Cellule: Lightweight Execution Environment for
Accelerator-based Systems

Vishakha Gupta
Georgia Institute of
Technology

vishakha@cc.gatech.edu

Priyanka Tembey
Georgia Institute of
Technology

Jimi Xenidis
IBM Corporation
jimix@us.ibm.com

Karsten Schwan
Georgia Institute of
Technology

schwan@cc.gatech.edu

Ada Gavrilovska
Georgia Institute of
Technology

ptembey3@mail.gatech.edu ada@cc.gatech.edu

ABSTRACT

The increasing prevalence of accelerators is changing the high per-
formance computing (HPC) landscape to one in which future plat-
forms will consist of heterogeneous multi-core chips comprised of
both general purpose and specialized cores. Coupled with this trend
is increased support for virtualization, which can abstract underly-
ing hardware to aid in dynamically managing its use by HPC appli-
cations while at the same time, provide lightweight, efficient, and
specialized execution environments (SEE) for applications to max-
imally exploit the hardware.

This paper describes the Cellule architecture which uses virtualiza-
tion to create high performance, low noise SEEs for accelerators.
The paper describes important properties of Cellule and illustrates
its advantages with an implementation on the IBM Cell processor.
With compute-intensive workloads, performance improvements of
up to 60% are attained when using Cellule’s SEE vs. the cur-
rent Linux-based runtime, resulting in a system architecture that
is suitable for future accelerators and specialized cores irrespective
of whether they are on-chip or off-chip. A key principle, coordi-
nated resource management for accelerator and general purpose re-
sources, is shown to extend beyond Cell, using experimental results
obtained on a different accelerator platform.

General Terms
Virtualization, accelerators, lightweight execution, service proces-
sor

Keywords

Special execution environment, rHype, Controller, OS noise

1. INTRODUCTION

To accelerate the execution of a large class of workloads, general
purpose CPUs are being enhanced with additional asynchronous

processing units, such as the Cell processor [42], graphics proces-
sors [10, 37], cryptographic units, and network processors [27].
While the high performance achieved by configurations ranging
from GPU-accelerated desktops to the Cell-based RoadRunner [40]
supercomputer has established the market for accelerator-based het-
erogeneous multicore systems, there remain several technical chal-
lenges to be addressed, particularly in the systems software. They
include increased programming complexity in addition to difficul-
ties in extracting predictably high levels of performance when run-
ning carefully programmed codes on accelerator cores. One issue
concerning the latter is that the commodity cores directly associ-
ated or interacting with accelerators typically run general purpose
operating systems. This can perturb the execution of parallel codes
with undue levels of OS noise[5]. Furthermore, general OS inter-
faces may hide (through, say drivers [34]) or make it difficult to effi-
ciently exploit accelerator hardware. Finally, when the commodity
cores directly associated with accelerators are designed as ‘service
processors’, they are less capable than full-featured cores for run-
ning complex operating systems like Linux. This is the case for the
Power core associated with the Cell processor[17], the ARM-based
service core on the IXP network processor[25], and the Pentium M
on Larrabee[37].

The Cellule system presented and evaluated in this paper targets
accelerator-based high performance platforms. Cellule addresses
the problems mentioned above by running accelerator codes in Spe-
cialized Execution Environments (SEEs). Each SEE is customized
for a certain accelerator to efficiently run its applications, present-
ing a complete ’container’ for a custom operating system, acceler-
ator libraries (e.g., the Cell’s 1ibSPE libraries), and other support
software. Cellule uses virtualization to implement SEEs, so that
any number of them can be created for any number of accelera-
tors attached to a high performance machine. In fact, Cellule’s
SEEs could even be customized to meet specific application re-
quirements, such as data streaming vs. graphics vs. numerically in-
tensive classes of applications. This is because each SEE is created
per application by a hypervisor that ensures isolation between mul-
tiple SEEs, makes resource allocation decisions, and multiplexes
them based on scheduling policies that can be adapted to suit the
underlying platform and its use. Applications using SEEs also ben-
efit from virtualization technology’s improved portability and re-
duced development and management costs [13].

The Cellule system described and evaluated in detail in this paper
was developed for the Cell accelerator, as shown in Figure 1, but

its principles extend to other accelerators, including those used in
networking, as demonstrated in Section 4.2 of this paper.

General Purpose Processing
High speed
fd interconnect —
“;“ \ﬁ'u}‘-/"kh data/control
exchange

Cellule Cellule

Compute Network
Accelerator(s)

|

I

|

|

|

|

!

|

|
[V
v /
i v
|

|

!

|

|

|

|

|

|

!

Accelerator(s) High
' volume
General Purpose Processing data
High speed exchange
interconnect —
data/control

Cellule Cellule

|

|

|

|

|

|

|

|

|

exchange }
|

|

i

Network I
|

|

|

Compute
Accelerator(s)

Accelerator(s)

Figure 1: Potential Cellule-based High Performance Systems

Cellule contributes to broader efforts in our research that target fu-
ture integrated accelerator-based systems, examples including In-
tel’s Tolapai and AMD’s Fusion platforms [24, 2]. Our goal is to
better understand how to harvest future combined commodity and
accelerator resources, i.e., heterogeneous multicore systems, to ef-
ficiently deal with their (i) general purpose and their specialized
processing cores, (ii) diverse memory units and memory manage-
ment support, (iii) communication media connecting them, and (iv)
specific architectural features used to accelerate certain application
requests or tasks. In such settings, Cellule’s notion of a SEE can
be used to provide fine-grain control over heterogeneous cores and
their capabilities, while at the same time, making it possible to de-
velop and experiment with higher level programming models[34,
14, 26] that hide underlying hardware complexities from applica-
tion programmers. The Cellule SEE, for instance, can run libSPE-
based Cell codes with high performance and low noise, as shown
with experimental results presented in this paper. Experimental
evaluations do not consider, however, the well-known problems
arising from the unfortunate fact that current accelerators are not
always tightly integrated with host cores, using PCI interconnects,
instead.

The low-level runtime support and interfaces [34, 22, 23] as well as
higher level libraries [43, 21] used by accelerator codes currently
rely on general purpose operating systems and drivers for support.
This is also the case for ongoing work to develop uniform accel-
erator APIs with associated language features and runtimes [26, 9,
39]. Cellule complements such efforts by exploring and providing
system-level abstractions and principles that enable the efficient ex-
ecution of programs on both general purpose and accelerator cores.
The approach taken by Cellule uses the virtualization technologies
that are increasingly present in modern high end hardware in order
to create 'lightweight’ execution environments for running acceler-

ator codes. A prototype implemented on IBM’s Cell B.E processor
permits the creation of a Cell SEE that replaces an existing Linux
implementation, offering performance benefits and reductions in
the variability of application execution times for Cell codes. To
demonstrate generality of the approach, selected SEE functionality
is also implemented on Intel’s IXP network processor.

