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Robust Control of Linear Time-Invariant Plants 
Using Periodic Compensation 

PRAMOD P. KHARGONEKAR, MEMBER. IEEE, KAMESHWAR POOLLA, AND ALLEN  TANNENBAUM 

Abstract-This  paper  considers  the  use  and  design of linear periodic 
time-varying controllers for the  feedback  control of linear time-invariant 
discrete-time  plants.  We will show that for a large class of robustness 
problems,  periodic  compensators are superior to time-invariant ones.  We 
will give  explicit  design  techniques  which  can  be easily implemented. In 
the context of periodic  controllers,  we  also  consider  the  strong and 
simultaneous  stabilization  problems.  Finally, we show that for the 
problem of weighted sensitivity  minimization for linear time-invariant 
plants,  time-varying  controllers  offer no advantage  over  the  time- 
invariant ones. 

I. INTRODUCTION 

I N this paper we  study  the use and  design  of linear periodic 
time-varying  controllers  for  feedback  control  of 

finite-dimensional linear  time-invariant  (LTI) plants.  We  will 
show that time-varying controllers  are  superior to  time-invariant 
ones  for a large  class of control problems. We  shall be particularly 
concerned with the key questions of  robust  stabilization  and 
sensitivity minimization, and  shall stress explicit  design tech- 
niques. 

Throughout most of this work, we deal  with  periodically 
varying discrete-time plants. A frequency domain approach for 
discrete-time  periodic time-varying systems appears in the work 
of Davis [3]. Jury and Mullin [ 1 11. Meyer and Burrus [IS]. 
However. we  have  been  particularly  influenced by the book  of Sz. 
Nag;-Foias [IS] (see especially ch. 5 )  whose ideas  lead to a 
“categorical” equivalence between periodic  discrete-time sys- 
tems and certain kinds of  LTI  systems. Essentially.  an m-input, p -  
output, N-periodic discrete-time system can be treated as  an nlN- 
input, pN-output.  LTI  discrete-time system. Many of the  results 
which.  we obtain in  this paper are derived using  this LTI system 
representation for periodic time-varying systems  together  with 
some recent  results of Khargonekar and Tannenbaum [ 121. 

In [12],  the authors have  studied and solved certain kinds  of 
robust  feedback system design problems. In particular.  in the 
context of LTI compensators, these authors show that for a 
discrete-time  plant P(z) having  both zeros and  poles  outside  the 
closed  unit disk,  the maximal  attainable  gain margin is bounded. 
Indeed, they also  derive explicit formulas for the  maximal 
attainable gain margin in terms of  unstable  poles and zeros. 
However,  we will show in  this paper that by using time-varying 
controllers, it  is  possible  in  several  interesting cases  to signifi- 
cantly improve gain and phase margins for a discrete-time LTI 
plant P(s). The time-varying controllers  we use are  periodic with 
period  less  than or equal to the dimension plus one of  the  plant. In 
point  of  fact  in  most cases  2-periodic  controllers  suffice. 
Moreover. these controllers  can be explicitly computed. 

Manuscript  received June 21. 1981;  revised  April 15. 1985.  Paper 
recommended by Associate  Editor. T. L. Johnson.  This  &ork was supported 
in part by the  National Science  Foundation  under  Grant  ECS-8200607  and 
ECS-8400832. 

P. P. Khargonekar is with  the Department of Electrical  Engineering. 
University of Minnesota.  Minneapolis. MN 55455. 

K. Poolla is with the  Coordinated  Science Laboratoq and the  Department of 
Electrical  Engineering. University of Illinois.  Urbana. 1L 61801. 

A. Tannenbaum is with  the Department of Mathematics. Ben Gurion 
University of the  Negev, Beer Sheva.  Israel. and  the Department of Electrical 
Engineering. McGill University,  Montreal, P.Q.. Canada. 

The basic reason why we may expect improvement in  robust- 
ness  via  the use of periodic compensation is seen through the 
representation  of  periodic systems as LTJ systems (see Section 11). 
Briefly.  given an  LTI p X m plant P(z), we can regard P(z) as 
defining an N-periodic system. and represent it by a p N  x rnN 
transfer matrix  (Section 11). This transformation (for N suffi- 
ciently large) has  the effect  of removing blocking zeros, and 
based on the work of [ 121 (see Section I11 for  details), allows us to 
construct periodic controllers which  in  many cases drastically 
improve the robustness of  the feedback system. 

In  this paper we will also examine the problems of simultaneous 
stabilization and stabilization  with  a stable  controller. Youla er ai. 
[22]  have proved  the  beautiful  result  that  a continuous-time 
(respectively. discrete-time) LTI plant can be  stabilized by a 
stable  LTI  controller if and only if  a certain interlacing property 
involving  the  real  right  half  plane (respectively. complement of 
the unit disk) poles and blocking zeros  of the  plant is satisfied.  We 
show that any LTI plant can be  stabilized by a stable periodic 
time-varying controller. The problem of simultaneous stabiliza- 
tion for LTI plants is the  following.  Given n LTI plants Pl(z),  
PI&), ., P&), find (if possible) one  controller that  stabilizes 
each of the plants. This problem has been  studied  by [20], [17], 
[ IO]  with  the  restriction  that  the controller be time-invariant. It 
will  be  seen  that by using periodic  time-varying controllers, it is 
possible to stabilize  any finite collection of discrete-time time- 
invariant  plants, and in  point  of fact, with  a stable  controller. 

Recently. Zarnes and Francis 1241. have formulated and solved 
the important problem of weighted sensitivity minimization. (See, 
also. 191, [2]. 141. and the references cited therein.) Khargonekar 
and Tannenbaum [12]  have shown that certain robust  system 
design problems (e.g.. gain/phase margin optimization problems. 
robust  stabilization problem of Kimura [13]) and the  sensitivity 
minimization problem are equivalent (in  a precise mathematical 
sense). if one considers LTI controllers. We show in this paper 
that  the  minimal  sensitivity cannot be improved by the use of 
arbitrary (not  necessarily periodic) time-varying feedback. This is 
in contrast with such robustness properties  as gaidphase margins, 
which  in certain cases can be very significantly improved using 
periodic time-varying controllers. Thus. if one considers the  more 
general class  of time-varying controllers,  the problems of 
robustness and sensitivity  minimization appear to be dichotomous. 

