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Summary

While much attention has been paid to the usability of desktop computers, mobile com-

puters are quickly becoming the dominant platform. Because mobile computers may be

used in nearly any situation—including while the user is actually in motion, or performing

other tasks—interfaces designed for stationary use may be inappropriate, and alternative

interfaces should be considered.

In this dissertation I consider the idea of microinteractions—interactions with a device

that take less than four seconds to initiate and complete. Microinteractions are desirable

because they may minimize interruption; that is, they allow for a tiny burst of interaction

with a device so that the user can quickly return to the task at hand.

My research concentrates on methods for applying microinteractions through wrist-

based interaction. I consider two modalities for this interaction: touchscreens and motion-

based gestures. In the case of touchscreens, I consider the interface implications of making

touchscreen watches usable with the finger, instead of the usual stylus, and investigate

users’ performance with a round touchscreen. For gesture-based interaction, I present a

tool, MAGIC, for designing gesture-based interactive system, and detail the evaluation of

the tool.
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CHAPTER I

INTRODUCTION

In this dissertation I consider the idea of microinteractions—interactions with a device that

take less than four seconds to initiate and complete. Microinteractions are desirable because

they may minimize interruption; that is, they allow for a tiny burst of interaction with a

device so that the user can quickly return to the task at hand.

Much of the foundational work leading up to my conception of microinteractions was

undertaken by Antti Oulasvirta and colleagues. Oulasvirta et al. investigated the fragmen-

tation of attention in mobile situations, discovering that, to maintain attention on both

the mobile device and the world around them, attention to the mobile device broke into

bursts of four to eight seconds [69]. Oulasvirta recommends that designers should “put

effort to shorten interaction units (down to less than five seconds)” [70]. I believe that—if

possible—the entire interaction should be completed in under four seconds, enabling the

user to return to the task at hand without any further interruption.

There are two stages to device usage that contribute to the “microness” of an interaction:

access time and usage time. Access time encompasses the time it takes to get the device

ready to use for its intended purpose; for a mobile phone, it includes retrieving the phone

from its storage location (such as pocket, bag or holster) and navigating to the desired

application. Usage time is the amount of time the device is actually being engaged for

the purpose at hand, and is application dependent: checking tomorrow’s weather might

only take a second, while composing an email could take several minutes. Because of this

dependence, I only consider access time.

One useful metric for considering access time for a device is the ratio of access time to

usage time. The larger the ratio, the more need for a decrease in access time. Consider the

scenario of checking tomorrow’s weather: if it takes five seconds to retrieve one’s mobile

phone and start up the weather application, but only a half second to note the icon and high
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temperature, the ratio is 5 : 1/2 → 10, implying that the access time in this case should

be sped up considerably. On the other hand, if the task is to compose a text message, the

ratio might be 5 : 30→ 1/6, which is appropriately small;

One potential objection to the idea of microinteractions is whether there are truly enough

tasks that could be made “micro”. I informally investigated this question by looking at the

default set of applications that came installed on the first-generation Apple iPhone (circa

2006). Of the thirteen applications, eight could conceivably be used in four seconds or less.

The following list details the eight “fast” applications and describes the quick use case for

each:

iPod changing tracks, changing volume, playing and pausing, shuffling

Phone quickly dialing a favorite number, changing volume, hanging up, answering call

waiting

Weather checking current and predicted weather conditions

Calendar looking at one’s upcoming schedule

Stocks retrieving information on current stock conditions

Clock snoozing or turning off alarms

SMS quickly reading a received message

Calculator making a quick calculation

Unfortunately, few of these applications are currently truly “micro”. The iPod and

iPhone applications may be controlled by a headphone remote cord, and when a single

SMS has been received it is displayed on the phone’s lock screen. There is much potential,

however, to enable microinteractions for many devices and many applications.

In this dissertation, I concentrate on methods for applying microinteractions through

wrist-based interaction. I consider two modalities for this interaction: touchscreens and

motion gestures. In the case of touchscreens, I consider the interface implications of making
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touchscreen watches usable with the finger, instead of the usual stylus, and investigate users’

performance with a round touchscreen. For motion gesture-based interaction, I present a

tool, MAGIC, for designing gesture-based interactive system, and detail the evaluation of

the tool.

My thesis statement is as follows:

1. Wrist-mounted sensors can be used to create gesture-based interfaces where the access

interactions occur in under four seconds.

2. Providing interaction designers with databases including peoples’ everyday motions

allows them to create gestures with fewer false positives than can be created without

the databases.

1.1 Contributions

The work I present in this dissertation makes several contributions. Supporting mobile

microinteractions by reducing access time and avoiding push-to-activate (using a button

to “unlock” a device before providing input) will affect everyday interactions with mobile

devices. By allowing more efficient usage, users will be more likely to use the functionality

that the device offers, and speeding up access time for the many daily uses that devices are

put to will have a large overall effect.

The general contributions this work makes include the following:

1. The introduction of the concept of microinteractions. As discussed above, a microinter-

action is an interaction with a device taking under four seconds to complete. Chapter

2 discusses some of the motivating work behind the idea of microinteractions.

2. A study quantifying the access time properties of mobile devices stored in the pocket,

in a belt holster, and mounted on the wrist, while standing and walking. Although

one would naturally expect that a watch is faster to access than a pocket or holster, I

quantify how much faster it is and break down the access time into several measurable

steps. This study, presented in Chapter 3, also indicates that people are generally
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capable of simple interactions with a touchscreen while performing pedestrian navi-

gation.

3. The introduction of new interaction techniques for the wrist. The wristwatch is a

piece of technology that is well-understood by the population at large, and that is

starting to garner interest as a platform for interaction. Most existing methods for

interacting with the wristwatch are, however, button-based, often leading to unnec-

essary complexity. In Chapters 4 and 5, I propose two new methods for interacting

with a wristwatch that could lead to simpler or more efficient interactions with mul-

tifunctional wristwatches.

My next contribution relates to touchscreen wristwatches with round faces:

4. A study determining the optimal on-screen button size for three interaction types on a

round touchscreen watch. As discussed later, a round display suggests an interaction

region around the edge and a separate center area. Given the edge-based interaction

area, what type of touch interaction should be supported, and how many buttons

may be accommodated? This study, presented in Chapter 4, compares three types of

touches—tapping, sliding in a straight line, and sliding along the rim—and determines

the optimal button size for each.

The final set of contributions is related to gesture-based interactions:

5. A software tool for gesture design, that assists in creating low-false positive gestures.

In Chapter 5 I introduce MAGIC, a tool to help interface designers create motion

gestures. I discuss the workflow of gesture creation and how the software supports it.

One of the features of MAGIC is the Everyday Gesture Library (EGL), which assists

gesture designers in designing freeform gestures that are less likely to be falsely trig-

gered by a person’s everyday movements than gestures designed without the assistance

of the EGL.

6. Strategies used by non-domain experts in designing motion gestures using MAGIC are

discussed in Chapter 6. A wide variety of strategies were used both for memorability
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purposes and to make the gestures more distinguishable from each other.

1.2 Dissertation Organization

In Chapter 2, I discuss work related to my thesis, including work related to microinteractions

in general, as well as to touchscreen wristwatches, gesture, and interaction design tools.

Chapter 3 presents a study on the amount of time required to access devices placed at various

locations on the body, and argues that the wrist is a good location for interactive technology.

Chapter 4 explores one method of implementing wrist-based interaction, through a round

touchscreen watch. Chapters 5–7 present and discuss MAGIC, a tool for helping gesture

designers create systems in which the gestures do not conflict with each other and have low

false positive rates. Finally, Chapter 8 concludes the dissertation.
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CHAPTER II

RELATED WORK

2.1 Microinteractions & Mobility

In a 1968 paper, Miller characterized the delays inherent in human-computer “conversation”

[61]; that is, the amount of time that it takes for a computer to respond to a human’s input,

and how the human will react to the delay. He recommended, in most cases, that delays of

no more than two seconds be allowed:

A general rule for guidance would be: For good communication with humans,

response delays of more than two seconds should follow only a condition of task

closure [a task or sub-task being finished] as perceived by the human, or as

structured for the human.

