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SUMMARY

It is essential for the integrity of double-blind clinical trials that during the study course

the individual treatment allocations of the patients as well as the treatment effect remain

unknown to any involved person. Recently, methods have been proposed for which it

was claimed that they would allow reliable estimation of the treatment effect based on

blinded data by using information about the block length of the randomisation

procedure. If this would hold true, it would be difficult to preserve blindness without

taking further measures. The suggested procedures apply to continuous data and their

characteristics were illustrated by applying them to a single simulated data set per

scenario considered. We investigate the properties of these methods more thoroughly by

repeated simulations per scenario. Furthermore, a method for blinded treatment effect

estimation in case of binary data is proposed, and blinded tests for treatment group

differences are developed both for continuous and binary data. We report results of

comprehensive simulation studies that investigate the features of these procedures. It is

shown that for sample sizes and treatment effects which are typical in clinical trials, no

reliable inference can be made on the treatment group difference which is due to the

bias and imprecision of the blinded estimates.

KEY WORDS: clinical trial; blindness; treatment effect; block randomisation; trial

integrity.
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1. INTRODUCTION

One of the most important issues in the design of clinical trials is the implementation of

procedures that eliminate or minimise bias. Blinding and randomisation are generally

considered to be the most important techniques in this context  1 . While randomisation

eliminates bias in treatment assignment, blinding minimises the risk of trial personnel or

patients being aware of the assigned intervention and thus from being influenced by

this. Knowledge of treatment group assignment may, beside others, affect the response

of the participants, influence the use of ancillary interventions of the investigators, or

lead to a differential judgment of the outcome by the assessors  2 . But even if

individual treatment assignments are unknown, knowledge of the size of the treatment

effect during an ongoing trial may influence the attitude of anyone involved in the trial

and may thus lead to the occurrence of bias by mechanisms as such described above.

For this reason, regulatory guidelines strongly demand that the results of interim

analyses are not disseminated to the personnel and patients involved in a trial  1, 3 . It is

therefore standard that any comparison between treatment groups that is performed mid-

course of a trial is assigned to an independent committee which maintains the results

strictly confidentially  4 . The only information that is disseminated beyond the small

circle of committee members is whether the trial was stopped or continued. As a further

measure, information on who is assigned to which treatment group is not included in the

trial database while the study is ongoing but is kept separately with special access

rights.

Usually, general information on the implemented randomisation procedure is given

in the protocol, such as the method used for random sequence generation or prognostic
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variables that are taken into account in stratified randomisation. Quite frequently, block

randomisation is applied to minimise the risk of obtaining an undesirable sample size

imbalance between the treatment groups. In order to prevent from the possibility of

predicting the assignment of future patients from guessed or known assignments of

patients already allocated, it is recommended not to specify the block length in the

protocol  5 . However, trial statisticians are generally aware of the block lengths and -

as they have access to the trial database - they also know the order in which the patients

were recruited. Therefore, they are aware of which patients are in which block. It is

evident that for extreme outcome scenarios this knowledge can be used to derive

information about the treatment effect even if the individual treatment group allocation

remains blinded. For example, in the case of a binary endpoint “event yes / no” where in

every block either the event occurs for all patients or does not occur for any patient, it is

clear that there is no difference in treatment effect between the groups. The question

arises, whether reliable conclusions about the treatment effect can be drawn from the

blinded data also in more realistic situations. The message given in a recent paper by

van der Meulen  6 raises hopes or fears - depending on the perspective - that this

would be possible. In the abstract of [6] it was claimed that when randomisation is done

using permuted blocks “statistical inference of the treatment effects can be conducted”

before unblinding “yielding consistent and rather precise estimates“  6, . 479p . In the

light of the above-mentioned fact that the integrity of the trial is questioned if

information about the extent of the treatment effect becomes known and if actions are

taken based on this information during the course of a trial, this would create serious

problems.
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Other methods that allow a blinded estimation of the treatment effect have been

proposed in the literature before. In the framework of blinded sample size re-estimation,

