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SECTION I 

INTRODUCTION 

Fluid flows have been studied mathematically for centuries with 

the result that many flow systems are well understood, but the supply 

of interesting, and unsolved, problems in fluid mechanics is by no 

means exhausted. One such research area comes under the heading of 

free surface flows, flows in which a liquid surface is free to adjust 

its location and shape according to the flow conditions beneath it. 

Analytical methods yield solutions only for very simple systems, thus 

approximate numerical methods must be used if solutions to complex 

systems are searched. 

The range of problems to which such methods could profitably be 

applied is indeed large. There are many industrially important 

instances of viscous free surface flows, including fiber spinning, 

rotational molding, and all types of coating operations. The paper 

industry, photographic film industry and adhesives industry in 

particular employ viscous free surface flows in their processing 

operations. The extraordinary richness of applications explains the 

continuing scientific interest in these problems and testifies to the 

utility and value of techniques for solving such problems. 

This study concerns a free surface flow problem which is 

encountered in paper industry. It is known that one of the most 

energy intensive areas of the paper manufacturing industry is the 

stage where the paper web is dried utilizing heated rotating drums, 

Brit (1970), Gavelin (1972) and Warren (1980). Currently, in a 

typical operation, steam is injected into rotating dryers which are 
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used to evaporate the water out of the paper and yield a desired 

moisture content through a heat transfer process between the dryer 

shell and the paper web. The efficiency and evenness of this drying 

process is greatly affected by the overall thickness and the 

distribution of the condensate, rimming on the inner surface of the 

rotating drum. Since the film is an important resistance to heat 

transfer, the water that has condensed on the inner surface of the 

dryer must be removed through a syphon to provide for the condensation 

of the steam to continue so as to permit maximum heat transfer. The 

discussion of the mechanics and operation of such a dryer-syphon 

design is beyond the scope of this study; however, the motion of the 

condensate on the inner surface of a rotating drum is another example 

of free surface flows which will be addressed in this study. 

It is possible to define several modes of operation for a dryer-

syphon operation. At low rotation rates, the condensate lies at the 

bottom of the cylinder forming a puddle. Depending on the speed of 

the drum this puddle may slide up the inner wall, but not very far. 

This dryer operation mode is known as puddling. The next mode is 

called cascading. In this stage water begins to creep up the inside 

wall of the dryer until it starts to cascade down because the 

centrifugal forces, created by the increased speed of the dryer, have 

not yet exceeded the gravitational forces. At further higher speeds 

the whole condensate goes virtually into solid body rotation which is 

identified as the rimming mode. Rimming flow mode is a non- 

trivial example of a steady, three-dimensional, viscous flow with a 

free surface. The main aim of this study is the development of a 
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numerical model which may be used in determining the thickness of such 

a condensate rimming on the inner surface of a rotating drum. 

Two numerical models developed in this study can be identified as 

one-dimensional (1-D) and two-dimensional (2-D) models. However, as 

will be described in the following sections of this report, since the 

thickness of the condensate is measured normal to the plane of flow, 

the flow picture obtained as a result is two-dimensional in case of 

the (1-D) model and is three-dimensional in case of the (2-D) model. 

In developing the governing equations for the problem described above 

one basic assumption is valid for all cases studied, i.e., the 

condensate in the drum is assumed to be in the rimming mode. In this 

mode dryer speed is sufficient to make the gravitational forces 

negligible compared to the centrifugal forces. This assumption allows 

the dryer can's cylindrical surface to be cut and unrolled into a flat 

plate with syphon located along the center line, Figure (1). Details 

of this approach can be found in Beloit (1975). Other than this 

assumption, the condensate is represented as a Newtonian, viscous, 

incompressible fluid at constant temperature and steady state 

conditions arising from a condensate loading condition and syphon 

location is reached through the solution of non-linear, time dependent 

Navier Stokes equations. 

In the following sections, first the governing equations used in 

one and two-dimensional models are described. In section three the 

numerical model, i.e., the finite element Galerkin approximation of 

the governing equations are given. In section four a detailed 

description of the computer code is given along with the details of a 
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users manual which describes the input-output procedures of the 

computer code generated. Finally, section six summarizes the 

conclusions and recommendations of the principal investigator. 
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SECTION II 

MATHEMATICAL MODEL 

The rimming condensate flow briefly described in section one is a 

three dimensional problem which may be described in terms of Navier 

Stokes equations. The present state of the art and the lack of 

suitable data in many instances does not justify the use of this 

complex (3-D) mathematical model for the solution of free surface flow 

problems as well as rimming condensate problems analyzed in this study. 

Thus, fully three dimensional solutions are not warranted at this 

stage as they would require a large amount of extra data and computer 

time. However, solution of vertically averaged Navier Stokes 

equations is feasible at this point. In what follows a summary 

derivation of the vertically averaged equations used in this study for 

(2-D) plane flow problems are given. The governing equations of a 

(1-D) problem can be extracted directly from these equations. Thus, 

details of derivation of (1-D) flow equations are not given here, 

instead a summary listing of the equations are included at the end of 

this section for reference. 

II.a. Two-Dimensional Model 

The form of equations used here has been developed fully else-

where, Chen and Chow (1971). Therefore only a brief resume is 

included here. This is sufficient to illustrate the subsequent 

development of the finite element matrix equations necessary to 

provide a solution to the generalized governing equations. 

The governing equations for the fluid, neglecting temperature 

effects may be given as, 
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+ 	= o at = 	,2,3 	(1) 

for the continuity equation and, 

D(Vm) 	 3a
ik + p b k 	i,k = 1,2,3 	(2) 

Dt 	Dx
k 
	ax. 	- 

for the momentum equation. Here V[50 are velocities in (xl,x2,x3), 

	

[k = 1,2,3] directions, Figure 2. 	p is the density of condensate,P 

is the pressure, g the gravitational acceleration, t the time, bk 

external forces and aik the kinematic Stokes tensor described as, 

	

Du. 	3u. 

Pik 	( 3x. 

	

1 	
3x. 	

i,j = 1,2,3 	(3) =   

Difficulties involved in the solution of these equations can be 

resolved by simplifying these equations through a classic approach 

which assumes that the pressures are hydrostatic in third direction 

normal to the flow plane and that only shear stresses from horizontal 

velocity components are important. In addition to these assumptions 

the main aim now is to integrate equations (1) and (2) in the third 

direction. For this, one needs to use the Leibnitz' rule for partial 

differentiation of an integral between variable limits, i.e. 

h(x 1 ,x 2 ) 

a f f(x 1 ,x 2 ,x 3 ) dx 3 = f 
of 

dx 3  + 
f  Dh 

ax. 
1 b(x1,x2) 

ax  i 
ax. 

i = 1,2 	 (4) 
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where h(xl,x2) is the depth of fluid above the plate bed elevation 

which is given as b(xl,x2), Figure 2. 

Upon integration over a section parallel to x3-axis and using 

appropriate boundary conditions for an incompressible fluid equation 

(1) becomes; 

Du. 

at 	
3h + h 	' + u 	 R 

Dx. 	i Dx. 
i = 	,2 	 ( 5 ) 

where ui are spatially averaged velocities in the xi- and x2-direc-

tions respectively, 

h 

u i  (x i ,x 2 ,t) = 
1 	u i  (x i ,x 2 ,x 3 ,t) dz 	i = 1,2 	(6) 

b 

and R is the rate of condensation over the plate. 

Similarly, integration of the momentum equation in x3 direction 

yields, 

	

3u. 	Du. 	 Da 	u. 

	

1 	 Dh 	Db 	1 	
 + R 	- T. 

	

9t 	
u 	+ j 9x. 	g 	

.. 

9x
i 	

g Dx
i 	

p 	3x.h 	1 

i,j = 1,2 	b 	( 7 ) 

where OA—) represents the slope of the plate in respective directions, 
9x 

Ti(h) is the free surface resistance term which is assumed zero and 

Ti(b) is the drag at the channel bed. As will be described later, 

drag at the channel bed can be represented via Darcy friction 

coefficient or by the use of Chezy equation. Although Darcy friction 

= 0 
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coefficient approach is Reynold's number dependent which may lead to 

complications depending on flow regime, both of these versions are 

included into the computer code developed to compute the channel drag 

terms. 

Equations (5) and (7) now constitute the two-dimensional form of 

the equations governing the rimming condensate flow. Boundary 

conditions for such a flow can be described as follows; on segments of 

boundary where there is zero outward flux, components of the velocity 

vector normal to the boundary are zero. On other segments of the 

boundary the outflow flux might be specified which implies that the 

velocity field and depth of condensate at that segment is given. In 

addition to these two types of boundary conditions an initial 

distribution of the velocity field and condensate thickness is needed 

as an initial condition to start the solution. 

II.b. One-Dimensional Model 

Governing equations for (2-D) flow when reduced to (1-D) flow 

take the following form. The continuity equation; 

ah U —ah  h —au  = R 
—at 	ax 	ax 

(8) 

The momentum equation; 

au 	au 	ah 	ab 	a
2 u  

at + u  ax + g  ax 	g  ax 	2 	T  
ax 

+RE-= 0 (9) 
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Re  
f 	24 (1 2) 

in which the variables used are as described earlier but defined only 

in x-direction. The boundary and initial conditions of the problem 

are also as defined earlier. 

II.c. Channel Bed Drag 

It is possible to describe channel bed drag terms, Ti(b), using 

two approaches; the first approach is the use of Darcy friction factor 

definition. Functionally, one can assume that 

T i (b) = F (p, V, u, d, 	 (10) 

where E is the wall-roughness height, p the density, p the viscosity, 

d a reference length parameter which may be chosen as condensate 

thickness and V is the velocity vector. Given equation (10), the 

dimensional analysis tells us that, 

- f = F (R 
pV

2 	 e' d 

The dimensionless parameter f is called the Darcy friction factor. In 

laminar flow the Darcy friction coefficient is a function of the 

Reynolds number only and this relationship for a free surface flow can 

be given as, 

8 Tw  
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The proof of this relationship was submitted to Beloit Corporation 

earlier thus it will not be repeated here. If the flow is turbulent 

however, the relationship between f, R e  and a  is not well established 

for free surface flows especially in the transition zone. This poses 

problems for the two dimensional condensate flow problem studied here 

since it is expected and observed that the flow is either in 

transition or turbulent regime for a very small zone near the syphon. 