The use of time-varying controllers  for the control of  time- 
invariant  plants has been  known to be  quite  useful  in some ‘ 

instances. For  example, Anderson and Moore [ 1 J and Wang 1211 
have shown that  time-invariant  plants  with  unstable decentralized 
fixed modes cannot be  stabilized  using decentralized time- 
invariant controllers. and yet can be  stabilized by decentralized 
time-varying controllers. Our results  provide further evidence that 
the  use  of time-varying controllers can be advantageous in  many 
other  control problems. 

11. TRANSFER FUNCTIONS FOR PERIODIC SYSTEMS 

In this  section we briefly discuss the  basic elements of  a transfer 
function  theory for  periodic,  discrete-time, linear, time-varying 
systems. Similar theories have  been developed in  the system 
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theory literature in [3] ~ [ 1 I]. [ 151: and  the references cited 
therein. However, our explicit technique is strongly  motivated by 
[18, ch. 51. 

Here it  will  be shown that to an N-periodic linear p X m 
discrete-time syste-m f, one  can associate  a p N  X mN discrete- 
time  LTI  system f. Conversely, any such  LTI  system  defines  a 
periodic  time-varying  system.  Moreover. this correspondence is 
an isomorphism of systems in the sense that  both  the algebraic and 
analytic  properties o-f systems  are  preserved. In particular, f is 
stable if and only iff is stable. and in this case  the  operator norm 
off is equal to  the operator norm off. This  construction  allows us 
to  use the methods from  LTI  design  theory to design  periodic 
controllers  for LTI plants. 

Let  L _denote  the set of  all one  sided  sequences of real numbers, 
and  let L = il[[z  -I]] be the set of all formal  power series in the 
indeterminate z - I  with real coefficients. As is well known. L and 
L are  isomorphic,  the  isomorphism  being  defined in the usual  way 

0 

CY=(CYo, CY], ..., CY,, --)-cU(z)=C CYiz-'; 
r = O  

a(z) is the usual z-transform of a. Let A:E --t zdenote the right 
shift operator 

i i (a(z))=~-   'a(z) .  

Consider now the  isomorphism 

In  the transform  domain, W(a) has  the  representation [ao(z), 
crl(z), . . e ,  CY.~--,(Z)] ' where CY,(Z) : = C Y , ~ , + , Z - ~ .  It is  very 
easy to verify  that 

W A V =  A w, (2.2) 

Also observe that 

.I' - 1 

w- '([ao(z), CrI(L), . . . , ag- l (Z ) l ' )  = z-'CYi(z"). 
i = O  

Let  f :Lni  + Lp be  an  W-linear causal  time-varying  input/output 
operator.  The I/O map f is N-periodic if and  only if 

fA"=n*f, 

Le.. the  map f commutes with the Yth power of  right shift.  The I/ 
0 map f induces via W a map f: Lm:' + LP" defined by the 
following  commutative  diagram: 

J 
L'"\  +LP' 

T T w .  
L I n  >LP 

f 
Thus, f = Wf W -  I. and 

We  see  that f commutes with the  shift operator A, and hence 
defines  a discrete-time LTI system. 

It  is interesting and useful to reformulate  the  above  construc- 
tions using matrix  representations. For q > 0, consider  the linear 
space Lg with the  natural basis (consisting of elements ui of the 

form: 

Unj+j=(O, 0 ,  ( n - , ) ,  . . . 0, e,, 0, . . 
j = 1 ,  2, - e . ,  1 ,  n=O, 1, (2.3) 

where ej is the j th  column of the q X q identity matrix). With 
respect to such  natural  bases. let MI be the  matrix  representation 
of  a  causal linear input/output map f: Lni * LP. Now it is  not 
difficult to see that f is N-periodic if and only if the  matrix Mf has 
the  following block Toeplitz structure: 

Mf= Mz A40 0 .. . 
r o o  O 1 (2.4) 

Mz M ,  ,440 . .. 

where  each Mi is p N  X mN, and further Mo is lower triangular. 
Indeed, the block  Toeplitz  structure in M f  corresponds to the fact 
that f commutes with the shift operator. Also note  that  the matrix 
representations of f and f (with respect to the  corresponding 
natural  bases) are the  same.  We  can now associate  the  transfer 
matrix 

Tf(Z) = M~z-' 
i = O  

m 

(2.5) 

with the  periodic input/ou_tput  map f. Note  that TAz) is the 
transfer  matrix of the map f .  We  summarize  the  above  discussion 
in  the following. 

Proposition 2.6: Given an m-input,  p-output casual linear 
N-periodic input/output  map f, one can canonically associate 
a p N  x mN transfer matrix T((Z) given by (2.5). Conversely, 
given any p N  X mN proper transfer matrix T(z) such that 
T(m) is lower triangular, we can find a unique N-periodic 
casual  linear input/output  map f : L m  + LP such that T(z) = 

This  one-to-one  correspondence between periodic linear time- 
varying  systems and the  "larger"  LTI  systems is natural  from  a 
system  theoretic point  of  view  in the  sense that it preserves both 
the  analytic and algebraic  properties of systems. In particular, all 
the  standard  formulas  for  interconnection of systems  hold. For 
example,  the  transfer  function of  the LTI system  associated with 
the cascade  connection f g  of two  periodic  systems f and g is given 

TAz). 

by 

T,g = Tf T,. 

We also have the  following result on the  feedback  interconnection 
of systems: 

" t  U Y 
,n > f . 

/ 

9 < x: 
yc 

U 

Lemma 2.7: Let f and g be  periodic linear, discrete-time, 
time-varying systems of compatible dimensions. Consider the 
feedback  system  shown  above. 

a) The  feedback  system is also a periodic linear, time- 
varying system and the transfer function of the associated L TI 
system is 

Tvr=(I-I-TfTg)- 'Tf .  

b) The system f is input/output stable i f  and only i f  T f  k 
a stable transfer function matrix. 
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c) The  feedback system is internally stable i f  and only if 
TE internally stabilizes TJ. 

