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Complex measurement tasks, such as ability 
and achievement test items, arc usually multidi­
mensional, rather than unidimensional, in nature, 
Contemporary views on cognitive theory regard 
even the most simple ability items (Sternberg and 
Perez, 2005), such as a vocabulary synonym task 
or a two-dimensional rotation, as involving mul­
tiple stages. In two-dimensional rotation tasks, 
for example, the goal is to find the figure that is a 
rotation of the figure in the stem. Multiple stages 
are involved in this simple task, including encod­
ing the figures in the stem and alternatives, men­
tally rotating the stem figure and then comparing 
features orthe stem figure to the alternatives. The 
difficulty onlle various processing stages may valY 
between items and between persons, thus creating 
multidimensionality. 

Asscssing the levels and the sources of mul­
tidimensionality in an ilem domain is important 
not only for item selection, but also for item re­
vision and item development. Both the ciimen­
sianality of tile resulting measure (i,e" unidimen­
sional versus multidimensional) and the nature 
or the construct that is measured depends on an 
adequate assessment of dimensional ity in the item 
domain. As pointed out by Messick (1995), both 
construct-relevant and construct-irrelevant 
sources or variation may exist in the broader item 
domain. 

The multidimensional normal ogive model 
(Bock, Gibbons and Muraki, 1988) or the multi­
dimensional logistic model (Reckase and 
McKinley, 1991) can be applied to identify mul­
tiple dimensions in the data and to asscss the 
dependence of each item on the dimensions. The 
approach is similar to a factor analysis of items; 
in fact, under certain conditions the IRT model 
and t he factor mode I for binary data are identi­
cal (Takane and DeLeeuw, 1987). If the central 
dimension in the items is the target dimension, 
[hen only items with no significant discrimina­
tions on the smaller dinlensions would be selected 
for the measure, 

Although the traditional multidimensional 
IRT models describcd above, as well as factor 
analysis, arc often applied to understand dimen­
sionality in [he item domain, they are somewhat 

limited in assessing complex cognitive tasks. 
First, since these models are exploratory, the na­
tllre of the central dimension is unclear. It could 
be that a smaller dimension, or another rotation 
of the di mensions, would be best to reflect con­
struct-relevant sources of variation. Second, the 
mathematical relationships in the traditional 
multidimensional IRT models are not appropri­
ate for assessing the multiple processing stages 
in complex items, In the multidimensional IRT 
models and the factor models, a compensatory 
relationship is specified between the dimensions. 
As elaborated below, a compensatory model does 
not properly reflect the sequential dependency 
among the processing stages and hence, does not 
assess adequately the sources of multi dimension­
ality in the item domain, 

This paper contains several sections, First, 
altemative IRT models are described mathemati­
cally and compared for how they consider the 
nature of multidimensionality in item domains, 
Specifically, the traditional compensatory multi­
dimensional models arc contrasted with the mul­
ticomponent latent trait model (MLTM) and a 
related modeL Second, some applications are 
described to provide examples. Third, practi­
cal estimation procedures are described along 
wi th illustrative results that show their relative 
advantages, Fourth, syntax for the estimation 
ofMLTM and a related model are presented in 
the Appendix. 

Multidimensional IRT Models 

Compensatol}' multidimensional models. In 
the compensatory models, the relative strength 
of the multiple dimensions in an item is indicated 
by the discrimination parameters. For example, 
in the multidimensional logistic model (Reckase 
and McKinley, 1991), the probability of an item 
response is given as follows: 

where Xis the response of person s to item i 0 
is [he tn~'it level for person s on dimension ':1, ~" 
is the di mcu!ty of item i and a. is discrimina~ 

Iitt 



tion for item i on dimension m. In this model, 
the probability that a person passes an item de­
pends on the difficulty ohbe item and a weighted 
combination of the mulLiple abilities, L",CJ..
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0

s
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A low level on one trait can be compensated by 
an exceptionalty high level on another trait for 
items with significant discriminations on more 
than one dimension. 

The multidimensional normal ogive model 
(Bock, Gibbons and Muraki, 1988) is similar to 
the multidimensional logistic model but a differ­
ent function relates the item response to the trait 
composite. That is, the model specifies <l cumu­
lative normal function, which produces an item 
characteristics curve which is very similar to the 
logistic model. One advantage of the normal 
ogive function, however, is that the resulting per­
son and item estimates are directly related to bi­
nary factor analysis. 

Mu/ticomponent lalellf frait models 
(MLTM). Although the multidimensional item 
response models can be applied to complex tasks, 
they are not usually appropriate to assess the 
cognitive sources of multidimensionalilY. Cog­
nitive models for tasks typically postulate a flow 
of information from one stage to another. The 
stages are sequentially dependent; correct pro­
cessing on a later stage requires correct informa­
tion from earlier stages. Thus, if a task depends 
on the joint outcome to several processing stages, 
a compensatory model is inappropriate. High 
trait levels for processing the later stages cannot 
compensate for low trait levels (and I ikely incor­
rect processing) on the earlier stages. A more 
appropriate model for multidimensionality would 
be based on a continued product of processing 
outcome probabilities, as follows: 

(2) 

where P(X "" I) is the probability of success for 
1ST 

person s on item i and TIkP(XisK) is the product of 
success on each processing component, k, given 
the correct outcome ofthe preceding component. 

