm and dtrsm functions are used téoparoperations given in
Equations 5.17 and 5.18 respectively. After th@ldisement matridDe is computed, it is
disassembled t®, matrices of the children elemeni3,9). The number of floating point
operations required for the back substitution is #ame as the ones for the forward
elimination, which are given in Equation 5.11 argl&tion 5.12.

As shown in Figure 5.1, the back substitution stémvm the parent node in the
assembly tree and then continues in the reversetiin of the factorization and forward
elimination. Therefore, instead of the postordee tiraversal used in the factorization and
forward elimination, the reverse of the postordexettraversal is used in the back
substitution. The pseudo code for the multithrealblack substitution is given in Figure
5.7. Here, the RHS update matrix stack that stBfefor the forward elimination can be
used to storeD,° matrices whereD,° matrices are thé, matrices used in the back
substitution steps at the children tree nodsS.matrices are placed on the stack in the
reverse order of the placements in the forwardialton steps. As shown in Figure 5.7,
before the back substitution operations, the resfdund in forward elimination are
restored. Then, thB,°is popped from the RHS update matrix stack and iestored at
the RHS frontal matrixD,. Back substitution operations for the assemblye teze
performed by using the matricd3,, D;, Lg, and L. After the back substitution
operations are completed, the RHS frontal matrockd D, and D, are assembled to the
D°. D,will be used during the back substitution operation the children tree nodes.

Similar to the storage scheme in the forward elation, the transpose of the
RHS frontal matrix is stored for the back subsittatin order to exploit the node blocks
for multiple RHS vectors. The formulation for therispose RHS frontal matrices are

given as follows:

YT = v, - DL (5.19)
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D.T = Y& 'Ly (5.20)

The BLAS3 functions are the same for the transpaspdhtions. However, the
function parameters are different than the oneshfeEquations 5.19 and 5.20.

The triangular solution algorithm developed in tslisdy is especially efficient for
the solution with a large number of RHS vectorse Timain advantage of this scheme is
that the BLAS3 functions are performed on largesgematrices. The use of update
matrix stacks for the RHS vectors is the overheadpkrforming operations on dense
frontal matrices. For systems with a large numb&rRé&IS vectors, the increased
performance of BLAS3 kernels improves the overalfgrmance for the triangular
solution regardless of the extra operations reduioe handling the update matrices. This
point is illustrated by comparing the solution tiroé the proposed scheme with the
solution time of the PARDISO solver. Figure 5.6ag\vhe triangular solution time of the
SES solver package in terms of the solution timehef PARDISO solver for the test
problem f500x500. As shown in Figure 5.6, PARDISO faster for the triangular
solution with 10 RHS vectors. However, as the nunmddeRHS vectors increases, the

performance of SES relative to PARDISO increases.
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Figure 5.6: SES triangular solution time relative the PARDISO triangular

solution time for the problem f500x500.
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The multithreaded back substitution algorithm

INPUT:
current_thread _id: the thread id of the current thread
factors: factors calculated in the numerical factorizatpdrase
y: the results found in the forward elimination
tree_nodes: the assembly tree nodes (in reverse postordezrsal order)
De, D,: the RHS frontal matrix for the current thread
rhs update stacks: the update stacks for the RHS vectors for atads

OUTPUT:
d: the unknowns(displacements) found by back sultitit

/* Traverse all nodes assigned to the thread */
for each tree nodein tree_nodes
[*Wait until all children nodes that the tree natkpends are processed */
if requires_waitfee node) =true
wait_for_natification{ree_node)
end if
[*Get the stored factors*/
Lg:=restore_diagonal_factofattors)
L. = restore_off _diagonal_factofators)
[*Get the forward elimination results for the curréree node*/
Do =gettree_node, y)
[*Pop the calculated unknowns stored by the parent*
D.:=pop(hs_update stackg[thread id])
[*If it is a high-level tree node then use all thds available for partial factorization */
if is_subtree_node(tree_nodbgn set_blas_lapack thread n(in
otherwise set_blas_lapack_thread n(max thread num) end if
De:=dgemmDe, Loffy Dr)
De:=dtrsm(g, De)
StoreD.ind
for each child_node of thetree_node
[*DissembleD,for the child node*/
D,%:=dissemble(child_nod®,)
[*DissembleD, for the child node*/
D,%:=dissemble(child_nod®,)
/*Get the thread id that will process the childrexde*/
thread_id:=get_threadthild_node)
[*Push the calculated unknowns to the update stattleathild*/
pushD/’, rhs_update_stacks[thread _id])
end for
[*Notify the threads that waits for this tree nofle*
if requires_noatificatiorifee_node) =true
notify_threadsfee node)
end if
end for

Figure 5.7: The pseudo code for the multithreadsk Isubstitution algorithm.
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5.3 Using a File Storage for the Factors

For 3D problems, the memory required to store #utof's increases dramatically
as the number of elements used in three dimensiameases. Figure 5.8 shows the
memory required for storing the factors for prob$ewith cubic geometry modelled with
8-node solid elements. The x-axis shows the nurmbelements used for each dimension
of the cube. In Figure 5.8, the memory requiredttoe the factors shows a cubic growth
as a function of the number of elements on one sidthe cube. For example, the
memory size required to store the factors is al@uGbytes for a cubic model with 60
elements on each side, whereas, it is 25 Gbytethéomodel with 75 elements on each
side. Figure 5.8 also shows the storage requiresménie factors are not stored in the
main memory. The active memory is the memory regufor holding the frontal matrix
and update matrix stacks. As shown in Figure hi8 atctive memory requirement can be
significantly smaller than the memory required twre the factors. In a naive
implementation of the multifrontal method, bothiaetmemory and the factors will be
stored in the main memory. Therefore, the total mgmequired for storing the floating
point numbers is the summation of the two plotsegivn Figure 5.8. The memory
requirements of the space frame models are evegerlaince there are 6 dofs at each
node for space frames.

In the multifrontal method, the factors can be tentto disk after the partial
factorization is completed for a frontal matrix.iJltan significantly reduce the memory
requirements for the numerical solution. The faxtoill be read from the disk when they
are needed again during the triangular solutiomdfemploy a secondary storage for the
factors, the maximum memory required by the soisex function of the maximum size
of the frontal matrix and update matrix stack, whnay be significantly smaller than the

memory required for the factors as shown in Figu8e
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Figure 5.8: The memory requirements for the faz&dron of cubic geometry 8

node solid element models. HMETIS is used for tlvetpordering.

In order to reduce the memory requirements of théifrontal solver, an out-of-
core multifrontal method is implemented by writithge computed factors to a file. This is
a partial out-of-core implementation since the fabmmatrix and update matrices are
always kept in the main memory. For a fully outeofe solver implementation, the
frontal matrix and update matrices can also betevrito a secondary storage when there
is not enough memory to store them.

Acharya et al. [150] discussed tuning I/O intenspagallel applications. They
demonstrated the efficiency of one coalesced |&#@erequest instead of a humber of
small I/O requests. They stated that with coderuesiring, small I/O requests can be
converted to larger coalesced I/O requests. Acngrdlb their study, for the large I/O
requests, the effect of 1/0 interface on perforngawas not as significant as it is for the
small 1/0O requests. They also reported that prhfetc data and writing-behind can
improve the performance of 1/O intensive applicasio We considered these
optimizations for writing and reading the computactors.
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For writing factors to a file, we consider two aftative approaches: synchronous
and asynchronous 1I/O. In the synchronous 1/O, eatthenters to a wait state until the 1/0
request is completed. In asynchronous 1/O, on therohand, the thread continues to
execute after a successful I/O request. Once archeynous I/O request is served by the
system, the thread is signalled. The signal statebe queried anytime by the thread to
check whether an I/O request is completed. If tBeréquest is completed, the operations
on the requested data are performed.

In order to guarantee a truly asynchronous behawouwWindows systems, the
I/O operations should be explicitly buffered [15Therefore, we used a factor buffer to
store the computed factors before writing them téilea Figure 5.9 shows the data
structures used to write the factors to the disk.shown in Figure 5.9, the computed
factors are first copied to the factor buffer. Witea buffer size exceeds a certain limit, it
is flushed to a file on the disk. By copying thettas to a buffer first, we reduce the
number of file accesses and increase the sizeeofldéla written to the disk at each I/O
request. These are expected to improve the perfarenaf I/O intensive applications as
described by Acharya et al. [150]. There are soaveats for using an explicit file buffer
on Windows systems [151]. First, the number of ¥ydecessed should be a multiple of
the volume sector size. Second, buffer addressaklshaligned on addresses in memory
that is a multiple of the volume sector size. Ouffér implementation for the factors
satisfies these requirements.

In order to better exploit the asynchronous I/O, wged two factor buffers. A
buffer is used as a disk cache for holding theotacthat are currently written to a file.
Meanwhile, the other buffer is used as a tempostoyage for the factors that are
recently calculated or will be calculated soon. ©tige buffer caching for the disk is
completely flushed to a file, the two buffers anapped. After swapping the buffers, the

buffer that was holding the most recent factorseeas a disk cache and vice versa.
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Figure 5.9: Data accesses for partial factorizatiora frontal matrix

For the triangular solution, the factors need tadsed from the file. We can use
either synchronous or asynchronous 1/O for readimgfactors from the file. Similar to
writing factors to a file, an explicit file buffers required for guaranteeing truly
asynchronous reading. Figure 5.10 shows the datetstes used for reading the factors
from a file. As shown in Figure 5.10, we use a dadiuffer to read the factors for the
triangular solution. In addition, since we know wiiactors will be needed at the next
step, we can fetch the data before it is requi@ainpared to the 1/O requests right before
the operations on the required data, a prefetckolgeme can potentially reduce the
waiting time for vital data, which are the facte@mputed in the numerical factorization
phase. We again used two buffers to read the fcldre factors are read in large blocks

by using the double buffer structure described teeémd used for storing the factors.
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Figure 5.10: Data accesses for partial forward iei@tmon on a frontal matrix

The number of disk reads will be halved if the fard/ elimination for a frontal
matrix is performed right after the partial faciation of the frontal matrix. In this case,
the factors are read from the file only once dutimg back substitution. We employ this
scheme in order to minimize the disk writes. Thekdwrites can be further reduced by
creating a factor buffer as large as the availaidenory size and not writing the factors
to a file unless the memory required to store factexceeds the available memory.
However, this scheme is not implemented yet.

For the multifrontal solver, the memory required floe update matrix stack can
be reduced by employing the scheme described byn@Guehe and L'excelleb5].
This will further reduce the active memory requirkat the multifrontal solver and
increase the size of the problems that can be dolsng the out-of-core solver.

However, this scheme is not implemented in theesghackage yet.
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CHAPTER G

PERFORMANCE OF VARIOUSALGORITHMS

In this chapter, numerical experiments are perfartoeevaluate the performance
of alternative algorithms for a large number of @ 3D FE problems. The algorithms
that produce favorable execution times are predepproaches to improve the overall

efficiency of the sparse direct solution are diseas

6.1 Performance of Matrix Ordering Programs

6.1.1 Program Parameters

Matrix-ordering programs have adjustable parametedsthe SES solver package
allows experimenting with these parameters as destrin Section 3.3. Here, we
investigate the performance of using different ealtor some of these parameters for the

matrix ordering programs.

6.1.1.1 Graph Compression

A graph compression reduces the size of the in@phgand typically reduces the
execution time of matrix-ordering programs [1296]L3Here, we investigate the effect of
graph compression for the HMETIS matrix orderinggyam. Figure 6.1 shows the
performance profiles for non-zero with graph comspren and no graph compression.
The benchmark suite of 40 test problems is usedtifernumerical experiments. As
shown in Figure 6.1, graph compression usuallydgiglivot-orderings with slightly more
non-zeros. For a test problem, compressing thet ig@aph yields a non-zero value 1.14
times the non-zero without compression. Figure 6tlibws the impact of graph
compression on flop for HMETIS matrix ordering pragn. As shown in Figure 6.2,

graph compression usually yields higher flop valieesHMETIS. Compared to the non-
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zero, the difference between the flop values isarsgnificant. For a single problem in
our benchmark suite, graph compression yields flajues 1.5 times the flop found

without graph compression.

Performance Profile: Non-zero

Fraction of Problems

Figure 6.1: Performance profile(a): Non-zero for HMETIS with and without

graph compression, benchmark suite of 40 test prabl

Although the graph compression usually increasesntin-zero and flop for the
pivot-orderings, the execution time of the HMET$Ssmaller if the graph compression is
employed. For the benchmark suite of 40 test probjéhe matrix-ordering may be 1.7x
slower if the graph is not applied. The reduction matrix ordering time may be
important since time spent in the matrix-orderimget may correspond to a significant
portion of the solver execution time, especially #D problems. However, for 2D
problems, local orderings typically yields bettérgt-orderings with respect to non-zero
and flop. For 3D problems, the matrix ordering ttimmeay be significantly smaller than
the factorization times especially for large prob$e Therefore, it may be desirable to

reduce the factorization times at a relatively $roast of matrix ordering times for 3D
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problems. For the hybrid ordering program HAMF, gp@aph compression has minor

impact both on the matrix-ordering times and thaligy of the pivot-orderings.

Performance Profile: Flop

Fraction of Problems

Figure 6.2: Performance profilp(a): Flop for HMETIS with and without graph

compression, benchmark suite of 40 test problems

6.1.1.2 Nested Dissections Stopping Critenartnum, for HAMF

In the hybrid matrix ordering programs, HMETIS amtAMF, the nested
dissections are performed until the partitionssamaller than a threshold value. Once the
partitions are found with incomplete nested dissest the partitioned graphs are ordered
using a local matrix ordering program. The stoppnigerion, vertnum, for the nested
dissections is an input for the HAMF matrix ordegriprogram. For partitions smaller
than thevertnum value, the nested dissections are stopped ancaanwatrix-ordering is
used for the partitions. We investigate the perémmoe of HAMF for alternative values of
vertnum. Figure 6.3 shows the flop for alternative valoésertnum parameter. As shown
in Figure 6.3, there is no singlertnum value that gives the best flop for all test proise

in the benchmark suite. The performance profiles/éotnum values smaller than 500 are
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similar as shown in Figure 6.3. The execution tohédAMF typically decreases as we
increase thevertnum values. This is due to the fact that the time oamag graph
partitioning algorithm is executed fewer times as increase thgertnum values. In the
limit, if vertnum is equal to the size of the input graph, thenldlcal ordering algorithm
is applied to the entire graph and no graph paniitig is applied. Observing that the
performance for alternativeertnum values are similar within the range of 50 to 3&6,

use the defaultertnum value in the SCOTCH library, which v&rtnum=240.

Performance Profile: Flop
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Figure 6.3: Performance profilp(a): Flop for HAMF with alternative values for

vertnum, benchmark suite of 40 test problems

6.1.1.3 Node Amalgamation within SCOTCH Library

Matrix ordering programs in SCOTCH package can fpidot-orderings with
amalgamated supernodes. Tomin and frat parameters control the amount of node

amalgamation within SCOTCH (see Chapter 3 for ¢&®tarhe numerical experiments
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are performed to compare the SCOTCH amalgamatidneaplicit node amalgamation
described in Chapter 4.2. The numerical experimentbenchmark problems show that
the explicit node amalgamation typically yields &awupdate operations to flop ratios
compared to node amalgamation within the SCOTCHkage Consequently, the
factorization time for explicit amalgamation is afly smaller than the amalgamation

within the SCOTCH package.

6.1.1.4 Multiple Elimination Parametedelta, in MMD

Alternative values fodelta parameter of the MMD program are investigated for
the benchmark suite of 40 test problems. FiguresGaWws the impact of differewlelta
values on flop found with MMD. As shown in FiguretGthere is no single delta value
that yields the best flop for all test problems.abidition, the matrix ordering times are
similar for differentdelta values. For the remainder of this studglta = 4 is used unless

otherwise is stated.
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Performance Profile: Flop
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Figure 6.4: Performance profilp(a): Flop for MMD with differentdelta values,

benchmark suite of 40 test problems

6.1.2 Effect of Initial Node Numbering

As it is discussed in Chapter 3.2, the initial nembg of the nodes impacts the
fill-ins for a pivot-ordering found by the matrix-aering programs. First, we investigate
the impact of node numberings described in Chaptrfor the local orderings. Figure
6.5 shows the impact of initial node numbering AMF ordering. As shown in Figure
6.5, coordinate based ordering for the initial nadenbering yields to the most favorable
flop values for approximately 90% of the test pesbt with regular geometries. Figure
6.6 shows the impact of initial node numberingsMiviD ordering. Similar to the results
for AMF, coordinate based initial node numberingdarces the minimum flop values for
the majority of the test problems with regular getmes. For the CAMD ordering, on the
other hand, the improvements in flop values dutaéocoordinate based initial numbering

are not as significant as it is for the other twoal ordering programs. Figure 6.7 shows
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the impact of initial node numberings for CAMD oruigy. Here, the performance
profiles for coordinate based ordering and revé@sthill-McKee ordering are similar. In
addition, the gap between the coordinate basediogdand random node permutations is
smaller for CAMD compared to the performance gapvben them for AMF and MMD.

The performance profiles for the best pivot-ordgrohosen among 15 random
node permutations are also given in Figure 6.5#As7shown in these figures, the use of
best pivot-ordering among the alternatives for tliedom node permutations does not
improve the performance of the local orderings ifigemtly. The flop for a single
random node permutation is comparable to the bastchosen among 15 random node
permutations. Furthermore, the coordinate basecde ravdering and reverse Cuthill-
McKee ordering yield better performance profiles fltop compared to the one for
choosing the best flop among 15 random node petioosa

Numerical experiments on the models with irreggl@ometries also illustrate the
efficiency of the coordinate based ordering. For BWigure 6.8 shows the performance
profiles for the flop for the models with irregulgeometries. As shown in Figure 6.8,
coordinate based initial node numbering yields riiwst favorable flop for most of the
test problems. For other local orderings AMD and BiMhe relative performance of
initial node numberings for irregular geometriessimilar to the ones for the regular

geometries.
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Performance Profile: Flop
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Figure 6.5: Performance profile(a): Flop for AMF with different initial node
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Performance Profile: Flop
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Figure 6.6: Performance profilp(a): Flop for MMD with different initial node

numberings, 670 test problems with regular geom®tri
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Figure 6.7: Performance profilp(a): FLOP for CAMD with different initial node

numberings, 670 test problems with regular geometri
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Figure 6.8: Performance profile(a): Flop for AMF with different initial node

numberings, 86 test problems with irregular georegtr

Next, we investigate the impact of alternativeiaiihode numberings on pivot-

orderings found with the hybrid matrix ordering grams, HMETIS and HAMF. Figure

6.9 shows the impact of initial node numberingstios flop produced by the HMETIS.

