
LARGE SCALE RECONFIGURABLE ANALOG

SYSTEM DESIGN ENABLED THROUGH

FLOATING-GATE TRANSISTORS

A Dissertation
Presented to

The Academic Faculty

By

Jordan D. Gray

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy
in

Electrical and Computer Engineering

School of Electrical and Computer Engineering
Georgia Institute of Technology

July 2009

Copyright© 2009 by Jordan D. Gray

LARGE SCALE RECONFIGURABLE ANALOG

SYSTEM DESIGN ENABLED THROUGH

FLOATING-GATE TRANSISTORS

Approved by:

Dr. Paul E. Hasler, Committee Chair
Professor, School of ECE
Georgia Institute of Technology
Atlanta, GA

Dr. David V. Anderson
Professor, School of ECE
Georgia Institute of Technology
Atlanta, GA

Dr. Farrokh Ayazi
Professor, School of ECE
Georgia Institute of Technology
Atlanta, GA

Dr. F. Levent Degertekin
Professor, School of ECE
Georgia Institute of Technology
Atlanta, GA

Dr. William D. Hunt
Professor, School of ECE
Georgia Institute of Technology
Atlanta, GA

Date Approved: April 2009

ACKNOWLEDGMENTS

I would like to thank all of my lab mates who helped me throughout this process. Paul,

thank you for your advisement. Ryan, thank for your mentorship. And Ashley, thank you

for your patience, your friendship, and your love.

iii

TABLE OF CONTENTS

ACKNOWLEDGMENTS . iii

LIST OF TABLES . vi

LIST OF FIGURES . vii

SUMMARY . x

CHAPTER 1 OVERVIEW . 1

CHAPTER 2 FLOATING-GATE ELEMENTS 4
2.1 Device characteristics . 4
2.2 Floating-gate charge movement techniques 8

2.2.1 Tunneling . 8
2.2.2 Injection . 9

2.3 Programming pMOS transistors . 12
2.3.1 Removing electrons . 12
2.3.2 Adding electrons . 13

2.4 Charge retention . 15

CHAPTER 3 FG-PFET ARRAYS . 20
3.1 Typical Implementation . 20
3.2 Isolation . 21

3.2.1 Drain selection limitations . 22
3.2.2 Parasitic Charge Movement . 23

CHAPTER 4 FG-PFET SIMULATION . 31
4.1 Channel Hot-Electron Injection . 33
4.2 Modeling and Simulation . 34

CHAPTER 5 VECTOR MATRIX MULTIPLICATION CELL 39
5.1 Programmable Current Mirror . 40
5.2 Input and Output Terminals . 46
5.3 Frequency Response at the Gate . 47
5.4 SNR . 51
5.5 Programming . 55
5.6 Implementation . 60

5.6.1 Simulation . 62
5.6.2 Experimental Results . 66

iv

CHAPTER 6 REPROGRAMMABLE ANALOG SYSTEMS 76
6.1 Transform Imager . 76

6.1.1 Computational Pixel Array . 79
6.1.2 Random Access Analog Memory 79
6.1.3 Current Based Vector Matrix Multiplication Design 80
6.1.4 Log Bidirectional Current to Voltage Conversion 84
6.1.5 Test Setup . 86
6.1.6 Results . 87

6.2 Adaptive Filter . 93
6.2.1 Adaptive Filter Architecture . 95
6.2.2 Adaptive Synapse Operation . 99
6.2.3 Adaptive Filter Measurements from a Network of Nodes 103

CHAPTER 7 RECONFIGURABLE ANALOG SYSTEMS 106
7.1 RASP . 106

7.1.1 VMM . 107
7.1.2 Continuous-Time Filters . 111

7.2 RAAM . 114
7.2.1 Single-input power-law circuit 117
7.2.2 Vector magnitude . 118
7.2.3 First-order filter . 120

CHAPTER 8 CONCLUSION . 122
8.1 Specific Contributions . 122

REFERENCES . 125

v

LIST OF TABLES

Table 1 Equilibrium weights for a Fourier Decomposition Experiment 103

Table 2 Summary of adaptive filter performance 104

vi

LIST OF FIGURES

Figure 1 Basic floating-gate transistor . 4

Figure 2 Floating-gate transistor programmed to different threshold values 5

Figure 3 Layout of a floating-gate transistor . 7

Figure 4 Fowler-Nordheim tunneling band diagram 9

Figure 5 Tunneling at the gate-drain overlap. 10

Figure 6 Channel hot-electron injection in a pFET 11

Figure 7 Gate induced drain leakage (GIDL) mechanism 12

Figure 8 Time-derivative of injection current . 13

Figure 9 Injection though curve fitting . 15

Figure 10 Experimental results for GIDL . 16

Figure 11 Floating-gate long-term charge retention 18

Figure 12 Switch matrix with basic circuitry . 21

Figure 13 Floating-gate array isolation . 22

Figure 14 Drain selection parasitics . 24

Figure 15 Experimental setup and procedure for measuring parasitic injection. . . . 28

Figure 16 Parasitic charge movement data. 29

Figure 17 Verilog-A model of pFET channel hot-electron injection 32

Figure 18 fg-pFET simulation schematic . 35

Figure 19 Change in current versus current . 36

Figure 20 Injection over time, experimental and simulated 38

Figure 21 Source and gate programmable gain current mirrors. 41

Figure 22 Ratio of transconductance to current. 42

Figure 23 Source and gate vector matrix multiplication. 44

Figure 24 Experimental measurement of κ mismatch. 45

Figure 25 Transimpedance amplifiers in a source signaling current mirror. 47

vii

Figure 26 Floating-gate VMM cell with computation transistor gate driven by am-
plifier. 49

Figure 27 Comparison of frequency response of floating-gate and amplifier com-
putational transistor. 50

Figure 28 Sampling frequency of current levels with different SNR requirements
predicted by a Poisson process. 52

Figure 29 Impact of gain adaptation on SNR of a logamp 55

Figure 30 Array selection circuitry for floating-gate with negative drain pulsing. . . 56

Figure 31 Impact of feedback on the injection current. 58

Figure 32 Feedback circuit for fixing V f g during injection. The transistor on the
right is the injection transistor. 59

Figure 33 Complete floating-gate VMM cell . 61

Figure 34 Comparator circuit with row logic for continuous-time injection. 63

Figure 35 Results of simulating the circuit in Figure 33 64

Figure 36 Measured results of fixed current injection. 65

Figure 37 Experimental measurement of Vin j . 66

Figure 38 Measurement of VMM multiplication, single-ended and four-quadrant. . 67

Figure 39 Result of the bring into range step in both output voltage and current. . . 69

Figure 40 Comparator-based continuous-time coarse programming transient mea-
surement . 70

Figure 41 Comparator-based continuous-time coarse programming characterization. 72

Figure 42 Comparator-based continuous-time coarse programming results 73

Figure 43 Fine programming characterization and measurements. 75

Figure 44 Block transform computational image sensor 77

Figure 45 Block matrix computation performed in the analog domain. 78

Figure 46 Front-end analog memory for the imager. 81

Figure 47 Vector-Matrix Multiplier schematic . 83

Figure 48 Bidirectional I-V concept and implementation. 85

viii

Figure 49 Imager test setup. 88

Figure 50 Image reading with identity and high-pass convolution programmed into
the B matrix. 89

Figure 51 Imaging with transforms that yield sparse representations, DCT and Haar. 91

Figure 52 Compressive Sensing using the transform imager. 93

Figure 53 Different levels of averaging on the imager. 94

Figure 54 Adaptive Filter IC concept, block diagram, and die photo 96

Figure 55 Adaptive filter circuit schematics . 97

Figure 56 Characterization of functional bocks required to build the adaptive nodes. 99

Figure 57 Adaptive filter result demonstrating correlation behavior 101

Figure 58 Adaptation of a single synapse connected using an LMS feedback. 102

Figure 59 Adaptive node Fourier decomposition. 105

Figure 60 RASP 1.5 architecture and die photo . 107

Figure 61 RASP 1.5 CAB . 108

Figure 62 FPAA differential 2x2 VMM structure 109

Figure 63 Single quadrant multiplication data . 110

Figure 64 FPAA VMM multiplier results . 111

Figure 65 Follower-integrator composed of a cap and OTA on an FPAA 112

Figure 66 Second-order section schematic . 113

Figure 67 SOS FPAA implementation and experimental data 114

Figure 68 3rd-order ladder filter, RASP mapping, and frequency response 115

Figure 69 RAAM architecture and die photo . 115

Figure 70 Schematic of a MITE squaring circuit 117

Figure 71 Compilation of a squaring circuit onto the RAAM 119

Figure 72 Vector magnitude circuit . 120

Figure 73 MITE implementation and experimental data of a 1st-order low-pass filter 121

ix

SUMMARY

This work is concerned with the implementation and implication of non-volatile

charge storage on VLSI system design. To that end, the floating-gate pFET (fg-pFET) is

considered in the context of large-scale arrays. The programming of the element in an

efficient and predictable way is essential to the implementation of these systems, and is

thus explored. The overhead of the control circuitry for the fg-pFET, a key scalability

issue, is examined. A light-weight, trend-accurate model is absolutely necessary for VLSI

system design and simulation, and is also provided. Finally, several reconfigurable and

reprogrammable systems that were built are discussed.

x

CHAPTER 1

OVERVIEW

The mapping from abstract computations to physical implementations is the pursuit of

analog and digital designers alike. Analog implementations are typically more difficult to

design than digital implementations because the links between computations and analog

implementations are weak analogies; multiplications, additions, and other computations

break down over signal magnitudes, bandwidths, and temperature and process variations.

In a digital design, the links between computations and implementations represent much

stronger analogies.

As a result analog design is much more difficult for VLSI system design than digital.

Exacerbating the difficulty of analog design is the absence of a malleable, intrinsic memory

element. As a result, analog designs dependent on fixed values of computation tend to

utilize high-gain feedback loops and matched components, which come at the cost of power

and area, respectively. In addition, it is common to use digital-to-analog converters (DACs)

to provide well-defined values for computation, a significant area burden.

Non-volatile charge storage, as applied to analog CMOS design, is the key to strength-

ening the analogy between computation and analog implementation. Beyond simply pro-

viding an accurate method for open-loop computation and reducing the area impact to

match components through offset removal, the analog memory element provides a means

for implementing the biasing for VLSI components that would be unfeasible otherwise.

This work is concerned with the implementation and implication of non-volatile charge

storage on VLSI system design. To that end, the floating-gate pFET (fg-pFET) is consid-

ered in the context of large-scale arrays. The programming of the element in an efficient and

predictable way is essential to the implementation of these systems, and is thus explored.

The overhead of the control circuitry for the fg-pFET, a key scalability issue, is exam-

ined. A light-weight, trend-accurate model is absolutely necessary for VLSI system design

1

and simulation, and is also provided. Finally, several reconfigurable and reprogrammable

systems that were built are discussed.

In chapter two, I introduce the core analog reprogrammable memory and computational

element, the floating-gate transistor. Charge storage is addressed using Fowler Nordheim

tunneling for charge removal, while channel hot-electron injection is the primary mecha-

nism used for precise and accurate charge storage. The floating-gate pFET is used through-

out this work to enable large-scale reprogrammable and reconfigurable analog systems.

In the third chapter, I discuss how to integrate floating-gate transistors into dense arrays.

I focus on isolation issues in addressing a single device in a large array. In previous work,

devices were addressed for injection by combining a high-field and the biasing to form

a substantial channel. I show that subthreshold conduction is not the dominant parasitic

charge movement mechanism over the entire operating range of the device. Further, I

suggest how to use switch elements and biasing to eliminate parasitic charge movement.

In the fourth chapter, I provide a more detailed discussion of floating-gate channel hot-

electron injection along with a simulator-targeted floating-gate injection model. In order

for floating-gate injection to become a ubiquitous analog design methodology, as opposed

to a risky technique, a robust model with strong simulation support is necessary. As a result,

I extend the model, apply it to Verilog-A, and demonstrate how to use the drain current of

a floating-gate transistor to fit the model for simulation.

The fifth chapter represents my effort to explore the use of floating-gate transistors as

they apply to the core functionality of a vector-matrix multiplier. Current mirroring using

the gate degrades over several orders of magnitude due to device mismatch, which can

be addressed by using the source voltage and and a buffer. Continuous-time fixed-current

injection is employed to reduce the overhead of modeling and targeting of programmed

currents.

I use the sixth chapter to discuss two different targeted, reprogrammable analog sys-

tems: a transform imager and an adaptive filter. The imager uses floating-gate transistors

2

for vector-matrix multipliers and offset removal, while the adaptive filter uses floating-gate

transistors in synapses that implement least-mean squared learning.

The floating-gate element is used more broadly in the seventh chapter to implement

full-scale reconfigurable analog. The fg-pFET is used for biasing, computation, and con-

nectivity in two different field-programmable analog arrays (FPAAs). In building large-

scale reconfigurable analog systems, there is a fundamental choice to be made between

the level of reconfigurability and the level of area consumption and associated increases

in circuit parasitics. The first system is a generic reconfigurable analog signal processor

(RASP). The second system is a reconfigurable analog array of MITEs (RAAM), where

a MITE is a multiple-input translinear element. The RAAM trades additional area for an

atomic computational element with a clear mapping between algorithms and analog imple-

mentation.

Chapter 8 provides a summary of the work completed.

3

CHAPTER 2

FLOATING-GATE ELEMENTS

First formally conceived in 1967, a floating-gate transistor is named as such because of

the electrically isolated material that forms the gate of the transistor. As a methodology,

it represents a means for implementing a non-volatile memory element in silicon CMOS

technology. The floating-gate transistor is a critical element of modern micro-scale elec-

trical circuitry, as it sits at the core of FLASH memory. And though floating gates are

primarily used as a storage mechanism for digital systems, there has been a trend of re-

search and development for floating gates as an analog circuit element over the last 15

years [1, 2, 3, 4, 5, 6, 7]. By understanding the I-V relationship and charge storage issues

of the floating-gate transistor, it can be used effectively to enhance analog circuit design

and implementation.

2.1 Device characteristics

A floating-gate transistor in its simplest form is a standard MOS transistor with a capac-

itor in place of a gate contact. The device shown in Figure 1 is an example of a typical

floating-gate transistor. Multiple coupling capacitors are often used in designing floating-

gate transistors. The current through the device is controlled by the voltages coupling onto

the gate node through explicit and parasitic capacitors in conjunction with the charge on the

V1

C1Vfg

Vd

Vs

I

V2

C2

Figure 1. A basic floating-gate schematic with two coupling capacitors.

4

0 0.5 1 1.5 2 2.5
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

2
.7

5
V

2
.5

V

2
.2

5
V

2
V

1
.7

5
V

1
.5

V

1
.2

5
V

1
V

0
.7

5
V

G a t e V o l t a g e (V)

S
q

u
a

r
e

-
r

o
o

t
 o

f
 t

h
e

 D
r

a
in

 C
u

r
r

e
n

t
 (

A
1

/
2
)

Figure 2. A floating-gate transistor programmed to different threshold values. The effective threshold
voltage is given for each curve.

5

isolated gate region. The relationship between the terminal voltages and drain current of

the two-input floating-gate transistor, assuming saturated subthreshold operation, is given

by the following equation:

I = Is e
(VDD−Vs)−κ(VDD−V f g)

UT e
VDD−VD

VA (1)

where the floating-gate voltage is formulated as the following:

V f g =
C1

CT
· V1 +

C2

CT
· V2 +

Cd

CT
· Vd +

Cs

CT
· Vs + ... +

Q
CT

(2)

or more simply,

V f g =
∑

i

Ci

CT
· Vi +

Q
CT

(3)

where Q is the isolated charge and Vi is the ith voltage connected through capacitor Ci to

the gate with total capacitance CT connected to it.

There are at least two important implications of (3): the gate voltage is a function of

the charge stored on it, and the gate voltage is a function of any other voltage capacitively

coupled to the gate. Because the gate voltage is a function of the charge stored on the

floating gate, the I-V curve of the transistor can be shifted to a particular, desirable point.

Illustrated in Figure 2 is a series of gate sweeps for a floating-gate device with different

amounts of charge stored. The sweeps were performed by using the capacitors C1 and C2

in conjunction to couple onto the floating-gate. The result is a single transistor with a wide

array of possible effective threshold values, with a threshold given by:

Vth = V ′th +
Q

CT
(4)

where V ′th is the threshold of the same transistor without a floating gate. The implication is

that for DC conditions, the current through a floating-gate transistor can be set as precisely

as the charge on the floating-gate can be controlled.

The current through a floating-gate transistor under the condition that its terminals are

not at fixed potentials is less well defined because of the contribution to the effective gate

6

p+

n-well

n+
p-substrate

MOS Tunneling

Capacitor

SiO2

Floating Gate

Transistor
Input Capacitor

Vin Vtun
Vfg

Vs Vd

poly2 cap

SiO2

Floating Gate

Metal 1 Layer

(Floating Gate)

n-well

Figure 3. The layout for a floating-gate transistor. The MOS capacitor is used for charge removal,
while the drain of the transistor is where charge addition occurs. Both issues are covered in
Section 2.2.

voltage from potentials though capacitive coupling. For instance, the Early Effect of a

floating-gate transistor is typically dominated by capacitive coupling rather than the length

of the transistor. The effect of the drain coupling can be engineered to a nominal factor by

decreasing the overlap capacitance or increasing the value of CT .

The layout for a floating-gate transistor is shown in Figure 3. The MOS capacitor is

used for charge removal while the drain of the transistor is where charge addition occurs.

Both issues are covered in Section 2.2.

7

2.2 Floating-gate charge movement techniques

As discussed previously, the I-V characteristic of a floating-gate transistor is strongly de-

fined by the charge stored on the floating gate. In this work, two physical phenomena

are purposefully employed to control the value of stored charge: Fowler-Nordheim (FN)

tunneling and hot-electron injection.

2.2.1 Tunneling

Electron tunneling is the process by which an electron passes through a barrier rather than

traversing the conduction band associated with that barrier. In the case of direct band-to-

band tunneling, electrons may pass though a barrier without any assistance. The likelihood

of direct band-to-band tunneling is related to the thickness of the barrier. Obviously, ox-

ides that demonstrate appreciable levels of direct band-to-band tunneling are unsuitable for

building an electrically isolated gate.

In the case where the oxide thickness is not so thin that spontaneous tunneling domi-

nates, a field-assisted mechanism called Fowler-Nordheim tunneling can be used to modify

charge stored on a floating material. Illustrated in Figure 4, electrons on the floating-gate

are trapped by the barrier imposed by the SiO2. By lowering the voltage of the silicon,

the energy bands bend in such a way that the electrons see a thinner, triangular barrier. As

a result, electrons tunnel through the material. The process is sometimes referred to as a

tunneling diode since the current can only move in one direction. As a result, the system

is in negative feedback, constantly slowing the rate of tunneling. As current flows through

the tunneling diode, the loss of electrons on the polysilicon results in a positive change in

potential. The net result is a widening of the triangular barrier and a decrease in tunneling

current. In Figure 3, the capacitor between V f g and Vtun is the tunneling diode used for

purposeful tunneling of charge. In addition to the explicit tunneling diode, a field acting on

the gate overlap between the drain and gate can be sufficient to cause FN tunneling. This

occurs when the voltage across the gate oxide is raised to the point where electrons pass

through the narrowed gate insulator onto the floating gate. Shown in Figure 5, the condition

8

SiO
2 SiO

2

E
c

E
c

E
c

E
c

Floating Gate

Floating Gate

V
tun

V
tun

(a) (b)

Figure 4. An illustration of Fowler-Nordheim tunneling. (a) Initially, the SiO2 inhibits tunneling. (b)
By creating a significant voltage difference across the barrier, the conduction band bends
until carriers can tunnel though the narrow triangular region.

typically arises in a parasitic fashion in arrays of floating-gate transistors when the shared

gate is brought to the highest potential possible to minimize subthreshold conduction on

columns where the applied drain voltage is near ground.

Practically speaking, controlled tunneling of a floating-gate transistor is accomplished

by choosing a particular bias point and then applying tunneling voltage significant enough

to implement charge movement. As high voltages tend to be expensive with respect to

resource utilization, the bias point can be chosen to decrease the necessarily high tunneling

potential. The best case scenario for reducing the tunneling voltage in a circuit is to bring

the terminals of the floating-gate transistor to the lowest potential available–ground in a

single supply circuit. The change in the floating-gate voltage from the bias point in normal

operation to the bias point at ground is proportional to the decrease in the requirement for

the maximum tunneling voltage.

2.2.2 Injection

Hot-carrier injection is the process by which a carrier is excited to the point that it can sur-

mount an interface barrier and enter the region of the associated barrier material’s conduc-

tion band. Common forms of hot-carrier injection include UV light exposure and channel

9

E
c

E
i

E
f

E
vSiO

2

Gate

Drain

Figure 5. An illustration of Fowler-Nordheim tunneling due to the high field at the gate-drain over-
lap. The condition typically arises in a parasitic fashion in arrays of floating-gate transistors
when the shared gate is brought to the highest potential possible to minimize subthreshold
conduction on columns where the applied drain voltage is near ground.

hot-carrier injection [8][9].

In EPROM memory structures, UV light is typically used to erase the device before it is

programmed. The dominant charge movement mechanism is injection. UV light generates

carriers in the silicon and imparts them with enough energy to promote the carriers into the

conduction band of the dielectric that isolates the floating-gate of the EPROM.

Channel hot-carrier injection refers to channel-current injection. A minority carrier

traveling from source to drain gains enough energy because of the source-drain field to

surmount the gate interface and enter the conduction band of the barrier rather than making

it to the drain.

A particular type of channel hot-carrier injection is one where the majority carriers of

a transistor are created and subsequently inject due to high-energy minority carriers. In a

pFET, electrons resulting from hole impact ionization are provided sufficient energy and

trajectory to surmount the barrier presented by the gate oxide. The holes impact ionize in

the drain region because of the high field between the channel and drain. The resulting

electrons travel out of the drain in the direction of the channel. Those electrons not swept

out through the bulk inject into the gate because of the gate to channel field. An illustration

of the process is provided in Figure 6a and a band diagram of the process is shown in Figure

10

n-well

p-substrate

p+p+
n+

well
contact

drainsource gate

Drain-to-Channel
Depletion Region

p+

drain

Channel (1)

(2)

(3)

gate

n-well

p-substrate

p+p+
n+

well
contact

drainsource gate

Drain-to-Channel
Depletion Region

p+

drain

Channel (1)

(2)

(3)

gate

E
C

E
V

Source
Channel

Drain

E
C
(SiO

2
)

(a) (b)

Figure 6. Illustration of channel hot-electron injection in a pFET. (a1) The minority carrier impact
ionizes the drain region, creating an electron-hole pair. (a2) Majority carriers are swept out
into the bulk. (a3) Because of the gate-to-bulk field, a portion of the high-energy majority
carriers inject into the conduction band of the barrier and enter onto the floating-gate. (b)
Band diagram of channel hot-electron injection in a pFET

6b. A pMOS transistor is shown since it is the floating-gate device type used in this work.

The reasoning behind the use of a pMOS is covered in Section 2.3. It is important to note

that while the injection mechanism is well defined by the channel current, subthreshold

conduction guarantees that injection will occur so long as the channel to drain potential is

large enough. As a result, the subthreshold conduction results in parasitic charge injection.

One other form of parasitic charge injection is a result of high fields that can be present

at the isolation junction of a pFET drain. The process, illustrated in Figure 13, occurs when

the transistor has a high gate voltage and a low drain voltage and when the area under the

gate is accumulated with bulk majority carriers. Any thermally generated electrons that

are swept through the high field have the potential to inject into the gate. Exacerbating

the situation is the gate overlap of the PN-junction at the inside edge of the drain. The

high potential on the gate necessary to reduce subthreshold conduction can deplete or even

invert the p+ region under the gate overlap. The severe band bending that occurs leads to

band-to-band tunneling of electrons from the valence band to the conduction band. The

current, called gate-induced drain-leakage (GIDL) current [10], has the potential to inject

11

A

I
D

V
B

V
GB

Bulk

Drain

depletion
Gate V

G
>V

B
>> V

D

np+

region

I
D

Figure 7. Conditions necessary to generate GIDL current in a pFET. The gate is brought above the
bulk, the drain is held fixed at ground. Positive VGB results in accumulation which pinches
the depletion region around the drain. The high field and narrow depletion region allow
electrons in the valence band of the drain to tunnel though the depletion region, illustrated
by light-green and light-orange. When that occurs, holes are generated that move out to the
drain. The electrons move toward the gate and bulk in a manner similar to drain avalanche
hot carrier (DAHC) injection.

into the floating gate [11].