The important concepts derived from Cellule and its SEEs are high-
lighted below and explained in greater detail in the following sec-
tions:

e accelerator-specific memory model: offering reduced over-
heads in terms of memory allocation and use;

o simple task model: appropriate for accelerator use rather than
for the general applications targeted by operating systems
like Linux;

e smaller code base: for ease of development, debugging, and
efficient operation;

e improved interrupt and signaling mechanisms: for improv-
ing predictability and response time for HPC applications;
and

e finer grained scheduling and resource management: adapted
to the idiosyncrasies and special features of target accelera-
tors.

The remainder of this paper articulates the basic principles and ab-
stractions inherent in Cellule, and evaluates them on prototypes of
future heterogeneous multicore nodes. Section 2 focuses on the
Cellule architecture and introduces the specific design and imple-
mentation for our example accelerator based system based on the
Cell B.E processor in Section 3. Section 4 evaluates Cellule’s Cell-
based adaptation and certain functionalities on an IXP-based adap-
tation. We compare our work with other related efforts in Section
5 and present conclusions and future work in Section 6.

2. CELLULE ARCHITECTURE

The Cellule principles outlined in the previous section are achieved
with the software architecture and stack described in Figure 2. The
figure also shows relevant hardware-software and software-software
interactions.

Specialized Execution
Environment (SEE)

: Management Domain
‘ (Controller, Dom0)

Application
Standard API

[Application Ul
SEE Control
Management || Channel

Host OS

l

Customized OS

Control Host Acc.
Channel | Module } Module

Host processor(s) (PowerPC, x86) I

Accelerator(s) (SPEs, Microengines, GPUs)

Figure 2: Cellule Architecture

Cellule is comprised of several components:

e Hypervisor, which controls the underlying hardware, sup-
ports the creation and resource allocation for lightweight VMs
running SEEs and provides isolation between different SEEs.
It also implements efficient SEE scheduling and interrupt de-
livery mechanisms.

e Specialized Execution Environment (SEE), in which accelerator-

based applications are executed. This is the lightweight con-
tainer supporting higher level programming interface(s) or
abstraction(s) in order to enable a wide range of applications,
with an underlying runtime adapted to the given accelerator
architecture.

e Controller, or a management domain, responsible for driv-
ing configuration and management actions and for execution
of non-critical, heavy-weight or less-frequently needed func-
tionality on behalf of the SEE, e.g., IO functionality in case
of compute-intensive accelerators.

o Control Channel, used for communication between the SEE
and the controller domain, realized via shared memory or
message passing, as best suited for the target accelerator plat-
form.

The hypervisor and the controller (or management domain) work
together to create specialized execution environments (SEEs). In
order to provide a user-friendly interface, a Ul in the management
domain (e.g., command line in Linux) allows the invocation of de-
sired applications. These applications, linked against the SEE li-
brary, can be run in a new partition (or domain in Xen [4] parlance)
created with the help of the SEE Management module present in
the management domain. As mentioned earlier, the SEE is ex-
pected to support the standard API used by its applications and
targeted accelerator (e.g., libSPE in the case of the Cell proces-
sor). The operating system (OS) in the new partition can be viewed
as the runtime customized to support the standard API, with spe-
cial distinction between the host part and the accelerator part (see
the host and accelerator modules shown in the figure). The Con-
trol Channel functions as a channel for offloading certain functions
as explained above from the SEE or for passing control messages
between the SEE and management domain. The hypervisor multi-
plexes/demultiplexes interrupts and other system level requests/re-
sources between multiple SEEs and schedules them according to
policies resident in the hypervisor.

SEEs make it possible to run accelerator codes with low noise and
high performance, for several reasons:

o Accelerator-specific memory model: for accelerators expected
to perform efficient data transfers multiple times and in large
blocks, the memory management scheme used by the exe-
cution environment can make a significant difference. For
instance, the SEE for the Cell processor creates a “flat’ ad-
dress space model using large page sizes. This results in
fewer SLB and TLB misses compared to the standard Linux-
based SEE. Similarly, the SEE running on the IXP network
processor maps memory in DMA regions, thereby avoiding
unnecessary data copying.

o Simple task model: the SEE should provide the capability
of loading the required executable(s), triggering their execu-
tion, and coordinating data movement to and from the exe-
cution units within the accelerator(s) in a lightweight man-
ner. Therefore, seeking deterministically high levels of per-
formance and the avoidance of OS noise [5], the SEE task
model involves only a single main task or coordinator (which
usually runs on the host core) that is designed to immediately
respond to communication or computational events from the
accelerators. Hypervisor calls are required only for request-
ing and releasing system resources, thereby limiting virtual-
ization overheads during application execution. The program
fragments running on accelerator cores are moved there with-
out the need to traverse the multiple levels of hierarchy im-
posed by a general purpose execution environment.

e Smaller code base for ease of development, debugging and
efficiency: the entire Cellule code running on the Cell board
is less than 10KLOC (thousand lines of code). This has sev-
eral benefits, the primary ones being: (1) ease of debugging
and (2) reduced complexity. Smaller and less complex sys-
tems are more easily loaded (i.e., remote loading for Cellule
involves a footprint of only ~600K when compressed), they
have fewer potential sources of errors and side-effects, and
they are typically easier to test and debug.

e Potential for improved interrupt and signaling mechanisms:
depending on the frequency of interrupts or signals from the
accelerator, efficient interrupt delivery and signaling can play
a significant role in achieving expected performance and tim-
ing guarantees. For Cellule, predictable, efficient interrupt
delivery is enabled by the facts that (1) the SEE runs the
application in supervisor mode and (2) that it adjusts the
code path for fast interrupt delivery wherever possible. Since
the current implementation of Cellule on Cell does not in-
volve IO and its applications do not depend on interrupts, we
have not evaluated this potential. We do evaluate the util-
ity of lightweight signaling mechanisms for better resource
co-ordination on the IXP in Section 4.

e Finer grained scheduling, resource management and isola-
tion: because Cellule virtualizes accelerator resources, the
scheduling of SEEs can be coordinated with the manner in
which host cores are scheduled. This is shown to be im-
portant for concurrency across host and accelerator tasks in
related work by our group using graphics accelerators [15].
It also makes it possible to schedule SEEs to match specific
application needs and/or overall system requirements, an ex-
ample of the latter being shared accelerator use by multiple
host-level applications. Isolation properties enforced by, i.e.,
resource allocation managed by, Cellule can ensure that each
such application receives the share of accelerator resources it
needs for timely execution.

