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Gene expression profiles of malignant tumors surgically removed from ovarian cancer patients pre-treated with chemotherapy
(neo-adjuvant) prior to surgery group into two distinct clusters. One group clusters with carcinomas from patients not pre-
treated with chemotherapy prior to surgery (C-L), while the other clusters with non-malignant adenomas (A-L). We show here
that although the C-L cluster is preferentially associated with p53 loss-of-function (LOF) mutations, the C-L cluster cancer
patients display a more favorable clinical response to chemotherapy as evidenced by enhanced long-term survivorships. Our
results support a model whereby p53 mediated cell-cycle-arrest/DNA repair serves as a barrier to optimal chemotherapeutic
treatment of ovarian and perhaps other carcinomas and suggest that inhibition of p53 during chemotherapy may enhance
clinical outcome.
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INTRODUCTION
Ovarian cancer is the most deadly of gynecologic malignancies

and the fourth leading cause of all cancer deaths of women in the

United States [1]. Because the disease is essentially asymptomatic

early in its progression, approximately 70% of all ovarian cancers

are not diagnosed until advanced stages (FIGO stage III or IV)

when long-term prognosis is poor (,20% long-term survival) [2].

The current standard treatment for patients with advanced

ovarian cancer is cytoreductive surgery followed by platinum/

taxane combination therapy [3]. While this treatment can be

effective in the short-term, 80% of patients relapse within 5 years.

The failure of current therapies to significantly improve the long-

term survivorship is believed to be due primarily to the

development of chemotherapy resistance, e.g. [4,5].

In recent years, significant effort has focused on the identification

of molecular markers that can predict the likely response of ovarian

cancer patients to chemotherapeutic treatments with the ultimate

goal of developing optimal treatments for individual patients. An

experimental approach successful in predicting the outcome of

chemotherapy treated patients is gene expression profiling [e.g. 6–8].

Several such profiling experiments have been carried out on ovarian

tumor samples removed from patients prior to chemotherapy

treatment [e.g. 9, 10]. Collectively, these studies indicate that gene

expression profiling of ovarian and other cancers holds significant

promise, not only as prognostic indicators of clinical outcome, but as

a means of identifying specific molecular abnormalities that may

underlie various manifestations of the disease.

Here, we report on a gene expression profile analysis of ovarian

carcinoma samples obtained after neo-adjuvant chemotherapy

(carboplatin/taxol), samples from primary surgical resections, and

non-malignant ovarian adenoma tissues (Table 1). Our results

demonstrate that the gene expression profiles of the primary

carcinomas and non-malignant adenomas cluster into two distinct

groups. The neo-adjuvant treated patient samples cluster with

either the primary carcinoma samples or with the non-malignant

adenomas. The neo-adjuvant samples that clustered with the

primary carcinomas were preferentially associated with LOF

mutations in the p53 gene and displayed an expression profile

characteristic of a highly proliferative state. Comparison of our

expression profiles with the previously established ‘‘Ovarian

Cancer Prognostic Profile’’ (OCPP) [6] demonstrated a significant

overlap in profiles, and predicted a more favorable outcome for

patients whose samples clustered with the primary carcinomas.

Survivorship profiles of patients involved in our study were found to

be consistent with this prediction. Our findings indicate that p53

mediated cell-cycle-arrest/DNA repair serves as a barrier to optimal

chemotherapeutic treatment of ovarian and perhaps other carcino-

mas and suggest that inhibition of p53 during chemotherapy may

enhance the long-term survivorship of ovarian cancer patients.

RESULTS

Gene expression profiles of ovarian carcinomas from

neo-adjuvant patients cluster into two groups
Unsupervised clustering of the expression profiles of all of the

genes detected on the Affymetrix HG_U95Av2 GeneChip

microarrays was performed on ovarian adenomas (AD) and

carcinomas from neo-adjuvant (CC) and untreated (CA) patients.

This initial unsupervised analysis was performed using average

linkage of Euclidian distance on all 9,106 probe sets in which the

signal from at least one sample exceeded an arbitrary threshold
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(signal$32). The resulting clustering pattern (Figure 1A) divided

the samples into two main groups. The carcinomas (CA) and

adenomas (AD) from patients not receiving chemotherapy formed

two distinct and separate clusters, while the neo-adjuvant

treatment carcinomas (CC) were divided equally between these

two groups. These two groups were designated ‘‘carcinoma-like’’

(C-L) and ‘‘adenoma-like’’ (A-L) respectively. These two main

clusters were very robust and were not changed if the samples were

Table 1. Patient samples analyzed in this study.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cluster Sample Malignant Potential Histological Information Stage/Grade Age at surgery