We omit  the  proof  as it  is quite  easy. 
Let f be a stable periodic  linear  system.  Then we may regard f ,  

in the usual way,  as  a bounded linear operator 

f : (h2)"'-(hZ)P 

where h' is the Hilbert  space of square  summable one-sided 
sequences of real numbers.  (Clearly, h2 is a  subspace of L.)  In 
this case, we define 11 f l l  to be the  operator of norm off,  i.e., 

l l f l l  = S U P  {llfull2 : u in (hZ)", IIuIIz= 1). 

Also. we  may restrict the  isomorphism W to h Z  to  get the 
isomorphism 

w : h'+(h?)". 

It  is a  simple but important fact that W is an isometry. i.e., 
11 Wxllr = IIxllz. Therefore, we have 

I l f l l  = II wfw-'ll = I l f l l .  
Now f : (hZ)mM -. (h2)"v is a  shift-invariant-operator. It  is  well 
known (see [ 161) that the  operator norm off is given by the H" 
norm  of  the transfer  function  matrix TJ off. In other  words. 

llpll= 11 ~ ~ 1 1 "  : = sup { ~ ( ~ ~ ( e j ~ ) )  : u in [O. 2a]} 

where (T(M) denotes  the  largest  singular  value of M. Let us 
summarize  the  above  discussion by the  following. 

Lemma 2.8: Let f be an N-periodic, stable, linear,  discrere- 
time, rime-varying system.  Then 

llfll = II Trllm. 

Then 
0 
D [ " CB 

+[E!;,-] ( z Z - A M ) - ' { A " - I B  ... A B   B ] .  (2.11) 

Note  that if (2.10)  represents  a minimal realization of P(z), then 
(2.11)  also  gives  a  minimal  realization of P(z), In particular, X is 
a pole of P(z) if and  only if X": is a  pole of P(z). 

Now  in this paper we take an inputloutput point  of view.  Thus, 
internal stability in Lemma 2.7-c is in the usual sense of stability 
of feedback  systems  as in [26]. As far as  implementation is 
concerned, it  is  not difficult to show  from  our  representation of a 
periodic  discrete-time  system  as an LTI  system that a  given 
periddic  input/output  map with a rational LTI  representation (2.5) 
can  always  be  realized by a stabilizable and  detectable  periodic 
discrete-time  system.  Hence, internal stability in 2.7-c  implies 
internal stability in the  state-space  sense  as  long  as  the  plant  and 
the  compensator are implemented  using stabilizable and detectable 
realizations. 

Finally, using again  the  ideas of Sz.Nagy-Foias [18, ch. 51, one 
can associate, in a  natural  way,,an  LTI  system to a  periodic  time- 
varying  system in the  continuous-time  case  as well. However, 
here  the input and  output  spaces of the  LTI  equivalent  are in 
general infinite-dimensional Hilbert spaces. Since in this paper 
we are  primarily  interested in certain  issues  concerning  robust 
stabilization, this construction,  as of now,  does not seem to  be 
very useful. 

p(z)  = CAB D O  
CA sv- 2B CA N- 3 8  D 'I 

III. h R I O D I C  CONTROLLERS FOR ROBUST STABILIZATION OF LTI 
SYSTEMS 

methods from LTI design theory for the design of periodic In this section we consider  the use  of periodic  compensation in 

compensators  for  periodic plants. More  precisely, iffis a  periodic Order to improve the Optimal gain Or phase  margin for LT1 

Lemmas 2.7 and 2.8  are the key results that allow us to use the 

time-varying plant, we first compute its associated  transfer  matrix discrete-time Plants. In u 9 i  and [121 it is shown that for 
TAz) via (2.5). We then design  a  controller C(z) for the plant nonminimum phase plants* the Obtainable gain 
TAz) using LTI design we should emphasize that margin  (via  LTI  compensators) is finite and depends only  on the 

condition that C(z) corresponds to a causal periodic bicausal (i.e.9 proper but not strictly proper) SISo LTI  discrete- 
c(z) must be such that c(03) is lower triangular. This unstable  poles and zeros of the plant. Here we  will  show  that for 

linear time-varying system. time plants. the  optimal gain margin is infinite. For strictly proper 
We close this section with the computation of the transfer plants, we  will show that it is often  possible to obtain significant 

function of an LTI system viewed as an N-periodic system. improvement in the maximal  obtainable  gain  margin by using 
Following the above ideas. this is done explicitly as follows. Let periodic  feedback. In addition, we also  consider  similar  problems 
P(z) be the transfer  matrix of an  LTI  discrete-time  system.  Then for parameter variations. 
we can write  (uniquely) In order to be more explicit, we  must first review the basic 

setup  from [12]. Let P k ( z )  be a  parameterized  family of LTI 

some  compact set K .  Then we  want to design a linear controller 
If we regard P(z) as  defining an N-periodic  system.  and "lift" (possibly  time-varying)  such that for  each k in K .  the following 
P(z) via W, an easy  computation  shows that closed-loop  system is internally asymptotically stable: 

P ( z ) = P I ( Z ~ ~ ) + z - I P ' ( Z ' ~ ) +  ...+ z- '"~"P,v(z ') .  discrete-time SISO plants, ushere the  parameter k takes  values in 

- 

P"(Z) : = wP(Z) w-' = PdZ) . . . . * * (2.9) 

PI (z)  
- 

(Note that p(z) has  a  block  Toeplitz  matrix  structure.) 

terms  of  a  state-space  realization of P(z). Indeed. let 
It is also fairly straightforward to derive a formula  for p(z)  in 

P ( z ) = C ( z Z - A ) - ' B + D .  (2.10) 
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In this section, we will be considering  families of SISO  plants 
of the  following  form: 

P k ( Z )  = kP,(z) 

where P&) is the fixed nominal plant and k is a  parameter  taking 
values in some  compact  subset K of the  complex  plant NE. The 
choice of K determines  the kind  of plant  uncertainty  for which a 
robust  controller is to be designed.  We  are then interested in 
solving  the  following. 

Basic Problem 3.2: Given  a  nominal  plant P,(z) and a 
compact  subset K in (E, find (if possible) a controller C 
(perhaps  time-varying)  such that for each k in K ,  the  feedback 
system  shown  in (3.1) is internally asymptoticaily stable. 

