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Abstract

Maximum likelihood (ML) receivers for space-time coded multiple-input multiple-output (MIMO)

systems with Gaussian channel estimation errors are proposed. Two different cases are considered.

In the first case, the conditional probablity density function (PDF) of the channel estimate is assumed

Gaussian and known. In the second case, the joint PDF of the channel estimate and the true channel

gain is assumed Gaussian and known. In addition to ML signal detection for space-time coded MIMO

with ML and minimum mean squared error channel estimation, ML signal detection without channel

estimation is also studied. Two suboptimal structures are derived. The Alamouti space-time codes are

used to examine the performances of the new receivers. Simulation results show that the new receivers

can reduce the gap between the conventional receiver with channel estimation errors and the receiver

with perfect channel knowledge at least by half in some cases.

Index Terms

channel estimation, imperfect, maximum likelihood, MIMO.

I. I NTRODUCTION

Multiple-input multiple-output (MIMO) techniques have been well recognized as effective

methods for increasing the reliability and the data rate of awireless communication system

[1]- [4]. The results in [1]- [4] are based on the assumption of perfect channel knowledge. In

practice, however, perfect channel knowledge is never available. Instead, one has to estimate the

channel. When the channel is estimated, estimation errors will occur. These estimation errors

cause performance degradations. Therefore, the system performances reported in [1]- [4] are

only upper limits, and the exact performances of MIMO systems with channel estimation errors

are yet to be determined. Inspired by this, many researchershave examined the effect of channel

estimation errors on the performances of MIMO systems. For example, in [5]- [9], the effect of

channel estimation errors on the capacities of MIMO systemshas been evaluated. These results

give the maximum achievable transmission rates or the multiplexing gains of MIMO systems

when the channel knowledge is not perfectly known. In [10]- [14], the authors analyzed the

error rates of MIMO systems with imperfect channel estimation. The loss in terms of diversity
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gain due to imperfect channel estimation can be determined from these results.

In addition to the analyses of the channel capacities and theerror rates of MIMO systems with

channel estimation errors in [5]- [14], several researchers have also studied ways of improving

the performances of MIMO systems when channel estimation errors occur. For example, in

[15]- [18], several methods were proposed to improve the performances of MIMO systems by

optimizing the pilot powers and the pilot positions. In [19], by assuming a Gaussian channel

estimation error and using the correlation between the channel estimate and the true channel

gain, the authors derived the optimum maximum likelihood receiver for space-time coded sig-

nals in the presence of channel estimation errors. This receiver design is valid for orthogonal

space-time codes. In [20], the authors derived the optimum maximum likelihood receiver for

any space-time code, which can be regarded as a generalization of the receiver in [19]. The

results in [19] and [20] suggest that one can improve the performances of MIMO systems by

using additional knowledge of the joint statistics of the channel estimate and the true channel

gain. This conclusion agrees with those made in [21], where asingle-input and multiple-output

diversity system was considered. Motivated by this observation, in this paper we extend the

results in [20] to two more general cases by using methods similar to those in [21].

Specifically, in this paper, we derive the maximum likelihood (ML) receivers for space-time

coded MIMO systems when channel estimation error is Gaussian and particular additional

knowledge of statistics of the channel estimate and/or the true channel gain is available. The

assumption of Gaussian estimation error is justfied by the fact that many channel estimation er-

rors are determined by Gaussian noise in the estimation, as can be seen from [20] as well as (6)

and (8) in the next section. It is also justified by the fact that many well-designed estimators are

asymptotically Gaussian when the sample size is large [22].We assume a block-fading channel,

where the length of a data packet is chosen to be smaller than the channel coherence time, to

simplify the receiver design, similar to [19] and [20]. Two different cases are discussed. In

the first case, the conditional probability density function (PDF) of the channel estimate, condi-
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tioned on the true value of the channel gain, is assumed Gaussian and known. The conditional

Gaussian PDF of the channel estimate can be obtained by analyzing or simulating the mean and

the variance of the channel estimates. In the second case, inaddition to the conditional PDF of

the channel estimate, conditioned on the true channel gain,the PDF of the true channel gain is

also assumed Gaussian and known, which is the case when the MIMO channels are Rayleigh

or Ricean faded. Therefore, we assume a joint Gaussian PDF forthe channel estimate and the

true channel gain. We derive the general structures of the MLreceivers in both cases. Based on

these general structures, we then study two special cases when the ML channel estimator and the

minimum mean squared error (MMSE) channel estimator are used. These receivers presumably

work in two steps: a first step of using the pilot symbols for channel estimation and a second

step of using the data symbols and the channel estimates for signal detection. To make this study

fully comprehensive, we also propose ML receivers without channel estimation, where the pilot

symbols are used directly in the signal detection. Finally,we present two suboptimal receivers

with simplified structures and compare their performances with the conventional receivers by

simulation.

The remainder of this paper is organized as follows. In Section II, the system model is intro-

duced. In Section III, the ML receivers for the first case are presented where only the conditional

PDF of the channel estimate is known. Section IV discusses the ML receivers in the second case

where the joint PDF of the channel estimate and the true channel gain is known. Numerical

results are shown in Section V.