2.3 Programming pMOS transistors

While nMOS transistors are the dominant device choice for FLASH and EEPROM non-

volatile digital memory structures, special processing steps are generally required to sustain

reliable, consistent operation. On the other hand, pMOS transistors with sufficiently large

gate oxides available in standard CMOS processing are well suited for direct floating-gate

implementation [12]. As a result, the following programming techniques are expressed for

pMOS floating gates on standard CMOS processes exclusively.

The FPAAs discussed in this document rely on a large number of floating-gate transis-

tors. While the programming methods discussed in the following subsections relate only

to single transistors, the framework for interacting with arrays of floating-gate transistors

is covered in Chapter 3.

2.3.1 Removing electrons

To create the triangular barrier necessary to tunnel electrons off of the floating gate, ex-

tremely high voltages must be used. In many cases, the voltage for tunneling exceeds the

12

10
−9

10
−8

10
−7

10
−6

10
−5

0

0.5

1

1.5

2

2.5

3

3.5

4

Drain Current (A)

d
I/

d
t

 (
μ

A
/s

)

Numerical Derivitive

Polynomial Fit of Data

0 10 20 30 40 50 60 70 80 90

0

0.5

1

1.5

2

2.5

3

3.5

4

Injection Time (s)

d
I/

d
t

 (
μ

A
/s

)

Numerical Derivitive

Polynomial Fit of Data

(a) (b)

Figure 8. This is experimental data for the time-derivative of current during injection. The VS D was
kept small enough that measurement on the order of seconds was possible. (a) Peak injection
occurs relative to a particular current level. (b) At a time after peak injection, the rate of
current change falls off with approximately a 1

X dependence.

breakdown voltage for the active-to-bulk PN junctions in a process, making on-chip instru-

mentation difficult. In addition, charge movement through Folwer-Nordheim tunneling is

less well characterized for floating gates than injection. As a result, it is more convenient

to use tunneling as a global erase. Each floating gate has a tunneling capacitor that consists

of a MOS-cap, as shown in Figure 3. A MOS capacitor is used for tunneling since it is the

highest quality oxide available in a standard CMOS process.

2.3.2 Adding electrons

Channel hot-carrier injection is a common technique for adding electrons to floating-gate

nFETs because an electron is the minority carrier to be injected. In a pMOS device, the

majority carrier is an electron, so one would expect reasonable current densities resulting

from DAHC injection. As a result, the following techniques relate to DAHC injection.

2.3.2.1 Gate-sweep injection

Gate-sweep injection is used when exact current levels are not important and results in

high levels of injection. The need for a gate sweep results from the observation of the

instantaneous rate of change of the drain current, shown in Figure 8. The instantaneous

13

change in the current relates to the efficiency of injection. Figure 8a illustrates that peak

injection is related to a particular current level that corresponds to a particular effective

gate voltage. Moreover, by injecting electrons onto a floating gate, the effective voltage is

constantly changing. To counteract the negative feedback from the accumulation of charge,

the gate must be constantly moved in order to maintain injection.

Often there is so much charge on the floating gate that it is not possible to inject at

maximum efficiency. As a result, a linear gate sweep is not necessarily the best choice.

As illustrated in Figure 8b, beyond the maximum injection efficiency, the rate of injection

falls off at approximately 1
X . When injecting a device that cannot be brought back to peak

injection current levels, it is necessary to spend a longer time injecting. In particular, it

is often beneficial to use a gate sweep with a logarithmic characteristic. The logarithmic

curve allows for a higher density of points at higher voltages, counteracting the reduced

injection efficiency.

2.3.2.2 Drain-pulse injection

Drain-pulse injection is a characterization-intensive programming methodology and results

in very efficient, accurate programming. It works by injecting a floating-gate transistor in

short bursts or pulses, and is more completely described in [13]. The illustration in Figure

9a is the first step in the process. A transistor has been injected over a wide range of VS D

voltages. Because pulses are used, a derivative is not possible because of parasitic effects

relating to the rising and falling edge of the pulse. Instead, the percentage change is used as

a means for evaluating the injection efficiency. The data, plotted as black circles in Figure

9b, relates a particular drain current and VS D to a percentage change in the floating-gate

transistor current. The data is curve-fit, resulting in the surface of Figure 9b. It represents

a mapping from one current level to another. When a particular floating-gate current is

necessary, the mapping provides the necessary VS D to reach the new current level.

14

1 10 100 1000
1n

10n

100n

1u

10u

100u

V
D

Pulses

I D

(A

)

Increasing V
SD

4.5
4.6

4.7
4.8

4.9
5

5.1
5.2

5.3

10n

100n

1u

10u

100u
0.1

1

10

100

V
SD

 (V)

I
D
 (A)

Δ
I/

I
%

(a) (b)

Figure 9. (a) The raw data used to characterize drain-pulse injection. (b) The data is replotted as ∆I
I vs

I, the black circles, and curve fit, resulting in the surface shown.

2.3.2.3 GIDL injection

In order to measure the GIDL current, the schematic in the left portion of Figure 7 is used.

The bulk and source are tied together, the drain is connected to ground through an ammeter,

and the gate is biased above the bulk potential. The resulting drain current for bulk voltages

ranging from 6 to 8V and gate-to-bulk voltages from 0 to 3V is shown in Figure 10. The

measurement floor of 10 pA is related to the reverse-bias current from the clamp-diodes

protecting the drain terminal. Two useful conclusions are apparent from the experimental

data. If there is less accumulation around the drain, the GIDL current is reduced. In

addition, the bulk-to-drain voltage is also related to the leakage current measured—even

with no accumulation, the current increases with bulk voltage.

2.4 Charge retention

The quality of the circuits and systems discussed in this document are proportional to the

precision that charge can be injected onto electrically isolated polysilicon. Therefore, a

key characteristic of a floating-gate device is its ability to retain charge for long periods

of time with minimal leakage. The work in this section has been published and is used

to characterize the offset variation of an amplifier over time with respect to charge loss

15

6

7

8

0

1

2

3

10p

100p

I
D
 [A]

V
GB

 [V] V
B
 [V]

Figure 10. Experimental results for gate induced drain leakage. The bulk and source are tied together,
the drain is connected to ground through an ammeter, and the gate is biased above the
bulk potential. The resulting drain current for bulk voltages ranging from 6 to 8V and
gate-to-bulk voltages from 0 to 3V is shown. The measurement floor of 10 pA is related to
the reverse-bias current from the clamp-diodes protecting the drain terminal. Two useful
conclusions are apparent from the experimental data. If there is less accumulation around
the drain, the GIDL current is reduced. In addition, the bulk-to-drain voltage is also related
to the leakage current measured—even with no accumulation, the current increases with
bulk voltage.

16

resulting from a floating-gate offset removal technique [14].

Assuming a high-quality oxide, the mechanism for losing charge over time is thermionic

emission [15, 16]. The amount of charge lost is a function of both temperature and time

and is given by
Q(t)
Q(0)

= exp
[
− tυ·exp

(
−φB

kT

)]
(5)

where Q(0) is the initial charge on the floating gate, Q(t) is the floating-gate charge at

time t, υ is the relaxation frequency of electrons in poly-silicon, φB is the Si − SiO2 barrier

potential, k is the Boltzmann’s constant, and T is the temperature. For normal temperatures,

the amount of charge lost is typically very small and difficult to measure. By increasing the

temperature, the thermionic emission can be increased to measurable levels.

Knowing the exact charge on a floating gate is not straightforward. An easier way to

approach Q(t)
Q(0) is to take advantage of a ratio of threshold voltages before and after program-

ming. By rearranging (4),
Q(t)
Q(0)

=
Vth(t) − V ′th
Vth(0) − V ′th

(6)

The values of parameters υ and φB were estimated to be 60s−1 and 0.9eV using experi-

mentally measured values of charge loss for different time periods when the devices were

exposed to high temperatures (> 250◦C) for a prolonged period of time.

Figure 11 shows the measured floating-gate charge loss along with a theoretical extrap-

olated fit using the estimated model parameters. Also in Figure 11 is a summary of the per-

centage change in floating-gate charge between two floating-gate transistors programmed

to different thresholds. Pairs of floating-gate transistors were used to avoid the dependence

on measured charge. The two different cases were 10% programming change from initial

and 50% programming change from initial. The measured data agrees well with the the-

oretical prediction, and the trends observed in Figure 11 have been observed across many

floating-gate devices. The values in the table inset in Figure 11 have been evaluated using

(5) and assuming a subthreshold operation. No significant change can be extrapolated for

programmed currents for a period of 10 years at room temperature, indicating good charge

17

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

250°C

Time (days)

Q
(t

)/
Q

(0
) 275°C

300°C

325°C

350°C

0.1 1 10

Programmed 10%
change in current

Programmed 50%
change in current

Temperature ÄQ/Q ÄVfg ÄI/I ÄQ/Q ÄVfg ÄI/I

25°C 1e-3% 36.7nV 2e-4% 1e-3% 156nV 9e-4%
90°C 0.62% 16.3µV 0.06% 0.62% 65µV 0.57%
140°C 18.2% 1.8mV 1.8% 18.2% 1.92mV 10.7%

Figure 11. The plot shows the measured charge loss (◦’s) plotted with an extrapolated theoretical fit
(solid) for different temperatures and time. The table summarizes the percentage change in
the floating-gate charge, voltage, and current over ten years for two different cases: (a) 10%
programming change from initial (b) 50% programming change from initial.

18

retention in floating-gate devices.

19

CHAPTER 3

FG-PFET ARRAYS

Non-volatile charge storage is a transformational technology in the field of analog inte-

grated circuit design. From enabling the matrix-vector multiplications in an analog pattern

classifier and a computational image sensor to facilitating circuit topology transformations

and biasing of a field-programmable analog array (FPAA), non-volatile charge storage has

been established as a key analog computational system building technique [17][18][19].

In the aforementioned examples, the charge storage is implemented through the use of a

floating-gate pFET (fg-pFET) transistor. In the case of the image sensor work, over 3,000

floating-gate transistors are used. The classifier and FPAA contain more than 28,000 and

50,000 floating-gate transistors, respectively. To facilitate the design and implementation

of all of those analog memory cells, the floating-gate transistors are arranged in regular

arrays, Figure 12, reminiscent of early FLASH memory [20]. The compact floating-gate

selection and isolation circuitry employed in such arrays is aggressively sized to minimize

area.

3.1 Typical Implementation

A floating-gate array can come in a number of different forms. A good starting point for

consideration is the full cross-bar switch matrix. So-called because it looks liked crossed

bars, the array topology allows any row to be connected to any column through the weight

associated with the programmed charge. Currents sum along a drain line as a result of

Kirkov’s current law. For a current-mode vector applied along the rows of the array, the

drain currents are representative of a matrix-vector multiplication. In the extremes of

charge storage, the array is essentially a connectivity grid that allows for reconfigurable

topology. Figure 12 is a representation of a 4x7 floating-gate array with the basic program-

ming circuitry included.

20

V
off

prog

V
D

V
Tun

V
G

Figure 12. Switch matrix array with basic selection circuitry. Each black dot in the array is a float-
ing gate transistor. The circuitry around the outside of the crossed-bars is necessary for
programming the individual floating-gates.

Each black dot in the array is a floating-gate transistor. The circuitry around the outside

of the crossed bars is necessary for programming the individual floating gates. When the

pass and t-gate controls are de-asserted, rows and columns of the floating-gate transistors

are used as switches and the array is said to be in run mode. In the case where voltages

are asserted along the rows and columns of the matrix, the array is said to be in prog mode

because variations in the asserted voltages can result in programming of the floating gates.

For the purpose of visibility, the logic for setting t-gate and MUX bits is not shown. In

addition, the pull-up transistors controlled by the program signal are drawn on the right

side instead of the left for visibility as well. Programming circuitry is generally centralized

in order to reduce the total area impact.

3.2 Isolation

The goal of array programming is to provide a methodology for controlling the charge on

a large number of floating-gate transistors in a spatially and temporally efficient manner.

The circuit topology of Figure 12 is designed with the intention of programming a single

floating-gate transistor at a time with a focus on spatial efficiency. Decoders are used to

select which row and column are connected to VG and VD, respectively, and are collocated

21

V
off

prog

V
D

V
Tun

VV
Tun

V

p

ff

V
G

Figure 13. Floating-gate array isolation. In programming mode, all of the sources, drains, and gates are
driven to VDD, yellow, except a selected gate line, blue, and drain line, red. The intersection
of the variable gate and drain line allow for a single floating-gate transistor to be selected.
Other devices lack the VS G or VS D to be affected.

with the programming circuitry around the periphery of the array. The Vo f f voltage is used

to reduce undesirable injection on rows that are unselected. The t-gates along the top of

the array are necessary because in run mode, the drains should be connected to something

other than the programming circuitry.

To program a single floating-gate transistor in the array, isolation of the desired device

is important. To achieve the isolation of a single transistor, only a single row and column of

the array are selected. Shown as the circled transistor in Figure 13, the intersection of the

selected row and column provide the source, drain, and gate potentials necessary to form

a channel. This is important because, as discussed in Section 2.2.2, a channel is necessary

for DAHC injection.

3.2.1 Drain selection limitations

A potential problem of programming the fg-pFETs is that the current levels during pro-

gramming become so great that a voltage drop across the drain-line t-gate is significant.

The problem is illustrated schematically in Figure 14a. To evaluate the problem, a single,

isolated, .5um floating-gate pFET was injected over a period of about 40 seconds with a VS D

of 5.5V. This VS D was chosen to provide a measurable injection current. The device was

22

tunneled and then injected with a discrete 10 kΩ resistor placed between the drain node and

the voltage source for the drain. The experiment was repeated for a 20 kΩ resistor. The re-

sistors represent the possible worst-case parasitic resistance because of a transmission gate.

The addition of the resistors resulted in a lower drain current, implying that the injection

was limited. From the injection equation [21],

Iin j = Iin j0

(
IS

IS 0

)α
e−VS D/Vin j , (7)

it is shown that the injection is in part controlled by VS D. As the current through the drain

increases, the voltage dropped across the resistor increases. At 25 uA, the drop across the

resistors is nearly 5-10% of the VS D voltage for the 10 kΩ and 20 kΩ resistors, respectively.

With a 5-10% decrease in the VS D, the rate of injection is expected to decrease exponen-

tially.

3.2.2 Parasitic Charge Movement

One other problem with the array structure of Figure 13 is that the selected element is not

the only fg-pFET that will have its charge varied. In fact, the entire column of the selected

transistor will experience some level of charge movement because of the high field at the

drains of the transistors. FN tunneling from gate to drain and PN-junction reverse bias

current and GIDL current will all cause movements in the floating-gate charge.

The channel hot electron (CHE) injection and FN tunneling are a subset of processes

that belong to the broad field of leakage current mechanisms studied in the context of both

non-volatile semiconductor and CMOS scalability and reliability [20][22]. The parasitic

charge mechanism directly addressed in typical floating-gate array isolation is subthresh-

old conduction. Figure 6b is appropriate to discuss parasitic CHE injection, the only dif-

ference from intentional injection is that the channel potential is more positive, decreasing

the availability of minority carriers for generating an impact-ionization event. Two mecha-

nisms not addressed by typical array isolation are parasitic FN tunneling and PN-junction

reverse bias current.

23

Vd

Sel Selbar

G0

Id

+

_

G1 G2 G3

Id * R

(a)

10 15 20 25 30 35 40
10

−9

10
−8

10
−7

10
−6

10
−5

Injection Time (s)

D
ra

in
 C

ur
re

nt
 (

A
)

No Resistor
10k Resistor
20k Resistor

0 5 10 15 20 25
0

1

2

3

4

5

6

7

Drain Current (µA)

dI
/d

t (
µA

/s
)

No Resistor
10k Resistor
20k Resistor

(b) (c)

Figure 14. Illustration of drain resistor limitation. (a) Schematic drawing of the drain switch resis-
tance. (b) Current measurement of injection for different discrete resistors. (c) Numerical
temporal derivative of current versus current.

24

A field acting on the gate overlap between the drain and gate can be sufficient to cause

FN tunneling. The voltage across the gate oxide is raised to the point electrons pass through

the narrowed gate insulator onto the floating-gate. Shown in Figure 7, the condition arises

because the gate is brought to the highest potential possible in order to minimize subthresh-

old conduction on columns where the applied drain voltage is near ground.

The PN-junction isolating the p+ drain region from the n-well of an unselected fg-pFET

is subjected to a high field when another device on the same column has been selected for

injection. Any thermally generated electrons that are swept through the high-field have the

potential to inject into the gate. Exacerbating the situation is the gate overlap of the PN-

junction at the inside edge of the drain. The high potential on the gate necessary to reduce

subthreshold conduction can deplete or even invert the p+ region under the gate overlap.

The severe band bending that occurs leads to band-to-band tunneling of electrons from

the valence band to the conduction band. The current, called gate induced drain leakage

(GIDL) current, has the potential to inject into the floating-gate, Figure 7.

3.2.2.1 Parasitic Charge Measurement

One of the more fundamental problems with characterizing a floating-gate transistor is that

the charge parameter is difficult to measure directly. Amplifiers and capacitors can be used

to integrate the current flowing onto the floating-gate, and transistors without floating-gates

can be measured directly for gate current. Both methods require specific characterization

structures that do not directly represent the exact conditions of the fg-pFET in the final

working system. However, it is possible to directly measure a value proportional to the

change in charge over time from a measurement available in a typical fg-pFET array, the

gate sweep of a drain current. The accuracy of the charge measurement is limited by the

estimation of capacitor through which the gate was swept, but is not strictly necessary

for analysis of the charge rate since the capacitor is a constant (in the case of poly-poly

capacitor).

25

3.2.2.2 Temporal Derivative of Charge From the Drain Current

The procedure of charge variation measurement proceeds with a subthreshold drain current

Id defined as:

Id = Ibias · e−
κV f g/UT (8)

where Ibias is the current that flows through the drain due to effects unrelated to the gate

potential, κ is the coupling factor of the floating-gate to the surface potential, and UT is the

thermal voltage of a floating-gate transistor. The floating-gate voltage is then given by

V f g = −
UT

κ
· ln

(
Id

Ibias

)
(9)

The floating-gate voltage is not known, but it can be referenced to the known quantity Vg.

By substituting (3) into (9), the primary gate coupling voltage is found to be

Vg = −
CT

Cg

∑
j

C j

CT
· V j +

Q
CT

+
UT

κ
· ln

(
Id

Ibias

) (10)

where Cg is the primary capacitor though which a voltage is coupled to the floating-gate

and V j is the jth voltage connected through capacitor C j (which does not include Vg and

Cg). The key observation about (10) is that by fixing the current and coupling voltages,

the relationship between Vg and Q is uniquely defined, assuming a fixed temperature. By

taking the temporal derivative of Vg for a fixed current Id and coupling voltages V j, the

temporal derivative of charge becomes apparent.

dVg

dt

∣∣∣∣∣ Id→ f ixed
V j→ f ixed

= −
CT

Cg
·

d (Q/CT)
dt

= −
1

Cg
·

dQ
dt

(11)

Experimentally, the meaning of quantity Vg for a fixed drain current is the Vg applied

to cause Id to flow. Id is chosen such that (8) is valid, a condition satisfied by picking a

subthreshold current. A desirable side effect of a fixed drain current and fixed coupling

potentials is that κ is held fixed. When the Vg necessary to achieve Id changes due to the

26

exposure of a high field, the new Vg along with the time of exposure results in a rate defined

by (11). V j is held fixed by performing the gate sweep with the same source, drain, bulk,

and tunnel potentials applied. Thus, charge-movement can be measured from gate sweeps

of a drain current.

3.2.2.3 Experiment

In order to explore the parasitic charge movement, the device under observation is first

programmed to a particular charge level using a method similar to [23]. The drain current

is then measured by sweeping the control gate under the conditions expressed in Figure

15a. Next, the device is exposed to a high field at the drain under a bias associated with no

measurable drain current for a well defined period of time, illustrated in Figure 15b.

After high-field exposure, the device is once again measured under the condition of

Figure 15a. For subsequent exposure times, the device is tunneled and injected back to

the initial charge condition. The result of three exposures, 20, 40, and 60 seconds each,

is plotted in Figure 15c. The experiment of Figure 15c is repeated for different initial

charge levels in order to create a data set that spans the usable range of a fg-pFET with

a 2.5V supply. A sub-portion of the complete data set is provided in Figure 16a. The

individual experiments represented in Figure 15c are identifiable in Figure 16a by lines

with a common hue.

In order to implement the fixed current condition of (11), a deep subthreshold current

is chosen. The dashed line through 1nA on the plot of Figure 16a intersects a set of control

gate voltages which serve as the experimental representation of (10). By subtracting the

final control voltage Vg

∣∣∣
t>0

from the initial condition Vg

∣∣∣
t=0

and dividing by the associated

time, a numerical result for (11) is found. Figure 16b is the result of computing the numer-

ical derivative from Figure 16a. It is important to note that because charge and control gate

voltage of Figure 16b have a one-to-one mapping, the value of charge must be lower for

higher gate voltages. As a result, the effective floating-gate voltage during the high field

exposure decreases for increasing control gate voltage on the plot.

27

A

0

2.5

2.5

Cg

Vg

Vfg

Id

5.0

0 0.2 0.4 0.6 0.8
10

-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

Gate Control Voltage (V)

D
ra

in
 C

u
rr

en
t

(A
)

Start Condition

20s Exposure

40s Exposure

60s Exposure

(a) (b) (c)

Figure 15. Experimental setup and procedure for measuring parasitic injection. (a) Circuit conditions
used to perform a sweep of the floating-gate transistor. (b) Circuit conditions used to create
the parasitic injection. (c) Experimental results demonstrating the effect of parasitic injec-
tion. Each sweep was performed under the circuit conditions in Figure 15a. The solid lines
resulted from programming the floating-gate transistor to the dashed line then exposing the
floating-gate to the circuit conditions in Figure 15b for 20 to 60 seconds.

For control gate voltages upwards of 2V , subthreshold conduction injection dominates

the rate of change of charge as predicted by (12). Below 2V , dQ
dt due to subthreshold

conduction will continue to decrease exponentially. However, the subthreshold conduction

effect becomes insignificant when compared to the effects due to the PN-junction reverse

bias and tunneling currents.

3.2.2.4 Implications of Parasitic Charge Movement

The fundamental limitations imposed on floating-gate array injection by parasitic charge

movement can be addressed through the bias point of the fg-pFET, the algorithm used for

injection, and hardware used for isolation. The point on Figure 16b where dQ
dt changes sign

represents the bias point of minimum parasitic charge movement. fg-pFET arrays are often

constructed with the bias point as a degree of freedom and could take advantage of that

choice to minimize parasitic charge effects.

28

0.5 0.9 1.3 1.7 2.1 2.5

100p

1n

10n

100n

1u

10u

Control Gate Voltage (V)

D
ra

in
 C

u
rr

en
t

(A
)

 Initial

 20s

 40s

 60s

0 0.5 1 1.5 2 2.5

0.1

1

10

Control Gate Voltage (V) for 1nA of current

Δ
V

g
 /Δ

t
 (

m
V

/s
)

Measured

Smoothed

Decreasing V
fg

(during high field exposure)

(a) (b)

Figure 16. Parasitic charge movement data. (a) Representative sample of the raw data used to calcu-
late ∆Vg

4t , which approximates − 1
Cg

dQ
dt as shown in (11). Each color band is a repeat of the

experiment in Figure 15 for a particular initial programmed charge. The line through 1nA
is used as the reference for evaluating changes in Vg. (b) Rate calculated from the data in
Figure 16a. The raw calculation, gray circles, is smoothed in order to view the trend, the
solid black line. For higher Vg values with a fixed current, values of charge must be more
negative. Thus, a lower effective floating-gate potential during high field exposure is present
for higher control gate voltages in the plot. The charge movement on the left side of the
graph is dominated by FN tunneling and gated PN-junction reverse bias current, while the
charge movement to the right is dominated by subthreshold conduction.