In this paper, we  will consider  the  following  four possibilities 
for K (for  more details, see [ 121). 

i) K = [a ,  61, 0 < a < 1 < 6. This  is  the  gain  margin  problem. 
(Note  that  the  gain  margin  is  20 log (b/a) dB.) 

ii) K = {e’+ : 9 in [ -Or, 02] ,  0 Q Oi ,< a/2, i = 1,2}. This is 

iii) K=(keJ*:  kin[a ,b] ,4 in[ -61 ,62] ,whereO<a< 1 < b, 
0 < 0; < a/2, i = 1, 2).  This  is  the  gain  phase  margin  problem. 

iv) K = a compact  region in : E  containing 1 as an interior  point. 
This  is  the  problem of complex  parameter  variations.  (3.2) 

A plant P&) is called bicausal if Po(w) is invertible. We 
begin  with the  following key result. 

Theorem 3.3: Let P&) be  a SISO LTI bicausai plant. 
Suppose the unstable  poles of P&) are distinct. Then for  any 
K in E as in (3.2-i)-(3.2-iv) there always exists a periodic 
controller Csuch that the  feedback  system  in (3.1) is internally 
asymptotically stable fo r  each k in K. Moreover, generically 
the controller C may be taken to be 2-periodic. 

Note  that Theorem 3.3 implies that for  plants satisfying the 
above  hypotheses,  one  can  obtain any desired gain margin by 
suitable  design of a  periodic  controller. 

Proof: Following  the  method of Section 11, we  will consider 
P&) as an N-periodic, linear time-varying  discrete-time plant. 
As in Section 11, write 

the  phase  margin  problem. 

P,(z) = Pl(zay + z -  lP2(z”) + . * + z-( ,V-  l)P,W(z!y. 

Suppose zo is a  complex  number with lzol 2 1 such that 

P;(z,)=O, i = l ,  2, e.., N. 

Let 
>vr ),;=d/z, e(2xj)Wh’), i=O, 1, 2, . . ., N- 1. 

where ck is some  fixed Nth root 6f z,. 
Then 

P,(X,) = Pl(Z,) + x; ‘P*(z,) + . . . + x , y -  l)P.,r(zo) = 0. 

Thus,  each X;, 0 < i < N - 1 is a  zero of Po(z). Moreover,  the 
1;’s are distinct. Since P&) has only finitely many zeros, we can 
certainly  find N sufficiently large (actually, N > the  number of 
unstable  zeros suffices) such that there  does not exist zo with I zo I 
2 1 and Pi(z,) = 0, 1 ,< i < f. Further, we can  choose this N 
such that the  unstable  poles of P,(z) in (2.9) are distinct. To see 
this, first note from  (2.11) that-h;  is  an unstable  pole of P,(z) only 
if p y  is an  unstable  pole of P&). Let p l ,  p2, e ,  pm be  the 
unstable  poles of P,(z). By hypothesis, pi  # p j ,  for i # j .  Now 
we  need to choose N such that 

p r + p y ,  i#j .  

We  claim that for each i # j ,  there is at most one  prime  number 
qj j  such that for any prime  number q # qij  

PPfpy, q*qij. 

If not, for some i # j ,  there exist two  prime  numbers q, r such q 
# rand 

p q =  , p j ,  4 p(:=p;.  

As q, rare  coprime  integers,  there exist integers CY,  /3 such that qcr 
+ r/3 = 1. Hence, 

p ; = p q Q + r 3 = p ~ p ~ ~ = p ~ p ; 3 = p ~ + r ~ = p ,  

which is a  contradiction.  Therefore. our claim is valid. Thus, 
there is a finite set of prime  numbers qjj  such that for any prime 
number q # qi j ,  i , j  = 1, 2, . . e ,  in, we have 

p y f p ; ,  i # j ,  i ,  j=1, 2, - . - ,  m. 

We conclude that we can find  a  positive  integer N such that there 
does not exist zo with Iz,, 1 2 1 and P,<z,) = 0, i = 1,2,  . . , N, 
and such that the  unstable  poles of P,(z) are distinct. 

Generically, N = 2 will work.  For N = 2, PI@) and P2(z) 
have a  common  zero  outside  the  unit disk if and only if P&) and 
Po( -2) have a  common  zero  outside  the unit disk. However, 
generically P&) and -Po( - z )  will  have no common  zeros. 
Simarily,  for N = 2, P,(z) will have distinct poles since 

P ; = P ;  

for  some i # j implies that p; = - p j ,  which is again  nongeneric. 
For  notational  simplicity, we will suppose that N = 2, i.e., if 

we write 

Po(z)=Pl(z2)+z-’P2(Z2) 

then Pl(z) ,  P2(z) have no common  zeros in-the complement of the 
closed unit  disk  and  the  unstable  poles of P,(z) are distinct. (The 
proof for  general N is identical.) Thus. we represent kP,(z) as a 
2-periodic plant. Following  the  recipe in Section I1 

We are required to find a  proper  compensator C(z) of the  form 

s_uch that &) internally stabilizes kP,(z) for each k in K .  (Any 
C(z) in the  above  form will correspond to a  causal  2-periodic 
linear,  time-varying  compensator C . )  Set 

r 

Then 

(3.4) 

Since by hypothesis, P,(z) is proper but  not strictly proper, P1(m) 
# 0. Further, P,(z) and P2(z) have no common  zeros in IzI 2 1. 
Hence, P,(z)U(z) has no blocking  zeros in IzI 2 1 including 
infinity. We  now follow  the  argument of [ lz ,  Theorem 3.11. 
Indeed,  consider the Smith-McMillan  form of P,(z)U(t) over  the 
ring R of stable proper rational functions.  Then  there exist 
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where al is minimum  phase and a2 is asymptotically stable. 
Consequently,  from  the results of [ 191, [ 121, [ 5 ] ,  and [ 141, there 
exist proper rational functions bi(z), i = 1, 2 such  that bi(z) 
internally stabilizes kai(z), for all k in K ,  i = 1, 2. [ K  can  be  any 
region as in (3.2-i)-(3.2-iv).] Note  that as a2(z) is already stable, 
we  can choose b2 = 0. In any event,  define 

Th5n  it is straightforward to check that c(z) internally stabilizes 
kP,(z)U(z), for  each k in K.  But  now set 

e(Z) = U(z)C(z) .  