Nevertheless, equation (11) is implemented into the computer code 

generated in this study as an alternative that might be used by the 

user. However, the use of equation (11) to describe boundary drag 

terms should be avoided whenever Reynolds number reaches a (1500-2000) 

range at any point in the solution region. Here the Reynolds number 

is defined as 

D  _ pVh R 

	p 
(13) 

The second approach in defining the boundary drag terms is the 

use of the well known Chezy equation, Chow (1959). The representative 

forms for these stresses can be given as 

T i (b) = - 
g 
	1  (u. u ) 1/2 	i,j = 1,2 	(14) 
Ch 

where g is the gravitational acceleration, ui is the velocity 

components in (xi) and (x2) directions and C is the Chezy coefficient 

which can be given as 
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1 49 	1/6 
n 

C = 	(h) (15) 

in British unit system. Here (n) is called Manning's roughness 

coefficient and is taken to be dimensionless. Table I below 

summarizes some values for this coefficient which are of interest in 

this study. 

This definition of the boundary drag terms is also incorporated 

into the model developed in this study. It is suggested that the user 

should use this definition in analyzing problems with syphon effects. 
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TABLE I 

Experimental Values of Manning's (n) Factor 

Surface n Average Roughness Height (ft) 

Glass 0.010 + 0.002 0.0011 

Brass 0.011 + 0.002 0.0019 

Steel, smooth 0.012 + 0.002 0.0032 

Steel, painted 0.014 + 0.003 0.008 

Steel, riveted 0.015 + 0.002 0.012 

Cast Iron 0.013 + 0.003 0.0051 

Cement, finished 0.012 + 0.002 0.0032 

Cement, unfinised 0.014 + 0.002 0.008 

Planed Wood 0.012 + 0.002 0.0032 

Corrugated Metal 0.022 + 0.005 0.12 
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SECTION III 

NUMERICAL MODEL 

A finite element model is used to approximate the mathematical 

model developed in the previous sections. The first step in such a 

discretization process is the division of the solution region into a 

finite number of subregions which are called elements. This process 

is dictated by the need to find an alternative form of the equilibrium 

equations which will be easier to solve than the governing equations 

of the continuum. The modified conceptualization of the system 

results in a set of simultaneous algebraic equations rather than 

differential equations, thus simplifying the solution considerably. 

The size and distribution of the elements and the approximation used 

in each element are arbitrary. Given the one•dimensional and two-

dimensional nature of the problem analyzed, two nodal one dimensional 

and three nodal two dimensional elements are used in the solution 

process for (1-D) and (2-D) numerical models respectively. 

In developing the finite element matrix equations the Galerkin 

weighted residual process was adapted. According to this principle, 

the whole domain, denoted by A, is discretized into a number of 

elements, then the global assembly of all elemental contributions of 

weighted integral residuals is set to zero (Zienkiewicz, 1971; 

Gallagher, 1975). 

nt_i  if N i  [D 	d A
e 

= 0 

A
e 

i = 1,2,3,...,n 	(16) 
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Where Ni is the appropriate weighing function, D is the differential 

operator, and yh a  is an unknown function within the domain A. Ae is 

the area of element (e), (n) is the number of nodes in each element 

and (ne) is the total number of elements in A. Next step is the 

definition of the approximations used for the primary unknowns of the 

problem. For a Galerkin approach these take the form, 

h (x,y,t) = 2: 	N i  (x,y) h i (t) 
i=1 

	 (17) 

n 
u.x,y ( 	,t) = 2: N i  (x,y) u

ji
(t) 	 = 1,2 	 (18) 

i=1  

where Ni are the interpolating polynomials and (hi) and (uji) are the 

nodal values of the unknown dependent functions of the problem. After 

substituting equations (17) and (18) into (16) and integrating each 

equation three matrix equations result. 

[M] fhl + {F'} = 0 

[M] {(11} -1- 

{Fig} = 0 	
(19) 

[M] {u 2 } 	{F"'} = 0 

where the dot notation represents time derivatives. 
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A final matrix assembly gives a coupled form 

[174] 	+ {F} = 0 	 (20) 

where [M] is a bounded symmetric matrix having dimensions of (3n x 3n) 

where n is the total number of nodes in the domain. Equation (19) 

implies that there are three unknowns at each node 

      

  

and F. 
1 

F'. 
1 

FI' 
1 

Ft" 

(2 1) 

  

  

  

  

   

   

 

112 1  

   

     

     

     

Finally, integrating equation (20) with respect to time it is possible 

to obtain numerical values for (h, ul, u2) starting from an initial 

distribution. Details of this process can be found in references 

given above. In what follows a more detailed account of these matrix 

equations will be developed for the two dimensional model. The matrix 

equations of the one dimensional model will not be given here since 

they are a subset of two dimensional farms. 

V.a. Two-Dimensional Numerical Mocel 

A finite element approximation to equations (5) and (7) can be 

obtained through a Galerkin approach. Over an element the residual, 

R, for equations (5) and (7) can be given as, 

9 171 	- 95 i  
K i  (h) = 	+ h 	+ 5 4 Dx.  - R 	 (22)ax  
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and 

9174. 
(6.) 	1  + 

- 
	

9u
i 
 -1- 	

9; 	9b 	1 	
9o- ij  

2 	19t -jax.'9x. -g 9x.o9x. 

u. 
R 	+ 

Ti 
 (b)

h 	
i,j = 1,2 	(23) 

Substituting the approximate forms for (h, 51, u2) into equation (22) 

and weighing the residual resulting from the continuity equation, with 

respect to a weighing function Nk yields 

9h 	 9N. 	 N. 
1 e  =fiN [ 	

m Nm 
	 + u. N--/ h. 

Nk 9t 	m 	m m 9x. ij 	im m 9x  

Ae 

- R] dAe 	= 1,2), (j,k,m = 1,2,3,...,n) 	(24) 

where repeated indices indicate summation, n is the number of nodes, 

Nm  is the weighing function which is chosen as the finite element 

shape functions in a Galerkin formulation and (h m , ui m ) are the nodal 

values of condensate thickness and velocity components in an element. 

Equation (24) is written for a single element; however, it is 

understood that the same procedure is applied to the entire medium. 

For the details of the approximations used in three nodal elements, 

which in turn yields Nm , one should refer to any basic textbook on 

finite element method, Cook (1974). 

Given approximation forms Nm , it is possible to integrate 

equation (24) to obtain the first set of matrix equations. The first 
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term in equation (24) for example, will yield the mass matrix which 

can be given as 

m
km 

= jrjr N
K  Nm 

 dA e  k,m = 1,2,3,...,n 	(25) 

A 

For a three nodal element it can be shown that the matrix (mk m ) yields 

the following coefficient matrix. 

	

mkm 	
A! 

	

km 	12 

Similarly other terms 	in equation 

1 

1 

(24) 

]

2 	1 	1  

2 	1 

1 	2 

can 	be integrated which will 

(26) 

yield the load vector defined as fF'}. Deta -Ls of these derivations 

are omitted here but can be found in introductory finite element 

texts. 

Simiarly, substituting the approximate forms for (h, ul, u2) into 

equation (23) and weighing the residual resulting from the momentum 

equation, with respect to a weighing function Nk yields 

e 	
i au m 	aN 	3N

m 	Db 
I = fir N k f a t 	

+ g ax 	- g  axe 

Ae  

o• .. 	 u. N 
1 	IJ  + 	im m  - 
p B x. 	h N 	1 

J 	:e.. t. 

e 

(i = 1,2), j,k,l,m = 1,2,...,n 	(27) 
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where repeated indices indicate summation. Proper integration of 

equation (27) term by term yields the remaining two ordinary 

differential equations shown in equation (19). 	At this point the 

non-linear partial differential equations governing the rimming 

condensate flow problem is reduced to non-linear ordinary differential 

equations. The next stage is the iterative solution of these 

equations which will yield the nodal values of the 

unknown dependent variables at each time step. 

III.b. Time Integration and Solution of Non-Linear Equations 

The equation system shown in equation (19) forms the basis for a 

recurrence scheme where the straightforward middifference trapezoidal 

time stepping technique is used to integrate the equations in time. 

This implies that both q and Fare assumed to vary linearly within a 

typical small time interval, At, therefore at a time level ti = t + At 

the general implicit recurrence relationship is: 

	

[F4] {Oti. At = {F} t+  At 	 (28) 
2 	 2 

or: 

, 	 • 	 r-, 	 \ 

ICil t+At = [M]  'kilt 	
At 
—2- (fFI t-At 	"It) 	

(29) 
 

Obviously convergence of an iterative procedure for -CFI t+At 
is 

 necessary for solution. The convergence can be accelerated, however, 
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by successive relaxation where an initial guess is corrected by a 

process of predicting a new solution 0 +1  as a weighed function of the 

previous iterates qj and qj -1  such that, 

j+1 	j-1 q 	= q 	+al (qj (30) 

where the superscripts indicate the iteration level within a timestep. 

The relaxation factor (w) usually lies in the range 0.5 < w < 1.5. 

The complete sequence of steps therefore can be given as: 

1) Predict {q}t4.6,t  from the explicit step given below 

[P] q111 = [M] {q} t  + At {F} t 	 (31) 

2) Use this prediction to form the vector 
{F}t+At 

and solve 

equation (29) to obtain the first iterate fqjl t+At  

3)
Compare Ifqjlt+At 	

to be within some 

convergence tolerance E. Here Eucledian norm is used to test this 

tolerance. 

4) If the convergence criterion is satisfied proceed to the next 

j+1 
time step, but if c is exceeded obtain a further value 

qt+At from  

relaxation equation (30). 

5) Repeat steps 1, 2, 3 and 4 until the convergence criteria is 

satisfied. 

6) Repeat the above process for each time step. 

The process described above yields linear rates of convergence. 

If a faster rate of convergence is desired a Newton iterative form 

should be utilized which yields a quadratic rate iterative algorithm. 
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should be utilized which yields a quadratic rate iterative algorithm. 

Such an alternative could be considered as a possible extension of the 

present study. 
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SECTION IV 

THE COMPUTER CODE 

In earlier sections of this report, an outline of the mathemati-

cal model and the finite element Galerkin formulation process used to 

approximate the governing partial differential equations are given. 

In this section, the main consideration will be the computer code 

generated and the description of input-output (I/O) statements 

necessary to implement the computer code. As mentioned earlier two 

separate computer codes are developed in this study, i.e. a (1-D) 

model and a (2-D) model. The (1-D) model computer code developed was 

sent to Beloit Corporation on June 1982. Since this code is a simpler 

version of the (2-D) model and since it is in operation at Beloit 

Corporation for more than a year it will not be referred to in this 

section for I/O considerations. This section is mainly a users manual 

for the (2-D) model computer code. 