A-L

AD64 benign Serous cystadenofibroma na 84

AD77 benign Serous cystadenofibroma na 51

AD97 benign Serous cystadenofibroma na 61

AD125 benign Serous cystadenoma na 61

AD132 benign Serous cystadenoma na 47

AD146 benign Simple cystadenoma na 74

AD159 benign Simple cystadenoma na 70

AD172 benign Simple cystadenoma na 61

AD221 benign Simple cystadenoma na 67

AD300 benign Serous cystadenofibroma na 71

CC9 invasive malignant Serous papillary adenocarcinoma IV/2 51

CC36 invasive malignant Serous papillary adenocarcinoma III/3 66

CC150 invasive malignant Serous papillary adenocarcinoma IIIc/3 65

CC184 invasive malignant Serous papillary adenocarcinoma III/3 67

CC279 invasive malignant Serous papillary adenocarcinoma IIIb/3 62

CC286 invasive malignant Serous papillary adenocarcinoma IIIc/2 52

CC303 invasive malignant Serous papillary adenocarcinoma IIIc/3 44

CC310 invasive malignant Serous papillary adenocarcinoma IV/2 41

CC311 invasive malignant Serous papillary adenocarcinoma IIIc/2 51

CC314 invasive malignant Serous papillary adenocarcinoma III/2 79

CC325 invasive malignant Serous papillary adenocarcinoma IIIc/2 75

CC326 invasive malignant Serous papillary adenocarcinoma IV/3 72

CC338 invasive malignant Serous papillary adenocarcinoma IIIc/3 62

C-L

CA2 invasive malignant Serous papillary adenocarcinoma IIb/3 61

CA4 invasive malignant Serous papillary adenocarcinoma IIIb/3 48

CA23 invasive malignant Serous papillary adenocarcinoma IIIa/3 51

CA66 invasive malignant Serous papillary adenocarcinoma IV/3 74

CA99 invasive malignant Serous papillary adenocarcinoma III/3 75

CA183 invasive malignant Serous papillary adenocarcinoma III/2 66

CA196 invasive malignant Endometriod adenocarcinoma III/2 45

CA204 invasive malignant Endometriod adenocarcinoma Ic/3 47

CA212 invasive malignant Serous papillary adenocarcinoma IIIc/3 59

CC29 invasive malignant Serous papillary adenocarcinoma III/3 66

CC76 invasive malignant Serous papillary adenocarcinoma IIIa/2 49

CC94 invasive malignant Serous papillary adenocarcinoma IIIc/1 55

CC187 invasive malignant Serous papillary adenocarcinoma IIIc/2 53

CC199 invasive malignant Serous papillary adenocarcinoma IIIc/3 69

CC253 invasive malignant Endometriod adenocarcinoma IIIc/3 56

CC255 invasive malignant Undifferentiated carcinoma IIIc/2 57

CC259 invasive malignant Serous papillary adenocarcinoma IIIb/3 58

CC269 invasive malignant Serous papillary adenocarcinoma IIIc/3 68

CC272 invasive malignant Serous papillary adenocarcinoma IIIb/2 83

CC312 invasive malignant Serous papillary adenocarcinoma IIIc/2 64

doi:10.1371/journal.pone.0000441.t001..
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re-ordered, or if the samples were clustered using alternative

metrics such as Manhattan city-block, uncentered correlation, or

Spearman Rank correlation.

To identify a signature of genes that were significantly different

between the A-L and C-L group, we performed supervised analysis

using the Significance Analysis of Microarrays (SAM) software

[11]. Using thresholds of 2-fold change and,1% False Discovery

Rate (FDR), 1,527 probe sets corresponding to 1,334 unique genes

were found to be significantly (p,0.05) different between the C-L

and A-L sample groups (Figure 1B). A heat map giving the names

of each of the 1,527 probe sets is available in the supplementary

material (Figure S1).

To independently test the validity of the differential expression

patterns determined by microarray, we measured the expression

patterns of 3 representative genes in 4 tissue samples using

quantitative real-time polymerase chain reaction (qRT-PCR). In

all cases, the qRT-PCR results of the analyses confirmed the

differences detected in the microarray studies (Figure 2).

Gene Ontology (GO) analysis identifies functional

differences between the C-L and A-L groups
To determine if the 1,334 genes significantly altered between C-L

and A-L groups were enriched for specific biological functional

categories, we analyzed this gene set for enrichment in GO

functional annotations using GOstat [12]. Several functional

categories were significantly (p,0.05) over-represented in this

gene set relative to the total GO categories available on the

U95Av2 GeneChip (Table 2). Most notable were biological

functions involved in the cell cycle, cellular proliferation, cell cycle

checkpoints, stress response, DNA damage, and apoptosis. In

general, the C-L group demonstrated increased expression of

Figure 1. (A) Unsupervised hierarchical clustering of the gene expression pattern of all 9,106 expressed probe sets detected on the HG-U95Av2
GeneChip in 43 ovarian tumor samples. Samples beginning with AD are adenomas, with CA are carcinomas, and CC are patients pre-treated with
chemotherapy. Samples divided into two major clusters termed adenoma-like and carcinoma-like. (B) Hierarchical clustering of the 1,527 probe sets
that were significantly altered (.2-fold, FDR,1%) between the carcinoma-like and adenoma-like samples.
doi:10.1371/journal.pone.0000441.g001
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genes involved in nucleosome assembly, including histone genes,

suggestive of a higher proportion of cells in S phase.

Predictive models accurately distinguish between

the C-L and A-L sample groups
To determine if we could use the expression profiles from these

samples to identify sets of genes that would be predictive of the C-

L and A-L sample clusters, we used both K- nearest neighbor

leave-one-out cross validation (KNNxVal) and KNN randomized

four-fold cross validation methods. For both methods, we built

models using sets of the 30 genes to predict whether ‘‘unknown’’

samples partitioned to one group or the other. Using the

KNNxVal approach, we built 43 models and correctly predicted

the sample class in 42/43 (99%) of the cases. For the KNN

approach, the samples were randomly divided into training sets of

29 cases, and test sets of 14 cases. Models were built using the 29

cases in the training sets and subsequently used to predict the

grouping (class) of the 14 test cases. For these models, the class of

the predicted samples was correctly determined in 95% of the

cases. Because many predictor models were generated (43

KNNxVal and 4 KNN models), we identified the 37 most

predictive genes as those that were used in at least two of the

KNNxVal models and were used in at least one of the KNN

models. The expression profiles, identities, fold changes, and the

number of models in which these probe sets were used, are

presented in Figure 3.