Figure 6.10 shows the same information for HAMFlikinthe local ordering programs,

the coordinate based ordering offers no advantagné HMETIS and HAMF orderings.

For these hybrid ordering programs, the coordireteed orderings yield flop values

comparable to the random node permutations. Thexefois concluded that the hybrid

ordering programs are less affected by the initede numberings and they are more

robust in that sense. However, as shown in Fig#ead 6.10, a smaller flop value can

be obtained by executing the hybrid ordering prografor several random node

permutations and using the best pivot ordering thiaks the smallest flop value.

Nevertheless, this approach offers moderate impneves for the flop values. As shown
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in Figure 6.9 and 6.10, a random node permutatieldy a flop value that is within 1.5
times the best flop value found for the random npeenutations. For about 90% of the
test problems with uniform geometry, a random npeenutation yields flops within 1.2

times the best.

Performance Profile: Flop
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Figure 6.9: Performance profilp(a): FLOP for HMETIS with different initial

node numberings, 670 test problems with regulangeoes
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Figure 6.10: Performance profilg(a): FLOP for HAMF with different initial

node numberings, 670 test problems with regulangenes

6.1.3 Matrix Ordering for Serial Factorization

The serial factorization performance of alternatmatrix ordering programs are
evaluated. A coordinate based initial node numigersnused for the comparison of the
matrix ordering programs. The relative performantenatrix ordering programs varies
depending on the model dimensionality and averagée nconnectivity of the test

problems.

6.1.3.1 2D Models

For five matrix ordering programs, Figure 6.11 shaWe performance profiles
for non-zero. This figure shows the results for @Ddels with uniform geometries. As
shown in Figure 6.11, AMF gives the best non-zemahbout 80% of the test problems.

Furthermore, it is within 1.05 of the best non-zansong results from the remaining four
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matrix ordering programs. Consequently, AMF ordgrimsually minimizes the
factorization memory requirements for 2D modelshweégular geometries.

Performance Profile Non-zero
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Figure 6.11: Performance profilp(a): Non-zero for alternative matrix ordering

programs, 166 2D test problems with regular geaeetr

Figure 6.11 shows the performance profiles for .flbpe relative performance of
matrix ordering programs for non-zero is similarth@ one for the flop. As shown in
Figure 6.12, AMF gives the best flop for about 80%ihe test problems. Compared to
the hybrid ordering programs, HAMF and HMETIS, Iboaderings, AMF, AMD, and
MMD, usually yield fewer flop values. The flop isnaeasure of the factorization time.
Therefore, the performance of matrix ordering pangs in terms of minimization of the
factorization time is expected to be similar tottfoa flop. The performance profiles for
the PARDISO factorization times are shown in Figwel3. As expected, the
performance profiles for factorization times aralgatively similar to the performance
profiles for the flop. The performance profiles 8ES factorization times are similar to

those for PARDISO.
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Figure 6.12: Performance profilg(a): Flop for alternative matrix ordering

programs, 166 2D test problems with regular geaesetr
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We also perform numerical experiments on test gl with irregular
geometries. Figure 6.14 shows the performance lprtdr the PARDISO factorization
times. As shown in Figure 6.14, AMF and MMD ordgsnusually give the best
factorization times for 2D models with irregularogeetries.

Although AMF gives favorable factorization times footh regular and irregular
geometries, it is known that it is the most time&suaming local ordering. We evaluate the
overall execution time for factorization with alt@tive matrix ordering programs. Figure
6.15 and Figure 6.16 show the performance profiesverall execution times for the
2D test problems with regular and irregular georastrespectively. As shown in Figure
6.15, AMF produces favorable overall execution 8niar 2D test problems with regular
geometries. As shown in Figure 6.16, the perforraapmfiles for overall execution
times for AMF and MMD are similar for 2D models tvitegular geometries. Both AMF

and MMD provide favorable overall execution timesnpared to other matrix ordering

programs.
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Figure 6.14: Performance profilep(a): PARDISO factorization time for

alternative matrix ordering programs, 42 2D tesiygms with irregular geometries
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Figure 6.15: Performance profilp(a): PARDISO factorization time plus matrix
ordering time for alternative matrix ordering pragrs, 166 2D test problems with

regular geometries
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Figure 6.16: Performance profilp(a): PARDISO factorization time plus matrix
ordering time for alternative matrix ordering pragrs, 42 2D test problems with

irregular geometries
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Finally, we show the matrix ordering execution tgrfer 2D test problems with
regular geometries. Figure 6.17 shows the ordetinges given in terms of the
factorization times. The factorization times are tbe pivot-ordering found by the
corresponding matrix ordering program. As showrFigure 6.17, the local orderings
take significantly less time compared to the hylonigtrix ordering programs. AMF takes
the longest execution time among local orderinggmams. However, AMF execution
time is still significantly smaller than the exeicut time of the hybrid matrix ordering
programs. AMD was expected to give matrix orderitiges better than MMD
counterpart since AMD is computationally cheape3][@&ontrary to expectations, the
execution time of AMD is not better than the exemuttime of MMD. We believe that
this is due to the use of supervariable graph. Uike of supervariable graph can
significantly reduce MMD execution times [129], biitdoes not have a significant
impact on the execution time of AMD ordering [63].

As shown in Figure 6.17, the ordering time for hglmatrix ordering programs,
HAMF and HMETIS, may be larger than the factoriaattimes for 2D test problems. In
addition, HAMF generally takes more time than HMETHAMF performs partitioning
for two alternative random node permutations ineortb produce higher quality pivot
orderings. This yields pivot-orderings with fewesnAzeros but at a cost of increased
execution time.

In Figure 6.17, Models 1-83 are for models with @ladrilateral elements and
Models 84-166 are models with 2D frame elements.tke models with each element
type, the model sizes usually get larger as theetmadmber increases. As shown in
Figure 6.17, the ratio of ordering time to factatinn time reduces as the model size
increases. In other words, the factorization timenthates the overall execution time of

the solver for large 2D test problems.
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Figure 6.17: Ordering times in terms of factoriaattimes for 2D test problems

with regular geometries.

In summary, the local ordering AMF produces faviégapivot orderings with
respect to non-zero and flop in reasonable time2ibtest problems. AMF can also be
used to minimize the matrix ordering plus factotima times of 2D problems. For 2D
test problems, the hybrid ordering programs, HAM#d eHMETIS, do not offer an

advantage over AMF despite their higher executioes.

6.1.3.2 3D Models

AMF proved to be efficient for 2D test problems. éng all local orderings, it
yielded the most favorable flop and non-zero fa 2D test problems. However, for 3D
test problems, flop and non-zero for AMF may bensigantly higher than the ones for
the hybrid ordering programs HAMF and HMETIS. Thedative performance of the
matrix ordering programs depends on the average nodnectivity of the 3D problems.
A similar metric, average number of elements atcblemns of the coefficient matrix, is

used to choose between a local ordering and hyyddring in the study of Duff and
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Scott [58]. In our test suite, the FE models witanie elements have a lower average
node connectivity value compared to the models watid elements.

For 3D solid models with regular geometries, Figbirs8 shows the performance
profile for non-zero for three matrix ordering prams that produces favorable pivot-
orderings for 3D test problems. As shown in FigouB8, HAMF gives the smallest non-
zero for about 85% of the 3D solid models with amf geometries. However, the
performance profile for HMETIS is similar to HAMRs shown in Figure 6.18, AMF
yields significantly worse non-zero values for ajon#y of the 3D solid models with
regular geometries.

Performance Profile Non-zero

Fraction of Problems

= HMETIS

1 11 1.2 13 14 15 1.6 17 18

Figure 6.18: Performance profilp(a): Non-zero for alternative matrix ordering

programs, 252 3D solid models with regular georastri

Similarly, Figure 6.19 shows the performance pesfifor the factorization time
for the 3D solid models with regular geometriesthAugh HAMF gives the best
factorization times for the majority of the tesbplems, the performance of HMETIS is

comparable to HAMF. As shown in Figure 6.19, AMIelgs factorization times more
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than 2 times the best factorization time for ab&fo of the 3D solid test problems with
regular geometries.

Performance Profile Factorization Time

Fraction of Problems

=== HMETIS

1 15 2 25 3 35

Figure 6.19: Performance profilep(a): PARDISO factorization time for

alternative matrix ordering programs, 252 3D safiodels with regular geometries.

Next, we show the performance of the three matridenng programs for the 3D
solid test problems with irregular geometries. Feg6.20 and Figure 6.21 show the
performance profiles for non-zero and PARDISO faz#dion time respectively. Similar
to the test problems with regular geometries, HAMikes the best non-zero and
factorization times for the majority of the 3D sbinodels with irregular geometries. The
performance of HMETIS is slightly worse than the MR as shown in Figure 6.20 and
Figure 6.21.

Considering numerical experiments performed on3all solid models, HAMF
usually yielded the most favorable non-zero andofézation time. However, as stated
previously, HAMF typically required a higher exeout time than HMETIS. Therefore,

HAMF may not be the best option to reduce the divénae required for matrix ordering
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and numerical factorization. Figure 6.22 shows peeformance profile for the overall
execution time for 3D solid models with irregulagagnetries. As shown in Figure 6.22,
the overall time for HMETIS is similar to overalite for HAMF although HAMF

yielded better factorization times for the testipjemns used for Figure 6.22.

Performance Profile Non-zero

Fraction of Problems

Figure 6.20: Performance profilp(a): Non-zero for alternative matrix ordering

programs, 22 3D solid models with irregular geomastr
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Performance Profile Factorization Time
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Figure 6.21: Performance profilep(a):

alternative matrix ordering programs, 22 3D solidd®ls with irregular geometries.
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Figure 6.22: Performance profilp(a): PARDISO factorization time plus matrix

ordering time for alternative matrix ordering pragrs, 22 3D solid models with irregular

geometries.
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For 3D frame models, the relative performance & three matrix ordering
programs, AMF, HAMF, and HMETIS, is different thére relative performance for the
3D solid models. For 3D frame models with regulaometries, Figure 6.23 and Figure
6.24 show the performance profiles for the non-zard PARDISO factorization times
respectively. As shown in these figures, for ma&yowf the models with 3D frame
elements, AMF gives the most favorable pivot-onagsi with respect to non-zero and
factorization time. For the remaining 3D frame medeHMETIS gives the most
favorable pivot orderings. As shown in Figure 6.2MF and HMETIS may yield 2

times the best factorization time.

Performance Profile Non-zero

Fraction of Problems

Figure 6.23: Performance profilp(a): Non-zero for alternative matrix ordering

programs, 22 3D frame models with irregular georestr
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Performance Profile Factorization Time

Fraction of Problems

=== HMETIS

Figure 6.24: Performance profilep(a): PARDISO factorization time for

alternative matrix ordering programs, 22 3D framezdels with irregular geometries.

The relative performance of AMF and HMETIS depewnasthe average node
adjacency of the models. Table 6.1 shows the pedoce of AMF and HMETIS for
regular models having average node adjacency balogrtain value. The first column of
Table 6.1 gives the limit for average node connégti Each row of Table 6.1 gives the
performance of AMF and HMETIS for models having @ge node adjacencies less than
the value given in the first column of Table 6.1s ghown in Table 6.1, as the limit for
average node connectivity increases, the percertbgeoblems for which AMF gives
the best results decreases. For example, thedaegular models for which the average
node connectivity is below 5.4 and AMF orderinglgsebest factorization for all of these
models. For these models, HMETIS may yield a faza&tion time which is 1.62x the
factorization time for AMF. If the limit for the &rage node adjacency is taken as 5.5,
AMF gives the best results for 79.49% of such medE€his percentage further decreases

as the average node adjacency of the models iregeas
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. % of Problems % of Problems|
Maximum |\ ber | AMF Gives | VorstCasel =y eng Worst Case
Average Factorization . Factorization
of the Best . Gives the Best .
Node Models Factorization Time for Factorization Time for
Adjacency . AMF . HMETIS
Time Time
5.4 10 100% 1xbest 0% 1.62xbest
5.45 21 80.95% 1.17xbest 19.05% 1.62xbest
5.5 39 79.49% 1.41xbest 20.51% 1.62xbest
5.55 59 81.36% 1.41xbest 18.64% 1.62xbest
5.6 88 78.41% 1.48xbest 20.45% 1.62xbest
5.65 118 77.97% 1.48xbest 21.19% 2.05xbest
57 145 74.48% 1.48xbest 24.83% 2.05xbest
5.75 182 70.88% 1.61xbest 28.57% 2.05xbest
5.8 225 63.56% 2.04xbest 36% 2.05xbest
5.85 252 57.14% 2.04xbest 42.46% 2.05xbest

Table 6.1: Performance of matrix ordering prograédF and HMETIS for 3D

frame models with different average node adjacancie

For irregular geometries, the relative performamdethree matrix ordering
programs, AMF, METIS, and HAMF, is similar to thelative performance for the
models with regular geometries. For three matrideang programs, Figure 6.25 and
Figure 6.26 show the performance profiles for nersg and PARDISO factorization
times respectively. Similar to regular geometrié§]F ordering gives favorable results
for irregular geometries with low average node egljies.

Finally, Figure 6.27 shows the execution times tioe three matrix ordering
programs. Here, the ordering times are given imseof the factorization times. As
shown in Figure 6.27, the ordering times for hylmiderings, HAMF and HMETIS, may
be comparable to the corresponding factorizatioresi for smaller 3D models. As we
increase the model size (the model size typicaltyaases between the model numbers
shown on the x-axis of Figure 6.27), the ratio odesing times to factorization times
decreases. Since for large 3D problems, the orglénmes are significantly smaller than

the factorization times, trying alternative matardering programs has the potential to

177



minimize the factorization times with a relativelgnall cost of additional matrix ordering
times.

In summary, the hybrid ordering programs, HAMF &1ETIS, yield favorable
factorization times for 3D models with solid elerteenAlthough the HAMF yields the
best factorization times for majority of the 3D idomodels, the factorization times for
HMETIS are similar to the ones for HAMF. AMF canncbmpete with the hybrid
ordering programs for 3D models with solid elemekiswever, AMF may yield best
non-zero and factorization times for 3D models vitdme elements, especially for the
models with small average node adjacencies. Forréneaining 3D frame models,
HMETIS usually yields the best factorization tim@&se matrix ordering times for large
3D models are significantly smaller than the faetmron times of these models.
Therefore, it may be desirable to execute sevesgdlixnordering programs in order to
minimize the factorization times.

Performance Profile Non-zero

Fraction of Problems

—-—=HMETIS |

1 11 1.2 13 14

Figure 6.25: Performance profilp(a): Non-zero for alternative matrix ordering

programs, 22 3D frame models with irregular georestr
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Performance Profile Factorization Time
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Figure 6.26: Performance profilep(a):

alternative matrix ordering programs, 22 3D framezdels with irregular geometries.
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Figure 6.27: Matrix ordering time given in termstbé factorization time.
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6.1.3.3 Transition between 2D and 3D

The numerical experiments show that AMF orderingfqyens well for 2D
models. However, it may not yield favorable resuitis 3D models, especially for the
ones with large average node adjacency. We perfammerical experiments on several
test problems to determine the performance of AMF 3D models with 2D-like
geometries, in other words, 3D models with a smalinber of elements in the third
dimension. We do a preliminary study to determimethreshold for number of elements
in the third dimension after which the hybrid oidgr HMETIS becomes the better
choice. Figure 6.28 and Figure 6.29 show some peegnce parameters for AMF
ordering normalized according to the performanceupaters for HMETIS. Figure 6.28
is for models with quadrilateral and solid elemefise number of elements in x and z
directions are the same for all models and onlyrtmber of elements in y direction
changes. As shown in Figure 6.28, the relative Ap#Fformance is similar for models
with up to 6 elements in y direction (we consid&f®x4x200 as an exception). For
s100x6x200, AMF factorization time and flop arengiigantly worse than HMETIS
counterparts. Therefore, we consider 6 elementhiid dimension as a threshold value
after which the performance of AMF becomes worsstRIMETIS. Figure 6.29 shows
the relative performance of AMF for 2D and 3D framedels. Similar to the results
given in Figure 6.28, the relative performance d¥IFA decreases as the number of
elements in y direction approaches 6.

The numerical experiments in this section illugrttat the AMF has the potential
to reduce the factorization time and non-zero fOrrBodels with 2D-like geometries.
More numerical experiments are required to provitwe accurate threshold values in
order to determine 2D-like models for which the o§&MF may be advantageous. The
extension of AMF efficiency to 2D-like geometriessa desirable feature since AMF has

significantly smaller execution times comparedhe hybrid matrix ordering programs.
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The execution time of the hybrid ordering prograimssignificant compared to the

factorization time for 2D and 2D-like models.
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Figure 6.28: Performance parameters for AMF normedli according to the
results of HMETIS for 2D and 2D-Like models with aglrilateral and solid elements

respectively
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Figure 6.29: Performance parameters of AMF norredlizccording to the results
of HMETIS for 2D and 2D-Like models with 2D framench 3D frame elements

respectively

6.1.4 Matrix Ordering for Parallel Factorization

As discussed in the previous sections, the locdermng AMF may yield
favorable serial factorization times for certain dats. However, the local orderings
typically produce long and unbalanced assemblysiredich reduce the amount of tree-
level parallelism that can be exploited for pafafiectorization [74, 77, 136]. Our
mapping algorithm automatically chooses betweentriae level parallelism and matrix
level parallelism. Even though the assembly traeesponding to a local ordering is not
suitable for tree-level parallelism, current SMRchitlectures may allow obtaining

satisfactory parallel performance by primarily edipphg the matrix level parallelism.
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Therefore, a pivot-ordering with a local orderingymstill give a better multithreaded
factorization time compared to the hybrid ordering.

Numerical experiments for serial factorization shtvat AMF minimizes the
factorization times for majority of 2D models andMHTIS produces favorable
factorization times for 3D models. In this sectiove investigate whether the relative
serial factorization time for AMF and HMETIS chasger parallel factorization. Figure
6.30 shows the ratio of AMF factorization time t¢MHETIS factorization time for serial
and parallel factorization with SES solver packdféne ratio is less than one, then the
factorization for AMF ordering is faster than tlatforization with HMETIS ordering. As
shown in Figure 6.30, the AMF to HMETIS factorizatitime ratios typically increase
for the multithreaded factorization. The increasehie factorization time ratios indicates
that the HMETIS matrix ordering improves the pemfance of four-thread factorization
even though it may not be the best choice for theals factorization. The relative
performance increase is dramatic for some models as Models 1, 2, 11, 12, 21, 31,
and 39. Compared to the serial factorization, tin@ier of models for which AMF gives
the best factorization times reduces for the niukihded factorization. For the serial
factorization, AMF gives the best factorization éisnfor 23 models. On the other hand,
for the multithreaded factorization, AMF gives thest factorization times for 11 models.
HMETIS is now the better alternative for the mult@aded factorization of the 12
models for which the AMF ordering yields betterigkfactorization times.