?en f ( z )  internally  stabilkes kP&) for each k in K ,  and since 
C(w) is lower triangular, C(z) corresponds to a  2-periodic  time- 
varying linear discrete-time  controller C. It  now follows  from 
Lemma 2.7 that C internally stabilizes the  LTI family  of  plants 
kPo(z), for each k in K .  

Example 3.5: We would like to illustrate our result with  an 
explicit example.  Let  the  nominal  plant be P,(z) = (z - 2)/(z - 
3). From  the results of [19] and [12], it follows that one can find 
an L TI compensator C(z )  which stabilizes the  family  of  plants 
kPo(z)  for each k in [a, b] ifand on& i f (b /a )  < 2.25. In other 
words,  the  maximal  attainable gain margin  for  the plant Po(z) by a 
suitable  design of  an LTI  compensator is 7 dB.  We will  now 
design  a  periodic  linear  time-varying  controller C which inter- 
nally stabilizes the  family kPo(z) for  each k in [0.5, 51. (The 
results of [ 191, [ 121 clearly imply  that one  cannot  solve this 
problem  using an LTI  compensator.) 

We  follow  the  procedure indicated  in the proof  of Theorem 3.3. 
First note that N = 2  works  since Po(z) has  only one  zero. Now 
write 

Thus, Pl(z) = (z  - 6)/(2 - 9), P2(z) = z / ( z  - 9). 
Representing Po(z) as  a  2-periodic plant, we  get 

r -  2-6 LI 
z - 9   z - 9  

z 2-6 
L z - 9   1 - 9  1 . .  -- 

Multiply Po on the right by U(z) of (3.4) to get 

We now  need  to find  unirflodular stable proper rational matrices 
Vl(z) and Vz(z) to bring P,(z)U(z) to its Smith-McMillan  form. 
Some  routine  calculations  give 

6 -  2-6 

Vl(z)= [: , V2(z)= [ 1. 
Indeed, Z 

Now  let  us design  a  compensator bl(z)  which stabilizes kz/(z  - 
9) for  each k in [0.5, 51. It is easy to check that bl(z) = 18 is one 
such  compensator.  As ( z  - 4)/z2 is already stable, we  may 
choose b&) = 0. Now the final compensator is 

As C(w) is lower  triangular, &) represents  a  2-periodic linear 
time-varying  controller C.  Indeed, the inputloutput  equation  for C 
is given by 

C : (fo, f i , h  . . . ) = ( O ,  18f1, l08f1, 18h7 108f3, . . . I .  
Obviously,  the  controller C may  be implemented via the linear 
periodic  onedimensional  system 

xc(k+  l)=u,(k) 

Y A k )  = h(k)x(k)  + d(k)uc(k) 

where xc, y,, u, are  the state, output, and  input  of the  controller 
C, respectively, and 

h(k)  = 0 for k even 

h ( k ) =  108 for k odd 

d ( k )  = 0 for k odd 

d ( k )  = 18 for k even. 

This  controller C then stabilizes the  family of plants k(z - 2)/ 
(z  - 3) for  each k in [ O S .  51. Thus,  whereas  one could not have 
solved this robust  synthesis  problem using  an LTI  compensator,  a 
relatively simple  periodic  control  scheme  allows us  to solve  the 
problem.  This  example illustrates the  power of periodic  control 
for robust synthesis  problems. 

Remarks on the Strictly Proper Case 3.5: Given  the fact that 
we can arbitrarily improve  robustness  for LTI discrete-time 
bicausal plants by using periodic  compensation, we  would like to 
discuss  here  a  design  procedure which could  improve  robustness 
in  the strictly proper  case  as well. 

First, we  want to describe  precisely why the proof  of Theorem 
3.3 fails for strictly proper plants. Indeed,  given  a strictly proper 
nominal P,(z), from  the  argument of Theorem 3.3, we can  always 
represent it as an N-periodic  system P,(z) which  has  no blocking 
zeros  outside  the  unit  disk  including 03. (Note that if the  power 
series in z ~ I for P,(z) starts with z -' then,  for N 5: I ,  P&) in 
(29)  is bicausal,  and  therefore Po(z) does not  have a  blocking  zero 
at 03 for N 2 1.) Hence,  from [ 12, Theorem 3.11,  we can  always 
find an N X N matrix C(z)  to guarantee a given gain margin. 
However, recall from  Section 11, that in order_ for C(z) to 
correspond  to  a causal N-periodic  controller, C(m) must  be 
lower triangular. In order to ensure this in the  bicausal c g e ,  we 
used  the trick in the  proof of Theorem 3.3 of  multiplying P,(z) by 
U(z). The  reader  can easily check that such  a trick fails in the 
strictly proper  case.  Apparently, any attempt to obtain  a  causal C 
leads to an unstable  blocking  zero at 03. We  believe that this is not 
just  a  technical  problem, but a  fundamental  difference  between 
bicausal and strictly proper  plants  taken in the  context of robust 
stabilization. However,  the general method we have  discussed 
can  be  used to improve  the gain (or phase)  margin. We would 
like to explicitly outline this design  procedure now_. 

i)  Represent P,(z) as an N-periodic  plant P,(z) with no 
blocking  zeros.  From the proof of Theorem 3.3 this can always be 
done, and geneccally we can  take N = 2. 

ii) Multiply P,(z) on the right by the N X N matrix 

U(z)=diag ( z - l ,  z - l ,  ..., z - l ,  1) .  (3.6) 

Note  that P,(z)U(z) has no blocking  zeros  except at I, = 03. 
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iii) We now  need to find  a  compensator C(z) which stabilizes 
kp,(z)U(z) for all k in K. Since P,(z)U(z) has an unstable 
blocking  zero at 03, a  complete  solution to  the basic  problem  (3.2) 
is unknown at the  moment.  However,  the  problem may be 
approached  as  follows. Via unimodular  matrices  (with _entries  in 
the  ring R of stable proper rational functions)  bring P,(z)U(z) 
into a  diagonal  form.  (We  do not necessarily  take  the Smith- 
McMillan form.)  Thus, find  unimodular  matrices Vl(z ) ,  V;(Z) 
such that 