Prediction of CC samples into C-L and A-L clusters was also

achieved with 100% accuracy by support vector machine (SVM)

analysis using GenePattern software.

Altered biological pathways characterize the C-L

and A-L groups
To investigate biological pathways possibly affected by the highly

predictive genes, we performed Ingenuity Pathway Analysis (IPA)

(http://www.ingenuity.com/) on the set of the 37 most predictive

genes used in our predictive models (see above). A number of

pathways were found to be affected by the genes that were

predictive between the C-L and A-L groups (Figure 4). Among the

most significant pathways was the death receptor apoptosis

pathway (p,0.01). Figure 5 shows a simplified canonical Death

Receptor Pathway, with genes increased in the C-L group colored

in red, and genes decreased in C-L group colored in green.

Figure 2. qRT-PCR validation of microarray results. The expression patterns of BCL2, BAX and CCND1 in 4 tissue samples were determined using
quantitative RT-PCR. In all cases, the qRT-PCR results of the analyses confirmed the differences detected in the microarray studies.
doi:10.1371/journal.pone.0000441.g002

Table 2. GO annotations significantly enriched in genes
altered between A-L and C-L groups.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GO
Significant
Genes

Total
Genes Pvalue GO as name

GO:0006955 141 470 2.02E-18 immune response

GO:0000786 16 18 2.89E-09 nucleosome assembly

GO:0007155 103 381 2.89E-09 cell adhesion

GO:0006950 130 621 0.000834 response to stress

GO:0007051 10 16 0.00192 spindle organization
and biogenesis

GO:0000074;

GO:0007049 77 320 0.00192 regulation of cell cycle

GO:0000785 25 77 0.00241 chromatin

GO:0000278 39 143 0.00355 mitotic cell cycle

GO:0008632 13 29 0.00872 apoptotic program

The p-value for GO significance was computed with GOstat (12) using the
Benjamini FDR correction for multiple testing and the HG_U95Av2 gene
collection for comparison. Significant genes indicates the number of genes
significantly altered between A-L and C-L tumors with the given GO annotation.
Total genes indicates the total number of genes with that GO annotation on the
HG_U95Av2 GeneChip.
doi:10.1371/journal.pone.0000441.t002..
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C-L group samples are associated with p53 LOF

mutations
Cisplatin is a DNA damaging agent that is expected to trigger p53-

dependent cell cycle arrest and apoptosis in tumors with wild-type

p53 tumor suppressor function. Several of the GO categories

enriched for genes that differed between the C-L and A-L

expression profile groups relate directly to p53 function. For

example, cell cycle regulation, stress response, DNA repair, and

apoptosis are all profoundly influenced by the status of p53

[13,14]. Downstream targets of p53 that were altered between

these groups were identified using Ingenuity Pathway Analysis

software. A summary of the observed mRNA fold change between

the C-L and A-L samples of genes recognized as downstream

transcriptional targets of p53 is given in Table 3. Of the

downstream targets altered between the C-L and A-L groups,

16/23 (70%) displayed changes in gene expression consistent with

a loss of p53 function in the C-L group. Since we detected no

significant difference in p53 expression among the samples

examined in this study, we explored the possibility that p53 LOF

(loss-of-function) mutations were preferentially associated with the

C-L group. Tissue samples from both the A-L and C-L cluster

groups were assayed for immunohistochemical staining using a p53

antibody (Figure 6). Positive staining has been previously

employed as an indicator of p53 mutations [26]. In our study, 4

out of the 6 positively staining samples were correlated with p53

LOF mutations (see below) while 11 out of the 16 negatively

staining samples were correlated with no or functionally equivalent

mutations (Table 4). Direct testing for p53 LOF mutations was

carried out by DNA sequencing. cDNA was synthesized from

mRNA isolated from 14 CC, 5 CA and 6 AD samples. Regions of

the p53 gene (exons 5-10) previously associated with LOF

mutations [27,28] were amplified using PCR and sequenced

(Table 4). Consistent with previously published results [29], we

found that about half of ovarian cancer samples from patients not

pre-treated with chemotherapy prior to surgery are associated with

p53 LOF mutations. In contrast, only 1 of the 6 AD samples we

examined was associated with known p53 LOF mutations. The 7

CC samples clustering within the A-L group had either no

mutations or were associated with functionally silent mutations in

p53 gene. Remarkably, 6 of the 7 tested CC samples whose

expression profiles clustered within the C-L group were associated

Figure 3. Two-dimensional hierarchical clustering of 43 samples is shown using a set of 36 probe sets that were employed in at least one KNN
predictive model and two or more KNNxVal models. To the right of the clustering pattern are given the probe set ID, HUGO Gene Symbol, number
of models that each probe set appeared, and the fold change for each probe set for carcinoma-like vs. adenoma-like samples. Also shown are the
number and percent correct predictions made by the 43 KNNxVal models and the four KNN models (upper right panel).
doi:10.1371/journal.pone.0000441.g003
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with missense or non-sense mutations and 5 of these have

previously been associated with loss of p53 function. Analysis of the

correspondence of p53 LOF mutations with the C-L and A-L

clusters was significant (p = 0.006 by Fisher’s Exact Test). These

results support the hypothesis that the functional status of p53 is

a major distinguishing characteristic between the neo-adjuvant

(CC) samples clustering in the C-L and A-L groups.