The next question to be answered is whether theimatdering program that
produces better multithreaded factorization times ®e predetermined prior to the
numerical factorization. It is hard to determineiebh matrix ordering program will
perform better merely based on the properties ®fRE model since the multithreaded
factorization times depend on the assembly treectsire, which is found after the
analysis phase. Nevertheless, the parallel factoiz time predictions computed in the

analysis phase can be used to estimate the bestgering among the results from
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alternative matrix-ordering programs. Figure 6.3iows the estimated and actual
factorization performance of AMF relative to HMET{8r four-thread factorization. As
shown in Figure 6.31, the relative performancenasties are inaccurate for some models.
This is mainly due to the inaccuracies in the priedi parallel factorization times and
further discussed in the subsequent Chapter. Nededs, the factorization time
estimations usually predict which matrix orderingl wive the best parallel factorization
times for the problems in the benchmark suite. F6g6.32 shows the performance
profiles for choosing the pivot-ordering among tesults of HMETIS and AMF based
on the serial and parallel estimated factorizationes. Figure 6.32 also shows the
performance profile for the best factorization tjiménich intersects with the y-axis. As
shown in Figure 6.32, the strategy that chooses pivet-orderings based on the
estimated parallel factorization times usually givéhe best factorization times.
Therefore, multithreaded factorization time preidics in the analysis phase can be used
to choose among alternative pivot-orderings wiffedent matrix ordering programs. The
performance profiles also show that choosing tlvetpordering based on the estimated
serial factorization times may lead to multithreddigctorization times up to 1.9 times the

best factorization time.
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Figure 6.30: AMF factorization times relative to HWIIS factorization times for

serial and multithreaded numerical factorizatioendhmark suite of 40 test problems.
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Estimated Ratio of Multithreaded Factorization Times
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Figure 6.31: Estimated four-thread factorizatiomes for AMF relative to the

four-thread factorization times for METIS, benchiknauite of 40 test problems.
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Performance Profile for Multithreaded Factorization
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Figure 6.32: Multithreaded factorization performanprofiles of alternative
strategies for choosing the best pivot-ordering @gnitne results of AMF and HMETIS,

benchmark suite of 40 test problems.

6.2 Execution Time of Analysis Phase

The execution time of the PARDISO analysis phasecampared with the
execution time for the PARDISO factorization. Thealysis phase in PARDISO also
includes time required for memory allocation foe ttactorization phase. However, the
memory allocation time is insignificant comparedthe total analysis time. Figure 6.33
shows the analysis times normalized according & féttorization times for 670 test
problems with regular geometries (see Section @réafdetailed description of the test
problems with regular geometries). The analysi®taan be larger than the factorization
time for test problems which have small factoriaattime (smaller than 0.25 sec). The
analysis time is usually a fraction of the factatian time for the test problems having
factorization times larger than 5.0 sec.
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Figure 6.33: Analysis time divided by the factotiaa time for PARDISO.

The number of dofs in a FE model is found to affiaet execution time of the
analysis phase relative to the execution time efffictorization phase. Figure 6.34 shows
the relationship between the normalized analysie tand number of dofs for 2D test
problems. As shown Figure 6.34, as the number & oshereases the relative execution
time of the analysis phase decreases. For 2D prsblaving less than 30,000 dofs, the
analysis phase takes more than 20% of the timaresgtjfor the factorization. Figure 6.35
shows the same plot as Figure 6.34 for 3D testlpnod As shown in Figure 6.35, the
analysis time is less than 20% of the factorizatiore for the 3D test problems having
more than 6,000 dofs. For 3D problems having mioaa 30,000 dofs, the analysis time
is less than 10% of the factorization time. Comparkigure 6.34 and Figure 6.35, the
analysis phase typically takes more time (relatovéhe factorization time) for a 2D test
problem compared to a 3D test problem if the 2Dnkd&tlel and the 3D FE model have

the same number of dofs.
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Ratio of Analysis Time to Factorization Time
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Figure 6.34: Relationship between the number of dufd relative PARDISO

analysis time for 2D test problems with regularmgetries.
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6.3 Optimal Coarsening

The optimal amount of coarsening depends on theskionality of the model.
For 2D models, multiple nodes can be eliminateceath super-element formed by
merging adjacent elements in the original model.t@nother hand, for 3D models, the
non-zero and flop increase dramatically if we perfaan aggressive coarsening which
eliminates several nodes at each super-elementpditaenetersodeco andeleco control
the amount of coarsening for element based and nodedbesarsening respectively.
Numerical experiments are performed with differeodeco andeleco values to evaluate
the efficiency of the coarsening schemes for theBEAMs and AMF matrix ordering
programs.

For 2D problems in the benchmark suite of 40 tesblems, Figure 6.36 shows
the performance profiles for factorization withfdiientnodeco values. This figure shows
the performance profiles forodeco = 1, 4, 8, and 9. These are thadeco values that
may yield the best factorization times. The pivadeying is found by HMETIS for the
results shown in Figure 6.36. As shown in Figu@6gnodeco=1 gives best performance
profile for the factorization with HMETIS orderingd’he performance profiles for
nodeco = 1, 8, and 9 shown in Figure 6.36 are similare Tise of original mesh may
yield factorization times 1.6 times the best faitation time as shown in Figure 6.36.
This worst case factorization time is for the f@stblem g500x1500. For g500x1500, the
use of original mesh vyield flop values almost 2dsthe flop values for the node based
coarsening witmodeco=1. Consequently, the factorization time for th@iomal mesh is
significantly larger than the factorization time the coarsened mesh.

The impact of coarsening on HMETIS matrix orderiimges is shown Figure 6.37
for 2D test problems. As shown in Figure 6.37,doarsening schemes witiodeco = 8
and 9, HMETIS takes significantly smaller time cargx to the execution time for the

original mesh. The coarsening scheme witbeco=8 makes HMETIS run about 3 times
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faster for half of the 2D problems in the benchmsuke. The less aggressive coarsening
schemes such a®deco=1 andnodeco=2 also reduce the HMETIS ordering times.

The element based coarsening also improves therization times for 2D
problems processed with HMETIS. For the elemenethaarsening, improvements in
the factorization times are similar to the improwsns for the node based coarsening. For
2D problems, the use efeco=1 andeleco=4 usually yields favorable factorization times

for the HMETIS ordering.

Performance Profile for Factorization Time
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Figure 6.36: For 2D problems, performance profftasfactorization times with
alternativenodeco values, HMETIS ordering. 2D models in the benchosuite of 40

test problems are used.
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Performance Profile for Ordering Time
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Figure 6.37: For 2D problems, performance profierhatrix ordering times with
alternativenodeco values, HMETIS ordering. 2D models in the benchosirite of 40

test problems are used.

The effect of coarsening for the local ordering AldFalso investigated for 2D
problems since AMF ordering usually yields favoeabkrial factorization times for 2D
problems. Figure 6.38 shows the factorization tirf@salternativenodeco values for
AMF matrix ordering. As shown in Figure 6.380deco=1 provides favorable
factorization times for AMF matrix ordering. Thecfarization times fomodeco=4, 8,
and 9 are significantly worse than the alternatimesleco=0 and 1, as shown in Figure
6.38. For 2D test problems, Figure 6.39 comparesARF matrix ordering times for
differentnodeco values. As shown in Figure 6.39, coarsening schaitienodeco=1 can
reduce the matrix ordering times significantly. FR2ID problems, the element based
coarsening usually gives factorization times watsgn the factorization times for the

original mesh for the matrix ordering program AMF.
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Performance Profile for Factorization Time
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Figure 6.38: For 2D problems, performance profde factorization times with
alternativenodeco values, AMF ordering. 2D models in the benchmaritesof 40 test

problems are used.
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Performance Profile for Ordering Time
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Figure 6.39: For 2D problems, performance profierhatrix ordering times with
alternativenodeco values, AMF ordering. 2D models in the benchmaritesof 40 test

problems are used.

According to the numerical experiments on 2D protde nodeco=1 can
minimize the factorization times for both HMETIScBAMF. nodeco=1 can also reduce
the matrix ordering times, especially for AMF matorderings. For 2D problems, an
aggressive coarsening scheme, nedeco=8, can be used with HMETIS ordering. The
HMETIS matrix ordering times reduce significantljthvthe use ohodeco=8. The use of
nodeco=8 will give factorization times similar to the onés the original mesh for the
HMETIS matrix ordering. However, the useraideco=8 may increase the factorization
times significantly for the AMF matrix ordering.

Next, we investigate the factorization and matridesing times for coarsening
schemes with alternativeodeco and eleco values for 3D problems. Figure 6.40 shows
the performance profile for factorization times fpivot-ordering found with the

HMETIS matrix ordering program. As shown in Figuet0, nodeco=1 and original
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mesh vyields favorable factorization times. More raggive coarsening schemes usually
increases the factorization times. As shown in FEg6.40, even the element based
coarsening witteleco=1 increases the factorization times for ordering@bblems with
HMETIS matrix ordering. Figure 6.41 shows the mawrdering times for alternative
nodeco andeleco values. As shown in Figure 6.41, the node baseglseaing scheme
with nodeco=1 do not reduce the matrix ordering times sigalffity for 3D problems
ordered with the HMETIS matrix ordering. Elementséd coarsening scheme may
reduce the factorization times as shown in Figure 6However, as shown in Figure
6.40, the factorization performance is typicallyraethan the one for the original mesh

for the element based coarsening.

Performance Profile for Factorization Time
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Figure 6.40: For 3D problems, performance profde factorization times with
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suite of 40 test problems are used.
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Performance Profile for Ordering Time
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Figure 6.41: For 3D problems, performance profierhatrix ordering times with
alternativenodeco and eleco values, HMETIS ordering. 3D models in the benchmar

suite of 40 test problems are used.

The numerical experiments show that the coarsesthgme significantly reduces
the matrix ordering times for the HMETIS hybrid mwatordering program used for 2D
FE models. This is a desirable feature since trexwion time of the hybrid matrix
ordering programs are comparable to the factoomatimes for 2D FE models as
previously demonstrated in Section 6.1.3.1. Therimairdering time reductions are
significant fornodeco=8. Furthermore, for coarsening witiedeco=8, the factorization
times are comparable to the factorization timesth@ original mesh. Therefore, the
matrix ordering plus numerical factorization timesn be minimized by usingpdeco=8
for 2D FE models ordered with HMETIS hybrid ordeyirFor 3D test problems ordered
with the HMETIS matrix ordering program, timedeco and eleco values that provide a
significant reduction

in matrix ordering times ulyaincreases the numerical

factorization times. However, for 3D models, redwgcihe matrix ordering times is not as
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crucial as it is for 2D models since the matrixeyrdg times are typically smaller than
the numerical factorization times for 3D models.

The performance profiles for coarsening schemesvsthat there is no single
value for eleco or nodeco parameters that gives the best factorization timise
coarsening schemes with differembdeco or eleco values minimize the factorization
times for different FE models. We can use this prgpto construct a matrix ordering
strategy to minimize the factorization time for B model. In this strategy, for an input
FE model, matrix ordering program is executed fwraative coarsened meshes and the
pivot-ordering that is expected to yield the besttdrization performance is used for the
numerical factorization. Next, we illustrate therfpemance of such a strategy that
chooses the best pivot-ordering based on the flalneg calculated for alternative
coarsened meshes.

For the AMF matrix ordering, Figure 6.42 shows daitation time performance
profile for the strategy that chooses the besttpovdering and performance profile for
using the original mesh. As shown in Figure 6.42 the AMF ordering, the factorization
times can be improved by a factor of 2.7 by chapdhe pivot-ordering that gives the
minimum flop. The dramatic improvements in the daztation times shown in Figure
6.42 are mainly for the 3D test problems.

For the HMETIS matrix ordering, Figure 6.43 showactbrization time
performance profile for the strategy that choobseshest pivot-ordering and performance
profile for using the original mesh. As shown imgliie 6.43, choosing the best pivot-
ordering strategy can improve the factorizationesnfior about 60% of the test problems.
The reductions in factorization times are modestepk from a single test problem for
which the factorization becomes 1.6 times fastantlthe use of original mesh for
HMETIS. For HMETIS ordering, trying more alternas/ for nodeco and eleco
parameters offers little improvement in the facdation times, especially for 3D

problems.
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Performance Profile for Factorization Time
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Figure 6.42: Performance profile for factorizatiobme for choosing the best
pivot-ordering among coarsened and original mesRest-orderings are found with

AMF. The results are for benchmark suite of 40 peeblems.
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Figure 6.43: Performance profile for factorizatibme for choosing the best
pivot-ordering among coarsened and original mesR@st-orderings are found with

HMETIS. The results are for benchmark suite ofe problems.
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6.4 Optimal Node Amalgamation

The optimal value fosmin is investigated in order to minimize the factotiaa
time. See Section 6.4 for the description of thdenamalgamation parametemin. For
the results presented in this section, node blaclsrapplied for the node amalgamation
parameteblkmin is set to 50.

Figure 6.44 shows the performance profile for thetdrization times for various
smin values. In Figure 6.44, the performance profiledoin=0 represents factorization
without node amalgamation. Figure 6.44 shows thabhgusmin=25 gives the most
favorable factorization times. The factorizationrfpemance slightly degrades femin
values larger than 25. However, the performancdilesoare similar forsmin values
larger than 10 as shown in Figure 6.44. As showhigure 6.44, the factorization times
without node amalgamation may be larger than In@dithe factorization times with an
optimal node amalgamation.

Figure 6.45 shows the ratio of factorization timegh and without node
amalgamation. Figure 6.46 shows the ratio of updaperations to factorization
operations for multifrontal factorization with amdthout node amalgamation. As shown
in Figure 6.45 and Figure 6.46, the node amalgamais especially useful for 2D
problems for which the ratio of update operatiomddctorization operations are large.
The ratio is large especially for smaller 2D prolde As this ratio decreases, the
performance gains due to node amalgamation becessesignificant. Figure 6.46 clearly
demonstrates the effect of node amalgamation ®ptbblems in the benchmark suite. It
increases the number of floating point operatioesfggmed for each update matrix
assembly operation. In a way, it improves the nuraéfactorization performance by
increasing computations per memory access ratiadlléstrated previously, a high value
of computations per memory access is desired ®mtbdern processors with memory

hierarchies. As shown in Figure 6.45, compared donode amalgamation, the node
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amalgamation never increases factorization timeshi test problems in the benchmark

suite.

Performance Profile for Factorization Time

o A B R :
1! - | | |
09 i = T L
||' J': ...... : :
08) g%+ h IR R P
lf | ;". |
o 07| AF
E .:. : : ..........
g 06 F i CTTTTT 77| ————smin=10
o | .| ==--smin=15
w— O50g--¢F--1---"-"-"1------- Fo— - +- - . g
2 |= . ; ; smin =20
S 0.4“_:E 7777777777777777 L smin=25 |-
S ‘,j l l smin =30
= 0-3\'1_5 ””””””””” F T 1| mme=—=—smin=35 |
H | | | |
0.2['1_' ****************** [ T oo 1= - [
“:' | | | |
N R S
i 1 | I 1 | i
E 1 1 l l l l
O L L L L L 1
1 11 1.2 13 14 15 1.6
a

Figure 6.44: For various smin values, performanadilp for the factorization

time, benchmark suite of 40 test problems.
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201



Ratio of Update Operations to Factorization Operations

0.04

0.035

0.03

Update Operations / Flop

Model Number

Figure 6.46: Ratio of update operations to factiion operations fosmin=0 and

smin=25, benchmark suite of 40 test problems.

6.5 Partitioning for Parallel Processing

As it is discussed in Chapter 3.4, explicit pastiing of the FE model may
increase the factorization flop significantly. Ihig section, we perform numerical
experiments to evaluate the increase in flop fguliex graph partitioning. Figure 6.47
shows the performance profiles for with and witheuplicit graph partitioning. Figure
6.47 is for benchmark suite of 40 test problems thedHMETIS ordering is used as the
matrix ordering program. As shown in Figure 6.4% application of graph partitioning
typically increases the flop. There is only oneeptmon in the benchmark suite for which
explicit partitioning reduces the flop (g500x150Cpnsequently, the factorization times
for the explicit graph partitioning are expected itwrease. Figure 6.48 shows the
normalized four-thread factorization time for exgligraph partitioning and no graph
partitioning. As shown in Figure 6.48, explicit gha partitioning can give best
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factorization times for smaller 2D test problemshasmall multithreaded factorization
times. The multithreaded factorization times varggnificantly from a test run to
another for small 2D test problems since the exesutime of multithreaded BLAS
kernels varies greatly for the small frontal masicin the small test problems. In
addition, the speed of multithreaded BLAS3 kernetsease as we increase the frontal
matrix sizes. However, for significantly large 2Boplems, explicit graph partitioning
almost always increases the four-thread factoomatimes. As shown in Figure 6.48,
explicit graph partitioning increases the multimied factorization times for all 3D test

problems (Models 21 to 40).
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Figure 6.47: Performance profifga): Factorization flop for HMETIS ordering

with and without graph partitioning.
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Figure 6.48: Normalized four-thread factorizationdg for HMETIS ordering with

and without graph partitioning.

6.6 Cut-off for Node Blocking

As stated in Chapter 4.3, the execution time ofenoldcking can be large for tree
nodes with large number of children. Typically, tog-level assembly tree nodes, the
nodes close to the leaves, have large number ddrehi The size of the low-level
assembly tree nodes is usually small. Thereforeidawg node blocking for tree nodes
smaller than a certain valuelkmin, will prevent executing the node blocking for nede
with large number of children. Furthermore, theesid the node blocks is small for the
small frontal matrices. Performing assembly operaion small node blocks does not
offer a significant performance gain. Thereforeug-off value that is a function of the
frontal matrix size avoids applying a costly nodecking algorithm for the assembly tree
nodes for which the blocked assembly is expectedofier little performance
improvements.
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In this section, the performance of the factormatiand analysis phase is
investigated for differenblkmin values. Figure 6.49 shows the normalized facttdma
times for differentolkmin values. Hereblkmin=0 means that node blocking algorithm is
executed for all tree nodes ahkkmin=c0 means that node blocking algorithm is never
executed for any tree nodes. As shown in Figur8,&kmin=0 usually gives the best
factorization times. Figure 6.50 shows the perforoeaprofiles for the factorization
times. Figure 6.50 also shows that applying nodekihg to all tree nodes produces the
best factorization times for most of the test peols. As shown in Figure 6.49 and
Figure 6.50, turning off the node blockinglkmin = «) may yield factorization times
about 25% longer than the factorization times withde blocking for all tree nodes.
Figure 6.49 shows that the node blocking reducedattorization times for both 2D and

3D problems.