Adapting the Generic Architecture. The previous discus-
sion has presented a general view of SEEs and their realization.
We next describe in additional detail the SEE implemented for the
Cell B.E processor, where the Power core acts as host to the multi-
ple co-processors (i.e., SPEs). For brevity, less information is pro-
vided about the architectural and implementation details of the SEE
functionality constructed for the IXP network processor, mention-
ing only some of the high level insights gained from our evaluation
of an early SEE prototype on that platform (see Section 4). The
following sections first present a brief overview of the Cell B.E.
hardware, to highlight its unique characteristics that give rise to the
specific adaptation of Cellule constructed for it.

3. CELLULE ON CELL B.E

Several aspects of the Cell architecture make it a suitable vehicle
for prototyping Cellule and substantiating our earlier claims.

3.1 The Cell Processor Architecture

The IBM Cell B.E processor is a heterogeneous chip multiproces-
sor consisting of multiple elements. Its service processor is an IBM
64-bit dual-threaded Power Architecture core, called Power Pro-
cessing Element (PPE). This somewhat simplified Power core is
augmented with eight specialized co-processors based on a single-
instruction multiple-data (SIMD) architecture, called Synergistic
Processor Element (SPE) acting as the platform’s workhorses. The
PPE and SPEs are integrated via a coherent, high speed, on-chip

bus. Figure 3 shows the architecture’s various components. Ad-
ditional details about the performance and power properties of the
chip appear in [17, 31].

’ SPE | | SPE | ‘ SPE ‘ ’ SPE |
7/ BEI l: l:
MIC Element Interconnect Bus (EIB) 3 D
/ Synergistic
- Processing
\ Power Processing Element (SPE)

\ Element (PPE) .
ynergistic
Processing Unit
U)

— 8
Local Store (LS)

Memory Flow
Controller (MFC)

Power Processing

|SPE‘ ‘SPE| |SPE| ‘SPE‘
Unit (PPU)

l

L2 Cache

Figure 3: Cell B.E Architecture

Asynchronous operation is important, because Cell performance is
driven by the SPEs, with the PPE primarily acting as a coordinator.
As with other co-processor architectures [28], this design choice
makes it important to decouple PPE and SPE operations, to limit
PPE overheads by using a lightweight execution environment, and
to constrain PPE operations to those needed for coordination and
data staging.

Architectural features for high performance include fast asynchronous

DMA from main memory to SPE local stores initiated by the SPEs
to reduce the load on the PPE, support for large pages to avoid SLB
and TLB misses, and a lower capability PPE to reduce power con-
sumption and die area while accelerating computation. SPEs use
small mailbox registers in order to indicate execution status, com-
municate flags and other such control information and avoid inter-
rupts. The PPE polls these mailboxes as necessary. By scheduling
the PPE side of the application as frequently as possible, it is pos-
sible to reduce the latency between when a mailbox is written and
read. By pre-loading all data in memory, the number of SLB and
TLB misses can also be reduced.

Isolation and customization through virtualization are critical el-
ements of Cellule. The PowerPC architecture inherently supports
virtualization, thereby making it a viable technology. Specifically,
for the Cell platform, there is a distinction between the SPE privi-
lege 1 memory area, which is exclusively for Hypervisor use, and
the privilege 2 problem state and local store memory area, which
is accessible to privileged mode software and can be made avail-
able to the application. This implies that the application never has
to go through the hypervisor to access the SPEs once they are ac-
quired, since the DMA queues and mailboxes used for PPE-SPE
communication are part of the problem state. Thus, the hypervisor
does not intervene in the normal execution of the application, ex-
cept (1) when interrupts or signals are received from the SPEs or
10 devices and (2) in cases where it has to switch between different
SEEs (i.e., partitions). Further, the presence of IOMMU presents
us with the possibility of isolating external IO device communica-
tions if required. Most importantly, virtualization makes it possible
to customize the execution environment to match the Cell architec-
ture and its properties without sacrificing the isolation guarantees.

3.2 Cellule Adaptation on Cell

The Cellule adaptation for Cell looks very similar to the architec-
ture shown in Figure 2. The corresponding software components
used on Cell are as follows:

Hypervisor:. IBM’s tHype [20] (research hypervisor), is a small,
low-latency, modular hypervisor suitable for high performance com-
puting and architecture validation. Due to its prior use as a high
performance validation platform for Cell chips, it constitutes an ap-
propriate hypervisor code base for realizing the Cellule prototype.

Specialized Execution Environment (SEE):. the SEE pro-
vides the base mechanisms needed to run arbitrary Cell applica-
tions. A SEE is created on demand by the hypervisor upon the
controller’s request. The SEE for Cell runs (1) Cell applications
and (2) a runtime exposed to these applications via the libSPE [22]
interface (the standard library [22] used by PPE programs to access
and manage SPEs in a Linux-based environment). The SEE permits
Cell applications to run unmodified compared to the Linux environ-
ment, necessitating the presence of the libSPE interface which, oth-
erwise, can be replaced with any other programming standard since
the basic access mechanisms remain constant. The libSPE-based
applications running within the SEE on the PPE are structured to
request SPE resources from the execution environment (e.g., SEE
or the Linux OS which handles such requests in a fashion it deems
best) before using them. In Cellule, this part of the application runs
in the supervisor privilege mode in the SEE and interacts directly
with rHype. rHype implements the policies for SPE as well as SEE
management and guarantees isolation between them. The SPE part
of the application runs directly on SPEs once they are acquired.

Controller:. this is the management partition that collaborates
with rHype in creating, managing and destroying SEEs. This par-
tition can run Linux or any operating system that can be booted
on rHype. It provides (1) the Cell Application UI — which allows
the user to select Cell applications to run, (2) SEE Management —
which is responsible for enabling the execution of Cell applications
by requesting rHype to create an SEE, and for running the applica-
tion in this SEE, and (3) a Control Channel — which is a commu-
nication channel for handling I/O or other such requests that are
rarely used and hence not supported in the SEE.

Control Channel:. to reduce the complexity of the SEE, I/O
actions and other infrequent calls in an application can be executed
in a different partition, preferably in the Controller. Our current de-
sign designates the Controller as an endpoint by directing SEE 1/0
calls to communication protocols run in the Controller. One op-
tion for implementing such protocols is to use 9P from Plan 9 [35],
due to its simplicity and its provision of a single interface to any
form of communication, ranging from Ethernet to shared memory.
SEE/Controller interactions for I/O can then be carried out by a
9P Client within the SEE and a 9P Server in the controller. This
server is responsible for performing the I/O requests on behalf of a
SEE. To users running SEE applications, it appears as if their ap-
plications are executing in the controller partition. As described in
Section 6, it would be interesting to explore the use of a separate,
specialized 1/O partition for such purposes. Control Channel oper-
ation and performance are not evaluated in this paper, as they are
not germane to the technical points being made.