The C-L group profile predicts a more favorable

prognosis

Previous expression profiling studies of ovarian tumors have

examined the overall survival (‘‘Ovarian Cancer Prognostic

Profile’’ or OCPP) [6] and the chemotherapeutic response

(‘‘Chemotherapeutic Response Profile’’ or CRP) [10] of ovarian

Figure 4. Gene interaction network of altered genes associated with cell cycle regulation and cancer as determined by Ingenuity Pathways
Analysis. Genes colored red showed increased expression in carcinomas relative to adenomas and in green had decreased expression in carcinomas
relative to adenomas. Increased levels of cyclin D1 (CCND1), cyclin E1 (CCNE1), cyclin B1 (CCNB1), cyclin B2 (CCNB2), cyclin A2 (CCNA2), E2F3, E2F5,
cyclin-dependent kinases (CDC2 and CDK7) as well as decreased levels of p57 cyclin-dependent kinase inhibitor (CDKN1C) and growth arrest and
DNA-damage-inducible, gamma (GADD45G) are all consistent with carcinomas having higher proliferation rates than adenomas. Interactions of these
genes with p53 are highlighted as green lines.
doi:10.1371/journal.pone.0000441.g004
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cancer patients. To determine if these previously reported

signatures could be used to make predictions regarding the C-L

and A-L groups, we looked for overlap between OCPP and CRP

with genes whose expression was significantly different between

the C-L and A-L groups. While we found a few genes that

overlapped with the CRP set including PDGFRa and RB1, the

overlap between gene lists was not statistically significant (p.0.05).

This lack of overlap may be due to the fact that all of the neo-

adjuvant patients appeared to respond to chemotherapy clinically.

For example, the tumors of all chemotherapy treated patients were

similarly reduced in size and all treated patients displayed an

equivalent reduction in levels of CA 125 prior to surgery (Table 5).

Also relevant is the fact that there was no significant difference in

the age of patients in the C-L and A-L group (Table 1). In

addition, our microarray analysis was conducted after chemother-

apy treatment, and thus subsequent to any differential selection

imposed by the neo-adjuvant treatment. In this regard, it is

relevant to note that none of the untreated cancer patient samples

(CA) clustered within the A-L group, indicating that the cell

composition of the neo-adjuvant cancer patient samples (CC)

displaying the A-L group expression pattern was most likely

selectively amplified in response to the chemotherapy.

In contrast, when the list of genes altered between our C-L and

A-L sample groups was compared to the OCPP, we observed

a significant overlap (p = 0.005 by hypergeometric distribution;

Table 6). Interestingly, 21/23 (91%) of the overlapping genes

displayed changes in expression predictive of a favorable outcome

for the C-L group of samples.

Figure 5. Apoptosis pathway with genes displaying increased
expression (colored red) and decreased expression in carcinoma-like
samples (colored green). Carcinoma-like samples had higher expres-
sion of pro-apoptotic genes such as BAX, BID, CASP8, and AIF. These
samples also expressed higher levels of anti-apoptotic factors such as
IKK, Bcl-xl, and c-IAP2. Adenoma-like samples had higher Bcl-2
expression than carcinoma-like samples.
doi:10.1371/journal.pone.0000441.g005

Table 3. Changes in expression of known p53 target genes
between A-L and C-L group tumor samples.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Target
Gene p53 effect

Fold change
Including
CC

Fold change
CA/AD only

Consistent
with p53
mutation Reference

MMP9 Repressed 11.3 27.7 Y [13]

STK6 Repressed 5.1 8.4 Y [14]

ARPC1B Repressed 4.1 5.5 Y [14]

CDC2 Repressed 4.0 6.5 Y [15]

PDE4B Repressed 3.0 2.9 Y [14]

HMMR Repressed 2.6 3.8 Y [14]

RB1 Repressed 2.5 3.7 Y [16]

PCNA Repressed 2.1 3.0 Y [17]

ID2 Induced 22.1 23.0 Y [14]

PPM1D Induced 22.2 22.0 Y [18]

CAV1 Induced 22.6 23.5 Y [19]

GSTM1 Induced 23.1 25.1 Y [20]

FDXR Induced 23.1 26.8 Y [21]

COL14A1 Induced 23.9 215.6 Y [20]

FHL2 Induced 24.3 26.0 Y [22]

PEG3 Induced 26.3 239.3 Y [23]

SLPI Induced 6.7 9.0 N [20]

S100A2 Induced 5.1 5.2 N [24]

IRF5 Induced 2.8 2.5 N [25]

AKAP12 Repressed 22.9 23.2 N [14]

ENG Repressed 23.7 27.4 N [14]

HS3ST1 Repressed 26.5 29.1 N [14]

Sixteen of 23 p53 target genes (69.6%) were altered in a manner consistent with
a loss of p53 function in ovarian carcinomas.
doi:10.1371/journal.pone.0000441.t003..
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Figure 6. p53 immunohistochemical staining of a serous papillary
adenocarcinoma (sample CA99) displaying strong diffuse p53
immunoreactivity. Intense staining of tumor cells is typically associated
with the presence of point mutational damage in p53 exons 5–8
(magnification X 400).
doi:10.1371/journal.pone.0000441.g006
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C-L group patients survive longer than A-L group

patients
To test the prediction that C-L group patients will have a more

favorable outcome than A-L group patients, we examined the

relative survivorships of the 24 CC patients in these two groups over

the 5 years that have elapsed since the initiation of our study. We

employed the Kaplan-Meier method [30] to model the time to death

of CC patients clustering in the A-L and C-L groups. Consistent with

the prediction based upon the overlap with the OCPP profile, the

neo-adjuvant patients whose expression array profile clustered in the

C-L group have had a more favorable outcome than those whose

profile clustered with the A-L group (Figure 7).