The multidimensional latent trait model 
(MLTM; Whitelyi, 1980) combines a continued 
product model ofthe response process as in Equa-
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tion 2 with an lRT model to renect individual 
difTerences in component Lrait levels. Thus, both 
component trait levels and componenl item dif­
ficulties are estimated. In MLTM, each compo­
nent response probabil ity, P(X,), depends on the 
difficulty of the component in the items and on 
the person's component trait level, <lccording to 
a Rasch model, as follows: 

CXI1(O -II ) 
P( X. = 11 0 II) = IT '" ,) 

.,1 .,' , '1+"XI}(O -IL)' (3) 
...... \,1; { .. 

where 0 , is the trait level 0 r person s on compo­
nent k a~d I{ is lhe di ffiel! It)1 of item ion (0111-}J II.: 

ponent k. Notice that the right side of the equa­
tion contains Rasch models for the probability 
of success on each component. Other param­
eters, such as guessing, may be incorporated into 
MLTM as well (see Embretson, 1985). 

A generalization ofMLTM, thc general COI11-

ponent latent trait model (GLTM, Embretson, 
1984), incorporates a mathematical model to rc­
late component item difficulty to item content 
features. Like the linear logistic test model 
(LLTM, Fischer, 1973), item difficulty is given 
by the weighted sum ofunderlying stimulus fac­
tors 0 . In GLTM, the mathematical model is , ikm 

at the component level. For example, paragraph 
comprehension items, in which a short paragraph 
is followed by a question based on the paragraph, 
has two major components, lext representation 
and decision (see Embretson and Wetzel, 1987 
and Gorin and Embretson, in press). The cliffi­
culty of each component is related to stimulus 
features in the ilem; text representation depends 
on vocabulary level and syntactic complexity 
while decision depends on the inference level and 
the amount of relevant text for the question. For 
GLTM, scores on these variables for each item 
become part of the model. That is, component 
item ditIiclilty, ~/sk' is predicted from the scored 
variables as follows: 

(4) 

where 8. is the score of stimulus faclor m on 
compon:~t k for item i, 11,m is the weight ofstimu­
Ius factor m in component Ie and 110 is an inter" 
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cept. The model in Equation 4 is directly analo-

gous to a regression model of component item 

difficulty in which the independent variables are 

the scored item features. 

The full GLTM combines the MLTM for the 

relationship of the components to the total item 

response with the mathematical model for com-

ponent item difficulty as follows: 

WO. - Lrh-rh, +go ) 
P x„r = 0 .. /7, ) = 	 (5) ' + c..xp (0 a 	th„.(/„ .., 

Although  estimates of stimulus features impact 

on item difficulty can be obtained by ordinary 

multiple regression, the standard errors will be 

much larger than those from the full information 

GLTM given in Equation 5. 

Comparison of models. The dimensions that 

results from applying MLTM may differ substan-

tially from the compensatory multidimensional IRT 

models that assess dimensionality. Perhaps most 

importantly, the relationship between theory and 

data differs between the compensatory multidi-

mensional IRT models and MLTM. Although both 

types of models decompose items into underlying 

sources, the dimensions from the compensatory 
multidimensional IRT models may not represent 

processes for several reasons. First, the mathemati-

cal forms of the model are quite different. Pro-

cesses are only sometimes regarded as compensa-

tory in complex tasks, so the fit of the models to 

actual data could vary substantially. Second, the 

compensatory multidimensional IRT models may 

not reflect processing similarity because the mod-

els depend on item interco•lations. Components 

with similar processing may not correlate highly 

if, for example, individuals do not really vary in 

processing competency or if the processes are con-

founded with other processes. On the other hand, 

separate processes may be substantially correlated 

in a particular population if they are linked by com-

mon patterns of experiences, educational prereq-

uisites and even genetics. The result of such in-

fluences again implies that the processes will not 

correspond to separate dimensions. 

In contrast, MLTM. relies on theory to both 

identify and guide the operationalization of com- 

ponents in tasks. Thus, the dimensions identi-

fied in MLTM are theory-driven rather than em-

pirically-driven. Of course, the theory could be 

wrong so that the dimensions that are identified 

may have little impact on task performance. Thus, 

methods to evaluate the theory are important in 

applications of MLTM. 

Illustrative Examples ofApplications 

Applications of MLTM and GLTM models 

have three basic uses. First, the theoretical model 

of task processing, which is reflected in the com-

ponent outcomes, may be tested for adequacy. 

Fit may be evaluated for the linkage of the com-

ponents to the total item to test the theory. Sec-

ond, estimates of the difficulty of the components 

within each item may be obtained. Item compo-

nent estimates are useful in guiding test develop-

ment for the construct representation aspect of 

construct validity; that is, how to select items to 

reflect target sources of cognitive complexity. 