The "BEL2D" computer program presented in Appendix A is written 

in Fortran IV computer language. The program is divided into nine 

subprograms and a main program. To avoid making the present code too 

complicated, some features are built into it. These include the use 

of two dimensional three nodal linear elements, the linear variation 

of the time derivative between time steps and the one step iteration 

technique used to solve the nonlinear equatiors. The computer code 

also has several default data generation routines which may help the 

user in the data preparation phase of the study. At this stage of the 

study, no attempt is made to improve on these limitations which can be 

the basis of another research effort. As it stands, the "BEL2D" 
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computer code is capable of analyzing time dependent, two dimensional, 

free surface rimming condensate problems with a variable syphon 

strength and location. 

IV.a. Description of the Program 

Various parts of the computer code and their specific functions 

are described below. 

The "MAIN" Program:  The Main program controls the flow of operations 

in the program and performs the time-space computations. Input-output 

subroutines, matrix generation subroutines, assembly subroutines and 

matrix solution subroutines are directly controlled from the main 

program. 

Subroutine "ASSEM":  Performs the assembly of the e7ement matrices 

forming global stiffness and mass matrices and Thad vectors. With 

this information, control goes back to the "MAIN" program. 

Subroutine "BOUND":  This subroutine introduces the Dirichlet boundary 

conditions on velocities and on condensate thickness at the boundaries 

of the flow region. Typically condensate thickness and velocity 

components are specified around the syphon and on the rest of the 

boundary the velocity component normal to the boundary is assigned a 

zero value. 

Subroutine "INPUT":  All the input data for the problem to be analyzed 

is either generated or read in, in this subroutine. More 
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specifically, nodal pattern, element pattern, element constants, time 

constants, initial condition, boundary conditions are either read in 

or generated and printed out in this subroutine. Details of the 

generation routines will be given later on in this section. 

Subroutine "OUTPUT":  Printout of the results obtained for the problem 

analyzed is organized in this subroutine. 

Subroutine "REDUCE":  This subroutine performs the first step 

reduction in a Gausian elimination solution process on a non-symmetric 

banded matrix, stored as a rectangular array. Coefficients of the 

variables (h, ul, u2) are stored in a single matrix assembled by the 

subroutine "ASSEM". The control is then directed to the subroutine 

"SOLVE" by the "MAIN" program for the backsubstitution process. 

Subroutine "SOLVE":  This subroutine completes the backsubstitution 

process on the reduced matrices obtained from subroutine "REDUCE". 

Results are stored as a vector and control goes back to the "MAIN" 

program. 

Subroutine "MLTPLY":  Performs the multiplication of a non-symmetric 

banded matrix, stored as a rectangular array, with a vector. The 

resultant vector is stored in a separate location, and the control 

goes back to the "MAIN" program. 

Subroutine "ELEM":  This subroutine forms the local element stiffness 

and mass matrices and load vectors for each element. These matrices 
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and vectors are then assembled by the subroutne "ASSEM" to form the 

global rectangular matrices. 

Subroutine "CONVRG":  This subroutine computes the convergence 

parameters using an Euclidean norm form within each iteration cycle. 

These parameters are later on used in the main program to establish 

the convergence characteristics of each iteration cycle within each 

time step. 

IV.b. Control Cards and Input Data 

The first step in the analysis is to select a finite element 

representation for the region of interest. Elements and nodal points. 

are then numbered in two numerical sequences, each starting with one. 

A typical idealization is shown in Figure 3. Nodal numbering sequence 

on this figure is shown for most of the reference nodes, nodes which 

are shown with dots. Due to space limitations nodes around the 

syphon are not numbered although they are also reference nodes. 

Numbers printed to the left or right of a node indicate the nodal 

numbering sequence chosen. Remaining nodal numbers are generated 

using these reference nodes by the computer code. Numbers enclosed in 

parentheses on the same figure indicate the element numbering sequence. 

This numbering sequence is also generated by the computer code given 

base elements such as (1), (15), etc. which are shown as shaded 

elements. Data set associated with this idealization along with the 

results was sent to Beloit Corporation under a separate cover in July 

1983. Following this initial step, the following group of data cards 

are necessary to operate the computer code. 
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IDENTIFICATION CARD: (20A4) 

Columns 1 to 80 of this card contain information to be printed as 

the title. 

CONTROL CARD I: (615, 4F10.0) 

Column (5) 	(0) Indicates the use of Darcy fraction coefficient 

to define boundary drag. 

(1) Indicates that the choice is left to the code 

(2) Indicates the use of Chezy equation to define 

boundary drag. 

Columns (6-10) 	Number of reference nodal points for which data 

will be read in. From this set the remainder of 

the nodal pattern data will be generated assuming 

equal spacing between nodes. 

Columns (11-15) 	Number of reference elements for which data will 

be read in. From this set the remainder of the 

element pattern data will be generated. 

Columns (16-20) 	Number of Dirichlet boundary nodes with condensate 

thickness specified. 

Columns (21-25) 	Number of Dirichlet boundary nodes with x-comporent 

velocity specified. 

Columns (26-30) 	Number of Dirichlet boundary nodes with y-component 

velocity specified. 

Columns (31-40) 	If a non-zero real number is specified here then a 

constant initial condensate thickness distribution 

equal to the assigned value is generated for all 
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Columns (41-50) 

Columns (51-60) 

Columns (61-70) 

nodes. If a zero is specified here than followup 

data in Control Card II is needed to specify an 

initial condensate thickness distribution. 

If a non-zero real number is specified here then a 

constant initial x-component velocity distribution 

equal to the assigned value is generated for all 

nodes. If a zero is specified here then follow up 

data in Control Card II is needed to specify an 

initial x-component velocity distribution. 

If a non-zero real number is specified here than a 

constant initial y-component velocity distribution 

equal to the assigned value is generated for all 

nodes. If a zero is specified he-e then follow up 

data in Control Card II is needed to specify an 

initial y-component velocity distribution. 

This data should be read in as (1.00) always. This 

parameter is a relaxation parameter which accel-

erates the iterations performed at each time step. 

At this stage variations on this parameter are not 

fully implemented into the computer code. 

CONTROL CARD SET II: (I10, 2F10.4, I10, 3F10.0) 

In this data set, the number of data cards should be equal to the 

number of reference nodal points specified in Control Card I, columns 

(6-10). 
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Columns (1-10) 	Node number 

	

(11-20) 	x-coordinate 

	

(21-30) 	y-coordinate 

	

(31-40) 	(0) Indicates node generation is not requested 

after this node 

(1) Indicates node generation is requested between 

this node and the next one 

	

(41-50) 	(h), condensate thickness at node 

	

(51-60) 	(ul),x-component velocity at node 

	

(61-70) 	(u2),y-component velocity at node 

If a zero is specified in columns (31 -60) on Control Card I then 

a non-zero data should be given here for (h, ul, u2). Values of (h, 

ul, u2) for remaining nodes will be generated through linear inter-

polation between consecutive nodes. If a non-zero value is specified 

for either variable in Control Card I then corresponding data for (h, 

ul, u2) on this card set can be omitted. 

CONTROL CARD SET III. (315, I10) 

In this data set, the number of data cards shoLld be equal to the 

number of reference elements specified in Control Card I, columns 

(11-15). 

Columns (1-5) 
	

First node number 

Columns (6-10) 
	

Second node number in counterclockwise direction 

in reference to first node above 
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Columns (11-15) 	Third node number in counterclockwise direction in 

reference to second node above 

Columns (16-25) 	Number of elements on the same column after the 

reference element for which data generation is 

requested 

CONTROL CARD IV. (5F8.0, 2E12.5, 2F6.0) 

Columns (1-8) 

Columns (9-16) 

Columns (17-24) 

Columns (25 - 32) 

Columns (33-40) 

Columns (41-52) 

Columns (53-64) 

Columns (65-70) 

Columns (71-76) 

Initial friction coefficient 

Gravitational acceleration 

Slope 

Condensation rate 

Error limit, usually set to 0.001 

Density 

Viscosity 

Should be set to (0.5). (Allows for the use of 

other time integration schemes, but not fully 

implemented at this stage). 

Mannings, n. 

CONTROL CARD V. (4F10.0, I10) 

Columns (1-10) 

(11-20) 

(21-30) 

(31-40) 

(41-50) 

Initial time 

Final time 

Time step 

Duration of condensation 

Printout interval 
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CONTROL CARD VI. 8(13, F7.0) 

If Dirichlet boundary conditions on condensate thickness do not 

exist, then this set of cards should be omitted. Otherwise a data set 

equal to the number specified on Control Card I, columns (16-20) 

should follow. 

8 (Columns(1-3), node number, columns (4-10), ooundary condition) 

CONTROL CARD VII. 8(13, F7.0) 

If Dirichlet boundary conditions on x-component velocity do not 

exist, then this set of cards should be omitted. Otherwise a data set 

equal to the number specified on Control Card I, columns (21-25) 

should follow. 

8 (Columns(1-3), node number, columns (4-10), boundary condition) 

CONTROL CARD VIII. 8(13, F7.0) 

If Dirichlet boundary conditions on y-component velocity do not 

exist, then this set of cards should be omitted. Otherwise a data set 

equal to the number specified on Control Card I, columns (26-30) 

should follow. 

8 (Columns(1-3), node number, columns (4-10) boundary condition) 
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SECTION V 

NUMERICAL RESULTS 

Considerable effort and computer time was spent in solving 

several problems of interest to Beloit Corporation using the one 

dimensional model. Results of these computer runs are presented below. 

Completion of the two dimensional model on the other hand is more 

recent, thus only a few test runs were made using this code which will 

also be summarized at the end of this section. It is expected that 

further detailed use of the two dimensional code generated will be 

actualized at Beloit Corporation Laboratories. 

V.a. One -Dimensional Model Test Runs 

The data for the problem chosen to test the one dimensional 

computer code was obtained from Beloit Corporation. This data set 

corresponds to a drum with the following characteristic dimensions. 

Internal Diameter, Di = 5.0 ft 

Length, L 	 = 20.0 ft 

Density of Condensate,p = 57.7 lb/ft 3  

Viscosity of Condensate,p = 1.29 x 10 -4  lb/ft sec 

Loading conditions (M) and rotational speeds Vi considered in the 

thirty five computer runs made are summarized in Table II below. 

Results obtained were satisfactory and compared favourably with the 

earlier results obtained at Beloit Corporation. 