—S— blkmin=0
—+— blkmin=50
—4— plkmin=100 |- _ _ |

blkmin=150

blkmin=200
—v— blkmin=250
-~ - blkmin=co

Normalized Factorization Time

Model Number

Figure 6.49: Normalized factorization time for @ifént blkmin values,

benchmark suite of 40 test problems.
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Performance Profile for Factorization Time
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Figure 6.50: Performance profile for the factori@attimes for differentolkmin

values, benchmark suite of 40 test problems.

Normalized total time spent in analysis and nuna¢riactorization phases is
shown in Figure 6.51. Figure 6.51 shows that apglyiode blocking for all tree nodes
significantly reduces the overall performance fér @oblems (models 1 to 20). This is
due to the fact that execution time for analysiagehis comparable with the factorization
times for 2D test problems. On the other hand, nbldeking does not significantly
increase the overall execution time for 3D problefgereforeplkmin=0 can be used for
3D problems. Figure 6.52 shows the performanceilpsofor analysis phase execution
time plus factorization time. As shown in Figur&3&.the use oblkmin=150 gives the
best overall execution time for the current implatagon of the analysis phase of the
SES solver package. This value may change if wdeim@nt a more efficient analysis
phase, which was not the main focus of this stddwe performance profiles for using
blkmin= 50, 100, 200, and 250 is similar to the one fangiblkmin = 150. Therefore,
blkmin = 50 can be used if the performance of the faction phase is the main

emphasis.
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6.7 Discussion of Results

The graph compression usually increased the floghe pivot-orderings found
by HMETIS. Consequently, the factorization timesialy/ increased if a compressed
graph is used with HMETIS. Nevertheless, the grapmpression reduced the matrix
ordering time. Therefore, it may reduce the ovesa#cution time for 2D problems with
significant HMETIS times relative to the factorimat times. However, the local ordering
AMF usually yielded the most favorable serial faation times for 2D test problems.
Moreover, for large test problems, ordering timesravinsignificant compared to the
factorization times. Therefore, the graph compoesstan be avoided without any
significant increase in the matrix ordering timeslarge 3D FE models.

The stopping criteria for nested dissectiorestnum, did not have a major effect
on the factorization times. Therefore, the defaalue ofvertnum=240, can be used for
the hybrid matrix ordering program in the SCOTClbtdiry.

For the node amalgamation algorithm discussed ai@e4.2, the amalgamation
parametersmin=25 usually produced the most favorable factorizatiomes. The node
amalgamation improved the factorization performaoicthe 2D problems and small 3D
problems for which ratio of number of update operet to flop is large. For the
remaining 3D problems, the factorization time immments were limited. The
application of the node amalgamation within the SC@ library typically increased the
factorization times compared to the explicit nodelgamation given in Section 4.2.

For the local matrix ordering programs, AMF, AMDnda MMD, initial
numbering of the nodes based on the coordinatenmaton proved to minimize the non-
zero and flop. The improvements were significamttfie@ matrix ordering programs AMF
and MMD. For the hybrid matrix ordering programisere was no single initial node
numbering that consistently yields favorable norez® flop. Nevertheless, the non-zero
and flop can be minimized by trying alternativedam node permutations for the hybrid
matrix ordering programs.
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Compared to five matrix ordering programs, AMF uUlugielded favorable
factorization times for 2D test problems. It alselged favorable factorization times for
3D test problems with 2D-like geometries and 30t @m®blems for which nodes are
connected to a small number of adjacent nodes.thk®mremaining 3D test problems,
HMETIS usually yielded favorable factorization timaeFurthermore, HMETIS usually
gave the pivot orderings at half time of other hglmatrix ordering program, HAMF.

The time spent in the hybrid matrix ordering pragsawas comparable to the
factorization times for smaller 2D test problems. tBe other hand, the factorization time
usually dominated the total execution time for &&pP FE models and for most of the
3D FE models. Therefore, it is crucial to minimthe factorization time for large 2D FE
models and for 3D models. To minimize the factdra@a times, alternative matrix
ordering strategies can be executed and the prdarmg yielding the best estimated
factorization time can be used for the factoriza@émd triangular solution.

Numerical experiments showed that the ratio of #Hmalysis time to the
factorization time decreases as the number of ohoés FE model increases. For 3D FE
models having more than 30,000 dofs, the analysese took less than 10% of the
factorization time for the PARDISO solver.

The coarsening scheme proved to reduce the matiteriag times. Furthermore,
using a coarser scheme in the matrix ordering piogryielded favorable factorization
times for the majority of the test problems. Thduetion in factorization times were
illustrated for a scheme that chooses the pivotiond among the results of the matrix
ordering programs executed for the original ands®@ed meshes.

It was shown that performing the node blocking ctétely reduces the analysis
time but increases the factorization time. The nduiecking cut-off value of 50
(blkmin=50) gave satisfactory overall execution time witha significant decrease in the

factorization times.
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CHAPTER 7

SOLVER PERFORMANCE

Numerical experiments are performed to demonsthetgerformance of the SES
solver package. The performance of the SES solaekgge is compared with the
PARDISO solver package. PARDISO is a high perforceasparse direct solver for
shared memory processors. Gould et al. [111] et PARDISO's efficiency for serial
direct solution of a symmetric system of equatioNge compare the numerical
factorization times with the estimated factorizatibmes and PARDISO factorization
times. The efficiency of the triangular solution &so illustrated. Finally, the
performance of an out-of-core version of the soigelemonstrated for eight very large

test problems.

7.1 In-core Solver

In the multifrontal method, the factors can be tentto the disk as soon as they
are computed, which reduces the memory footprinttlie numerical factorization and
triangular solution. However, this typically degesdthe performance. The performance

of the SES solver is first evaluated keeping tloédis in the main memory.

7.1.1 Serial Solver

The single thread performance of the multifrontalver is evaluated for the
benchmark suite of 40 test problems. Figure 7..wshthe factorization speed for the
PARDISO and SES solver packages. In order to ntakecomparison as fair as possible,
HMETIS ordering is used for both solver packagesctwhs the default ordering in
PARDISO. The SES solver is provided with a pivadering found by HMETIS ordering
with the graph compression. As shown in Figure thé,factorization speeds of the SES

and PARDISO solvers greatly depend on the testl@nobThe factorization speed is
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usually high for large problems. The frontal magg@re large for large problems and the
BLAS3 kernels run faster for larger frontal matscas shown in Section 4.4.1. The
factorization speeds are also influenced by the bmrmof operations required for the
update matrices per each arithmetic operation reduor the factorization. As this ratio
increases, the speed of factorization decreases Hie update matrix copy and assembly
operations performed at slower speeds comparedheopartial factorization. This is
mainly due to the low speeds of memory copy openatirelative to the BLAS3 speeds
for partial factorization. The ratios of update mabperations to factorization operations
have been previously shown in Figure 6.46 in trevipus Chapter. The problems with a
large ratio of update matrix operations to factatizn operations in Figure 6.46 usually
have smaller factorization speeds in Figure 7.1.

As shown in Figure 7.1, the factorization speeds RARDISO and SES are
similar even though two solver packages implemdffereént factorization schemes.
Namely, PARDISO implements a mixture of left anghtilooking schemes while SES
implements a multifrontal method. The use of aedéht factorization scheme does not
make a significant difference on the speeds ofdb®orization. This finding is similar to
the findings of Gould et al. [111]. Figure 7.1 aldwws the upper bound for the speed of
multifrontal factorization. The upper bound is fauloy executing the BLAS3 kernels for
the frontal matrices corresponding to the assertrelys built for the test problems. The
overhead of handling sparse data structures (ssidssembly of update matrices) and
assembly of the FE matrices are neglected for rimdhe upper bounds. As shown in
Figure 7.1, the factorization speeds qualitatiiellow the upper bounds. Therefore, the
low factorization speeds for smaller test problesgartly due to the low speeds of
BLAS3 kernels on small frontal matrices. The faization speed approaches the upper
bound for large problems where the ratio of faz@tion operations to memory accesses

increases.
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As the number of RHS vectors increases, the triangsolution speed also
increases due to the increase in the size of thadr matrices for which the BLAS3
operations are performed. Figure 7.2 shows thedspEthe solution phase for 100 RHS
vectors. Compared to the factorization speed, theed variations between the test
problems are smaller for the solution with 100 R¥8tors. Figure 7.2 also shows that
the back substitution is slightly faster than thmward elimination. The relative
performance of forward elimination and back subsbn is similar for the PARDISO
solver package. Figure 7.2 further shows the upgmemd for the speed of forward
elimination and back substitution. The performandéference between forward
elimination and back substitution is also visibiehe upper bound plots of the triangular

solution speeds for the 3D problems (Models 210 4
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Performance of Factorization
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Figure 7.1: Speed of single thread factorization S&S and PARDISO solver.

Pivot-orderings are found with HMETIS. Benchmarkewf 40 test problems.
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Figure 7.2: For SES solver package, speed of sihgéad solution for 100 RHS

-orderings are found with HMETIS. Blemark suite of 40 test problems.
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Figure 7.3 shows the performance profiles for theas factorization times with
SES and PARDISO solver packages. As shown in FiguBe SES gives the best
factorization times for 80% of the test problembkeTactorization times for SES solver
are within the 1.2 times the factorization timeshmthe PARDISO package except from
one problem out of 40 test problems in the benchnmite. PARDISO gives a
significantly better factorization time for the tgwoblem f30x30%x30 (Model No. 38).
For this problem, the PARDISO factorization flopsignificantly smaller than the SES
factorization flop. The number of arithmetic opeyas required for factorization (flop)
mainly determines the factorization times since gheed of factorization is similar for
both solvers as shown in Figure 7.2. Namely, PARDI®quires 383.41 GFlop for
numerical factorization while SES requires 540.2Bldp using HMETIS with graph
compression and 438.76 GFlop using HMETIS withoaph compression.

Performance Profile for Factorization Time
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Figure 7.3: Performance profile for serial factatian times. Pivot-ordering is

found with HMETIS. Benchmark suite of 40 test peb.
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The comparison of the factorization times is ndaia performance assessment
since SES interleaves the stiffness matrix assenolplgrations with the numerical
factorization steps. Therefore, the factorizationes already include the time required
for the assembly of the FE stiffness matrices feg SES solver package. For a fair
comparison, the overall time required for stiffnesatrix assembly and factorization is
used to evaluate the performance of the numermetiofization phases of the solver
packages. Figure 7.4 shows the performance ofuheerical factorization plus assembly
times for the serial execution of the solvers. Aeven in Figure 7.4, the performance of
SES is significantly better than the performancéhefPARDISO when the time required

for the assembly is considered.

Performance Profile for Factorization + Assembly Time
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Figure 7.4. Performance profile for serial factation plus assembly times.

Pivot-ordering is found with HMETIS. Benchmark sudf 40 test problems.

Figure 7.5 shows the performance profile for theasesolution with 100 RHS

vectors. As shown in Figure 7.5, SES consistentiperforms the PARDISO solver in
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the triangular solution phase. PARDISO gives tridag solution times that are larger
than 2 times of the SES triangular solution times dbout 50% of the benchmark
problems.

For selected test problems, the execution timabefSES and PARDISO solver
are given in Table 7.1 and Table 7.2 respectivEhe execution time of matrix ordering

program and analysis phase are also shown in thesta

Performance Profile for Solution Time
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Figure 7.5: Performance profile for serial triarggu$olution times for 100 RHS

vectors. Pivot-ordering is found with HMETIS.

Matrix- | Analysis | . rization| _ | Miangular Total Time
Model Name | Ordering Time : Solution Time
) Time (sec) (sec)
Time (sec)| (sec) (sec)
g500x500 1.7 0.8 4.7 4.6 11.8
f500x500 1.3 1.2 9.0 6.6 18.1
5$30x30x%30 0.3 0.3 20.0 4.7 25.3
f30x30%30 0.2 0.3 76.6 104 87.5

Table 7.1: Serial execution time of the differehapes of the SES solver
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Matrix- Analysis Factorization Triangular Total Time
Model Name | Ordering Time : Solution Time
: Time (sec) (sec)
Time (sec)| (sec) (sec)
g500x500 1.8 1.1 5.5 10.0 18.4
f500x500 2.1 14 8.7 14.9 27.1
s$30%30x30 0.6 0.4 21.6 5.7 28.3
f30x30x30 0.4 0.6 55.6 10.6 67.2

Table 7.2: Serial execution time of the differehapes of the PARDISO solver

Finally, we evaluate the serial in-core performaatéhe SES solver package for
8 large test problems given in Chapter 2. For tBS Solver package, the AMF matrix
ordering is used for 2D test problems. As illugtcain Chapter 6, the AMF ordering
usually produces pivot orderings with favorable 1zeno and flop for 2D test problems.
Furthermore, its execution time is significantlyalar than the HMETIS matrix ordering
program. For 3D test problems, the HMETIS matridesing is used. Graph compression
is not applied for HMETIS since this may increakBe flop and non-zero for an input
model (see Chapter 6). For the SES solver packag&ategy is used which minimizes
the factorization time by selecting the best piwatering among several alternatives. In
this strategy, node based coarsening is appliedh¢o original FE meshes for the
nodeco=1 and 2 values. The pivot-ordering that yields liest estimated factorization
time is chosen among the results of the matrix mmdeprograms for the original and
coarsened meshes. This pivot ordering is useddorenical factorization and triangular
solution. Table 7.3 shows the configurations thadpced the pivot-ordering with best
estimated factorization time for these test prolslelys shown in Table 7.3, matrix
ordering programs executed for the coarsened megleded the best estimated
factorization times for half of the large test gdeohs. For 2D models (first four models in
Table 7.3), the AMF ordering yielded estimated dacttion times better than the

HMETIS counterpart.
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Model Preprocessing Estimated
No./Name Configuration Factorization Time
1.Q2DL1 nodeco=1 + AMF 15.79
2.Q2DL2 AMF 19.14
3.F2DL1 nodeco=2 + AMF 20.36
4.F2DL2 nodeco=1 + AMF 21.94
5.S3DL1 HMETIS 190.21
6.S3DL2 nodeco=1 + HMETIS 151.45
7.F3DL1 HMETIS 170.59
8.F3DL2 HMETIS 233.92

Table 7.3: Preprocessing configuration that produttee best estimated serial

factorization times for the benchmark suite of @éatest problems.

Figure 7.6 shows the factorization times for thiar§e test problems normalized
according to the ‘PARDISO factorization plus stéés matrix assembly’ times. Figure
7.6 also shows the PARDISO factorization times wauthincluding the time required for
the assembly of the stiffness matrix. As statedviptesly, the SES solver package
interleaves stiffness matrix assembly operationsh wthe numerical factorization
operations. Therefore, factorization times for SE&ver package already include
stiffness matrix assembly times. As shown in Figuré, factorization with SES
outperforms factorization with PARDISO for 7 out ®flarge test problems even if the
assembly time is not included with the PARDISO daization times. If the assembly
times are also included, SES outperforms PARDISOalbtest problems. Using the
factorization time minimization strategy, SES canlb/5 times faster than the PARDISO
solver package. The speedup of SES is mainly demller flops in the preprocessing
phase of the SES solver. As stated previously, Bothers run at similar speeds at the
numerical factorization phase (excluding the spe#d assembly operations for
PARDISO). Therefore, relative serial factorizatiperformance is greatly determined by
the number of floating point operations requiredféztorization.

Figure 7.6 also shows the estimated factorizatiomes for the SES solver

package. As shown in Figure 7.6, the estimatedifaettion times closely follows the
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actual factorization times. Therefore, the perfano®a of the numerical factorization

meets the expectations for single thread factodmaif this set of large test problems.

Factorization Time

—B— SES Factorization |
Q-+ SES Factorization Estimation i
--€-- PARDISO Factorization }

=-%F-- PARDISO Factorization + Assembly

Normalized Time

Model No.

Figure 7.6: Serial numerical factorization timesrmalized according to the
PARDISO numerical factorization plus assembly tinfi@s8 large test problems. SES

factorization times (in seconds) are also showthénblue boxes.

Figure 7.7 shows the triangular solution times wli@l® RHS vectors normalized
according to the PARDISO triangular solution tim&s.shown in Figure 7.7, SES solver
package consistently outperforms PARDISO solverS SBlver package is especially
efficient for the triangular solution of 2D testoptems. For these problems, the
preprocessing strategy employed for the SES sobderces the floating point operations
required for the solution. SES performs triangusaution 2.55 times faster than
PARDISO for Model 4 (F2DL2) as shown in Figure AfAve compare the factorization

times with triangular solution times shown in Figut.6 and 7.7 respectively, we observe
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that the triangular solution with 100 RHS vectoes ltomparable execution times with
respect to the numerical factorization times for 2Ddels. Therefore, it is especially
important to improve the performance of triangwdalution with a large number of RHS
vectors for 2D test models. As shown in Figure teé,SES solver package performs the
triangular solution of the 2D models significantister than PARDISO (the speedup is
larger than 2 for all 2D test problems).

It should be noted that triangular solution phateéhe SES solver package is
tuned for the solution of large number of RHS vextd-or a small number of RHS
vectors, the triangular solution with PARDISO usyabutperforms the SES solver

package (see Section 5.2.2. for details).

Triangular Solution Time with 100 RHS Vectors
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Figure 7.7: Serial triangular solution times nonzed according to the PARDISO
triangular solution times for 8 large test probler®&S triangular solution times (in

seconds) are also shown in blue boxes.
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7.1.2 Multithreaded Solver

In this section, the performance of four-threadtddazation and triangular
solution is presented for the SES solver packaggiré 7.8 shows the speed of four-
thread factorization for the SES and PARDISO sopa&ckages for benchmark suite of
40 test problems. As shown in Figure 7.8, the fhuead factorization speed for SES is
better than PARDISO except from Model 34. Figur@ Shows the speed of triangular
solution with 100 RHS vectors using four threads.shown in Figure 7.8 and Figure 7.9
the four-thread factorization and triangular santspeeds typically increase as the size
of the problems increase.

Next, we compare the four-thread execution timeshef SES and PARDISO
solver packages. For SES and PARDISO, the perfacengmnofiles for the four-thread
factorization times are shown in Figure 7.10. Taetdrization times for PARDISO do
not include the time required for the assembly loé tstiffness matrix. SES gives
significantly better four-thread factorization timeompared to PARDISO even though
the stiffness matrix assembly times are not inaufie PARDISO factorization. Figure
7.11 shows the factorization plus assembly timegsHe two solver packages. As shown
in Figure 7.11, PARDISO factorization times are enthran 2 times the SES factorization
times for about 40% of the test problems. Figude &hows performance profile for the
solution times for 100 RHS vectors. As shown inufgg7.12, SES generally outperforms
PARDISO for the triangular solution with 100 RHSctes. PARDISO triangular
solution times are larger than 2 times the SES toparts for about 50% of the problems
in the benchmark suite. For a single test probl&00%1500), the solution time for SES
is about 30 times faster than the one for PARDIBI@s is due to the excessive paging of

PARDISO for the solution of this particular problem
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Performance of Four Thread Factorization
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Figure 7.8: Speed of four-thread factorization3&S and PARDISO solver.
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Performance Profile for Factorization Time
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Figure 7.10: Performance profile for four threadtdaization times for SES and

PARDISO solver
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Figure 7.11: Performance profile for four threadt@aization plus assembly times

for the SES and PARDISO solvers.
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Performance Profile for Solution Time (100 RHS Vectors)
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Figure 7.12: Performance profile for four-threaduson times for the SES and

PARDISO solvers.