3.3 Current Implementation

We have ported rHype to the Cell platform from the earlier Pow-
erPC 970 base. Its current implementation does not over-commit
SPEs. The memory model implemented is a flat one, with sup-
port for large pages. The SEE implements exactly the functions
required for a standard Cell application, and it provides a wrapper
that handles common libSPE function calls so as to run unmodified
SPE applications. The wrapper currently supports most interfaces
from libSPE2.1. The PPE source of an application must be linked
against the SEE library, but the SPE executable is loaded unmodi-
fied and operates just as it does in the current Linux environment.
A typical usage scenario for Cellule is as follows:

1. Initially, rHype owns all SPEs and arranges for a controller
to boot.

2. The controller provides options to invoke the desired SPE
application.

3. The chosen Cell application (already linked with the SEE
library) is mapped into the address space of a new partition,
which is created by the controller’s management component.

4. The application now running in the new SEE consists of a
main task that interacts with rHype for allocation of SPEs
and subsequently, uses them without any intervention from
rHype. Any signals and/or interrupts received from the SPEs
are received by rHype and directly passed to the partition.

5. Console input or output use Thinwire, a simple utility ca-
pable of demultiplexing IO for the different partitions onto
different channels. We did not implement the 9P client and
server for offloading 10 requests.

3.4 Cellule vs. General Purpose OS

In Linux on Cell, the Power PC Linux implementation requires
additional kernel modifications in order to use the SPEs from an
application, since the controlling registers are only accessible from
the PPE in privileged mode. Toward that end, a virtual file system
named "spufs" [6] is used to externalize the SPUs. Unlike device-
backed file systems, these do not need a partition to store data,
but instead, keep all their resources in RAM while using regular
system calls like open, read, or getdents to communicate between
user space and the kernel functionality. The 1ibSPE calls encap-
sulate file operations and make them invisible to the user, unless
a user wants specific optimizations like enabling the use of large
pages and memory mapped access to SPE data structures. Large
page support can be enabled for certain applications, but this has to
be done on a per application basis, and the number of large pages
might be restricted based on the setup (unless a user has sudo priv-
ileges on the system). The current scheduler is from the mainline
Linux kernel, but can be modified to adapt to Cell, requiring sig-
nificant knowledge of the operating system. The Cellule features
described above, namely (1) lightweight execution environment,
(2) flat address space, (3) simple task model to avoid threading
overheads and (4) its ease of customization and small footprint for
debugging, make it a more attractive alternative to a Linux based
general purpose environment for this processor.

4. EXPERIMENTAL EVALUATION

The evaluation of Cellule demonstrates the effects of our design
choices, motivating the architecture proposed in this paper.

4.1 Evaluation of Cellule on Cell

Cellule on Cell runs standard workloads provided in the the Cell
B.E SDK and provided by other groups at IBM with performance
similar or superior to the performance attained with the current

Linux-based execution environment. These evaluations are con-
ducted on a QS20 blade with 1GB of main memory. Since Cell
boards used as accelerators currently have 1PPE with 8SPEs and
rHype is currently incapable of SMP behavior, the maximum CPU
count in Linux has been set to 1. This enables us to characterize
performance in the base case leading to better indicators even when
we have all PPE threads enabled. We have used the Linux kernel
2.6.30 for Fedora 7. All tests are performed with large page support
enabled. Time is measured in terms of the number of timebase [19]
‘tick” increments for Cellule and Linux for greater accuracy. While
creating an SPE context [22] in Linux, there is an option to specify
whether a user wants the Problem State area to be mapped into user
space so that later calls to mailbox read, write, etc do not have to
go through the range of system calls for reading and writing files
in the spufs. All benchmarks use this mapping for fair compari-
son. The execution time for our benchmarks encapsulates the time
spent in loading the SPE(s), triggering their execution and the com-
putation stage along with PPE-SPE communication to coordinate
operations. The benchmarks used above represent the kinds of ap-
plications used by IBM when promoting Cell, including scientific
and financial codes. They are listed below.

Matrix Multiplication:. performs an optimized version of sin-
gle precision floating point matrix multiplication ((MM]), where
SPEs perform DMA in blocks within a matrix. Matrix sizes (m)
can be specified as 128x128, 256x256 and so on. It is possible to
tune the number of SPEs (s) involved and the number of iterations
(1) performed by each SPE. SPEs perform DMA from the memory
to fetch one block of data at a time, then DMA the results back
and repeat this sequence if there are more blocks. The implemen-
tation is thus characterized by its extreme computational and data
intensity and multiple DMAs depending on the size of matrices. It
also forms a good example given matrix multiplication is a com-
mon step in a lot of applications e.g. image processing, scientific
etc. Figures 4.a) and 4.b) show the percentage change of execution
times for Cellule vs. Linux (sLim=Cellule , 1)) by varying the

Linux
number of SPEs used and the number of iterations respectively.

As seen from the figures, programs running in Cellule’s SEE per-
form better than Linux, particularly in case of smaller workload
sizes, i.e., when the overall SPE computation time is small com-
pared to the total time of setup and execution. As the size of the
workload increases, the time spent in the SPEs for execution be-
comes larger, making the difference in overall execution time less
obvious.

Black Scholes:. [12] is an option pricing formula to calculate
European call or put options and and has been adapted by a large
number of financial applications. The option pricing model is an
example of an intrinsically parallel application suitable for multi-
core platforms, with good speedups attained by its port to the Cell
platform. The implementation splits the entire data among the
number of SPEs to be used and then sends a mailbox message to
all SPEs to start the timing runs. The variable parameters are the
number of SPEs, the number of cycles for which the computation
should be run and the size of data in multiples of 64KB blocks.
Figure 5 shows the percentage change of execution times for Cel-
lule vs. Linux. We show the results by varying only the number
of cycles because changing number of spes has a similar effect as
seen with the pervious benchmark.

Matrix size

T — —
256
0 10 20 30 40 50 60 70 80
Speedup over Linux (percentage)
() [lrerations = 1]
Iteration=1
= lteration=3 |E
4096 [Iteration=5 |E

2048

1024

Matrix size

0 10 20 30 40 50 60 70
Speedup over Linux (percentage)
(b) [SPEs = 8}

Figure 4: Matrix multiplication - Cellule vs. Linux

BlackScholes performance follows a similar trend as that seen for
matrix multiplication. With increases in the work to be performed
on the SPE (e.g., with increase in the number of iterations), we see
a smaller percentage gain in Cellule vs. Linux.