Third, estimates of person ability on each com-

ponent may be obtained. Component ability es-

timates may be useful in understanding the no-

mothetic span aspect of construct validity; that 

is, how the components are related to external 

measures and criteria. 

Two types of applications have appeared in 

the literature; studies in which both component 

responses and total item responses are available 

and studies in which only the total item response 

is available. Examples of both types will be de-

scribed here. 

Responses to both components and total 
tasks. MLTM and GLTM (Whitely', 1980; 

Embretson, 1984) were developed for data in 

which both component responses and total item 

responses are assessed. Two different designs 

have been used to obtain both component and 

total responses. Both methods involve construct-

ing partial tasks to assess component outcomes. 

In the first design, the component responses 

and the total item responses are observed on the 

same item. For example, Whitely' (1980) ad-

ministered standard verbal analogy items, thus 

observing the total item response. Then, some 

time later, the component outcomes were assessed 
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by tasks constructed from the same items; image 
construction and response evaluation. For the 
image construction task, the person was presented 
an analogy stern (with no response alternatives) 
and asked to specify the rule governing the anal-
ogy. Then, for the response evaluation compo-
nent, the person was given a correct rule along 
with the item stern and asked to identify the cor-
rect response alternative. Both tasks can be 
scored for accuracy; thus, joint response patterns 
are available for each item. An estimation pro-
cedure developed for joint response patterns 
(Embretson, 1984) can be applied. 

Table 1 shows joint responses for two com-
ponents and the total item, as well as the MLTM 
terms that correspond to the pattern. When re-
sponse patterns are collected in this manner, two 
additional parameters can be estimated for 
MLTM to link the component outcomes to the 
total probabilities. In Table 1, a is the probabil-
ity of passing an item when the components are 
passed and g is the probability ofpassing the item 
when one or more components are failed. 

In the second design, the component re-
sponses and the total item response are assessed 
on different items. In this case, the full data set 
is modeled simultaneously (see description of 
estimation below) as one long vector of re-
sponses. For example, Maris (1995) applied a 
special algorithm for missing data to Janssen and 
DeBoeck's (1997) data to estimate two compo-
nents that were postulated to underlie success on 
synonym items. These components were 1) gen-
eration of a potential synonym and 2) evaluation  

of the potential synonym. The resulting estima-
tion of MLTM parameters had two implications 
for construct validity. First, the cognitive model 
of synonym items was further supported by the 
results. The two-component model had good fit 
to the synonym item responses, thus supporting 
the importance of both components. Further, the 
nature of the task was elaborated by comparing 
the relative strength of the components; success 
on the generation component was far more cru-
cial to item solving. Second, a related study 
(Janssen, DeBoeck, and Van der Steene, 1996) 
indicated that the relative strength of the genera-
tion and evaluation components in synonym items 
influenced the correlation of the persons' perfor-
mance on the synonym test with other tasks. 

Although Maris (1995) does not present -  in-
dividual item data, a scatterplot of component 
difficulties would probably be quite similar to 
Figure 1, which shows uncorrelated component 
difficulties. Notice that items in which difficulty 
sterns primarily from only one component can 
be identified. That is, such items are so easy on 
one component that item difficulty depends only 
on their differences on the other component. Con-
struct validity can be controlled by selecting items 
to represent primarily one component or a com-
bination of components, as desired. 

Total item only. Obtaining component item 
responses requires a specially designed study as 
test data typically does not include component 
item responses. Thus, it is desirable to be able to 
extract component data from the total task re-
sponse alone. Such a possibility is obviously 

Table 1 

Component and Total Response Pattern Data for Two Components. 

Components Total 

Pattern C1 C2 T Model Probability 

P1 1 1 aPcpc, 
P2 1 0 (1 —a)Pc,Pc..2  
P3 0 1 1 g (1-1=1„)Pc.2  

P4 0 1 0 (1— g)(1—P ci )Pc.2  

P5 0 1 g Pc1(1—Pc2) 

P6 0 0 (1 — g) Pc ,{1--Pc2 ) 

P7 0 0 1 g( 1—Pc ,)( 1—Pc2) 
P8 0 0 0 (1— g)(1—P,)(1—P„) 
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more exploratory in nature than the component 
response method, since the nature of the compo-
nents is not defined a priori. Although the de-
velopments here are more pioneering, under cer-
tain circumstances estimates have been obtained 
from the total task alone. However, two devel-
opments in estimation methods, 1) an EM algo-
rithm (Maris, 1995) and 2) a new quasi-Baye-
sian approach (Yang and Embretson, 2004) have 
lead to successful component estimation. The 
latter will be described below. 

Maris' (1995) algorithm has been success-
fully applied to a constrained version of GLTM 
to permit component abilities to be estimated 
without subtasks. The component parameters can 
be constrained when separate studies have de-
veloped mathematical models or prior theory that 
leads to strong prediction of item difficulty. 
Embretson (1995) applied the Maris (1995) al-
gorithm using GLTM to estimate individual dif-
ferences in two underlying components that were 
postulated for abstract reasoning, working 
memory capacity and general control processes. 
The separate component abilities were identified 
by the underlying model for each component. For 
the Abstract Reasoning Test (ART), which con-
sists of matrix problems, previous studies had 
shown that two variables that impact working 
memory, the number and the level of rules in the 
items, were strong predictors of item difficulty. 
General control processes, on the other hand,  

often are assumed equally difficulty across items. 
Figure 2 is a scatterplot of two component abili-
ties, working memory capacity and general con-
trol processes that were extracted from standard 
ART items using GLTM (Embretson, 1995). 
Differing correlations of these two abilities with 
reference tests further supported their validity (see 
Embretson, 1995). 