Next, we demonstrate the four-thread numerical ofazation and triangular
solution performance of the SES solver package derdg®e test problems described in
Chapter 2. We compare the multithreaded performasfcéhe SES solver with the
PARDISO solver. For the SES solver package, we éltdrnative pivot-orderings for
different preprocessing configurations and chobseptvot-ordering that yields the best
estimated multithreaded factorization time. Tahke Shows the configuration that yields
the best estimated four-thread factorization tifoeghe benchmark suite of 8 large test
problems. As shown in Table 7.4, AMF gives the lestimated factorization time for 3
out of 4 2D test problems. HMETIS yields betterrfthread factorization time for the
test problem F2DL2 for which the AMF was superior §erial factorization as it was
shown in Table 7.3.

Figure 7.13 shows the four-thread factorizationesmmormalized according to

‘PARDISO factorization plus assembly’ times. As w@mo in Figure 7.13, SES
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consistently outperforms PARDISO even though tlserdbly times are not included for
the PARDISO solver. If we include the assembly 8nie the PARDISO, SES is more
than 2 times faster than PARDISO for half of thegéatest problems as shown in Figure
7.13. For the PARDISO solver, the percentage aérabdy times increases for the four-
thread factorization compared to the serial fazadron since the assembly operations are
performed in a serial fashion. Figure 7.13 alsowshahe estimated four-thread
factorization times for the SES solver package sAswn in Figure 7.13, the numerical
factorization is slower than what it is predictedoe. We discuss the difference between
the estimated and actual performance in the folgvgection.

Figure 7.14 shows the four-thread triangular solutimes normalized according
to the PARDISO triangular solution times. As shownFigure 7.14, SES generally
outperforms PARDISO for the triangular solutionwitO0 RHS vectors. SES triangular
solution is 3.2 times faster than PARDISO triangusalution for the test problem

Q2DL2.

. Estimated
Model Preprocessing o
. : Factorization
No./Name Configuration .
Time (seconds)

1.Q2DL1 nodeco=1 + AMF 4.37
2.Q2DL2 nodeco=1 + AMF 5.20
3.F2DL1 HMETIS 5.93
4.F2DL2 nodeco=1 + AMF 5.92
5.S3DL1 HMETIS 49.87
6.S3DL2 HMETIS 39.76
7.F3DL1 nodeco=1 + HMETIS 45.95
8.F3DL2 nodeco=1 + HMETIS 63.96

Table 7.4: Preprocessing configuration that produitee best estimated four-

thread factorization times for the benchmark swith 8 large test problems.
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Figure 7.13: Four-thread numerical factorizatiamds normalized according to

the PARDISO numerical factorization plus assemishet for 8 large test problems. SES

factorization times (in seconds) are also showthénblue boxes.
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Triangular Solution Time with 100 RHS Vectors
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Figure 7.14: Four-thread triangular solution timmesmalized according to the
PARDISO numerical factorization plus assembly tinfi@s8 large test problems. SES

triangular times (in seconds) are also shown irbthe boxes.

Both PARDISO and SES solver packages require mamary for a four-thread
solution compared to the single thread solutiore iricrease in memory requirement is
less significant for the PARDISO solver package parad to SES. The number of active
frontal matrices and update matrix stacks are asyraa the number of threads assigned
to the independent subtrees for the SES solveragogckThe use of multiple frontal
matrices and update matrix stacks increases tineatiemory requirement of the SES
numerical factorization phase. Table 7.5 shows ntfemory requirements for factors,
frontal matrices and update matrix stacks of th& Sklver package. Table 7.5 gives the
memory requirements for serial and four-thread micak factorization. As shown in

Table 7.5, the increase in memory is significant 3® test problems. For the test
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problem F3DL2, four-thread factorization require83Ltimes the memory required for

the serial factorization.

Model Memory (G_bytes) Memory (Gbytes) Increase in
for Serial for Four-thread Memory
No./Name o o .
Factorization Factorization Requirement
1.Q2DL1 1.98 2.18 x1.10
2.Q2DL2 2.23 2.42 x1.09
3.F2DL1 2.24 2.35 x1.05
4.F2DL2 2.42 2.73 x1.13
5.S3DL1 5.68 6.67 x1.17
6.S3DL2 5.75 6.54 x1.14
7.F3DL1 5.47 6.78 x1.24
8.F3DL2 4.99 6.65 x1.33

Table 7.5: Serial and multithreaded memory requenets of the SES

factorization.

7.1.3 Analysisof the Multithreaded Perfor mance

As shown in Figure 7.13, SES four-thread numeriaatorization takes slightly
longer than the estimated numerical factorizatioret The reasons for this unanticipated
performance degradation are investigated. The agtunand actual factorization times
are compared for the subtree and high-level assertiele nodes. As described
previously, the subtree tree nodes are processpdrailel by employing single-threaded
BLAS3 kernels. On the other hand, the high-leve¢ tnodes are processed by employing
multi-threaded BLAS3 kernels within the main thre&igure 7.15 shows the subtree
factorization times and estimated subtree factbamaimes for the benchmark suite with
8 large test problems. The subtree factorizatioes given in Figure 7.15 are normalized
according to the overall time required for the dauation. As shown in Figure 7.15, the
subtree factorization times may take between 64%-86the total factorization time for
the four-thread factorization of the test probles.shown in Figure 7.15, the subtree
factorization executes slower than the expectetbpeance. In the worst case, the actual

subtree factorization time is 36% larger than tk@nsated subtree factorization time
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(Model 8). The factorization of the subtrees isfpened simultaneously by executing
single-threaded BLAS3 kernels. We simulate the regbpartial factorization operations
by executing serial BLAS3 kernels simultaneouslydifferent threads. The experiments
with BLAS3 kernels show that the performance isrddgd if multiple threads execute
BLAS3 kernels independently. The performance isradgd even if the number of

threads executing serial BLAS3 kernels is smalantthe number of physical cores in
the system. As an example, in our test system feiin cores, we observe about 10%
increase in the partial factorization time for gwaultaneous partial factorization of three
frontal matrices with 500 eliminated and 1000 revmag variables. The performance
degradation of BLAS3 kernels may be the due tontieenory bus and cache contention
of the threads. Consequently, we conjecture thatctimputational resource contention
due to simultaneous execution of BLAS3 kernels cbute to the performance

degradation of the numerical factorization. Presbignathe resource contention also
slows down the speed of the update matrix copy ass@mbly operations. The current
performance model does not consider the performategradation due to the

computational resource contentions during the demnelous factorization operations on
the subtrees. Hence, the underestimation of thé&remulfactorization times is the main
reason for the under prediction of the overall exien times.

Figure 7.16 shows the actual and estimated highlleee node factorization
times normalized according to the total factorimattime. As shown in Figure 7.16, the
high-level factorization times are significantlyerestimated for Models 3 and 8 since the
speedup model for the BLAS3 kernels is simply acfiom of partial factorization
operation counts. Furthermore, the performance haaes not consider the speedup of
update matrix assembly operations. Even thoughhtple-level factorization times are
predicted accurately or overestimated, the totetofézation times are underestimated

due to the performance degradation of the sub&eterization explained previously.
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Figure 7.15: Estimated and actual subtree factioizatimes normalized
according to the total numerical factorization tifoe the benchmark suite with 8 large

test problems (HMETIS)
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Figure 7.16: Estimated and actual high-level tremlen factorization times
normalized according to the total numerical facation time for the benchmark suite

with 8 large test problems (HMETIS)

For the benchmark suite with 8 large test probletie, SES speedups for four
thread numerical factorization and triangular Solutare given in Figure 7.17. For four-
thread factorization, the SES numerical factoraaspeedup is around 3.3 for all 8 large
test problems as shown in Figure 7.17. Unlike sppedor the numerical factorization,
the speedups for forward elimination and back swhstn vary significantly for the large
test problems. In the triangular solution phase, wge the mapping found for the
numerical factorization. Therefore, the variatiam $peedups is expected since the
workload between the threads is not necessarignigald for the triangular solution.

Figure 7.18 shows the speedups for the PARDISQesqlackage executed with

four threads for the benchmark suite with 8 largst toroblems. If we compare the
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speedups for numerical factorization given in Fegdrl7 and Figure 7.18, we observe
that the speedups for the SES solver package ghetihan the ones for the PARDISO
solver. PARDISO employs a dynamic scheduling, wagren the SES solver package we
employ a subtree to thread mapping based on tlmaatstl subtree factorization times.
As shown in Figure 7.17, our static mapping gemgrglves better speedup values
compared to the PARDISO’s dynamic scheduling fe mmmerical factorization phase.
For the triangular solution phase, on the othedh#me difference between the SES and

PARDISO speedups is not as significant as it igsiernumerical factorization phase.
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Figure 7.17: Speedup for four-thread executiorhef$ES solver package for 100
RHS vectors, the benchmark suite with 8 largepgesblems, HMETIS ordering
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Figure 7.18: Speedup for four-thread executionhef PARDISO solver package

for 100 RHS vectors, the benchmark suite with 8daest problems, HMETIS ordering

Next, we investigate the imbalance between the lwads statically assigned to
the threads in the mapping algorithm. After a magpis found for the threads, no
additional load balancing is performed. Howeverisifpossible to minimize workload
imbalances by reassigning some of the tree nodgignesl to a thread with a high
workload. We can potentially use the estimatedoféation times for such a load
balancing. Figure 7.19 shows the idealized speedifigsch a load balancing approach.
Here, we assume that the subtree factorization lvads can be perfectly balanced
between the threads. Figure 7.19 also shows thedsps of numerical factorization for
the current implementation of the SES solver paekas shown in Figure 7.19, the
multithreaded factorization performance for somst tproblems can be somewhat
improved if we assume that a perfect load balancaug be performed. However, the

performance improvements are not drastic even \withideal workload balancing
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scheme. Figure 7.19 is for HMETIS matrix orderimggram and the results are similar
for the AMF matrix ordering program for the benchiknsuite with 8 large test problems.
Considering the overhead and complexity that walliltroduced by the implementation
of a load balancing algorithm, it is questionableether the implementation of additional

load balancing is necessary.

Effect of Subtree Factorization Time Imbalances on the Speedup
4 T T

Model No.

Figure 7.19: The effect of subtree factorizatiomdi imbalances on the
factorization speedups for the benchmark suite @itfwrge test problems using HMETIS

ordering
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7.2 Out-of-core Solver

The performance of out-of-core solver is demonsttain the 8 very large test
problems given in Chapter 2. The properties oftéfs¢ problems are given again in Table
7.6. Although the out-of-core solver may allow nuit& solution and triangular
factorization of even larger 2D problems, the memiaquired for the preprocessing
phase is the main restriction on further increasihrgsize of 2D test problems. For the
out-of-core solver, the forward elimination is merhed just after the factors are
computed for a frontal matrix. As stated previoudlyis scheme requires fewer disk
reads. The 1/O operations are performed asynchsinomn order to overlap disk
operations with the computations. Tree-level pataln is not exploited for the out-of-
core multifrontal solver since this typically dedes the performance due to excessive
I/O requests of the threads assigned to the subtidesrefore, parallelism is exploited
only at the dense matrix level by the use of fduead BLAS/LAPACK subroutines
(MKL).

Memory for

Number of Non-zero for Flop for

Model Name Dofs HMETIS ((':3%‘3;%;5) HMETIS
1.Q2DVL1 4,830,000 6.12E+08 4.56 7.32E+11
2.Q2DVL2 4,500,000 4.94E+08 3.68 5.06E+11
3.F2DVL1 9,990,000 9.24E+08 6.88 7.20E+11
4.F2DVL2 9,940,000 1.01E+09 7.51 1.17E+12
5.S3DVL1 1,150,000 1.37E+09 10.19 5.66E+12
6.S3DVL2 2,210,000 1.56E+09 11.61 5.37E+12
7.F3DVL1 4,000,000 2.30E+09 17.12 7.07E+12
8.F3DVL2 1,650,000 1.35E+09 10.08 5.31E+12

Table 7.6: 8 very large test problems used foruatalg the performance of the

out-of-core solver.

The performance of an out-of-core scheme can béuaea effectively by
comparing the out-of-core performance with the anecperformance. However, these

very large problems cannot be solved using onlynnmaémory. Therefore, we used the
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estimated serial factorization times in order t@leate the performance of the out-of-
core solver. Figure 7.20 shows the out-of-coreesobolution times in terms of estimated
serial factorization time. For the results showrFigure 7.20, the solution is performed
for 10 RHS vectors and the serial factorizationetimstimation assumes an infinite
memory. As shown in Figure 7.20, the out-of-corefgrenance for 2D test problems is
worse than what it would be for a serial in-coretdaization with an infinite amount of
memory. According to the relative out-of-core periance given in Figure 7.20, solving
the 2D problems on a machine with a larger memail perform significantly better
than the out-of-core solver. For example, Mode&B be solved about 10x faster than the
speed of out-of-core solver by employing a mulatded in-core solver on a machine
with sufficient amount of memory (assuming thatore solver has a speedup of 3). On
the other hand, the out-of-core SES solver perfobatder than the estimated serial
factorization time for 3D test problems (Modelso58). Therefore, for 3D problems, the
speed increase by the use of a system with sufti@mount of memory is not as drastic
as it is for the 2D problems.

The relatively low performance on the 2D test peofid is due to the large
numbers of /O operations for each factorizatioreragion. In order to obtain high
performance from an out-of-core solver, a sufficiemmber of operations should be
performed between I/O requests. Otherwise, theopednce gap between the CPU and
disk hinders the performance. Figure 7.21 showstrezero to flop ratios for the very
large test problems. A high non-zero to flop ratdicates that the number of disk
accesses for each factorization operation is lastpech degrades the performance of the
out-of-core solver. The non-zero to flop ratio givie Figure 7.21 qualitatively follows
the SES out-of-core solution performance relatovétcore solver performance given in

Figure 7.20.
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Figure 7.21: For very large test problems, theorati non-zero (in factorized

stiffness matrix) to flop (floating point operat®nequired for factorization).

The benchmark suite with very large test problemsalso solved with the
PARDISO solver package. However, PARDISO failedstdve 6 out of 8 of the very
large test problems exiting with an error messayeng that there is not enough memory
for the preprocessing phase. PARDISO finds thetsoiwonly for Models 5 and 8, which
are the models with the fewest dofs among the § lgge test problems. For Models 5
and 8, the PARDISO solution takes 1655.32 sec &30.06 sec respectively while the
SES solution takes 532.62 and 585.86 respectivelgh@wn in Figure 7.20. In other

words, the PARDISO solutions are about 3 times stdar the two test problems.
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CHAPTER 8

FACTORIZATION USING A GPGPU

8.1 GPGPU Computing

Recently, graphical processing units have beconadadle for general purpose
computing (GPGPU). Data-parallel computations carabcelerated by using a system
with GPGPUs. The GPGPU can be treated as a cogsocéo perform some of the
factorization tasks in the multifrontal method. Thebsequent section discusses the
results from a preliminary investigation of the fpemance gains obtained using a

GPGPU for the partial factorization.

8.2 Partial Factorizations on GPGPUs

The partial factorizations of the frontal matrixeathe most time consuming
component of the Cholesky Decomposition with thdtiinontal method. GPGPUs are
ideally suited for performing these computationgsithey typically have a high ratio of
computations per data access. The computation efotfiidiagonal factors and Schur
complement can be performed on the GPGPU usingdhresponding CUBLAS library
functions [152] to replace the computations pertdnon CPU using the MKL library.
The diagonal factors are computed on CPU (hostesthis is a LAPACK subroutine.
The update matrix operations and assembly of FEiceatshould also be performed on
the host since these are memory bound operatiarigding branches which are not
suitable for GPGPU computing.

Preliminary numerical experiments are performedider to evaluate potential
performance gains by the implementation of a GPGletklerated multifrontal solver.
The system used for the numerical experiments hami@l Xeon X5550 Quad-core

Nehalem processor as the host and an Nvidia S1@8(& Tnit as the GPGPU device.
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Tesla unit has 960 processors and the peak doubbisppn performance of the unit is
between 311 and 345 Gflop/sec. Each CPU core muasjpeed of 2.66 GHz with hyper-
threading disabled. Intel MKL libraries [6] are dskr the comparison of the GPGPU
partial factorization times with the host partiatforization times. The experiments are
performed using one host CPU core only.

The performance of multifrontal method acceleratedh the GPGPU is
compared with the CPU performance. Computing thediaigonal factors and Schur
complement on the GPGPU requires copying the areachputed diagonal factors and
assembled off-diagonal factors to the GPGPU. Thjgyimg of the data to the GPGPU
may take a significant amount of time. Figure $havss the speed of partial factorization
without including the time required to transfer tthata to the GPGPU. As shown in
Figure 8.1, performing partial factorization on tPGPU outperforms single-core
factorization for frontal matrices having more th&0 columns. Furthermore, GPGPU
partial factorization is approximately three tinfaster than the single-core counterpart
for frontal matrices having more than 4000 columiRgure 8.2 shows the speed of
partial factorization including the time requirent the data transfer. As shown in Figure
8.2, the effective speed of GPGPU patrtial factdiarais reduced when the data transfer
time is included. The speed decrease in percensalgeger for smaller frontal matrices
due to the data transfer latency and small amoucdraputations on GPGPU.

As shown in Section 4.4.1, the partial factorizatgith four threads can give a
speedup larger than 3.5 over the single-threadadtepart for sufficiently large
matrices (matrices in the order of thousands). dfloee, the use of four-thread BLAS3
kernels for partial factorization is likely to owafform (or at least yield the same

performance as) the GPGPU partial factorization.
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The performance of GPGPU accelerated partial feegtoon is investigated for a
set of test problems shown in Table 8.1. As stagexViously, only the off-diagonal
factors and the Schur complement are computedeGBGPU. The diagonal factors are
computed on the host CPU. As shown in Table 8.Inpmdation of the Schur
complement is has the largest number of floatingntpoperations for the partial
factorization. The operation counts given in Tahle are for the pivot ordering found by
the hybrid matrix ordering program in the METISréby [69]. The assembly trees are
constructed for the test problems and the pardietiofization operations associated with
the assembly tree nodes are performed using thePGR(&d a single CPU core.