Gould and Shih [7] suggested a method to estimate the within-group variance of

normally distributed data. This procedure is based on an EM algorithm and does not

make use of information about the randomisation. It provides not only an estimate of the

within-group variance but also of the treatment effect. It was shown that this approach

exhibits some major deficits and is not appropriate for sample size re-estimation based

on the blinded variance estimate [8, 9]. Waksmann [10] corrected the Gould-Shih

procedure such that now the resulting estimates converge to the ML estimates. He

investigated the characteristics of the resolved method in a thorough simulation study

and found that for sample sizes and treatment effects that usually occur in clinical trials,

the estimates of the treatment group difference are not accurate enough to be of practical

value. The same conclusion was drawn by Xing and Ganju [11] for the procedure they

derived by making use of the knowledge of the randomisation block length. Their

primary focus was the construction of a blinded variance estimator for the purpose of

blinded sample size re-estimation in case of continuous data. They briefly mention that

a blinded estimator of the treatment effect can be obtained as a by-product, based on the

difference between the pooled one-sample variance estimator for all data and their

blinded within-group variance estimator (which is a multiple of the variance of the

block means). Based on heuristic arguments and simulation results, Xing and Ganju

concluded that “there is no risk of unblinding the trial” because “the variation in the

estimate of 2 is large enough to be practically useless”. In contrast to the other

references mentioned above, van der Meulen [6] focuses on estimation of the treatment

effect using estimators based on all available effect information in the blinded data.
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Interestingly, he derived blinded moment and ML estimators of the treatment group

difference for continuous data that use the knowledge of the block length applied in

randomisation. His work on the estimators is therefore a good basis to investigate the

amount of effect-information contained in blinded data. Besides, van der Meulen’s [6]

investigations suggest that the blinded estimates of the variance he derived with the ML

method are more precise than the blinded treatment effect estimates. Recently, Ganju

and Xing [12] discussed specifically the blinded treatment effect estimation of van der

Meulen and concluded that “the blinded method is refined enough for blinded variance

estimation but blunt enough for inferring efficacy”.

The aim of our paper is to assess the risk of unblinding the treatment effect from

blinded inference. This goal is examined (i) by investigating the procedure proposed by

van der Meulen for continuous data more thoroughly by simulation studies; (ii) by

developing alternative approaches for a blinded assessment of treatment effects by

utilising knowledge of the randomisation block length in case of continuous and binary

outcomes; and (iii) by investigating comprehensively the characteristics of the new

methods. Thereby, previous work on blinded estimation of treatment group differences

is extended in various ways. Section 2.1 takes a closer look to the characteristics of the

procedure proposed by van der Meulen for blinded estimation of treatment effects in

case of continuous data by presenting results of repeated simulations. In Section 2.2, a

blinded test for difference of means is derived and its properties are investigated. An

example illustrates the findings in Section 3. Related methods for binary data did not

exist up to now. Section 4 presents blinded estimators of and a test for treatment group

difference in case of binary outcomes and shows their characteristics. We summarise

the findings in Section 5 and discuss them in the context of the literature.
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2. BLINDED ASSESSMENT OF TREATMENT EFFECT FOR

CONTINUOUS DATA

2.1 Blinded estimation of treatment effect

Here and in the remainder of the paper the treatment effect, i.e., the difference of the

expected values in the two intervention groups, is denoted by  . Hence, in case of

continuous data 21   with group expectations 1 2,  . We start with a block

length of 2l  and adopt the notation used in Reference  6 . Let 1 2,i iY Y denote the 1st

and 2nd observation in block i, ki ...,,1 , where 2)var( ijY , ki ...,,1 , 2,1j .

Further, 211 iii YYZ  is the within-block difference in block i and 212 iii YYZ  the

within-block sum in block i, ;...,,1 ki  22iZ is therefore the mean in block i. The

between-block variation (i.e., the variance of block means) can thus be expressed as
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and has expectation 2)( 222 WBSE .

Consequently, an unbiased estimator of 2 is given by 22 42 BBWB SS  , and the absolute

value  of  can be estimated by  0,42max 22
BBWB SS  . This is the moment

estimator  of  presented in  6 . No assumptions are to be made regarding the

distribution of the observations when deriving this estimator. Alternatively, the
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maximum likelihood (ML) estimator  of  can be derived under the assumption

of normally distributed observations ijY . The log likelihood is then given by
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where ),;( 2 y is the density of a normal distribution with mean  and variance

2  6 . The ML estimates can be obtained by maximising the log likelihood using the

Newton-Raphson algorithm, as for example implemented in the SAS/IML function

nlpnra. The moment estimators for  , 1 2

1
( )

2
    and 2 can be used to

initialise the algorithm. Analogously, the moment estimator and the ML estimator of

 can be derived for a block length of 4l  (see  6, . 483p ff and Appendix A for a

correction of the moment estimator given in [6]).