II. SYSTEM MODEL

A. Channel Model

Consider a MIMO system witht transmitter antennas andr receiver antennas. The transmitter

sends data packets withN data symbols andM pilot symbols to the receiver. For simplicity,

we assume that the firstN symbols in the data packet are data symbols and the followingM

symbols in the data packet are pilot symbols. Assume a block-fading channel where the channel
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gain remains approximately the same during the transmission of the whole data packet, similar

to [19] and [20]. The received data symbols can be expressed as

Y = CX + Z (1)

whereY is ar×N matrix representing the received data symbols,Y = [Y1 Y2 · · · Yr]
T

with the i-th row Yi = [Yi1 Yi2 · · · YiN ], i = 1, 2, · · · , r, T denotes the transpose oper-

ation,C is ar × t matrix representing the MIMO channel gains,C = [C1 C2 · · · Cr]
T

with the i-th row Ci = [Ci1 Ci2 · · · Cit], i = 1, 2, · · · , r, X is a t × N matrix represent-

ing the transmitted space-time coded signals,X = [X1 X2 · · · XN ] with thej-th column

Xj = [X1j X2j · · · Xtj]
T , j = 1, 2, · · · , N , andZ is ar×N matrix representing the noise,

Z = [Z1 Z2 · · · Zr]
T with thei-th rowZi = [Zi1 Zi2 · · · ZiN ], i = 1, 2, · · · , r.

DenoteC̃ = [C1 C2 · · · Cr] as the1 × rt channel gain vector. Assume a separable

Kronecker correlation model. In a Ricean fading channel, theelements ofC̃ are assumed to

be circularly symmetric complex Gaussian random variableswith meanE{Ci} = mi, i =

1, 2, · · · , r, andrt × rt covariance matrix2α2R ⊗ T, where2α2 is the mean fading power of

the scattering component,R represents ther × r covariance matrix of the receiver antennas,T

represents thet×t covariance matrix of the transmitter antennas, and⊗ represents the Kronecker

product. In [23] and [24], a Bessel model and an exponential model have been proposed for

the antenna correlations, respectively. We assume equi-spaced antennas and use the Bessel

model in this paper. Therefore, the(i, j)-th element ofR satisfiesR(i, j) = J0

(

2π dr

λ
|i − j|

)

,

i, j = 1, 2, · · · , r, and the(i, j)-th element ofT satisfiesT(i, j) = J0

(

2π dt

λ
|i − j|

)

, i, j =

1, 2, · · · , t, whereJ0(·) is the zero-th order Bessel function of the first kind,λ is the wavelength,

dr|i − j| is the distance between thei-th receiver antenna and thej-th receiver antenna, and

dt|i − j| is the distance between thei-th transmitter antenna and thej-th transmitter antenna.

For convenience, we let̃m = [m1 m2 · · · mr] be the1 × rt mean channel vector and

m = [m1 m2 · · · mr]
T be ther × t mean channel matrix. The elements of the channel

noise matrixZ are assumed to be independent, circularly symmetric complex Gaussian random
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variables each with mean zero and variance2σ2. Further,C is independent ofZ.

Using (1), the likelihood function can be expressed as

f(Y|C,X) =
1

(2πσ2)rN
e−

1

2σ2

∑

r

i=1
(Yi−CiX)(Yi−CiX)H

(2)

whereH represents the Hermitian transpose. When the channel gainC is perfectly known, one

has the ML receiver as

X̂ = arg min
X

{tr
(

(Y − CX)(Y − CX)H
)

} (3)

wheretr(·) denotes the trace of a matrix. We denote (3) as the genie receiver. In practice, it

is impossible to know the channel gain matrixC perfectly. Instead, one has to use the pilot

symbols in the data packet to estimate it.

B. Channel Estimation

The received signals of the pilot symbols can be written as

Q = CP + W (4)

whereQ is a r × M matrix representing the received signals of the pilot symbols, Q =

[Q1 Q2 · · · Qr]
T with the i-th row Qi = [Qi1 Qi2 · · · QiM ], i = 1, 2, · · · , r, P

is a t × M matrix representing the transmitted pilot symbols,P = [P1 P2 · · · PM ] with

thej-th columnPj = [P1j P2j · · · Ptj]
T , j = 1, 2, · · · ,M , andW is ar ×M matrix rep-

resenting the noise corrupting the pilot symbols,W = [W1 W2 · · · Wr]
T with the i-th

row Wi = [Wi1 Wi2 · · · WiM ], i = 1, 2, · · · , r. Similar to [20], we assume thatM ≥ t,

P is known,(PPH)−1 exists andPPH is real.

Using (4), the ML channel estimator forC can be derived by finding ther × t matrix Ĉ that

minimizes||Q − CP||2, where|| · ||2 is the sum of the squares of all elements in the matrix. It

was derived in [20] that the ML channel estimator is given by

Ĉ = QPH(PPH)−1 (5)
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whereĈ is ther×t matrix representing the channel gain estimates,Ĉ = [Ĉ1 Ĉ2 · · · Ĉr]
T

with the i-th row Ĉi = [Ĉi1 Ĉi2 · · · Ĉit], i = 1, 2, · · · , r. For later use, denoteˆ̃C =

[Ĉ1 Ĉ2 · · · Ĉr] as the channel estimate vector. Using (4) in (5), one has

Ĉ = C + WPH(PPH)−1. (6)

Therefore, the ML channel estimatorĈ gives an unbiased estimate ofC with a Gaussian esti-

mation error ofWPH(PPH)−1.