When it is unfeasible to minimize the parasitic charge movement through bias point

selection, or if the minimal charge movement still limits programming accuracy, the pro-

gramming methodology provides a degree of freedom in minimizing the error due to charge

variation. The parasitic charge movement has a strong time dependence, so by injecting

each device on a shared column to a fraction of the desired final charge, the worst case

charge movement will be much less than if all the devices were injected to their final value

in succession. The fg-pFETs can be injected such that the final value is approached with

smaller and smaller charge injection steps. The algorithm described in [24] takes such an

approach. The work does not explicitly address parasitic charge movement, but provides

an approach that is insensitive to errors in the charge injection model through a multi-inject

and measure approach. Injection steps can be traded off for increased accuracy in order to

address the unmodeled charge movement. It is also possible to use the data set in Figure

16b to predict the parasitic charge variation from injecting a column of devices and incor-

porate it directly into the injection routine, potentially nullifying the impact of parasitic

29

charge movement.

In order to reduce parasitic charge movement during array injection to a negligible

level, it is necessary to prevent the high field from forming around unselected devices. The

most direct way to modify the array element would be to place a switch on the drain of

the fg-pFET in order to shield it from the injection pulse. In [25], the use of additional

selection circuitry is discussed in the context of array isolation, and switches on either the

source or drain of a fg-pFET are considered. The findings of that work can be augmented

in light of the data herein. Specifically, a switch on the source of an array element limits

parasitic charge movement for the range of biases where subthreshold conduction domi-

nates, as the source of carriers necessary for CHE injection are minimized. A switch on the

drain minimizes parasitic charge movement over the entire usable range of the device by

preventing the parasitic field at the drain from forming.

30

CHAPTER 4

FG-PFET SIMULATION

Large-scale analog reconfigurable systems are enabled by analog memory. Floating-gate

charge storage, a powerful analog memory technique, is reaching a critical mass of un-

derstanding and usage. Research VLSI systems have been fabricated and demonstrated

using the floating-gate pFETs (fg-pFETs) for a myriad of applications. Leveraging these

large-scale systems requires attention to the programming approach, which is critical to the

system behavior and use. One approach, employed by the FPAA discussed in the previous

chapter, uses a rigorous characterization method and an inject/measure routine to inject the

fg-pFETs [24]. It is useful to think of such an approach as being global-feedback intensive;

a supervisor system external to the IC is used to program the device. The pattern classi-

fier of [17] takes advantage of local-feedback to reduce the need for external measurement

and processing, as described in [26]. Both methods of programming are appropriate under

certain conditions, and there a range of other programming methodologies that use varying

levels of local and global feedback. However, the trade-offs are not immediately obvious.

The use of a programming methodology in a given system often requires a fabrication step

to properly investigate how effective the approach is for the system. Thus, in order for

floating-gate injection to become a ubiquitous analog design methodology, as opposed to a

risky technique, a robust model with strong simulation support is necessary.

In this section, I describe floating-gate injection, along with examples of simulator-

targeted floating-gate injection models. Next, I extend one of the models, apply it to

Verilog-A, captured succinctly in Figure 17, and demonstrate how to use the drain current

of a floating-gate to fit the model for simulation.

31

n- e w l l

p-subst rat e

p+p+
n+

well
contact

drainsour ce gate

Drain-to-C hannel
Deplet ion R egion

p+

drain

Ch a nn e l (1)

(2)

(3)

gate

n- e w l l

p-subst rat e

p+p+
n+

well
contact

drainsour ce gate

Drain-to-C hannel
Deplet ion R egion

p+

drain

Ch a nn e l (1)

(2)

(3)

gate

1. if(Vsd > Vsd_inj) begin
2. Iinj=Iinj0*Is/Ith*
3. exp(-kappa/Vinj*(Vb-Vg-(Vb0-Vg0)))*
4. exp(1/Vinj*(Vb-Vd-(Vb0-Vd0)));
5. end else begin
6. Iinj=0;
7. end

Figure 17. Simplified process of channel hot-electron injection in pFET and the associated Verilog-A
model description for floating-gate injection simulation. Minority carriers are accelerated
to the point of impact ionization, event (1), and the resulting electron is swept through the
channel toward either the well or the oxide. The rate of electrons reaching the gate, event
(3), compose the injection current. The actual Verilog-A code used for simulating floating-
gate injection is provided. The model has gate, source, drain, bulk, and source current ports.
For the sake of readability, potentials like V(source,drain) were assigned to variables such
as Vsd. The value Iin j is applied as a current between the drain and gate.

32

4.1 Channel Hot-Electron Injection

A floating-gate pFET is a pFET with an electrically isolated gate. By adding and removing

charge from the gate, the I-V relationship of the transistor can modified. We use channel

hot-electron (CHE) injection to add charge to the gate and Fowler-Nordheim tunneling to

remove charge. Because we treat tunneling as a global erase, we only need to model CHE

injection to enable our subset of floating-gate system design.

CHE injection is a multiple-step process where a high-energy hole results in an addi-

tional electron on the floating-gate pFET, Figure 17. When a hole is sufficiently accelerated

from source to drain, it can impact ionize, resulting in two holes and an electron at the

boundary of the drain region. The resulting electron will travel back towards the channel,

accelerated through the same field that energized the hole. If the energy imparted on the

electron is sufficient and the field between channel and gate is in the right direction, the

electron will travel through the oxide onto the gate.

CHE injection is dependent on the source current and drain-to-channel potential (Φdc).

However, Φdc is not explicitly available in a typical circuit simulation. [27] presents a first-

order model of CHE valid for subthreshold and above-threshold injection that does not

depend on Φdc:

Iin j = Iin j0

(
Is

Ith
e−κ

∆V f g
Vin j

)
e−

∆Vds
Vin j , (12)

where κ is the coupling coefficient from the floating-gate to the channel; Vin j is a device pa-

rameter dependent on the biasing of the drain-to-channel potential; Iin j0 is the bias injection

current flowing when the transistor is biased at the threshold current, Ith; ∆V f g is the change

in the floating-gate voltage; ∆Vdsis the change in the drain-source potential; and Is is the

source current. Another approach, presented in [28], also provides a model independent

of Φdc. However, it is an empirical model and requires the oxide current in order to fit the

model, a difficult data set to obtain.

33

The model expressed in [27] is desirable because it is physically based and easily im-

plemented as a macro model in a circuit simulator. But, because there is no bulk reference,

the parameters are bias dependent. For instance, Iin j0 is only valid for a particular initial

floating-gate voltage, V f g0. Further, by referencing the drain to the source, the model will

under-predict the injection current when the source potential drops and all the other po-

tentials are fixed. Both issues can be remedied by using the bulk, Vb, as a reference and

eliminating the source potential:

Iin j = Iin j0

 Is

Ith
e−κ

∆(Vb−V f g)
Vin j

 e−
∆(Vb−Vd)

Vin j . (13)

The modification is critical for model implementation because the bias point for injection

characterization is often different than the operational bias point of the transistor. We re-

quire the flexibility in the model so that it can simulate the device correctly and facilitate

insights in as many situations as possible.

4.2 Modeling and Simulation

Verilog-A was used to model (13) because Verilog-A is a continuous-time modeling lan-

guage that integrates easily into the Cadence Spectre and it allows for compact, human-

readable modeling. The computationally significant portion of the Verilog-A model im-

plemented for this paper is shown in Figure 17. As implied by the code, the model takes

as inputs the source, drain, floating-gate, and bulk potential, as well as the source current;

all of the other terms are set as parameters. The if-statement prevents the injection model

from interacting with the simulator during the DC-point calculation. A DC source with

zero potential is used to monitor the source current and transmit it to the model input. A

representation of the schematic for a floating-gate simulation is shown in Figure 18.

In order to properly simulate the floating-gate transistor, the schematic must first be

programmed in order provide the simulator with a DC starting point for the floating-node.

This is accomplished with a large resistor between a high-gain voltage-controlled voltage

source (vcvs) in feedback around the transistor and the floating-node. The resistor is set to

34

AIs

R ≈ ∞

Gate

Injection Model

Tunnel

Vfg

V= GAIN*(VTarget-VProbe)
TargetDrain

Source

Probe

Bulk

Feedback Defining
Initial Bias

Figure 18. A representation of the schematic used for simulation. Cadence Spectre was used to inte-
grate the design-kit transistor models with the Verilog-A implementation of injection. The
voltage-controlled voltage source (vcvs) forms the negative feedback loop for setting the ini-
tial charge of the fg-pFET. The result of this circuit was used to generate the simulation data
in Figures 19 and 20.

35

10
−8

10
−7

10
−6

10
−5

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

Drain Current I
d
 (A)

Δ
I d

 /
 Δ

t

(A

/s
)

Increasing

 V
sd

Measured

Simulated

Figure 19. Measured experimental and simulation data of dId
dIt

vs Id. The drain current of a 0.35um fg-
pFET with fixed gate, source, bulk, and three different drain potentials, Vsd = {3.7, 3.8, 3.9},
was measured, and the resulting numerical time derivative was used to fit the model in Fig-
ure 17. The result of the simulated data is superimposed on measured data, showing a good
fit for the majority of the drain current. Because Vin j is bias dependent, some deviation
is expected as Vsd changes. The data measured off of the real fg-pFET required smooth-
ing because the noise from the off-chip current measurement combined with the numerical
derivative made the plot difficult to read otherwise.

the maximum value supported by the simulator so that it only impacts the DC solution of the

simulation. The current monitor is used once again to transmit the value of the bias current

to the vcvs, and thus the DC solution will converge on the floating-gate voltage necessary

to achieve a particular DC current. The DC simulation cannot be used for DC sweeps, how-

ever, because the external potentials coupling through capacitors will be resolved to open

circuits. Accordingly, a transient simulation is used in order to correctly calculate floating-

gate coupling. In order to correctly balance the floating-gate “programmed” voltage, the

transient simulation must start all potentials from the DC solution.

36

The parameters of the injection model were fit against a fabricated floating gate of an

equally drawn size. In this case, a 1.8um/.8um floating-gate transistor in a .35um process

was used to extract κ and Ith. Next, the transistor was tunneled and then injected under a

fixed bias while measuring the current. The experiment was performed for three different

drain voltages. The fabricated fg-pFET used for experimental measurements was not in-

strumented to measure Iin j, so an alternative relationship for Iin j characterization was used.

All of the charge change in Figure 19 is due to Iin j, which means the time derivative of

source current is proportional to the injection current, as given by

dIs

dt
=

dIs

dQ
·

dQ
dt

=
dIs

dQ
· Iin j (14)

By comparing dIs
dt values with a constant Is, the variation in dIs

dt is entirely due to variations

in Iin j. A numerical approximation of (14) was calculated and plotted against current,

displayed in Figure 19. Because the measured fg-pFET did not have the source pinned out,

the drain current was used in its place.

Vin j was extracted by examining dId
dt for fixed Id; the ratios of dId

dt among the different

Vsd experiments are used to solve for Vin j in (13). A simulation was run with the extracted

parameters, κ was tweaked to fit the measured curvature of the plot, and Iin j0 was used to

scale the dId
dt curve to the appropriate level. The dashed lines represent the simulated results

of the parameter extraction. Once the dId
dt plots were matched, the transient progression of

the source current was used to verify the model, Figure 20.

37

10
−1

10
0

10
1

10
2

10
3

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

Time (s)

D
ra

in
 C

u
rr

e
n

t
(A

)

Decreasing V
sd

Measured

Simulated

Figure 20. The raw measured experimental and simulation data used to generate the curves in Figure
19. The source and bulk were held at 4.4 V, and the gate was set to produce a current of
about 8nA with the drain at 0.7, 0.6, and 0.5 volts. The floating-gate transistor used for
modeling was from the same IC as was used by [27], the FPAA in [19].

38

CHAPTER 5

VECTOR MATRIX MULTIPLICATION CELL

We live in an analog world. By that I mean the sounds we hear and the light we see are

apparent to us as a continuum. And as long as we limit our discussion to the signals of

significant magnitude where quanta of energy are indistinguishable from one another, the

signals we measure are also analog in nature. It is then worth considering why the majority

of processing that we perform on analog signals takes place in digital signal processors

(DSPs). DSPs are so abundantly consumed because they provide a straightforward map-

ping between mathematical descriptions and physical implementations of algorithms. But

between the costly analog to digital conversions required and the crutch of 10’s of bits of

resolution, DSPs are no panacea for constrained computation. In [29], Sarpeshkar showed

how for a fixed power or area consumption, analog computation is more efficient than dig-

ital computation for an output SNR less than about 10 bits. The crutch of 10’s of bits of

resolution is a reference to a design environment where the availability of the resolution

results in designers going down algorithmic paths which lead to solutions far to the right

of the flicker noise limit of analog. If the algorithms had been designed with an SNR con-

straint under 10 bits, the resulting implementation would not only be more efficient if it

were mapped to analog, but for a fixed area, the power consumption would decrease expo-

nentially with respect to the digital implementation as the SNR requirement was reduced.

My point here is the same as the point I make in the outset of this document, that engineer-

ing efficient computational systems are dependent on good analogies between math and

implementation. And if our goal is to replace digital signal processing with analog signal

processing, then a useful place to start is with the core element of a DSP, the multiply-

accumulate.

A multiply-accumulate operation is as it sounds, a multiplication of two numbers that

39

is added to an accumulator, and it is the workhorse of DSP computation. In analog, stor-

age is costly, but summation is not, particularly when the signals are represented by a

current. Kirkov’s current law describes how currents that are wired together are summed

together. So in analog, accumulation tends to be most efficiently implemented though par-

allelism, provided that all the signals associated with multiplication are available at once.

By combining programmable current mirrors with KCL, we can approximate a multiply-

accumulate operation.

5.1 Programmable Current Mirror

As for implementing multiplication, lets consider the case where we use KCL. If you had

a signal that required some integer multiplication m, you could replicate your signal m

times. And then for division we could shift the representation of 1x to mean some integer

multiple, and division could be done using so many signal replications less than 1x, and

such a system would be painfully unwieldy. The majority of the time we use relative

geometries of transistors in place of KCL to implement a multiplication. Take the reduced

form of the EKV model of an NMOS transistor in saturation,

Id =
W
L

Is ln2
(
1 + e

κ(Vg−|Vt|)−Vs
2Ut

)
(15)

If the drain current is taken as an output for a fixed source and gate voltage, the output will

change with the ratio of the width to length of the transistor. The current mirror, a strong

contender for the most common analog circuit, implements a multiplication with a weight

proportional to the ratio of two transistors geometries. For the current mirror in Figure 21a,

Iout =
(W/L)2
(W/L)1

Iin , provided all of the device parameters are matched and the two devices are

operating in the same regime.

Because our goal is efficient computation, its worth considering the two regimes implied

by (15), weak inversion and strong inversion. By virtue of implementing a multiplication,

the input and output transistors will likely have different ranges of operation. If over the

range of operation, one of the transistors moves between weak and strong inversion, the

40

Iin Iout

Iin Iout

Iin

Iout

Vg

(a) (b) (c)

Figure 21. Source and gate programmable gain current mirrors. (a) Basic current mirror. The mul-
tiplication is fixed by the geometries of the input and output transistors. The linearity of
the multiplication is limited by the threshold current and the ratio of Ut, and κ, assuming a
fixed drain voltage. (b) Floating-gate current mirror. The multiplication is controlled using
floating-gate programming. The linearity of the multiplication has an additional depen-
dence on the ratios of Cg

CT
between the input and output transistor. (c) Floating-gate current

mirror using the source. Unlike the gate-mirroring, the linearity of the multiplication no
longer depends on κ and the other capacitors on the floating node. However, the gain of the
amplifier will limit linearity.

resultant multiplication will vary with some non-linearity related to the movement between

ex and x2. While that specific non-linearity could be advantageous, it is not helpful for

implementing the linear operations of a multiply-accumulate cell. In terms of power, the

biases associated with strong inversion will be undesirable if the intent is to implement

massively parallel multipliers. If we consider efficiency in terms the amount of transcon-

ductance a transistor produces for a given bias current, we get a result that looks like Figure

22. Within the subthreshold regime, gm
I is a fixed quantity, κ

UT
, and the maximum for the

transistor. In the above-threshold regime, gm
I decreases at a rate of 1

√
I
. In addition, the

exponential function available in subthreshold operation can be harnessed for log-domain

computations, lending a strong mapping to the floating-point work done in the digital do-

main, and making high dynamic range computations more approachable in analog. Finally,

ln(x) and e(x) are expensive operations in the digital domain. In analog, such operations

are accessible directly from a single transistor, further lending to the desirability of weak

inversion.

41

10
−12

10
−10

10
−8

10
−6

10
−4

10
0

10
1

10
2

Current [A]

R
a

ti
o

 o
f

g
m

 t
o

 C
u

rr
e

n
t

[1
/V

]

Figure 22. Ratio of transconductance to current. The data was taken from a simplified EKV model.
Within the subthreshold regime, gm

I is a fixed quantity, κ
UT

, and a maximum for the transis-
tor. In the above-threshold regime, gm

I decreases at a rate of 1
√

I
.

By constraining ourselves to subthreshold, (15) reduces to

Id = I0 e
κVg−Vs

Ut (16)

where W/L and e
κ

Ut
|Vt| were included in I0. For the circuit in Figure 21a,

Iout = I0out e
(
κout
κin

Utin
Utout

ln
(

Iin
I0in

))
= m Iαin; α =

κout

κin

Utin

Utout

; m =
I0out

Iα0in

(17)

For α = 1, the multiplication m is set by the ratio of I0’s. Such a multiplication is sensitive

to variances in manufacturing process. The sensitivity is addressed through increasing the

absolute areas of the transistors involved and distributing the transistors in such a way as

to desensitize the macroscopic devices to processing gradients, common centroid layout.

But we are interested in approaching the capability of a MAC unit on DSP, which suggests

that a fixed multiplication will not suffice; it is not feasible to incorporate a continuum of

mirrors on a chip in order to implement the continuum of potential multiplications.

By using the floating-gate current mirror in Figure 21b, we can simultaneously address

some of the process variances and the need for a continuum of multiplications. First, con-

sider the drain current of (16), re-written for a pFET with the floating-gate coupling and

charge in mind:

Id = I0 e
−κ
Ut

(
Cg
CT

Vg+
Q

CT

)
(18)

42

When we determine the output current, we find

Iout = m Iαin; α =

(
UtCT

κCg

)
in

(
κCg

UtCT

)
out

; m =
I0out

Iα0in

eβ
(
κ

Ut

)
out ; β =

(
Cgout

CTout

Qin

Cgin

−
Qout

CTout

)
(19)

If we again examine the scenario where α = 1, we see a multiplication from the ratio of

I0’s. But more importantly, we also have a multiplication term eβ
(
κ

Ut

)
out which is sensitive

to floating-gate programming. As a result, precise multiplications are possible through

correctly controlling the charge on the floating-nodes.

The current mirror is composed of two components, a front-end circuit that computes a

log-compressed version of the current and a back-end circuit that implements a log-domain

addition resulting in a multiplication of current. By broadcasting the log-compressed front-

end voltages across an array, the programmable current mirror becomes a programmable

vector-matrix multiplier (VMM), [30]. Shown in Figure 23a, the current out of the jth col-

umn is, by KCL, the summation of the currents dependent on the vector of log-compressed

voltages computed from the vector of input currents.

I j =

m∑
i=1

Ii, j ; Ii, j = Ibi, j e
−
κe f fi, j
Uti, j

Vi ; Vi = − ln
(

Ii

Ibi

)
κe f fi

Uti
(20)

where the charge term has been included in Ib and κe f f = κ
Cg

CT
.

Up to this point, we’ve only considered a value of one for α. However for large dynamic

range signals, the actual value of is α is critical for the mirrors and VMM of Figures 21a

and 21b. In particular, α limits the linearity of the multiplications because it represents a

power law. For a fixed, non-zero α, the error in the multiplication for a change in the input

current by a factor of r is:

±% error =
(
rα−1 − 1

)
∗ 50 (21)

To put that in perspective, to keep the error within ±2.5% over two and a half decades

requires an alpha of just less than 1.009. The choice of reference current is arbitrary, so

when defining a multiplication it is desirable to choose a signal from the highest range if the

effect of α is compressive (α > 1) and a vice versa if α is expansive (α < 1). For instance

in the previous calculation, r = 10−2.5. If α were less than one, we would use r = 102.5.

43

Ii

Ii,j Ii,j+1

Ii+1

Ii+1,j Ii+1,j+1

Ii,j Ii,j+1

Ii+1,j Ii+1,j+1

Ii

Ii+1

Vg

Vg

Vg Vg

Vg Vg

(a) (b)

Figure 23. Source and gate vector matrix multiplication. (a) Vector matrix multiplier based on Figure
21b. (b) Vector matrix multiplier based on Figure21c.

As for what constitutes α, the thermal voltages of the input and output transistors are

only a concern if there is a thermal gradient across the chip; under most circumstances the

thermal voltage can be neglected. We can expect the ratio of the gate to total capacitance

to have up to 1% error, based on the work done in [31]. Variation in κ is another concern.

Figure 24a is an illustration of a κ measurement for 512 pFETs. The arrangement on the

chip is that of a column input for a VMM. In that case there was a 3% variation across the

devices. In Figure 24b the subthreshold slope of a single device is plotted, showing a nearly

3% change in κ for a gate voltage that corresponds with nearly three orders of magnitude

of drain current.

There is an alternative to building a multiplication with such a strong dependence on

the matching of components. Rather than using the gate for computing variable signals,

we can use the source [32]. Illustrated in Figure 21c, source mirroring has the following

relationship between output current, broadcast voltage, source voltage, and input current:

Iout = I0out e−
(
κ

Ut
V f g

)
out e

Vbc
Utout ; Vbc = −

(A
1 + A

)
Vs ; Vs = Utin ln

(
Iin

I0out

)
+ κinV f gin (22)

where Vbc is the broadcast voltage and A is the openloop gain of the amplifier. (22) reduces

44

0.825 0.83 0.835 0.84 0.845 0.85 0.855 0.86
0

20

40

60

80

100

120

140

160

180

Kappa

Variation for 512 devices: 2.9%

1.25 1.3 1.35 1.4 1.45

0.825

0.83

0.835

0.84

0.845

0.85

|V
gb

| [V]

K
a

p
p

a

Variation: 2.9%

(a) (b)

Figure 24. Experimental measurement of κ mismatch. (a) Histogram of κ for 512 devices. (b) Kappa
for different Vbg voltages.

to

Iout = m Iαin; α = ACL
Utin

Utout

; m =
I0out

Iα0in

e
β

Utout β = ACL

(
κV f g

)
in
−

(
κV f g

)
out

(23)

where ACL is the closed loop gain of the amplifier driving the source of the output tran-

sistor. The first important issue to note in (23) is that α no longer has a dependence on

capacitor and κ ratios. The next is to recognize that aside from thermal mismatch, the only

other element of the current-gain power law is ACL, which can be designed to a desirable

tolerance in a straightforward fashion. For instance, an openloop gain of 41 dB is enough

for ±2.5% error over two and a half decades; with a modest openloop gain of 50 dB the

power-law results in an error within ±2.5% over seven decades of input current.

Another key aspect of source mirroring is the relationship between the input current,

the output current, and the floating-gate voltages. Changes on the source couple into the

floating-gate, and that coupling will introduce an error by modifying the multiplication

based on the signal change. In particular, care must be taken in sizing Cgs

CT
, the ratio of

the gate-source capacitance to the total capacitance, as it controls the coupling. Source

mirroring readily extends to a VMM [33], as shown in Figure 23b.

One final point about source mirroring is that it is nearly insensitive to κ variation. κ

is defined as Cox
Cox+CD

, where Cox is the transistor oxide capacitance between the gate and

45

channel while CD is the depletion capacitance between the channel and the substrate. CD

is a MOS-capacitor phenomenon, and is weakly dependent on voltages other than the gate-

to-bulk potential. As long as a particular multiplication is referenced to a particular input-

output current ratio, then the multiplication will necessarily have taken into account the κ

movement due to that particular multiplication.

5.2 Input and Output Terminals

The VMM discussed in the previous section is a current input, current output structure

with the currents constrained to weak inversion. One of the critical aspects of a VMM

implementation is the instrumentation of the input and output currents.

