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Complex measurement tasks, such as ability
and achievement test items, are usually multidi-
mensional, rather than unidimensional, in nature.
Contemporary views on cognitive theory regard
even the most simple ability items (Sternberg and
Perez, 2005), such as a vocabulary synonym task
ol a lwo-dimensional rotation, as involving mul-
tiple stages. In two-dimensional rotation tasks,
for example, the goal is to find the figure that is a
rotation of the figure in the stem. Mulliple stages
are involved i this simple task, including encod-
ing the figures in the stem and alternatives, men-
tally rotating the stem figure and then comparing
features ol the stem figure to the alternatives. The
difficulty ofthe various processing stages may vary
between items and between persons, thus creating
multidimensionality.

Assessing the levels and the sources of mul-
tidimensionality in an item domain is important
not only for item selection, but also for item re-
vision and item development. Both the dimen-
sionality of'the resulting measure (i.e., unidimen-
sional versus multidimensional) and the nature
of the construct that is measured depends on an
adequale assessment of dimensionality in the item
domain. As pointed out by Messick {1995), both
construct-relevant and construct-irrelevant
sourees of variation may exist in the broader item
domain,

The multidimensional normal ogive model
{Bock, Gibbons and Muraki, 1988) or the multi-
dimensional logistic model (Reckase and
McKinley, 1991} can be applied to identify mul-
tiple dimensions in the data and to assess the
dependence of each item on the dimensions. The
approach is similar to a factor analysis of items;
in fact, under certain conditions the IRT model
and the factor model for binary data are identi-
cal (Takane and Deleeuw, 1987). If the central
dimension in the items is the target dimension,
then only items with no signiticant discrimina-
tions on the smaller dimensions would be selected
for the measure.

Although the traditional multidimensional
IRT models described above, as well as factor
analysis, are often applied to understand dimen-
sionality in the item domain, they are somewhat

limited in assessing complex cognitive tasks.

First, since these models are expleratory, the na-
ture of the central dimension is unclear. It could
be that a smaller dimension, or another rotation

of the dimensions, would be best to reflect con-
struct-relevant sources of variation. Second, the
mathematical relationships in the traditional

multidimensional IRT models are not appropri-
ate for assessing the multiple processing stages
in complex items. In the multidimensional IRT
models and the factor models, a compensatory

relationship is specified between the dimensions.
As claborated below, a compensatory model does
not properly reflect the sequential dependency

among the processing stages and hence, does not
assess adequately the sources of multidimension-
ality in the item domain.

This paper contains several sections. First,
altemative IRT models are described mathemati-
cally and compared for how they constder the
nature of muitidimensionality in item demains.
Specifically, the traditional compensatory multi-
dimensional models are contrasted with the mul-
ticomponent latent trait model (MLTM) and a
related medel. Secend, some applications are
described to provide examples. Third, practi-
cal estimation procedures are described along
with illustrative results that show their relative
advantages. Fourth, syntax for the estimation
of ML'TM and a related model are presented in
the Appendix.

Multidimensional IRT Models

Compensatory multidimensional models. In
the compensatory models, the relative strength
of the multiple dimensions in an item is indicated
by the discrimination parameters. For example,
in the multidimensional logistic model (Reckase
and McKinley, 1991), the probability of an item
response is given as follows:
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where X_is the response of person s to item 7, 8
is the trait level for person s on dimension m, 3,
is the difficulty of item / and o is discrimina-
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tion for item ¢ on dimension m. In this model,
the probability that a person passes an item de-
pends on the difficulty of the item and a weighted
combination of the multiple abilities, £« 0_.
A low level on cne trait can be compensated by
an exceptionalty high level on another trait for
items with significant discriminations on more

than one dimension.

The multidimensional normal ogive model
(Bock, Gibbons and Muraki, 1988) is similar to
the multidimensional logistic model but a differ-
ent function relates the item response to the trait
composite. That is, the model specifies a cumu-
lative normal function, which produces an item
characteristics curve which is very similar to the
logistic model. One advantage of the normal
ogive function, however, is that the resulting per-
son and item estimates are directly related to bi-
nary factor analysis.

Multicomponent latent trait models
(MLTM). Although the multidimensional item
response models can be applied to complex tasks,
they are not usually appropriate to assess the
cognitive sources of multidimensionality, Cog-
nitive models for tasks typically postulate a flow
of information from one stage to another. The
stages are sequentially dependent; correct pro-
cessing on a later stage requires correct informa-
tion frem earlier stages. Thus, if a task depends
on the joint outcome to several processing stages,
a compensatory model is inappropriate. High
trait levels for processing the later stages cannot
compensate for low trait levels (and likely incor-
rect processing) on the earlier stages. A more
appropriate model for multidimensionality would
be based on a continued product of processing
outcome probabilities, as follows:

P(XF.TT = 1) ZHkP(Xi.\'k)s (2)

where P(X,_= 1)is the probability of success for
person s on item i and ITP(X, ) is the product of
success on each processing component, £, given
the correct outcome of the preceding component.

The multidimensional latent trait model
(MLTM; Whitely', 198C) combines a continued
product model of the response process as in Equa-
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tion 2 with an IRT mode] to reflect individual

differences in component trait fevels. Thus, both
component trait fevels and component item dif-
ficuities are estimated. In MLTM, each compo-
nent response probability, PX ), depends on the
difficulty of the compenent in the items and on
the person’s component trait level, according (o
a Rasch model, as follows:

CXP(B,\L - B, )

P(,\”,.A};e,,ﬁl)_ﬂim, 3)
where @ is the trait level of person s on compo-
nent & and 3_ is the difficulty of item 7 on com-
ponent k. Notice that the right side of the cqua-
tion contains Rasch models for the probability
of success on each component. Other param-
eters, such as guessing, may be incorporated into
MLTM as well (see Embretson, 19853,

A generalization of MLTM, the general com-
ponent latent trait model (GLTM, Embretson,
1984), incorporates a mathematical mode! to re-
late component item difficulty to item content
features. Like the linear logistic test model
{LLTM, Fisther, 1973), item difficulty is givea
by the weighted sum of underlying stimulus fac-
tors, E}Mm. In GLTM, the mathematical mode! ig
at the component level. For example, paragraph
comprehension items, in which a short paragraph
is followed by a question based on the paragraph,
has two major components, text represeatation
and deciston (see Embretson and Wetzel, 1987
and Gorin and Embretson, in press). The diffi-
culty of each component is related to stimulus
features in the item; text representation depends
on vocabulary level and syntactic complexity
while decision depends on the inference level and
the amount of relevant text for the question. For
GLTM, scores on these variables for each item
become part of the model. That is, component
item difficulty, ', is predicted from the scored
variables as follows:

ﬂf‘k = Zm ??Jmlqiﬁ'm +?7(}a (4J

where B, is the score of stimulus factor s on
i . .-

component k for item 7,1, is the weight of stimu-

lus factor m in component & and 1, is an inter-
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