When the covariance matrix of the channel gains and the mean channel matrix are known,

the MMSE channel estimator forC can also be derived by finding theM × t matrix F̂ that

minimizesE{||QF − C||2}. After some manipulations, the MMSE channel estimator can be

derived as

Ĉ = QF̂ (7)

whereF̂ = (PHTP+ σ2

α2 IM×M +PH mHm
2α2r

P)−1PH [T+ mHm
2α2r

] andIM×M is theM×M identity

matrix. Compare (7) with [20, eq. (12)], one sees that [20, eq.(12)] is a special case of (7) when

T = It×t andm = 0. Further, using (4) in (7), one has

Ĉ = CPF̂ + WF̂ (8)

which gives a biased estimate ofC. This bias can be removed by multiplying both sides of (8)

with (PF̂)−1 from the right, when(PF̂)−1 exists. Note that the MMSE channel estimator in

(7) can only be used when the covariance matrix of the transmitter antennasT and the mean

channel matrixm are known.

Using these channel estimates, the receiver decision rule

X̂ = arg min
X

{tr
(

(Y − ĈX)(Y − ĈX)H
)

} (9)

has been widely used in current systems. In this paper, we will design new receivers that improve

upon the performance of (9). These new receivers can be obtained by processing the channel

estimates or the pilot symbols used to estimate the channelsin a better way. No extra knowledge
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of the true channel gain is needed. They can also be obtained by using additional knowledge of

the statistics of the true channel gain, similar to [20]. However, [20] only considered the case

when the MIMO channels are independent and identically distributed. Here, we obain results

for the case of correlated MIMO channels.

III. C ONDITIONAL PDF OF CHANNEL ESTIMATE

In the first case, no extra knowledge of the true channel gain is available. One only knows

the conditional Gaussian PDF of the channel estimate, conditioned on the true channel gain.

This knowledge is available for many receivers by analysis or simulation of the estimator per-

formance. Therefore, one has

f(Ĉ|C) =
1

(2π)rt|∆1|
e−

1

2

∑

r

i1=1

∑

r

i2=1
(Ĉi1

−Ci1
A(i1)−B(i1))∆−1

1
(i1,i2)(Ĉi2

−Ci2
A(i2)−B(i2))H

(10)

where∆1 is thert× rt covariance matrix ofRe{
ˆ̃
C} or Im{

ˆ̃
C}, Re{·} andIm{·} give the real

and imaginary part of a complex number, respectively,∆−1
1 (i1, i2) is the(i1, i2)-th submatrix of

∆−1
1 obtained by evenly partitioning∆−1

1 into ar × r block matrix, andE{Ĉi} = CiA(i) −

B(i). Using (10) and (2), it can be shown that

f(Y, Ĉ|X) =

∫

· · ·

∫

f(Y|C,X)f(Ĉ|C)dC

=
D1

|∆̃1|
e

1

2
u∆̃

−1

1
uH

(11)

where
∫

· · ·
∫

represents art-dimensional integral,dC = dC11 · · · dCrt, D1 is a constant inde-

pendent ofX, ∆̃1 is art× rt matrix which can be partitioned into ar× r block matrix with the

(i1, i2)-th submatrix∆̃1(i1, i2) = A(i1)∆
−1
1 (i1, i2)A

H(i2) + XXH

σ2 , | · | denotes the determinant

of a matrix,u = [u1 u2 · · · ur] andui = YiX
H

σ2 +
∑r

i1=1(Ĉi1 − B(i1))∆
−1
1 (i1, i)A

H(i)

with i = 1, 2, · · · , r. The optimum ML receiver in this case can be derived from (11)as

X̂ = arg min
X

{ln |∆̃1| −
1

2
u∆̃−1

1 uH}. (12)
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Comparing (12) with (9), one sees that there is an additional bias term ofln |∆̃1| in the new

receiver. In general, (12) is not equivalent to (9). The receiver in (12) applies to all fading

channel models, including Ricean, Nakagami-m and Laplacian channels, as no knowledge of

the statistics of the true channel gain is assumed in the derivation. It also applies to any channel

estimators satisfying (10).

A special case occurs when the ML channel estimator in (5) is used. In this case, one further

has

X̂ = arg min
X

{

r ln |PPH + XXH |

−
tr

(

(YXH + ĈPPH)[PPH + XXH ]−1(YXH + ĈPPH)H
)

2σ2







(13)

since from (6), one hasA(i) = It×t, B(i) = 0 and∆1 = Ir×r ⊗ [σ2(PPH)−1]. Note that the

optimum receiver in (13) is equivalent to the conventional receiver in (9) whenXXH is constant

for all X. Note also that the MMSE channel estimator cannot be used here, as no knowledge of

the covariance matrixT and the mean channel matrixm is available in this case.

Observe that both the receiver in (9) and the receiver in (12)involve a two-step procedure.