Figure 8.3 compares the speed for performing pddciorization operations on a
single CPU core and a GPGPU. Figure 8.3 also shbereffective speed of GPGPU
factorization if the time required for copying tdata to GPGPU is also included. As
shown in Figure 8.3, the speed of partial factarimaon a GPGPU increases as the
model size increases. The GPGPU speedup over ke b)) core can be as high as 3
for the largest test problem. However, the useoof-thread BLAS kernels is likely to

give at least the same speed as the GPGPU pattakization.

Diagonal Off-diagonal Schur Total Partial
Model Name Factors Factors Complement Factorization
(GFlop) (GFlop) (GFlop) (GFlop)
515x15x50 4.19 3.68 10.95 18.83
f15x15x50 11.52 10.78 54.16 76.46
s$30x30x%30 25.93 22.93 91.86 140.72
s100x50x%13 34.13 68.46 212.36 314.94
f30x30x%30 64.31 83.71 396.45 544.48
s50x50x50 544.89 498.16 1934.88 2977.92
f45x45x45 993.80 897.08 5031.14 6922.03

Table 8.1: Test problems used to evaluate the pedoce of GPGPU accelerated

partial factorization
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Figure 8.3 Performance of GPGPU accelerated partial factidna for the tes

problems given in Tablg.1.

Preliminary performance analyses illustrate thatrresuly, the GPGPl
accelerationdoes not offer a significant improvement over a eradmult-core CPU.
Nevertheless,hie results shown in thichapter is for doublerecision floating point
whichis about 10 times slower than the sir-precision floating pointounterpart for thi
Tesla S1070 used ithe experiment{153]. Double-precisiorfloating point operation
are only half the speed of the sir-precision counterparts for ahCPUs and ar
necessary for FEomputation. According to NVIDIA [154], doublegsrecision arithmeti
for upcoming NVIDIA FERMI processor is about foumes faster than the previo
processor generatiorzor the next generation GPGPUthe performance differen
between doubl@recisionand single-precision arithmetic iearly the same as the ClI

counterpart [155].
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CHAPTER9

SUMMARY AND FUTURE DIRECTIONS

9.1 Summary and Conclusions

This study proposed and developed a direct solytimcedure which exploited
the parallelism that exists in current symmetricltiptocessing (SMP) multi-core
processors. The performance of the direct solveeldged in this study demonstrated on
a large suite of test problems, including problemith 100 load cases. A sparse direct
solver is typically composed of four phases: prepssing phase, analysis phase,
numerical factorization phase, and triangular sotuphase. Approaches to improve the
performance of all four phases were discussed.hEurtore, the contribution of each
phase to the overall execution time of direct solas studied.

The first phase of a sparse direct solver, the rpegssing phase, determines a
pivot-ordering which attempts to minimize the meynand CPU time requirements of
the solution. There are several matrix orderingiadigms to find a pivot-ordering. The
performance of alternative matrix ordering programese evaluated using large number
of 2D and 3D FE test problems. The effect of tHéedent matrix ordering programs on
both serial and parallel factorization times wasedwined. As noted in the previous
research, the numerical experiments showed that loatrix ordering programs are
sensitive to the initial node numberings. Amongittigal node numberings investigated,
numbering the nodes according to the node coombBnasually minimized the memory
and CPU time requirements for the factorization amgngular solution. The
improvements in CPU time and memory were signifidan the local matrix ordering
programs AMF and MMD but moderate for the local mxabrdering AMD. There was
no single initial node numbering that consistenfiglded favorable factorization times

for the hybrid matrix ordering programs, HAMF anMBTIS. However, the quality of
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the pivot-orderings could be improved by choosihg best pivot-ordering among the
results from random initial node permutations.

In this study, the matrix-ordering programs AMF, \dWMCAMD, HMETIS and
HAMF were used to find the pivot-ordering for thectorization and triangular solution.
Among the matrix ordering programs investigatethis study, AMF usually minimized
the CPU time and memory requirements for the sewdlition of 2D test problems.
Furthermore, AMF performed well for 3D test probkemith 2D-like geometry and 3D
models with small average node adjacency, modelwticch nodes have a small number
of adjacent nodes. For the remaining 3D test problethe hybrid matrix ordering
program HMETIS vyielded favorable CPU time and menrequirements.

In previous studies, hybrid matrix orderings wenef@rred for the parallel
factorization instead of local matrix orderingscgnthe assembly trees produced by a
local ordering are not suitable for exploiting tlegel parallelism. However, this study
showed that although it is true that the local drdgs are relatively less suitable for
parallel processing, a local matrix-ordering prograan still minimize the parallel
factorization and triangular solution time for camt SMP multi-core processors with a
small number of cores. For example, the hybrid matrdering HMETIS yielded better
parallel factorization times for only some but radit of the test problems for which the
local matrix ordering AMF gave the best serial daitation times. A preprocessing
scheme that selects the best pivot-ordering amloagesults of hybrid and local matrix
ordering programs was developed. The developedrselperforms the selection based
on the estimated parallel factorization times.

A coarsening scheme was proposed to reduce thaitexedime of the matrix
ordering programs and analysis phase. The impactltefnative mesh coarsening
schemes on the quality of the pivot-orderings i®geined. The numerical experiments
showed that the coarsening scheme yielded bettarization times for the majority of

the 2D test problems compared to using the origmaksh in the matrix ordering
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programs. A preprocessing scheme that employsnalige coarsening schemes to
minimize the CPU time and memory requirements efgblution was developed.

The multifrontal method was adopted for parallettéasization and triangular
solution of FE problems. Both tree-level and demsatrix level parallelism were
exploited to improve the efficiency of the paralelver. A mapping algorithm that
automatically chooses between the two levels ofalfgism was proposed, which
attempts to minimize the parallel execution timesdsh on the performance model
constructed for a SMP multi-core processor. Thefoperance model considers the
contributions from the update matrix assembly tinels assembly times, and partial
factorization times for predicting the overall fagtation time. The developed
performance model accurately predicted the seraltofization times of the test
problems. However, parallel factorization took lenghan the predicted execution time.
This unanticipated performance degradation in par&dctorization is mainly due to the
resource contention (contention of memory bus @resh caches) on SMP multi-core
processor. It is conjectured that resource corgantay hinder the scalability for SMP
multi-core processors with larger number of coré€e. offset this degradation, the
performance model and the mapping algorithm canmioglified in the light of the
performance degradation measured for a machine.

The performance model developed in this study carused to choose among
pivot-orderings produced by alternative matrix onog programs or preprocessing
strategies. For the test problem f75x150x5, selgct pivot-ordering based on the
factorization operation count yielded factorizatibmes significantly worse than a
selection based on the estimated factorizationdiritevas shown that the factorization
time is affected by the number of update matrix rapens and size of the frontal
matrices. The performance model developed in tludysincorporated these factors to

predict factorization times accurately.
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General purpose direct solver packages usually weith an assembled
coefficient matrix. Therefore, the stiffness matskould be assembled prior to the
execution of the solver package. The assembly ef ghffness matrix may take
significant time and also require storage of theeathled stiffness matrix. The developed
solver package does not require an assembled es#ffmatrix and it works with the
element stiffness matrices. The frontal matrices agsembled in parallel on each core.
For reducing the overall execution time, performthg assembly in parallel becomes
especially important as the execution times of famorization and triangular solution
phases are decreased by employing parallel algusith

The performance of triangular solution phase may dwerlooked in the
development of a sparse solver since the triangdartion time is often insignificant
compared to the numerical factorization. Nevertbglethe numerical experiments
showed that the triangular solution time for muéiRHS vectors may be comparable to
the factorization time. A triangular solution aldbm that is efficient for solution with a
large number of RHS vectors was developed. Theieficy of optimized BLAS3 kernels
was extended to the triangular solution phase bfppring the forward elimination and
back substitution operations on dense frontal roexdri

In the multifrontal method, the factors can be @ntto a secondary storage as
soon as they are calculated. An out-of-core sdivatr takes advantage of this property of
the multifrontal method was developed in order@duce the memory requirements of
the solver. The factors were written to the disknabronously to overlap factorization
computations with I/O. The performance of in-conel @ut-of-core versions of the solver
was evaluated using test problems with variousssirel element types. The performance
of the developed solver was demonstrated by comgahe execution times with a
commonly used shared memory solver, PARDISO. Theldped code outperformed the
PARDISO solver for almost every test problem. Inliadn, some of the large problems

that could not be solved with PARDISO due to mem@guirements could be solved
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using the developed solver. A test problem withenttian 10 million dofs was solved on

a low price desktop computer using the out-of-smeer developed in this study.

9.2 Recommendationsfor Future Work

The sparse direct solver developed in this stugyiéements several approaches to
improve the performance of the sparse direct smudf finite element (FE) problems.
However, high-performance sparse direct solutioansactive area of research and the
direct solver can hardly be considered as compléte.performance of the solver can be
potentially improved by implementing existing anchexging algorithms. In addition,
further research is required to develop a robust ldgh performance solver on future
multi-core and many-core architectures. The recontdagons for the future research are
as follows:

* Extend work to Eigen Solution of FE Problems

Modal analysis of the structures requires compugilggnvectors and eigenvalues
corresponding to the modal shapes and natural éremes of the structures respectively.
Finding eigenvectors and eigenvalues is a compmunally intensive procedure,
especially if a large number of eigenvectors argemvalues will be found. An eigen
solution scheme which exploits parallelism in malire processors and is efficient for
FE problems can be developed.

* Many-coreand heter ogeneous ar chitectures

It is most likely that the demand for increasedf@enance will be met by
increasing the number of processing units in coemgutA parallel solver which takes
advantage of the emerging parallel computer archites is crucial for the efficient
solution of FE models progressing in complexity aime. The developed solver package
can be modified for an efficient solution on NUMAchitectures. For the NUMA
architecture, the mapping algorithm should be medifto guarantee that the tasks

assigned to the processors primarily access loeahony. Furthermore, a sparse solver
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that makes use of the GPGPUs may offer a perforsmmamprovement. Preliminary
investigations were performed for performing soni¢he partial factorization tasks on
GPGPUs. A sparse solver that treats GPGPUs asooegsors can be developed as
shown in the preliminary investigations given inapter 8.

* Improvethe performance of the analysis and preprocessing phases

The developed code is designed to allow for expemimg with various
algorithms in the preprocessing and analysis phaJése performance of the
preprocessing and analysis phases can be improadexpense of reduced flexibility. It
may even be possible to improve the performanckouitcompromising the flexibility.
The algorithms proposed by Liu [73] and Gilbertagt [138] can be implemented to
improve the performance of the analysis phase. Uiokaowledge, these are the best
known algorithms for building the elimination treed calculating the non-zeros in the
factors. Furthermore, the matrix ordering can bdopeed in parallel by employing the
multithreaded version of the SCOTCH library. It ©ucial to parallelize the
preprocessing and analysis phases of a directrseliee these two phases become a
bottleneck as the numerical factorization and gidar solution times are decreased.

* A strategy that automatically selects the matrix ordering program

The numerical experiments with matrix ordering pesgs show that there is no
single program that gives the best results foFB&llproblems. A strategy that selects the
matrix ordering program that is most suitable fonrgut structure will reduce the overall
execution time of the sparse direct solver. The ehofitatures such as model
dimensionality and average node adjacency candxinsorder to predetermine the most
favorable matrix ordering program for an input FEolgem. Further numerical
experiments are required to determine other moelgiufes that will help to construct
such an automatic selection strategy. Moreovefemdift matrix ordering programs may
be desirable for different regions of the FE moé&el example, 2D-Like regions in a 3D

FE model, such as diaphragms, can be efficienypgpocessed with the local ordering
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algorithm AMF. A preprocessing strategy that chgoge best matrix ordering program
for different regions of the FE model also has thwential to further reduce the
factorization times.

* Improvementsto the mapping algorithm

As discussed previously, the subtree factorizatiomes are larger than the
anticipated times. A mapping algorithm that conssdbe performance degradation of the
subtree factorization will potentially vyield betteparallel factorization times.
Furthermore, the degree of tree-level parallelisayrhe reduced to prevent associated
resource contentions. Instead of tree-level pdisihe dense matrix level parallelism can
be exploited for the threads assigned to the sebtne order to reduce memory bus
contention. For example, for a quad-core processdy, two threads could be spawned
to factorize independent subtrees instead of forgaids and two-thread BLAS/LAPACK
kernels would be called for the partial factorieattasks on independent subtrees.

* A program for automatic construction of the performance model

The mapping algorithm relies on the performance ehodnstructed for the SMP
multi-core processors. Presently, this is done rabynby performing test runs on the test
system. For a complete solver implementation, @naro that automatically constructs
the performance model for any computer is requifdérk program will perform a limited
test runs with BLAS/LAPACK kernels to determine thegartial factorization
performance. Furthermore, the speed of update xnaperations and assembly of FE
matrices can be determined by executing benchmades which represent these
operations.

* Improvementsto the numerical factorization and solution phases

Currently, the multifrontal scheme developed inststudy does not employ a
memory minimizing scheme for the update matrix lstathe memory minimizing
schemes proposed by Guermouche and L'excellentfsbbe implemented to reduce the

active memory requirements of the multifrontal golVFurthermore, instead of allocating
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separate memory locations for the frontal matrid apdate matrix stack, the memory
can be shared between the two in order to redweendmory footprint of the solver. The
triangular solution phase will also benefit fromesle modifications. Currently, the
triangular solution phase is optimized for multiplelS vectors. A triangular solution that
is tuned for solution of single RHS vector can i@ the triangular solution
performance for non-linear or transient analyses.

* Improvementsto the out-of-core solver

Currently, the out-of-core solver writes only thengputed factors to disk. The
out-of-core solver could also write the update matack and frontal matrix to the disk.
The update matrix stack and frontal matrix can b#ten to the disk asynchronously
since asynchronous 1/O is proved to be efficient fthe current out-of-core
implementation. Furthermore, the solver can autaally determine when to switch to
the out-of-core mode based on the available menaoy memory required for the
solution of an input problem.

* Test problemswith mixed elements

All test problems used to evaluate the performaoicearious algorithms are
composed of a single FE type. The test problemb witked elements, such as frames

and plates, can be added to the test suites.
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APPENDIX A:

TEST PROBLEMS

A.1 Test Problemswith Regular Geometry

The geometry of regular test problems is rectamgalD and prismatic in 3D.
In other words, the number of elements in X, y andirections is the same at any
location. Figure A.1 shows the geometry of the eplenmodels with regular geometries.
Figure A.2 and A.3 shows the non-zero pattern lher 2D test problems q100x100 and
f100x100 respectively. Figure A.4 and A.5 shows itloa-zero pattern for the 3D test
problems s10x10x10 and f10x10x10 respectively.

Table A.1 gives the properties of the 2D test peoid with quadrilateral
elements. Table A.2 gives the properties of thet@f problems with frame elements.
Table A.3 gives the properties of the 3D test peotd with 8 node solid elements. And
finally, Table A.4 gives the properties of the 3&tt problems with 3D frame elements.
The last column in these tables shows the numbemoofzero entries in the lower
diagonal stiffness matrix. The non-zero is compubgdassuming that all entries of

element stiffness matrices are non-zero.
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Model No. of Non-zero
No. Model Name Elements No. of Dofs inK (1e6)
1 g20x1000 20000 42000 0.39
2 g20x2000 40000 84000 0.77
3 g20x3000 60000 126000 1.16
4 g20x4000 80000 168000 1.55
5 g20x5000 100000 210000 1.93
6 g20x7500 150000 315000 2.9
7 g20x10000 200000 420000 3.87
8 g30x1000 30000 62000 0.58
9 g30x2000 60000 124000 1.15
10 g30x3000 90000 186000 1.73
11 g30x4000 120000 248000 2.31
12 g30x5000 150000 310000 2.88
13 g30x7500 225000 465000 4.33
14 g30x10000 300000 620000 5.77
15 g40x1000 40000 82000 0.77
16 g40x2000 80000 164000 1.53
17 g40x3000 120000 246000 2.3
18 g40x4000 160000 328000 3.07
19 g40x5000 200000 410000 3.83
20 g40x10000 300000 615000 5.75
21 g40x15000 400000 820000 7.67
22 g50x1000 50000 102000 0.96
23 g50x2000 100000 204000 1.91
24 g50x3000 150000 306000 2.87
25 g50x4000 200000 408000 3.83
26 g50x5000 250000 510000 4.78
27 g50x7500 375000 765000 7.18
28 g50x10000 500000 102000( 9.57
29 g60x1000 60000 122000 1.15
30 g60x2000 120000 244000 2.29
31 g60x3000 180000 366000 3.44
32 g60x4000 240000 488000 4.59
33 g60x5000 300000 610000 5.73
34 g60x7500 450000 915000 8.6
35 g60x10000 600000 122000( 11.47
36 g70x1000 70000 142000 1.34
37 g70x2000 140000 284000 2.67
38 g70x3000 210000 426000 4.01
39 g70x4000 280000 568000 5.35
40 g70x5000 350000 710000 6.68
41 g70x7500 525000 1065000 10.03
42 g70x10000 700000 142000( 13.37
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Model No. of Non-zero
No. Model Name Elements No. of Dofs inK (1e6)
43 g80x1000 80000 162000 1.53
44 g80x2000 160000 324000 3.05
45 g80x3000 240000 486000 458
46 g80x4000 320000 648000 6.11
47 g80x5000 400000 810000 7.63
48 g80x7500 600000 1215000 11.45
49 q80x10000 800000 162000( 15.27
50 g90x1000 90000 182000 1.72
51 g90x2000 180000 364000 3.43
52 g90x3000 270000 546000 5.15
53 g90x4000 360000 728000 6.87
54 g90x5000 450000 910000 8.58
55 g90x7500 675000 1365000 12.88
56 q90x10000 900000 182000( 17.17
57 g100x100 10000 20200 0.19
58 g100x200 20000 40400 0.38
59 g100x300 30000 60600 0.57
60 g100x400 40000 80800 0.76
61 g100x500 50000 101000 0.95
62 q100x1000 100000 202000 1.91
63 q100x1500 150000 303000 2.86
64 g200x200 40000 80400 0.76
65 g200x300 60000 120600 1.14
66 g200x400 80000 160800 1.52
67 g200x500 100000 201000 1.9
68 200x1000 200000 402000 3.8
69 200x1500 300000 603000 5.71
70 g300x300 90000 180600 1.71
71 g300x400 120000 240800 2.28
72 g300x500 150000 301000 2.85
73 q300x1000 300000 602000 5.7
74 q300x1500 450000 903000 8.56
75 g400x400 160000 320800 3.04
76 g400x500 200000 401000 3.8
77 q400x1000 400000 802000 7.6
78 q400x1500 600000 120300( 11.41
79 g500x500 250000 501000 475
80 q500x1000 500000 100200( 9.5
81 q500x1500 750000 150300( 14.25
82 g1000x1000 1000000 2002000 18.99
83 g1000x1500 1500000 3003000 28.5