Figures 1 and 2 show the simulated bias    of the moment estimator and the

ML estimator  for  for block lengths of 2l  and 4l  , respectively. Considered

were (standardised) treatment effects 5.0,25.0,0 and 1.0 ( 1 ) and total sample

sizes 20, 40, …, 100, 200, …, 800, 1,000 which were balanced between the two groups.

It should be noted that total sample sizes of 506, 128 and 34 are required to achieve a

power of 80 per cent at one-sided level 0.025  with the unblinded t-test for

standardised differences of 0.25, 0.5  and 1.0 , respectively. For each situation,

1,000 simulations were performed.

– Please insert Figures 1 and 2 about here. –

Both the moment estimator and the ML estimator overestimate the absolute value of the

treatment effect for 0  and 0.25  for all sample sizes, while underestimation
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occurs for 1  (with the only exception of 4l  and total sample sizes smaller than

40). As could be expected, the extent of bias is for the same sample sizes generally

higher for block size 4l  than for block size 2. For 0.5  , a positive bias is observed

for small sample sizes which changes to a negative bias when the sample size is

increased. The shift from overestimation to underestimation occurs for higher sample

sizes for block size 4l  as compared to 2l  . In all considered situations, the mean

estimates resulting from the moment estimator are slightly smaller than those for the

ML estimator, but the difference is negligible for practical purposes. For 0  , the bias

approaches zero only for sample sizes which would have been used if the relevant effect

assumed at the planning stage was much smaller than the true treatment effect  . As a

reviewer noted, this result is also reflected in Table 1 of van der Meulen’s paper [6]: For

the data set he used, the treatment effect is estimated precisely from blinded data only

when the trial has extremely high power (> 99%); see also [12].

The simulations also show that the standard deviations of the two blinded estimators

are very similar as well. The variability is higher for block size 4l  as compared to

2l  . In comparison to unblinded estimation of the treatment effect, the standard

deviation of the blinded estimates is considerably higher by a factor of up to 3 for the

range of investigated parameter constellations (results not shown).

What do these results mean in terms of information about the treatment effect that

can be inferred from blinded data of an ongoing trial? For example, if a clinical trial is

powered for 1 0.80  at a clinically relevant treatment effect of * 0.25  , this

requires a total sample size of * 506n  (balanced groups, t-test at one-sided level

0.025 ). If block randomisation with a block size 2 is applied and the treatment

effect is estimated by application of the blinded moment or ML estimator based on the
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data of 500 patients utilising the information 2l  , then Figure 1 shows that the

expected estimated treatment group difference amounts to about 0.27 if the true

treatment effect is in fact 0.25  . However, if there is actually no treatment group

difference at all ( 0  ), the expected blinded estimate is about 0.21. It is therefore

evident that in this situation one is not able to distinguish whether a blinded estimate of,

say, 0.25 arises from overestimation of a non-existing treatment group difference or

from a treatment effect 0  .

– Please insert Figure 3 about here. –

Figure 3 considers this aspect in more detail. The box-whisker plots show for block

lengths 2l  and 4l  the range of the central 90 per cent of values arising from 1,000

simulated blinded treatment effect estimates (moment estimator grey, ML estimator

white). It can be seen that there is a heavy overlap of the distributions of the blinded

estimators that originate from different values of  . Furthermore, with the exception of

the constellations of a total sample size of 500 and 2, 0.75,1l    and 4, 1l    , the

box-whisker plot includes the value zero. Hence, for adequately powered studies a

blinded estimate of zero gives no indication at all about the actual underlying treatment

effect. The other way round, for 0  and 2l  ( 4l  ) the upper whisker reaches the

value 1.25, 1.0, and 0.65 (1.5, 1.25, and 0.85) and total sample sizes of 40, 100, and

500, respectively. This means that only huge treatment effect estimates would give

cause to the suspicion of a non-zero treatment effect. Figure 3 shows that such estimates

occur with considerable probability only for at least as extreme true treatment effects.