Figure 4 given below shows a typical condensate thickness profile 

obtained in one of these computer runs. The legend summarizes the 

values of the specific constants used in this computer run. Figures 5 
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TABLE II 

One Dimensional Model Data 

L = 20 ft 
	 p = 57.7 lb/ft

2 

D i = 5 ft 
	 = 1.29 x 10 -4  lb/ft sec 

Data No.  V. (ft/min) g(ft/sec 2 )  
ft) 	V 

rii(lb/hr) 	R(ft/sec) 	hmin
( 	SYPHON (ft/sec) 

 

    

1 	 1000 
2 	 1500 
3 	 2000 
4 	 2500 
5 	 3000 
6 	 3500 
7 	 4000 
8 	 1000 
9 	 1500 

10 	 2000 
11 	 2500 
12 	 3000 
13 	 3500 
14 	 4000 
15 	 1000 
16 	 1500 
17 	 2000 
18 	 2500 
19 	 3000 
20 	 3500 
21 	 4000 
22 	 1000 
23 	 1500 
24 	 2000 
25 	 2500 
26 	 3000 
27 	 3500 
28 	 4000 
29 	 1000 
30 	 1500 
31 	 2000 
32 	 2500 
33 	 3000 
34 	 3500 
35 	 4000 

111.11 
250.00 
444.44 
694.44 

1000.00 
1361.11 
1777.77 

111.11 
250.00 
444.44 
694.44 

1000.00 
1361.11 
1777.77 

111.11 
250.00 
444.44 
694.44 

1000.00 
1361.11 
1777.77 

111.11 
250.00 
444.44 
694.44 

1000.00 
1361.11 
1777.77 

111.11 
250.00 
444.44 
694.44 

1000.00 
1361.11 
1777.77 

2000.0 
2000.0 
2000.0 
2000.0 
2000.0 
2000.0 
2000.0 
2500.0 
2500.0 
2500.0 
2500.0 
2500.0 
2500.0 
2500.0 
3000.0 
3000.0 
3000.0 
3000.0 
3000.0 
3000.0 
3000.0 
3500.0 
3500.0 
3500.0 
3500.0 
3500.0 
3500.0 
3500.0 
4000.0 
4000.0 
4000.0 
4000.0 
4000.0 
4000.0 
4000.0 

- 3.07x10 -5
5  

3.07x10-5 3.07x10 
3.07x10 -5 

3.07x10 -5 

3.07x10 -5 

3.07x10 -5 

3.83x10  

3.83x10 -5 

3.83x10 -5 

3.83x10 -5 

3.83x10 -5 

3.83x10 -5 

3.83x10 -5 

4.6x10 -5  
4.6x10 -5  
4.6x10 -5  

- 5 4.6x10 
- 5 

4.6x10 -5  
5.36x10 -5 

5.36x10 -5 

5.36x10 -5 

5.36x10 -5 

5.36x10 -5 

5.36x10 -5 

5.36x10 -5 

6.13x10 -5 

6.13x10 -5 

6.13x10-5 

6.13x10 -5 

6.13x10 -5 

6.13x10 -5 

6.13x10 -5 

	

0.0022 	0.279 

	

0.0016 	0.383 

	

0.00135 	0.454 

	

0.0012 	0.511 

	

0.0010 	0.612 

	

0.00093 	0.659 

	

0.00085 	0.721 

	

0.0025 	0.306 

	

0.0019 	0.403 

	

0.0016 	0.479 

	

0.00135 	0.568 

	

0.0012 	0.639 

	

0.0011 	0.697 

	

0.00099 	0.774 

	

0.0028 	0.328 

	

0.0022 	0.418 

	

0.0018 	0.511 

	

0.0015 	0.613 

	

0.00135 	0.681 

	

0.00122 	0.754 

	

0.00111 	0.828 

	

0.0031 	0.346 

	

0.0024 	0.447 

	

0.00196 	0.547 

	

0.00169 	0.635 

	

0.00150 	0.715 

	

0.00135 	0.795 

	

0.00124 	0.865 

	

0.0034 	0.361 

	

0.0026 	0.472 

	

0.00215 	0.570 

	

0.00185 	0.663 

	

0.00164 	0.748 

	

0.00147 	0.834 

	

0.00135 	0.908 

4.6x10 -5 
4.6x10 

34 



0.004 

0.003 
t...n 

01002 

0.001 hmm -0.00135 

L 	2 0 ft 
	

V.= 4000 ft /min 
	rim = 4000 lb/hr 

hflu 
	 D 	5 t _ 	ft 

	 g = 1777 8 ft/see 
	

R = 6 13 x165  ft/sec 

condensate profile 

- 

0 
	

2 
	

4 
	

6 
	

8 
	

10 	 12 	 14 	 16 	 18 	 20  L() 

Figure 4. Condensate Profile for Data No.: 35 



. p v f h ave 
1.1 	

V i h ave 
R
f 	

, N - 
p 

• 

p V
i 

h d 
M 

2 

m 

and 6 summarize the results obtained in terms of average depth h ave 

 and Vi and M. These figures show expected trends between these 

variables and results obtained are in line with the earlier work done. 

Figures 7 and 8 contain plots of the same computer runs in terms of 

some nondimensional grouping of the parameters involved. In Figure 7 

Rf is defined as the flow Reynolds number which is defined in terms of 

average flow velocity and average depth. On the vertical axis another 

dimensionless grouping is used which is again in terms of average flow 

depth. 

When results of the thirty five computer runs are plotted they form a 

very narrow band bounded by curves characterized by high and low 

rotational speeds. Given the organization of dimensionless parameters 

chosen in this plot it is possible to predict a functional relation-

ship between average condensate thickness and average condensate 

velocity for various loading conditions and rotational speeds. 

However, this representation is not that useful since both axes 

contain parameters which are basically unknowrs (uj, h ave ). But if 

one defines a Reynold's number for the cylinder in terms of Vi and hd 

where Vi is the rotational velocity of the drum and nd is the 

downstream condensate thickness boundary condition which depends on 

syphon characteristics, then one can obtain h ave  from Figure 8 given 

al,P and Vi. Of course the results given in these figures are for a 
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drum with dimensions specified in Table II. Other type curves can 

also be obtained from the finite element program developed. This line 

of activity is not pursued at this point which is in line with the 

proposed program of study. 

V.b. Two-Dimensional Model Test Runs 

Several test runs were also made with the two-dimensional 

computer code developed. Results obtained were also satisfactory and 

some of the printouts of these runs were sent to Beloit corporation on 

a separate cover earlier. The computer code was first tested to 

duplicate the results of the one dimensional computer runs. Data 

prepared to represent a flat plate with a line syphon at one end of 

the syphon yielded results similar to the ones presented earlier. 

Computer runs made with the two dimensional model with a non-symmetri-

cally placed circular syphon (six feet away from the left boundary of 

the plate) showed clearly that the flow region at the immediate 

vicinity of the syphon is in either transition or turbulent flow 

regime. This fact necessitated the use of the Chezy coefficient 

description of boundary drag terms as opposed to Darcy friction 

definition which was satisfactorily used with the one dimensional code. 

Computer results obtained with this approach were also satisfactory 

and it is recommended that this version should always be used in 

analyzing problems with a circular syphon. The computer code also 

gives a mapping of elements indicating the specific flow regimes for 

each element in each time interval as a supplement. To be able to 

separate these flow regime regions properly it is suggested that 

smaller elements be used around the syphon compared to the element 

sizes chosen elsewhere on the plate. 
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SECTION VI 

CONCLUSIONS AND RECOMMENDATIONS 

This study was planned and carried out as an initial step in 

modeling rimming condensate flow problem in rotating drums of paper 

drying machinery. Throughout, the main aim was to develop a simple 

user oriented one-dimensional and two-dimensional numerical model 

which can be used in the analysis of such rimming condensate flow 

problems. The problem, as described in Section II of this report, is 

by no means a trivial problem and required considerable analytical and 

numerical expertise. The computer code generated is documented and 

steps involved in data preparation are summarized in detail in this 

report. To simplify the data preparation phase of the code several 

data generation routines are built in to the code. These are 

documented in Section IV of this report. 

Several numerical experiments performed by the codes generated 

are also summarized in Section V of this report. When compared with 

earlier analytical and experimental results the model performs rather 

satisfactorily with a potential of analyzing problem types which were 

not possible to model utilizing the computer models available to 

Beloit Corporation at that time. As it stands now, the two-

dimensional computer code generated is capable o' analyzing rimming 

condensate flow problems for various loadings and syphon arrangements. 

With the present code it is also possible to treat problems with more 

than one syphon arbitrarily placed on the centerline of the plate. 

The efficiency of such a configuration might be of interest to Beloit 

Corporation. 
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Finally, an upgrading of the present two-dimensional model is 

possible and should be considered cepending on the research needs of 

the Beloit Corporation. In terms of the accuracy and efficiency cf 

the model the following can be incorporated into the model as a part 

of future work: 

a) Inclusion of higher order approximations (higher order 

elements) into the finite element procedures. 

b) Inclusion of a quadratic iteration process as opposed to the 

linear iteration process used in the model. 

c) Improving the time integration processes used to higher 

order schemes. 

All of these are related to the numerical aspects of the study. In 

terms of expanding the capabilities of the code generated, it is 

proposed that the code should be coupled with a finite element heat 

transfer analysis computer code so that after determining the 

condensate thickness distribution, the code should automatically 

generate the heat transfer characteristics of the plate on the same 

finite element mesh. Such a coupled algorithm should be accompanied 

with graphics capabilities allowing the desigrer to make changes on 

the design and see the effects of such a change comparatively and 

immediately. 
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The major arrays and symbols used in the BEL2D computer program 

are defined below. Some temporary storage variables are not defined 

here, but their definitions are evident from the context. 