Although the Linux implementation has been fine-tuned to handle
the nuances of the Cell architecture, the general purpose nature of
the operating system struggles to compete with the memory and
execution model principles implemented in Cellule, as seen from
the results above. The following results justify this statement as
well as the Cellule design and implementation principles described
in Section 2.
1. Insights from microbenchmark: In order to explain the re-
sults shown for our benchmarks, we first evaluate the over-
head seen on a per call basis for the most common calls [22]
used by a Cell application. The microbenchmark used for
this purpose is a simple DMA example from the SDK in
which a given number of SPEs DMA a 16KB block, per-
form a simple addition on it, and then DMA it back to PPE
memory. While this does not reflect the nature of real appli-
cations with substantial SPEs execution times, it does help
us evaluate the responsiveness of the two systems as well as
their respective implementation overheads.
Figures 6.a) and 6.b) show timebase comparison and stan-
dard deviation on a per-call basis for Cellule and Linux. The
numbers have been normalized with respect to times seen
when the number of SPEs utilized is 1. The absolute time
values with SPE=1 are shown in Table 1 for reference.
As can be seen from the table and figures, Cellule numbers

Cycle=5

Data size (KB)

0 10 20 30 40 50 60
Speedup over Linux (percentage)

Figure 5: Black Scholes - Cellule vs. Linux [SPEs = §]

Libspe2 | Cellule | Linux | Cellule | Linux
Common | Time |Time | Std. Std.
Calls (usec) | (usec) | Dev. Dev.
(psec) | (usec)
CtxRun 2.2 1361.9 { 0.03 21.82
ThrCreate | 3.6 1433.5 (0.0 23.97
Thrloin 0.6 3239 [0.03 18.3
PgmlLoad | 77.8 104.2 | 0.06 12.14
MapPS 0.8 1.1 0.03 0.13
MBoxWr | 1.0 57.1 0.0 10.02
MBoxRd |9.6 1.5 0.18 0.06

Table 1: DMA Microbenchmark: Function call overhead with
SPE=1

grow at a predictably linear rate with increases in the num-
ber of SPEs and show little or no standard deviation. On
the other hand, Linux demonstrates high deviation for cer-
tain values, e.g., MBoxWr (write to SPE’s mailbox), or it
shows exponential increases with increases in the number of
SPEs, e.g., MBoxRd (read from SPE mailbox), as illustrated
in Figure 6.b (the y-scale is logarithmic). While this does
imply an increase in the execution time for applications us-
ing these calls in Linux, the implementations of these func-
tions may not always be the reason for these overheads (value
for MBoxRd in Table 1). Specifically, we observe that ev-
ery time the application is swapped out or the kernel delays
the delivery of interrupts from the SPEs when they finish
computing (due to the switch time involved), the functions
show large variations. The exceptions here are the ThrCre-
ate and ThrJoin calls where the Cellule implementation takes
longer than what is experienced in Linux. This is due to
the difference in the amount of work being done. In gen-
eral, the smaller execution time recorded by Cellule for most
other calls leads to its overall better performance. These re-
sults highlight the principles of a lightweight environment
described earlier.

2. Security and Isolation for SEEs: The previous results do not
show the timing comparison between calls to acquire and
release SPEs. The Cellule implementation of acquire and
release (spe_context_create() and spe_context_destroy() in
libspe2) involves several conservative steps to ensure isola-
tion and security of data for the previous and the new owner.
Hence, the calls are an order of magnitude slower in Cellule
compared to Linux. However, in a typical host-accelerator

70

[ctxRun (Cellule) —— fThrCreate (Cellule) ——

PgmLoad (Cellule) A [ThrJoin (Cellule) L3
= 9 |CtxRun (Linux) (.3 g 4 [ThrCreate (Linux) ¥t 4
o PamLoad (Linux) & ’ [ThrJoin (Linux) iz
&
IS]
o
a8
£]
E
5
£
°]
S
g

SPUs
(a) SPU Execution and Pthread Calls
= woxWr(Cellu\e) —— MapPS (Cellule) +% MBoxRd (Linux)
E 100 | MBoxRd (Cellule) “ -+ MBoxXWr (Linux) £} MapPS (Linux)
& B
- .
o
B
N i
©
E 10} H E
g &
£ ,
E] + N T
ke)
1 9 L
4

SPUs

(b) Libspe2 Calls for PPE-SPE Communication

Figure 6: Comparison (with std. deviation) in Timebase Ticks
for Common Function Calls

environment where the Cell processor will be the accelerator
as shown in Figure 1, SEEs will be created relatively rarely
and only on-demand from the host, where the controller run-
ning on the PPE will be responsible for acquiring and releas-
ing all of the associated resources, including the SPEs. This
should result in moderate to non-existent performance penal-
ties for relatively long running applications.

3. OS noise: we have used oprofile on Linux to attain an esti-

mate of the kernel vs. application proportion seen by Cell ap-
plications. Figures 7.a) and 7.b) show some sample datasets
used earlier for Matrix Multiplication (as MM-(Size, #SPEs,
#Cycles)) and BlackScholes (as BS-(#SPEs, #Cycles, Size)).
These data sets have been chosen either because Linux per-
forms worse than expected or because it suddenly shows a
smaller overhead and hence, better performance.
The benchmark + libraries shown in the figures are actually
used by the application, but they are shown separately be-
cause the percentage of time occupied by libraries captures
the input data allocation and initialization costs. As seen
from the figures, there is a correlation between an increase
in kernel activity and a decrease in performance noticed for
the application. While a proportion of the kernel time, espe-
cially in case of larger datasets, is spent waiting for the SPEs
to finish computation (e.g., from 1-38% for matrix multipli-
cation samples profiled), a large portion of this time is due
to the latency involved in switching back to the application
after the SPEs finish computation. Therefore, the relatively
larger switching overheads experienced by a general purpose
OS like Linux can directly affect application performance.