First, consider matter of the input and output terminals of the gate-mirrored VMM

and the output of the source VMM. In order to hold the voltages at those terminals fixed,

either the current must remain fixed, which defeats the purpose of the VMM, or an active

element must be used. We can determine to the extent we need to fix the input and output

drain voltages by using a model for the Early effect of the transistors. In subthreshold, a

reasonable model for the Early effect is

Id = I e
Vbd
VA (24)

where I is the drain current for a pFET without considering the Early effect, Vbd is the bulk

to drain voltage, and VA is the Early voltage. For a range of drain-to-bulk potentials of

∆Vdb, the error in the current is

%error = (e
∆Vdb

VA − 1) ∗ 100 (25)

It is not sufficient to neglect the Early effect on the basis having the same dimension tran-

sistor on the input and output, because the currents though the input and output transistors

are necessarily different, except for multiplications of unity.

In Figure 21c, a transistor is used to convert the incoming current to a log-compressed

46

Vg

Vd

Vd

Iin Iout

Vout

Figure 25. Transimpedance amplifiers in a source signaling current mirror. The amplifiers fix the input
and output drain voltages while increasing then BW by the gain of the amplifiers, A.

voltage, and a follower is used to convey that voltage to the source of the output transis-

tor. The bandwidth of that conveyance is set by the time constant of the input node. In

particular,

ω =
1

RC
=

gm
C

=
κ

Ut

I
C

(26)

To put that in perspective, 100pA into a 100 f A will yield a bandwidth of about 4 kHz.

A way to increase that frequency is to implement a transimpedance amplifier out of the

sensing transistor, as shown in Figure 25. The effective input resistance of the structure

will be 1
A gm , which will increase the bandwidth by a factor of A. The same thing can be

done for the gate-mirroring. A desirable side effect is that the amplifier will also reduce the

variation in the drain node by a factor of A.

5.3 Frequency Response at the Gate

In designing the computation transistor to be tiled out in the VMM, there are several issues

that must be kept in mind. One such issue is related to the coupling of the input signal from

the source to the gate of the computational FET. For a particular bandwidth at the source

of the transistor characterized by the frequency fBWsource and a 3dB attenuation from unity,

the transfer function from the source to gate of the computational FET must be 1
2n times

smaller at the gain at fBWsource in order to be able to implement the multiplication with a

47

precision of n bits, which is 3 + 20 log10 (2n) dB down from unity. In the case where the

computational FET is implemented as a floating-gate transistor, that transfer function is

defined as:
Vgate

V source
=

Cgs

CT
(27)

where Cgs is the gate to source overlap capacitance and CT is the total capacitance at the

floating-gate node. As a result, CT must be sized to as follows for an n bit precise multipli-

cation:

CT ≥ Cgs · 2n · 103/20 (28)

To put that in perspective, a 3 f F overlap capacitor requires a 1pF capacitor for an 8-bit

accurate multiplication.

However, the overlap capacitor is not a free parameter to reduce. If we consider the

threshold current to be the maximum representable signal level that still produces weak-

inversion characteristics, then by choosing a maximum desired current level we fix the W/L

ratio, since Ith = W
L Ithunit . The length is fixed by Early voltage, which leaves the width as a

free parameter, which is proportional to Cgs. The way a maximum current level is chosen

is by the limit imposed by the system bandwidth and the desired dynamic range. Assuming

we use a transimpedance amplifier like we discussed from the previous section,

Imin =
Ut

κ

ωC
A

(29)

The maximum current is then simply DR ∗ Imin.

One way to design around the limit Cgs imposes on the size of the VMM cell is to use an

amplifier to drive the computational FET instead of using a floating-gate transistor, Figure

26a. In this case, the transfer function from source to gate is

Vgate
V source

=
Cgs

CT

sRCT

1 + sRCT
(30)

By designing the amplifier such that the roll-off from the zero is 20 · log10 (2−n) dB below

fBWsource, the precision constraint is maintained. The separable transform imager discussed

48

Cov

vg

vs

id

vfg

Cfb

Cfgo

Cx
vbias

vfg

vs

id

vg

C
T

(a) (b)

Figure 26. Floating-gate VMM cell with computation transistor gate driven by amplifier. (a) Concep-
tual drawing. (B) Implementation of Figure 26a. .

in Section 6.1 requires fBWsource = 208 kHz in order to achieve 32 f ps for a 5τ settling time.

In that case, Cgswas 3 f F. In less than the area than the otherwise necessary 1pF capacitor

(28) predicts, the circuit pictured in Figure 26b was laid out.

There are several different potential topologies from which to choose when replacing a

floating-gate transistor with a buffer that incorporates stored charge. In the next section, the

topology of Figure 26b will be discussed in the context of why it is beneficial for floating-

gate programming. For now, we will consider it in terms of the role the output resistance

plays on the frequency response and the sizing of the gate capacitor.

The resulting frequency responses for the floating-gate and amplifier cases are shown

in Figure 27. The resistance at the gate due to the amplifier defines the worst-case SNR

between the source and gate for a fixed set of capacitors and an amplifier biased in deep

subthreshold. The worst-case transfer function is given as(Vgate
V soure

)
worst
case

=
sRCov

1 + sRCov
; R =

Rx

1 +
C f b

C f b+C f go
gmRx

(31)

If the same CT were applied to the gate of the VMM transistor as in the floating-gate case,

the transfer function with the amplifier would have the same maximum gain. However, if

the current in the amplifier is biased such that (31) is 20 · log10 (2n) dB down from −3 dB

49

10
4

10
5

10
6

10
7

−80

−70

−60

−50

−40

−30

−20

−10

0

VMM Cell Frequency Response: Ampli"er vs. Floating−Gate

Frequency (Hz)

G
a

in
 (

d
B

)

H(s) for Vs/Vin

H(s) for Vgate/Vs with Ampli"er

H(s) for Vgate/Vs with Floating−Gate

Figure 27. Comparison of frequency response of floating-gate and amplifier computational transistor.
For a fixed Cgs of 3 f F, the total capacitance on the computational transistor’s gate was sized
so for an 8 bit accurate multiplication. In the case of the floating gate, CT = 1.085pF. For
the amplifier, CT=102 f F.

at fBWsource, then the circuit already has enough precision without relying on the attenuation

from an additional Cov
CT

. And because the system is strictly decreasing over the range of the

source bandwidth, there is virtually no benefit to adding extra capacitance at the gate for the

purpose of increasing CT . The only place where extra capacitance plays a role is in C f b,

which relates to how much the gain of the amplifier reduces the output resistance. Under

the circumstance that the current required to move the zero in 31 to the desired precision

violates the power budget for the circuit, additional gate capacitance is required.

The amplifier allows for trading capacitor area for power in a straightforward way.

Because R is roughly inversely proportional to current, the total capacitance and current

50

can be by traded by the same factor. For the same reason, the power of the amplifier can be

doubled for each additional bit of precision. In the case of Figure 27, 8 − bit precision was

achieved at 100nA of current and only required about 100 f F of capacitance on the input

node in order to satisfy fBWsource.

5.4 SNR

In choosing pico- and nano-ampere current levels for signal representation, the electron

density though a transistor and into a sensing structure is small enough that it is necessary

to consider the fundamental limit for measuring quanta of charge on the SNR. We can

develop intuition about the SNR of a system by considering the signal as the collection

of continuous, independent arrivals of charge. Measuring the signal is then a question of

counting the number of electrons. This allows us to analyze the count using a Poisson

process [34]. If we measure a current I over a sampling period of duration T , we can

expect to count the arrival of n electrons, calculated as:

n =
I
q

T (32)

The number of expected arrivals provides us the parameter to the Poisson process, λ = n. In

a Poisson distribution, the mean is equal to the variance, which is equal to the distribution

parameter λ. So for an SNR defined by µ/σ,

S NR =
µ

σ
=
√
λ =

√
I
q

T (33)

We then relate the sample period T to a sample frequency fs in order to investigate the

relationship between signal currents and system speed for different SNR requirements.

fs =
1
Ts

=
I

q S NR2 (34)

Equation 34 is evaluated over five decades of current for SNR values from four to nine

bits in Figure 28. These ranges are typical for analog subthreshold currents. The Poisson

51

1p 10p 100p 1n 10n 100n
10

100

1k

10k

100k

1M

10M

100M

1G

10G

Signal Current [A]

S
a

m
p

li
n

g
 F

re
q

u
e

n
cy

 [
H

z]

SNR: 4 bit

SNR: 5 bit

SNR: 6 bit

SNR: 7 bit

SNR: 8 bit

SNR: 9 bit

Figure 28. Sampling frequency of current levels with different SNR requirements predicted from Pois-
son process. This only takes into account thermal noise; the data shown for lower frequences
will be have a non-negligible contribution of flicker noise.

52

process is used here to address thermal noise; the flicker noise will be non-negligible for

the lower frequencies.

In order to relate the issue of SNR back to a VMM computational element, we will

calculate the SNR of a settled current from the computational transistor flowing into a

sensing structure characterized by an input resistance and input capacitance. The portion

of the input current flowing into the input resistance is the sensed current, which results in

a transfer function from input current to sensed current:

Isensed = Iin
R‖sC

R
=

Iin
1
R + sC

;
Isensed

Iin
= H(s) =

1
1 + sτ

(35)

where τ = RC of the sensing structure. We then write the sensed noise power as:

I2
nsensed

= I2
nFET
|H(jω)|2 =

I2
nFET

1 + ω2τ2 (36)

where I2
nFET

= 2qIsignal d f , under the assumption that whatever structure is driving the

source and gate of the transistor provides negligible noise. By integrating over all fre-

quencies, we find the total integrated noise power,

I2
nsensed

=

∞∫
0

2qIsignal

1 + ω2τ2 d f =
qIsignal

2τ
(37)

We will define the SNR here as the ratio of the signal to the peak noise. Because we are

considering a settled input signal, all of the input current will flow into the sensing structure.

As a result, the SNR is found to be:

S NR =
Isensed

Insensed

=
Isiganal√

qIsignal

τ

=

√
Isignal

q
τ (38)

Equation 38 is similar to 33. The critical difference to recognize is that τ is not a sam-

pling period. In the thought experiment where we count electrons with an arrival dictated

by a Poisson distribution, the sampling period was a free variable. For a real system with

a settled input, every measurement at the output of that system will have embedded in it

a noise spectrum that was subject to the system bandwidth. In order to increase the SNR,

53

it is necessary to increase the effective sampling rate by taking additional samples and av-

eraging the result. For instance, if a real system requires 6τ for an output to settle, the

measurement taken after 6τ will have an SNR of
√

I
qτ, not

√
I
q6τ, because the additional

delay did not change the bandwidth constraining the noise. In this case, to increase the

SNR by
√

6, six measurements would need to be taken and averaged together.

Section 5.2 discussed the use of a logarithmic amplifer (logamp) for sensing currents at

the input and output of a VMM. The τ for a logamp is C
A gs , where gs =

Isignal

UT
and A is the

open-loop gain of the amplifier. The SNR is then:

S NRlogamp =

√
Isignal

q
C

A gs
=

√
UTC
qA

(39)

So long as A remains fixed, the SNR will be fixed for all current levels where the flicker

noise and other external effects do not dominate. Intuitively, as the signal power increases

(or decreases), the noise power will increase (or decrease) linearly with both current and

bandwidth. Sensing high dynamic range signals with a logamp is difficult though, because

the bandwidth changes with the input signal. In order to fix the bandwidth, for the sake of

stability and settling time, the circuit can be modified to adapt the open loop gain A based

on the signal level. While this will produce a system with a fixed, or at least improved,

settling time for the lower currents, it will come at the cost of reduced SNR at lower signal

levels.

Figure 29 is the result of measuring the logamp in Subsection 6.1.4. In Figure 29a, each

data point for voltage SNR was the result of taking 1000 measurements at a particular DC

current level, and using the log-base-two mean by range of that dataset. The current SNR

was computed using the IV relationship of the transimpediance amplifier, and represents

the mantissa of a floating-point current measurement. The slope in the SNR is a result of

adapting the amplifer gain with input signal level. The effect of gain adaptation is shown in

Figure 29b. The settling time for a 6−bit resolution measurement was computed for a range

of current steps. For an amplifier without gain adaptation, the settling time would have

54

100p 1n 10n

6

6.5

7

12

12.5

13

Mean Current [A]

B
it

s
o

f
S

N
R

SNR for Mapped Current

SNR for Voltage

Measured

Fit

100p 1n 10n
10u

100u

1m

10m

Final value for a 0.5x step in current [A]

S
et

tl
in

g
 t

im
e

fo
r

6
−

b
it

 r
es

o
lu

ti
o
n
 [

s]

Measured, with Gain Adaptation

Theoretical, without Gain Adaptation

(a) (b)

Figure 29. (a) Impact of gain adaptation on SNR of a logamp. Each data point for voltage SNR was
the result of taking 1000 measurements at a particular DC current level, and using the
log-base-two mean by range of that dataset. The current SNR was computed using the IV
relationship of the transimpediance amplifier. (b) Effect of gain adaptation on the settling
time. For an amplifer without gain adaptation, the settling time would have doubled for
each subsequent current step, instead of increasing by only ∼ 10%, resulting in the SNR
varation in Figure 29a.

doubled for each subsequent current step, instead of increasing by only ∼ 10%, resulting

in the SNR varation in Figure 29a.

5.5 Programming

The approach to programming is a critical consideration in constructing a VMM. In both

VMM configurations in Figure 21, the computational transistors on the output form an

array that is compatible with the discussion from Chapter 3. The way we program those

transistors is by altering their DC point until its possible to create the Φdc necessary for

injection. If we continue down the path of Chapter 3, that means the supplies of the IC

are ramped up and the drain voltage is pulsed to ground in order to create the necessary

Vds for injection. That means for every pulse or array of pulses, the power supply must be

moved slowly enough to avoid internal IC transients that could lead to unexpected charge

movement on the floating-gates. There is also a substantial complexity penalty; care must

be taken to disconnect or disable surrounding circuitry to avoid forward biasing.

55

row

col

Vd

Vfg

Vs = (row col) Vdd

Vdd

Figure 30. Array selection circuitry for floating-gate with negative drain pulsing.

An alternative scheme trades power supply ramping for pulsing the drain below ground.

Negative voltages are applied only to the subset of devices being injected, reducing the

burden on the rest of the system. Only the circuitry with the negative potential is disturbed–

by using multiple negative potentials different portions of an IC can be programmed without

interrupting the system function. By limiting the negative voltage to only the device being

injected, the supply generating the negative voltage needs to support only the current being

injected. This is critical for when the source is an on-chip charge pump.

Because these devices are used in an array, it is still necessary to provide some means of

individual selection. Rather than use the intersection of a sufficient gate-to-source potential

for a channel and a sufficient drain to channel potential for a high field, which doesn’t

provide proper isolation, we can use the circuit in Figure 30.

In Figure 30, an analog NOR gate and a floating-gate pFET are pictured. The output

of the NOR gate controls the source of the floating-gate transistor. The premise of the

structure is that by only by asserting both active-low signals row_bar and col_bar, does

the source get a potential other than ground. In an array structure, that means that by only

asserting a single row and column, only a single device will have a non-zero source voltage.

The insight of the effort in Section 3.2.2 was that in order to prevent parasitic charge

56

movement, the fields at the active regions of the transistor must be kept low enough to

prevent hot-carriers and FN-tunneling. The choice of where to connect the bulk potential

was critical for preventing parasitic charge movement. If the bulk had been left at the

supply, parasitic charge movement would have occurred in the high field between the drain

and the substrate. By connecting the bulk to the source, only the transistor selected for

injection will be exposed to a high-field. The GIDL current on non-selected transistors

resulting from the large gate-to-drain difference during injection is minimized because of

the low bulk potential of the unselected device. As a result, the drain is never pulsed

lower than −2.5V; 2.5V is characterized as a voltage drop safe for .35um CMOS. The only

potential source of charge movement is FN tunneling across CGD, which is a function of

where the floating-gate voltage is kept.

A fundamental difficulty with programming a floating-gate transistor with CHE injec-

tion is that as carriers inject into the gate, the effective floating-gate voltage drops. That

drop corresponds with an increase in current through the channel, which results in more

carriers for injection. That situation is described analytically by the following:

Iin j ∝ Ichannel = Ibe−κ
V f g
UT (40)

where the device is operating in subthreshold. As the channel current increases, the device

will self-limit the injection current through the potential difference that forms in the channel

as the device moves above threshold, but it still requires orders of magnitude change in

current in order to reach that self limit, shown experimentally in Figure 8. One way to

handle the explosion in injection current over time is to use the modeling technique of

Chapter 2. In that case, ∆I
I is related to a pulse length and drain voltage. The high-order

system that results provides a means for hitting precise targets, but only through a gradual,

multi-step approach. Keep in mind that to reprogram a floating-gate device, it along with

every other device sharing that global tunneling line must be modified. As a result, the

effective threshold of every transistor will be need to be set to the worst-case high threshold

required in the system, meaning that the transistors requiring the worst-case low threshold

57

0 2 4 6 8
1f

10f

100f

1p

Time [µs]

In
je

ct
io

n
 C

u
rr

en
t

[A
]

Simulation of Injection Current, Comparison

Unconstrained Injection

Injection with Feedback, A=100

0 2 4 6 8
2.12

2.14

2.16

2.18

2.2

2.22

2.24

Time [µs]

In
je

ct
io

n
 C

u
rr

en
t

[f
A

]

Simulation of Injection Current with Feedback

Injection with Feedback, A=100

(a) (b)

Figure 31. Impact of feedback on the injection current. The simplified EKV expression is used for mod-
eling the channel current and the model from Chapter 4 is used for modeling the injection
current.

will require a substantially different floating-gate voltage. For instance, if two transistors

sharing the same tunneling line require a 1V difference in threshold, they will require a

1V difference in floating-gate voltage. Considering the injection efficiency issues, the gate

voltage will have to be changed several different times to move the bias point back to a

place where injection can take place. And once the device is biased at a point where it

can be injected within the mapped region of operation, there is still a limit to a safe step

in charge because any error in the measurement the starting current will be subject to the

exponential of (40).

The fundamental limitation in programming over a wide range of effective floating-gate

voltages is then the limitation of maintaining a consistent injection current. The insight to

then take from (40) is that by attenuating the change in the floating-gate voltage, we can

attenuate the variation in the injection current over time. Figure 31 is a simulation of the

injection current for a floating-gate transistor using the device parameters of Chapter 4.

Figure 31a shows the comparison of a transistor injecting without any explicit feedback

and a transistor with an ideal amplifier attenuating the change in the floating-gate voltage

by 40 dB.

58

Vfg

Vbias

Cfb

Vin

Cin

VdVout

Figure 32. Feedback circuit for fixing V f g during injection. The transistor on the right is the injection
transistor.

The circuit in Figure 32 represents a compact method for fixing V f g [35, 36, 37]. There

are two ways of looking at this circuit: it is a current mirror with Ibias, due to Vbiason the

nFET, flowing through the both transistors; or it is an amplifier with the feedback capacitor

C f b. Consider first the circuit as a mirror. The current through the injection transistor is

fixed, which means V f g is fixed. Iin j is a function of the channel current and the floating-gate

potential—with both values fixed, the injection current is fixed as well. As an amplifier, the

circuit represents a way of attenuating the change in the floating-gate voltage by the gain.

The capacitors in Figure 32 must be chosen with respect to the programming and isola-

tion requirements. With respect to programming, the impact of a change in charge can be

found by solving KCL at Vout.

Ibias = I0 · e
κ(Vdd−Vfg−|Vt|)

Ut + Vdd−Vout
Va (41)

where Vfg is given as

V f g =
Cp

Ct
Vp +

C f b

Ct
· Vout +

Q
Ct

(42)

and Ct is the total capacitance at the floating-gate node, Cp represents the total parasitic

capacitance at the floating-gate node through which an effective voltage Vp couples, and Q

is the stored charge at the node. Solving for Vout and then differentiating with respect to the

59

charge,
dVout

dQ
= −

κVa
CtUt

κVa
CtUt

C f b + 1
≈ −

1
C f b

(43)

By choosing the smallest number of electrons to move at a time during a programming

pulse, Qmin, and the minimum desired resolvable voltage change on Vout, ∆Vout_min, the min-

imum value of C f b must be Qmin
∆Vou_min . The value for Cin is then determined by the maximum

voltage swing necessary at the output from a change in the control voltage Vin.

dVout

dVin
≈ −

Cin

C f b
(44)

If the output voltage is being used to set the gate voltage for a computational transistor in an

array like Figure 23, the output must be able to swing between the programmed voltage for

the largest current output and the voltage to reduce the transistor current output to leakage.

5.6 Implementation

An ideal floating-gate computational cell has no programming time, consumes no area, re-

quires no external instrumentation, and does not adversely impact the circuit it is associated

with. When implementing a floating-gate memory element, each of the aforementioned

ideals are relaxed in order to implement a real circuit. However, we can approach the ideal

with well-conceived design procedures. The circuit in Figure 33 represents a desirable im-

plementation of such an element. It is an integration of the issues discussed in the previous

sections of the chapter.

The first critical design decision for this circuit is use of a negative voltage for imple-

menting the Φdc necessary for injection. In many of our previous implementations, the

supplies of the IC are ramped up and the drain voltage is pulsed to ground in order to create

the necessary Vds for injection, but that comes at the cost of speed and complexity. Next,

an analog NOR gate is used to address the device to be injected. By using a comparator to

measure the output of the computational cell during the negative pulse phase, the system

output can be directly programmed and gated. One other issue with floating-gate use in the

60

vdd

vdd_inj

Vin

Vd

Vtun

Vbias

Vg

Vs

Id

v
d

d

m
comp

m
p

m
n

m
inj

col

row

C
fb

Vfg

C
in

C
tun

Figure 33. A complete floating-gate cell. An amplifier formed from Mp and Mn is used to drive the
gate voltage of the computation FET, Mcomp. The amplifer also serves to fix the voltage of
the floating node, Vfg. Injection is performed by applying a negative voltage to the drain of
Minj and a positive voltage to its source and bulk. The source and bulk are controlled by an
analog NOR gate.

61

signal path is that potentially undesirable coupling occurs through the source and drain of

the fg-pFET. We can alleviate this issue by using the amplifier formed by Mp and Mn as an

internal node that applies the programmed voltage to Mcomp. Precision programming is

key to most analog floating-gate use. We can simplify our programming methodology by

stabilizing the injection current through the use of a diode connection on Mp and a current

source, Mn. As current flows onto the floating-gate through Minj, the capacitor feeds back

the voltage necessary to maintain the current. As a result, the floating-gate voltage and

source current of the device being programming is fixed and so is the injection current.

In order to facilitate continuous-time injection, a logamp was used as the readout cir-

cuit for the computational transistor. In addition, the circuit pictured in Figure 34 was used.

Targeting a particular current was just a matter of latching a stop condition, sampling a

reference voltage that corresponded to a particular current level, and the allowing the tran-

sistor to inject. The output of the IV converter increases or decreases based on the sign of

the current input, which is why the XOR gate and D-latch were necessary. Upon enable,

the row select signal is asserted. When the injection is taking place, after enable has been

de-asserted, the row signal is only de-asserted when the output of the comparator is not

equal to its value stored during the period enable is asserted.

5.6.1 Simulation

In order to examine the transient response of the circuit during programming, we can the

use the model described in Chapter 4. We simulated the schematic from Figure 33 with a

vcvs that de-asserted the row signal when Vout moved past 1.5 V. The transient simulation

was started with 1V on the floating-gate node. The Vd terminal was moved from the DC

potential of ground to three different negative potentials, and left negative for the duration

of the simulation. The transient response of the simulation is shown in Figure 35. During

the first micro-second, the injection current remained off until Line 1 of Figure 17 becomes

true. At that point, injection current is applied to the gate. As expected, the injection current

decreases for higher Vd potentials. When the vcvs trips, moving source/bulk potential

62

Φ
1

d latch

dq
enset

rset
sr latch

enable
q

Φ
0

row

V
IV

V
ref

sel

Figure 34. Comparator circuit with row logic for continuous-time injection.

down, the injection current drops back to zero. The source current is held relatively fixed

throughout the injection phase, as expected. In addition, the output potential (Vg) increases

linearly to the target potential. Because the bulk potential is brought to ground in order to

stop injection, there is a significant step in the Vg. As a result, precision use would require

a small amount of characterization in order to account for the bulk coupling.