AREA 	= Area of triangular elements 

BCDH 	= Dirichlet boundary condition on depth of condensate 

BCDU 	= Dirichlet boundary condition on velocity, ul 

BCDV 	= Dirichlet boundary condition on velocity, u2 

CMN 	= Manning's (n) 

ERR 	= Convergence error limit 

F 	= Darcy friction coefficient 

GR 	= Gravitational acceleration 

H 	= Vector, nodal condensate thickness 

HAVE 	= Average condensate thickness 

HCONS 	= Constant condensate thickness, initial data 

HIN 	= Vector, nodal condensate thickness, initial data 

ICON 	= Element convectivity matrix 

IUBW 	= Maximum upper band width 

IFC 	= Flow control constant 

IP 	= Printout interval 

NDH 	= Number of Dirichlet boundary conditions on depth 

NDU 	= Numer of Dirichlet boundary conditions on velocity, ul 

NDV 	= Number of Dirichlet boundary conditions on velocity, u2 

NNODE 	= Number of nodes 

NELEM 	= Number of elements 

NNPC 	= Number of reference nodes 
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NELEMC = Number of reference elements 

NDBCNH = Node numbers with Dirichlet boundary condition on depth 

NDBCNU = Node numbers with Dirichlet boundary condition on velocity, ul 

NDBCNV = Node numbers with Dirichlet boundary condition on velocity, u2 

NPMIS 	= Number of elements above reference element 

NEWN 	= Local element connectivity matrix 

Mass matrix 

PHI 	= Vector, unknown variables 

PHIN 	= Vector, initial values of unknown variables 

R 	= Load vector 

RHO 	= Density 

RO 	= Condensation rate 

SO 	= Slope 

TCONT 	= Counter for time 

TDUR 	= Condensate duration 

TST 	= Time step 

TI 	= Initial time 

TF 	= Final time 

U 	= Vector, nodal velocities (ul) 

UAVE 	= Average velocity 

UIN 	= Vector, initial nodal velocities (u1) 

VIN 	= Vector, initial nodal velocities (u2) 

VISC 	= Viscosity 

V 	= Vector, nodal velocities (u2) 

X 	= (xl,x2) global coordinates 

XE 	= xi, local coordinates 

YE 	= x2, local coordinates 
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PROGRAM BEL2D(INPUTOUTPUT9TAPE5=INPUTIJAPE6=OUTPUT) 

CC***************************************************************** 
CC** 	THIS IS A TWO DIMENSIONAL VERSION OF THE ORIGINAL 
CC** 	PROGRAM WRITTEN FOR BELOIT CORPORATION. FRICTION FACTOR 	IS 

M 
CC** THEFRICTION TERMS ARE COMPUTED USING TWO-APPROACHES 
CC** 	IFC = 0 USES MOODY CHART, IFC = 2 USES CHEZY FORMULA WITH 
CC** 	MANNINGS• COEFFICIENT. 	- 

* ALL 	RUMS 	w1-TR---mc—T-plirr—s/..017 t D—u-s17-17t--=-2—lap--1, 
CC** 	A SENSITIVITY ANALYSIS SHOULD RE MADE AT THIS STAGE.. 
CC** 	IN ANY RUN IF THE ELEMENT REYNOLDS NUMBER GETS TO BE 
CC** 	GREATER THAN (1500) AGAIN IFC = 2 OR I SHOULD BE 	USED. 
	SENSITIVITY 	OPT-TH-E• R -E-a-ULT-S—S-H-0-11L0 	B-E—CH-E-MED 	FOR VA-RIATrON-S 	 

CC** I-NMANNINGS COEFFICIENT. 
CC** :FAX :NUMBER OF.NODES FOR THISCODE IS (150), - MAX NUMBER OF ELEMENTS 
CC** 	FOPTHIS CODE'I'S 301).).. THESE LIMITSCAN BE INCREASED 	OR DECREASED 
	,,E11-STUN—STA-T-E-MfMTh 

CC************************************************ ************** *** 
CIMENSION TITLE(20)9P(450920),R(450)9X(2,150), 

2 PE1(393)9RE1(3),U(150),V(150)9HIN(150)9U1N(150)9 
tI-5t/9Rf72- ra'.T2t-37YTPTII-INI 	- 	9 

4 RBNI4501'.9NDBCNHt5OT,BCDH(5D)iNDBCNU(50)4BCDU(50)t 
5 NDBCNVC5019BODV:(51(450),IC0n(3.93001ENN(3), --  
6 L1(3),V1134.H.1(•XET319YE(3) . 9RE.3(3)•PE3(30)4IEL(300)- 

COMMON /MVFL/RE19RE39PE19AREA,II9RE29PE29PE3,U19V1.H1tUAVE,HAVF 
COMMON/CHAR/NNODE,NELEM9NDHINDU,NDV,ERP9NNODE39IUBW9THETA,WT9IFC 
COMMON /GMVIR,P9HIN9UINIVIN9PHI,H9U9V 
	C-814 N—/-E tillf 9R-et Oft-To-St-0J St-9RH-0---i-C MN 	  
COMMON:ITIMF/TOURiTTILEiTI9TF,TST4TCONT9IP• 
COMMON - YBC/NDBCNUOCDU9NDBCNV9BCDVINDBCNHOCDH • 
COMMON - • -/LCL/NEWNO(E4YE,XvICON  • 
C-O-FtftOt-f-T-U-R-P-t 

CALL INPUT 

F 
PNODE3 = 3*NNODE 
ICONT = 

13 	0 	T-CONT 	- T-14-T-S-T 
ITI• 
ITER = 

128 CONTINUE 
DO 	10 J-1920 
DO .10 1=19450 
P(I,J) = O. 
REN(/) = O. 

- 
0 	CONTINUE 

DC 15 I=19NNODE 
PHIIN(I) = HIN(I) 
	PHIIN(t 	.0 E 	- UIN I 	• 

PHIIN((2*NNODE)+1) = VIN(I) 
CONTINUE 

DC 	2C 1-1-=-19N-Et 	. 
DC 2i11 I-1,3 

201 	NEWN(I) = ICON(I,II) 
CALL SET 

DO 202 1=1,3 
Ul(I) = UIN(NEWN(I)) 
V1(I) = VIN(NEWN(I)) 

48 



1 1 

_VJ 	I 
IF(ICONT.E0.0)G0 TO 21 
U1(I) = U(NE'.!N(I)) 
V1(I) = V(NEWN(I)) 
H1(I) = H(NEWN(I)) 

21 	CONTINUT 
2C2 CONTINUE 

SUMU = 0.0 
	 - 	  

DC 203 1=193 
UU - SGRT(U1(I)*U1(I)+V1(I)*V1(I)) 
SUMO = SUMU+UU 
SUMff 	=-----StP11+;f1-H 	  

203 CONTINUE 
UAVE = SUMU/3.0 
HAVE - SUMH/3.0 
I 	Fili-kieirea) 	95 	7 9---1-TERvilfTCON'T 	  
IF(HAVE.LT40.) WRITE(6954)ITER,II9TCONT 

54 FORMAT(I0X9"ERROR:... - .HAVE IS LESS THAN ZERO",3X,"ITER ="9I59, 
23X, "ELEMENT 	--"91593X9 11 TCONT --  "1E10.4) 
	(LJAVE.LE.0.) WFITE(69-57H - ITER9-1I9TCONT 	  

57 FORMAT(10WERROR...HAVE = 0."93)(9"ITER ="9I593X9"ELEMENT NO.=" 
291593X9"TCONT = ",F10.4) 

58 FORMAT(10X9"ERii0R..UAVE= 0." 93)(9"ITER ="11593)(9"ELEMENT NO. =" 
9 IS , 	

9"  6-04N-T---=-7"9r 19 . 4 	  
IFiHAVr«LE.O..OR.UAVE.LE.0.) GO TO 4000 
F = 24.*VISC/(RHO*UAVE*HAVE) 
CALL ELEM 

20 	CONTINUE 
IF(ICONT.EQ.1)G0 TO 22 
DO 24 I=1,NNODE3 

24 	CONTINUE 
CALL MLTPLYC-P9PHIIN9RBN), 
DO 23 I=1,NNODE3 
	R-E-44-4) 	= RD 9A4++-T-S-4-4 RTI-14 	  
23 	CONTINUE 

CALL BOUND(PoRBN) 
CALL PEDUCE(P9RDN) 
CAtt  
U0 25 -1=1,NNODE 
PH1(1) 	F(BN(I) 
PHICNNOEF+TI - REN(NNODE+I) 
	PH-1-44-2*4444-9-0-F-)-+-1- -) =—R47.144-((2-4-NNODE)-+1)--- 

H(I) = RBN(I) 
U(I) = RBN(NNODE+I) 
V(I) - RBN((2*NNODE)+I) 

LCONT 
GO TO 128 
CONTINUE 

LTPLY(P9PIIIIN.R-B-N-) 	 
DC 40 I=1.NNODE3 
RBN(I) = RBN(I) + TST*(THETA*RT(I)+(1.-'THETA)*R(I)) 

40 	CONTINUE 
1.76—B-G4J'AHD+F-v-P.-8: 	  

CALL REDUCE(P,RBN) 
CALL SOLVE(P,RBN) 
CALL CONVRG(RBN,PHI,CONERR) 
TER 	- ITER41 	  
IF(ITER.GT.20)WRITE(6,11) 
FORMAT(10X,"CONVERGENCE PROBLEM CHECK") 
IF(ITER.GT.20)00 TO 4000 

IF(CONERR.LE.ERR) GO TO 133 
DO 132 I=1,NNODE3 
RBN(I) = PHI(I) + WT*(RBN(I)-PHI(I)) 
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E---- 
133 CONTINUE 

******* ****** ***** END OF RELAXATION********* 
DO 43 I=1*NNODE 
PhI(I) - RBN(I) 
PFI(NNO5E+I) = RBN(NNODE+I) 
PhI((2*NNODE)+I) = RBN((2*NNODE)+I) 
H(I) = RDN(I) 

V(I) = RBN((2*NNODE)+I) 

43 	CONTINUE 
FIT-0-NE7=P-R-..(377-ERR-M0 	TO-1-279-  

ITIM =ITIM+1 
F - FP 
IFiITIM.NE.IP)G0 TO 48 

ALL 	OUT-P-UT(IMER-OF-.) 
ITIM —  0 
CONTINUE 
TCONT = TCONT+TST. 

IF(TCONT.GT.TF)G0 TO 4000 
SLM1 = 0.0 
SLM2 = 0.0 

	

-19NNODE 	 

=:U(i) 

SUM2 = SUM2+SORT(U(I)*U(I)+V(I)*V(I)) 
50 	CONTINUE 

sumi = SUM1/%NODE 
- UM2YfrNODE 	  

IFAiiEY.LE.0.) WRITE 16,55 )  
REY - SUM1*SUM2*RHO/VISC . -: 

55 FORMAT(10X,"ERROR..4 	REYNOLDS NO. = 0.") 

FP = 24./REY 
F = FP 
TCONT = 0 

	ITER 	= 	  
GO TO 128 

4000 CONTINUE 
STOP 
run  

SUBROUTINE CONVRG(RBN9PHIICONERR) 
DIMENSION RBN(450),PHI(450) 

-/-*N-O3-ErfteLEM,NDFW 	IL: 	Rf-N-NO-DE-3-97-1-UBV-1 	T-A-,WT , 	I :  

SUM1 = 

SUM1 = SUM1+(Rni“I)-PHI(I))**2. 
SUM2 - SUM2+PHI(I)**2. 

50 	CONTINUE 
	 80 		, • • --WR- I-T-E(69-11) 	  

FORMA7(10•ERROR IN CONVERGENCE ROUTINE") 
IF(SUM2,LE.O.) GO TO•55 
CONERR = SQRT(SU"11/SUM2) 

55 	e-O-N-T-I-N-UE 
RETURN 
END 

1 1 
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	Sii-BR-OUT 	 
DIMENSION P(450,20),RBN(450)*NDBCNU(50) 

2 .NDBCNV(50).NDBCNH(50).BCDU(50),BCDV(50), 
3 BCDH(50) 

COMMON /BC/NDBONUIBCDU,NDBCNVIRCOV.NOBCNHOCDH 
COMMON/CHAR/NNODE.NELEM,NDHINDU.NDV.ERR.NNO0E3.IUBW.THETA,WT,IFC 
MHALF = (IUBW+1)/2 
IF(NDH.EG.0)G0 TO 19 
CO 1 I=1.NDH 
NK = NDBCNH(I) 
P(NK,MHALF)  = P(NK,MHALF)*10.**25. 