4. Need for sophisticated scheduling policies: the partition sched-
uler in rHype is a simple Round Robin scheduler. Lower
latencies and negligible variation in execution time for appli-
cations are obtained from the simple task model used in the
SEE, thereby avoiding threading overheads. We are confi-

100 others

Q

E ol oprofile
- vmlinux
5 8o | libraries
= matrix_mul
8 70 |

ai

5 60

3 50

s L

£

& 40t

k)

° 30

j=2}

it 20

5

o 10

[}

o 0

uE) 100 - others

E ol mmm— oprofile

- vmlinux
§ 80 L libraries
5 =1 BlackScholes
2 70

]

e 60 |

= 50

i L

£

8 4}

ks L

g 30

) 20

C

8 10t

[}

[N 0

(b) Example profile data - Black Scholes

Figure 7: Profile results on Linux show more kernel activity
especially for smaller data sizes

dent that with further optimizations to the memory manage-
ment module and some of the SPE management functions,
SEE performance can be improved further. However, Cel-
lule scheduling is still prone to perturbations, as shown in
Figure 8 where the performance of Cellule is shown to vary.
The result is that Cellule can perform better or worse than
Linux, depending on data sizes and the system interactions
that ensue. This raises the importance of future work on im-
proved hypervisor-level scheduling and the need for better
scheduling across the hypervisor and the SEE partitions[15].

4.2 Cellule Principles on the x86-IXP Network

Processor
‘We comment on some of the Cellule principles by describing an im-
plementation of select SEE functionality on the Intel IXP network
processor [30].

Background:. The IXP network processor has an architecture
similar to Cell in terms of its use of both commodity and special-
ized compute engines, which in this case, consist of a coordina-
tor XScale core and supporting co-processors, called microengines,
that work as accelerators for networking tasks. Each microengine
provides a number of hardware threads, and these can be associ-
ated with different processes or virtual machines. The allocation
of these threads determines the difference in network performance

45 | Reported Value =X -
: i
£ 35
-
: l
3 25
[0)
2
g 15 %
5 °f 1 1
3
a5

-15 L L L L

2y, . y, . /@\9\ /8\9\
TIOQ vs,eq & 7)3 <8 6:90
4 /1/ N %% 8/\1/ 48/\1/

Figure 8: Variation in Cellule performance due to Perturba-
tions

experienced by the processes or virtual machines. The Cellule prin-
ciple of fine-grained runtime resource management can be demon-
strated with the change in the allocation of these hardware threads
in synchronization with the requirements of the processes or virtual
machines using them. With the XScale used primarily as a setup
and coordinator core and x86 cores used as the host, the Cellule im-
plementation on the IXP also proves the applicability of its design
for machines with future accelerators like Larrabee [37].

Evaluation:. The x86-1XP Cellule experimental prototype is im-
plemented on a platform consisting of a Dell Precision 390 server
host machine running with an Intel Core 2 Duo processor and 1GB

physical RAM. The IXP network accelerator platform is the Netronome

NFE-i8000 board [32] comprised of an IXP2855 Network Proces-
sor, a 600MHz Xscale ARM processor, 256 MB off-chip DRAM,
and 256 MB of off-chip SRAM and 4 GigE ports. The NFE-i8000
connects to the x86 over a PCle interconnect. The software in-
cludes Xen 3.3 as our hypervisor, and the IXP Cellule prototype
SEE guest domain (DomU) runs Kubuntu 8.04 Hardy with the
2.6.24 Linux Kernel. 384MB of this guest domain memory is re-
served for DMA of packet payload and data buffers to/from the
IXP. The Netronome NFE-i8000 uses an MSI to interrupt the host,
which is directly routed to the guest domain avoiding any hypervi-
sor interference.

Netperf: The Netperf TCP-STREAM benchmark [16] is used to
evaluate the Cellule-IXP prototype. The TCP-STREAM test is a
bulk data transfer test and lets us test the data streaming capabilities
from the SEE DomU through the IXP Network processor. We vary
the number of active netperf sessions and their application process
priorities, always dedicating one egress GigE port on the IXP plat-
form to one netperf session to avoid contention on the port capacity.
At the same time, we test the accelerator’s scalability to support
high-throughput streams with varying resource requirements and
different priorities.

Categorizing virtualization overheads. Table 2 shows the perfor-
mance comparison of running the netperf benchmark as one ap-
plication process on a native Linux host with no virtualization ca-
pability vs. running it inside a Linux SEE guest domain over Xen.

| Host-App || Virtualized | Non-virtualized |

Netperf 1 940 Mbps 943 Mbps
Netperf 2 938 Mbps 939 Mbps

Table 2: Netperf performance comparison of Virtualized / Non-
virtualized case

950

Stream1
Svtreamz

850

800 -

Mbps

700 -

650

Figure 9: Netperf performance comparison with Cellule opti-
mizations

Table 2 columns correspond to two separate runs of the netperf ses-
sion pinned to different egress ports on the IXP. In both test runs,
we observe negligible virtualization overheads (less than 0.5%) in
terms of throughput degradation. This suggests that the I/O path
between the host and device does not suffer for virtualized accel-
erators, enabling them to perform as well as in the non-virtualized
case.

Cellule optimizations for Fine-grained accelerator resource man-
agement. We mention in Section 2 that SEEs enable accelerator
resource at fine grain and in ways that co-ordinate those manage-
ment actions with host-side processing. The feasibility and utility
of such fine-grained management actions are supported via the fol-
lowing sets of experiments, represented in Figure 9.

Test SingleRxTx: the first setup uses one micro-engine for Rx/Tx
to/from the host through the IXP. Compared to a Broadcom NIC
throughput mark of 940 Mbps, this throughput suffers a maximum
degradation of close to 6%. The two bars again correspond to two
separate runs of netperf sessions pinned to different egress ports.
Due to the round-robin polling of Tx queues on the host side, the
second throughput measure will always be slightly lower than the
first. We are currently working on increasing the number of ker-
nel threads that service these application queues and their priority
scheduling, as opposed to the naive round robin scheduling. The
goal is to get fairer results.

Test TwoRxTx: This configuration uses separate micro-engines on
the IXP for the Rx and Tx paths. As observed, throughput numbers
are improved and are closer to the native Broadcom NIC throughput
measurements. This shows that increasing and isolating the number
of threads to service the packet-flow queues on the IXP translates
to more packet-descriptors processed per unit time and shows an
increase in Tx throughput.

Test TwoRxTx-NoPrio: this configuration has two netperf sessions
simultaneously running inside the guest and sends out traffic to
the two micro-engine Rx/Tx setup on the IXP, but to two sepa-
rate egress ports. Due to the aforementioned round-robin schedul-
ing effects, the throughput degradation is more pronounced in the
second application case (close to 6.5%). These netperf sessions
are assigned priorities in the ratio 4:3, but neither the host service
thread nor the IXP polling threads have any notion of host process
priorities. Hence, the bandwidth distribution suffers as the polling
scheduling is naive.