Although the trends are clear, because of the limited sample size

of the cohort of patients for which follow-up data were available

(A-L group n = 13; C-L group n = 11), the differences are

marginally insignificant (p,0.191, logrank test). Nevertheless,

seventy percent of neo-adjuvant cancer patients whose tissue gene

expression profiles clustered with the C-L group have survived five

years after surgery. In contrast, only thirty percent of patients

whose expression arrays clustered with the A-L group survived five

years after surgery.

DISCUSSION
Our results indicate that the neo-adjuvant patient samples (CC)

that cluster with the untreated cancer samples (i.e., the C-L group),

are preferentially associated with LOF mutations in the p53 gene

while few such mutations are associated with the CC samples

clustering with the non-malignant adenomas (the A-L group). The

fact that only one A-L group tumor is associated with a p53

mutation, that the A-L group tumors display reduced BAX

expression and increased Bcl-2 levels suggest that they are capable

of undergoing cell cycle arrest (G1/S checkpoint) while the majority

of those clustering with the malignant carcinomas (C-L group) may

not. The C-L group patients display increased expression of genes

typically associated with increased proliferation and preferential

association with LOF mutations in the p53 gene.

The fact that nearly all of the A-L group tumors are wild-type

for p53 implies that they are able to arrest in response to DNA-

damage. Cell cycle arrest provides an opportunity for DNA repair,

but cells that have accumulated irreparable damage are channeled

into the apoptotic pathway [31]. While the DNA repair process is

focused on the damage induced by the chemotherapeutic

treatment, it does not address the inherited defects that rendered

cells malignant in the first place. We hypothesize that at least some

of the DNA damaged cells that undergo cell cycle arrest and are

successfully repaired, (i.e., not channeled into the apoptotic

pathway) may retain the malignant genotype and resume growth

after treatment. We hypothesize that it is these cells that may

contribute to tumor recurrence.

In contrast, we propose that our C-L group tumors that are

associated with p53 LOF alleles proceed through the cell cycle in

the presence of significant DNA damage leading to eventual death

either by way of a p53 independent apoptotic pathway or by

mitotic catastrophe [32]. Consistent with this model, it has been

previously shown that loss of p53 function in human ovarian

cancer cells results in an increase in cisplatin cytotoxicity with

a correlated loss of G1/S checkpoint control [33]. Also consistent is

the recent observation that head and neck squamous carcinoma

cells mutant for p53 display increased susceptibility to cisplatin-

induced apoptosis [34].

One of the evolved objectives of the DNA damage response in

biological systems is the repair of the damage and the resumption

of cellular growth and replication. In contrast, the clinical

Table 4. Summary of immunohistochemistry staining
(IMMUNO HIS) and mutations found in the p53 gene in tumor
samples from patients not pre-treated with chemotherapy
prior to surgery (A) and neo-adjuvant treated patients (B).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A.

CLUSTER PATIENT IMMUNO HIS MUTATION ACTIVITY

C-L CA99 + C176F LOF

" CA183 nd D259D Silent

" CA196 + G389G Silent

" CA204 + C274Y LOF

" CA212 - none Functional

A-L AD125 - none Functional

" AD132 nd K139E Functional

" " E221V Functional

" " P300P Silent

" " A364A Silent

" AD146 - none Functional

" AD159 - none Functional

" AD172 - none Functional

" AD300 - none Functional

B.

CLUSTER PATIENT IMMUNO HIS MUTATION ACTIVITY

C-L CC187 + P151R LOF

‘‘ ‘‘ R156C LOF

‘‘ CC199 + I162I Silent

‘‘ ‘‘ N236D LOF

‘‘ CC255 + N131N Silent

‘‘ ‘‘ C135R LOF

" CC259 - A159A Silent

‘‘ ‘‘ N200S Functional

‘‘ ‘‘ R333R Silent

‘‘ ‘‘ Q336V Functional

‘‘ CC269 - N131N Silent

‘‘ ‘‘ K139Q LOF

‘‘ ‘‘ L252P LOF

‘‘ ‘‘ S313G Functional

‘‘ CC272 + I195I Silent

‘‘ ‘‘ R282W LOF

‘‘ CC312 - T150A Functional

‘‘ ‘‘ Q167Q Silent

‘‘ ‘‘ R213 STOP LOF

A-L CC150 nd R222F Functional

‘‘ CC286 - R273C LOF

‘‘ ‘‘ Q317R Functional

‘‘ CC303 - R306R Silent

‘‘ CC311 nd N311N Silent

‘‘ ‘‘ E336E Silent

‘‘ CC325 - N131N Silent

‘‘ CC326 + None Wild-type

CC338 - None Wild-type

Mutations are designated with the wild-type amino acid, followed by the codon
and the substituted amino acid. The Activity (i.e., functional consequence) of
each mutation was determined by using the IARC (International Agency for
Research on Cancer) TP 53 Mutation Database (http://www-p53.iarc.fr/) and
scored as follows: Functional (change in aa sequence with equivalent function),
Silent (no change in amino acid) or LOF (change in aa sequence with loss of
function) (nd = not determined).
doi:10.1371/journal.pone.0000441.t004..
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objective of DNA damaging chemotherapy is cell death. Thus, any

potential that cancer cells may harbor to repair chemotherapy-

induced DNA damage can be viewed as counter productive from

the clinical perspective. While it has been reported that p53 may

enhance chemotherapeutic treatment in some cellular contexts

[35,36], our results suggest that p53-mediated cell cycle arrest/

DNA damage repair is serving as a barrier to the desired clinical

outcome of DNA damaging chemotherapy in ovarian cancer. For

this reason and others [37–39], the potential benefit of inhibiting

p53 in conjunction with DNA damaging agents in the treatment of

ovarian and perhaps other malignancies may be a protocol worthy

of further consideration. Studies are currently underway in our

laboratory to test the relative effectiveness of chemotherapeutic

agents in p53-inhibited cells vs. controls.