V,(z)p,(z)LI(z)V*(z)=diag (al ,  a2, - e . ,  a,,,). (3.7) 

Now each a, has an unstable  zero at 03. Further, we  may assume 
that the only unstable  zero of al is at 03. Also, if  we assume that 
P,(z) has distinct unstable  poles,  then we c_an force  the ai’s to have 
any distribution of the  unstable  poles of P,(z). 

iv) Construct  (using the results of [ 191 and [ 121) compensators 
b&) to stabilize kai(z) for  each k in K ,  i = 1 ,  2, . . . , N .  Since 
a,(z) has only one unstable  zero at 03, it can be expected that the 
amount of plant  uncertainty  as  given by K for which stabilizing 
compensators b,’s can be designed is larger  than  those which can 
be handled by LTI  compensators.  This is especially  true if P,(z) 
has  several  unstable  zeros.  Finally,  define 

c(z) : = U ( z )  VAz) diag (bl(z) ,   bz(z),  . . . , b d z ) )  Vdz).  

Then C(z) corresponds to a  periodic linear time-varying  compen- 
sator. In  (3.7)  there  are only finitely many possibilities for  the 
poles of the ai’s, and one  could  take  the  one which  will maximize 
the  robustness. 

Example 3.8: We would like to illustrate the above  procedure 
with a  simple  example.  Consider  the SISO strictly proper  plant 

z -  3 
Po(z)  = (z - 2)(3z - 5 )  

In [ 191 and [ 121 it  is shown that one can  find  an LTI stabilizing 
compensator C(z)  which stabilizes kP,(z) for each k in [a,  b] if 
and only if 

-<1.116. b 
a 

In other  words,  the maximal obtainable gain margin  for P&) 
using  any LTI  compensator is 0.953 dB! As P&) is strictly 
proper, we cannot apply Theorem 3.3 directly. However, let us 
apply the design  approach  outlined above. First, let us write (with 
N = 2),  

P,(Z) = P,(Z*) + 2 -  lP2(z2) 

- 2z2 - 30 3z4 - 232’ 
- 

( z ’ -4 ) (9~~-25)+~- I   ( z z -4 ) (9z2 -25)  * 

Hence, 
1 22- 30 3 ~ - 2 3  

( z  - 4)(9z-  25) 1 
Multiply p&) on the right by U(z) 

We now find  unimodular  matrices V,(z) and V2(z) over the ring of 
stable proper rational functions  such that 

where 
1 z - 9  al=-, a2= 

2-4 ~ ( 9 z - 2 5 )  ’ 

Now using  the results of [ 191 and [ 121 it foflows that we  can  find 
proper  compensators b,(z) and b&) which stabilize kal(z) and 
kaz(z), respectively,  for  each k in [a, b]  if and only if 

-< 1.45. 
b 
a 

If a, b satisfy the  above  inequality,  then we can  find  appropriate 
compensators bl(z) ,   b2(z)  which stabilize ka,(z) and kaz(z), 
respectively,  for  each k in [a,  b] .  Now  define 

C(z )  = U(z)V2(z) diag (bl(z) ,  b;(z))Vdz).  

Then e(03) is lower  triangular  and e(z)  corresponds to a  time- 
varying  periodic  system C. This  compensator C stabilizes kP,(z) 
for  each k in [a,   b] .  Thus, we can  find  a  2-periodic  compensator 
C to stabilize kPo(z) for  each k in [a,  b] if 

b 
a -< 1.45. 

We  conclude that we  can obtain  a gain  margin  using a 2- 
periodic  compensator of at least 3.25  dB.  This  shows that in this 
example we can  obtain an improvement in the  maximal 
obtainable gain margin by at least a factor  of 3 by using 
periodic  feedback  instead of LTI  feedback. 

IV. STRONG AND SIMULTANEOUS  STABILIZATION 

In the  previous  section we have  shown that it is possible to 
improve  maximal  attainable stability margins  for linear discrete- 
time LTI  plants by using  periodic  time-varying controllers. This 
improvement is due to the fact that we are able to “remove” 
blocking  zeros by viewing  LTI  plants  as  being N periodic,  and 
then  applying  the methods  of [12]. We  again  exploit this fact to 
demonstrate  the  advantage of using  periodic  feedback  for  the 
strong  and  simultaneous stabilization problems. 

The  strong stabilization problem is: given an LTI  plant P(z), 
find (if possible)  an  asymptotically stable controller which 
internally stabilizes the plant. If the  controller is restricted to be 
time-invariant, Youla et al. [22] have  proved that P(z) can be 
stabilized using  a stable controller if and only if a  certain 
interlacing  property,  involving real blocking  zeros and poles of 
P(z) lying  outside  the  open unit disk, is satisfied. We show in this 
section that any LTI  plant  can  be internally stabilized by using a 
periodic,  stable, time-varying controller. 

We also  study  the  problem of simultaneous stabilization using 
time-varying controllers. In this connection, we show that any 
finite collection of discrete-time  LTI  plants  can  be  simultaneously 
stabilized by a  periodic  time-varying controller. Moreover, this 
controller  can  be  guaranteed to be internally stable. 

We  begin  with the  following. 
Theorem 4.1: Let P(z) be  the  (proper) transfer matrix of a p  

x m discrete-time LTI plant.  Then there exists a  periodic 
time-varying  asymptotically stable controller that internally 
stabilizes the  plant. 

Pro08 Let n be the  McMillan  degree of P(z). From  the 
proof of Theorem 3.3, it follows that we  can find an integer N ,  1 
< N ,< n + 1 such that if  we view the  system P(z) as  an N- 
periodic  discrete-time, time-varying Jystem, then  the  associated 
pN X mN transfer  function  matrix P(z) has no blocking  zeros in 
the  complement of the  open unit disk. Consider  the (fictitious) 
plant 

G ( z ) = P ( z )  diag (z-’ ,  z - l ,  e.., z - ’ ,  1). 