In the first step, channel estimation is performed by usingQ to obtain an estimatêC. In the

second step, signal detection is performed by usingY and Ĉ. The only difference is in the

second step whereY andĈ are processed using (9) in the conventional receiver, whilethey are

processed using (12) in the optimum receiver. As a further study, it is also of interest to examine

the detection ofX without using channel estimation [20]. From (4), the likelihood function of

the pilot symbols can be expressed as

f(Q,P|C) =
1

(2πσ2)rM
e−

1

2σ2

∑

r

i=1
(Qi−CiP)(Qi−CiP)H

. (14)

Using (14) and (4), one has

f(Y,Q,P|X) =

∫

· · ·

∫

f(Y|C,X)f(Q,P|C)dC

=
D2

|PPH + XXH |r
e

1

2σ2

∑

r

i=1
[YiX

H+QiP
H ][PPH+XXH ]−1[YiX

H+QiP
H ]H (15)
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whereD2 is a constant independent ofX. Therefore, the optimum ML receiver without channel

estimation can be obtained from (15) as

X̂ = arg min
X

{

r ln |PPH + XXH |

−
tr

(

(YXH + QPH)[PPH + XXH ]−1(YXH + QPH)H
)

2σ2

}

. (16)

Comparing (16) with (13), one sees that they are actually the same, as the ML channel estimator

satisfiesĈ = QPH(PPH)−1 in (13). Therefore, the optimum receiver without channel estima-

tion in (16) can be treated as a special case of the optimum receiver with channel estimation in

(12) when ML channel estimation is performed.

To make a fair comparison, in the following, we assume that both the conventional receiver

in (9) and the optimum receiver in (12) use ML channel estimation. Thus, we will focus on

(13) or (16). The receiver in (13) (or (16)) requires six matrix multiplifications, two matrix

additions, one matrix inversion, and one matrix determinant. Most of them have to be done for

each possible sequence ofX. On the other hand, the conventional receiver in (9) requires five

matrix multiplifications, one matrix addition and one matrix inversion, and most of them are

done only once for all possible sequences ofX. Therefore, the new receiver is more complex

than the conventional receiver. We propose two simpler suboptimal structures that are based on

each space-time coded symbol (STCS) in the following for later comparison.

In the first suboptimal structure, the detection considers each STCS separately. Assume that

one STCS spans a period ofh data symbol intervals and thatN is a multiple ofh. Thus, one has

X = [S1 S2 · · · SN ′ ] (17)

whereSn = [X(n−1)h+1 · · · X(n−1)h+h] is the n-th space-time coded symbol withn =

1, 2, · · · , N ′ andN ′ = N
h

. The sequence detector in (16) can then be simplified to

Ŝn = arg min
Sn

{

r ln |PPH + SnS
H
n |

−
tr

(

(ỸnS
H
n + QPH)[PPH + SnS

H
n ]−1(ỸnS

H
n + QPH)H

)

2σ2







(18)
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whereỸn = [Y(n−1)h+1 · · · Y(n−1)h+h] is the received signal ofSn andỸj represents the

j-th column ofY, j = 1, 2, · · · , N . Assume that the signalling constellation size isJ . The

sequence detector in (16) has a time complexity ofJNt and a space complexity ofNt to store

the decoded sequence, the detector using the Viterbi algorithm has a time complexity ofNt ∗J2

and a space complexity ofNt ∗ (J + 1) to store the survivor paths and the decoded sequence,

while the STCS-based detector has a time complexity ofN ′ ∗ Jht and a space complexity of

Nt to store the decoded sequence. The larger the value ofh is, the higher the complexity of the

STCS-based detector will be, but the better the performance of the STCS-based detector can be

expected to have. Whenh = N , the STCS-based detector becomes the sequence detector. In the

special case when the Alamouti space-time coding scheme is used, one further hast = 2, h = 2,

Sn =







X1(2n−1) X1(2n)

X2(2n−1) X2(2n)






=







xn1
−x∗

n2

xn2
x∗

n1






where(·)∗ denotes the conjugate operation.

The STCS-based detector becomes

(x̂n1
, x̂n2

) = arg min
xn1

,xn2







2r ln(1 +
|xn1

|2 + |xn2
|2

d2
P

) −

(|xn1
|2+|xn2

|2)

d2

P

tr(ỸnỸ
H
n ) + tr(QQH)

2σ2(1 +
|xn1

|2+|xn2
|2

d2

P

)

−
tr

(

(ỸnS
H
n PQH + QPHSnỸ

H
n )

)

2σ2(d2
P + |xn1

|2 + |xn2
|2)







(19)

whered2
P = tr(PPH)/t. Note that the receiver in (19) is equivalent to the conventional receiver

when phase shift keying (PSK) signals are used.

In the second suboptimal structure, the detection is performed based on the decisions of the

previous data symbols. Specifically, the decision-based detector is given by

Ŝn = arg min
Sn

{

r ln |PPH + X̂(n − 1)X̂H(n − 1) + SnS
H
n |

−
1

2σ2
tr

(

(ỸnS
H
n + Ỹ(n − 1)X̂H(n − 1) + QPH) (20)

[PPH + X̂(n − 1)X̂H(n − 1) + SnS
H
n ]−1

(ỸnS
H
n + Ỹ(n − 1)X̂H(n − 1) + QPH)H

)}

wheren = 2, 3, · · · , N ′, X̂(n − 1) = [Ŝ1 Ŝ2 · · · Ŝn−1] represents the data decisions of
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the previousn − 1 space-time coded symbols,̃Y(n − 1) = [Ỹ1 · · · Ỹn−1] represents the

received signals of the previousn − 1 space-time coded symbols, and the initial condition is

given by

Ŝ1 = arg min
S1

{

r ln |PPH + S1S
H
1 |

−
tr

(

(Ỹ1S
H
1 + QPH)[PPH + S1S

H
1 ]−1(Ỹ1S

H
1 + QPH)H

)

2σ2







. (21)

The decision-based receiver in (20) has the same time complexity as the STCS-based detector.