MATERIALS AND METHODS

Tumor samples and RNA isolation
A set of 43 ovarian tumors was obtained from the Ovarian Cancer

Institute (Atlanta): 10 benign serous cystadenomas, 9 adenocarci-

nomas from patients not pre-treated with chemotherapy prior to

surgery (7 serous papillary, Stages II, III and IV; 2 endometriod,

Stages I and III and 24 adenocarcinomas from patients having

neo-adjuvant therapy (22 serous papillary, Stages III and IV; 1

endometriod, Stage III; 1 undifferentiated, Stage III). The average

age of the patients participating in the study on the day the

samples were collected was 61 (range 41–84). This study was

approved by the Institutional Review Boards of Georgia Institute

of Technology and Northside Hospital, (Atlanta) from which the

samples originally were obtained. Tissue was collected at the time

of surgery and preserved in RNAlater (Ambion, Austin, TX)

within one minute of collection. Linear polyacrylamide (5 ul) was

added to ,50 mg of tumor sample and homogenization was

carried out on ice in 1.5 ml Trizol (Invitrogen, Carlsbad, CA) with

a polytron homogenizer for 30 seconds. RNA was isolated from

crude homogenate according to the manufacturer’s protocols

(Trizol) and further enriched using an RNEasy column (Qiagen,

Valencia, CA).

Microarray hybridization
Biotinylated target cRNA was generated and cleaned by phenol/

chloroform extraction/ethanol precipitation according to estab-

lished protocols (Afftmetrix, Santa Clara, CA). In vitro transcription

of the cDNA using the High Yield RNA Transcript Labeling Kit

(Enzo, Farmingdale, NY) yielded 50–100 ug of biotin labeled

cRNA target. The cRNA was fragmented to a length of 20–

200 bp and hybridized to the Affymetrix HG-U95Av2 array for

16 hrs at 45 C. Hybridized arrays were washed, stained and

scanned according to established protocols (Affymetrix).

Microarray Data Analysis
Thirteen patient array profiles from our previously published pilot

study [40] were combined with 30 previously unpublished arrays for

this analysis. Gene expression data from 12,625 probe sets on the

HG-U95Av2 GeneChips were normalized, using GCRMA nor-

malization with GeneTraffic Software (Iobion, La Jolla, CA). After

data normalization, genes with uniformly low expression were

removed from consideration, leaving 9,106 probe sets for analysis

using Significance Analysis of Microarrays (SAM 2.23) software [11].

Relevant parameters for the SAM analysis were: Imputation engine,

10-Nearest Neighbor; Number of Permutations, 500; RNG Seed,

1234567; Delta, 1.105; Fold-Change, 2.0; False Discovery

Rate,1%. Normalized expression data from the 1,527 significant

probe sets were analyzed by a two-dimensional hierarchical

clustering using Cluster 3.0 [41] and Java Treeview 3.0 [42]. Both

genes and arrays were normalized, median-centered, and hierarchi-

cally clustered using unweighted averages and ordered using average

Euclidian distance. Analysis of gene sets for enrichment in GO

functional annotations, were performed using GOstat [12].

Table 5. CA125 values of chemotherapy treated patients at various time points prior to surgery.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CLUSTER PATIENT(age) CA 125 Levels

(months prior to surgery)

(5 months) (4 months) (3 months) (2 months) (1 month) Day of Surgery

C-L

CC187(53) ND 2347 2204 280 30 24

CC199(69) ND ND 6829 675 ND 66

CC255(57) 696 465 ND 117 ND 41

CC259(58) ND 4626 ND 47 ND 23

CC269(68) ND 681 ND 39 ND 20

CC272(83) 173 ND 228 ND 116 25

CC312(64) ND 2683 1831 231 35 18

A-L CC150(65) 10,284 942 117 33 25 22

CC286(52) ND ND 286 ND 13 30

CC303(44) ND ND 352 ND 37 25

CC311(51) 3576 ND 2123 1541 187 45

CC325(75) 1300 974 131 ND 59 38

CC326(72) 2450 ND ND 651 ND 125

CC338(62) ND 516 264 46 8 14

The time point most distant from day of surgery reflects the CA 125 value prior to the administration of the first of three to four chemotherapy treatments. The results
demonstrate that all patients responded positively to the chemotherapeutic treatment (ND = not determined).
doi:10.1371/journal.pone.0000441.t005..
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For K-nearest neighbor (KNN) prediction, the GCRMA

normalized microarray data were analyzed with GenePattern

2.0 software [43] and both the KNN cross-validation and KNN

class prediction modules were used (KNN = 3). All 9,106 probe

sets that had detectable expression were available for inclusion in

each model. For these analyses 30 genes (or features) were used for

each of the KNN prediction models. In the Leave-one-out cross-

validation KNNxVal models, 43 models were generated using 42

samples to predict the class of the sample that was left out. For the

four-fold cross validation, the set of 43 samples was randomly

divided into a training set of 2/3 of the samples (29 training

samples) and a test set of the remaining 1/3 of the samples (14

samples). This random selection was done four times, resulting in

four training sets, four test sets, and four KNN models. Thus, four

test sets of 14 samples resulted in a total of 56 predictions.