A similar approach was applied to identify 
underlying components in an aging study on spa-
tial ability, which typically shows substantial age-
related decline. Embretson and McCol lam 
(2000) applied the Maris (1995) algorithm to 
GLTM to measure individual differences in both 
working memory capacity and general control 
processes. They found substantial age-related ' 
decline in both components. Such results are in-
teresting because general control processing may 
be more amendable to intervention than working 
memory capacity. 

Estimation of MLT1VI and GLTM 

Total and Component Responses 

Response pattern formulation of model. 
MLTM was formulated as a model of joint re-
sponse patterns (Embretson, 1984) for binary test 
items. As described above, Table I shows the 
eight possible response patterns when the total 
item response and two component item responses 
are measured. To estimate the model parameters 
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Figure I. Scatterplot of item component difficulties. 
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from the joint response patterns, each possible 
pattern must be linked to terms in the model. 
Thus, the various patterns depend on the joint 
probabilities of the components, P,1  and p„ and 
terms to reflect the linkage of the component to 
the total. The term a is the probability of solving 
the total item when the components are solved, 
whileg is the probability of solving the total item 
when one or more components are failed. 

The MLTM for the joint response pattern of 
the component responses, Xis, and the total re-
sponse, Xia  for person s on item i is given as fol-
lows: 

P(.X.,„x„.)=[gx' (1- g)l l-rix' 

H A. ' (1- „Y -x `11-1'  [nP,s'Q k̀ -xl, 
	(6) 

where xk  is the response to component k, x 1. is the 
response to the total item and Pk  is the 1RT model 
probability for component k, all of which are 
defined for the individual response pattern of 
person s on item i. The terms a and g are defined 
as above. fn Equation 6, the exponents control 
the entry of terms into the probability of a spe-
cific response pattern. 

Embretson (1984) presents proofs that show 
how the parameters may be estimated separately 
from each component and then linked to the total 
item response through response pattern frequen- 

cies. In this formulation, MLTM component pa-
rameters can be estimated with readily available 
software for the Rasch model, such as 
W1NSTEPS or RUMM or even as an option in 
BILOG-MG. The linkage parameters, a and g, 
can be estimated by the relative frequencies of 
response patterns, over persons and items, as fol-
lows using the information in Table 2: 

a = fri 
(11, 1 +.1, j and 	 ( 7) 

g = (fr3 + fps +fr7)/ (fri + fps 1--fr7 + .44 + 1;6 
÷fr8). 

To demonstrate the model, item response data 
were simulated so that the true parameters are 
known, Data were simulated for 15 items and 
2,000 persons. The component abilities were ob-
tained as random samples from a bivariate normal 
distribution with means of zero, variances of 1 and 
an intercorrelation of zero. The item parameters 
were selected to yield total item probabilities in 
the range of .4 to .6 and to have moderate to strong 
differences in component difficulty, so that the 
impact of varying combinations of ability wilt be 
distinguishable. Item responses were then gener-
ated by computing the modeled probability to each 
item for each person and comparing the result to a 
random draw from a uniform probability distribu-
tion ranging from .00 to 1.00. If the computed 
probability exceeded the random draw, the com-
ponent was passed; otherwise, the component was 
failed. Total item probabilities were computed as 

Working Memory Capacity 

Figure 2. Scatterplot of component abilities. 
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the product of the component probabilities and 
similarly compared to a random draw from a uni-
form probability distribution. 

Component item parameters were estimated 
by applying DeBoeck and Wilson's (2004, pp. 
68-71) formulation of the Rasch model as a non-
linear mixed model, using the SAS NLMIXED 
program. Although a standard Rasch model pro-
gram could be applied, NLMIXED allows more 
flexibility in models and estimation procedures, 
which is important for estimating MLTM from 
the total item response only, as discussed below. 

In the Appendix, SAS syntax is shown for 
the "Single Component Rasch Model", which is 
applied to item response data for each compo-
nent separately. The data must be structured as a 
single response vector, with each item on a sepa-
rate line for each person. Also, dummy variables, 
one for each item, must be included on each line 
to indicate the item. 

Since MLTM is a special type of IRT model, 
it is important to demonstrate the adequacy of 
the estimation procedures. Figure 3 shows the 
recovery of the component item difficulties from 
the simulated data. It can be seen that the regres-
sion of the estimates on the true parameter val-
ues yielded a very high squared multiple correla-
tion (i2 = .9977), with the regression coefficients 
(b = 1.007, a = —.025) close to a perfect scaling 
of 1 and 0, respectively, as expected. 