As a consequence, for treatment group differences and sample sizes which are common

in clinical trials, a differentiation between various extents of  based on the blinded

moment or ML estimator is not possible. This uncertainty about the actual amount of 
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is a consequence of the substantial positive bias of the blinded estimators for the

situation 0  combined with a high variability of the estimates.

In order to study the sensitivity of our findings to deviations from the normal

distribution we conducted simulations with non-normal distributions including

distributions with heavy tails (t-distributions with small number of degrees of freedom)

and skewed distributions (e.g. log normal distribution). We found that the results for the

moment estimator are robust against such deviations. However, the ML estimator was

sensitive to deviations from normality as expected with at times severe downwards bias

in estimation of the treatment effect Δ. The general observation for non-normal 

distributions was that the performance of the blinded estimators is not better as seen for

normal data. A differentiation between various extents of  based on the blinded

moment or ML estimator is even more difficult.

2.2 Blinded tests for treatment effect

From the above mentioned formulae for the within-block variation and the between-

block variation, a blinded F-test can be derived. As the F-test and the moment estimator

are closely related, it cannot be expected that this test will be more revealing than the

findings presented in Section 2.1, but is an alternative way to look at this problem. For

block length 2l  the test statistics is given by
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. Analogously, a test statistics , 4blindF  for a
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blinded F-test can be derived for block length four, which is given in Appendix A.

, 4blind lF  can again be interpreted as the ratio of the within-block variation to the

between-block variation and follows the non-central F-distribution
2

3 , 1 2k k

k
F 

 
 
 

. Due

to the known distribution of the test statistics, the power properties of the blinded F-tests

can be evaluated analytically.

– Please insert Figure 4 about here. –

Figure 4 shows the relationship between the treatment effect * used for sample size

calculation and the ratio r of the true treatment effect  to the effect * that is

required to achieve a power of 1 0.5  and 0.8 , respectively, for the blinded F-test

with significance level 05.0 . The sample size is chosen such that the unblinded

two-sided t-test at 05.0 has a power of *1 0.8  at the treatment effect

* ( =1)  . This means that r is determined such that

( 1) , 1,1( 1) , 1,1 Probf ( ) 1
l k kl k k nc f




      , where k is the nearest integer to

2*2

12/1 )/())(/4( * 
 
 zzl and 2

12/1
2 )( *   zzrnc .

1 2, ,Probfdf df  denotes the

distribution function of the non-central F distribution with 1 2( , )df df degrees of freedom

and non-centrality parameter  ,
, ,1 2df df

f


is the  quantile of the central F distribution

with the same degrees of freedom, and z is the  quantile of the standard normal

distribution.

For 2l  ( 4l  ) and a clinically relevant treatment effect * 0.25  assumed for

sample size calculation, a 2.7 (3.7) times larger true treatment effect  is necessary to

achieve a 50 per cent power for the blinded F-test. A factor of about 3.4 (4.6) between

the actual treatment effect and the effect used for sample size calculation is required to
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have an adequate power of 80 per cent. From another perspective, if * 0.25    the

factor between the chosen and the required sample size amounts to about 46 (136) for a

desired power of 50 per cent of the blinded F-test and to about 104 (309) for 80 per

cent. For a clinically relevant treatment effect of * 0.5  the situation becomes a little

bit less extreme. However, still about double (2.8 times) this treatment effect is

necessary to achieve a power of 50 per cent for the blinded F-test, and the true effect

needs to be about 2.6 (3.7) times as large as this effect to get a power of 80 per cent for

the blinded test. In other words, for * 0.5    the total sample size required to

achieve 80 per cent power for the blinded F-test amounts to about

3,560 ( 10,340)n n  while the chosen sample size is * 128n  .

In practice, one would usually try to learn from the blinded data while the study is

still ongoing. Hence, the blinded test would be applied before the data of all *n patients

are available. As a consequence, the required factors by which the true effect has to

exceed the one used for sample size calculation to achieve a power of 50 or 80 per cent

for the blinded test are even higher as those reported above.