Post fabrication, our goal was to experimentally determine the injection current, Iin j,

and the bias-dependent injection term, Vin j, in order to characterize the programming and

back-annotate the simulation for future development. In the experiment, we have a mea-

surement for the output of our IV converter changing over time, Figure 36a. In order to

convert the output voltage to a current though the computation FET, we apply a known test

current to the VMM summation line. There is no benefit to using the analytical solution,

since we have the actual I-V characteristic, discussed in Chapter 6. The IV relationship

gives us a VMM current, Figure 36b, which we relate back to an voltage output of the

floating-gate cell though the subthreshold expression for the transistor. By rearranging, we

63

0 5 10 15 20 25
0

10

20

In
je

c
ti
o

n
 C

u
rr

e
n

t
(p

A
)

Time (ms)

V

sd
 = 4 V

V
sd

 = 3.9 V

V
sd

 = 3.8 V

0 5 10 15 20 25
0

10

20

S
o

u
rc

e
 C

u
rr

e
n

t
(n

A
)

Time (ms)

0 5 10 15 20 25

1

1.2

1.4

1.6

O
u

p
u

t
P

o
te

n
ti
a

l
(V

)

Time (ms)

Figure 35. Results of simulating the circuit in Figure 33. The output of the high-gain amplifier and gate
current and source current of Minj are shown for a drain potentials -1.5, -1.4, and -1.3 volts.

64

0 50 100 150 200 250 300 350 400
1.61

1.62

1.63

1.64

1.65

1.66

1.67

1.68

1.69

Time [us]

M
e

a
su

re
d

 IV
 O

u
tp

u
t

[V
]

Transient Injection, Varying the Drain

Vd = −2.500V

Vd = −2.211V

Vd = −2.077V

Vd = −1.989V

Vd = −1.923V

Vd = −1.870V

0 50 100 150 200 250 300 350 400

1n

10n

Time [us]

V
M

M
 C

u
rr

e
n

t
[A

]

Transient Injection, Varying Iinj

Iinj = −156pA

Iinj = −61pA

Iinj = −37pA

Iinj = −25pA

Iinj = −19pA

Iinj = −15pA

(a) (b)

Figure 36. Measured results of fixed current injection. (a) Voltage measurement (from IV Converter)
of continuously injecting VMM cell for different drain voltages. The large spikes in the
data are a result of the on-chip comparator tripping, signaling an end to the injecting and
de-asserting the voltage causing the high-field. (b) Post-measurement mapping of output
voltages to VMM cell currents. The rate of current change was mapped to injection current
through (47).

find that

Vout = −
Ut

κ
ln

(
Iout

Ib

)
(45)

where Ib is a collection of all the terms of transistor not related to the applied gate voltage.

In order to determine Iin j, we will use the fact that dVout
dt = dVout

dQ ·
dQ
dt . Using our result from

(43), recognizing that dQ/dt is the injection current, and by taking the derivative of (45) we

can write
dVout

dt
= −

Ut

κ

d
dt Iout(t)
Iout(t)

=
dVout

dQ
·

dQ
dt
≈ −

1
C f b
· Iin j (46)

We will approximate the derivative using our measured data, yielding

Iin j ≈
C f bUt

κ∆t
·

∆Iout

Iout
(47)

Our calculation for Iin j is limited by our estimation of κ, which varies with current, Ut,

which varies with temperature, dVout
dQ , which depends on the gain and estimation of C f b, and

the time step, which must be small enough approximate the rate of Iout changing.

The results from Figure 36 allow for determining Vin j. Each Vd is associated with

a particular Iin j. In addition the relationship between the drain voltage and the injection

65

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
1p

10p

100p

1n

∆ Vd [V]

In
je

ct
io

n
 C

u
rr

e
n

t
[A

]

Measurment of Vinj

Measured

Fit, Vinj = 0.246

Figure 37. Experimental measurement of Vin j.

current is:
dIin j

dVd
=

Iin j

Vin j
(48)

The linear fit value for Vin j is shown in Figure 37.

5.6.2 Experimental Results

We have measured and characterized the VMM of our computational transform imager,

discussed in Chapter 6. The converter we employed for current measurement was the

bidirectional logamp discussed in Subsection 6.1.4. In order to evaluate the input-output

linearity, a single VMM cell was programmed to unity current gain. The ratio of the output

current to the input current was plotted against input current, as shown in Figure 38a. Over

the center 2.5 decades of plotted current, the error is less than 1%, and the entire four

66

10
−11

10
−10

10
−9

10
−8

10
−7

0.97

0.98

0.99

1

1.01

1.02

1.03

Input Current [A]

R
a

ti
o

 o
f

O
u

tp
u

t
to

 In
p

u
t

C
u

rr
e

n
t

Measured Data

−10n

−1n

−100p

−10p

10
n

1n10
0p

10
p

10n

1n

100p

10p

−1
0n −1

n

−1
00
p

−1
0p

Input Current [A]

O
u

tp
u

t
C

u
rr

e
n

t
[A

]

(a) (b)

Figure 38. Measurement of VMM multiplication, single-ended and four-quadrant. (a) Single-ended
measurement of a multiplication using the VMM cell programmed to a 1x multiplication.
The output current was divided by the input current, resulting in the gray circles. A fit of
the measured data was provided in order to better visualize the trend over the four orders
of magnitude. Over the center 2.5 decades of plotted current, the error is less than 1%, and
the entire four decades fall within ±2% error. The high-end accuracy degradation was due
to the test transistor leaving subthreshold, while the low end was thought to be limited by
the input current leakage–the test current was applied through a 256x256 pixel plane. (b)
Measured data showing four-quadrant multiplication using two input transistors and four
VMM cells programmed to the differential weights:[−1/6, 1/6,−1, 1,−6, 6].

decades fall within ±2% error. The high-end accuracy degradation was due to the test

transistor leaving subthreshold, while the low end was thought to be limited by the input

current leakage.

In order to implement a full, four-quadrant multiplication, VMM cells were grouped

into sets of four. Consider Figure 23b. By setting the weights of transistors mi, j through

mii+1, j+1 to

 1 + w/2 1 − w/2

1 − w/2 1 + w/2

 , and establishing the convention that Ii and Ii+1 are positive

and negative portions of a bidirectional input current and I j and I j+1 are positive and neg-

ative portions of a bidirectional output current, a fully differential VMM is implemented,

where w is the weight of the quadruplet. We programmed such a quadruplet to show gain

and attenuation for positive and negative weights. The results are shown in Figure 38b.

Note that rather than use the linear “X” plots that are typical of multipliers, we have instead

67

plotted our input-output measurements on a logarithmic scale in order to capture the wide

dynamic range capability of the multiplication. The VMM is discussed in more detail in

the context of our imager in Subsection 6.1.3.

By using a combination of the techniques discussed in this and previous chapters, we

were able to program the VMM weights to within the limit of our measurement circuitry

in a respectably short period of time, a breakdown of the time will follow. With respect to

the measurement circuitry, we had a 400µV noise floor at the output of the bidirectional IV.

If we consider the accuracy of our measurement in terms of the log-base-two ratio of the

mean to the range of 1000 measurements, the 12 to 13 bits of accuracy we see in voltage

translate to 6 to 7 bits in current over more than 2.5 decades of current. It is useful to think

of the SNR in current as the mantissa of a floating-point measurement, with another 6 to 7

bits for the exponent.

The actual programming of the VMM cell array was broken up into three phases: bring

into range, coarse inject, and fine inject. In order to simplify the programming scheme,

a fixed voltage was applied to all of the sources of the computational FETs in the VMM

during programming and weight measurement. This was functionally equivalent to setting

the same input current for all of the computational cells. It is valid because floating-gate

transistors were used in the source buffers for equalizing the offset across all of the rows.

We used the offset programming technique described in [38].

For an array of floating-gate transistors where the previous charge state is unknown, the

bring into range step involves a global erase of a collection of VMM cells and a subsequent

injection. Because the VMM cell uses an inverting amplifier to drive the computation

transistor, a tunneled cell results in large current flowing through all of the output FETs.

The initial injection moves the charge to the point that the control gate can be used to cut off

the output current. The result of bringing the devices into range is illustrated in Figure 39.

A single, fixed voltage was targeted using the comparator previously discussed in order to

optimize for speed. Because a fixed reference voltage was targeted, offsets between the IVs

68

0 10 20 30
1.637

1.6375

1.638

1.6385

1.639

1.6395

1.64
Range: 2.79 mV

Even Columns

O
u

tp
u

t
o

f
IV

 [
V

]

0 10 20 30
1.2185

1.219

1.2195

1.22

1.2205

1.221

1.2215
Range: 2.38 mV

Odd Columns
0 5 10 15 20 25 30

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

−7

Column

M
a

g
n

it
u

d
e

 C
u

rr
e

n
t

[A
]

(a) (b)

Figure 39. Result of the bring into range step in both output voltage and current. (a) After tunneling,
the transistors are injected with a fixed reference target for the comparator at the maximum
rate of injection, ∼ 500pA, resulting the measured data pictured. Different targets were
necessary for the positive and negative currents. (b) Magnitude output current from all
1024 VMM cells. Because a fixed reference voltage was targeted, offsets between the IVs of
each column result in offsets in the current programmed.

of each column result in offsets in the current programmed. For a single array, 1.2 seconds

were consumed for the total bring into range process. 300ms were spent on the high-field

exposure for FN tunneling, and the rest of the time was consumed with programming at

∼ 500pA injection currents in a repeated process until all the devices were individually

addressable. If the previous charge state of the VMM cells is within the range where

tunneling does not destroy isolation, the injection step is not necessary, as the devices will

already be in range after the tunneling. In that case the high-field exposure is reduced to

70ms. With the overhead from Matlab instrumentation to an embedded soft-core processor

controlling the PCB components, the total time is 140 − 160 ms.

The coarse inject step was used for bringing the device to within 50% of the final cur-

rent. It involved setting setting a particular target voltage for the comparator associated with

the desired target current and allowing the VMM cell to inject continuously until reaching

the target. Measured transient results for a device programmed to 250pA and 20nA after

being brought into range are shown in Figure 40. The circuit in Figure 34 is used to select a

69

0 50 100 150 200
Time [us]

0 50 100 150 200 250
1

1.05

1.1

1.15

1.2

1.25

1.3

Time [us]

O
u

tp
u

t
V

o
lt

a
g

e
 [

V
]

Pulse for 20nA, 220ms for 1024 devices

−3

−2

−1

0

Pulse for 250pA, 260ms for 1024 devices

D
ra

in
 V

o
lt

a
g

e
 [

V
]

Figure 40. Characteristic measured transient response of a device programmed to 250pA and 20nA,
left and right respectively. The output voltage appears fixed initially as the high-current
saturates the IV. The spike in the transient output corresponds to the comparator tripping
and causing the transistor to become de-selected. The programming time varies from device
to device, with a mean time of 260ms to program all 1024 devices to 250pA and 220ms to
program the devices to 20nA.

device, then the drain of the injection transistor is dropped to begin programming. The out-

put voltage remains fixed for the duration that the current from the VMM cell saturates the

IV converter. The device continues injecting until the comparator trips and the VMM cell

is disconnected. The output voltage of Figure 40 spikes due to there not being any current

feeding the IV converter. Once the instrumentation hardware recognizes that the compara-

tor has tripped, the drain is brought back to a point that disallows injection and the circuit

is reset for the next device. The temporal results in the plot are characteristic; the program-

ming time varies based upon the starting point, influenced by the tunneling procedure, and

the specific device characteristics. The worst case measured time for programming all 1024

devices of the VMM to 20nA and 250pA were 220ms and 260ms respectively. The time is

the total system time, including external instrumentation.

One of the key issues with the continuous injection is that the drain voltage on the injec-

tion FET must be set to a different voltage during programming than during computation,

70

otherwise there would be a static current flowing through the drain of the injection FET.

The drain voltage couples through the gate-to-drain overlap capacitor, resulting in an offset

in the output voltage, since the gate is being held fixed. For an output voltage driving a

computational FET, which is the condition in this system, the offset results in a current

multiplication. A histogram of the resulting multiplication is shown in Figure 41a. For

the set of 1024 VMM cells, the variation is about 10% around a factor of about 100. The

multiplication is corrected for in the first order by shifting the fixed source to implement

a factor of 100 division. The individual offsets between devices are corrected for by per-

forming a linear fit per device. Such a fit takes the form of Figure 41b. The experiment

performed was as follows: set a target voltage for the comparator, allow the device to inject

until the comparator trips and disables injection, measure the current with the bias point

for computation, repeat for the next target. The plot shows the measured voltage and the

calculated current from the output of the IV converter.

Next, the 1024 VMM cells were programmed to currents logarithmically spaced from

150pA to 20nA using the coarse injection scheme, Figure 42a. The external instrumen-

tation overhead consumed 150us per device, and the actual injection took between 60us

and 150us, for between 20nA and 50pA, respectively. The error from the coarse injection

is plotted in Figure 42b. The curvature for low currents is a result of the IV converter

bandwidth limit, and can actually be characterized by using a higher-order fit to reduce

programming error, but the goal was to maintain a first-order fit because it is more efficient

for an embedded implementation–in this case a matrix multiply and a matrix addition to

calculate the applied voltage from the voltage associated with a particular measured cur-

rent.

The coarse injection method can be used to directly program weights where 5-10% er-

ror is acceptable. Figure 42c is an image of the measured programmed 4-quadrant HAAR

transform, useful for the imager discussed in the next chapter. Because the transform can

be defined with the differential weights [1,-1,0], the coarse programming is sufficient to

71

90 95 100 105 110
0

20

40

60

80

100

120

140

160

180
Histogram of Gain Error induced by 2.5 to −2.5 step in Drain

Multiplication

N
u

m
b

e
r

o
f

V
M

M
 c

e
ll

s

1.56 1.58 1.6 1.62 1.64 1.66 1.68 1.7 1.72

1.55

1.6

1.65

1.7

1.75

IV
 O

u
tp

u
t

[V
]

10
−11

10
−10

10
−9

10
−8

10
−7

Comparator Target [V]

IV
 O

u
tp

u
t

[A
]

Voltage

Current

(a) (b)

Figure 41. Comparator-based continuous-time coarse programming characterization. (a) Histogram
of effective multiplication resulting from stepping the injection-FET drain from the run time
potential to the programming potential. Continuous injection means applying a bias point
that is different than the run time bias point. In particular, the drain voltage of the injection
FET is at a negative potential rather than the positive supply. For an output voltage driving
a computational FET, that correlates to a multiplication. Over 1024 devices, the devices
vary by about 10% around a factor of about 100. The multiplication is corrected for in
the first order by shifting the fixed source to implement a factor of 100 division. The offset
between devices is corrected for by performing a linear fit per device. (b) Mapping between
comparator targets and measured output voltages and currents for a single VMM cell. The
dashed black line represents the linear fit performed to provide the link between the run
time bias point and the programming bias point.

72

10
−10

10
−9

10
−8

10
−10

10
−9

10
−8

Target Current [A]

M
e

a
su

re
d

 C
o

a
rs

e
 P

ro
g

ra
m

m
e

d
 C

u
rr

e
n

t
[A

]

10
−10

10
−9

10
−8

−15

−10

−5

0

5

10

15

%
 E

rr
o

r
in

 P
ro

g
ra

m
m

e
d

 C
u

rr
e

n
t

Target Current [A]

(a) (b)

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16
−40nA

−30nA

−20nA

−10nA

0

10nA

20nA

30nA

40nA

0 5 10 15 20 25 30
−10

−5

0

5

10
2

−
Q

u
a

d
 W

e
ig

h
t

E
rr

o
r

[%
]

HAAR Weight Error, Fast Programming

Single−ended Columns

2 4 6 8 10 12 14 16
−4

−2

0

2

4

4
−

Q
u

a
d

 W
e

ig
h

t
E

rr
o

r
[%

]

Di"erential Columns

(c) (d)

Figure 42. (a) Result of programming 1024 VMM cells to currents logarithmically spaced from 150pA
to 20nA. (b) Error associated with coarse programming using a linear fit as a predictor of
the target current. The curvature for low currents is a result of the IV converter bandwidth
limit. A higher-order fit could be used to reduce programming error. (c) Measured pro-
grammed 4-quadrant HAAR transform using coarse programming. (d) Error associated
with the programming of 42c. The zero weights, while not shown, were programmed to
greater than three orders of magnitude lower than the non-zero weights.

73

achieve greater than five bits of precision, shown in Figure 42d. Depending on the applica-

tion, the error in programming can be measured and utilized to eliminate the need to spend

programming time.

The fine inject step was used for bringing the VMM weights to their final value. This

was accomplished through a measure and inject approach. The characterization for the fine

programming is shown in Figure 43. A device was initialized to the maximum current of

interest, and then the drain of the injection FET was pulsed. After measuring the resulting

current, the drain was pulsed again until the operating range of the device was exhausted.

This experiment was repeated for different pulse lengths in order to demonstrate that the

rate of change of current was independent of the pulse time. The characteristic rate for

each device was measured, and the rate array was used in conjunction with the difference

of the target and current programmed values of the VMM cells in order to determine an

array of pulses. Because all of the devices are brought to within 50% of the final value by

the coarse injection, the worst-case field exposure time using the fine programming scheme

for the array is bounded by 1024 devices times the field exposure time for a single device

that is 50% from its final value. For a single device, the worst field exposure for the biasing

in Figure 43a is 66us.

In Figure 43b, the devices in the VMM were programmed to show a sine wave in log of

the currents as an example of fine programming. Bring into range and coarse programming

were employed before applying fine programming, which required less than three or less

pulses. The error from programming is plotted in Figure 43c. Experimental results of four-

quadrant programming of the VMM array to the coefficients of a discrete cosine transform

are pictured in Figure 43d. The SNR of the programming was 6.1 bits, limited by the 400

uV noise floor measured at the output of the IV converters, Figure 29a.

74

0 250 500 750 1000 1250 1500
10

−12

10
−11

10
−10

10
−9

10
−8

10
−7

Time [us]

M
e

a
su

re
d

 P
ro

g
ra

m
m

e
d

 C
u

rr
e

n
t

[A
]

25 us Pulse

50 us Pulse

100 us Pulse

200 us Pulse

0 100 200 300 400 500 600 700 800 900 1000
10

−11

10
−10

10
−9

10
−8

10
−7

Element in the array

M
e

a
su

re
d

 P
ro

g
ra

m
m

e
d

 C
u

rr
e

n
t

[A
]

(a) (b)

10
−10

10
−9

10
−8

6

8

10

12

14

16

18

Target Current [A]

M
e

a
su

re
d

 A
cc

u
ra

cy
 in

 B
it

s

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

−3

−2

−1

0

1

2

3

x 10
−8

(c) (d)

Figure 43. Fine programming characterization and measurements. (a) Measured programmed current
for different pulse durations. The key is that all the applied pulse lenghts provide the same
rate of change, which demonstrates that the injection current is fixed. (b) The devices in the
VMM were programmed to show a sine wave in log of the currents as an example of fine
programming. Bring into range and coarse programming were employed before applying
fine programming, which required less than four pulses. (c) Measured accuracy in bits of the
single-ended programmed currents of the sine wave, which was strictly better than 6 bits. (d)
Experimental results of four-quadrant programming of the VMM array to the coefficients
of a discrete cosine transform. The SNR of the programming was 6.1 bits, limited by the 400
uV noise floor measured at the output of the IV converters.

75

CHAPTER 6

REPROGRAMMABLE ANALOG SYSTEMS

By using the techniques discussed in the previous chapters, we can construct large-scale

analog systems. In this chapter, the focus of the discussion is on reprogrammable designs.

I draw a key distinction between reprogrammable systems and reconfigurable systems. In

a reprogrammable system, the circuit architecture is fixed, but the functions and character-

istics of that architecture are malleable. For instance, the computational image sensor of

Section 6.1 implements two block transforms, one in each dimension of the image being

sensed by the pixel plane. The degree of freedom provided by the floating-gate technology

is in the ability to set arbitrary transforms–the computational architecture itself is fixed.

The adaptive filter in Section 6.2 represents a similar situation, where the filter topology is

fixed, but the floating-gate synapse weights are reprogrammable. We build reprogrammable

systems to bound system complexity and focus the design exploration. In the following

chapter, I will address fully reconfigurable systems, where floating-gate transistors provide

a means for redefining the effective system architecture.

6.1 Transform Imager

Sensing and processing are typically well isolated approaches, with an analog transducer

on the sensing end and a DSP on the processing end, an ADC sits in between acting as

the interface layer. In general, the ADC and the bit-width of the DSP represent significant

contributions to the total power of the system. In a transform image sensor, matrix-vector

multiplications are performed at the transducer and in the analog domain in order to re-

duce the ADC and DSP bit-width and computational overhead. The basic operation the

computational image sensor is:

Yσ = AT PσB (49)

76

Array

(P)

R
o

w
 C

o
n

tr
o

l

Analog

VMM

(B)

C
u
rr

en
t
to

 V
o
lt
ag

e

C
o
n
v
er

te
rs

Readout Control

T
ra

n
sf

o
rm

ed
 I

m
ag

e

Array
P
σ

Column
Offset

R
o

w

O
ff

se
t

Storage /
Generation

for
A matrix

A
n

al
o

g
 B

as
is

 V
ec

to
r

Intermediate Analog
Vector Result

a
i

(a
i

T

P

σ
)16x1

(a
i

T

P

σ
B)16x1

Analog

to

Digital

Conversion

V+
row

V-
row

I- co
l

I+
co

l

Computational Sensor Element

Figure 44. Transform imager system. System diagram of the block transform computational image
sensor.

where A and B are transformation matrices, Y is the output, P is the image. The subscript

σ denotes the sub-region of the image under transform. A graphical representation of the

system is shown in Figure 44.

The first computation is performed at the focal plane, in the pixels, using a computa-

tional sensor element shown in Figure 44(b). It uses a differential transistor pair to create

a differential current output that is proportional to a multiplication of the amount of light

falling on the photo-diode and the differential voltage input. This operation is represented

in Figure 45 as the element for the Pσ block.

When the electrical current outputs from a column of pixels are connected, an auto-

matic summation of current occurs. This aggregation results in a weighted summation of

the pixels in a column, with the weights being set by the voltages entered into the left of

the array. With a given set of voltage inputs from a selected row of A, every column of

the computational pixel array computes its weighted summation in parallel. This paral-

lel computation is of key importance, reducing the speed requirements of the individual

77

a
1

a
2

a
3

a
4

a
5

a
6

a
7

a
8

b
1

b
2

b
3

b
4

b
5

b
6

b
7

b
8

a
i·p

1

a
i·p

2

a
i·p

3

a
i·p

4

a
i·p

5

a
i·p

6

a
i·p

7

a
i·p

8

p
1

p
2

p
3

p
4

p
5

p
6

p
7

p
8

AT
aij

Select

V
o

u
t

Scalar Memory

Vin

Photons

I
o

u
t

Pσ

Variable-Gain
Sensor

X

(ai*P)·b1

(ai*P)·b2

(ai*P)·b3

(ai*P)·b4

(ai*P)·b5

(ai*P)·b6

(ai*P)·b7

(ai*P)·b8

Y
σ

I
in

Iout

Stored-Scalar
Muliplier

bijX

B

Figure 45. Block matrix computation performed in the analog domain. Illustrated here as an 8×8
block transform, both a computational pixel array and an analog vector-matrix multiplier
are used to perform signal projection before data is converted into the digital domain.

78

computational elements.

The second computation is performed in an analog vector-matrix multiplier (VMM)

[30]. This VMM may be designed so that it accepts input from all of the columns of

the pixel array, or it can be designed with multiplexing circuitry to only accept a time-

multiplexed subset of the columns. This decision sets the support region for the compu-

tation. The implementation used for these experiments uses the time-multiplexed column

option. The elements of the VMM use analog floating-gate transistors to perform multipli-

cation in the analog domain. Each element takes the input from its column and multiplies

it by a unique, reprogrammable coefficient. The result is an electrical current that is con-

tributed to a shared row output. Using the same automatic current summation as the P

matrix, a parallel set of weighted summations occur, resulting in the second matrix opera-

tion.

6.1.1 Computational Pixel Array

Figure 44 shows a schematic of a single pixel. Each pixel is a photo-sensor and a differential

transistor pair, providing both a sensing capability and a multiplication. The output of each

pixel is a differential current and it represents a multiplication of the light intensity falling

on the photo-sensor by a weighting value represented by a voltage input.

Pixels along a given row of the image plane share a single differential voltage input,

which sets the multiplication factor for the row. Pixels along a column share an output line,

utilizing KCL to perform current summation. Within each tile is a switch which selectively

allows the pixels in the tile to output to the column. When deselected, the pixel currents

are switched off of the column’s output line to a separate fixed potential.