In Miller’s era, computers were fixed in one place, and the sole purpose of a person being

in front of one was to accomplish a particular task. Nearly 40 years later, Oulasvirta et

al. considered a different environment, in which users are mobile [69]. Participants in their

study were performing multiple tasks while waiting for a response from the computer (in

this case a mobile phone), including navigating busy streets and metro platforms, watching

for a particular metro stop, and eating and carrying on conversation. In these environments

of multiple attentional demands, participants took four to eight seconds at a time to look

at the device before returning attention to the environment.

In both the Miller and Oulasvirta cases, users are waiting for output, rather than per-

forming input; it is only after requesting a response from the system that the waiting time

of two or four to eight seconds occurs. Figure 1 illustrates the cycle of user input/computer

response; in the figure, the user’s waiting time is represented by the upper arrow, where the

computer is performing some kind of processing, and the user must wait for a response. In

Miller’s examples, users were waiting for responses to a wide variety of queries to mainframe
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Input from 
user

Response 
from 

computer

User waiting for response

Computer waiting for input

Figure 1: The human/computer response cycle, in which the computer waits for input from
the user, and then the user waits for a response from the computer.

systems, including database queries and graphical model rendering. In Oulasvirta et al.’s

study, participants were waiting for network-bound web page loading.

My work in this dissertation largely concentrates on the upper arrow, which concerns

what the human is doing. The computer is patient and can wait all day for the user; when

the user decides to use the system and enters the leftmost state, it should be possible to

exit that state again very quickly. That is, the user should have the opportunity to quickly

and easily issue a command, and then attend to other tasks while the computer completes

its part of the cycle.

What determines whether a particular interaction with a device is a microinteraction?

Microinteractions both encompass and break Figure 1’s cycle. Figure 2 illustrates this: the

user performs input, and once the computer has responded, the interaction is effectively

finished. If the entire flow illustrated can be completed in a particular time—lacking other

data, I use Oulasvirta’s lower time of four seconds—then the interaction can be considered

to be “micro”.

The actual time that the interaction takes is dependent upon all parts of the cycle: the

user’s ability to quickly communicate to the computer what it is she would like it to do,

the computer’s ability to speedily execute the desired task, and the ability of the user to

consume the output (if any) from the task. The “input from user” part of the cycle can be

thought of as the gulf of execution, and the “response from computer” part as the gulf of

evaluation [32]. The goal of microinteractions—as in all HCI—is to reduce the gulfs; the
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Response 
from 

computer

User waiting for response

Computer waiting for input

Input 
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finished

Figure 2: The microinteraction cycle, in which the computer waits for input from the user;
once the user receives a response from the computer, the interaction may be finished (solid
line). In a multiple-step interactive task the cycle may repeat one or more times (dashed
line).

goal of my dissertation work in particular is to reduce the gulf of execution.

To address this challenge, especially with mobile devices, I consider access time—the

amount of time it takes to get a device ready to use. I also consider the first input to

a system, which in the case of microinteractions is ideally the only input. One way to

reduce access time is by making the device extremely accessible. Section 2.1.1 discusses

some relevant work on the subject of getting to and using mobile devices, including some

justification for using the wrist as an ideal platform for microinteractions.

If the wrist makes an excellent platform for interaction, what kind of interaction should

take place upon it? In this dissertation, I describe two approaches: touch and gesture.

Because part of a microinteraction can involve several user-computer response cycles (for

example, specifying which day of the calender to show by scrolling through a list), an

efficient method of interacting with the device is necessary. I investigated the properties of

a touchscreen watch with a round face; work related to this idea is presented in Section 2.2.

In some cases, the dotted line in Figure 2 is never followed; this the case of an instant

command. Pressing the volume button on an audio player is an instant command: the user’s

input—pressing the button—is immediately followed by the computer’s response—raising
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the volume—and, unless the result is unsatisfactory, requires no further interaction. But-

tons, however, can require more access time, especially if there are a lot of them; therefore,

I consider gesture as a way of performing instant commands. A discussion of work related

to gesture appears in Section 2.3.

Gesture creation is a challenging task, particularly for non-experts. I created a piece of

software, called MAGIC, that helps interaction design professionals design and test gestures.

MAGIC draws inspiration from a number of prior projects, which are discussed in Section

2.4.

2.1.1 Access Time

Patel et al. examined people’s perceptions about how often they have their mobile phone

nearby. Their data show that people routinely overestimate the physical availability of their

mobile phones [72]. Even when the mobile phone is with its user, it may not be quickly

accessible; Cui et al. found that 40% of women and 30% of men miss phone calls simply

due to the manner in which they carry the mobile phone on their person [18]. Similarly,

Starner et al. found correlations between an individual’s decision to use or not use a mobile

scheduling device (such as a day planner or PDA) and the amount of time and effort

required to access and make ready the device [94]. Together, these studies suggest that the

time required to access a device may be an important property affecting mobile use.

Kristoffersen and Ljungberg noted a variety of problems with portable devices that

combined to prevent activity from simply “taking place”—instead, users of the technology

had to “make place” to use the device [44]. The biggest problems they found appeared to

be related to the form-factor of the devices used, which were PDAs: users needed two hands

to use the device, but often only one or no hands were free; and frequently they needed to

put down the device to use it—either to have a surface to type or write on, or to refer back

to the display—but no surface was available for this purpose. These results suggest that,

for some purposes, a wrist-based platform may be more practical.

Chapter 3 discusses a study I worked on that measured the access time required for a

wrist-mounted device, as compared to a device in a pocket or in a belt holster.

10



2.2 Touchscreen Wristwatches

Despite the increasing functionality in wrist-worn technology, there has not been much

academic work on wristwatch interfaces, and the literature is particularly sparse in the

area of round touchscreen watches. Two commercial examples of round-faced watches with

touch capability—though not with round touchscreens—are the Tissot T-Touch and Silen-

T wristwatches1, shown in Figure 3. Both watches feature a “push-to-touch” mechanism,

designed to avoid accidentally activating functionality. The T-Touch is activated by holding

a finger to the touch-sensitive crown for longer than one second, and the Silen-T is activated

by pressing in the crown (which is a button). This push-to-activate mechanism is a recurring

feature of many sensor-based mobile interaction systems [40, 56, 91].

(a) (b)

Figure 3: The Tissot T-Touch (a) and Silen-T (b) touch-sensitive watches. The T-Touch’s
touch mechanism is activated by touching the crown (next to the E on the bezel) for longer
than one second; the areas on the crystal labeled thermo, meteo, altimeter, chrono,
compass, and alarm then become sensitive, activating various functionality when touched.
The Silen-T also features a touch-sensitive crystal, which is activated by pressing the crown.
The watch then vibrates when the user’s finger is run clockwise around the face, with a
long vibration when the finger is at the current hour position and short vibrations at the
minute position.

Despite the paucity of literature on round touchscreen watches, there has been work

on rectangular touchscreen watches. IBM’s Linux-based WatchPad prototype (Figure 4(a))

incorporates a four-zone touchscreen, and Raghunath et al. implemented some simple

interfaces for it [79]. However, because of the low resolution of the touchscreen, most of the

1http://tissot.ch
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applications depended upon the scrollwheel included on the watch (visible in Figure 4(a)

on the left side of the watch).

Blaskó further extended the IBM work, creating a rectangular prototype—although non-

watch-based—with nine touch-sensitive zones (Figure 4(b)) that allowed for virtual scroll

wheels [26], sliding, and gestures [25]. In his interfaces, Blaskó used the bezel at the edges

of the display as a “tactile landmark” to inform the user in an eyes-free manner of their

current location on the touchscreen. Unfortunately, the interfaces were only evaluated in

stationary situations, and no consideration was given to the potential issue of accidental

activation.

(a) (b)

Figure 4: The IBM WatchPad (a) and Blaskó’s interface for a variation with nine touch-
sensitive areas.

One commercial (although not commercially successful) example of a touchscreen watch

was the Fossil/Abacus WristPDA, which was based on PalmOS and had a 160x160 pixel

touchscreen. While its main menu showed only four icons (Figure 5(a)) and could conceiv-

ably be operated with a fingertip, other application screens were tiny enough (Figure 5(b))

to require the use of a stylus built into the watch band (Figure 5(c)).

Baudisch and Chu investigated touch interaction with wristwatch-sized and smaller

screens, but through the unique approach of touch input on the back of the device [6].