It needs two additional memory units to store the values ofX̂(n − 1)X̂H(n − 1) andỸ(n −

1)X̂H(n−1). Thus, its space complexity is slightly higher than the STCS-based detector. When

the Alamouti space-time code is used, (20) can be simplified as

(x̂n1
, x̂n2

) = arg min
xn1

,xn2

{

2r ln(1 +
d2

X(n − 1)

d2
P

+
|xn1

|2 + |xn2
|2

d2
P

)

−

|xn1
|2+|xn2

|2
d2

P

tr(ỸnỸ
H
n ) +

d2

X
(n−1)

d2

P

tr(Ỹ(n − 1)ỸH(n − 1)) + tr(QQH)

2σ2(1 +
d2

X
(n−1)

d2

P

+
|xn1

|2+|xn2
|2

d2

P

)

−
tr

(

ỸnS
H
n (PQH + X̂(n − 1)ỸH(n − 1))

)

2σ2(d2
P + |xn1

|2 + |xn2
|2 + d2

X(n − 1))

−
tr

(

(Ỹ(n − 1)X̂H(n − 1) + QPH)SnỸ
H
n

)

2σ2(d2
P + |xn1

|2 + |xn2
|2 + d2

X(n − 1))







(22)

whered2
X(n− 1) = tr(X̂(n− 1)X̂H(n− 1))/t. We will compare the performances of (18) and

(20) with that of the conventional receiver with ML channel estimation in Section V.

IV. JOINT PDF OF CHANNEL ESTIMATE AND TRUE CHANNEL GAIN

In the second case, one has extra knowledge of the statisticsof the true channel gain. We

assume that the channel estimate and the true channel gain are jointly Gaussian distributed with
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PDF

f(Ĉ,C) =
1

(2π)2rt|∆2|
e−

1

2

∑

r

i1=1

∑

r

i2=1
(Ĉi1

−m̂(i1))∆11(i1,i2)(Ĉi2
−m̂(i2))H

· e−
1

2

∑

r

i1=1

∑

r

i2=1
(Ci1

−m(i1))∆22(i1,i2)(Ci2
−m(i2))H

· e−
1

2

∑

r

i1=1

∑

r

i2=1
(Ĉi1

−m̂(i1))∆12(i1,i2)(Ci2
−m(i2))H

· e−
1

2

∑

r

i1=1

∑

r

i2=1
(Ci1

−m(i1))∆21(i1,i2)(Ĉi2
−m̂(i2))H

(23)

where∆2 is the2rt×2rt covariance matrix of[Re{Ĉ}Re{C}] or [Im{Ĉ}Im{C}] with ∆2 =






Σ11 Σ12

Σ21 Σ22






, Σ11 is thert × rt covariance matrix ofRe{Ĉ} or Im{Ĉ}, Σ22 is thert × rt

covariance matrix ofRe{C} or Im{C}, Σ12 is thert × rt cross-covariance matrix between

Re{Ĉ} andRe{C} or Im{Ĉ} andIm{C}, Σ21 is thert× rt cross-covariance matrix between

Re{C} andRe{Ĉ} or Im{C} andIm{Ĉ}, ∆11 = Σ−1
11 Σ12Φ

−1Σ21Σ
−1
11 + Σ−1

11 , ∆22 = Φ−1,

∆12 = −Σ−1
11 Σ12Φ

−1, ∆21 = −Φ−1Σ21Σ
−1
11 , Φ = Σ22−Σ21Σ

−1
11 Σ12, ∆11(i1, i2), ∆22(i1, i2),

∆12(i1, i2), ∆21(i1, i2) are the(i1, i2)-th submatrices of∆11, ∆22, ∆12, ∆21 obtained by evenly

partitioning∆11, ∆22, ∆12, ∆21 into r × r block matrices, respectively, and̂mi = E{Ĉi},

i = 1, 2, · · · , r. Using (23) and (2), it can be shown that

f(Y, Ĉ|X) =

∫

· · ·

∫

f(Y|C,X)f(Ĉ,C)dC

=
D3

|∆̃2|
e

1

2
v∆̃

−1

2
vH

(24)

whereD3 is a constant independent ofX, ∆̃2 is art× rt matrix with∆̃2 = ∆22 + Ir×r ⊗
XXH

σ2 ,

v = [v1 v2 · · · vr] andvi = YiX
H

σ2 +
∑r

i1=1 mi1∆22(i1, i)−
∑r

i1=1(Ĉi1 − m̂i1)∆12(i1, i)

with i = 1, 2, · · · , r. The optimum ML receiver in this case can be derived from (24)as

X̂ = arg min
X

{ln |∆̃2| −
1

2
v∆̃−1

2 vH}. (25)

The receiver in (25) has a similar form to that in (12). However, (25) uses additional knowledge

of the statistics of the channel gain such asΣ22 andm. Therefore, unlike (12), the optimum

receiver in (25) can only be applied to Ricean fading channels, as the Gaussian PDF of the true
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channel gain is assumed in (23). Also, the receiver in (25) applies to any channel estimators

where the channel estimate and the true channel gain satisfy(23). In the following, we discuss

two special cases when the ML channel estimator and the MMSE channel estimator are used.