The MLTM a and g parameters were esti-
mated from the response pattern frequencies in 
Table 2 as follows: 

a= 8610 / (8610 + 4910) = .637, and 

g= (2110+2241 +353)/(2110+2241 +353 
+ 5184 + 5170 + 1311)=.287. 

Since the average product of the components over 
items was .64, the a parameter accurately reflects 
the probabilistic method by which the product of 
the component probabilities was related to the 
total task outcome. 

Table 3 shows the correlation of the esti-
mated component abilities with the true abilities 
under the joint response pattern method, which 
is labeled as "Component Only". The correla-
tions are quite high (.906), as expected. 

Thus, the estimation procedures adequately 
recover the (known) parameters. In real data, it 
is important to evaluate the fit of the model to 
both the component subtask responses and to the 
total item. For the component subtask data, the 
adequacy of the IRT model (i.e., Rasch model) 
can be evaluated by standard methods for single 
dimensions. Hence, these will not be elaborated 
here. However, the predictability of the total item 
response from the component estimates is a 
unique concern in applications of MLTM and will 
be elaborated here. 

The fit of the component model to the total 
item can be determined in two different ways (see 

b.1.007 a ..025 

Rsq . 0.9977 

-25 	 1.5 	 I 	 -.5 	 0.0 	 .5 

Component Parameter 

Figure 3. Item Parameter Recovery from MLTM: Joint Response Pattern Method 

' .5 
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Embretson, 1984). First, a goodness of fit test 
can be performed for each item. That is, the fre-
quency of responses across score groups varying 
in total score is compared to the frequency pre-
dicted by the component model. Second, ob-
served total item probabilities can be compared 
to predictions from the component model. In this 
case, expected and observed probabilities are 
correlated for persons and for items. 

Simultaneous formulation of the model. In 
this formulation of the model, the component 
parameters are estimated simultaneously rather 
than as joint response patterns. This method re-
quires a special data structure. The complete com-
ponent and total item response data are treated 
as a single response vector, such that the response 
to each task or subtask for each item for each 
person is a separate line. That is, if an item has 
two component tasks, then three lines are required 
for the responses to the total item and the two 
component subtasks. 

Table 4 shows required data structure. In 
Table 4, each item has a total task response and 
two subtask responses, which are nested under 
each subject. Y is the response given, while XI 
and X2 indicate the involvement of the compo-
nents. For example, if X1 =1 and X2 =0, then 
the response in Y is to the subtask for the first 
component. If both X/ --/ and X2=1, then the 
response in )' is for the total task. Dummy vari-
ables are further needed to indicate the item. For 
example, for each subject, Item I is equal to I 
exactly three times, to designate the total task 
response and the two component subtask re-
sponses for item 1. Standard program packages, 
such as SPSS, have a menu- driven algorithm for 
transforming data to this structure. 

The single response vector, denoted as y, 
includes the response x j,k  for each person s, each 
item i on all components (and total) k. To esti-
mate component parameters, dummy variables, 
ck , are needed to define data type (i.e., Compo- 

Table 2 

Descriptive Statistics for META/1 Response Patterns 

Pattern 
	

Responses 	Frequency 

1 111 8610 

2 110 4910 

3 011 2110 

4 010 5184 

5 101 2241 

6 100 5179 

7 001 353 

8 000 1311 

Note: Each pattern describes responses to two components and total, respectively. 

Table 3 

Correlations of True and Estimated Trait Levels Under Different Estimation 
Methods 

Thelal 
Parameter 

Theta2 
Parameter 

Thetal Parameter 1 .014 

Theta2 Parameter .014 1 

Thelal Simultaneous .933 .021 

Theta2 Simultaneous .024 .934 

Thetal Component Only .906 .002 

Theta2 Component Only .016 .906 

Thetal Quasi-Bayesian .821 .187 

Theta2 Quasi-Bayesian .078 .816 
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nentl , Component2, etc.). The total item re-
sponse would be indicated by "1" for al I c k . Thus, 
MLTM is formulated as follows: 

p(x.)=nk[PkTk-r7. 
	(8) 

In this formulation of the model, the c, ex-
ponents determine whether or not a probability 
from component k is relevant to the response y. 
A Rasch model underlies each component prob-
ability, Pk , as indicated in Equation 3. A section 
in the Appendix shows the NLMIXED syntax for 
the simultaneous estimation method for MLTM 
in the section. "MLTM: Simultaneous Compo-
nent and Total". 

Figure 4 shows the recovery of item param-
eters from the simultaneous estimation method. As 
with the joint response pattern estimation proce-
dure the regression of the estimates on the true 
parameter values yielded a very high squared mul-
tiple correlation ( 2 = .9930), with the regression 
coefficients (b= 1.057, a = —.031) close to a per-
fect scaling of 1 and 0, respectively, as expected. 

Table 3 shows the correlation of the esti-
mated component abilities with the true abilities 
under the simultaneous method. It can be seen 
that the correlation is somewhat higher than the 
joint response pattern method for both compo-
nents. This increased correlation represents the 
increased information provided by including the 
total item response in the simultaneous solution. 