These considerations show that the blinded F-test has reasonable power only when

the true treatment effect is several times larger than the clinically relevant effect

assumed in the sample size calculation of the study, i.e. if the study is an overpowered

study from a retrospective point of view. Though there is a possibility for this to

happen, this is a very rare event in clinical practice.
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3. EXAMPLE

In order to illustrate the results, we consider placebo-controlled clinical studies in the

acute treatment of major depression. The change in total score of the Hamilton Rating

Scale for Depression (HAM-D, 17-item version)  13 between baseline and end of

therapy is often used as the primary endpoint in such studies, and a difference of * 3 

points can be considered as clinically relevant  14 . If the standard deviation  is

assumed to lie within the range of 5 to 8 as usually observed for this outcome (see, for

example, Reference  15 ). This corresponds to total sample sizes of 90 to 230 required

to achieve a power of 80 per cent for the treatment group difference * 3  (two-sided

t-test, 05.0 ). These sample sizes match well the number of patients typically

included in studies investigating the efficacy of the treatment of acute major depression

(see, for example, the systematic reviews  15,16 ).

The true treatment group difference needed to achieve a power of 1 0.80  for

the blinded F-test would amount to 7.4 ( 5  ) or 8.8 ( 8  ) HAM-D points,

respectively, for block length two and 10.5 ( 5  ) or 11.9 ( 8  ), respectively, for

block length four. For all existing antidepressants, such huge overall treatment effects

are out of reach. The other way round, if the true treatment effect would amount to

3  HAM-D points, the sample size required to attain a power of 1 0.80  for the

blinded F-test would be 1,800 ( 5  ) or 10,700 ( 8  ), respectively, for block length

two, and 5,200 ( 5  ) or 31,500 ( 8  ), respectively, for block length four. However,

there is no reason to perform such large-scale placebo-controlled studies investigating

the efficacy of short-term treatment of major depression.
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In a double-blind, placebo-controlled trial Kalb et al.  17 investigate the efficacy of

St. John’s wort in patients with mild to moderate depression. The primary variable was

the change in HAM-D total score between baseline and end of the six weeks acute

treatment phase. Due to the uncertainty about the variability of the primary endpoint and

the expected treatment effect, the study was planned with an interim analysis that

should be performed when roughly half of the projected sample size of 130 was

achieved. A block length of two was used for randomisation. For those 72 patients that

were included in the interim analysis, 35 blocks were complete such that a blinded

assessment could be based on 70 patients. Applying the blinded ML- and moment

estimator to this data set leads to estimated treatment effects of 3.2 and 2.4 points,

respectively. Employing the one-sample estimator of the standard deviation of 6.3

results in an estimated standardised treatment effect of 0.4 to 0.5. In view of the results

shown in Figure 3, this estimate is compatible with true treatment effects from 0.0 to

1.0. Application of the blinded F-test leads to a test statistic of 1.08F  , which

corresponds to a p-value of 0.42p  . Hence, blinded estimation and testing give no hint

for a significant difference between the two treatment groups. However, the unblinded

estimate of the difference between the group means amounts for the same data set to 5.1

and the two-sample t-test results in a two-sided p-value of 0.0004p  . As a

consequence, the study could be stopped after the planned interim analysis with a

significant superiority of St. John’s wort to placebo (pre-defined critical boundary for

early rejection 1 0.0207  ), whereas the blinded methods would not have given any

indication to complete the trial early. Therefore, this real study data give another

counter-example to the claim that blinded inference “takes away the need of conducting

interim analyses”  6 .
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4. BLINDED ASSESSMENT OF TREATMENT EFFECT FOR

BINARY DATA

4.1 Blinded estimation of treatment effect

In case of binary data, we consider the ML estimator and the moment estimator for

blinded estimation of the treatment effect. We will see that this approach leads to a

simple expression for the estimator. In order to avoid repetition we restrict the

presentation here to block length 2l  as in this situation most information can be

drawn from the blinded data thus marking the best case scenario for the performance of

blinded estimation methods.

The information included in blinded binary data is the number of events that

occurred in each block and the order they occurred. In the case of block size 2l  , the

numbers 201100 ,,, aaaa of blocks with 0 events, with one event that occurs for the first

patient, with one event that occurs for the second patient and with two events,

respectively, can be observed. If 10a or 01a is “large”, one would become suspicious that

there may be a difference between the treatment groups. In contrast, for every block

with no event or two events one knows for sure that there is no difference between the

number of events between the treatment groups.