When the ML channel estimator is used, from (6), it can be derived thatm̂ = m, Σ11 =

α2R ⊗ T + Ir×r ⊗ [σ2(PPH)−1] andΣ22 = Σ12 = Σ21 = α2R ⊗ T. These give

∆̃2 = Σ−1
22 + Ir×r ⊗

XXH + PPH

σ2
(26)

and

vi =
YiX

H

σ2
+

r
∑

i1=1

mi1Σ
−1
22 (i1, i) +

QiP
H

σ2
. (27)

where the ML channel estimatêC = QPH(PP)−1 has been used. Using (26) and (27) in (25),

the optimum receiver with ML channel estimation can be derived.

When the MMSE channel estimator is employed, using (8), one can also derivem̂ = m(PF̂),

Σ11 = Ir×r ⊗ [σ2F̂HF̂] + α2R ⊗ [(PF̂)HT(PF̂)], Σ22 = α2R ⊗ T, Σ12 = α2R ⊗ [(PF̂)HT]

andΣ21 = α2R⊗ [T(PF̂)]. In the derivation, we assume thatF̂HF̂ andPF̂ are real in order to

make[Re{Ĉ}Re{C}] and[Im{Ĉ}Im{C}] circularly symmetric. Note that(PF̂)H 6= F̂HPH

in this case, asP andF̂ may not be square matrices. Based on these results, one can show that

∆̃2 = Σ−1
22 + Ir×r ⊗

XXH + PF̂(F̂HF̂)−1(PF̂)H

σ2
(28)

and

vi =
YiX

H

σ2
+

r
∑

i1=1

mi1Σ
−1
22 (i1, i) +

QiF̂(F̂HF̂)−1(PF̂)H

σ2
. (29)

where the MMSE channel estimatêC = QF̂ has been used. Thus, the optimum receiver

with MMSE channel estimation can be obtained by using (28) and (29) in (25). Compar-

ing (26) and (27) with (28) and (29), one observes that the optimum receiver with ML chan-

nel estimation is equivalent to the optimum receiver with MMSE channel estimation when

PPH = PF̂(F̂HF̂)−1(PF̂)H andPH = F̂(F̂HF̂)−1(PF̂)H .
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Similar to before, it is also of interest to derive the optimum ML receiver without channel

estimation. From (23), one has the PDF ofC as

f(C) =
1

(2π)rt|Σ22|
e−

1

2

∑

r

i1=1

∑

r

i2=1
(Ci1

−m(i1))Σ−1

22
(i1,i2)(Ci2

−m(i2))H

. (30)

Using (2), (14) and (30), one has

f(Y,Q,P|X) =

∫

· · ·

∫

f(Y|C,X)f(Q,P|C)f(C)dC

=
D4

|∆̃3|
e

1

2
w∆̃

−1

3
wH

(31)

whereD4 is a contant independent ofX, ∆̃3 = Ir×r ⊗ XXH+PPH

σ2 + Σ−1
22 , the vectorw =

[w1 w2 · · · wr] with wi = YiX
H+QiP

H

σ2 +
∑r

i1=1 mi1Σ
−1
22 (i1, i) andi = 1, 2, · · · , r. The

optimum ML receiver without channel estimation is then given by

X̂ = arg min
X

{ln |∆̃3| −
1

2
w∆̃−1

3 wH}. (32)

Comparing (32) with (25), one sees that the opitmum ML receiver without channel estimation

can again be treated as a special case of the optimum ML receiver with channel estimation,

when the ML channel estimator is used, or when the MMSE channel estimator is used and

PPH = PF̂(F̂HF̂)−1(PF̂)H andPH = F̂(F̂HF̂)−1(PF̂)H . It is also interesting to note that

[20, eq. (26)] is a special case of (32) whenR = Ir×r, T = It×t andm = 0, as expected.

Again, to make the comparison fair, we assume that both the optimum receiver and the con-

ventional receiver use either the ML channel estimator or the MMSE channel estimator. Further,

we assume thatP satisfiesPPH = PF̂(F̂HF̂)−1(PF̂)H andPH = F̂(F̂HF̂)−1(PF̂)H . Then,

we only need to focus on the optimum receiver in (32). The receiver in (32) requires(r+2)r+4

matrix multiplifications,(r + 1)r + 2 matrix additions, one matrix inversion, one matrix deter-

minant and one Kronecker product. Most of them have to be donefor each possible sequence

of X. In addition, some of the matrix multiplifications are of much larger dimension than (16).

Thus, it is more complicated than (16) and (9). Similarly, two simplified suboptimal structures

based on each space-time coded symbol will be derived.
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In the first suboptimal structure, the detector considers each space-time coded symbol sepa-

rately. Using similar methods as before, one has

∆̃3(n) = Ir×r ⊗
SnS

H
n + PPH

σ2
+ Σ−1

22 (33)

and

wi(n) =
ỸinS

H
n + QiP

H

σ2
+

r
∑

i1=1

mi1Σ
−1
22 (i1, i) (34)

whereỸin = [Yi((n−1)h+1) · · · Yi((n−1)h+h)] is the i-th row of Ỹn defined as before and

w(n) = [w1(n) w2(n) · · · wr(n)]. Then, the STCS-based receiver is given by

Ŝn = arg min
Sn

{ln |∆̃3(n)| −
1

2
w(n)∆̃−1

3 (n)wH(n)} (35)

wheren = 1, 2, · · · , N ′. When the Alamouti space-time code is used, one further hast = 2,

h = 2 and∆̃3(n) =
(|xn1

|2+|xn2
|2+d2

P
)

σ2 Irt×rt + Σ−1
22 .