Pathway and Profile Analyses
Lists of probe sets that were predictive by KNN analysis and lists of

significantly different genes from SAM analysis were submitted to

pathway analysis using Ingenuity Pathway Analysis (IPA) software

(http://www.ingenuity.com). This software generates networks of

genes using interactions present in the Ingenuity Pathways

Knowledge Base that are derived from manually curated and

extracted interactions from the published scientific literature. It

also identifies overrepresented biological functions and canonical

pathways based on the GO annotations of each gene and

manually curated canonical pathways. The significance value

associated with Functions and Pathways is a measure for how

likely it is that a gene list participates in a function. The

significance is expressed as a p-value, that is calculated using the

right-tailed Fisher’s Exact Test by comparing the number of user-

specified genes of interest that participate in a given function or

pathway, relative to the total number of occurrences of these genes

in all functional/pathway annotations stored in the Ingenuity

Pathways Knowledge Base.

Downstream targets of p53 were identified by merging inter-

action networks identified by IPA and generating all direct

transcriptional links from p53 to genes in the network. Relation-

ships were examined manually in the Ingenuity Pathways

Knowledge Base to determine if target genes were activated or

repressed by p53. All relationships were based on published

literature references.

For the gene overlap profile analysis, the intersection of the 115

probes in the OCPP with 1,527 probes significantly different

between A-L and C-L samples was determined to include 23

probes. The probability that the intersection of these two groups

would include 23 probes given a total of 12,626 probes on the HG-

U95Av2 array was computed by the hypergeometric distribution

using the R statistical programming language (http://www.R-

project.org) and the p-value (p = 0.005) was computed.

Quantitative RT-PCR
Total RNA (2 ug) from ovarian tissue was converted to cDNA

using Superscript III (Invitrogen) primed with random hexamers

under conditions described by the supplier. cDNA from this

reaction was used directly in the qRT-PCR analysis. Gene specific

primers for three genes (BAX: Forward 59 GCTGTTGGGCT-

GGATCCAAG 39, Reverse 59 TCAGCCCATCTTCTTC-

CAGA 39;CCND1: Forward 59 ACGAAGGTCTGCGCGTGTT

39, Reverse 59 CCGCTGGCCATGAACTACCT 39, BCL2:

Forward 59 CTGGTGGGAGCTTGCATCAC 39, Reverse 59

ACAGCCTGCAGCTTTGTTTC 39) were synthesized (Integrat-

ed DNA Technologies, Coralville, IA). The mRNA levels of the

three genes were measured in 2 malignant and 2 benign tumor

samples on the DNA Engine Opticon 2 System (MJ Research).

PCR was performed using the Cybergreen PCR MasterMix

(Applied Biosystems) according to the manufacturer’s protocols.

Using GAPDH as a control, the expression levels of BAX,

CCND1 and BCL2 were calculated according to the 22DDCt

method [44]. The Ct values of triplicate RT-PCR reactions were

averaged for each gene in each cDNA sample. For each tissue

sample assayed, the level of gene expression for the gene of interest

(BAX, CCND1 and BCL2) was calculated against that of the

housekeeping gene (GAPDH). Each D Ct value was normalized to

Table 6. Genes displaying significantly altered expression
between A-L and C-L samples that overlap with previously
published Ovarian Cancer Prognostic Profile (OCPP) [6] or the
Chemotherapy Response Profile (CRP) [10].

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Probe ID Symbol Fold Change Overlap Favorable

39660_at DEFB1 15.8 OCPP Yes

1585_at ERBB3 6.9 OCPP Yes

38143_at KLK7 5.2 OCPP Yes

36499_at CELSR2 3.8 OCPP Yes

38160_at LY75 3.3 OCPP Yes

37956_at ALDH3B2 3.3 OCPP Yes

40030_at PRKY 2.5 OCPP Yes

311_s_at — 2.2 OCPP No

36577_at PLEKHC1 22.1 OCPP Yes

33440_at TCF8 22.1 OCPP Yes

34320_at PTRF 22.5 OCPP Yes

39066_at MFAP4 22.5 OCPP Yes

36119_at CAV1 22.6 OCPP Yes

38653_at PMP22 22.6 OCPP Yes

34303_at FLJ90798 22.7 OCPP Yes

34802_at COL6A2 22.8 OCPP Yes

1771_s_at PDGFRB 23.2 OCPP Yes

39864_at CIRBP 23.2 OCPP Yes

36993_at PDGFRB 23.2 OCPP Yes

1319_at DDR2 23.5 OCPP Yes

37221_at PRKAR2B 23.9 OCPP No

743_at NAP1L3 24.7 OCPP Yes

35168_f_at COL16A1 26.0 OCPP Yes

39419_at SPAG9 22.4 CRP N/A

33922_at PRDM2 22.2 CRP N/A

35735_at GBP1 2.1 CRP N/A

1105_s_at TRBV21-1 2.2 CRP N/A

2044_s_at RB1 2.5 CRP N/A

2067_f_at BAX 2.6 CRP N/A

915_at IFIT1 3.0 CRP N/A

41827_f_at LOC91316 3.4 CRP N/A

33274_f_at IGLC-1 4.1 CRP N/A

33273_f_at IGLC-1 4.4 CRP N/A

406_at ITGB4 6.0 CRP N/A

2027_at S100A2 9.0 CRP N/A

Fold change is positive if higher in carcinoma-like samples. Favorable indicates
whether the directional fold change predicts favorable or unfavorable outcome
for the C-L samples.
doi:10.1371/journal.pone.0000441.t006..
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the lowest expressing sample to obtain the DD Ct value. The

standard deviation was calculated for samples within each tissue

class.