6.1.2 Random Access Analog Memory

A compact analog memory structure was used to implement a storage for the A matrix,

Figure 46. It uses analog floating gates to store the coefficients of the transform matrix,

which means that no digital memory or DACs are required to feed the analog weighting

79

coefficients to the computational pixel array. The use of several DACs along with digital

memory would be costly in size and power. Building the memory storage element into

the voltage generation structure avoids unnecessary signal handling and conversion, saving

size and power.

The basic structure of the analog memory is an amplifier connected as a follower, Fig

46(a). However, one of the differential pair transistors has been replaced with a repro-

grammable bank of selectable analog floating-gate pFETs (fg-pFET), Fig 46(b). Each fg-

pFET shares the same input Vbias, but is programmed to a particular voltage offset which

sets the desired output voltage. The programming procedure inherently avoids issues of

voltage offsets due to mismatches in the transistors and in the op amp itself by directly

monitoring the output in the programming cycle. [24] discusses the use of fg-pFETs, which

act much like pFETS that have a programmable threshold voltage offset. Generating 16 dif-

ferential outputs requires 32 amplifier structures. The storage of a 16×16 differential values

requires a total of 32 rows × 16 columns of floating gates. Stacking the amplifiers atop each

other creates a 2-D array of floating-gates in a convenient structure for parallel addressing

and fits well into floating-gate array programming schemes.

6.1.3 Current Based Vector Matrix Multiplication Design

The back end circuitry of the imager was designed to handle the large line capacitances

and high dynamic range of the pixel array’s output. Figure 47 shows logarithmic tran-

simpedance amplifiers on the left, which sense and logarithmically convert the pixel current

to a voltage. The transfer characteristic is given by

∆Vout =
1

1/Ut + 1/AVA

ln
(

Iin

I′p

)
≈ Utln

(
Iin

I′p

)
, (50)

where Ut is the thermal voltage, A is the open-loop gain of the amplifier, VA is the Early

voltage of the feedback transistor, and I
′

p is a scaling current. The log is made possible

by the subthreshold exponential voltage to current relationship of the feedback MOSFET,

much like a BJT or diode implementation [39]. The internal amplifiers, with labeled gain

80

...

Vtail

Vbias Vbias

VtunVtun φ
0

φ
0

φ
n-1

φ
n-1

Vout

Itail

Vtail

Vin Vout

Itail

A
d
d
re

ss

Decoder

O
u
tp

u
t

D
ri

v
er

s
Vin=κ·Vbias+Voffseti

Output DriverMemory

Vout

Vin

.

.

.

1
6
(x

2
)

A
n
al

o
g
 O

u
tp

u
ts

 32x16
Floating-Gate

Array

(a)

(b)

(c)

1.242
1.244
1.246
1.248
1.250
1.252
1.254
1.256
1.258
1.260

R
o
w

 [
1
-3

2
]

Column [1-16]

O
u
tp

u
t V

o
ltag

e(V
)

(d)

Figure 46. Front-end analog memory for the imager. (a) Basic voltage buffer. (b) Input transistor re-
placed by selectable analog float-gate transistors. (c) Full analog memory bank. (d)DCT
programmed as differential pairs. The differential errors were within 400 uV, approxi-
mately our measurement precision.

81

A, serve a dual purpose: they buffer the outputs of the converter, providing the current for

the load transistors, and they create a large loop gain, fixing the input voltage. In addition,

they lower the effective input impedance seen at the drain of the feedback transistor from

1/gs, where gs is the subthreshold source conductance of the fg-pFET, to 1/Ags. This low

impedance generation is critical to sensing low currents in the presence of large capaci-

tance. The amplifiers can even be matched by programming the fg-pFET.

Unfortunately, the power consumption of this topology is roughly proportional to the

dynamic range the circuit is designed to support. This stems from the need to maintain

stability in the feedback loop [40]. Since the dynamic range is several orders of magnitude,

significant costs are incurred in order to support the full range. To alleviate this, an auto-

matic gain control (AGC) amplifier was integrated into the feedback loop, reducing power

consumption dependence on dynamic range support. This is also discussed in [40]. Since

subthreshold source conductance, I/Ut, scales with input current, the gain A can be allowed

to drop with higher input currents while still maintaining the low input impedance and sta-

bility. The AGC amplifier lowers its gain at higher output voltages, which correspond to

larger input currents.

The log amp plays an integral role in the analog vector matrix multiplier (VMM), which

performs the B matrix multiplication. As shown in Figure 47, every fg-pFET in the array,

coupled with the respective row’s log amp, forms a wide range, programmable gain current

mirror. The current mirror utilizes the sources of the transistors for signal propagation

instead of the gates, as in [30], minimizing power law errors due to mismatches in gate-

to-surface coupling. Each quadruplet of VMM fg-pFETs corresponds to one coefficient in

B. For a fully differential multiplication, w, the programmed gains for a quadruplet are

set to

 1 + w/2 1 − w/2

1 − w/2 1 + w/2

. All VMM transistors along a row share the same input signal

and perform their respective multiplications. The output currents are summed along the

columns. The resulting differential current output vector is a vector-matrix multiplication

82

Vref

Vref

Vref

Vref I+
out0 I-

out0 I+
out1 I-

out1

A

A

A

A

Input Log Amps
Fully Differential

Multiplier Cell

C
in

C
in

C
in

C
in

Vb

Vb

Vb

Vb

Vb

Vb

Vb

Vb

Vb

Vb

Vb

Vb

Vb

Vb

Vb

Vb

Vb

Vb

Vb

Vb

I+
in0

I-
in0

I+
in1

I-
in1

Figure 47. Vector-matrix multiplier schematic. Every fg-pFET in the array, coupled with the respective
row’s log amp, forms a wide range, programmable gain current mirror. The current mirror
utilizes the sources of the transistors for signal propagation in order to minimize power
law errors due to mismatches in gate-to-surface coupling. Each quadruplet of VMM fg-
pFETs corresponds to one coefficient in B. For a fully differential multiplication, w, the

programmed gains for a quadruplet are set to
[

1 + w/2 1 − w/2

1 − w/2 1 + w/2

]
.

83

vB. The work in [17] implements a similar VMM structure without the automatically-set,

high gain necessary for reducing power consumption and supporting wide dynamic range.

6.1.4 Log Bidirectional Current to Voltage Conversion

Since the output of the VMM is a differential current, a differential to single-ended conver-

sion was required. With the desire to maintain the ability to process wide dynamic range

signals, a logarithmic conversion was sought. Because the resolution of a logarithmic sig-

nal representation is proportional to the signal, it is desirable to remove the common-mode

component of the signal before the conversion. This can be achieved by taking the differ-

ence of the signals in differential pair. The problem with this approach is that the resulting

current can be a very small, even zero. This presents a difficult scenario for a logarithmic

amplifier, whose speed is proportional to the input current. Furthermore, a bidirectional

logarithmic converter is required. Solving these issues entailed creating a new topology for

a bidirectional converter. The design is derived from the mentioned designs of the unidi-

rectional logarithmic converters. Adding bidirectional capability to logarithmic converters

typically entails two feedback paths, one for positive current and one for negative. The

problem is a dead zone created at near zero current, where neither feedback path is effec-

tively working. By looking at a simple two-transistor I-V converter that incorporated a bias

current that had a very useful DC response, a new topology was created. The circuit in Fig-

ure 48(b) has nearly the same I-V conversion characteristic as that in Figure 48(a), though

the sign is negated and an asymmetry between positive and negative currents is introduced

form the followers’ feedback: κp f vs. κn f . The complete transfer characteristic is

Iin = Ib

(
e
κp f ∆Vout

Ut − e
−κn f ∆Vout

Ut

)
(51)

It can be approximated by a two-part piecewise function when enough current is being

converted:

84

Vout

Vbiasp

Vbiasn

Iin

Bi-directional

Current

I b

(a)

Vref

Iin Vout

VbiasN

A

VbiasP

VshiftN

VshiftP

I b
ia

s

Iin+ Iin-

Vref

Vref

A

(b)

10
−14

10
−12

10
−10

10
−8

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

O
u

tp
u

t
V

o
lt

ag
e

 (V
)

Absolute Input Current (|A|)

Positive Currents

Negative Currents

Raw Data
Calibrated Data
Log Fit

(c)

0.0 10.0 20.0 30.0 40.0 50.0 60.0

1.20

1.40

1.60

1.80

2.00

2.20

Time (us)

100pA

10pA

10nA

1nA

100nA

-10pA
-100pA

-1nA
-10nA

-100nA

O
u

tp
u

t
V

o
lt

a
g

e
 (

V
)

zero

(d)

Figure 48. Bidirectional I-V concept and implementation. (a) Simple Compressive I-V (b) High-speed,
low-current differential-to-single-ended I-V converter (c) data showing DC characteristic of
bidirectional I-V (d) Simulated Bidirectional I-V Converter Step response

85

Iin =


Ib

(
e
κp f ∆Vout

Ut

)
∆Vout � 0

Ib

(
−e

−κn f ∆Vout
Ut

)
∆Vout � 0

(52)

The new topology utilizes voltage offsets, in this case two-transistor followers, to estab-

lish source voltages on the feedback transistors that move in response to the main ampli-

fier’s output and maintain a bias current through the transistors, guaranteeing a minimum

input conductance and therefore speed even when the input current is zero. The DC re-

sponse, logarithmic in nature, supports a wide range of signals while maintaining good

resolution throughout the range, Figure 48(c). This structure also utilizes a AGC amplifier,

which in this case loses gain as the output deviates from the zero-current output voltage.

To perform the precursory current subtraction that converts the differential signal to a

single-ended signal, a current mirror, utilizing the source node for signal propagation as in

the VMM, is used. Though a gain error may occur due to threshold voltage mismatch in

the current mirrors, this is accounted for when programming the corresponding column of

the VMM.

Thus, as the input current deviates from zero, the converter approximates a logarithmic

compression. This bi-directional converter is very useful in applications where support

for large dynamic range is essential and small currents must be sensed at bandwidths well

beyond gm/C. As in the unidirectional structure, the internal amplifiers boost the bandwidth

in proportion to their gain.

6.1.5 Test Setup

In order to test our computational image sensor, we constructed the instrumentation plat-

form pictured in Figure 49a. On the computer we used Matlab as a high-level interface,

which connected to the FPGA board through a full-speed USB-parallel converter from

FTDI. In order to achieve a maximum bandwidth of 6 Mbps, we constructed a Matlab ex-

ecutable which interfaced to the custom FTDI D2XX driver in C. We selected an FPGA

board from Microtronix which contained an Altera Stratix chip. The core processing work

86

on the FPGA was controlled by Altera’s Nios II 32-bit RISC soft processor. One of the key

features of the soft proessor was an extensible 32-bit bus called Avalon. We implemented

custom Avalon slave interfaces for all of the hardware on the FPGA in order to have a direct

memory-mapped interface available in the software environment on the NIOS processor.

By creating a simple messaging protocol on top of the USB communication, the memory-

mapped interface was extended to Matlab. By coupling the high-level memory-mapped

interface with the queueing capability of the D2XX driver, large control sequences for the

hardware could be predetermined and dispatched to the CPU at a rate communsurate with

implementing the sequences directy in C on the soft processor–this allowed for algorithmic

prototyping with all of the advantages of a powerful, interpreted language (Matlab), with

less instrumentation overhead. The CPU did not run at a high enough speed to dispatch

digital control sequences to the imager IC, so a light-weight multi-cycle support processor

was constructed to faciliate digital control. The external RAM was used to accumulate data

when the bandwidth to the PC was not sufficient, e.g., high framerate video capture.

The illustration in Figure 49b represents the method of automating the optical scene

presentation to the imager. A programmable light source was used to illuminate a scene

on an LCD connected to a video output from a computer. The setup from Figure 49a was

mounted on the XYZ translator, and the scene was focused onto the imager.

6.1.6 Results

Technically our imager does not output images, but the inner-products of the projections

of the image onto basis sets programmed into the transformation matrices A and B. The

measured data from the chip is a hyperbolic sine-like transformation of the actual projec-

tion. Each point in the output matrix is a log-compressed voltage representation of the

current-mode transform coefficient. The data is related back to the current through the

pre-characterized I-V transfer curve, Figure 48c.

In order to measure the image incident with our pixel plane, we employed identities

as our transformation matrices. In this way the output of the imager is a representative

87

Soft

Processor

U
S

B

 In
terface

FPGA

Imager Board
U

S
B

 L
in

k

Imager IC
DACs

Interface

Circuitry

FPGA Board

R
A

M

ADCs

Imager

Digital

Iterface

DAC

Control

ADC

Control

P
M

C
 C

o
n

n
ec

to
r

(a)

Optical Bench

L
en

s

P
o

la
ri

ze
r

P
o

la
ri

ze
r

LCD

XYZ
Translator

Imager

L
ig

h
t

S
o

u
rc

e

(b)

Figure 49. Imager test setup. (a) Instrumentation platform for the imager IC. (b) Optical setup for
imager with computer control.

88

1

2

3

0

-3

-2

-1

Identity

(a) (b)

(c)

Edge Enhance

Kernel in B Matrix

Figure 50. Image reading with identity and high-pass convolution programmed into the B matrix. (a)
Test image, directed at the image sensor by projection through an LCD. The contrast of the
output was limited by the contrast of the LCD. (b) Result of projected image transformed
with an identity in both dimensions, and then transformed from voltage to current using
Figure 48c. (c) An edge enhancement was performed by programming a high-pass kernel
into the B matrix.

measurement of the raw image. The test image in Figure 50a was displayed on an LCD

and directed at the image sensor, Figure 49. The resulting data that was read out is shown in

Figure 50b, post voltage-to-current conversion. We then show an implementation of edge

enhancement on the imager by using a 1-D truncated pyramid mask in the B matrix, Figure

50c.

By implementing separable transforms that result in sparse representations of the input

89

image and combining it with a thresholding operation, analog compression can be imple-

mented. A scene of passive electrical components was first imaged using identities, Figure

51a. Next, we used the discrete cosine transform (DCT) and Haar wavelet transform to

process the scene. The DCT is ideal for implementing analog front-end JPEG compres-

sion, while the Haar transform was chosen to show the flexibility of our computational

image sensor. As seen in Figure 51b and 51d, the data from the IC image is a transformed

representation of the image in 51a. Figure 51b shows a DCT transformation result and

Figure 51d shows a Haar transformation result. These data sets were processed with ideal

inverse transforms to produce Figure 51c and 51e. The focus of the experiment was to

create an analog output with a sparse representation, the actual thresholding circuitry was

not included on this chip.

One of the particularly desirable aspects of the DCT is that the lower frequency coef-

ficients, where most of the signal power generally lies, are clustered into a local region.

That, combined with the separable nature of the transform, significantly reduces the effort

of choosing which coefficients to propagate to the next stage of processing. The fidelity

cost of DCT compression is in its representation of edges. Coefficients that relate to higher

frequency are the ones pruned as they tend to have less signal power, but edge data is lost

since edges span low and high frequencies.

Under most circumstances, wavelets do a better job than the DCT for image compres-

sion, since the basis functions implement a high-pass and low-pass at many different scales,

but the projection results in scene-specific clustering of high signal-power coefficients. As

a result, it is not clear which coefficients are worth processing. In order to get around this

limitation, we can use a compressive sensing approach, where a decorrelated basis set is

used to capture a seemingly random combination of the pixel data, and convex optimization

is used on the resultant data set to reconstruct the image–compression is just a matter of

capturing an arbitrary subset of the total coefficient data.

In the experiments, a complete set of transform coefficients were collected, and the

90

(a)

(b) (c)

(d) (e)

Figure 51. Imaging with transforms that yield sparse representations, DCT and Haar. Both transforms
were performed completely in analog on the transform imager. The data was read out
in voltage, then converted to current using the characteristic of the readout circuit. (a)
Scene imaged with identities for the A and B matrix. (b) DCT transform of the scene. (c)
DCT Reconstruction using ideal inverse DCT. (d) Haar transform of the scene. (e) Haar
reconstruction using ideal inverse of the Haar transform.

91

reduced collection was simulated by discarding measured values. The nonlinear recovery

algorithm discussed was used to reconstruct the images. Since the exact original image is

not available, reconstructed images corresponding to incomplete collection were compared

against denoised versions of images created from complete coefficient collection.

At high levels of compression, retaining few transform coefficients, the DCT represen-

tation lead to better peak signal-to-noise ratio (PSNR), Figure52a and 52b. This is possible

because the predefined DCT coefficient removal process exploits the knowledge of where

energy compaction occurs in the DCT domain. In the case of the noiselets, higher trans-

form coefficient retention lead to better performance, surpassing the DCT results in quality.

It is expected that every transform coefficient in the noiselet domain statistically contributes

the same signal and noise power to the resulting image as any other coefficient. In the case

of DCT transform coefficients, the coefficients representing high spatial frequencies con-

tribute the same noise as the coefficients representing low frequencies, but they contribute

less signal power. This is believed to be a contributor to the PSNR actually falling in the re-

constructed image as more coefficients are added. Additionally, it is believed that the noise

in the DCT images are overall higher because the DCT bases are smaller in magnitude than

those of the noiselets when implemented in the analog system. The basis functions are

constrained to a linear input range of the analog computational elements. Since the noiselet

functions consist of only 1’s and −1’s, they use the complete signal range of the system,

resulting in better signal to noise ratio.

The computational image sensor was re-fabricated using the VMM design techniques

discussed in Chapter 5. Figure 53 shows some preliminary images taken from that imager.

A full frame capture takes 1/3 of a second, with a single 16x16 block capture occuring at 50

frames per second. The bottleneck for reading images is in the instrumentation platform.

92

No

Compression

25%

Compression

50%

Compression

75%

Compression

DCT Basis Set Noiselet Basis Set

10 20 30 40 50 60 70 80
20

22

24

26

28

30

32

34

36

Percentage of Coefficients Retained

P
S

N
R

Noiselet
DCT

(a) (b)

Figure 52. Compressive Sensing using the transform imager. (a) Reconstruction results using DCT
and Noiselet basis sets with various compression levels. The image sensor measured 16×16
blocks of the image projected onto DCT and noiselet basis functions. Subsets of the data
were taken and used to reconstruct the shown images using a nonlinear total variance min-
imization algorithm for the noiselets and a pseudo-inverse for the DCT. (b) PSNR of recon-
struction vs. percentage of used transform coefficients.

6.2 Adaptive Filter

This work demonstrates a fully integrated, compact, adaptive filter layer based upon a

continuously adapting node. These nodes adapt through the Least-Mean-Square (LMS)

learning algorithm based upon continuously adapting floating-gate circuits. Figure 54a

shows the block diagram of an adaptive linear combiner; the feedforward computation is

93

(a) (b)

(c) (d)

(e) (f)

Figure 53. Different levels of averaging on the imager for a full frame, 256x256. The framerate is lim-
ited by the instrumentation. The first image is a HAAR reconsctruction with no averaging,
while the subsequent images were averaged 10, 25, and 100 times and then reconstructed
using an ideal inverse HAAR, Figures 53b–53d. The framerates were 3.3, 1.8, 1, and .33
frames per second. Figures 53e and 53f are the raw and partial HAAR reconstruction of
53d.

94

described as

y =

n−1∑
j=0

w jx j (53)

where, x j is the jth input and w j is the stored weight at position j. Applications for adaptive

filters include adaptive equalization, prediction, system identification and noise cancella-

tion.

Figure 54a shows the implemented system architecture. Exploiting the non-linearities

inherent in hot-electron injection and Fowler-Nordheim tunneling, floating-gate transistors

adapt the weight level along an LMS rule [41]. Weight adaptation is obtained by comparing

the sum of the outputs of multiple synapses to a desired target and changing the weights

of each synapse such that the error between the target and the system output is minimized.

Using floating-gate transistors for both weight adaptation and weight storage results in the

synapse circuits being compact and low-power [41, 42]. The use of floating-gate transistors

provides a non-volatile storage capability for the weights. The proposed analog architecture

has been fabricated in a 0.35µm CMOS process (die photo in Figure 54c).

Adaptive filter design in the analog domain is motivated by the benefits of a low-power

implementation. Digital multiplication, addition, and integration are both power and area

intensive while an analog approach can be both compact and power efficient [43]. Although

analog adaptive filters have been implemented previously ([44, 45, 46, 47, 48]), the floating-

gate approach combines weight storage, feedforward multiplication, and weight adaptation

in a compact and efficient manner.

6.2.1 Adaptive Filter Architecture

The block diagram of the analog adaptive filter system is shown in Figure 55a. The system

implements the adaptive linear combiner as described earlier. Each adaptive node consists

of 16 synapse elements and the chip contains 4 nodes. A total of 16 analog input signals

can be provided with the signals being shared between all four adaptive nodes while the

target signal is unique for each node. The output of each node is compared with the target

95

Input

∑

Desired
Responsew0,k

w1,k

wi,k

+

-yk εk

Output Error

dk

x0,k

x1,k

xi,k

∑.
.
.

.

.

.

(a)

Σ

Σ Σ

Σ

Σ Σ

(b)

4
0

0
u

m

1800um

(c)

Figure 54. Our adaptive filter IC. (a) Block diagram representation of an adaptive filter / linear com-
biner that adapts its weights such that the error between its output and the target signal is
minimized. (b) Block level representation of an analog adaptive filter composed of multiple
adaptive nodes. (c) The die photograph of the fabricated adaptive filter system in a 0.35µm
CMOS process.

96

Iso(1-x)
Iout

M 6M 7

V tun1V dd
V dd

+1Iso(1+x)

M 1

M 2 M 3

M 4 M 5

M 8
Iso(1+x)

Ieo(1+e)

V tun1 V tun2
V b

V dd2

V ddV dd1 V dd1

V e

Post-Distort

Ibias

I in

M 6

M 8 M 9

M 7

M 10 M 2

M 1 M 3

V DD V DD

V out
V ref

Ibias + I in Ibias

A 1

Ibias
τ τ

Figure 55. Adaptive filter circuit schematics: (a) Floating-gate based synapse circuit along with the
post-distort circuitry that is common to all the synapses in a particular row. (b) Circuit
schematic of the voltage-current converter. (c) Circuit schematic of the current-voltage con-
verter. (d) Circuit schematic of the log-domain current-mode high-pass filter.

97

signal and the error signal is fed back to each of the synapses in a given node. The weights

of the synapse adapt such that the error signal is minimized and the output of each node

tracks the target signal.

The system employs current-mode signaling with current-voltage (I-V) and voltage-

current (V-I) converters forming the interface. Figure 55b shows the circuit schematic of

the V-I converter [49]. The use of a regulated cascode current mirror (M1 − M4) en-

sures that the drain of M1 is set to a well defined value of Vre f , independent of the current

flowing through M1. The use of amplifier A2 helps fix the output node at a fixed volt-

age thereby nullifying the effect of the output capacitance leading to a high bandwidth.

Figure 55c shows the circuit schematic of the I-V converter [49] where transistor M2 is a

common source amplifier with M1 being the active load to perform the current conversion.

The issue of stabilizing the high gain output node is addressed using the replica transistor

M3, identical current source Ibias and the amplifier A1. Figure 55d shows the log-domain

current-mode high-pass filter schematic. Transistors M1−M6 low-pass filter the input sig-

nal. The input signal is encoded at the source of M1 and is low-pass filtered at the gate of

M3. Transistors M4, M5 and M6 take the low-passed gate voltage of M3 and transform it

into a low-passed version of the input signal. The low-passed signal is subtracted from a

copy of the input signal at the drain of M6 resulting in Iout, a high-pass filtered version of

the input.