Clearly, G(z) has  no  blocking  zeros in the  complement of the  open 
unit disk  except  possibly  at z = 03. But  now the  interlacing 
property of real blocking  zeros  and  poles of G(z) in the 
complement of  unit disk  holds trivially. ( S e e  [22, p. 1661.) Hence, 
it follows  from [22] that there exists a  proper  controller H(z) that 
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internally stabilizes G(z). Define 

C(z)=diag  (z-l,  z-', e . . ,  t-l, l ) H ( z ) .  

Notice that c(a) is lower triangular. Consequently, e(z) 
corresponds to  an N-periodic, linear, discrete-time,  time-varying 
system C. Further, C is stable since H(z) as well z - I  is stable. 
Finally, by Lemma 2.7, C internally stabilizes P(z). This 
completes  the  proof. 

Alternate Proof: Let n be the d i m p i o n  ̂Of 4 s ) .  _Let-C(z) 
be any deadbeat  controller  for P and let C, = (F,, G,, H,, J,)-be 
a  canonical  realization of C(z) .  Let n, be the  dimension of X,. 
The  fact  that C(z) is a  deadbeat  controller means  that starting 
from any  initial state x, in $ 2 n + n ~  of the  feedback  system at the 
time to  the  closed-loop  system state x(k) = 0, for k 2 n + n,  + 
to.  Define  an (n  + n, + 1)-periodic  time-varying  system E, = 
(F', G,,  H,, J,) 

G,=G,,  H,=H,, J , = j , ,  

Clearly C, is asymptotically stable and it internally stabilizes the 
plant P(z). 

It is possible to generalize  the  alternate proof of Theorem 4.1 to 
show that any LTI continuous-time plant  can  be internally 
stabilized by an  asymptotically stable periodic controller. We  omit 
the details for the sake of brevity. 

Let us now turn to the problem of simultaneous stabilization. 
Let  { P,(z):i = 1, 2, * * e ,  k }  be  a finite collection of p x m 
discrete-time  LTI plants. The  problem of simultaneous stabiliza- 
tion  is to find (if possible)  a  controller C, which stabilizes each  of 
the  plants P&), i = 1,  2, . . . , k .  If one restricts C, to be  an LTI 
system, this  is a  rather difficult problem in its complete  generality 
and  has been  studied by [ 171, [20], and [ 101. Using periodic 
controllers,  however, we can easily obtain  the  following. 

Theorem 4.2: Let P,(z), i = 1, 2, . e ,  k be  any collection of 
p X m discrete-time LTI plants.  Then there exists an 
asymptotically stable periodic  time-varying controller C that 
internally stabilizes each Pi(& i = 1,  2, . . a ,  k.  

Proof: For i = 1, 2, . . a ,  k ,  let Ci(z) be a  deadbeat 
controller  for Pi(z). Let C; = (A:, B;, Cg, Df) be a  canonical 
realization of Ci(z). Without loss of generality, we  may assume 
that each C f  has  the  same  dimension n,. Let  n j  be the  dimension of 
Pi(z). Let 

N,= 1 +In ,+c  nj, I =  1, 2, ..e, k.  
I 

j =  I 

Define  the  Nk-periodic  system C' = (Ac, B', C', D') by 

Clearly, 2' is asymptotically stable since AC(Nk)  = 0. Also, Cc 
internally stabilizes Pj(z) because  within Nk steps, C' switches to 
C f  and drives  the state of the  closed-loop  system to zero state. 
[Recall that Ci(z) is a  deadbeat  controller  for Pi(z).] This 
completes  the  proof. 

Remark 4.3: It  is possible to give  a proof  of Theorem 4.2 using 
the  representation of an  LTI  system  as  an  N-periodic  system. 
However, this proof using the results of [20]  turns out  to be  rather 
long and  complicated.  We  omit this alternate proof for the sake of 
brevity. 

Remark 4.4: Following  the  reasoning used  in the  proof of 
Theorem 3.3, it is easy to show that in Theorem  4.1,  generically, 
one  can  find  an  asymptotically stable 2-periodic stabilizing 
controller. In Theorem 4.2, it is possible to show that generically 
for  a  pair of plants, one can obtain  a  2-periodic  simultaneously 
stabilizing controller.  However,  for  a  K-tuple of plants. we have 
not  been able to obtain  a  similar  conclusion. 

V. SENSITMTY MINIMIZATION 

We have  seen in Section III that  via time-varying  periodic 
compensation,  one  can in certain  cases  improve  the gain margin 
for  a linear time-invariant  system. In [12], it  is shown that for 
time-invariant SISO plants, the  gain  margin  optimization  problem 
and  the sensitivity minimization  problem of [24] and [9] are 
equivalent (in a  certain  precise  sense)  provided we use linear time- 
invariant  compensation.  Given  the results of Section In ,  one 
might expect that one  could  perhaps  improve  the minimum 
sensitivity by using  time-varying  compensators. In this section, 
however, we show  that in contrast to the gain margin  problem,  the 
minimum  weighted sensitivity for  a  linear  time-invariant plant  is 
attained when  the compensator is also  time-invariant.  Thus,  the 
use of time-varying  controllers in the  context of sensitivity 
minimization  offers no advantage. 

We should  mention that  in a  recent  paper,  Feintuch and Francis 
[SI consider the sensitivity minimization  problem  for  a  time- 
varying  plant and derive the existence of  an optimal controller. 
This  controller will, of course, in general be time-varying. 

In order to state and  prove  our result, we will first need some 
notation.  We  are essentially following  the  setup in [9],  [7], [SI. 
Let. as  before, h2 denote  the  Hilbert  space of square  summable 
sequences {hi: i  2 0) .  Let H' denote  the  "z-transform" of h2, 
i.e., H Z  : = (CEO h i z - ' : (h i )  is in h 2 } .  It  is a  standard fact from 
Fourier  analysis (see. e.g., [ 161) that H' can  be identified with the 
space of analytic  functions in the  complement of the  closed unit 
disk D with square  integrable boundary values, and  with this 
induced Hilbert  space  structure, H' is isomorphic to h'. (For all 
the relevant details, see [ 161. [6].) Note  that stability of a time- 
invariant  system  corresponds to analyticity of  the transfer  function 
in the  complement of  the unit disk. 