Figure 5 shows the standard errors for each 
ability level on Component 1 under the two dif-
ferent estimation procedures, component only 
estimates (i.e., from the joint response pattern 
method) and simultaneous solution estimates. It 
can be seen that for all abilities, the simultaneous 
solution lead to generally lower standard errors. 
Again, this reflects the increased information pro-
vided by the total response for estimating the 
component ability lowers the standard errors. 

As described above for the joint response 
estimation procedure, fit may be assessed for both 
the components and for the total response. These 
methods will not be repeated here, as they are 
shown in Embretson (1984). 

Table 4 

Sample Data Setup fir Simultaneous Model Estimation: Four Items and Two 
Persons 

Y 	X1 	X2 
	

ITEM1 	ITEM2 ITEM3 ITEM4 

ID 	1 

2 

0 	1 	1 
0 	1 	1 
0 	1 	1 
0 	1 	1 
1 	1 	0 
1 	1 	0 
1 	1 	0 
1 	1 	0 
0 	0 	1 
0 	0 	1 
0 	0 	1 
o 	0 	1 
0 	1 	1 
0 	1 	1 
0 	1 	1 
0 	1 	1 
1 	1 	0 
1 	1 	0 
1 	1 	0 
1 	1 	0 
0 	a 	i 
0 	0 	1 
0 	0 	1 
0 	0 	1 

1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1 
1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1 
1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1 
1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1 
1 0 0 0 
o 1 0 0 
0 0 1 0 
0 0 0 1 
1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1 
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Simultaneous estimation of GLTM. With 
GLTM, the scored features of items replace com-
ponent item difficulty in the model. Thus, the 
model for the simultaneous formulation of the 
GLTM is identical to Equation 8, except that the 
component item probability, Pk , is given by a 
weighted combination of item features, as shown 
in Equation 5. To estimate GLTM for data on 15 
items, the data file must contain scores for items 
on stimulus features that are related to compo-
nent or total difficulty. In the Appendix, the code 
given under "Single Component LLTM" can be  

used to estimate the weights for the scored stimu-
lus features in a single component with two scored 
stimulus features, ql and q2. For GLTM, the code 
for GLTM: Simultaneous Component and Total 
Estimation reflects the replacement of the dummy 
variables for items with the scored stimulus fea-
tures for each component. 

To illustrate the model on the 15-item simu-
lation data set, two scores for stimulus features 
were simulated for each component. The mul-
tiple correlation of the scores with true compo-
nent item difficulty was .751 and .647, respec- 

3 

2 

1 

0 

-2 

  

o Total Item Only 

Rsq= 0.9830 

thm origin 

o Components and 

Tole! hem 

Rog = 0.9903 

lbw engirt -3 

-3 0 
	

-2.0 
	

-1.0 
	

0.0 
	

1 .0 
	

2.0 
	

3.0 
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Figure 4. Item Parameter Recovery from MLTM: Simultaneous and Quasi-Bayesian Methods. 
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Figure 5. Ability Measurement Erors: Single Component versus Simultaneous Component and Total Item. 
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tively, for Component 1 and Component 2. With 
GLTM, the quality of the mathematical model 
for the data is evaluated at the component level. 
Table 5 shows tests for goodness of fit for each 
component. To evaluate model fit (see 
Embretson, 1997), three alternative GLTM's were 
specified for each component as follows: I) a null 
model, in which all items are assumed equal in 
component difficulty, 2) the cognitive model, in 
which the component item difficulty is predicted 
by the scored features and 3) a saturated model, 
in which each item has an estimated difficulty on 
each component (i.e., the Rasch models in 
M LTM.). A goodness of fit statistic to determine 
if the cognitive model provides significant pre-
diction is --2 times the difference in the log like-
lihood from the null model to the cognitive model. 
This statistic is approximately distributed as x 2 

 with degrees of freedom equal to the change in 
the number of parameters. For example, a con-
stant component item difficulty is estimated for 
the null model while the weights for two content 
variables and a constant are estimated for the 
cognitive model. Thus, the difference in the num-
ber of estimated parameters is two, Evaluating 
the significance of this fit statistic is analogous 
to evaluating the significance of the regression 
of component item difficulty on the scored con-
tent features. The cognitive model yields sig-
nificant prediction for Component 1 (3e = 5136, 
elf = 2,p < .001) as well as for Component 2 (x 2 

 = 3203, elf = 2,p < .001). 

A second significance test can be applied to 
evaluate the significance of information about 
item difficulty that is not predicted by the model. 
That is, the cognitive model is compared to the 
saturated model (i.e., the Rasch model). It can 
be seen in Table 5 that the change in the number 
of parameters is 12 and that the goodness of fit  

values are quite large for both Component 1 (x 2  
=3728, df —12, p<.001) as well as for Compo-
nent 2 (x 2 =5688, df =12, p<.001). These tests 
indicate that the cognitive model does not cap-
ture all the differences in component difficulty 
between the items. 

Last, a fit index (Embretson, 1997) can be 
computed, based on the pattern of likelihoods 
between the three models for each component. 
That is, the fit index h, is given as follows: 

h = [-2 In 	— (-2 In L,,,, odd )]/ 

[-2 In 	— (-2 In 	I". 	(9) 

For the data in Table 5, the fit index for Compo-
nent 1 is computed as follows: 

= [116964 — 111828)]/ 

[116964 — 108090]'x' = .762. 