Their input device was a small (2.4” diagonal) rectangular screen with a touchpad on the
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(a) (b) (c)

Figure 5: The Fossil/Abacus WristPDA. (a) shows the application menu, with icons large
enough to push with a fingertip; (b) shows the calculator application with tiny buttons; (c)
illustrates the scale of the included stylus that is normally tucked into the watch band. It
is likely that the stylus or another pointed instrument would be needed to effectively use
the calculator application.

back. Although they proposed that such an input technique might be usable for wrist-

watches, they did not prototype or test the wrist interaction.

While not wristwatch-based, there have been a number of publications on the general

topic of circular interactions. Several techniques investigate menu selection; the most well-

known are the Pie Menu [14], which uses a round menu with wedge-shaped buttons (Figure

6(a)), and its extension, Marking Menus [46]. These ideas have been extended in numerous

ways: FlowMenu [28], for example, allows in-place hierarchical menu selection, command

parameter entry and text input; earPod [109] used a pie-menu like design for an auditory

menu (Figure 6(b)); and Gellersen et al. [27] developed a pie menu-like interface for wearable

computers (Figure 6(c)). Scrolling is another common interaction using circular interfaces.

The Radial Scroll Tool [89] allows a user to scroll through a document by making a “dial

turning” motion. The Virtual Scroll Ring [63] is a similar idea. As well as moving through

documents, scrolling widgets can be used for parameter selection: both FlowMenus and

the Curve Dial [90]—the successor to the Radial Scroll Tool—allow for eyes-free parameter

entry.

Text entry has also been implemented using circular interfaces. FlowMenu uses an

adaptation of the Quikwrite technique [75]. Cirrin [57] uses a circular key layout and a
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(a) (b)

(c) (d)

Figure 6: Interfaces using a center/rim style of interaction. (a) is an example of a pie menu
[14], (b) is a conceptual visualization of the earPod menu system [109], (c) is a pie menu-like
selection system designed for see-through head-mounted displays (the central black area will
appear to be transparent to the wearer) [27], and (d) illustrates Cirrin [57].

continuous gliding-style interaction to enter text (Figure 6(d)).

Much of the literature on circular-style interfaces defines, whether explicitly or implicitly,

two regions of interaction: the rim and the center. While these areas also make sense for a

round touchscreen watch, I have encountered a lack of data on appropriate widget sizes for

wristwatch-sized screens.

2.3 Gesture

In this section, I discuss some of the relevant previous work in motion gesture. As opposed

to pen gesture, motion gesture involves a free-space movement with some part of the body.

In the literature, the body parts most frequently used for gesture are the hand and fingers

[1, 9, 19, 31, 35, 36, 45, 48, 49, 67, 73, 78, 85, 88, 96, 103, 110]. Interesting exceptions

include using the head [37], arms [2, 17, 80, 86], and even feet [47] to gesture.
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Hand gesture has at various points made its way to the consumer market, mostly for

video gaming. The Power Glove was a 1987 peripheral for the Nintendo Entertainment

System that featured crude ultrasonic tracking of the hand in 3D and finger position sensing.

A similar device, the P5 Glove was released in 2002. The Nintendo Wii game system,

released in 2006, uses a motion-sensitive wand, and Microsoft’s upcoming project Natal

features a camera-based set-top box to sense player’s hand movements.

Gesture has not appeared in many consumer devices outside of video games. Multi-

ple Apple iPod models (including the iPhone and Nano) support “shake to shuffle”, and

Toshiba’s Qosmio G55 laptop features camera-based gesture control for multimedia. Many

other companies have announced forthcoming gesture-based devices, but few have actually

appeared in stores.

The rest of this section details the results of a survey of much of the literature on motion

gesture. In a summary of a 1995 CHI workshop on gesture for user interfaces, Wexelblat

points out a number of questions about and issues with gesture interfaces [104]; I used many

of these questions as guidance when conducting the survey. Below are some of the relevant

questions, quoted verbatim from the Wexelblat paper:

• What are the “right” applications?

• What is the role of learning/what can we expect of the user?

• What is the role of feedback (especially in terms of establishing context)?

• Can we work with “spontaneous” gestures?

• Viewpoint manipulation versus object manipulation

• What technologies do we need to develop for gesture applications to be practical?

• What are the differences between gesture as a novel input mode to applications versus

gesture as replacement for other input devices?

• How much can we do with a small set of gestures? (If it’s hard to learn a large set of

gestures, what’s the right minimal set?)
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• What aspects/features of applications cause us to want to use gestures?

• How can we map gestures into useful application action (intuition, level of abstraction,

level of autonomy)?

More specifically, for each paper I considered the following questions:

• What are the relevant features of the gestures presented? What kinds of movements

are used? What body part gestures? Is social acceptability addressed? (Section 2.3.1)

• What effects do the gestures produce, or for what purpose are they intended? Do they

manipulate objects or issue commands? Are they for continuous or discrete control?

(Section 2.3.2)

• From the user’s side: How are gestures represented? How is recognition triggered? In

what kinds of situations are the gestures intended to be used? What kind of feedback

is given? Who creates the gestures? (Section 2.3.3)

2.3.1 Properties of Gestures

The motions of gestures themselves have various properties: planarity, iconicity, multi-

modality, part of body involved, orientation-sensitivity, reason gesture was generated (pur-

posefulness), and social acceptability. Some of these are purely physical, and some involve

the person/gesture space.

Gestures have been broadly divided into three types, by function [12]. This division

generally applies to gestures made by the hands (and empty-handed), although theoretical

extensions have been created for gestures made with objects as well [13]. The types are:

epistemic gestures are used for perception; they are gestures used to explore the environ-

ment by touching and manipulation. Examples include understanding the state of

an object (touching the switch to see if the garage light was left on) or touching as a

precursor to manipulation (finding preset button #2 on the car radio);

semiotic gestures are used for communication. They include gesticulation while talking

and pointing to indicate objects;
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ergotic gestures are intended to have an effect on the world. Picking something up, ro-

tating an object, and pushing something are all ergotic gestures. Many gestures used

for interacting with computers are ergotic as well, especially when interacting with

touchscreens (pinch-to-scale and turn-to-rotate, for example).

The intent behind a person’s movements is an important characteristic of gestures.

While much research has been conducted on gestures that naturally occur while speaking

(gesticulation) [60] or communicating (semiotic gesture) and learning (epistemic gesture)

[12], human-computer interaction is usually concerned with purposeful gesture—either er-

gotic or semiotic.

The planarity of a gesture involves the motion through physical space of the part of the

body that is gesturing. Is the motion confined to a 2D plane (or 1D line) embedded in 3D

space? For example, putting your hand flat in front of you, then moving it from right to

left, is a 1D gesture. Drawing a circle in the air with your finger is an example of a 2D

planar gesture. An example of a 3D gesture is drawing a circle, then drawing a half-circle

perpendicular to the first circle. Most gestures in the literature fall into the 2D planar

category; it may be simply that users have difficulty envisioning gestures in 3D. Kela et al.

report on a study in which users were asked to imagine and sketch gestures for controlling

home appliances [38]; they found very few 3D gestures, even though participants were not

constrained by the necessity of gestures actually being recognized by a computer.

Iconicity is how representative the shape or motion of the gesture is of the action that

results from performing the gesture. In Western culture, up and right are associated with

increasing values, while left and down are associated with decreasing values. In the Gesture

Pendant project [3], moving a sideways-pointing finger up increased the volume of the stereo,

while moving it down decreased the volume; similarly, moving a vertically-pointing finger

right increased the television channel, while moving it left decreased the channel.

Highly iconic gestures can also involve direct manipulation. Many motion-gesture sys-

tems in the literature have focused on interaction with virtual objects on-screen or in a

virtual environment [9, 19, 31, 36, 81, 88, 103, 107, 110], and use gestures directly repre-

sentative of the desired effects: a rotation of the hand will rotate the virtual object, or two
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hands pulled apart as though stretching a rubber band will scale an object in size.

Some gestures, on the other hand, are non-iconic. Many concepts and commands simply

have no good equivalent: “save document” or “check email,” for example, have recognizable

visual icons, but there is no natural gestural equivalent. Another cause for low iconicity

can be the expressive ability of the input mechanism: putting one’s hand in a posture with

the thumb and ring finger closed and the index, middle and pinky fingers open in order to

rotate an object [36] is much less iconic than looking at the object and rotating one’s hands

to mime rotating the object [9].