- RBN(N-K1-4.-PTHA-tF)*El-C-OH1-1) 
1 	-.:CONTINUE 
10 	CONTINUE 

:IF(NOU.E0.0).0, 0 TO 2t 
E-0-72-71-1.NDU 
NK = NOBCNU(I) 
PUNNOOF+NK).MHALF) = PUNNODE+NK).MHALF)*10.**25. 
RBN(NNODE+NK) = RBN(NNODE+NK)+P(NNODE+NK.MHALF)*BCDU(I) 

.'2C 	COfTINUE 

	

72-77-7777C-CrirrIlltrE 	 

NNW::.= - 2*NNODE' 
1E(NDV.EQ.04GO TO " 3 
DO 	3 I=1,NtV 	 
NK = NDOCNV(I) 
F(NNN+NK.MHALF) = P(NNN+NKtmHALF)*10.**25:0 
REN(NNN+NK) = RBN(NNN+NK)+P(NNN -I-NK,MHALF)*BCDV(T) 

773 	CM-1MT 
3C 	CONTINUE 

RETURN 
END 

SUBROUTINE SET 

DIMENSION NEWN(3),XE(3).YE(3), 
COMMON /LCL/NEWNIXE,YE.X.ICON 

ORX = r. 
CRY = 0. 

-----77t-07174=1-4-3 
=NEWN(I) 

ORX= ORX+X(1,J) 
1 	ORY = ORY+X(2.J) 

CRY = ORY/3.0 
DO 2 I=1,3 

= NFYN(I) 
	E(I) -)(71-1,,J)-aftl 	 

.YE(I)  
RETURN 
END 

Y(2.150),ICON(31300) 
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SUBROUTINE ASSEM 

DIMENSION  RE1(3),PE1(393)9R(45T1 )9P(450920)9PE2(393),PE3(393), 
1 R E-21-3-)9 P, 	)-9-U1-(-31-1-V-1-(-319-H1 ( 3 	H I N-11-5-0 ) -91:11-N (-15 ) V I-N1 15 01 
2 FHI(450),H(150),U(150)9V(150),NEWN(3)9XE(3),YE(3),ICON(3930C) 
39X(29150) 

COMMON/MVEL/RE19RE39PE19AREA9II9RE29PE29PE3tU19V1,H19UAVE9HAVE 	 
/CH 	.17:1=-E-M-91TOH 	D 0113179 	R 9N N-017E-3 -9-111BW T HE-T 	F C 

COMMON /GMV/R9P9HIN9UIN9VIN9PHIvH9U9V 
COMMON /LCL/NEWN9XE9YE9X9ICON 
DO 1 	 1=193 

NEW-NI-11-1 - R(-NEVN(r))+RE-1(I) 	  
R(NEWN(I)+NNODE) r.R(NEWN(I)+NNODE)+RE2(1) 
R(NEWN(I)+(2.*NNODE)) = R(NEWN(I)+(2*NNODE))+RE3(I) 
'CONTINUE  

( 	ILBIk+1 	) 2 

DO 2 JJ=193 
DO 2 J=193 

JJ) 	  
KK 	NEWN (J? 
LL - KK-NN 
F(NN- 9IF3+LL) 	P CNN, If3+LL)+PE1(JJ9J) 

(NNOD 	) 	 ( IP+LL 	)- )=-P-( ( N N 	O-D-E + N 	N ) . (-1-1F1-+ 	 JJ, J) 	  
F( ( (2*NNODF_ )+N' ,!)9 ( In+LL) ):: P( ( (2*NNODE )+NN) (IB+LL) )+RE3(JJ9J) 

2 	CONTINUE 
RETURN 
	EIVD 	  

SUBROUTINE -SOLVE(S1F) .  
DIMENSION..S(450120)9F( 450) 
COMMON/CHAR/NNODE4NELEM.9NOH4NDU , NDV9ERR 

(IU 3W 	+-1)/2 	  
MHALF1 = MHALF+1 
F(NNODE3) = F(NNODE3)/S(NNODE39MHALF ) 

 DO 1 M=2,NNODE3 
—=—AMOOtt-4-1-14  
DO.2 L=MHALF1sIUBW 
IF(S(N9L).E 1:491)9)G0 

= - .(N+L-MHALF) 	  
T_ 1 

F(N) =F(N)-F(N9L)*F(K) 
2 	CONTINUE 

F(N) = F(N)/S(N,MHALF) 
1 	CONTINUE 

RETURN 
END 

1NNODE3sIUBW9THETA9WT4IFC 
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DIMENSION S(45092U),F(450) 
COMMON/CHAR/NNODE,NELEM,NDHINDU,NDV,ERR,NNODE39IUBW,THFTAIWT.IFC 
MHALF = (IUBW+1)/2 
H-ALF1 
DO 1 N=1,NNODE3 
LL = MHALF 
CO 2 L=MHALF1IIUBW 
I 	N-+-E---MHAt-F- 	  
:IFil,GT.NNODE3)GOTO 1 . 

LL-1 
IF(i(I'LL).EQ.C.)G0 TO 2 

J = LL 
CO 3 K=MHALF1,IUBW 
J = J+1 
	) 	 

F(I)-F(N)*C 
CONTINUE . 
'CON'TINUE 

END  

SUBROUTINE MLTPLY(T,PHI,G) 
 	ENSION 	 0)9-6-(74511)----  

COMMON/CHAR/NNODE,NELE.MINDH,NOU,NOV,ERR,NNODE39IUBW,THETA,WT,TFC 
MHALF..r.(ILIBW+1)/2 -  
MHALF1• -  MHALF+1- 
	C-0 	I it,: 	E3 	  
1 	G(I) =0.0 

K = MHALF1 
DO 2 I=1,VHALF 

	It 	= 	1 	  
L = 1 
CO 2 J=K,IUFW 
G(I) = G(I)+T(IfJ)*RHI(L) 

2 	CONTINUE 
K - 1 
MID = NNODE3-MHALF 
	&O 	 

.J=1,IURW 
G(I) 	-=---GC+++7(4-t-J-)APHI-(-t7) 
L = L+1 
CONTINUE 
K = NNODE3-IUB',! 
JJ 	=-4-e-B-414 1 	  
NREST = •NNODE3-!1HALF1-1 .  
CO 4 I=NRESTtNNODE3' 
JJ = JJ-1 

K 	= K-4-1 	  
L = K 
CO 4 J=ltJj 
G(I) = G(I)+T(I,J)*PHI(L) 
L = L-4-1 	 
CONTINUE 
RETURN 
END 
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SUBROUTINE ELEM 
DIMENSION! NETWN(3 ) 9XE( 3 )9YE(3)9X (29150) ICON(29200) 

2 BEI (3)9 R E2 ( 3)0E3 (3 )9PEl(3.3) 'PE:2 (393 ) 9PE3  (  313 )  9U1 ( 3)  
) 9H-1-1-31-9-k (-3-) 	)- 9-C- (3 ) 91 E L ( 3 ft 0 ) 

COMMON /MVEL/RE.19RE39PE19AREA,II,RE29PE29PE39U19V1011UAVE,HAVE 
CCMMON/CHAR/NNODE9NELEMODHODU,NDV9ERR,NNODE39IUBWITHETA9WT9IFC  

F, PTO 	 C -9-R H 0 -4- -CM 
COMMON /LCL/NCON9XE9YE,X9ICON 

COMMON/TURE/IEL 

El"-- 	* H A 	V-E-* R H 
TEL (II ) = 1 
IF(REY•LT•2(1110.) TEL(II) = 

	

IF(REY.GT.R000.) 'EL( 	= 2 

	

- -A-E-S-(--(11{-1 -2--)--*-Y-E 1-3-1 --Y-E (-21 -ArY-E-1-3-51-.--  (-X E-11-1-* -Y -E--( 3 	 
2 XE(3 )*Yr:(1 ) )+1YE(1 )*YE (2 )-XE(2 )*YE( 1 ) ) *0.5 ) 

A(1 ) = ( XE( 2 )*YE(3 ) -XE (3 )*Ysi(2 ) )/(2.*AP:A) 
	 (2-) 	 E-11-3 X E-11. 	Y E -(31 	 FA-) 
A(3) = (XE(1)*YE( 2)-XE (2 )*YE(1 ) )/ (2 .*AREA) 
E(1) = (YE( 2)-YE(3) )/( 2•*AREA) 
P(2) = (YE( 3)-YE(1) )/( 2.*AREA) 

-13) 	=—(YE(1 	)--Y-F-( 	2) )/-(-2. 	A ARCA) 	  
C(1) = ( XF (7)-XU( 2) )/(2.*AREA) 
C(2) = ( XE(1 )-XE( 3) )/ ( 2.*AREA) 
C(3) = (XE(2)-XE(1) )/( 2.*AREA) 

	

C 	• 	• 
PE1(192) = (AREA/12.) 
FE1(1,3) = (AREA/12.1 

	

=—PE1(---192-) 	 
PE1(391) = FF1(1,3) 
PE1(292) = PE1(1 9 1) 
FE1(2,3) = PE1(193) 
- E-1-1+9417-=', PC1(2931  
PE1(313) - = PE1(2,2) 

CO 10 1=193 

PE2 (19J) = rEl ( IJ) 
PE3 (Isti) = PE:11 I9J) 

1(' 	CONTINUE 
A = A R-E 	12 • 

UU1 = (2 •*U1 	)+Ul (2 )+U1(3 )) 

U 
UU2 = (U1 (1 )+2.*U1 (2 )+U1(3 ))

U3 = (U1(1)+U1( 2)+2•*U1(3)) 
i - (-2 • ir-V-1-1--1 ) -÷-V-1-(2 	) + V 	1 (-3 

V V2 = (V1 (1)+20/1(2 )+V1(3)) 
VV3 = (V111 )+V1(2)+2,9*V1(3 )) 
UC = (U1 (1 )*C (1)+U1 ( 2 )*C( 2 )+U1 ( 3 )*C( 3)) 
UE = (U1 (1)*E(1)+U1( 2) 4, 8(2 )+Ul ( 3 )*E( 3)) , 