This value is close to the multiple correla-
tion of .751 of the true component item difficul-
ties with the scored variables. The fit index for 
Component 2 was computed as .600 which is rea-
sonably close to the multiple correlation of .647 
for the true parameters. 

Table 6 shows the GLTM parameter esti-
mates and standard errors for the scored features 
on each component. It can be seen that the pa-
rameter estimates are large relative to their small 
standard errors; thus, all parameter estimates were 
statistically significant. 

Also in Table 6 are estimates of the compo-
nent ability variances. The estimates were sub-
stantially less than 1, which was the true generat-
ing value. These lower estimates result from the 
predicted component item difficulties having a 
more restricted range of values than the true item 
parameters. This is analogous to a regression 
effect in predicting item difficulties. 

Table 5 

Fit Statistics. for A heinative GLTMS of Simulated Data. 

Model 

Component 1 Component 2 

—2lnL doff z2  —2lnL Adf a x e 
 

Null 116964 117179 
Cognitive 111828 2 5136 113976 2 3203 
Saturated 108090 12 3728 108288 12 5688 
Fit Index .762 .600 
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Iota! Item Only 

Typical test data does not include compo-
nent item responses. If components can be ex-
tracted from the total item response only, the util-
ity of MLTM and GLTM would be greatly 
increased. Previous studies (Embretson, 1995; 
Embretson and McCollam, 2000) were able to 
extract some component information (i.e., the 
person abilities) from the total task alone. These 
studies applied the Maris (1995) algorithm to 
estimate component abilities by constraining the 
component difficulties in the items. This is a re-
strictive set of conditions for practical applica-
tion. Further, the program that was used, 
COLORA, is no longer readily available. 

Yang and Embretson (2004) have developed an 
initial version ofaquasi-Bayesian estimation proce-
dure for the components, using the total item response 
only. Their procedure is implemented through the 
SAS NLMIXED program. Since the procedure is 
new and needs further development for practical ap-
plication, the syntax is not given in the Appendix. 
However, results on the simulated data set will be 
presented to illustrate the degree of effectiveness that 
can be obtained from the procedure. 

Figure 4 shows the regression of estimated 
component item difficulties on the true param-
eters for both the total item and component 
method (simultaneous method above) and the 
quasi-Bayesian method. It can be seen that the 
squared multiple correlation for the quasi-Baye-
sian procedures (r2 = .9830) is nearly as good as 
for the total item and component outcomes to-
gether (r2 = .9983). Table 3 presents the correla-
tion of the quasi-Bayesian person estimates with 

Table 6  

the true generating abilities. It can be seen that 
although the correlations are lower than either 
case when component subtasks are available, the 
correlations are still above .80. Thus, the feasi-
bility of the quasi-Bayesian procedure is demon-
strated. Further developments are needed to as-
sure its practical scope. 

Summary 

Multidimensionality is an inherent aspect of 
cognitive measures that employ complex items 
to measure ability. Traditional compensatory 
multidimensional IRT models were reviewed and 
shown to not adequately represent contemporary 
views of the latent sources of multidimensional-
ity. That is, complex items involve multiple pro-
cessing stages, each of which must be completed 
correctly to solve the item. The compensatory 
feature in the traditional multidimensional mod-
els would allow low ability for one stage to be 
compensated by high ability for another stage. 
Conceptually, however, an unrelated ability 
should have no impact on completing a given 
stage. Thus, multicomponent latent trait mod-
els, MLTM and GLTM, were developed to more 
adequately represent the underlying sources of 
multidimensionality. 

In this paper, MLTM and GLTM are de-
scribed mathematically and compared to tradi-
tional multidimensional IRT models. Applica-
tions of MLTM and GLTM have three important 
implications: 1) the fit of the postulated cogni-
tive model may be assessed, thus contributing to 
construct validity for the measure, 2) item differ-
ences in component difficulty may be estimated, 

GLTM Component Item Parameter Estimates from NLMIXED. 

Variable 
Parameter 
Estimate 

Standard 
Error DF t-Value Prob 

Component) [-2IogL=111828] 
Predictor 1 (c1b1) 0.5323 0.01124 1999 47.36 <.0001 
Predictor 2 (c1 b2) 0.4045 0.01236 1999 32.73 <.0001 
Constant (d) -0.4568 0.02140 1999 -21.35 <.0001 
Person Var. (v1) 0.6920 0.03248 1999 21.31 <.0001 

Component2 [-2logL=113976] 
Predictor 1 (c2b1) 0.2915 0.01273 1999 22.90 <.0001 
Predictor 2 (c2b2) 0.4862 0.01300 1999 37.41 <.0001 
Constant (d) -0.3106 0.01994 1999 -15.58 <.0001 
Person Var. (v2) 0.5505 0.02623 1999 20.98 <.0001 
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which permits items to be selected for targeted 
sources of cognitive complexity and 3) individual 
differences in component difficulty may be esti-
mated, which permits the differential validity of 
the underlying abilities for predicting external 
measures to be assessed. 