Multimodal gestures involve more than one input to the system. Frequently, one modal-

ity is gestural and the other is not; most commonly, these systems integrate speech with

hand gestures [8, 9, 31, 45, 103]; also extant in the literature are systems integrating eye

tracking and hand gestures [9, 78, 103], as well as head gestures and joystick motion [37].

Somewhat wrapped up with multimodality is the part of the body with which gestures

are made. By far the most common are hand and figure gestures2, although systems using

head gestures [37], and arm gestures [2, 80] can be found. Also fairly common are systems

that involve some physical object for manipulation; frequently this is a custom sensor box

[11, 34, 38, 58, 74] although the Nintendo Wii Remote is beginning to be used as well [29].

Whether or not a gesture is orientation sensitive depends on both the task and the

algorithm. Highly iconic gestures, due to the attached meaning, will tend to have specific

orientations mean specific things; an example is “up” for increasing and “down” for decreas-

ing. Gestures used in games are frequently orientation sensitive as well: casting a line for

“fishing” wouldn’t make sense if performed sideways. For less iconic tasks, non-orientation

sensitive gestures may be more appropriate. The fourth generation Apple iPod Nano digital

music player, for example, implements a “shake to shuffle” mechanism: when the device is

firmly shaken in any direction, a random song is played.

Implementation details may also influence whether a gesture is orientation sensitive.

Systems that detect large-scale motions, such as hand gestures, may factor out the influ-

ence of gravity. Other systems may, due to the sensing mechanism, be naturally orientation

2Due to the commonality of hand and finger gesture system, I will not cite those papers here.
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independent. Examples include systems based upon finger posture [36], slight muscle move-

ment [17], or finger tapping [21]. Indeed, aside from adding additional hardware to sense

orientation, these systems cannot be orientation dependent.

2.3.2 Effects of Gestures

In the literature, the effects of gesturing generally fall into one of two categories: manipu-

lating objects or controlling functions.

Object manipulation systems focus on moving, rotating, scaling and otherwise affecting

objects on the screen, in a virtual environment, and in some cases, in the world. “Put-

that-there”, one of the earliest gesture recognition systems [8], used gesture to place objects

(chosen through speech recognition) in particular places on a screen. Dannenberg and Amon

created a pointing-based interface design system to allow users to manipulate virtual knobs,

buttons and switches with their fingers [19]. Segen and Kumar used a 3D camera system

to track a user’s hand and recognize pointing, reaching and “clicking” finger postures for

a 3D drawing program and a flight simulator [88]. Guo and Sharlin used Nintendo Wii

controllers to manipulate a Sony Aibo robotic dog, causing it to mirror the posture of the

user [29].

Perhaps due to the waning of popularity of virtual reality (VR) research, most con-

temporary motion gesture systems concentrate on control rather than object manipulation

(although there is a large body of object manipulation research based upon tabletop ges-

tural interaction). An early control system by Pausch and Williams used hand gesture as

a sort of joystick, to control a 2D cursor which in turn generated speech-like sounds for

disabled users [73]. Another system for accessibility, by Keates and Robinson, tested head

gestures [37] for potential use for computer input.

The Gesture Pendant, one of the first projects I worked on [3, 92], used broad hand

gestures to control household devices such as a stereo, television or thermostat. Several

other pieces of research have also investigated controlling media appliances with gesture

[1, 17, 38, 49, 58, 76, 83, 95]. Krum et al. used a Gesture Pendant as the control for a

virtual earth flythrough [45]. Rachovides et al. used gestures to control a three-dimensional
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Figure 7: These stills from a Delta Airlines in-flight safety video illustrate gesture commu-
nication by demonstration, with an actor showing how to fasten the two parts of the seat
belt.

Figure 8: This airline “fasten seat belt” sign (from a Delta Airlines in-flight safety video) is
an illustration of an annotated control diagram, showing stylized representations of the two
parts to the seat belt, with an arrow indicating how they should be joined.

presentation creation system [78]. For a more abstract task, Brown et al. [11] implemented

a simple gesture system to send vibrotactile messages between mobile phones.

2.3.3 Meta-system Considerations: User

From the end-user’s perspective, there are a number of considerations about the gesture

systems themselves, rather than the individual gestures. How are gestures represented such

that users can learn them? How is recognition activated, and how does the system avoid

interpreting every motion made by the user as a gesture? Who creates the gestures—are

they dictated by the system designer, or does the user have a say?

2.3.3.1 Gesture Representation

One question is how the gestures are represented to the end user. Only some of the systems

in the literature discuss how this communication takes place (however, in many of the papers

I surveyed, no user tests were reported).

There are several methods of communicating gestures (adapted from a list on the Inter-

active Gestures Pattern Library website3):

Description uses language to communicate gesture. For example, Delta Airlines’ in-flight

3http://www.interactivegestures.com
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Figure 9: This image of the American Sign Language representation of the word “cat” is
an example of an annotated control diagram.

Figure 10: Labanotation, used in Laban Movement Analysis, is a complex system for rep-
resenting dance movements. This image is from Rudolf Laban’s 1928 work on the subject,
Schrifttanz, or Writing Dance.
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safety video verbally describes how to fasten the seat belt: “To fasten, insert the

metal tip into the buckle and adjust the strap so it’s low and tight across your lap.

To release the belt, just lift the top of the buckle or press the latch to release.”

Metaphor can be used to help users remember gestures. The Nintendo Wii game “Wario

Ware Smooth Moves” uses metaphoric description to prompt players to hold the

controller in particular ways. For example, for “the handlebar” grasp, the game

instructs “Turn the [controller] sideways and grasp the ends firmly in both hands. Like

riding a bicycle, perfecting this stance requires grace, steadiness, and tight shorts.”

Demonstration communicates gesture directly through a a live person, video or anima-

tion; an example is a flight attendant demonstrating how to fasten an airline seat belt

(Figure 7).

Diagrams use drawings—frequently composed of or including arrows—to communicate

gestures; annotated control diagrams include an image of the object or limb with

words or images describing the gesture to be made; an example is the “fasten seat

belt” sign on airplanes (Figures 8 and 9).

Existing languages can quickly communicate gestures to those who know the language.

For example, American Sign Language signers know the gesture for “cat” without

further description; for the rest of us, an annotated control diagram is helpful (Figure

9). Similarly, Laban Movement Analysis uses complex diagrams to represent dance

movements (Figure 10).

Most of the papers I surveyed used the demonstration method to communicate gestures

to users: the researcher simply told and/or showed the user what to do [34, 35, 45, 76]. Sev-

eral other papers used line-and-arrow diagrams (although not annotated control diagrams)

to instruct users [1, 37, 68]. The rest of the papers I surveyed did not give details on how

gestures were communicated.
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2.3.3.2 Gesture Activation & Situation

One concern from the perspective of the end user is the “Midas touch” effect. In eye-

tracking systems, the Midas touch effect [33] refers to the difficulty in determining when a

user intends her gaze to activate a UI element: when the user looks at a button, was the

intent to push it, or just to read its label? Speech recognition-based systems can suffer from

the same difficulty; many users of speech-based automated voice response telephone systems

have been frustrated when the system interprets background noise as menu selections. Some

research systems solve this problem with a “push-to-talk” mechanism [56], where the system

does not listen for input except for when the user is holding down a button. An alternate

solution is to listen for a specific word [39]. Viewers of the television series Star Trek will

be familiar with how characters on the show prefixed commands to the ship with the word

“computer”, as in “Computer, tell me Captain Picard’s location!”

Gesture-based systems can also suffer from the Midas touch problem. With the Gesture

Pendant, a wearable computer vision-based gesture system [91], we used a push-to-gesture

mechanism to keep the system from recognizing normal conversational gesticulation as

gestures. For a non-prototype system, however, pushing-to-gesture may be undesirable, as

one could simply activate the desired function using the button itself, rather than making

a gesture. A “gesture-to-gesture” system is a natural solution; for example, the Gesture

Watch [40] used a bent wrist to signal the watch to look for hand movement. In the

evaluation of my MAGIC system (Chapter 6), several participants independently came up

with a gesture-to-gesture function.