In the second suboptimal structure, the detection is based on data decisions of previous sym-

bols. Similarly, one has

∆̃3(n, X̂(n − 1)) = Ir×r ⊗
SnS

H
n + X̂(n − 1)X̂H(n − 1) + PPH

σ2
+ Σ−1

22 (36)

and

wi(n, X̂(n − 1)) =
ỸinS

H
n + Ỹi(n − 1)X̂H(n − 1) + QiP

H

σ2
+

r
∑

i1=1

mi1Σ
−1
22 (i1, i) (37)

whereX̂(n− 1) andỸ(n− 1) are defined as before. Then, the decision-based receiver is given

by

Ŝn = arg min
Sn

{ln |∆̃3(n, X̂(n− 1))| −
1

2
w(n, X̂(n− 1))∆̃−1

3 (n, X̂(n− 1))wH(n, X̂(n− 1))}

(38)

wheren = 2, 3, · · · , N ′ and the initial condition is given by

Ŝ1 = arg min
S1

{ln |∆̃3(1)| −
1

2
w(1)∆̃−1

3 (1)wH(1)}. (39)
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In the case when the Alamouti space-time code is used, one canfurther simplify the expression

of ∆̃3(n, X̂(n− 1)) as∆̃3(n, X̂(n− 1)) =
(|xn1

|2+|xn2
|2+d2

P
+d2

X
(n−1))

σ2 Irt×rt +Σ−1
22 . Note that the

above results only apply to a separable Kronecker correlation model whereΣ22 = α2R ⊗ T.

However, these results can be easily extended to any correlation models by replacingΣ22 =

α2R ⊗ T with other covariance matrices in (10) and (23) in the derivation. In the next section,

we compare the derived new receivers with the conventional receiver.

V. NUMERICAL RESULTS AND DISCUSSION

Consider Alamouti space-time coding. For convenience, we denote the novel STCS-based

receiver as the NovSTCS receiver, the novel decision-based receiver as the NovDB receiver,

the conventional receiver based on each STCS with ML channel estimation as the ConvML

receiver and the conventional receiver based on each STCS with MMSE channel estimation as

the ConvMMSE receiver. The average signal-to-noise ratio (SNR) is defined as

γ =
tr(PPH) + NtEs

N
·
2α2

2σ2
(40)

whereEs is the average energy of the data symbol andEs is normalized to 1 in the simulation.

The definition of the SNR accounts for the energy consumed by the pilot symbols and by the

multiple transmitter antennas. Two signalling schemes, 16-QAM and quanternary phase shift

keying (QPSK) are studied. In 16-QAM, allM pilot symbols in the data packet are fixed to

1√
10

+ 1√
10

i. In QPSK, allM pilot symbols in the data packet are fixed to1. The length of the data

packet is chosen as 100. We assume thatdt = dr. Also, denote the Ricean factor asK. In the first

case, the symbol error rates (SERs) of the NovSTCS receiver in (18), the NovDB receiver in (20),

the ConvML receiver in (9) with (5), and the genie receiver in (3) are derived for 16-QAM only,

since the conventional receiver and the new ML receiver are equivalent for QPSK. In the second

case, the SERs of the NovSTCS receiver in (35), the NovDB receiver in (38), the ConvML

receiver in (9) with (5), the ConvMMSE receiver in (9) with (7), and the genie receiver in (3) are

derived for both 16-QAM and QPSK. The purpose of the simulation is to examine how much
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gain one can achieve by using extra knowledge of channel statistics. To see these gains clearly,

one has to choose the same decoding complexity for all receivers. In our simulation, we use

STCS-based detection. Thus,Ŝn = arg minSn
{tr

(

(Ỹn − CSn)(Ỹn − CSn)H
)

} as the genie

receiver andŜn = arg minSn
{tr

(

(Ỹn − ĈSn)(Ỹn − ĈSn)H
)

} as the conventional receiver

are compared with (18), (20), (35) and (38). On the other hand, one could compare the receivers

using sequence-based detection, where sphere decoding is an efficient way of finding a sequence

decision with reasonable accuracy. In this case, (3) and (9)should be compared directly with

(16) and (32). Both ways of comparison will allow us to identify the performance gains achieved

by using extra channel statistics. However, if we compare the proposed suboptimal receivers

in (18), (20), (35) and (38) using STCS-based detection with the conventional receivers using

sphere decoding, the performance gain due to extra knowledge of channel statistics will be

compromised by the performance loss due to STCS-based detection, and we won’t be able to

identify the performance gain easily. Note also that decision errors may occur in̂X(n − 1) in

(20) and (38). The presented simulation results take the effect of possible error propagation into

account.

Fig. 1 examines the SERs of the receivers for different valuesof M . One sees that the SERs

of the receivers decrease asM increases, up to a certain threshold. Then, the SERs of the

receivers increase asM increases. This is expected. WhenM increases, the receiver has a more

accurate channel estimate, but it also suffers from allocating more power to the pilot symbols.