 VC = (V1 (1)*C (1)+ V1 ( 2)*C( 2 )4- VI. ( 3 )*C( 3)). 
VE = (V1 (1)*0(1)+V1( 2)*B(2 )+V1 (3 )*B( 3)) 
HE = H1(1 )*B(l )+ H1 (2 )*B (2 )+H1 (3)*B (3 ) 

	

1--(71--*--(!-(11 	 ) 
Ull = • 6,*L11.(1 )+2•*U1 ( 2)+2•*U1( 3) 
U22 = 2.*U1 (1 )+6.*U1 (2 )+2.*U1 ( 3) • 
U33 = 2.*U1 ( 1 )+2 •*U1 (2 )+6.*U1 ( 3 ) 

• * -U- 1 -1 1-r+ 2 . *-U-11-21-4-U-113 ) 	  
U13 = 2.*U1 (1 )+1..11 (2)+2.*1.11 (3) 
U23 = Ul(1 )+2.*!..11( 2)+2•*1.11 (3) 
V11 = 6.*V1( 1 )+2•*V1 ( 2) +2•*V1(3) 

	

-+ 	*-V-1-1-21-+ 2 •--* V 113 ) 	 
V33 = 2.*V1 (1 )+2 •*V1 (2 )+6.*V1 (3) 
V12 = 2.*V1 (1 )+2.*V1 (2)+V1 (3) 
V13 - 2.*V1 (1)+V1 (2)+2.*V1 (3 ) 

1-111 -12 *V-1-(-21-4--2 • *V1-1-3 ) 
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RE1(1) = ((Rq*APEA)/3.)-AA*((HB*UU1)+((2.*H1(1)+H1(2)+H1(3)) 
2*LB)+(1C*VV1)+((2.*H1(1)+H1(2)+H1(3))*VC)) 
RE1(2) = ((RO*AREA)/3.)-AA*((HB*UU2)+(CH1(1)+2.*H1(2)+H1(3)) 

F2-*  
-UB-) + (H C--*-T 	Ili V2-) + ( ( 	(-1 )-+-2.*-111-(-2 -) + H -1- (3r)* -vc) ) 

2*LB)+(HE*VV3)+((H1(1)+H1(2)+2.*H1(3))*VC)) 
RE1(3) - ((RO*ARFA)/3.)-AA*((HB*UU3)+((H1(1)+H1(2)+2.*H1(3)) 

RBA  = (RO*AREA)/(12.*HAVE) 

R E  

-211 ) - --( -R13-A-*UU-11-+-1-GR-*S0-*-A-R-r-A-/-3-71"---1-1-OR-*-A-REIVI3- 1 -*-11B ) 
3•.(AA*UB*UU1)-(AAAUC*VV1) 
RE2(2) =-(R3A*UU2)+(GR*SU*AREA/3.)-((GR*AREA/3e)*HB) 

3-(AA*UB*UU2)-(AA*UCkVV2) 
R 	E21-3) - -.-(-R-B--A-*UU31--+I-G.R-*-S-0-0-AR-EA-t-3■0=q-(-GR-*-A-R-E-A1-3:-Y*1-1B1 

3 ....(AA*UB*UU3)-(AA*UC*VV3) 
RE3(1) =-(RBA*VV1)+(GR*SO*AREA/3.)((GR*AREA/3.)*HO) 

3 ..- (AA*VB*UU1)-(AA*VC*VV1) 
	R-E 	3 (2 )----=-*.-( R -49--A-* V V-2-)-41-0-R- *-S-11-* fk-R-E1-/-3-41-'-. (-(-GR-*-A- R E-A-/-3.--)-*-FiC1 

3•..(AA*VB*UU2)-(AA*VO*VV2) 
RE3(3) =•.(RBA*VV3)+(GR*SO*AREA/3*)-((GR*AREA/3.)*HC) 

3 - (AA*VB*UU3)-(AA*VC+VV3) 
	bi-G-17-5- ---1 9 	 
HSUMNU=0. 
SUMNV=0.. 
00 160 JL=1,3 
	SUMNU=SUMNREA*-- 	1._- ).--*M1-+-C-1-dtl--rfldfl-1---(j 
SuMNv=SumNv+AREA*(B(JL)*B(UM)+C(JL)*C(JM))*V1(JL) 

160 CONTINUE. 
RE2(JM) = RE2(Jm) + SUMNU*VISC/RHO 
	RE-3-1--d1.11 - 	anWitorNI-S-C/R1-10 	 
150 CONTINUE 

IF(IFC.EQ.0) GO TO 500 
IF(IFC.EQ.2) GO TO 400 

IF(IEL(II).r0.2) GO TO 400 
IF(TEL(II)*EC.0) GO TO 5q0 

400 CONTINUE 
- 

FBA = (32,2*UAVE)/(HAVE*CK*CK) 
FBA 	FFsA*AREA/12. 
RE2(1) = RE2(1) - FBA*UU1 

	 -E2(2) =—RE-2(2) 	F-&A-* -U -U 2 	 
RE2(3) = RE2(3) - FBA*UU3 
RE3(1) = RE3(1) 	FBA*VV1 
RE3(2) = RF3(2) - FBA*VV2 
R 	( -31 	 FB 	. - VV3 
GC TO 700 

500 CONTINUE 
ff*AREA)/(480.*HAVE) 
	RE-Ztit—=—REZT1) 	- FBA*(U1(1)*U1-17-+U-1(2 -1412+1J1(3)*U1 	l 

RE2(2) = RE2(2) 	FFA*(U1(1)*U12+U1(2)*U22+U1(3)*U23) 
RE2(3) = RE2(3) - FBA*(U1(1)*U13+U1(2)*U23+U1(3)*U33) 
RE3(1) = RE3(1) - FBA*(V1(1)*V11+V1(2)*V12+V1(3)*V13) 
RE3(2) = RE3(2) 	FBA*(V1(1)*V12+V1(2)*V22+V1(3)*V23) 
RE3(3)RE3(3) - FBA*(V1(1)*V13+V1(2)*V23+V1(3)*V33) 

700 CONTINUE'  
RETURN 
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SUBROUTINE INPUT 

	I 	ME N -S I-ON 	NDBCN 	 att1- (51 ) NDB -C-N-V ( 5 -0- ) - 1- 9 -CD-V (5 - 0-)-• H-DBC NH ( 50 - 	 
2 ,BCDH(50),TITLE(2(1 ),NEWN(3),XE(3),YE(3),X(2,150),ICON(3,300) 
3 ,HIN(150),UIN(150),VIN(150),P(450,2C),R(450),PHI(450) 
4 0-1(150)0(150),V(15D) 

COMMON /BC/NDBCNUOCOU,NOBCNV,PCDV,NDBCNH,BCDH 
COMMON /TIME/TOUR,TITLE,TI,TF,TST,TCONT,IP 

- .COMMON/CHAR/NNODEINELEM,NDH,NDU,NOV,ERR,NNODE3OUBW,THETA,WT,IFC  
	C 	O M 	L7C-L--/-NE 

COMMON /ELM/F,RO,GR,SO,VISC,RHO,CMN 
COMMON /GMV/R,P,HINIUINIVIN,PHITH,U,V 

FORMAT(//,10X,"THIS•'•PROGRAM WAS PREPARED AND SUBMITTED IN PARTIAL
::.1FILFILLMENT.-OF PROJECTM0::E20 - 613",/,13X,"BETWEEN .BELOIT . CORPORAT 
211)NANDEORGIA-.INSTITUTE'0F.:1 - ECHNOLOGY,. - ATLANTA:GEDRGIA"4)", 
	4Xi"T1!E 	PROGRkM'I-&-P-R-E-P*R-ED---BY DR -4---RUST-AFA 	Aft-At--"OF 'SCHOet OF 	 

4CIVIL ENGINEERING",/,36X," GEORGIA INSTITUTE OF TECHNOLOGY",///) 
WRITE(6,2) 

2 	FORMAT(//,10X,"THE PROGRAM IS LAST UPDATED ON JUNE.3.1983",//) 
	REA-B---(5,3)-7-17-±TLE 	 
FORMAT(20A4) 
WRITF(6,4)TITLE • 

4 	'FORMAT(1H1,10X,2044, -//,101,"GENERATED NODAL PATTERN - AND DATA",/) 
FC 	P 	C "N-E LEM C-ir-M OH 	 CfINS 

16 FCRMAT(615,4F10.0) 
WRITE(6,17) NNPC,NELEMCODH,NDU,NDV,HCONSOCONS,VCONS,WT,IFC 

17 	FORMAT(10X,"NNPC =',I4,3X,"NELEMC =",I4,3X,"NDH - ",I4, 
	="-1-1-4,13-Xv"Hee-

NS- 2"UCONS- . = ",F10.5,3X,"VCONS 	",F10.5//16X,"WT 	",F10.4,3X, 
3"IFC - = .  •"113,"****","0 - •USE -i- MOODY CHART, 2 	USES CHEZY FORMULA, 

TO THE PROGRAM",//1) 

58 FORMAT(1OX,"IF (HCONS,UCONS,VCONS) ARE ASSIGNED A ZERO VALUE" 
2" THEN A DISTRIBUTION OF THESE VARIABLES MUST BE GIVEN" 
3" AS INPUT DATA."/10X,"IF A CONSTANT OTHER THEN ZERO IS ASSIGNEE" 

TRA-T---V-ALUE 
5 - " CODE"///) 

NCC = 0 
180 	NCC --- NCO+1 

READ(5,190) N,X(10),X(2,N),NPMIS,HIN(N),UIN(N),VIN(N) 
190 	FORMAT(I10,2F10.4,I10,3F10.0) 

WRITE(6,200) N,X(1,N),X(2,N),HIN(N),UIN(N),VIN(N) 
--T-(.111,13X,-4-Hh-O-B-E-r1-4-(r5-X-1 , 311X=--,-F--1-0-641-5-X7,-3 - -= • q- 

NI 	PJ 
• 	. 