One consideration that can affect the kind of activation to be used for a gesture system

is the situation in which it will be used. If gestures are only to be used in constrained

situations, such as changing the posture of an avatar in a VR environment [48] or controlling

3D presentation software [78], accidental activation is less of a concern. In unconstrained

environments, however, such as with wearable devices [17, 40, 91] or public infrastructure

[85], measures such as push-to-gesture must be taken to ensure that movements not intended

for the system are not interpreted as though they are.
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2.3.3.3 Gesture Definition

In the literature, the method by which gestures are defined—as well as who defines them—

tends to fall between two extremes. On the one extreme are completely recognizer-based

approaches, wherein the gestures are dictated by and built around the gesture recognition

algorithm. Most of the papers in this category focus primarily on the introduction of a new

recognition approach. On the other extreme are relatively few user-driven studies, in which

recognition is largely (or completely) ignored in favor of determining what kinds of gestures

are natural for and desirable to users.

The majority of papers in my survey fell into the extreme of recognizer-based approaches.

In these papers, the researcher simply states—often without justification to the reader—

what gestures were chosen for the experiment. Frequently, the gestures are based upon

the sensor that was chosen for the experiment. For example, Costanza et al. created

a system for subtle gesture in which upper-arm twitches sensed by EMG were used to

control mobile devices [17]; the gestures possible were limited and defined by the sensor

used. Likewise, with the Gesture Pendant [91], we chose gestures based on the limitations

of the vision system, picking slow-moving, close-to-camera gestures. Gestures are often

chosen to demonstrate a particular recognition algorithm or technology; in a 1987 CHI

paper, Zimmerman et al. introduce an early glove-based gesture system [110], discussing

applications and gestures in the context of illustrating the capabilities of the device.

Often researchers choose gestures based on their iconicity, although this choice frequently

goes unevaluated by users. For example, Rachovides et al. created a hybrid gaze/gesture

system to control a presentation creation application [78]. Many of their gestures were

chosen to be iconic and, in some cases, metaphoric (see Section 2.3.3.1); for example, ex-

iting the program involves pantomiming closing a box. Sometimes gestures are chosen by

virtue of being directly related to the task: Guo and Sharlin created a Wii controller-based

application in which a Sony Aibo robotic dog mimics a user’s posture, based on how the

user holds the two controllers [29].

The other extreme of gesture design is the highly user-focused approach. Often based

upon participatory design principles [84], these papers usually do not involve machine-based
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recognition until the gestures have been created, if at all. Kela et al. asked 37 participants

to devise and sketch gestures for in-home tasks such as VCR control [38]; the gestures were

implemented and tested, but not by the users who suggested them. Nielsen et al. elicited

gestures from participants, analyzing them for ergonomic properties and testing them for

memorability [67]; algorithmic recognition of the produced gestures was not addressed.

Wobbrock et al. performed a similar study to create gestures for manipulating objects in a

tabletop environment [107].

2.4 MAGIC Related Work

MAGIC (introduced in Chapter 5) was influenced by gesture systems, programming-by-

demonstration tools, and other interactive system building software.

2.4.1 Gesture Systems

A primary piece of prior work is quill, an interactive system for designing pen gestures,

described in Long’s dissertation [54] and papers [53, 52]. quill allowed users to create

pen gestures by example, and offered automated advice on improving the gestures. In the

design process for quill ’s predecessor, gdt, Long found several issues with gesture design:

some users did not realize that two similar gesture classes might conflict with each other;

users didn’t understand how the gesture recognizer worked; and finding and fixing problems

with recognition was very difficult. To help alleviate this issue, quill included feedback such

as goodness of gesture and used language to communicate issues; however, Long states that

“many participants did not understand the suggestions”. He goes on to posit that perhaps

“the suggestions can be made more accessible. . . by using more diagrams”.

MAGIC takes lessons from both gdt and quill. In gdt, colored matrices were presented

to show the distances between classes and how examples are classified; Long reported that

participants found these tables overwhelming and did not use them. MAGIC presents

the same information, but in several ways that may be less confusing to users. Learning

from quill ’s problems with language, MAGIC presents more information graphically to help

problems with conflicting gestures stand out.

SUEDE, a system for designing speech-based user interfaces [41], featured a design/test/analyze
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methodology that was a source of inspiration for MAGIC. Under this paradigm, SUEDE

explicitly divides the interface into three parts. In the design phase, UI designers create

a speech-response interface script. The test phase offers a Wizard-of-Oz interface to allow

designers to quickly test the interface. The analysis interface allows designers to reflect on

the tests and determine how the next phase of design will proceed.

MAGIC concentrates design within the Creation tab, but has testing modalities in

both the Gesture Testing and EGL tabs. Analysis is available in all situations by using the

visualizations of intra- and inter-class variability. SUEDE also gives justification for lowering

the complexity of recognition-based interfaces, explicitly encouraging users to explore the

design space rather than experiment with parameters.

2.4.2 Interaction Design Tools

MAGIC shares some features with sensor-based programming-by-demonstration (PBD) sys-

tems and other interaction design tools.

An early gesture-based design tool was described in a 1989 paper by Dannenberg and

Amon [19]. Their Gestural Interface Designer (GID) allowed users to use their fingers

to manipulate onscreen objects to design a “physical” interface on the screen including

knobs and buttons responsive to pointing and gesture. MAGIC follows GID’s example by

incorporating gesture recognition as an integral part of the design process, rather than data

to be collected elsewhere.

Crayons [22] is an interactive classifier training system that takes in pre-recorded images

and allows users to interactively specify which classes various parts of an image should be

classified as. Much like MAGIC, Crayons explicitly encourages the user to iterate by pro-

viding immediate feedback on system performance; however, Crayons is focused on classifier

creation and does not consider end-user usage.

Eyepatch [59] allows users to experiment with many computer vision classifiers and build

an interactive system based upon them, and includes basic gesture recognition functionality.

Exemplar, a more open-ended PBD system [30], allows users to prototype activities

based on the recognition of time-series sensor data, including accelerometers. Exemplar’s
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approach is complementary to MAGIC’s: Exemplar supports multiple sensors and inte-

grates with external hardware to create working systems, and would benefit from MAGIC’s

visualizations, support for retrospection, and the ability to use the EGL to ensure that

everyday activities do not trigger unwanted functionality.

a CAPella allowed end-users to program complex context-aware applications by demon-

strating the activities to be sensed to the system [20]. a CAPella could have benefited from

an EGL-type collection of data, as training the system to enact the required behaviors could

take multiple days.

EnsembleMatrix [97] uses visualization to help users understand the effect of different

machine learning classifiers. It is, however, focused on domain experts, and as such concen-

trates on explicating the confusion matrices of multiple classification algorithms to users.

The approach used would work well for expert users of MAGIC when more complex gesture

recognition is incorporated.

2.5 Conclusion

In this chapter, I have discussed some previous research relevant to microinteractions, wrist-

watch interfaces, gesture and MAGIC. The next chapter presents a larger piece of related

work: a study I performed with colleagues, investigating the access time for devices located

at various parts of the body, and in different mobility conditions.
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CHAPTER III

QUICKDRAW

This chapter is adapted from a paper presented at the SIGCHI conference on Human Factors

in Computing Systems (CHI) in April of 2008 [4]. The paper was co-authored by myself,

James Clawson, Kent Lyons, Nirmal Patel and Thad Starner.

The Quickdraw study provides quantitative data about the amount of time required to

access a device in three positions on the body, and in two mobility conditions. The study

is important for several reasons:

• The quantification of access time for devices while standing and walking. This infor-

mation can be used as a guide to designers of mobile devices and software, to help

them make decisions involving access time; for example, how long to vibrate a phone

before activating the ringer.

• An experimental design that can be used for other studies of the same type, to test

access time with different types of devices or devices carried in different locations.

• Measurements of the stages of device access. When retrieving a device and preparing

it for use, we discovered that several stages occur. Being able to measure the time

spent in each of these stages gives better information to the designer as to where

improvements to the device may be made.

• Quantitative determination of the wrist as an ideal interaction location. Although

not a surprising result, we determined the wrist as the fastest-to-access location of

the three we studied. This result provides a solid foundation upon which further

wrist-based interaction may rest.
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3.1 Motivation

Mobile phones have become ubiquitous, with the number of subscribers worldwide predicted

to pass 4.6 billion in late 20091. It is not uncommon for mobile phones to be the first object

with which people interact in the morning and one of the last things with which people

interact in the evening [16]. Despite the importance of these mobile devices in everyday

life, little empirical data has been published on many fundamental usage properties.