Throughout this section, P(z) will denote the p X m transfer 
matrix of an LTI  discrete-time plant  with  no  poles or zeros on the 
unit circle {z:lzl = 1) .  Consider now left and  right coprime 
stable proper  factorizations of P(z) 

P(z) = A  (z)B(z)- - -B(z)-IA(z) 
with the  corresponding Bezout identities 

X ( z ) A  (z) + Y ( z ) B ( z )  = I  

A ( z ) X ( z )  + B(z) P(z) = I .  

(Here all the matrices are stable and  proper.)  From  Zames [23], it 
follows that  the set of all internally stabilizing, linear, time- 
varying,  causal  compensators  for P is given by 

{ C = ( X + B Z ) ( P - A Z ) - ' :  z 

: (H2)P+(H2)" is a bounded  linear  causal  operator}. (5.1) 

It is important to emphasize  here that Z is not necessarily a 
multiplication operator. Indeed, the class of  all LTI compensa- 
tors for P is obtained by letting Z vary in the space 
where RH" denotes the space of  bounded  real rational functions 
on the  complement of the unit disk. Thus. the "multiplication" in 
the  above  expression (5.1) for C should  be thought  of as 
composition o-f operators, 

Let C = ( X  + BZ) (  Y - A Z )  be a stabilizing compensator 
for P. Let  W1 and W2 be unimodular  matrices in (RH")P"P. 
Following  Zames [23] we define the weighred sensitivity 
operalor 

S : = W,(Z+ PC)-  I WI : ( H2)P+(  H')P. * 

A simple  computation  shows that 

s= W,( P-AZ)BW,.  
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Set 

v : = inf { 11 SI1 : C stabilizing, causal) 

=inf  {IlSll : 2 bounded,  causal, Z : (H2)P-+(H’)”). 

Moreover, set 

v I  : = inf { 1 )  SI/ : C stabilizing, causal? and LTI} 

=inf {IISlla : ZE(RH”)”XP). 

Now  in [9], [7] it  is shown that vI  is  in  point  of fact obtained  for 
some linear time-invariant  optimal  controller C. Clearly v < v l ,  
and so it is natural to conjecture that  minimal sensitivity could be 
improved by taking  the  compensator C to be time-varying  (we are 
after all minimizing  over  a much larger class of operators). 
However, this is not the  case.  Indeed we have  the  following. 

Theorem 5.2: v = v,. That is, the minimal sensitivity f o r  an 
LTI plant  cannot be improved  by  taking  time-varying  com- 
pensators. 

Proof: We  follow essentially the  same method as in [9], 
[24], and 171. Using the  above  notation,  our  assumption that P(z) 
has no poles on the unit circle { I zI = 1 1, implies that B is 
nonsingular on the unit circle.  Therefore (see, e.g., [7]) 

sw, = (SW,) , (SW,) ,  

where (By,), is an  outer  factor of SW,, and (BWJi is  an inner 
factor of BW, .  Then 

II SI1 = II W2( P-AZ ) ( ~ ~ * ) O ( ~ ~ l ) i I l  

= II W2( P-AZ)(~Wl)oI I .  

S5t T = W2y(BWI),, U = W2A, V = Z(BWI),. Since 
(BW,) ,  is unimodular, we have that 

v=inf (IlSll : C stabilizing, causal) 

=inf ( 1 1  T -  UVll : V :  (H2)P+(Hz)” bounded, causal). 

In order to complete  the  proof we  must show that v is obtained 
when V E (RHm)mxp. 

Set Q : = U(H2)”, and let Q denote  the  orthogonal 
complement of Q in (Hz)”. Let nQ and nQ, denote  the 
projection  operators  from (Hz)” onto Q and Q’, respectively. 
Then 

T -  UV= I I Q L (  T -  U V )  + n ~ (  T -  U V )  

= rIQl T+ rI,( T -  UV). 

Consequently, 11 T - UVll 2 I ~ ~ Q L  TI1 for all V causal, 
bounded. But  by the  work of [9], there exists V, E (RHm)mxp 
such that 

I1 T -  uVoll= II T -  UVoI Im 

= TII. 

This  clearly  completes  the  proof. 
Remark 5.3: Theorem 5 . 2  together with the results of Section 

11, show that for  an  N-periodic  discrete-time  plant P. an  optimal 
compensator C (in the  sense of minimizing sensitivity) will also  be 
N-periodic. In order to see this, just represent P as an LTI plant, 
and thus by Theorem 5 .2  an optimal  compensator C will also be 
LTI (of the same input and  output  dimensions).  Hence, C will 
represent an N-periodic  system.  The  problem is however,  because 
of (2 .5):  in order to ensure that C corresponds to a causal N- 
periodic  system, we  must have that C(m) be lower triangular. At 
present, we do not see how this can be ensured,  and so we leave 
this as an open  problem. 

Remark 5.4: Results  analogous to Theorem 5.2 have been 

independently and simultaneously  obtained by Feintuch  and 
Francis [25]. 

VI. CONCLUSIONS 

In this paper we have seen how the use of periodic  time-varying 
controllers can  be  used to improve  robustness,  and  completely 
solve  the  strong  and  simultaneous stabilization problems  for 
discrete-time  linear  time-invariant  systems.  Moreover, we have 
indicated how such  controllers can be  implemented by using a 
very simple and natural  design  procedure. 

As we have  noted, if  we restrict ourselves to linear time- 
invariant  compensators,  then  there are strict bounds  on the 
maximal  obtainable  gain  margin in case  the  plant has unstable 
poles  and  zeros. But  by implementing  simple  feedback  designs 
involving  periodic  compensation, it is possible to guarantee 
arbitrarily large  gain  and  phase  margins  for  bicausal plants, and to 
improve  these  margins  for strictly proper plants. (However. the 
optimal design  for the strictly proper  case using periodic 
controllers is still not solved,  and  remains an important  research 
area.) Moreover, while the  solution of the  strong stabilization 
problem using LTI  controllers is determined by a  certain 
interlacing  property of the real unstable  poles and zeros of the 
plant, again by using  periodic  compensation, the problem be- 
comes trivially solvable. 

In contrast to all of this, for  the  question of sensitivity 
minimization of LTI plants, time-varying  controllers  offer no 
advantage. An interesting  open  problem is whether  one can 
minimize  the sensitivity of a  periodic  plant by using a  causal 
periodic  compensator. 
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