'IF(NPMIS.NEO) GO 1. 0210•. 
-8-0 	  

210 	NCC - NCC+1 
IF(NCC.GT.NNPC) GO TO 215 
READ(5,190) NtX(1,N),X(2,N),NPMIS,HIN(N),UIN(N)IVIN(N) 

- NPG = (NE-NI) 
DX = (X(1,NE)-X(1,NI))/FLOAT(NPG) 
DY = (X(2INE)-X(2,NI))/FLOAT(NPG) 

3 
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D 	S-1=-S-01R-TI ax,rey-*Jyy-qo Y 	 
0S2=SORTM(1,NE)-X(1oNI))**2*+(X(2,NE)-X(2oNI))**2.) 
DHH=HIN(NE)-HIN(NI) 
DUU=UIN(NE)-UIN(NI) 
nyv = VIN(NE)-VIN(NI) 
DU2=0UU*DS1/DS2 
DH2=DHH*DS1/rS2 
DV2 = OVV*DS1/DS2 

DO 214 IJ = 1,NPG 
I 	IJ 
:NG = NI+I 

-1-111\t-G1--=—)(-11,1T1)+fLOA-T(1-1-4()X 	 
X(2,NG) - X(2,NI)+FLDAT(I)*DY 

HIN(NG)=HiN(NI)+FLOAT(I)*DH2 
UIN(NG)=UIN(N1)+FLOAT(I)*DU2 
IN(NG-1---=7Y 	(FYI-) +7-FLOATT17)-9(DV2 

WRITE(6i2.00) NG,X(1oNG),X(21ING),HIN(NG),UIN(NG)*VIN(NG) 
CONTINUE 
Titl-P-E-11.-Ttl-rtm—To 	180 
NI - N 
GO TO 210 

215 	NNP = N 
N-N-P 	  

IF(NNE.LE.150)G0 TO 219 
WRITE(6,216) 
FORMAT(1H1,10X1"FRROR•.4NUMBER OF NODES IS GREATER THAN 150") 

219 	N = 0 
DO 222 M=loNELEMC 
N = N+1 

220 	FORMAT(3I5oI10) 
IF(NMJS.E0.0)G0 TO 222 

DC 201  LL=1,2 
F(LL.E-C.:1) --G-DTO 213 	  

N=N+1 
ICON(1,N)= TCON(2.(N-(NMIS+1))) 
ICON(20) = ICON(1,N)+1 
	I7e-ON(31-N1 - ICONC-lfft-..(NMI-S+11-11 -4-1 	 

213 'CONTINUE 
DO 221 K=loNMIS 
N = A+1 
	D-0 	221 —J-1.3 	  

ICON(J,N) = ICON(JoN-1)+1 
221 	CONTINUE 
201 

NELEM 	N 
IF(NELE14.LE.300 - )G0 TO 224 
WRITE(6.1223) 

223----F-0R-MAT(1H1f10)(o"f-R-Rt-R . 	'4UM-Dff\ --0/7—fLEMPIT-S—GR-E-ATEP 
GO TO 1000 

224 	6RITE(6,225)NNP.NFLEM 
225 	FORMAT(1H1o1OWNUMPER OF NODES="oI4t3XONUMBER OF ELEMENTS=fi 

2 1-4-47-1-11,8)(o-41b-HEt-E:—NOol3Xo-1-214-NO0j 	AL POI-NTS0.4,--tt-of-/ 
******************.**. 

ICON(2,(NELEM-NMIS-1)) =IC0N(2,NELEM) 
ICON(3iNELEM) = ICON(1o(NELEM-NMIS-1)) 
	 -01t1-2,-11 - 

ICON(3,NMIS+2) = ICON(111) 
********************* 

CONTINUF 
	CO ti: .T 
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7-22-9 	URITECto,23 -0- Y(N,CIC 	0 N(1-dlets11 -4-1j=1-13)-.0q=11N-ELEr) 	  

	

230 	FORMAT(4(8X,I5,3X•315)) 

READ(5,6) FIGR,SO,RO,ERR,RHO,VISC,THETA,CMN  
	6 	FOP-M-A-T-1-5-f -8-4-1- ,21..-r2- - -5,2-F - 6-,-.(1) 

WRITE(6,12)F• GR,SO,RO,ERR,RHO,VISC,THETA,CMN 
12 	FORMAT(// OWFRICTION COFF ="gE10.5,7X,"GRAV.ACC, =" 

2 ,E12.4,6Xt"SLOP7 =",E11.418X•"QONDENSATION RATE =" 
3 ,E11.5,//,3X,"EMR =",F10,5,17X,"DESITY = 11 1E10.5, 
410X,"VISCOSTTY =",E10.5,5X,"THETA =",F6,3//13X,"MANNING N = " 
5,F10.5/) 

7---77--Remrs;r91 	 
AiRITE(6,18)...TI,TF,TSTITOUROP 

	

19 	FOR•AT(4F10,01I10) 

	

18 	FOR.MATUJ/3X,"TI — ",3X,E12.413X,HTF - ",3X,E12.4,3X,"TST = " 9  

1c .--------2-3il71-2.4,aTi-n-mli---1,-  -"- -c3-  X-9E-1-2•4i-3-X; PR- -INTO-U-T—I-NTERVA -C—= 
6RITE(6,21) 

	

21 	FORMAT(10X,"BOUNDARY CONDITION DATA"//) 
IF(NDH.NE.0) WRITE(6,62)  
1+-it7MDMTWL,11)X-EWDUb,22) ( (-NITITCNITTI 	 lIt= 
IF(NDH.NE,0)WRITE(6,23) (iNDBONH(1)4BCDH(I).),I=1,NDH) .. 

 IF(NDU.NE..0)-WRITE(6- i63)  
	IF1NDU.NE.01'READ(5,22)•4(NDBCNU(1)1BCDU(1))111=10DU) 

IF1-1111tn-ITE: 	• u) WR TIE( b, 211 	ND-ITC-NU 	913C-U 	r) i rE-"rrD1T) 
IF(NDV.N ,  .0) WRITE(6.64) 
IF(NDV.NE.0) READ(5,22) ((NDBCNV(I),BCDV(I)),I=1,NDV) 
IF(NDV.NE.0) WRITF(6,23) UNDBCNV(I),BCDV(I)),I=1,N0V) 	 

6-2---F-CRr-A-T- (1-57X,""13 -OUNITAKY t u NITS 	NS -ON u PTH"-1 /216X NratTE 1 01, 

	

2"DEPTH")..1 ) 	• 
63 . FORMAT(/5X0BOUNDARY CONDITIONS ON .X-COMPONENT VELOCITY"// 

2/2(6)(• 0 NODE"93X,"VELOCITYfl)/) 
6-4--F-CRT0 A-T / 51( 'MIN n R r-C-0 NT T I u NS -0 N---Y MP-MINT- NFCULITY"W / 

2,2(6Y,"NODE"s3X,"VELOCITY")/) 

	

22 	FORMAT(8(13,F7.0)) 

	

3 	F-GR-MAT( -2- ( I.1 ice, 1X ,F1-0 .4 )_) 	 
DO 500 I=1,NNODE 
IF(HCONS,E0+0.0) GO TO 36 
HIN(I) = HCONS 

3-S-1.7:CINTTNIVE 
IF(UCONS,EQ.0.) r,0 TO 37 
UIN(I) = UCONS 

37 CONTINUE 
77-1T-tvcaels,Eo+1.) G??- TO 3T 	 

= VCONS 
38 CONTINUE 
5000NTINUE 

	

IF-011,11-.TEJ. 	ra--5 , 
DO 509 I=1,NDH 
MM = NDBCNH(I) 
HIN(MM) = BCDH(I) 

rItuE 	 
510 CONTINUE. 

IF(NDU,EQ.0) GO TO 520 
00 . 519 I , i,mnu 

-ft-trite-Tv-tit-11 	  
UIN(MM) = BcDU(I) 

519 CONTINUE 
520 CCNTINUE 
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SUBROUTINE .OUTPUT (1TERIF ) 

	IF( 	:0) 	GU—TO 	531 
DO 529 I=1,NDV 
MM = NDOCNV(I) 
VIN(MM) = BCDV(I)  

530 CONTINUE 
IUBW = 9 

DO 602 N=1,NELEM 

DO 600 J=113 
JJ = J+1 
IF(JJ.GT.3) JJ=1 

IUB-W,S--=--I-ABS(ICUti(JTT1)-IUOIN1) 
IF(IURWS.GT.IUBW) IUBW=TUBWS 

600 	CONTINUE 
602 CONTINUE 

IUBW - 2*IUBW+1 
WRITE(6.601) New 

601 	FORMAT(///10X,"IUBW = ",I10//) 
1000 	CONTINUE 
	RETURN 	  

END 

DIMENSION R(450)1P(450,20),HIN(150),UIN(150),VIN(150) 
2 ,PHI(450),H(150),U(150),V(150)1TITLE(20),IEL(300) 
COMMON/TURB/IEL 

COMMON /GMV/R,R.HIN•UTNtVINTPHI,H,U4V 
COMMON/CHAR/NNODE,NELEM,NDHINDUINDV,ERR,NNODE3,IUDW,THET.A.YT,IFC 

COMMON/TIME/TDUR,TITLE,TI,TF.TST,TCONT9IP 
RITE 	(-6-4-1 ) 	T CON-T. Ii 	CR 

1 	FORMAT(//10X,"RFSULTS OF THE PROBLEM AT TIME =",F15.8, 
2 5Xe"NUMBER OF ITERATIONS = 11 ,14) 

WRITE(692) 
2-7--FO-R-4AT(-74-4(5XIDEJL-.44-)(eTHICKNE-SS-,--H(-I)--"*) 	  

CONTINUE 
WRITE(643) ((I.PHI(I))1I=1,NNODE) 

3 ' FORMAT(4(5X1I3.4X,E16.9)) 

4 	FORMAT(/4(5X,"NODE"/4X,"VELOCITY , U(:)")) 
NNODE2 = NNODE*2 
J - NNOOE + 1 
	W 	( 	3-) ( ( 	NO0E4 	( I ) 	4N NO DE 2 ) 	  

WRITE( 6,5) 
5 	FORMAT(/4(5X,"NODE"44XI"VELOCITY 	V(D")) 

J 	NNODE2+1 
	=J-,4-NNODE3 	  

SUM = 0. 
CO 9 J=1,NNODE 

9 	SUM = SUM+PHI(J) 
	•ZUR 	 

W-RITE4646) 'SUM 
FORMAT(/5X,'"AVERAGE THICKNESS FOR THIS TIME IS = " 

2 •E16.9!) 
	SUM---= 
L = NNODE+1 
DO 7 J=LONODE2 

7 	SUM = SUM+SORT(PHI(J)**2.+PHI(J+NNODE)**2.) 
	.SUM• 	=—S-4M/FLOAT4-NN-0-DE) 	  

24./F 
WRITE(6,8) SUM,F,REY 

- 8 	FORMAT(5X4"AVERAGE VELOCITY FOR THIS TIME IS - " 
-3-X-9 -"-F-R-I-C- 	C F-F- • = IL ir -F-10 .-4 93 X 9 --"-R 	S 	= 

3 E10.5/) 
WRITE (6120) 

20 FORMAT(/3X,"CODE=0, LAMINAR - CODE=1, TRANS. - CODE=2, TURB. FL" 
	2 	/-1,7 

WRITE(6,21) ((IIIEL(1))/I=14NELEM) 
21 FORMAT(7(5X113,6X,14)) 

RETURN 	• 
	E44-0  	
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