One of these underreported-upon properties is access time—the amount of time it takes

a user to get to a device for the purpose of interacting with it. To take the mobile phone as

a familiar example, the access time is how long it takes to get the phone from its storage

place—such as a pocket, holster, or bag—and become ready to interact with the device by

orienting it properly.

In this work, we examine and quantify two important factors that could impact access

time: on-body placement and user mobility. Specifically, we focus on the effects of walking

versus standing when accessing a touch screen interface mounted on the wrist, on the hip,

and in the pocket. This work is not intended to influence users to change their behavior

with respect to mobility or device storage, but to allow designers a better understanding of

how mobility and placement affect access time.

3.2 Experiment

To explore how body placement and mobility influence the time needed to respond to and

access a mobile device, we examined two independent variables with a 2x3 Latin-square

within-subjects study design. The first variable is the mobility of the participant and the

second is the placement of a device on the body. Although our interest in mobile devices

is broader than telephones, we used a mobile phone throughout the study in order to keep

the interaction consistent between conditions.

Our two mobility conditions are standing and walking, chosen because people on-the-go

are likely to be in one of these two states much of the time. Our three on-body placement

conditions were in the pocket, on the hip in a holster, and on the wrist, reflecting common

1http://www.portioresearch.com/Handbook09-14.html
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placements for current mobile electronics.

During the standing condition we instructed participants to stand in a corner of our lab

to minimize visual distractions that might interfere with access time.

For the walking condition, participants were instructed to walk at a normal pace around

a track constructed in our laboratory (Figure 11). The track was approximately 26 meters

long and was denoted with flags hanging from the ceiling with the tips 0.75 meters apart.

Each flag was hung so the tip was approximately 1.6 meters above the floor. We chose to use

this flag arrangement rather than floor-based track markers (as in [99]) because walking is in

general a head-up task (that is, people usually look ahead some distance while walking rather

than looking directly at the floor). The walking direction was counterbalanced between

clockwise and counter-clockwise directions.

Figure 11: The path participants walked, starting at flag 1 and proceeding either clockwise
or counterclockwise.

For the device placement condition, we instructed participants to put the phone into a

pants or skirt pocket (after removing other items), into the manufacturer-provided holster

clipped to the top of the pants or to the belt, or to attach it to the wrist with a velcro strap

(Figure 12). While using an actual touchscreen watch—such as SMS Technology’s M500

mobile phone watch—would have allowed for a more natural experience, we opted instead

to maintain internal validity by using the same device (and therefore retaining the same

display and touch input properties) for all three conditions.

To determine the amount of time required to access the phone, we asked each participant
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to perform a simple task. Periodically, the phone generated an alert in the form of a sound

and vibration. Each participant was requested to respond to these alerts as quickly as

possible. When the alert occurred, the participant retrieved the device and looked at the

screen, which showed a blue box and a large number (Figure 13(a)). The participant made

a mental note of the number on the display and slid the blue box to the right to unlock

the phone. The participant then chose the number they had just seen from a list of four

numbers (Figure 13(b)). After choosing the number, the participant returned the phone to

its original position and waited for the next alert.

(a) (b) (c)

Figure 12: Placement: pocket (a), hip (b), and wrist (c).

3.2.1 Software and Equipment

The software for our study was implemented in Python on a Motorola E680i cameraphone

running the GNU/Linux operating system. The E680i has a 320x240 color touchscreen,

stereo speakers, and a number of buttons. For this study, we used only the touchscreen and

deactivated all of the hardware buttons so they would not be pushed accidentally. Pygame,

a Python interface to the graphics library SDL, was used to create the user interface and

to log user actions.

During each condition, the operation of the software was the same. At random intervals
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between 20 and 40 seconds (selected from a uniform random distribution), the software

generated alerts. An alert consisted of a loud mobile phone ringing sound and vibration

that lasted up to 20 seconds. During the alert the software also displayed the prompt

number and unlock mechanism on screen (Figure 13(a)).

To respond to the alert, participants first unlocked the phone. Unlocking was accom-

plished by sliding the blue box to the right edge of the screen (similar to the Apple iPhone

unlock gesture). This mechanism was implemented to prevent accidental responses while

retrieving the phone from the pocket or holster. Next the phone displayed a screen consist-

ing of a two by two grid of numbers (Figure 13(b)). The software waited for the user to

select a number and logged the response. This interaction emulated common interruptions

on mobile devices (for example: receiving a call, reading the caller ID, and sending the

caller to voicemail). At this point the trial was complete. The phone relocked itself, and a

timer was set to generate the next alert. The software logged the timestamps of each alert,

the movements of the slider, and the selection of the numbers.

Because the phone had no mechanism for determining whether it was in a pocket or

holster, we implemented an extremely simple light sensor using the built-in camera. Ap-

proximately four times per second, the pixel values from the camera were summed and

stored. With the assumption that the holster and participants’ pockets would be dark, we

could detect when the phone was removed from, and replaced in, the pocket or holster.

Figure 14 shows the output of the light sensor and other events logged by the software.

3.2.2 Dependent Measures

We are most interested in how device placement and mobility influences access time—the

amount of time it takes for a participant to retrieve the device and respond to an alert.

Figure 14 shows a timeline of a typical notification-response cycle. The points in the timeline

are as follows:

1. Blank screen; participant walking track or standing.

2. Alarm starts ringing.

3. Participant pulls phone from pocket or out of holster. Light level increases to nearly
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(a) (b)

Figure 13: Screen (a) is shown when an alert occurs. The participant must mentally note
the displayed number and slide the blue box from the left to the target box on the right.
Screen (b) is shown after the slide is completed; from the displayed four numbers, the
participant must touch the number that was displayed on screen (a).

100%.

4. Participant starts to move slider.

5. Screen with four numbers is displayed.

6. Participant has picked a number; screen returns to blank.

7. Participant returns phone to pocket or holster. Light level falls to 0%.

We extracted several measurements from the timeline (numbers refer to the timeline in

Figure 14):

• Access time: Alarm start (2) to user acknowledgment of the alarm by moving the

slider (4).

• Pocket time: Alarm start (2) to retrieval of the device from the pocket or holster (3)

(does not apply to wrist).

• Hand time: End of phone removal from the pocket or holster (3) to the beginning of

participant’s response (4) (does not apply to wrist).

• Slide time: Moving the slider (4 to start of 5).

• Answer time: Picking a number from the set of four (5).
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Figure 14: Timeline of events and status of brightness detector during one notification-
response cycle. The top line is the percentage of light detected from the camera (complete
darkness, 0% on the bottom), and the bottom is the timeline of events recorded by the
phone’s logging software. See the text for further details.

• Replacement time: Replacing the phone to the pocket or holster (start of 6 to 7—does

not apply to wrist).

We define access time in this context as the time required for the participant to react

to the alarm, acquire the device (either looking at the wrist or pulling it from a pocket or

the holster), note the number on the screen, and touch the slider to begin sliding it.

3.2.3 Procedure

The evaluation for each participant began with the researcher presenting an overview of

the study. Participants completed a consent form and a short survey about their use of

mobile technology. The researcher then explained the experimental software and tasks.

Each participant practiced responding to alerts three times on the phone for each of the

placement conditions (pocket, hip, wrist) resulting in a total of nine practice responses.

Next, the researcher familiarized the participant with the track by walking it twice in each

direction; on the first lap the participant followed the researcher, while on the second, the

researcher followed the participant. Finally, the researcher answered any questions from the

participant, and started data collection.

Each condition consisted of a set of trials. The number of trials per condition was either

five or seven, averaging to six per condition per participant. This design was selected to

prevent participants from anticipating the end of a set of trials. For the walking conditions,

participants were told they could slow down or stop if needed to respond to the alert quickly,
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but to keep walking if possible.

After the completion of the required number of trials, the phone displayed “STOP” in

a large font on the screen. Participants were requested to stop where they were (if in the

mobile condition) to allow the researcher to measure how far they had walked around the

track.

3.2.4 Participants

We recruited fifteen participants (5 females) for our study from our academic institution.