The blinded ML estimator for the difference in event rates between the two

treatments can be derived analytically. If ip denotes the true event rate in treatment

group 2,1i , then the probabilities of observing a block with 0, 2, or 1 event are

1 2(1 )(1 ) p p , 1 2p p , and 1 2 1 21 (1 )(1 )   p p p p , respectively. The probabilities to
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observe a block with one event that occurs in the first patient or a block with one event

that occurs in the second patient are equal. Hence, the likelihood function is given by

         10 010 2

1 2 1 2 1 2 1 21 1 1 1 1 / 2
a aa a

p p p p p p p p


           . We can restrict on

using the total number of blocks with one event 1 10 01 a a a instead of 10 01( , )a a , since

the likelihood function shows that 0 1 2( , , )a a a is a sufficient statistic. If the expression

above is re-parameterised with 2/)( 21 pp  , 2/)( 21 ppq  , and 2qd  , it can

be seen after some calculation that the log likelihood is maximised for

)2/()2(ˆ
21 kaa  (which is the observed overall event rate) and for

2
20

2
1 )2()4(ˆ kaaad  if 2 2

1 0 2( 4 ) (2 ) 0a a a k  , and 0ˆ d otherwise. Hence, the

blinded ML estimator for 1 2= 2p p d   in case of block length 2l  is given by

 2
1 0 2

1
max( 4 , 0)  a a a

k
.

Another possibility is to apply the moment estimator presented in Section 2.1 directly

to binary data. In case of binary data and block length 2l we find )2/(1
2 kaSWB  and

2 2 2 2
0 1 2
ˆ ˆ ˆ( ( 0.5) (1 ) ) /( 1)BBS a a a k        . With these expressions, the moment

estimator  0,42max 22
BBWB SS  for 21 pp  can be calculated.

– Please insert Figure 5 about here. –

Figure 5 shows the box-whisker plots covering the central 90 per cent of the empirical

distribution of the blinded estimates for 2l  (moment estimator grey, ML estimator

white) arising from 1,000 simulations for each situation. Overall rates 1 2( ) / 2p p  

of 0.2, 0.5, treatment effects 1 2p p   of 0, 0.05, …, 0.3 and balanced total sample

sizes of 100, 500 and 1000 were considered. Qualitatively, the results are very similar to
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those obtained for continuous data. Again the box-whisker plots show an extensive

overlap for different values of  and  . Moreover, they cover the value zero for almost

all considered situations with the exception of some combinations of a total sample size

of 500 or 1,000 and treatment effects of 0.25 or 0.3. However, in these situation the total

sample size required to achieve a power of 80 per cent with the unblinded chi-square

test is extremely much lower and ranges from 54 ( 0.2, 0.3    ) to 86

( 0.5, 0.3    ). Hence, for reasonably powered studies a blinded estimate of zero for

the treatment group difference is both in accordance with the assumption 0  and

0  . As for continuous data, the upper whiskers reach very large treatment effects for

0  , for example values of 0.50, 0.32, and 0.27 for an overall rate of 5.0 and

total sample sizes of 100, 500, and 1,000, respectively. Therefore, only if even more

extreme values are obtained from blinded estimation of the group difference it is worth

to speculate whether the true treatment effect might be different from zero. However,

such large estimated effects occur in turn only for very large true differences with

noticeable probability. In summary, it can be concluded that for treatment effects and

sample sizes which are usually met in clinical trials different values of  cannot be

distinguished by blinded moment or ML estimation.

4.2 Blinded tests for treatment effect

In Section 2.2 we introduced the F-test
2

, 2 2
WB

blind l

BB

S
F

S
  for continuous data that we could

apply for binary data as well. In case of binary data and block length 2l we can

employ the expressions for 2
WBS and 2

BBS given in the previous section. Unlike with

normal data, however, the reference distribution is not an F-distribution. One way of
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obtaining a reference distribution is by considering all permutations of ‘1’ (event) and

‘0’ (no event) keeping the total number of events fixed. It can be shown that the

between-block variation 2
BBS is invariant to permutations. Therefore, the test statistics

reduces to 1a after elimination of invariants, with larger values of 1a being stronger

evidence against the null hypothesis of no effect. A p-value for the test is given by

1

2

( / 2)
2

1 1
max{0, } 2 1

2 { }
floor e

b

b e k

k k b
b a

b b 

   
    

   
 ,

where ( )floor x is the largest integer that is less than or equal to x, 122 aae  ,

2211 2)( bebbb  , and {}  denotes the indicator function.