Characterization results for the circuit blocks are shown in Figure 56. Figure 56a shows

the DC transfer characteristic of the V-I converter that displays a linear range of about

3.5µA at a bias current on 5µA. Figure 56b shows the DC transfer function for the I-V

converter. The slope is negative because of the sinking nature of the input. The measured

transimpedance gain of the I-V converter is about 1.6MΩ. Figure 56c shows the effective

bandwidth of the system to be ≈110KHz by driving the I-V converter using the V-I con-

verter. Figure 56d shows the step response of the high-pass filter, where the input to the

98

1 1.5 2 2.5 3
0

1

2

3

4

5

Input Voltage (V)

O
u

tp
u

t
C

u
rr

e
n

t
(u

A
)

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

Input Current (mA)

O
u

tp
u

t
V

o
lt

a
g

e
 (

V
)

10
5

-25

-20

-15

-10

-5

0

Frequency (Hz)

M
a
g
n
it
u
d
e
 (

d
B
)

0 0.05 0.1 0.15 0.2
1

1.2

1.4

1.6

1.8

T ime (s)

O
u

tp
u

t
V

o
lt

a
g

e
(V

)

(a) (b)

(c) (d)

Figure 56. Characterization of Functional Blocks Required to build the adaptive nodes. (a) DC transfer
function of the V-I converter. (b) Transfer characteristics of the I-V converter. (c) Frequency
response of the combination of V-I and I-V converters. (d) Response of the high-pass filter
to a series of steps applied at its input.

filter is applied using the V-I converter and the current output is read using the I-V con-

verter. The filter displays a high-pass behavior with an offset due to the mismatch between

transistor pairs M1/M6, M3/M4 and current mirror mismatches.

6.2.2 Adaptive Synapse Operation

The floating-gate synapse [41] that implements the least-mean-square learning rule is shown

in Figure 55a. Transistor pairs M1/M2 and M6/M7 implement a differential synapse such

that both positive and negative weights can be realized. It should be noted that adaptation

occurs only at the floating-gate of M1 while the floating-gate of M6 is programmed to an

99

equilibrium weight that acts as a reference. The drain currents of M1 and M6 are summed

together and become the synapse output. The drain current of M1 is given by,

I1 = Iso(1 + w)(1 + x) (54)

where Iso is the equilibrium bias current. The above equation has been derived assuming

that transistors M1 and M2 are identical, their input capacitors are matched. Performing

a similar analysis for transistor M6 and high-pass filtering the resulting sum of the drain

currents of M1 and M6 gives the required synapse output current, Iy = wx, where w is the

difference between the weight adapted on M1 and the equilibrium weight stored on M6.

The weight adaptation in the synapse is achieved using the physical phenomenons of

tunneling and hot-electron injection. Transistor M3, that forms a source-follower along

with transistors M4−M5, aids in the process of adaptation. The error signal for adaptation

is fed back via the post-distort circuitry. The post-distort circuitry shown within the dotted

lines in Figure 55a performs a non-linear conversion of the error current into a voltage

that when applied to the drain of transistor M1 results in a linear mapping between the

error current and the drain current of M1 [41]. Applying KCL at the floating-gate node

and modeling the tunneling and injection currents as in [41], the weight update equation is

found to be similar to an LMS learning rule and is derived to be [41],

τ
dw
dt
≈ − (ε − αE[xe])w + E[xe] (55)

where τ is inversely proportional to the tunneling bias current, and ε is the weight decay

parameter set by device parameters (less than 0.1).

Figure 57 shows a characterization of the synapse circuitry. In order to demonstrate the

correlation behavior of a single synapse as given in (55), a sinusoidal signal is applied to

both the input and the error terminal of the synapse circuit. According to (55), the synapse

computes the correlation between the two signals, the result being a change in the DC level

of the floating-gate voltage. This change in the floating-gate voltage results in a DC change

in the source voltage. For an LMS learning rule, with two sinusoidal signals applied to the

100

x = A
x
sin(ωt)

e = A
e

sin(ωt+θ)

y = wx

Synapse

(a)

0 100 200 300 400
−1

−0.5

0

0.5

1

Phase Shift (Degs)

N
o
rm

a
liz

e
d
 M

e
a
n
 S

o
u
rc

e
 V

o
lt
a
g
e

Ideal

Measured

(b)

Figure 57. Results demonstrating correlation behavior by applying a sinusoidal input current and a
phase shifted sinusoid at the input of the post-distort circuitry. (a) Phase correlation exper-
iment set-up. (b) Plot of the normalized weight vs. phase shift of the error signal sinusoid.

input and the error voltage, the equilibrium weight is approximately given by,

weq = ≈
AiAd

2
cosθ (56)

where, Ai, Ad are the amplitudes of the applied sinusoidal inputs and θ is the phase differ-

ence between the two signals. Measuring the steady-state value of the source voltage for

different sinusoidal inputs at the input and the error terminals of the synapse should result

in a cosine function. Experimental results are shown in Figure 57b that confirm correlation

learning in the synapse.

Figure 58 shows the synapse response with a square wave target and a sinusoid of the

same fundamental at the input. The weight peaks when the input and target are maximally

positively correlated, 0◦ phase difference, shown in Figure 58a,b. The scale factor becomes

0 at maximum negative correlation, 180◦ phase difference, shown in Figure 58c,d. This

clearly demonstrates LMS learning in the system.

101

0 0.5 1
0.5

1

1.5

2

Time (ms) (a)

T
a

rg
e

t
a

n
d

 I
n

p
u

t
(
V

)

0 0.5 1
0.5

1

1.5

2

Time (ms) (c)

0 0.5 1
1

1.2

1.4

1.6

1.8

Time (ms) (b)
O

u
tp

u
t

V
o

lt
g

e
 (

V
)

0 0.5 1
1.3

1.35

1.4

1.45

1.5

Time (ms) (d)

O
u

tp
u

t
V

o
lt

a
g

e
 (

V
)

T
a

rg
e

t
a

n
d

 I
n

p
u

t
(
V

)

Figure 58. Adaptation of a single synapse connected using an LMS feedback. (a) Target square wave
and input sine-wave applied in phase. (b) Output of the synapse adapts to being a sine-
wave. (c) Target square wave and input sine-wave applied with 180◦ phase difference. (d)
The equilibrium weight of the system goes to zero therefore the synapse outputs a DC signal
instead of a sine-wave.

102

Table 1. Equilibrium weights for a Fourier Decomposition Experiment
Sine Frequency (KHz) 1 2 3 4 5

Meas. Weight 1 0.0445 0.3142 0.0469 0.1881
Fourier Coefficients 1 0 0.33 0 0.2

6.2.3 Adaptive Filter Measurements from a Network of Nodes

The experimental setup consists of a custom PCB for the chip that contains the hardware

necessary for programming floating-gate transistors. The delay lines were implemented

off-chip using digital-to-analog converters (DACs) and smoothing filters (low-pass filters)

to provide flexibility for testing different applications. The setup is controlled using a FPGA

board with a computer in the loop, resulting in a fully automated test fixture. This provides

the flexibility of implementing a variety of learning scenarios as arbitrary waveforms that

can be generated in software and applied to the chip using DACs. Experimental results

that have been measured using the test setup are presented in this section to demonstrate

adaptation and learning.

A Fourier decomposition experiment was performed on the synapse; an adaptive lin-

ear combiner can learn a square-wave when presented with sinusoids that are at integer

multiples of the square-wave frequency. Figure 59a shows this experiment, where the

weights adapt to the Fourier co-efficients such that the output resembles a square-wave

with the result that the error between the output and the target is minimized. The chip

was presented with a 1KHz square-wave target and the equilibrium weight was measured

by providing the first five harmonics of the target square-wave. The solid line in Figure

59b shows the ideal square-wave that results when the first five harmonics are weighted

with the ideal Fourier co-efficient and combined together. The circle data of Figure 59b

shows the resulting square-wave using the weights obtained from the chip. As can be

observed, a square-wave results when the first five harmonics are combined using the mea-

sured weights, thereby demonstrating learning in the chip. Table 1 presents the weights

obtained experimentally by conducting the above experiment and compares them with the

103

Table 2. Summary of Performance
Parameter Value

Power Supply 3.3V
Process 0.35µm CMOS

Area 1800µm×400µm
Power Dissipation 13.2mW

Adaptation Mechanism Hot-electron injection and Tunneling
Adaptation Time 1ms − 10s

Input Signal Bandwidth 100KHz

ideal expected value. As can be observed, the weights converge to the ideal values, clearly

demonstrating adaptation in the analog implementation.

Table 2 summarizes the key performance parameters of the fabricated adaptive filter

chip. The chip occupies an area of 1800µm×400µm. The chip contains 4 adaptive nodes

with 16 synapses each for a total of 64 synapses and associated circuitry. The entire chip

dissipates a power of 13.2mW at an operating supply voltage of 3.3V . The bulk of the

power is dissipated in the amplifiers and buffers used in the interface circuitry to drive sig-

nals on and off the chip. The synapse matrix consumes a power of approximately 633µW.

The use of tunneling and injection as the mechanisms controlling adaptation enables adap-

tation time constants in the range of 1ms − 10s. The wide range of time-constants that

are available is a key advantage in the proposed approach. This makes possible a range of

learning problems while other techniques require large capacitors with the time constant

being ultimately limited by diode leakage currents. The bandwidth of the system is limited

primarily by the bandwidth of the I-V converter.

104

x x x1

1w

2

2w

N

Nw

y

ŷŷ

x x x1 2 N

e Σ

(a)

0 0.5 1 1.5 2 2.5 3

0

0.5

1

Time (ms)

N
or

m
al

iz
ed

 O
ut

pu
t

(b)

Figure 59. Adaptive node Fourier decomposition. (a) Schematic showing learning a square-wave from
harmonic sinusoids (b) Square-wave resulting from normalized Fourier co-efficients for the
first five harmonics. The solid line is ideal, the circles represent measured equilibrium
weights obtained from the analog adaptive filter chip.

105

CHAPTER 7

RECONFIGURABLE ANALOG SYSTEMS

In building large-scale reconfigurable analog systems, there is a fundamental choice to be

made between the level of reconfigurable and the level of area consumption and associ-

ated increase in circuit parasitics. Field programmable analog arrays (FPAAs) are designed

with a bias toward reconfigurability. Fundamentally, an FPAA is broken down into el-

ements of connection and elements of computation, though the elements can be chosen

in such a way that the computational elements implement connectivity. The salient point

is that floating-gate transistors go a long way toward enabling large-scale FPAA systems.

The non-volatile analog memory element provides a means for implementing both circuit

biases and switches in a compact way. In terms of the granularity of the analog com-

ponents, which are typically grouped together into a computational analog block (CAB),

components of coarser granularity lend themselves to less connectivity, resulting in less

parasitics and higher performance. Finer granularity in CAB component choice is desir-

able for constructing an IC that allows for hardware design exploration without the burden

of subsequent IC fabrication. The next two sections illustrate two different FPAAs. The

Reconfigurable Analog Signal Processor, or RASP, was built with generic analog design in

mind. The Reconfigurable Analog Array of MITEs, or RAAM, was constructed with an in-

tent of building a direct link between mathematical equations and circuit implementations.

7.1 RASP

The Reconfigurable Analog Signal Processor, or RASP, is a platform for evaluating the

design and implementation of floating-gate inspired FPAAs. Computational primitives with

varying levels of granularity are used in order to completely cover the design space. A

focus is on providing maximum reconfigurability. The first RASP was comprised of two

CABs and a full cross-bar switch [50]. The second implementation of the RASP was also

106

Programming Structure

P
ro

g
ra

m
m

in
g

 S
tr

u
c

tu
re

Global

Switch

Matrix

CAB

CAB

(a) (b)

Figure 60. This is the architecture for the RASP 1.5. There are two CABs, a global cross-bar switch
matrix, and programming circuitry. The contents of the CAB are displayed in Figure 61.

comprised of two CABs and a full cross-bar switch, but had architectural improvements

necessary to produce meaningful circuit and system data. In addition to the description that

follows, the implementation and results of that chip have been published as [51].

Referred to as the RASP 1.5, it is the system illustrated in Figure 60. Each CAB has

three amplifiers, three filter caps, a min and max detector, a bandpass, a pFET, an nFET,

and a vector matrix multiplier, as shown in Figure 61. The OTA is a 9-transistor wide-range

amplifier with a floating-gate bias current. The max and min detectors have floating-gate

elements for varying the time-constant of the max and min detection decay. The bandpass

is a cascade of two compact capacitively coupled current conveyors, or C4’s, with a buffer

in between to reduce loading.

7.1.1 VMM

The VMM and similar processing circuits, such as diffusors, are capable of utilizing large

sections of the switch fabric for computation. As depicted by the 2x2 differential VMM

structure of Figure 62, the VMM is composed almost entirely of programmed switch el-

ements. The only CAB component is the OTA used to buffer the source voltage of the

input switch element. The individual multiplier weights are set by programming a charge

107

Computational Analog Block (CAB)

+

−

WR_OTA

+

−

WR_OTA

+

−

WR_OTA

In Out

C (SOS)4

min

max

Figure 61. The components of a CAB on the RASP 1.5. The arrows represent connections to the switch
matrix. The OTAs have a 9-transistor wide-range floating-gate biased architecture. The
C4(S OS) block is a cascade of two C4 circuits with a buffer in between. The max and min
detectors have a τ set by a floating-gate.

108

-

+

V
c

V
c

I
in1

+

V
c

-

+

V
c

V
c

I
in2

+

V
c

I
out2

+ I
out1

+

-

+

-

+

V
c

V
c

I
in2

-

V
c

I
out2

-I
out1

-

V
c

V
c

I
in1

-

V
c

I
out2

-

Figure 62. Differential 2x2 VMM structure utilizing programmable switch fabric elements (two float-
ing gate switches in series).

difference between the input and output switch elements. Multiplier outputs are then tied

together for current summation to perform the final computation. A two quadrant multi-

plier is constructed using a second single-ended multiplier to provide positive and negative

inputs. In a similar fashion, a four quadrant multiplier can be constructed by duplicating

the output stage of the two quadrant multiplier to provide positive and negative weights.

For a four quadrant structure, the CAB component utilization is dependent upon the

number of inputs (#OTAs = 2*#inputs). The switch fabric utilization is dependent upon

109

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

Input Current (A)

O
u

tp
u

t
C

u
rr

e
n

t
(A

)

Ideal (unity multiplier)

Experimental (.1x−10x)

Figure 63. Single quadrant multiplication with weights programmed between .1 and 10.

both the inputs and outputs (#switch elements = 2*#inputs*[2*#outputs + 1]). Since there

is no CAB component cost when increasing the number of outputs, additional processing

can be added with little impact on CAB component utilization. Using this technique, ar-

bitrarily sized VMMs can be constructed. This eliminates the need to include pre-sized

versions of them as CAB components, which saves a significant amount of computational

area for other components.

Data from a single multiplier is shown in Figure 63. This multiplier was constructed

with a single floating gate switch element as an input, an amplifier buffering the source

voltage, and another switch element as an output. The weight of the multiplier was pro-

grammed over two orders of magnitude from .1 to 10. The curvature apparent at higher

currents is a result of the transistors leaving the subthreshold region of operation. The

jagged profile at sub-picoamp currents results from limitations in the off-chip measurement

110

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

.1x

1x

10x

Input Current (A)

M
u

lt
ip

li
e

r

2.5% error
 5% error
 10% error

Figure 64. Plot depicting a range of multiplier values that produce outputs within a ± 2.5%, 5%, and
10% error band.

equipment. For multiplier weights ranging from .5 to 1.5, a reasonable range for common

signal processing tasks, the error was observed to be within ±2.5% over three decades of

current. The data of Figure 63 is analyzed in Figure 64 to illustrate the trade-off between

accuracy and dynamic range in the multiplier element. The three error bands represent

the range of currents over which a particular programmed multiplier results in an output

that falls within the specified error range. As illustrated in Figure 64, the input range is

greatest for all error bands around a unity multiplier. Since the circuit is functioning as a

current mirror in this range, the effect of offsets between the input and output transistors is

minimized.

7.1.2 Continuous-Time Filters
7.1.2.1 Follower-integrator

The implementation of follower-integrator is a good example of how to build circuits on a

RASP FPAA. It is first necessary to tunnel the entire array in order to disconnect all of the

switches and reset the bias positions in the array. Next, an operational transconductance

amplifier (OTA) and capacitor is mapped to the switches in the connection matrix. The

111

+

−

WR_OTA

100 1k 10k 100

−35

−30

−25

−20

−15

−10

−5

0

Frequency (Hz)

G
a

in
 (

d
B

)

1u

10u

P
ro

g
ra

m
m

e
d

 b
ia

s
cu

rr
e

n
t

(A
)

100 1k 10k 100

Corner Frequency (Hz)

(a) (b) (c)

Figure 65. (a) Implementation of a follower-integrator in a cross-bar switch matrix. The black dots
represent switches that have been injected into the on position. (b) Frequency response
for several programmed currents. (c) Mapping of programmed current levels to corner
frequencies.

resulting mapping is shown in Figure 65(a). The programming algorithm used for switches,

Section 2.3.2.1, is then used to make the necessary circuit connections. Finally, the bias

current of the amplifier is set by programming the floating-gate transistor to achieve a

particular corner frequency.

Figure 65(b) is an illustration of the frequency responses taken from the follower-

integrator circuit for several different programmed bias currents. In order to calibrate the

3db frequency against the parasitic capacitance in the switch matrix, the corner frequencies

are extracted and mapped to the programmed bias currents. Shown in Figure 65(c), the

mapping provides a way to quickly target a corner frequency. However, unless the output

of the OTA-C circuit is buffered, the mapping will fail as other circuits are connected to its

output.

7.1.2.2 Second-order Section

A slightly more complicated example of a circuit on the RASP is the second-order section,

or SOS, pictured in Figure 66. This time all three OTAs and two caps from a single CAB

are used to build the circuit. The circuit is desirable because it provides a low-pass transfer

characteristic with a straightforward, predictable way to set the τ and Q factor. A small

signal analysis of the circuit provides the means for relating the bias currents of the OTAs

112

+

−

WR_OTA
+

−

WR_OTA

+

−

WR_OTA

g
m1

g
m1

g
m2

Figure 66. A second–order section filter can be implemented with two OTAs in a source-follower con-
figuration and a third OTA that creates positive feedback.

to the transient response. The circuit has the transfer function

H(s) =
1

τ2s2 + 1
Qτs + 1

; τ =
C

gm1
; Q =

1
2 − gm2

gm1

(57)

The τ of the SOS is the same as the follower-integrator, so the mapping from Figure

65c is still valid as long as the same capacitance is maintained. If not, the τ would have to

be determined experimentally. In order to set the Q factor, a ratio of transconductances is

necessary. In the case of two well matched, equivalently designed amplifiers, the ratio of

transconductances is the ratio of the square-root of the bias currents. In subthreshold, it is

simply the ratio of the bias currents.

The FPAA implementation and resulting data are shown in Figure 67. Data for a fixed

gm1 and five different values of gm2 is shown. As expected, the Q factor increases with an

increasing gm2.

7.1.2.3 Ladder filter

The availability of OTAs and grounded capacitors makes the RASP ideal for implementing

Gm-C filters, as demonstrated in the previous section. One way to realize a particular filter

is by modeling it with resistors, inductors, and capacitors, and then synthesizing the design

using Gm-C filters. In this example, a third-order Butterworth filter is implemented.

The canonical prototype of the filter, a double–resistance terminated LC filter, is shown

113

+

−

WR_OTA

+

−

WR_OTA

+

−

WR_OTA

g
m1

g
m2

g
m1

10
2

10
3

10
4

10
5

−70

−60

−50

−40

−30

−20

−10

0

10

Frequency (Hz)

G
ai

n
(d

B
)

(a) (b)

Figure 67. SOS implementation and results. (a) The second-order section is implemented using the
switch matrix, three OTAs, and two explicit capacitors. (b) The experimental frequency
response of a circuit is shown here. Data for a fixed gm1 and five different values of gm2 is
shown. As expected, the Q factor increases with an increasing gm2.

in Figure 68a. By using the signal simulation method outlined in [52], the Gm-C filter

shown in Figure 68b is generated. In order to maintain a maximally flat response, the

following must hold: 2 ∗ gm1 = gm2. Accordingly, the bias current of OTA-3 was set

to half of the other OTA bias currents. A range of bias currents was used to create the

frequency response shown in Figure 68c. As expected, the corner frequency of the filter is

proportional to the bias currents of the OTAs. The lower corners were obtained by using

a bias current in the range of hundreds of pico-amps, while the highest corners required

currents of up to 1 µA.

7.2 RAAM

The Reconfigurable Analog Array of MITEs, or RAAM, is another test-bed FPAA built

upon the same switch technology as the RASP. However unlike the RASP, the RAAM

represents a concerted effort to better mimic FPGA design by using a regular computa-

tional primitive, explicitly supporting direct system synthesis, and having multiple levels

of connection hierarchy.

MITEs were conceived and developed by Brad Minch. In [53], he presents a number

of different ways to implement MITEs, including the floating gate implementation pictured

114

1 F 1 F

1 ohm 2 H

1 ohm

(a)

m2

+ −

OTA2
gm2g

+

OTA1

−

m1g
OTA3

+ −

m2
+ −

OTA4
g

C C C

(b)

10
2

10
3

10
4

10
5

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Frequency
G

a
in

 (
d

B
)

(c)

Figure 68. (a) The canonical prototype of a third–order Butterworth double–resistance terminated LC
filter. (b) This is the Gm-C implementation of the same filter. The filter can be realized
directly on the RASP 1.5 FPAA. (c) Results from the ladder filter for different bias currents.

Programming Structure

P
ro

g
ra

m
m

in
g

 S
tr

u
c

tu
re

Global

Switch

Matrix

MITE CAB

MITE CAB

Specialized CAB

MITE CAB

(a) (b)

Figure 69. System architecture of the RAAM, an FPAA used to create reconfigurable translinear net-
works. The system consists of 3 MITE CABS, a specialized CAB, and a global switch net-
work. The specialized cab consists of circuitry that enables dynamic functions and also
includes an input bank of V-I converters.

115

in Figure 69a. An ideal MITE has K input voltages. Each voltage is scaled by wK , a

positive dimensionless weight. The exponential result of the weighted sum is scaled and

represented as a current. An idealized expression for the MITE is provided in (58).

I = Ise
∑

wiVi (58)

MITEs map well to higher-level system descriptions by leveraging the power of translin-

ear circuit methodology. With respect to general translinear field, there is a lot work cov-

ering the synthesis of static and dynamic translinear circuits. At least two synthesis proce-

dures have been developed specifically for MITEs [54, 55]. In [55], the synthesis procedure

allows mapping from single output static polynomial constraints and algebraic differential

equations to MITE circuits. Static and dynamic systems are treated in a similar manner.

[55] relates multiple inputs and multiple outputs of a static mathematic expression to a

connectivity matrix which is then mapped to MITEs. The dynamics of the system are

mapped to first-order low-pass filters. It implements a smaller class of dynamic circuits,

but provides a more direct mapping to an FPAA fabric.

The RAAM has four CABs, a global switch matrix, and programming circuitry. It is

pictured in Figure 69 and was fabricated in a .5µ process. The global switch matrix is

actually the second layer of hierarchy–the MITE CAB is composed of MITE primitives

and a local switch matrix. The purpose of the local network is provide a trade-off between

switch area and reconfigurability. There are two analog primitives in the MITE CAB, a

diode connected MITE for input signals and a plain MITE for output signals. The 4-cap

structure was chosen as a means for mapping cleanly to the synthesis procedure in [55].

The specialized CAB contains the I-V converters for inputs and first-order low-pass filters

for implementing dynamic circuits.

The following experimental results illustrate the basic functionality of the RAAM ar-

chitecture.

116

Iout Iref Iin

0 50 100 150 200 250 300
0

50

100

150

200

250

300

350

400

Input Current (nA)

O
ut

pu
t C

ur
re

nt
 (

nA
)

Measured
Theoretical

(a) (b)

Figure 70. Schematic of a squaring circuit represented by (59) using two input MITEs and a single
output MITE. The coloration corresponds to connections made in order to implement the
circuit on the RAAM. The mapping is illustrated in Figure 71.

7.2.1 Single-input power-law circuit

A MITE is fundamentally well-suited for implementing power-law equations. Accordingly,

a good starting point with the RAAM is the implementation of a circuit that results in an

input raised to a particular power. Using [55], y = x2 can be represented as

Iout =
I2
in

Ire f
(59)

where Iout is the output current, Iin is an input current, and Ire f is a scaling current which

represents unity. The circuit that represents (59) is shown in Figure 70a. By defining Vre f

as the diode-connected voltage created by Ire f , Vin as the diode-connected voltage created

by Iin, and w = − κ
UT

(
C

CT
+

Q
CT

)
, the following expressions for the controlling voltages can

be written from the circuit in Figure 70:

Vre f =
1

2w
ln

(
Ire f

I′s

)
; Vin =

1
w

ln
(

Iin

I′s

)
− Vre f (60)

As a result,

Iout = I′se
2wVin = I′se

2 ln
(

Iin
I′s

)
−ln

(Ire f
I′s

)
= I′se

2 ln
(

Iin
I′s

)
−ln

(Ire f
I′s

)
(61)

117

which can be simplified to (59).