The average participant age was 24.87 years (SD = 2.99). Fourteen of our participants

were right handed. Each of our participants owned a mobile phone and all but three had

that phone with them on arrival. Six of our participants wore a wristwatch when they

arrived to participate in the study. We also asked about several other devices and where

the participants carried them. Table 1 provides a summary.

Table 1: Devices carried by participants and their location. “Body” refers to on-body
placement of a device, such as clipping to clothing or using a wrist strap. “Bag” includes
purses and backpacks.

Pocket Bag Hip Body Total
Mobile phone 7 4 1 — 12
Phone headset 4 — — — 4
Audio player 4 5 1 1 11
Camera 6 5 — 1 12
Total 21 14 2 2 39

3.3 Results

One participant was discarded as an outlier—having taken up to 8.5 standard deviations

longer than average to respond to alerts—leaving 14 participants. Each participant per-

formed all six of the conditions. Each condition averaged six alerts per condition, for a total

of 504 alert-response cycles. Table 2 shows a summary of data for each condition. For this

section, we consider p < .05 to be significant and will only report p values for non-significant

results.

A multi-way ANOVA reveals that the placement of the device has a significant effect on

access time, but mobility is not significant (p = .14). There is also no significant interaction
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Table 2: Statistics for mean (SD) hand, pocket and access times in seconds.

Time Placement Walking Standing Average
Hand Hip 1.047 (.656) 1.339 (.728) 1.199 (.707)

Pocket 1.109 (.647) 1.093 (.396) 1.092 (.536)
Pocket Hip 4.355 (.906) 4.312 (.770) 4.333 (.836)

Pocket 3.427 (.770) 3.829 (.788) 3.625 (.868)
Hip 5.377 (.947) 5.660 (1.155) 5.518 (1.047)

Access Pocket 4.414 (.904) 4.817 (.875) 4.616 (.897)
Time Wrist 2.728 (.291) 2.846 (.420) 2.787 (.360)

between mobility and placement (p = .81). Post-hoc analysis of the access times using a

paired Student’s T-test reveals a significant difference between all three combinations of

variables: hip/pocket, hip/wrist and pocket/wrist. Therefore, we have a total ordering

of access time for the placement condition: wrist (M = 2.8) < pocket (M = 4.6) < hip

(M = 5.5); by comparing the mean access times, we can see that the pocket condition yields

a 66% longer access time than the wrist while the hip requires 98% more access time than

the wrist.

For non-watch conditions, where the light sensor was used, pocket time was significantly

affected by placement, but not mobility (p = .128), and there was a significant interaction

between placement and mobility. There was no significant effect of placement for hand

time (M = 1.145, SD = .628), but there was a significant effect for mobility as well as an

interaction.

Some, although not all, of the other measures described earlier were significant (refer

to Figure 14). The answer time was found to be significantly affected by mobility, but not

placement (walking: M = 1.227, SD = .304; standing: M = 1.479, SD = .583). Measures

non-significantly impacted by placement or mobility were slide time (M = .071, SD = .72)

and replacement time (M = 3.195, SD = 1.787).

3.4 Quickdraw Discussion

The watch placement condition resulted in much faster access to the device. This finding

is unsurprising, because participants did not have to remove the phone from the pocket or

holster in order to use it.

In Figure 14, access time (from 2 to 4 in the timeline) is divided into two segments for
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non-wrist conditions: pocket time (from 2 to 3) and hand time (from 3 to 4). The statistics

in Table 2 reveal that the majority of access time is consumed by pocket time2: on average,

78% of the time from the alarm until the participant started moving the slider was involved

in getting the device out of the pocket or holster!

The watch condition also resulted in much more consistent access time to the device;

the standard deviation of access time for the pocket and hip conditions is 2.5 and 2.9 times

more than the wrist condition, respectively. The long time required to retrieve the phone

from its holder may help explain why the participants in the Cui et al. study reported

missing phone calls due to how they carried their phones [18].

While we anticipated the superior performance of the watch condition, we did not expect

the holster to perform worse than the pocket condition for access time. Reviewing user

comments made during the study, however, it becomes clear that poor holster design may

account for this result. Despite our use of the manufacturer’s holster, several participants

complained during practice trials that the holster was difficult to use, and that difficulty

may have persisted through the course of the study. An additional possibility is familiarity;

while participants were presumably well-practiced with putting items into and removing

them from the pockets of their own pants, none of the participants reported using a holster

to carry their phone (Table 1) and therefore may have been slower with the holster than

would have otherwise been expected. Given these factors, our results for the hip condition

should probably be viewed as a worst case for holster access.

Finally, it was interesting to find that, in contrast to previous work [99], walking did

not significantly impede user performance relative to standing still; our data was trending

to show that standing resulted in slower access. One possible explanation for this difference

is our inability to separate reaction time and access time with our current experimental

design. It is possible that the walking conditions kept the participants more engaged in the

experiment relative to the standing conditions, and therefore the reaction time was slower

while standing.

2Note that in Table 2 pocket+hand 6= access. Two participants had light sensor problems, making hand
and pocket time impossible to recover. Thus, these subjects were not included in this subsection of the
table, making the quantities not exactly sum.
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3.5 Conclusion

This section presented the Quickdraw study, which shows the wrist to be an ideal place—

with respect to access time—to locate interactive devices. By placing a device on the wrist,

the barrier to reaching a device fast enough to have the interaction be “micro” is removed.

The next chapter investigates one possibility for wrist-based interaction.
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CHAPTER IV

TOUCHSCREEN WRISTWATCH MICROINTERACTIONS

This chapter is adapted from a paper presented at the ACM International Conference on

Human-Computer Interaction with Mobile Devices and Services (MobileHCI) [5]. The paper

was co-authored by myself, Kent Lyons and Thad Starner.

The study presented here investigates interaction with a round-faced touchscreen wrist-

watch. As demonstrated in Chapter 3, the wrist is an ideal location for devices one wishes

to quickly access; the question then becomes how to interact with a wrist-worn device. This

chapter posits a traditionally round-faced watch that is touch sensitive, and investigates—

at a low level—how one might interact with it. The research presented herein is important

for several reasons:

• The introduction of new interaction concepts for the wrist. While circular interfaces

and touchscreen watches are not new ideas (Section 2.2), the marriage of the two

appears to be a novel concept. This chapter introduces the idea and proposes different

application ideas that might take advantage of such an input/output device.

• Interaction techniques for a wrist-mounted round-faced touchscreen display. Due to

its small size, round shape, and mounting location, traditional touchscreen techniques

might not be appropriate for round touchscreen watches. This chapter discusses three

possible touch-based techniques for interaction with such a device.

• Development of an error model for interaction techniques. On a display as small as

that of a wristwatch, there is a tradeoff between ease of interaction and versatility.

That is, if buttons are large, fewer of them may fit on the display. In this chapter I

present a study into three interaction techniques that determines that optimal button

size for each; in addition, I derive a generalized error model that allows for the cal-

culation of error rate, number of buttons, or button thickness given any two of these
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quantities.

4.1 Motivation

Research has shown that the amount of time required to access a device has a strong influ-

ence on whether a user will actually use that device at all [18, 93]. Chapter 3 demonstrated

that the wrist is an excellent location to place devices that need to be accessed quickly. The

question that is thus far left unanswered is how to create a usable interface on the wrist.

In this chapter, we consider touchscreen watch interfaces.

Touch is an intuitive interaction method, and in the past decade touchscreens have

become very popular for mobile devices. The number of commercially-released touchscreen

wristwatches, however, has been very small, and they have in general not been successful.

We believe that there are several reasons for this, two of which we address in this research.

The first issue with extant touchscreen watches is button size. All commercially released

touchscreen watches thus far have shipped with a tiny stylus to allow the user to manipulate

the onscreen interface, which invariably has minuscule buttons. Users, however, prefer to

use their fingers to manipulate touchscreens, to avoid the time needed to retrieve the stylus

[100].

A second issue with current touchscreen watches is lack of style. Wristwatches are often

worn for fashion, but technological wristwatches appear to seldom fulfill this need. One

reason may be that round wristwatches are preferred over rectangular ones. Indeed, many

digital watches still have round faces surrounding the blocky digital time readout.