– Please insert Figure 6 about here. –

Similar to Figure 4 in Section 2.2, Figure 6 shows the relationship between the risk

difference  used for sample size calculation and the ratio r of the actual risk

difference  to the effect  that is required to achieve a power of 5.01   and 8.0 ,

respectively, for the blinded permutation test given above with an overall event rate of

2.0 and 0.5. Using the approximation formula given in  18 the sample size is

calculated such that the unblinded two-sided Fisher’s exact test has a power of

8.01   for level 05.0 , overall event rate 5.0,2.0 , and difference in event

rates  . The ratios r were determined by means of line searches over  with step size

0.005. Hereby the power values of the blinded test were simulated using 50,000

replications.

As can be seen from Figure 6 the risk differences need to be 2 to 4 times larger than

anticipated in order to obtain a power in the range of 0.5 to 0.8 for the considered
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combinations of rate differences and overall event rates. This is in keeping with similar

effects observed in Figure 4.

Alternative test statistics could be used for the permutation test. For instance, the

MLE of the treatment difference given above or the likelihood ratio test (LRT) statistic

would make good choices. Both statistics lead to tests equivalent to the one used above.

5. DISCUSSION

We saw that it is possible to construct both for continuous and for binary data estimators

and tests for the treatment effect that are based on blinded data by utilising information

about the randomisation procedure. Although we demonstrated this only for block sizes

of 2 and 4, this applies for other block sizes. Not surprisingly, the information that can

be gained from blinded data is highest for the smallest possible block size of 2. But even

in this situation, a reasonable precision for the treatment effect estimate can hardly be

obtained in realistic scenarios. Furthermore, the blinded tests have sufficient power only

if the study is severely overpowered: For a block size of 2, the actual treatment effect

has to exceed the clinically relevant effect by a factor of at least 2. A situation where

this may happen is in case of multiple co-primary endpoints with differing treatment

effects. When the study sample size is chosen such that adequate power is assured for

the outcome with the smallest minimally clinically relevant effect size, an excessive

power may result for the endpoint with the largest treatment effect. If a single endpoint

is used, the actual treatment effect will usually be not much larger than the clinically

relevant treatment effect assumed in the sample size calculation of the study. In
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indications where treatments are already approved and on the market, the clinically

relevant effect is generally near the observed effect of the standard. Hence, in case of

indications with existing treatments a reasonable power of the blinded test is only

achieved if a new treatment shows a “jump” in efficacy, which may happen only in

exceptional cases in drug development. Consequently, the only realistic situations

where reliable information about the treatment effect can be gained from blinded data in

case of an overpowered study are in trials which are performed with common treatments

but in new populations, or in indications where no efficacious treatment exists up to

now. Especially in these situations, adequate measures should be taken to exclude the

use of blinded data for inference about the treatment effect. First of all, the use of

alternative randomisation techniques to block randomisation (see e.g. [19]) could be

considered. If block randomisation is used the block length should be chosen not too

small. Fixed small block lengths are often used to avoid imbalances in patient numbers

between the intervention groups, for example, if randomisation is stratified by centres

with small sample sizes per centre. The results of our investigations add to the known

disadvantages of this practice  20 and should be carefully weighted against its merits

before application. Secondly, details about the randomisation procedure should not be

described in the protocol but specified in a separate document that is withheld from all

persons involved in the study. Furthermore, the process of generating the allocation

sequence should be separated from the personnel that has access to the trial database.

By this, it can definitely be avoided that knowledge about the randomisation scheme is

used to derive information about the treatment effect from the blinded study data by

application of the methods described above.
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In case of a reasonable possibility of an overpowered study, the introduction of an

interim analysis that allows for early stopping in case of overwhelming efficacy might

be an option in addition to the measures mentioned above. This is a much more efficient

way of conducting the trial than trying to recover treatment effect estimates from

blinded data.