Table A.1 (cont.): 2D quadrilateral element modeith regular geometry
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Model No. of Non-zero
No. Model Name Elements No. of Dofs inK (1e6)
84 f20x1000 41000 63000 0.49
85 f20x2000 82000 126000 0.99
86 f20x3000 123000 189000 1.48
87 f20x4000 164000 252000 1.98
88 f20x5000 205000 315000 2.47
89 f20x7500 307500 472500 3.71
90 f20x10000 410000 630000 4,95
91 f30x1000 61000 93000 0.73
92 f30x2000 122000 186000 1.47
93 f30x3000 183000 279000 2.2
94 f30x4000 244000 372000 2.94
95 f30x5000 305000 465000 3.67
96 f30x7500 457500 697500 5.51
97 f30x10000 610000 930000 7.35
98 f40x1000 81000 123000 0.97
99 f40x2000 162000 246000 1.95
100 f40x3000 243000 369000 2.92
101 f40x4000 324000 492000 3.9
102 f40x5000 405000 615000 4.87
103 f40x7500 607500 922500 7.31
104 f40x10000 810000 1230000 9.75
105 f50x1000 101000 153000 1.21
106 f50x2000 202000 306000 2.43
107 f50x3000 303000 459000 3.64
108 f50x4000 404000 612000 4.86
109 f50x5000 505000 765000 6.07
110 f50x7500 757500 1147500 9.11
111 f50x10000 1010000 153000( 12.15
112 f60x1000 121000 183000 1.45
113 f60x2000 242000 366000 2.91
114 f60x3000 363000 549000 4.36
115 f60x4000 484000 732000 5.82
116 f60x5000 605000 915000 7.27
117 f60x7500 907500 1372500 10.91
118 f60x10000 1210000 183000( 14.55
119 f70x1000 141000 213000 1.69
120 f70x2000 282000 426000 3.39
121 f70x3000 423000 639000 5.08
122 f70x4000 564000 852000 6.78
123 f70x5000 705000 1065000 8.47
124 f70x7500 1057500 1597500 12.71
125 f70x10000 1410000 213000( 16.95

Table A.2: 2D frame element models with regularrgetry
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Model No. of Non-zero
No. Model Name Elements No. of Dofs inK (1e6)
126 f80x1000 161000 243000 1.93
127 f80x2000 322000 486000 3.87
128 f80x3000 483000 729000 5.8
129 f80x4000 644000 972000 7.74
130 f80x5000 805000 1215000 9.67
131 f80x7500 1207500 1822500 14.51
132 f80x10000 1610000 243000( 19.35
133 f90x1000 181000 273000 2.17
134 f90x2000 362000 546000 4.35
135 f90x3000 543000 819000 6.52
136 f90x4000 724000 1092000 8.7
137 f90x5000 905000 1365000 10.87
138 f90x7500 1357500 2047500 16.31
139 f90x10000 1810000 273000( 21.75
140 f100x100 20100 30300 0.24
141 f100x200 40200 60600 0.48
142 f100x300 60300 90900 0.72
143 f100x400 80400 121200 0.97
144 f100x500 100500 151500 1.21
145 f100x1000 201000 303000 2.41
146 f100x1500 301500 454500 3.62
147 f200x200 80200 120600 0.96
148 f200x300 120300 180900 1.44
149 f200x400 160400 241200 1.92
150 f200x500 200500 301500 2.41
151 f200x1000 401000 603000 481
152 f200x1500 601500 904500 7.22
153 f300x300 180300 270900 2.16
154 f300x400 240400 361200 2.88
155 f300x500 300500 451500 3.6
156 f300x1000 601000 903000 7.21
157 f300x1500 901500 1354500 10.82
158 f400x400 320400 481200 3.84
159 f400x500 400500 601500 4.8
160 f400x1000 801000 1203000 9.61
161 f400x1500 1201500 180450( 14.42
162 f500x500 500500 751500 6
163 f500x1000 1001000 150300( 12.01
164 f500x1500 1501500 225450( 18.02
165 f1000x1000 2001000 300300( 24.01
166 f1000x1500 3001500 450450( 36.01

Table A.2 (cont.): 2D frame element models withulag geometry
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Model No. of Non-zero
No. Model Name Elements No. of Dofs inK (1e6)
167 s5x5x75 1875 8100 0.26
168 s5x5x100 2500 10800 0.35
169 s5x5x125 3125 13500 0.44
170 s5x5x150 3750 16200 0.52
171 s5x5x175 4375 18900 0.61
172 s5x5x200 5000 21600 0.7
173 s5x5x250 6250 27000 0.87
174 s5x10x75 3750 14850 0.5
175 s5x10x100 5000 19800 0.67
176 s5x10x125 6250 24750 0.84
177 s5x10x150 7500 29700 1.01
178 s5x10x175 8750 34650 1.18
179 s5x10x200 10000 39600 1.35
180 s5x10x250 12500 49500 1.69
181 s5x15x75 5625 21600 0.75
182 s5x15x100 7500 28800 1
183 s5x15x125 9375 36000 1.25
184 s5x15x150 11250 43200 1.51
185 s5x15x175 13125 50400 1.76
186 s5x15x200 15000 57600 2.01
187 s5x15x250 18750 72000 251
188 s5x20x75 7500 28350 0.99
189 s5x20x100 10000 37800 1.33
190 s5x20x125 12500 47250 1.66
191 s5x20x150 15000 56700 2
192 s5x20x175 17500 66150 2.33
193 s5x20x200 20000 75600 2.66
194 s5x20x250 25000 94500 3.33
195 s10x10x75 7500 27225 0.98
196 s10x10x100 10000 36300 1.31
197 s10x10x125 12500 45375 1.64
198 s10x10x150 15000 54450 1.96
199 s10x10x175 17500 63525 2.29
200 s$10x10x200 20000 72600 2.62
201 s10x10x250 25000 90750 3.28
202 s10x15x75 11250 39600 1.45
203 s10x15x100 15000 52800 1.94
204 s10x15x125 18750 66000 2.43
205 s10x15x150 22500 79200 2.91
206 s10x15x175 26250 92400 3.4
207 s10x15x200 30000 105600 3.89
208 s10x15x250 37500 132000 4.87

Table A.3: 3D solid element models with regularmetry
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Model No. of Non-zero
No. Model Name Elements No. of Dofs inK (1e6)
209 s$10x20x75 15000 51975 1.92
210 s10x20x100 20000 69300 2.57
211 s10x20x125 25000 86625 3.22
212 s10x20x150 30000 103950 3.86
213 s10x20x175 35000 121275 451
214 s$10x20x200 40000 138600 5.16
215 s10x20x250 50000 173250 6.45
216 s15x15x75 16875 57600 2.15
217 s15x15x100 22500 76800 2.88
218 s15x15x125 28125 96000 3.6
219 s15x15x150 33750 115200 4,32
220 s15x15x175 39375 134400 5.05
221 s15x15x200 45000 153600 5.77
222 s15x15x250 56250 192000 7.22
223 s$15x20x75 22500 75600 2.85
224 s15x20x100 30000 100800 3.81
225 s15x20x125 37500 126000 477
226 s15x20x150 45000 151200 5.73
227 s15x20x175 52500 176400 6.69
228 s15x20x200 60000 201600 7.65
229 s15x20x250 75000 252000 9.57
230 s20x20%75 30000 99225 3.78
231 s$20x20x100 40000 132300 5.06
232 s20x20x125 50000 165375 6.33
233 s$20x20x150 60000 198450 7.6
234 s20x20x175 70000 231525 8.87
235 $20x20x200 80000 264600 10.15
236 $20x20x250 100000 330750 12.69
237 s10x10x10 1000 3630 0.12
238 s10x10x15 1500 5445 0.19
239 $10x10x20 2000 7260 0.25
240 s$10x10x25 2500 9075 0.32
241 $10x10x30 3000 10890 0.39
242 $10x10x35 3500 12705 0.45
243 $10x10x40 4000 14520 0.52
244 $10x10x45 4500 16335 0.58
245 $10x10x50 5000 18150 0.65

Table A.3 (cont.): 3D solid element models withukeg geometry
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Model No. of Non-zero
No. Model Name Elements No. of Dofs inK (1e6)
246 s10x15x15 2250 7920 0.28
247 $10x15x20 3000 10560 0.38
248 s10x15x25 3750 13200 0.47
249 $10x15x30 4500 15840 0.57
250 $10x15x35 5250 18480 0.67
251 $10x15x40 6000 21120 0.77
252 s10x15x45 6750 23760 0.87
253 $10x15x50 7500 26400 0.96
254 $10x20x20 4000 13860 0.5
255 $10x20x25 5000 17325 0.63
256 $10x20x30 6000 20790 0.76
257 $10x20x35 7000 24255 0.89
258 $10x20x40 8000 27720 1.02
259 $10x20x45 9000 31185 1.15
260 $10x20x50 10000 34650 1.28
261 s$10x25x25 6250 21450 0.78
262 $10x25x30 7500 25740 0.95
263 $10x25x35 8750 30030 1.11
264 $10x25x40 10000 34320 1.27
265 s$10x25x45 11250 38610 1.43
266 $10x25x50 12500 42900 1.59
267 $10x30x30 9000 30690 1.13
268 $10x30x35 10500 35805 1.33
269 $10x30x40 12000 40920 1.52
270 $10x30x45 13500 46035 1.71
271 $10x30x50 15000 51150 1.9
272 $10x35x35 12250 41580 1.54
273 $10x35x40 14000 47520 1.77
274 $10x35x45 15750 53460 1.99
275 $10x35x50 17500 59400 2.22
276 s15x15x15 3375 11520 0.41
277 s$15x15x20 4500 15360 0.56
278 s15x15x25 5625 19200 0.7
279 s$15x15x30 6750 23040 0.85
280 s$15x15x35 7875 26880 0.99
281 s$15x15x40 9000 30720 1.14
282 s15x15x45 10125 34560 1.28
283 s15x15x50 11250 38400 1.43

Table A.3 (cont.): 3D solid element models withukeg geometry

264




Model No. of Non-zero
No. Model Name Elements No. of Dofs inK (1e6)
284 s15x20x20 6000 20160 0.74
285 s15x20x25 7500 25200 0.93
286 s15x20x30 9000 30240 1.13
287 s15x20x35 10500 35280 1.32
288 s15x20x40 12000 40320 1.51
289 s15x20x45 13500 45360 1.7
290 s15x20x50 15000 50400 1.89
291 s15x25x%x25 9375 31200 1.16
292 s15x25x30 11250 37440 1.4
293 s15x25x35 13125 43680 1.64
294 s15x25x40 15000 49920 1.88
295 s15x25x45 16875 56160 2.12
296 s15x25x50 18750 62400 2.36
297 s15x30x30 13500 44640 1.68
298 s15x30x35 15750 52080 1.97
299 s15x30x40 18000 59520 2.25
300 s15x30x45 20250 66960 2.54
301 s15x30x50 22500 74400 2.82
302 s15x35x35 18375 60480 2.29
303 s15x35x40 21000 69120 2.62
304 s15x35x%x45 23625 77760 2.96
305 s15x35x50 26250 86400 3.29
306 s$20x20x%20 8000 26460 0.98
307 $20%x20%25 10000 33075 1.24
308 s$20x20x30 12000 39690 1.49
309 s$20x20x35 14000 46305 1.75
310 $20x20x40 16000 52920 2
311 $20x20x45 18000 59535 2.26
312 s$20x20x50 20000 66150 2.51
313 s$20x25%25 12500 40950 1.54
314 s$20x25x%30 15000 49140 1.86
315 s20x25%35 17500 57330 2.18
316 s20x25%x40 20000 65520 2.49
317 s20x25%x45 22500 73710 2.81
318 $20x25x%50 25000 81900 3.13
319 s20x30x30 18000 58590 2.23
320 s20x30x35 21000 68355 2.61
321 s20x30x40 24000 78120 2.99
322 s20x30x45 27000 87885 3.37
323 s20x30x50 30000 97650 3.75
324 s20x35x%35 24500 79380 3.04
325 s20x35x%x40 28000 90720 3.48
326 s20x35x%x45 31500 102060 3.92
327 s20x35x%50 35000 113400 4.36

Table A.3 (cont.): 3D solid element models withuleg geometry
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Model No. of Non-zero
No. Model Name Elements No. of Dofs inK (1e6)
328 $25x25%25 15625 50700 1.92
329 $25x25x30 18750 60840 2.32
330 $25x25x35 21875 70980 2.71
331 $25x25x40 25000 81120 3.11
332 $25x25x%x45 28125 91260 3.5
333 $25x25x50 31250 101400 3.9
334 $25x30x30 22500 72540 2.77
335 $25x30%35 26250 84630 3.25
336 $25x30x40 30000 96720 3.72
337 $25x30x45 33750 108810 4.19
338 $25x30x50 37500 120900 4.67
339 $25x35x35 30625 98280 3.78
340 $25x35x40 35000 112320 4.33
341 $25x35x45 39375 126360 4.88
342 $25x35x50 43750 140400 5.44
343 s30x30x30 27000 86490 3.32
344 s30x30x35 31500 100905 3.89
345 s30x30x40 36000 115320 4.45
346 s30x30x45 40500 129735 5.02
347 s$30x30x50 45000 144150 5.59
348 s$30x35x35 36750 117180 453
349 s$30x35x40 42000 133920 5.19
350 s30x35x45 47250 150660 5.85
351 s$30x35x50 52500 167400 6.51
352 s$35x35x35 42875 136080 5.28
353 s$35x35x40 49000 155520 6.04
354 s35x35x45 55125 174960 6.81
355 $35x35x50 61250 194400 7.58
356 s25x25x%x4 2500 8112 0.26
357 s25x25x%5 3125 10140 0.34
358 s25x25%6 3750 12168 0.42
359 $25x50x4 5000 15912 0.52
360 s$25x50x%5 6250 19890 0.68
361 $25x50%6 7500 23868 0.84
362 $25x75x%x4 7500 23712 0.78
363 s25x75x%5 9375 29640 1.02
364 s25x75%6 11250 35568 1.25
365 $25x100%4 10000 31512 1.04
366 $25x100%5 12500 39390 1.36
367 $25x100%6 15000 47268 1.67
368 $25x125x%4 12500 39312 1.31
369 $25x125x%5 15625 49140 1.7
370 $25x125%6 18750 58968 2.09
371 s$25x150%4 15000 47112 1.57
372 $25x150%5 18750 58890 2.03
373 $25x150%6 22500 70668 2.5

Table A.3 (cont.): 3D solid element models withukeg geometry
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Model No. of Non-zero
No. Model Name Elements No. of Dofs inK (1e6)
374 s50x50x4 10000 31212 1.04
375 s50x50x5 12500 39015 1.35
376 s50x50x6 15000 46818 1.66
377 s50x75x4 15000 46512 1.56
378 s50x75x5 18750 58140 2.03
379 s50x75x6 22500 69768 2.49
380 s50x100x4 20000 61812 2.08
381 s50x100x5 25000 77265 2.7
382 s50x100x6 30000 92718 3.32
383 s50x125x%x4 25000 77112 2.59
384 s50x125x%x5 31250 96390 3.37
385 s50x125x%6 37500 115668 4.15
386 s50x150x4 30000 92412 3.11
387 s50x150x%5 37500 115515 4.04
388 s50x150%6 45000 138618 4.97
389 S75x75x%x4 22500 69312 2.33
390 S75x75x%5 28125 86640 3.03
391 S75x75%6 33750 103968 3.73
392 s75x100x4 30000 92112 3.11
393 s75x100x%5 37500 115140 4.04
394 s75x100%6 45000 138168 4.97
395 s75x125x%x4 37500 114912 3.88
396 s75x125x%x5 46875 143640 5.04
397 s75x125x%6 56250 172368 6.2
398 s75x150x%4 45000 137712 4.66
399 s75x150x%5 56250 172140 6.05
400 s75x150%6 67500 206568 7.44
401 s100x100x4 40000 122412 4,14
402 s100x100x5 50000 153015 5.38
403 s$100x100x6 60000 183618 6.61
404 s100x125x4 50000 152712 5.17
405 s100x125x5 62500 190890 6.72
406 s100x125x%6 75000 229068 8.26
407 s100x150x4 60000 183012 6.2
408 s100x150x%5 75000 228765 8.06
409 s100x150%6 90000 274518 9.91
410 s125x125x4 62500 190512 6.46
411 s125x125x%x5 78125 238140 8.39
412 s125x125%6 93750 285768 10.32
413 s125x150x4 75000 228312 7.74
414 s125x150x%5 93750 285390 10.06
415 s125x150%6 112500 342468 12.38
416 s150x150x4 90000 273612 9.29
417 s150x150x%5 112500 342015 12.07
418 s150x150%6 135000 410418 14.85

Table A.3 (cont.): 3D solid element models withukeg geometry
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Model No. of Non-zero
No. Model Name Elements No. of Dofs inK (1e6)
419 f5x5x75 7200 16200 0.31
420 f5x5x100 9600 21600 0.42
421 f5x5x125 12000 27000 0.53
422 f5x5x150 14400 32400 0.63
423 f5x5x175 16800 37800 0.74
424 f5x5x200 19200 43200 0.84
425 f5x5x250 24000 54000 1.05
426 f5x10x75 13575 29700 0.59
427 f5x10x100 18100 39600 0.79
428 f5x10x125 22625 49500 0.99
429 f5x10x150 27150 59400 1.18
430 f5x10x175 31675 69300 1.38
431 f5x10x200 36200 79200 1.58
432 f5x10x250 45250 99000 1.97
433 f5x15x75 19950 43200 0.87
434 f5x15x100 26600 57600 1.16
435 f5x15x125 33250 72000 1.45
436 f5x15x150 39900 86400 1.74
437 f5x15x175 46550 100800 2.03
438 f5x15x200 53200 115200 2.31
439 f5x15x250 66500 144000 2.89
440 f5x20x75 26325 56700 1.14
441 f5x20x100 35100 75600 1.52
442 f5x20x125 43875 94500 1.91
443 f5x20x150 52650 113400 2.29
444 f5%20x175 61425 132300 2.67
445 f5x20x200 70200 151200 3.05
446 f5%20x250 87750 189000 3.82
447 f10x10x75 25575 54450 1.11
448 f10x10x100 34100 72600 1.48
449 f10x10x125 42625 90750 1.85
450 f10x10x150 51150 108900 2.22
451 f10x10x175 59675 127050 2.59
452 f10x10x200 68200 145200 2.96
453 f10x10x250 85250 181500 3.7
454 f10x15x75 37575 79200 1.62
455 f10x15x100 50100 105600 2.17
456 f10x15x125 62625 132000 2.71
457 f10x15x150 75150 158400 3.25
458 f10x15x175 87675 184800 3.8
459 f10x15x200 100200 211200 4.34
460 f10x15x250 125250 264000 5.43