Examples of applications and estimation pro-
cedures are described for both MLTM and 
GLTM. A new estimation algorithm, which per-
mits estimation of component levels from the total 
item alone, is described. This procedure greatly 
increases the utility of both MLTM and GLTM, 
as they can be applied to standard item response 
data. More research is needed to make this proce-
dure more practically available. 

Footnote 

' Susan Embretson has also published as Susan 
Whitely. 
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Appendix 
SAS Syntax.  for PROC NLMIXED 

Single Component Rasch Model 

/*component 1 only*/ 

proc nlmixed data =jam.mltml2 noad; 

parms clbl-c1b12=0 

v1=1; 

blpar = clbl * iteml+c1b2"illem2+clb1'item3+clb4"iteml+c1b5"item5+c1b6*item6 
+c1b 7* item 74- clb8 . itemBi- clb9*item9tclb10*item10÷clbli'itemll+c1b12*item12; 
etal =thl-blpar; 

eta =xl*etal; 

p =expleta)/(1+exp(eta)); 

model y - binomial(1,p); 

random thl -normal(0,v1) 

subject =id; 

run: 

Definitions. To estimate parameters for items, dummy variables must be created for each item: item 1, 
item2,.....item15. To define values for trait level, a unique identifier must be assigned to each person. In the 
syntax above, "id" is the indicator variable for persons. 

Single Component LLTM 

/*component 1 only litre/ 

proc nlmixed data =jam.11tmdata2 noad; 

perms clbl-c1b2=0 d=0 

v1=1; 

blpar = clbl"ql+clb2*q2"-d; 

etal =thl-blper; 

eta =xl.etal*1.7; 

p =exp(eta)/(1+exp(eta)); 

model y -binomial(1,p); 

random thl -norma110,v1) 

subject =id; 

run; 

Definitions. To estimate parameters for the scored stimulus features, the data set must include scores, 171 , 

q./....c/K., on each line. To define values for trait level, a unique identifier must be assigned to each person. I n 
the syntax above, "id" is the indicator variable for persons. 

MLTM Simultaneous Component and Total 

/'Simultaneous solution"; 

proc freq data =jam.mItm5r; 

tables indexl / missprint; 

title '1-WAY FREQUENCY TABLE WITH MISSPRINT OPTION': 

proc nlmixed data =jam.mltm5r noad qpoints=5: 

perms clbl-c1b15 = 0 	/*difficulty parameters for component I*/ 

c2b1-c2b15 = 0 	 /*difficulty parameters for component 2"/ 

al=1 	a2 =1; 	 /*variances of thetas for component 1 and 2"/ 

blpar-clbl*iteml+c1b2item2+clb3"item3+clb4item4+clb5"item5+cib6*item6 

+c1b7*item7+clbB''itemB+clb9"item9i - c1b10*itern104-clbll*item11+ 

clb12*iteml2i.c1b13"item13+clb14*iteml4i - clb15*item15; 

b2par=c2b1"iteml+c2b2*item2+c2b3*item3+c2b ,l'item4+c2b5" - item5+c2b6*item6 

+c2b7"item7+c2bB*item0+c2b9"item9+c2b10*itenn10+c2b11 - item11+ 

c2b12*item12+c2b13'iteml3q - c2b14 * item1 4 +c2b15'item15; 

etal =1.7"a1*(thl-blpar); 	/*thl: theta on component 1*/ 

(Appendix continued on next page) 
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(Appendix continued from previous page) 

eta2 =1.1*a2*(th2-b2par); 	/.th2: theta on component 2./ 
eta 	1 'eta 1+x2*eta2 ; 
deco  =(1+xl*-exp(etel))*(14-x2'exp(eta2)); 
p =exp (eta ) /deno; 
model transl -binomial(1,p); 
random thl th2 -normal(10,0),(1,0,11) 

subject =id out-mItm5sco; 

GLTM Simultaneous Component and Total 

/*Simultaneous solution./ 
proc freq data --jam.mltm5r; 

tables indewl / missprint; 
title '1-WAY FREQUENCY TABLE WITH MISSPRINT OPTION'; 

proc nImixed data --jam.mltm5r noad gpoints-5; 
perms clbl-clb2 = 0 	/*stimulus weight parameters for component 1./ 
c2b1-c2b2 = 0 	/*stimulus weight parameters for component 2*/ 
a1=1 	a2 =1; 	 /*variances of thetas for component 1 and 2*/ 
blpar=c1bl*gl+c1b2*12; 
b2par=c2b1*gl+c2b2*(12; 
etal =1.7*a1*(thl-blpar}; 	/*thl: theta on component 1./ 
eta2 =1.7*a2*(th2-b2par); 	/*th2: theta on component 2./ 
eta =xl*etal+x2*eta2; 
deco =(1+x1*exp(etal))*(1+x2*exp(eta2)); 
p =explotaUdeno; 
model transl -binomial(1,p); 
random thl th2 -normal([0,01,(1,0,11) 

subject =id out--mItm5sco; 
run; 
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