In summary, for all proposed approaches for blinded assessment of the treatment

effect it holds true what Waksman states on the corrected EM algorithm based method,

namely “it is interesting to note that the procedure can accurately and precisely estimate

the difference when either the sample size or the true difference is sufficiently large”

 10 . However, and this is the reassuring message: For combinations of sample sizes

and treatment effects which are typical in clinical trials, no reliable inference can be

made on the treatment group difference due to the bias and imprecision of the blinded

estimates.
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APPENDIX A: BLINDED MOMENT ESTIMATOR AND BLINDED F-TEST FOR

CONTINUOUS DATA AND BLOCK LENGTH 4l 

Let B denote the covariance matrix of 1, 2, 3,( , , )T
i i i iZ Z Z Z with 1, 1, 2,i i iZ Y Y  ,

2, 2, 3,i i iZ Y Y  , 3, 3, 4,i i iZ Y Y  , i.e,

























210

121

012
2B , and AB

22

1

4

1

121

242

123

4

1




















 .

Then 3( , )i iZ N B  and 2 1

21 1/ 2 2

3; T
i i

T
i i i B

Z B Z B Z 

 


 

 
 , where 1 (1, 0, 1)T  ,

2 (1, 1,1)T  , 3 (0,1, 0)T , and 2
3; nc denotes the chi-square distribution with 3

degrees of freedom and non-centrality parameter nc. Since 1 21T
i iB    for all i,

2

1 2

3; ( / )

T
i iZ B Z





 and 2

2 2

3; ( / )
4T

i iZ AZ





  .

Therefore, 2 2

1

1
12 4

k
T
i i

i

E Z AZ
k 

 
   

 
  and since 2 2

4, 4,
1

1
( ) 4

1

k

i
i

E Z Z
k




 
   

  , we

get with the method of moments the estimator

2 2
4, 4,

1 1

1 3 1ˆ max ( ) ,0
4 4 1

k k
T
i i i

i i

Z AZ Z Z
k k


 

 
     

  which differs from the expression

for 2̂ given in Reference  6 on page 484.
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Analogously to block length 2 , the following test statistics for a blinded F-test can

be derived for block length 4 :

 
1

, 4
2

4, 4
1

1

3

1

1

k
T
i i

i
blind l k

i
i

Z AZ
k

F

Z Z
k















, where as in

Reference  6 4, 1, 2, 3, 4,i i i i iZ Y Y Y Y    .
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Figure 1. Mean simulated bias of the blinded treatment effect estimates for block length

2l  in case of normally distributed data depending on the true treatment effect 

( 1  ) and the total sample size n used for estimation (solid line: blinded ML

estimator, dotted line: blinded moment estimator).
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Figure 2. Mean simulated bias of the blinded treatment effect estimates for block length

4l  in case of normally distributed data depending on the true treatment effect 

( 1  ) and the total sample size n used for estimation (solid line: blinded ML

estimator, dotted line: blinded moment estimator).
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Figure 3. Box-whisker plot of the simulated distributions of the blinded estimates 

of the absolute value of the treatment effect  in case of normally distributed data

depending on the true treatment effect  ( 1  ) and the total sample size n used for

estimation (white: blinded ML estimator, grey: blinded moment estimator; in the box-

whisker plot, bottom and top of the boxes are located at the first and third quartile,

respectively, the central horizontal line marks the median, and 5 per cent and 95 per

cent quantile are indicated by the ends of the whiskers).
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Figure 4. Ratio r of the true treatment effect  to the assumed effect * that is

required to achieve a power of 1 0.50  and 0.80 , respectively, for the blinded F-

test. The sample size is chosen such that the unblinded two-sided t-test at 05.0 has

a power of 80 per cent at the assumed treatment effect * ( =1)  .
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Figure 5. Box-whisker plot of the simulated distributions of the blinded estimates 

of the absolute value of the treatment effect  in case of binary data depending on the

true treatment effect  , the overall event rate  and the total sample size n used for

estimation (white: blinded ML estimator, grey: blinded moment estimator; in the box-

whisker plot, bottom and top of the boxes are located at the first and third quartile,

respectively, the central horizontal line marks the median, and 5 per cent and 95 per

cent quantile are indicated by the ends of the whiskers).
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Figure 6. Ratio r of the true treatment effect  to the assumed effect * that is

required to achieve a power of 1 0.50  and 0.80 , respectively, for the blinded

permutation test with overall event rates of 2.0 and 0.5. The sample size is chosen

such that the unblinded two-sided Fisher’s exact test at 05.0 has a power of 80 per

cent at the assumed treatment effect * .
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