Test TwoRxTx-Prio: here, we change the number of Tx micro-
engines to 2, where one micro-engine is dedicated to every egress
port and host process. The same netperf sessions with assigned pri-
orities are run, and corresponding numbers of threads are 8:6 on
the two Tx micro-engines in proportion to process priorities. As
can be seen, the throughput differentiation resulting from this ac-
tion is also in proportion with the process priorities. Achieving this
priority conformity spells the need for such fine-grained coordina-
tion actions.

4.3 Discussion of Results

Insights from the experimental evaluations shown in this section
support the concept of a specialized execution environment. The
improved performance for benchmarks on the Cellule-Cell proto-
type support our argument of a customized memory model coupled
with a simple task model. Additional experimental results attained
on the IXP network processor suggest the utility of lightweight sig-
naling mechanisms in the SEE that can co-ordinate fine-grained
resource management actions on the accelerator with host-level ac-
tions. We are exploring the use of such mechanisms in trying to
eliminate some of the noise issues pointed out earlier, to help co-
ordinate between the asynchronous components executing on host
and the accelerator cores.

A more general insight from measurements on the Cell B.E. is that
the importance of SEEs diminishes somewhat with increasing data-
sizes and thus, increasing sizes of work units running on accel-
erator cores. This holds for individual accelerators, but we note
that for larger scale accelerator-based machines like Roadrunner,
even small amounts of noise can result in substantial overall perfor-
mance degradation, thus further bolstering the relative advantages
experienced by SEE- vs. commodity OS-based execution environ-
ments.

S. RELATED WORK

Previous work dealing with virtualized devices and accelerators
differs from the Cellule approach by forcing applications to treat
accelerators as devices rather than as processors[29, 15, 36]. While
the device model works for accelerators with limited access, limited
capability or proprietary models, it can make it difficult and some-
times impossible to completely exploit the functionalities provided
by their hardware. With Cellule, we run VMs on both commodity
and accelerator cores, each containing different code and runtimes
but treated and manipulated by the hypervisor like standard virtual
machines. A SEE’s specialized runtime deals with architectural dif-
ferences of accelerator vs. general purpose cores, and its relatively
smaller code base eases performance tuning.

In contrast to Exokernel [11], Cellule uses virtualization methods to
provide I/O and memory isolation. Further, while the SEE is sim-
ilar to library operating systems for Exokernel or to earlier work
on custom run-times for real-time systems [7, 38], an original con-

tribution of SEE is the set of lessons learned concerning efficient
accelerator use as mentioned in Section 1. Another interesting as-
pect of Cellule is its provision of a general model for efficiently
using heterogeneous multi-core platforms, comprised of a Hypervi-
sor and controller that can run different implementations of a SEE
(for different accelerators) in their own partitions and separating
general 1/O functions from the custom communication functional-
ity needed within the SEE. Finally, interesting lessons for how to
construct efficient I/O functionality for the next release of Cellule
may be drawn from past work on communication-centric OS ker-
nels [18] and from recent work on self-virtualizing 1/O [36].

The Cellule architecture on Cell borrows heavily from that of Li-
bra [3], which is a specialized execution environment for IBM’s
J9 Java virtual machine. The key difference to Libra, of course, is
Cellule’s focus on accelerators and heterogeneous multi-core plat-
forms. Also important is the fact that Cellule concepts extent to
other accelerators, as demonstrated with our work with the IXP
network processor. Cellule also allows for modifications in low
level scheduling, interrupt and signaling mechanisms. In the do-
main of high performance computing, IBM’s Blue Gene/L system
and Cray’s Catamount operating systems are examples where spe-
cialized kernels are directly deployed on the nodes to support appli-
cations. On both machines, nodes are split into two types: the I/O
nodes, which run the Linux operating system, and compute nodes
which run a custom kernel, e.g. BLRTS [1] on the Blue Gene ma-
chine. The Catamount OS has similar characteristics. However,
these systems do not specifically address the needs of computa-
tional accelerators and of the applications that run on them, nor do
they support important notions like the need to coordinate schedul-
ing between the host and the accelerator in order to provide the
differential services demanded by end users.

PR.O.S.E [41] is an extension of the exokernel idea to a virtual-
ized system, which then leads to the Libra paper and further moti-
vates our work. We also use virtualization to create SEEs, but in
contrast to PROSE, we target accelerator platforms, exploring low
overhead data sharing, task models, and lightweight communica-
tions. An earlier paper, termed "Specialized Execution Environ-
ments" [8], motivates the relevance of SEEs and mentions that they
will be useful for special hardware, but that position paper neither
provides an actual implementation of its ideas nor an evaluation.

Research on accelerator-based multicore systems has brought forth
recent systems like Helios [33]. Helios satellite kernels appear sim-
ilar to SEEs, but Cellule follows an exokernel approach that over-
comes some of its shortcomings through the use of virtualization,
whereas satellite kernels are microkernels. SEEs are customized
for faster execution based on the idiosyncrasies of the accelera-
tor and support the standard programming models preferred by the
developers for a particular class of accelerators. Also, SEEs are
created one per application in order to isolate noise issues, which
could potentially arise when running components from multiple
processes within the same satellite kernel. Due to a tighter coupling
between the host and accelerator present in the systems considered,
we have not dealt with the issue of message communication be-
tween widely separated components.

6. CONCLUSIONS AND FUTURE WORK

Cellule offers a general model for efficient program execution en-
vironments for heterogeneous multi-core platforms. Insights at-
tained by creating and experimenting with a concrete instance of
Cellule for the Cell accelerator include an identification of sev-

eral properties important to such environments. These properties
are (1) a memory model customized for the accelerator, i.e., the
specialized cores, in question and (2) a simple task model that
avoids the overhead of full-featured thread implementations like
POSIX threads. Additional work with a second accelerator, the
IXP network processor, demonstrates potential advantages derived
from (3) lightweight signaling mechanisms to the partition running
accelerator applications. Experimental results attained with Cel-
lule are encouraging even for our relatively unoptimized Cellule
prototype. Further, such performance gains are not attained by
compromising generality or portability, as Cellule’s SEE special-
ized execution environment is constructed to run arbitrary LibSPE-
based Cell applications and unmodified socket applications for the
Cellule-IXP prototype. In summary, our work on Cellule not only
encompasses the actual implementation presented, but also a set of
concepts and architecture suggestions for future accelerator-based
systems. It is a first working prototype of a SEE for accelera-
tors that in comparison to a standard general purpose heavy-weight
OS, has better performance and provides the benefit of accelerator-
customized methods for resource management.