At some point where the channel estimate is accurate enough,increasingM will mainly reduce

useful power without achieving worthwhile improvement in the channel estimation and, thus,

overall cause performance degradation. Comparing the NovSTCS receiver with the ConvML

and ConvMMSE receivers, one sees that the NovSTCS receiver is only slightly better than the

ConvML and ConvMMSE receivers. Also, one notes that the NovDB receiver has an obvious

performance gain over the ConvML and ConvMMSE receivers. Thisperformance gain increases

asM decreases. In the following, we will useM = 20. This corresponds to a pilot power of
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4.75% of the total power for 16-QAM and 20% of the total power for QPSK.

Fig. 2 shows the SERs of the receivers for different channel correlations. One sees that the

SER curves resemble the curve of a Bessel autocorrelation function. This is because a Bessel

correlation model is assumed and the receiver performs the best when the channel correlation is

the smallest. The SERs of the receivers vascillate slightly asdt/λ or dr/λ increase. Comparing

the NovSTCS receiver with the ConvML and ConvMMSE receivers, one sees that the NovSTCS

receiver is slightly better. Also, the NovDB receiver outperforms the ConvML and ConvMMSE

receivers as well as the NovSTCS receiver, which agrees with the previous observations from

Fig. 1. We will usedt/λ = dr/λ = 0.5 next.

Fig. 3 compares the receiver performances in Case 1 for different values ofr at different

SNRs. The performances of the receivers improve whenr increases. In all the cases, the

NovSTCS receiver is slightly better than the ConvML receiver,and the NovDB receiver has

an obvious performance gain over the ConvML receiver and the NovSTCS receiver. The perfor-

mance gain increases asr increases. Fig. 4 examines the receiver performances in Case2 for

different values ofr. In this case, the ConvML receiver performs the worst. The ConvMMSE

receiver outperforms the ConvML receiver, as it uses extra knowledge of the covariance matrix

and the mean channel matrix of the true channel gain. The NovSTCS receiver is slightly better

than the ConvMMSE receiver. The NovDB receiver performs the best among all the practical

receivers studied. Moreover, the performance gain increases whenr increases or the SNR in-

creases. Comparing Fig. 3 with Fig. 4, one sees that the NovDB receiver in Case 2 performs

slightly better than that in Case 1, as expected, since Case 2 assumes more knowledge of the

channel statistics.

Figs. 5 and 6 show the SERs of the receivers in Case 1 and Case 2, respectively, for different

values of the Ricean K factor. From these figures, one sees thatthe receiver performances

improve when the value ofK increases. This is expected, as a larger value ofK corresponds

to a better channel condition. Again, the NovDB receiver outperforms all the other practical
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receivers. The performance gain increases when the value ofK increases or the SNR increases.

This implies that the performance gains of the NovDB receiver over other receivers observed in

Figs. 1 to 4 are also achievable whenK > 0. Figs. 7 and 8 show the SERs of the receivers in

Case 2 for QPSK signaling. In general, the receivers using QPSK signaling perform better than

those using 16-QAM, under the same conditions. Also, one sees that the performance gains of

the NovDB receiver with QPSK are smaller than the corresponding gains with 16-QAM.

VI. CONCLUSIONS

Novel ML receivers for space-time coded MIMO systems with Gaussian channel estimation

errors have been derived. Numerical results have shown thatthe overall performance of the

system depends on several design parameters including the number of pilot symbols, the channel

correlation, the number of antennas, the Ricean K factor and the signaling scheme. Future work

includes an examination of new receivers for other MIMO systems with estimation errors.
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Fig. 1. Symbol error rates of receivers for different valuesof M whenr = 4, dt

λ
= dr

λ
= 3,

K = 0, and 16-QAM is used.
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Fig. 2. Symbol error rates of receivers for different valuesof dt
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whenr = 4, M = 20,

K = 0, and 16-QAM is used.
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Fig. 3. Symbol error rates of receivers in Case 1 forr = 2 (solid line),r = 4 (dashed line), and

r = 6 (dash-dotted line), whendt

λ
= dr

λ
= 0.5, M = 20, K = 0, and 16-QAM is used.
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Fig. 4. Symbol error rates of receivers in Case 2 forr = 2 (solid line),r = 4 (dashed line), and

r = 6 (dash-dotted line), whendt

λ
= dr

λ
= 0.5, M = 20, K = 0, and 16-QAM is used.
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Fig. 5. Symbol error rates of receivers in Case 1 forK = 0 (solid line) andK = 2 (dashed

line) whenr = 4, dt

λ
= dr

λ
= 0.5, M = 20, and 16-QAM is used.
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Fig. 6. Symbol error rates of receivers in Case 2 forK = 0 (solid line) andK = 2 (dashed

line) whenr = 4, dt

λ
= dr

λ
= 0.5, M = 20, and 16-QAM is used.
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Fig. 7. Symbol error rates of receivers in Case 2 forr = 2 (solid line) andr = 4 (dashed line),

when dt

λ
= dr

λ
= 0.5, M = 20, K = 2, and QPSK is used.
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Fig. 8. Symbol error rates of receivers in Case 2 forK = 0 (solid line) andK = 2 (dashed

line), whenr = 4, dt

λ
= dr

λ
= 0.5, M = 20, and QPSK is used.

DRAFT July 25, 2008


	ADPBB.tmp
	University of Warwick institutional repository