The analysis yields important insight. In order to cleanly simplify the result, the weight

term must be equal for all three MITEs. If there is any variation in the weight term, it

appears in the final expression as an additional exponent in the same way the squared term

does. Accordingly, it is necessary to equalize the charge on the floating gates, maintain

good capacitor matching, and avoid large temperature gradients across the circuit operation.

It is also possible to offset some of the mismatch by adjusting the charge on the output

MITE, as is shown in Section 7.2.2.

The square circuit was compiled into the RAAM yielding the experimental data plotted

against simulation data in Figure 70b. Reference currents of 50nA, 100nA, 200nA, and

300nA were used. The circuit is implemented by mapping the 2-cap MITE circuit to 4-

cap MITEs in a RAAM CAB. The resulting implementation is shown in Figure 71. Two

currents are routed to two input MITEs and an output MITE. The colored circles at line

intersections represent switches that have been injected to the on position. The output

MITE uses a cascoded nFET current mirror in order to reduce distortion in the current

mirror. Variations due to differences in the current mirror can be taken care of by varying

the charge on the output MITE.

7.2.2 Vector magnitude

As an example of a slightly more complicated system, a MITE circuit that calculates the

vector magnitude was compiled onto the RAAM. The equation for the circuit is given by

Iout =

√
I2

x + I2
y (62)

The inputs provided to the system in the form

Ix = Ire f ∗ cos(θ) (63)

Iy = Ire f ∗ sin(θ) (64)

where θ is swept from 0 to 90◦. A plot of the initial system implementation is shown in

Figure 72a. Each concentric arch represents a different Ire f . Empirically, the data has a

118

V
-I

 1

V
-I

 2

V
-I

 3

V
-I

 4

V
-I

 5

V
-I

 6

Figure 71. Example of the RAAM reconfigured to implement a squaring circuit. The colored nodes
correspond to Figure (70) and the circles at the intersection of the bus lines indicate a switch
that has been turned on. The row of V-I converters and the crossbar network below it
represent the specialized CAB, the crossbar network on the left of the figure represents the
global switch matrix, and the row of MITEs and the crossbar network below it represent a
MITE CAB.

119

0 50 100 150 200 250
0

50

100

150

200

250

Output*cos(θ) (nA)

O
u

tp
u

t*
si

n
(θ

)
(n

A
)

Measured

Theoretical

0 50 100 150 200 250
0

50

100

150

200

250

Output*cos(θ) (nA)

O
u

tp
u

t*
si

n
(θ

)
(n

A
)

Measured

Theoretical

(a) (b)

Figure 72. Results of the vector magnitude circuit. (a) Results of the vector magnitude circuit after
programming all MITEs to the same level. Each MITE was programmed to have 10nA of
current with a source-drain voltage of 2.3V and a source-gate voltage of 1.3V . (b) Results of
the vector magnitude circuit after programming out the initial errors. The MITEs preform-
ing the squaring functions were injected higher than the other MITEs in order to increase
the coefficients to 1.

coefficient under the square-root that is modeled as

Iout =

√
0.8I2

x + 0.8I2
y . (65)

By increasing the charge of the MITEs implementing the square-root, the empirical coeffi-

cient is increased to unity. The resulting data is shown in Figure 72b.

7.2.3 First-order filter

MITEs can be used to implement more than static equations. By adding a 1st-order low-

pass filter to a static MITE network, algebraic differential equations can be implemented

[54, 55]. If Ix is an input current and Iy is an output current equation, a low-pass filter can

be expressed as

τ
dIy

dt
+ Iy = Ix (66)

120

Ix Iτ Iτ Iy

IC

Ip

10
2

10
3

10
4

−25

−20

−15

−10

−5

0

Frequency [Hz]

M
ag

ni
tu

de
 [d

B
]

(a) (b)

Figure 73. MITE implementation, (a), and experimental data, (b), of a 1st-order low-pass filter. The
filter is simply a translinear loop with a capacitor on an internal node.

However, capacitors are related to current through the time-derivative of a voltage, so the

chain rule is used to rearrange (66) into

τ
δIy

δVy

dVy

dt
+ Iy = Ix (67)

In addition, the voltage-derivative of Iy is simply the gm of a MITE, resulting in

− w
τIy

UT

dVy

dt
+ Iy = Ix (68)

After introducing C
C to the time-derivative of Vy and rearranging,

Iτ − IC =
IxIτ
Iy

= Ip (69)

Accordingly, (69) can be directly implemented as a translinear loop with a capacitor on one

of the inputs.

The resulting circuit implementation is shown in Figure 73a. The filter was imple-

mented on the RAAM with the resulting experimental data shown in Figure 73b.

121

CHAPTER 8

CONCLUSION

Over the course of this document, I have shown how to understand and interact with

floating-gate transistors in a way that informs and enables building large-scale analog re-

configurable systems. I explained the key charge movement mechanisms and how those

physical processes work both for and against us in the context of dense arrays of floating-

gate transistors. I used the understanding of charge injection in a floating-gate pFET to

build a trend-accurate low parameter count simulation model for injection simulation. I

further showed how to combine an understanding of charge injection and my simulaton

methodology to design and implement a compact computational cell. I then combined

the different floating-gate techniques into two different targeted reprogrammable analog

systems, a computational analog transform image sensor and an analog adaptive filter. I

subsequently constructed two different types of fully reconfigurable analog systems, a re-

configurable analog signal processor based on a variety of analog components with differ-

ent granularity, and an analog computational system with a specific algorithmic targeting

in mind.

8.1 Specific Contributions

I designed, implemented and tested a two CAB general purpose FPAA along with Chris

Twigg and Tyson Hall. I completed design and layout of some of the CAB components,

and worked with Chris on the programming logic. The chip laid the groundwork for all

of the subsequent FPAAs used in our research group and was published in [51]. Based on

the efforts with the generic FPAA, I designed, implemented, and tested a two CAB MITE

FPAA with Dave Abramson and Shyam Subramanian. I used my work on the general

purpose FPAA to build a MITE FPAA with assistance from Dave. We subsequently con-

structed a second MITE chip using lateral BJTs. Shyam provided the algorithmic approach

122

for mapping the equations we synthesized in hardware and our work was published in [56].

We also looked at applying the MITES to particle filtering in collaboration with Rajbabu

Velmurugan, published in [57]. I investigated the programming and characterization of a

floating-gate switch with Chris and Dave. My approach to floating-gate switch program-

ming enabled the results shown in the previous two papers, and my characterization work

comparing floating-gate switches to pass gates and T-gates is published in [58]. In order

to address the questions about the “leakiness” of floating-gate analog memory, I looked

at long-term charge storage in the context of floating-gate offset removal with Venkatesh

Srinivasan and Guillermo Serrano. I helped research the charge leakage mechanism, con-

struct the test platform, and analyze the data. Our results are published in [38]. In parallel,

I used the insight from my work with floating-gate switch programming and isolation to do

a detailed study of parasitic charge movement, where I identified that subthreshold conduc-

tion was not the dominant parasitic charge mechanism in our floating-gate arrays, which I

published in [59]. As the research progressed, I found myself limited by a lack of a floating-

gate simulation model, so I built a simplified implementation of CHE injection in Verilog-A

based based on a physical (rather than empirical) model, and fit it to experimental data. That

effort was published in as [60]. I then turned my attention to analog current-mode multi-

plication, first in the context of an analog adaptive filter with Venkatesh Srinivasan. Our

work was published in [61]. I next looked at the multiplier in the switch fabric of an FPAA

with a vector-matrix multiplier in mind. Chris and I investigated how to better utilize our

FPAA architecture for computation in [62], where I applied the in-switch VMM effort. The

in-switch VMM approach has a profound impact on the utilization of chip area for compu-

tation. During the VMM investigation for the FPAA, I designed, implemented, and tested

a matrix-vector multiplier using floating-gate transistors in a computational image sensor.

I helped design the log-amp buffering the input signal and the log-amp buffering the output

signals, along with Dave and Ryan Robucci, and I designed the array and programming

for the VMM. I also contributed to the programming on the front-end of the image sensor.

123

That effort as been published in [63].

124

REFERENCES

[1] D. B. SCHWARTZ, R. E. HOWARD, and W. E. HUBBARD, “A programmable ana-
log neural network chip,” IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 24,
no. 2, pp. 313–319, 1989.

[2] F. J. KUB, K. K. MOON, I. A. MACK, and F. M. LONG, “Programmable analog
vector matrix multipliers,” IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 25,
no. 1, pp. 207–214, 1990.

[3] T. SHIBATA and T. OHMI, “A functional mos-transistor featuring gate-level weighted
sum and threshold operations,” IEEE TRANSACTIONS ON ELECTRON DEVICES,
vol. 39, no. 6, pp. 1444–1455, 1992.

[4] J. RAMIREZANGULO, S. C. CHOI, and G. GONZALEZALTAMIRANO, “Low-
voltage circuits building-blocks using multiple-input floating-gate transistors,” pp.
971–974, 1995.

[5] B. A. Minch, C. Diorio, P. Hasler, and C. A. Mead, “Translinear circuits using sub-
threshold floating-gate mos transistors,” ANALOG INTEGRATED CIRCUITS AND
SIGNAL PROCESSING, vol. 9, no. 2, pp. 167–179, 1996.

[6] P. Hasler and T. S. Lande, “Overview of floating-gate devices, circuits, and systems,”
pp. 1–3, 2001.

[7] J. Ramirez-Angulo and A. J. Lopez, “Mite circuits: The continuous-time counterpart
to switched-capacitor circuits,” IEEE TRANSACTIONS ON CIRCUITS AND SYS-
TEMS II-ANALOG AND DIGITAL SIGNAL PROCESSING, vol. 48, no. 1, pp. 45–55,
2001.

[8] R. Benson and D. Kerns, “Uv-activated conductances allow for multiple time scale
learning,” IEEE Transactions on Neural Networks, vol. 4, no. 3, pp. 434 – 40, May
1993.

[9] E. Takeda, A. Shimizu, and T. Hagiwara, “Role of hot-hole injection in hot-carrier
effects and the small degraded channel region in mosfet’s,” IEEE Electron Device
Letters, vol. 4, no. 9, pp. 329–331, 1983.

[10] J.-H. Chen, S.-C. Wong, and Y.-H. Wang, “An analytic three-terminal band-to-band
tunneling model on gidl in mosfet,” IEEE Transactions on Electron Devices, vol. 48,
no. 7, pp. 1400 – 5, July 2001.

[11] Y. Taur and T. H. Ning, Fundamentals of modern VLSI devices. New York, NY,
USA: Cambridge University Press, 1998.

125

[12] P. Hasler, B. Minch, and C. Diorio, “Adaptive circuits using pfet floating-gate de-
vices,” Proceedings 20th Anniversary Conference on Advanced Research in VLSI, pp.
215 – 29, 1999.

[13] G. Serrano, P. Smith, H. Lo, R. Chawla, T. Hall, C. Twigg, and P. Hasler, “Automatic
rapid programming of large arrays of floating-gate elements,” 2004 IEEE Interna-
tional Symposium on Circuits and Systems (IEEE Cat. No.04CH37512), vol. Vol.1,
pp. 373 – 6, 2004.

[14] V. Srinivasan, G. Serrano, J. Gray, and P. Hasler, “Precision cmos amplifier using
floating-gate offset cancellation,” IEEE Custom Integrated Circuits Conference, pp.
739–743, 2005.

[15] H. Nozama and S. Kokyama, “A thermionic electron emission model for charge re-
tention in SAMOS structures,” Japanese Journal of Applied Physics, vol. 21, pp.
L111–L112, Feburary 1992.

[16] C. Bleiker and H. Melchior, “A four-state EEPROM using floating-gate memory cell,”
IEEE Journal of Solid-State Circuits, vol. 22, pp. 460–463, Jun. 1987.

[17] S. Chakrabartty and G. Cauwenberghs, “Sub-microwatt analog vlsi trainable pattern
classifier,” IEEE Journal of Solid-State Circuits, vol. 42, no. 5, pp. 1169 – 79, 5 2007.

[18] R. Robucci, L. Chiu, J. Gray, J. Romberg, P. Hasler, and D. Anderson, “Compressive
sensing on a cmos seperable transform image sensor,” IEEE International Conference
on Acoustics, Speech, and Signal Processing, 2008.

[19] C. Twigg and P. Hasler, “A large-scale reconfigurable analog signal processor (rasp)
ic,” IEEE Custom Integrated Circuits Conference, September 2006.

[20] J. Brown, W. D. Brewer, A Comprehensive Guide to Understanding and Using NVSM
Devices. Wiley-IEEE Press, 1997.

[21] P. D. Smith, M. Kucic, and P. Hasler, “Accurate programming of analog floating-
gate arrays,” in Proceedings of the International Symposium on Circuits and Systems,
2002, pp. 489–492.

[22] K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand, “Leakage current mecha-
nisms and leakage reduction techniques in deep-submicrometer cmos circuits,” Pro-
ceedings of the IEEE, vol. 91, pp. 305 – 327, 2003.

[23] P. Smith, M. Kucic, and P. Hasler, “Accurate programming of analog floating-gate
arrays,” in International Symposium on Circuits and Systems, vol. 5, Phoenix, AZ,
May 2002, pp. 489–492.

[24] A. Bandyopadhyay, G. Serrano, and P. Hasler, “Adaptive algorithm using hot-electron
injection for programming analog computational memory elements within 0.2 percent
of accuracy over 3.5 decades,” IEEE Journal of Solid-State Circuits, vol. 41, pp. 2107
– 2114, September 2006.

126

[25] C. Twigg and P. Hasler, “Programmable conductance switches for fpaas,” IEEE Inter-
national Symposium on Circuits and Systems, pp. p173–176, September 2007.

[26] S. Chakrabartty and G. Cauwenberghs, “Fixed-current method for programming large
floating-gate arrays,” IEEE International Symposium on Circuits and Systems, vol. 4,
pp. 3934 – 3937, May 2005.

[27] P. Hasler, A. Basu, and S. Koziol, “Above threshold pfet injection modeling intended
for programming floating-gate systems,” IEEE International Symposium on Circuits
and Systems, pp. 4 pp. –, 2007.

[28] K. Rahimi, C. Diorio, C. Hernandez, and M. Brockhausen, “A simulation model for
floating-gate mos synapse transistors,” IEEE International Symposium on Circuits
and Systems. Proceedings, vol. vol.2, pp. 532 – 5, 2002.

[29] R. Sarpeshkar, “Efficient precise computation with noisy components: Extrapolating
from an electronic cochlea to the brain,” Ph.D. dissertation, California Institute of
Technology, 1997.

[30] R. Chawla, A. Bandyopadhyay, V. Srinivasan, and P. Hasler, “A 531 nw/mhz, 128×32
current-mode programmable analog vector-matrix multiplier with over two decades of
linearity,” in Custom Integrated Circuits Conference, 2004. Proceedings of the IEEE
2004, 3-6 Oct. 2004, pp. 651–654.

[31] B. Minch, “Floating-gate techniques for assessing mismatch,” in IEEE International
Symposium on Circuits and Systems, 2000.

[32] T. Serrano-Gotarredona, B. Linares-Barranco, and A. Andreou, “Very wide range tun-
able cmos/bipolar current mirrors with voltageclamped input,” Circuits and Systems
I: Fundamental Theory and Applications, IEEE Transactions on, vol. 46, pp. 1398–
1407, 1999.

[33] S. Chakrabartty, G. Singh, and G. Cauwenberghs, “Hybrid support vector ma-
chine/hidden markov model approach forcontinuous speech recognition,” in IEEE
Midwest Symposium on Circuits and Systems, 2000.

[34] R. Robucci, “Development of a computational image sensor with applications in in-
tegrated sensing and processing,” Ph.D. dissertation, Georgia Institute of Technology,
2009.

[35] C. Diorio, S. Mahajan, P. Hasler, B. Minch, and C. Mead, “A high-resolution non-
volatile analog memory cell,” in IEEE International Symposium on Circuits and Sys-
tems, 1995.

[36] E. Ozalevli, C. Twigg, and P. Hasler, “10-bit programmable voltage-output digital-
analog converter,” in International Symposium on Circuits and Systems, 2005.

[37] G. Serrano and P. Hasler, “A precision low tc wide range cmos current reference,”
IEEE Journal of Solid-State Circuits, 2008.

127

[38] V. Srinivasan, G. Serrano, J. Gray, and P. Hasler, “A precision cmos amplifier using
floating-gate transistors for offset cancellation,” IEEE Journal of Solid-State Circuits,
vol. 42, no. 2, pp. 280 – 91, Feb 2007.

[39] R. McFadyen and F. Schlereth, “Gain-compensated logarithmic amplifier,” in Solid-
State Circuits Conference. Digest of Technical Papers. 1965 IEEE International, vol.
VIII, Feb 1965, pp. 110–111.

[40] A. Basu, R. W. Robucci, and P. E. Hasler, “A low-power, compact, adaptive logarith-
mic transimpedance amplifier operating over seven decades of current,” Circuits and
Systems I: Regular Papers, IEEE Transactions on [Circuits and Systems I: Fundamen-
tal Theory and Applications, IEEE Transactions on], vol. 54, no. 10, pp. 2167–2177,
2007.

[41] P. Hasler and J. Dugger, “An analog floating-gate node for supervised learning,” IEEE
Transactions on Circuits and Systems I, vol. 52, pp. 834–845, May 2005.

[42] ——, “Correlation learning rule in floating-gate pFET synapses,” IEEE Transactions
on Circuits and Systems II, vol. 48, no. 1, pp. 65–73, Jan. 2001.

[43] R. Chawla, A. Bandyopadhyay, V. Srinivasan, and P. Hasler, “A 531nw/mhz, 128x32
current-mode vector matrix multiplier with over 2 decades of linear range,” Proceed-
ings of the IEEE Custom Integrated Circuits Conference, pp. 29–4–1 – 29–4–4, Oct.
2004.

[44] Y. Tsividis and S. Satyanarayana, “Analogue circuits for variable synapse electronic
neural networks,” Electronics Letters, vol. 24, no. 2, pp. 1313–1314, 1987.

[45] I. A. Mack, F. Kub, K. K. Moon, and F. M. Long, “Programmable Analog Vector-
Matrix Multiplier,” IEEE Journal of Solid-State Circuits, vol. 25, pp. 207–214, Feb.
1990.

[46] A. J. Agranat, C. F. Neugebauer, R. D. Nelson, and A. Yariv, “The CCD neural proces-
sor: A neural network integrated circuit with 65536 programmable analog synapses,”
IEEE Transactions on Circuits and Systems, vol. 37, no. 8, pp. 1073–1075, Aug. 1990.

[47] P. Hafliger and C. Rasche, “Floating-gate analog memory for parameter and variable
storage in a learning silicon neuron,” Proceedings of the International Symposium on
Circuits and Systems, pp. 416–419, May 1999.

[48] G. Gomez and R. Siferd, “Single-chip FIR adaptive filter using CMOS analog cir-
cuits,” Proceedings of the IEEE International ASIC Conference and Exhibit, pp. P3–
5.1–P3.5.4, Sep. 1991.

[49] V. Srinivasan, R. Chawla, and P. Hasler, “Linear current-voltage and voltage-current
converters,” Proceedings of the Midwest Symposium on Circuits and Systems, pp.
675–678, Aug. 2005.

128

[50] T. S. Hall, C. M. Twigg, P. Hasler, and D. V. Anderson, “Application performance of
elements in a floating–gate FPAA,” in Proceedings of the International Symposium
on Circuits and Systems, 2004, pp. 589–592.

[51] T. Hall, C. Twigg, J. Gray, P. Hasler, and D. Anderson, “Large-scale field-
programmable analog arrays for analog signal processing,” IEEE Transactions on
Circuits and Systems I: Fundamental Theory and Applications, vol. 52, no. 11, pp.
2298 – 307, Nov 2005.

[52] Y. Sun, Design of high frequency integrated analogue filters. The Institution of
Engineering and Technology, London, UK, 2002.

[53] B. A. Minch, “Analysis, synthesis, and implementation of networks of multiple-input
translinear elements,” Ph.D. dissertation, California Institute of Technology, May
1997.

[54] ——, “Synthesis of static and dynamic multiple-input translinear element networks,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 51, no. 2, pp.
409–421, Feb. 2004.

[55] S. Subramanian, D. Anderson, and P. Hasler, “Synthesis of static multiple input mul-
tiple output mite networks,” IEEE International Symposium on Circuits and Systems
(ISCAS), vol. 1, pp. I–189– I–192, 2004.

[56] D. Abramson, J. Gray, S. Subramanian, and P. Hasler, “A field-programmable ana-
log array using translinear elements,” in System-on-Chip for Real-Time Applications,
2005. Proceedings. Fifth International Workshop on, 2005, pp. 425–428.

[57] R. Velmurugan, S. Subramanian, V. Cevher, D. N. Abramson, K. Odame, J. Gray,
H. Lo, J. McClellan, and D. Anderson, “On low-power analog implementation of
particle filters for target tracking,” in Signal Processing, 2006. EUSIPCO ’06. Pro-
ceedings of the14th European Conference on, 2006.

[58] J. Gray, C. Twigg, D. Abramson, and P. Hasler, “Characteristics and programming
of floating-gate pfet switches in an fpaa crossbar network,” in Circuits and Systems,
2005. ISCAS 2005. IEEE International Symposium on, 2005, pp. 468–471 Vol. 1.

[59] J. Gray and P. Hasler, “Parasitic charge movement in floating-gate array program-
ming,” Submitted to IEEE International MWSCAS, 2008.

[60] J. Gray, R. Robucci, and P. Hasler, “The design and simulation model of an analog
floating-gate computational element for use in large-scale analog reconfigurable sys-
tems,” Submitted to IEEE International MWSCAS, 2008.

[61] J. Gray, V. Srinivasan, R. Robucci, and P. Hasler, “A floating-gate transistor based
continuous-time analog adaptive filter,” in Circuits and Systems, 2008. ISCAS 2008.
IEEE International Symposium on, 2008.

129

[62] C. Twigg, J. Gray, and P. Hasler, “Programmable floating gate fpaa switches are not
dead weight,” in Circuits and Systems, 2007. ISCAS 2007. IEEE International Sym-
posium on, 2007.

[63] R. Robucci, J. Gray, D. Abramson, and P. Hasler, “A 256 x 256 separable transform
cmos imager,” in IEEE International Symposium on Circuits and Systems, 2008.

130

	Titlepage
	Signatures
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Summary
	Chapter 1 — Overview
	Chapter 2 — Floating-Gate Elements
	Device characteristics
	Floating-gate charge movement techniques
	Tunneling
	Injection

	Programming pMOS transistors
	Removing electrons
	Adding electrons
	Gate-sweep injection
	Drain-pulse injection
	GIDL injection

	Charge retention

	Chapter 3 — fg-pFET Arrays
	Typical Implementation
	Isolation
	Drain selection limitations
	Parasitic Charge Movement
	Parasitic Charge Measurement
	Temporal Derivative of Charge From the Drain Current
	Experiment
	Implications of Parasitic Charge Movement

	Chapter 4 — fg-pFET Simulation
	Channel Hot-Electron Injection
	Modeling and Simulation

	Chapter 5 — Vector Matrix Multiplication Cell
	Programmable Current Mirror
	Input and Output Terminals
	Frequency Response at the Gate
	SNR
	Programming
	Implementation
	Simulation
	Experimental Results

	Chapter 6 — Reprogrammable Analog Systems
	Transform Imager
	Computational Pixel Array
	Random Access Analog Memory
	Current Based Vector Matrix Multiplication Design
	Log Bidirectional Current to Voltage Conversion
	Test Setup
	Results

	Adaptive Filter
	Adaptive Filter Architecture
	Adaptive Synapse Operation
	Adaptive Filter Measurements from a Network of Nodes

	Chapter 7 — Reconfigurable Analog Systems
	RASP
	VMM
	Continuous-Time Filters
	Follower-integrator
	Second-order Section
	Ladder filter

	RAAM
	Single-input power-law circuit
	Vector magnitude
	First-order filter

	Chapter 8 — Conclusion
	Specific Contributions

	References