Future work with Cellule concerns the stated longer term goal of
our work, which is to develop efficient architectural models for het-
erogeneous multi-core platforms. From the point of view of general
purpose processors, Cellule implements efficient run-time for the
offload engines being used, connected via I/O links (e.g., the PCI
links used in architectures like Roadrunner) or more tightly coupled
(e.g., via shared memory). Initial results from the Cellule-IXP pro-
totype highlight the importance of better coordination mechanisms
for the scheduling of general purpose vs. accelerator cores.

7. REFERENCES

[1] G. Almasi, R. Bellofatto, J. Brunheroto, et al. An overview
of the blue gene/l system software organization, 2003.

[2] AMD Corporation. Amd white paper: The industry-changing
impact of accelerated computing.
http://www.amd.com/us/Documents/, 2009.

[3] G. Ammons, J. Appavoo, et al. Libra: A library operating
system for a jvm in a virtualized execution environment. In
VEE, 2007.

[4] P. Barham, B. Dragovic, K. Fraser, et al. Xen and the art of
virtualization. In SOSP, 2003.

[5] P. Beckman, K. Iskra, K. Yoshii, and S. Coghlan. The
influence of operating systems on the performance of
collective operations at extreme scale. 2006.

[6] A.Bergmann. Spufs: The cell synergistic processing unit as
a virtual file system, 2005.

[7] T. E. Bihari and K. Schwan. Dynamic adaptation of real-time
software. ACM Trans. Comput. Syst., 9, 1991.

[8] M. Butrico, D. Da Silva, O. Krieger, et al. Specialized
execution environments. SIGOPS Oper. Syst. Rev., 42(1),
2008.

[9] G. Diamos and S. Yalamanchili. Harmony: An execution
model and runtime for heterogeneous many core systems. In
HPDC Hot Topics.

[10] T. Dokken, T. R. Hagen, and J. M. Hjelmervik. The gpu as a
high performance computational resource. In SCCG, 2005.

[11] D.R. Engler, M. F. Kaashoek, and J. O’ Toole. Exokernel:
An operating system architecture for application-level
resource management. In SOSP, 1995.

[12] B. Fischer and M. Scholes. The pricing of options and
corporate liabilities. In Journal of Political Economy, 1973.

[13] A. Gavrilovska, S. Kumar, H. Raj, K. Schwan, et al.
High-performance hypervisor architectures: Virtualization in
hpc systems. In HPCVirt, 2007.

[14] A. Ghuloum, T. Smith, G. Wu, et al. Future proof data
parallel algorithms and software on intel multi-core
architecture. Intel Technology Journal, 11(4), December
2007.

[15] V. Gupta, A. Gavrilovska, K. Schwan, H. Kharche, N. Tolia,
et al. Gvim: Gpu-accelerated virtual machines. In HPCVirt,
20009.

[16] Hewlett Packard. Netperf - users’ manual.

[17] H. P. Hofstee. Power efficient processor architecture and the
cell processor. In HPCA, 2005.

[18] N. C. Hutchinson and L. L. Peterson. The x-kernel: An
arSchitecture for implementing network protocols. IEEE
Transactions on Software Engineering, 17(1), 1991.

[19] IBM Corporation. Cell broadband engine programming
handbook. http://www-01.1ibm.com/chips/
techlib/techlib.nsf/techdocs/.

[20] IBM Corporation. The research hypervisor. http:
//researchweb.watson.ibm.com/hypervisor.

[21] IBM Corporation. SIMD math library specification for cell
broadband engine architecture.
http://tinyurl.com/c2z4ze.

[22] IBM Corporation. SPE management library. Part of Cell
Broadband Engine SDK Documentation.

[23] IBM Corporation. Accelerated library framework for cell
broadband engine programmer’s guide and api reference.
http://tinyurl.com/c2z4ze, October 2007.

[24] Intel Corporation. Enabling consistent platform-level
services for tightly coupled accelerators.
http://tinyurl.com/quick-assist.

[25] Intel Corporation. Intel ixp 2800 network processor
hardware reference manual.

[26] Khronos OpenCL Working Group. The opencl specification,
December 2008.

[27] M. Koehler. NP complete. Embedded Systems Programming,
November 2000.

[28] R. Krishnamurthy, K. Schwan, R. West, and M.-C. Rosu. A
network co-processor-based approach to scalable media
streaming in servers. In ICPP, 2000.

[29] H. A. Lagar-Cavilla, N. Tolia, M. Satyanarayanan, and
E. de Lara. Vmm-independent graphics acceleration. In VEE,
2007.

[30] e. a. Matt Adiletta. The next generation of intel ixp network
processors. Intel Technology Journal, 6(3), Aug 2002.

[31] P. H. Michael Gschwind et al. Synergistic processing in cell’s
multicore architecture. IEEE Micro, 26(2), March 2006.

[32] Netronome. Netronome flow driver - users’ guide.

[33] E. B. Nightingale, O. Hodson, R. Mcllroy, et al. Helios:
heterogeneous multiprocessing with satellite kernels. In
SOSP, 2009.

[34] NVIDIA Corporation. NVIDIA CUDA programming guide.
http://tinyurl.com/cudapghd.

[35] R. Pike, D. Presotto, S. Dorward, et al. Plan 9 from Bell
Labs. Computing Systems, 8(3), Summer 1995.

[36] H.Raj and K. Schwan. High performance and scalable i/o
virtualization via self-virtualized devices. In HPDC, 2007.

[37] L. Seiler, D. Carmean, E. Sprangle, et al. Larrabee: a
many-core x86 architecture for visual computing. ACM
Transactions on Graphics, 27(3), 2008.

[38] D. Silva, K. Schwan, and G. Eisenhauer. CTK: Configurable
object abstractions for multiprocessors. Software
Engineering, 27(6), 2001.

[39] J. Stratton, S. Stone, and W. mei Hwu. Mcuda: An efficient
implementation of cuda kernels on multi-cores. Technical
Report IMPACT-08-01, University of Illinois at
Urbana-Champaign, March 2008.

[40] J. A. Turner. The los alamos roadrunner petascale hybrid
supercomputer: Overview of applications, results, and
programming, March 2008.

[41] E. Van Hensbergen. P.r.o.s.e.: partitioned reliable operating
system environment. SIGOPS Oper. Syst. Rev., 40(2), 2006.

[42] S. Williams, J. Shalf, L. Oliker, et al. The potential of the cell
processor for scientific computing. In CF, Ischia, Italy, 2006.

[43] M. Woo, J. Neider, T. Davis, and D. Shreiner. OpenGL
Programming Guide: The Official Guide to Learning
OpenGL, Version 1.2. Boston, MA, USA, 1999.