Table A.4: 3D frame element models with regularrgetry
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Model No. of Non-zero
No. Model Name Elements No. of Dofs inK (1e6)
461 f10x20x75 49575 103950 2.14
462 f10x20x100 66100 138600 2.86
463 f10x20x125 82625 173250 3.57
464 f10x20x150 99150 207900 4,29
465 f10x20x175 115675 242550 5
466 f10x20x200 132200 277200 5.72
467 f10x20x250 165250 346500 7.15
468 f15x15x75 55200 115200 2.38
469 f15x15x100 73600 153600 3.18
470 f15x15x125 92000 192000 3.97
471 f15x15x150 110400 230400 4.77
472 f15x15x175 128800 268800 5.57
473 f15x15x200 147200 307200 6.37
474 f15x15x250 184000 384000 7.96
475 f15x20x75 72825 151200 3.14
476 f15x20x100 97100 201600 4,19
477 f15x20x125 121375 252000 5.24
478 f15x20x150 145650 302400 6.29
479 f15x20x175 169925 352800 7.34
480 f15x20x200 194200 403200 8.39
481 f15x20x250 242750 504000 10.49
482 f20x20x75 96075 198450 4,14
483 f20x20x100 128100 264600 5.52
484 f20x20x125 160125 330750 6.91
485 f20x20x150 192150 396900 8.29
486 f20x20x175 224175 463050 9.68
487 f20x20x200 256200 529200 11.06
488 f20x20x250 320250 661500 13.83
489 f10x10x10 3410 7260 0.14
490 f10x10x15 5115 10890 0.22
491 f10x10x20 6820 14520 0.29
492 f10x10x25 8525 18150 0.37
493 f10x10x30 10230 21780 0.44
494 f10x10x35 11935 25410 0.51
495 f10x10x40 13640 29040 0.59
496 f10x10x45 15345 32670 0.66
497 f10x10x50 17050 36300 0.74

Table A.4 (cont.): 3D frame element models withulag geometry
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Model No. of Non-zero
No. Model Name Elements No. of Dofs inK (1e6)
498 f10x15x15 7515 15840 0.32
499 f10x15x20 10020 21120 0.43
500 f10x15x25 12525 26400 0.54
501 f10x15x30 15030 31680 0.65
502 f10x15x35 17535 36960 0.75
503 f10x15x40 20040 42240 0.86
504 f10x15x45 22545 47520 0.97
505 f10x15x50 25050 52800 1.08
506 f10x20x20 13220 27720 0.56
507 f10x20x25 16525 34650 0.71
508 f10x20x30 19830 41580 0.85
509 f10x20x35 23135 48510 0.99
510 f10x20x40 26440 55440 1.14
511 f10x20x45 29745 62370 1.28
512 f10x20x50 33050 69300 1.42
513 f10x25x25 20525 42900 0.88
514 f10x25x30 24630 51480 1.06
515 f10x25x35 28735 60060 1.23
516 f10x25x40 32840 68640 1.41
517 f10x25x45 36945 77220 1.59
518 f10x25x50 41050 85800 1.77
519 f10x30x30 29430 61380 1.26
520 f10x30x35 34335 71610 1.47
521 f10x30x40 39240 81840 1.69
522 f10x30x45 44145 92070 1.9
523 f10x30x50 49050 102300 211
524 f10x35x35 39935 83160 1.71
525 f10x35x40 45640 95040 1.96
526 f10x35x45 51345 106920 2.21
527 f10x35x50 57050 118800 2.46
528 f15x15x15 11040 23040 0.47
529 f15x15x20 14720 30720 0.63
530 f15x15x25 18400 38400 0.79
531 f15x15x30 22080 46080 0.95
532 f15x15x35 25760 53760 1.11
533 f15x15x40 29440 61440 1.27
534 f15x15x45 33120 69120 1.43
535 f15x15x50 36800 76800 1.58

Table A.4 (cont.): 3D frame element models withulag geometry
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Model No. of Non-zero
No. Model Name Elements No. of Dofs inK (1e6)
536 f15x20x20 19420 40320 0.83
537 f15x20x25 24275 50400 1.04
538 f15x20x30 29130 60480 1.25
539 f15x20x35 33985 70560 1.46
540 f15x20x40 38840 80640 1.67
541 f15x20x45 43695 90720 1.88
542 f15x20x50 48550 100800 2.09
543 f15x25x25 30150 62400 1.29
544 f15x25x30 36180 74880 1.55
545 f15x25x35 42210 87360 1.81
546 f15x25x40 48240 99840 2.07
547 f15x25x45 54270 112320 2.33
548 f15x25x50 60300 124800 2.59
549 f15x30x30 43230 89280 1.85
550 f15x30x35 50435 104160 2.16
551 f15x30x40 57640 119040 2.47
552 f15x30x45 64845 133920 2.79
553 f15x30x50 72050 148800 3.1
554 f15x35x35 58660 120960 2.51
555 f15x35x40 67040 138240 2.88
556 f15x35x45 75420 155520 3.24
557 f15x35x50 83800 172800 3.6
558 f20x20x20 25620 52920 1.09
559 f20x20x25 32025 66150 1.37
560 f20x20x30 38430 79380 1.65
561 f20x20x35 44835 92610 1.92
562 f20x20x40 51240 105840 2.2
563 f20x20x45 57645 119070 2.48
564 f20x20x50 64050 132300 2.75
565 f20x25x25 39775 81900 1.7
566 f20x25x30 47730 98280 2.04
567 f20x25x35 55685 114660 2.39
568 f20x25x40 63640 131040 2.73
569 f20x25x45 71595 147420 3.07
570 f20x25x50 79550 163800 3.42
571 f20x30x30 57030 117180 2.44
572 f20x30x35 66535 136710 2.85
573 f20x30x40 76040 156240 3.26
574 f20x30x45 85545 175770 3.67
575 f20x30x50 95050 195300 4.08
576 f20x35x35 77385 158760 3.31
577 f20x35x40 88440 181440 3.79
578 f20x35x45 99495 204120 4.27
579 f20x35x50 110550 226800 475

Table A.4 (cont.): 3D frame element models withulag geometry
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Model No. of Non-zero
No. Model Name Elements No. of Dofs inK (1e6)
580 f25x25x25 49400 101400 211
581 f25x25x30 59280 121680 2.54
582 f25x25x35 69160 141960 2.96
583 f25x25x40 79040 162240 3.39
584 f25x25x45 88920 182520 3.82
585 f25x25x50 98800 202800 4.24
586 f25x30x30 70830 145080 3.03
587 f25x30x35 82635 169260 3.54
588 f25x30x40 94440 193440 4.05
589 f25x30x45 106245 217620 4,56
590 f25x30x50 118050 241800 5.07
591 f25x35x35 96110 196560 411
592 f25x35x40 109840 224640 4,71
593 f25x35x45 123570 252720 5.3
594 f25x35x50 137300 280800 5.89
595 f30x30x30 84630 172980 3.62
596 f30x30x35 98735 201810 4.23
597 f30x30x40 112840 230640 4.83
598 f30x30x45 126945 259470 5.44
599 f30x30x50 141050 288300 6.05
600 f30x35x35 114835 234360 491
601 f30x35x40 131240 267840 5.62
602 f30x35x45 147645 301320 6.33
603 f30x35x50 164050 334800 7.04
604 f35x35x35 133560 272160 5.71
605 f35x35x40 152640 311040 6.54
606 f35x35x45 171720 349920 7.36
607 f35x35x50 190800 388800 8.18
608 f25x25x4 7904 16224 0.32
609 f25x25x5 9880 20280 0.4
610 f25x25x%6 11856 24336 0.49
611 f25x50x4 15604 31824 0.63
612 f25x50x%5 19505 39780 0.79
613 f25x50x%6 23406 47736 0.96
614 f25x75x%4 23304 47424 0.93
615 f25x75x%5 29130 59280 1.19
616 f25x75x%6 34956 71136 1.44
617 f25x100x4 31004 63024 1.24
618 f25x100x5 38755 78780 1.58
619 f25x100x6 46506 94536 1.91
620 f25x125x4 38704 78624 1.55
621 f25x125x5 48380 98280 1.97
622 f25x125x6 58056 117936 2.38
623 f25x150x4 46404 94224 1.86
624 f25x150x5 58005 117780 2.36
625 f25x150%6 69606 141336 2.86

Table A.4 (cont.): 3D frame element models withulag geometry
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Model No. of Non-zero
No. Model Name Elements No. of Dofs inK (1e6)
626 f50x50x4 30804 62424 1.23
627 f50x50x%5 38505 78030 1.57
628 f50x50x%6 46206 93636 1.9
629 f50x75x%4 46004 93024 1.84
630 f50x75x5 57505 116280 2.34
631 f50x75x%6 69006 139536 2.83
632 f50x100x4 61204 123624 2.45
633 f50x100x5 76505 154530 3.11
634 f50x100x6 91806 185436 3.77
635 f50x125x4 76404 154224 3.06
636 f50x125x5 95505 192780 3.88
637 f50x125x6 114606 231336 4.7
638 f50x150x4 91604 184824 3.67
639 f50x150x%5 114505 231030 4.65
640 f50x150%6 137406 277236 5.64
641 f75x75x%4 68704 138624 2.75
642 f75x75x%5 85880 173280 3.49
643 f75x75x%6 103056 207936 4.23
644 f75x100x4 91404 184224 3.66
645 f75x100x5 114255 230280 4.64
646 f75x100x6 137106 276336 5.63
647 f75x125x%4 114104 229824 4,57
648 f75x125x5 142630 287280 5.8
649 f75x125x%6 171156 344736 7.02
650 f75x150x4 136804 275424 5.48
651 f75x150x5 171005 344280 6.95
652 f75x150%6 205206 413136 8.42
653 f100x100x4 121604 244824 4.87
654 f100x100x5 152005 306030 6.18
655 f100x100x6 182406 367236 7.48
656 f100x125x%x4 151804 305424 6.08
657 f100x125x%5 189755 381780 7.71
658 f100x125x%6 227706 458136 9.34
659 f100x150x4 182004 366024 7.28
660 f100x150x%5 227505 457530 9.24
661 f100x150%6 273006 549036 11.2
662 f125x125x%4 189504 381024 7.58
663 f125x125x%5 236880 476280 9.62
664 f125x125%6 284256 571536 11.66
665 f125x150x4 227204 456624 9.09
666 f125x150%5 284005 570780 11.54
667 f125x150%6 340806 684936 13.98
668 f150x150x4 272404 547224 10.9
669 f150x150%5 340505 684030 13.83
670 f150x150%6 408606 820836 16.76

Table A.4 (cont.): 3D frame element models withulag geometry
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A.2 Test Problemswith Irregular Geometry

Figure A.6 shows selected 2D test problems wittgutar geometries. FE Models
shown in Figure A.6 are for quadrilateral elemeRts.Models with frame elements have
the same geometry. Figure A.7 shows selected 3D pesblems with irregular
geometries. FE Models shown in Figure A.7 are tidselements. FE Models with 3D
frame elements have the same geometry.

Figure A.8 shows the non-zero pattern for the pesblem g-varying-4. Similarly,

Figure A.9 shows the non-zero pattern for the pesblem s-bldg58.
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g-varying-1

q20x3

g-varying-3 q-varying-4

Figure A.6: Selected 2D test problems with quatkik elements.
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s-3x1-10 s-shorter-1x1-40

s-lI-section-3 s-varying3d-4

s-bldg58 s-columns-on-slab-2

Figure A.7: Selected 3D test problems with soleh@tnts.
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Figure A.8: Non-zero pattern for the test problemagying-4 (original ordering

and AMD matrix ordering).
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Figure A.9: Non-zero pattern for the test problefbidg58 (original ordering and

AMD matrix ordering).
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Model Name No. of No. of .Non-zero
Elements Dofs in K (1e6)
g5%3 54600 117090 1.06
g5%5 91000 195150 1.77
g5%10 182000 390300 3.55
g5%15 273000 585450 5.32
g5%20 364000 780600 7.1
gl0x3 101850 218460 1.98
gl0x5 169750 364100 3.31
g10x10 339500 728200 6.62
gl0x15 509250 1092300 9.93
g10x20 679000 1456400 13.24
g20x3 196350 421200 3.82
g20x5 327250 702000 6.38
g20x10 654500 1404000 12.76
g20x15 981750 2106000 19.14
g20x20 1309000 280800(¢ 25.52
g-varying-1 55900 112060 1.05
g-varying-2 229550 459980 4.35
g-varying-3 279500 560300 5.3
g-varying-4 450700 903920 8.56
g-varying-5 987500 1980700 18.77
g-varying-6 1975000 3961400 37.55

Table A.5: 2D quadrilateral element models witegular geometry

279



Model Name No. of No. of .Non-zero
Elements Dofs in K (1e6)
f5x3 111930 175635 1.34
f5x5 186550 292725 2.23
f5x10 373100 585450 4.47
f5x15 559650 878175 6.7
f5x20 746200 1170900 8.93
f10x3 208680 327690 2.5
f10x5 347800 546150 4.16
f10x10 695600 1092300 8.32
f10x15 1043400 1638450 12.49
f10x20 1391200 2184600 16.65
f20x3 402180 631800 4.81
f20x5 670300 1053000 8.02
f20x10 1340600 2106000 16.03
f20x15 2010900 3159000 24.05
f20x20 2681200 4212000 32.07
f-varying-1 111930 168090 1.33
f-varying-2 459540 689970 5.51
f-varying-3 559650 840450 6.71
f-varying-4 902660 1355880 10.83
f-varying-5 1977850 2971050 23.73
f-varying-6 3955700 5942100 47.48

Table A.6: 2D frame element models with irregulaogetry

280



Model Name No. of No. of Non-zero in
Elements Dofs K (1e6)

s-3x1-5 47600 191355 6.48
s-5x1-5 72800 292725 9.92
s-10x1-5 135800 546150 18.5
s-3x1-10 119000 420981 15.44
s-5x1-10 182000 643995 23.62
s-1x1-20 112000 377937 14.28
s-shorter-1x1-20 40000 136017 5.07
s-shorter-1x1-40 80000 265557 10.06
s-I-section-1 52500 191925 6.88
s-I-section-2 24500 89565 3.18
s-I-section-3 105000 383850 13.81
s-bldg58 84768 351150 11.64
s-bldg59 79488 307920 10.64
s-columns-on-slab-1 9056 31050 0.58
s-columns-on-slab-2 37280 117750 4.08
s-varying3d-1 16680 53100 1.89
s-varying3d-2 48600 157674 5.93
s-varying3d-3 58320 188520 7.15
s-varying3d-4 70920 224340 8.68
s-varying3d-5 38808 122598 4.65
s-varying3d-6 25944 83178 3.06
s-varying3d-7 11476 38985 1.26

Table A.7: 3D solid element models with irregulaogetry
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Model Name No. of No. of Non-zero in
Elements Dofs K (1e6)
f-3x1-5 172090 382710 7.45
f-5x1-5 262990 585450 11.38
f-10x1-5 490240 1092300 21.2
f-3x1-10 393610 841962 16.93
f-5x1-10 601510 1287990 25.86
f-1x1-20 359910 755874 15.46
f-shorter-1x1-20 126870 272034 5.38
f-shorter-1x1-40 249670 531114 10.58
f-I-section-1 182325 383850 7.81
f-I-section-2 85085 179130 3.63
f-I-section-3 364650 767700 15.64
f-bldg58 300200 702300 12.75
f-bldg59 257304 615840 10.6
f-columns-on-slab-1 29630 62100 1.02
f-columns-on-slab-2 115650 235500 4.73
f-varying3d-1 52060 106200 2.15
f-varying3d-2 153606 315348 6.54
f-varying3d-3 183880 377040 7.85
f-varying3d-4 220420 448680 9.41
f-varying3d-5 120506 245196 5.1
f-varying3d-6 81350 166356 3.42
f-varying3d-7 37359 77970 1.52

Table A.8: 3D frame element models with irregulaogetry
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APPENDIX B:

UTILITY PROGRAMS

In addition to the direct solver package SES, tb#owWwing programs are
developed throughout this study:

o Utility Library

The utility library provides abstractions for denswtrices (packed and full),
handling sparse indices, multithreading, assembly dense matrices, and partial
factorization operations. The MKL library is linked the utility library. Therefore, there
is no connection between the direct solver packagkethe BLAS libraries. The direct
solver package calls the factorization subroutinese utility libraries, which makes the
BLAS library calls (MKL).

* |Input Generator

An input generator is developed to easily creatt pFoblems with different
geometries. The input generator creates models wiiih size elements. The input
generator can be used to create models with 2Drdaidal, 2D frame, 3D solid and 3D
frame elements. Models with regular prismatic geii@® can be created easily using
command line arguments. For irregular geometriegnput file is required. The output
of the input generator is an input file for theedir solver package, which contains
element stiffness matrices, element connectivitiormation, node coordinates and
support conditions.

* Input Converter

The input converter converts a SES input file te thatrix market coordinate

sparse matrix format [156].
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SES Viewer

SES Viewer is a 3D visualization tool for the t@sbblems and results of the
preprocessing algorithms. It employs OpenSceneGiamry [157] for 3D graphics. All
figures illustrating the geometry of the test peobht are produced using SES Viewer.
Furthermore, any pivot-ordering found in the pregssing phase can be monitored in a
step-by-step fashion using the 3D GUI of the SESaérr. Figure B.1 shows a screenshot

from SES Viewer.

«cessing Settings Edi View Window Help

BEE

L

B 0splay settings

[~ Eliminated Element Transparency
% —_[— 100%
IW step through the node-ordering
~Stages of Elivination——————————————
 Remaining Element Transparency | 2 )
101 stepof |22
0% 100%
91 % i : ; ;
& Traverse inthe elimination ardering.
Element Size 1~ Traverse in the BFS order
100%
i
7%
Exit 12

|

Figure B.1: A screenshot from SES Viewer. A 3D culmodel is at the top and

the monitoring of a pivot-ordering for the modehisthe bottom.
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* BLAS/LAPACK Performance Evaluation

The performance of BLAS and LAPACK subroutineshe MKL library can be
evaluated using the performance evaluation progildns program executes the desired
BLAS/LAPACK subroutine repeatedly inside a loop. eTtexecution time of the
subroutine is recorded. The program gives the spéed BLAS/LAPACK by dividing
the operation count required for the subroutinéh@yexecution time.

» Partial Factorization Simulator

This program takes an assembly tree and simuldtespartial factorization
operations using corresponding BLAS/LAPACK subrpes. It gives the partial
factorization time for an assembly tree. It alseegi the operation counts for the partial

factorization and average partial factorizationesjze
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