Histopathologic and immunohistochemical

evaluation
Histologic slides were studied to confirm histopathologic diagnosis

of cancer, and representative formalin fixed, paraffin embedded

tissue blocks were selected for p53 immunohistochemical analysis.

Three tissue cores measuring 1.0 mm from each block were

obtained for tissue microarray (TMA) (Beecher Instruments, Sun

Prairie, WI). The TMA slides were deparaffinized through xylene

changes and rehydrated in increasing gradations of alcohol.

Antigen retrieval was performed using Biocare Medical Decloak-

ing Chamber with DAKO Target Retrieval Solution, pH 6.0. The

slides were washed in TBS buffer and loaded onto the DAKO

universal autostainer. Slides were blocked in 3% hydrogen

peroxide followed by incubation of p53 (clone DO-7, DAKO

Corp., Carpinteria, CA) primary antibody at 1:80 dilution for

30 minutes. The DO-7 detects both wild-type and mutant p53

protein. Visualization was achieved utilizing DAKO Envision+
with DAB. The slides were counterstained with hematoxylin and

the immunohistochemical staining pattern was assessed using

a Nikon microscope. The staining was assayed using a semi-

quantitative scoring from 0 to 3+ (0: no staining, 1+: ,10% nuclei

staining, 2+: 11–50% nuclei staining, 3+: .50% nuclei staining).

For the purpose of recording the results, intensity of staining was

not taken into consideration, but generally the intensity correlated

with the percentage of nuclei staining positive (strongest in 3+ and

the weakest in 1+). Samples displaying a $ 2+ signal in.50% of

cells examined were scored as positive.

p53 sequence analysis
RNA samples extracted from adenocarcinomas removed from 14

neo-adjuvant patients, adenocarcinomas from 5 patients not pre-

treated with chemotherapy prior to surgery, and benign adenomas

from 6 patients were used to synthesize cDNA (SuperScript III,

Figure 7. Cumulative survival curves of ovarian carcinoma patients treated with neo-adjuvant chemotherapy. Seventy percent of neo-adjuvant
cancer patients whose tissue gene expression profiles clustered with those of cancer patients not pre-treated with chemotherapy have survived five
years after surgery. In contrast, only thirty percent of patients whose expression arrays clustered with benign adenoma patients prior to surgery
survived five years after surgery. Although the trends are clear, because of the limited sample size of the cohort of patients for which follow-up data
were available (A-L group n = 13; C-L group n = 11), the differences are marginally insignificant (p,0.191, logrank test). The survivorship data used in
the computation of the Kaplan-Meier plot can be found in the supplementary material (Figure S2).
doi:10.1371/journal.pone.0000441.g007
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Invitrogen). PCR (polymerase chain reaction) amplification was

performed to amplify the exons 5-10 of the p53 gene where the

majority of the functionally important mutations in human cancer

have been mapped [45]. The primer used for the forward

direction was 59-GCA CGT ACT CCC CTG CCC TCA A-39

[35]. The primer used for the reverse direction encompassed the

39-end of exon 10 minus the stop codon, 59-GTC TGA GTC

AGG CCC TTC TGT C-39 [27]. A 768 bp PCR product was

generated using the following conditions: 1) 95 C, 5 min; 2) 95 C,

40 sec; 3) 59 C, 40 sec; 4) 72 C, 1 min; 5) repeat steps 2–4 306; 6)

72 C, 5 min; 7) 4 C hold. Amplified PCR products were cloned

into TA vectors using the TOPO TA cloning kit (Invitrogen), and

the resulting isolated plasmids analyzed using 1% agarose gels to

check for PCR insertions. Sequencing of each PCR reaction was

performed in both directions using the M13 Forward and M13

Reverse primers provided with the TOPO TA cloning kit. Each

PCR experiment was repeated independently at least twice. DNA

sequencing was carried out at the University of Georgia DNA

sequencing facility (Athens, GA). Sequences were aligned and

analyzed for mutations using MacVector. The functional signif-

icance of identified p53 mutations was scored by using the IARC

(International Agency for Research on Cancer) TP 53 Mutation

Database (http://www-p53.iarc.fr/).

SUPPORTING INFORMATION

Figure S1 Unsupervised hierarchical clustering of the entire

gene expression pattern of all 9,106 expressed probe sets detected

on the HG-U95Av2 GeneChip in 43 ovarian tumor samples.

Samples beginning with AD are adenomas, with CA are

carcinomas, and CC are patients pre-treated with chemotherapy.

Samples divided into two major clusters termed adenoma-like and

carcinoma-like.

Found at: doi:10.1371/journal.pone.0000441.s001 (10.15 MB

TIF)

Figure S2 Survivorship data of A-L and C-L group cancer

chemo patients (CC) used in the Kaplan-Meier analysis (See

Figure 7).

Found at: doi:10.1371/journal.pone.0000441.s002 (8.02 MB TIF)
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