To address the issues of finger-usability and style inherent in current touchscreen wrist-

watches, we are investigating potential interfaces for touchscreen wristwatches with circular

displays. We believe that a round-faced watch will be more accepted by consumers, and by

designing the interface to be used by fingers—rather than by a stylus—we can make the

watch easier to use.

In this chapter, we will present our preliminary findings on interaction with a round

touchscreen watch. Inspired by non-wristwatch circular interfaces such as Pie Menus [14]

and earPod [109], we consider the effects of placing wedge-shaped buttons around the
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perimeter of a circular screen. Most circular interfaces in the literature have been imple-

mented for screens PDA-sized or larger, where the size of the buttons is less of a concern.

On a wristwatch-sized screen, however, there will be a tradeoff between the number of but-

tons that can fit around the edge and the usability of the device; additionally, there may

be a tradeoff between usability and the amount of non-button area left in the center for

display purposes. Figures 15 and 16 show an example of the kind of application we hope to

enable with this research.

Figure 15: Mockup of a potential zooming interface for a calendar, using the rim style of
interaction. The user selects the area denoted with the thick red line and “zooms” to the
next level of detail with a sweep of the finger around the bezel. Each circle is printed at
the actual size of the display used in the experiment.

Like rectangular screens, circular screens will necessarily have a bezel in order to accom-

modate the screen’s electronics. As with the work by Froehlich et al. [23] and the work by

Blaskó [25] we investigate the possibility of using the bezel to help guide the user’s finger.

We chose to study three types of finger/screen interactions that might be used on a round

touchscreen watch: 1) tapping, as with a standard PDA-like application; 2) sliding in a

straight line; or 3) sliding along the rim of the watch, using the bezel as a guide, as in [23]

and [25].

41



(a) (b) (c)

(d) (e) (f)

Figure 16: Proposed “card dragging” interaction using icons on rim of watch. (Interaction
inspired by Blaskó’s card dragging technique [7].) (a): view of watch with no applications
active; (b): user touches face to show application icons; (c): user selects desired application
icon; (d)–(f): user drags application “card” out of “stack”. Each circle is printed at the
actual size of the display used in the experiment.

4.2 Experiment

We conducted an experiment in order to investigate the size of buttons necessary to allow

finger-based interaction on a small, round touchscreen watch. In particular, we wanted

to understand the tradeoffs between number of buttons, non-button area remaining in the

center, and error rate for each of the the three types of movement we discussed above.

4.2.1 Participants

Fifteen volunteers were recruited to participate in the experiment. Fourteen volunteers were

male and one was female; ages ranged from 20 to 28. Participants were paid US $10 per

hour for participation; no participant took more than one hour to complete the experiment.

All participants were either right-handed or primarily used their right hand for control tasks

such as mouse movement. Eight participants reported normally wearing a watch, and each

stated they normally wore it on their left wrist.
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Figure 17: The simulated touchscreen watch.

(a) tap (b) through (c) rim (d) key

Figure 18: Targets with completed conditions for one participant. Rim, target and guide
were displayed to participant as shown in (d); movements and target hits were displayed
only to researcher. Images (a)–(c) are printed at the actual size of the display used in the
experiment.

4.2.2 Variables

Movement type is our primary independent variable. The simplest method is using a tap

to select, much like using a mouse to click on icons. This is the tap condition. Another

method we investigated is sliding the finger in a straight line from one place on the surface

to another; this forms the through condition. The final option is sliding the finger using the

bezel as a guide, avoiding the center region of the watch. This is the rim condition.

The main dependent variables of interest are button size and error rate. Wobbrock et

al.’s error model for Fitts’ law [106] indicates that as button size decreases, error rate will

increase; however, the bezel influences the movement of the user’s finger, causing our task

to be non-Fitts. Each button has both an angular and a radial width. As the buttons

increase in angular width, fewer buttons will fit around the rim of the watch. As the radial
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width increases, less space will be available in the center of the watch for a display or other

non-button purposes.

4.2.3 Apparatus

Lacking a programmable round touchscreen watch, we simulated one. We removed the case

from a Motorola E680i touchscreen mobile phone and placed it into a custom-made plastic

case (Figure 17). In order to simulate a round watch face with a bezel, we placed over the

screen a custom-cut plate of 1.6mm (.06in) thick steel with a hole approximately 30mm

(1.25in) in diameter, with a sloping bevel around the hole. The hole revealed an area of the

phone’s screen 200 pixels in diameter. The “watch” was mounted on each participant’s arm

using a velcro strap, with the visible portion of the screen centered on the arm approximately

where a normal wristwatch face would be. We wrote software for the phone to present trials

to participants and collect data.

4.2.4 Procedure

Our experiment is a 3 × 12 within-subjects factorial design. Participants performed a

Fitts-style reciprocal 2D pointing task using their finger as the pointer. Two targets were

displayed on the face of the wristwatch, and a secondary monitor instructed the participants

to select the targets as quickly and accurately as possible, using the tap, through or rim

movement type. For the through and rim conditions, a line was drawn on the watch face

as a reminder of the motion to make (Figure 18). No feedback was given to participants

during the trials, except to blank the screen to indicate the end of each trial.

4.2.5 Design

Each volunteer participated in 108 trials. The primary independent variables were move-

ment type (tap, through and rim) and distance between targets (twelve distances were used,

as explained below). To avoid learning effects, conditions were presented to participants in

a balanced Latin square ordering.

In order to avoid biasing participants with any particular size of target, and following

the literature [87], we selected targets as close to zero width as we could display. These
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were simple lines extending from the outside of the watch 18 pixels (2.7mm, .11in) towards

the center (Figure 18). Each line was one pixel (.15mm) wide, or approximately 0.58◦ at

the inner end of the target. While these targets are unrealistically small, they will allow us

to consider the distribution of nearby hits.

To determine target positions, we divided the face of the watch into twelve (hour-sized)

segments of 30◦ each, and then further subdivided each segment in half to get a minimum

distance between targets of 15◦. At the inner end of the targets, this is a about 21 pixels, or

3.2mm (.13in). We tested participants on all of the 15◦ increments between 15◦ and 180◦,

inclusive, for a total of twelve different distances. After choosing the distance between each

pair of targets, the pair was centered at the rim of the watch on a location chosen from a

uniform random distribution from 0–360◦. This ensured that the data would cover the face

of the watch.

Of note is that while each movement condition used the same set of target spacings,

these distances differ between the rim and the other two conditions: a 180◦ distance in

the tap or through condition will yield a 200 pixel (30mm) straight-line distance, but in

the rim condition the participant’s finger must travel in an arc, yielding a movement equal

to πr, or 314 pixels (47.1mm). We chose to maintain equivalent target spacings between

conditions to mimic the effects of an interface where relative button distances would be the

same regardless of the method used to activate the buttons.

During each trial, the participant moved back and forth between the pair of targets

15 times, resulting in 30 movement end points. The end points in the through and rim

conditions were determined by the user reversing movement direction; in the tap condition

any tap on the screen was considered to be an end point. The software counted the end

points and automatically ended the trial when the goal was reached. A block is a set

of twelve trials (one per distance) with one movement type (e.g. rim); the blocks were

repeated three times for each of the three movement types. Therefore we have 12 distances

× 3 repetitions × 3 movement types = 108 trials per participant. In between each block,

participants were given an enforced 30-second break to avoid fatigue; if desired, they could

break for longer than 30 seconds.
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Figure 19: Distributions achieved by rotating clusters to 0◦. Shown from left to right are
points from tap, through, and rim conditions. Lighter colors denote a higher density of
endpoints. Red dotted lines indicate example simulated button of 30◦ angular width and
50 pixels radial width.

Figure 20: Button area (Equation 1) vs error rate. Note that x-axis is a log scale.

4.2.6 Results

After the experiment was complete, we processed and analyzed the data. Because we

did not force participants to actually hit each target before proceeding to its opposite,

it was sometimes difficult to determine which target the participant had been trying to

hit, especially at small inter-target distances. Therefore, we used the k-means clustering

algorithm to separate the points into two groups. As the seed means for the clusters, we

used the innermost tips of the target lines. After clustering, the standard deviation (σ) of

each cluster was calculated, and points falling greater than 3σ away from the cluster mean

were discarded.

We next took the clusters from all of the participants and grouped them by movement

type. We then rotated all of the clusters from each movement type so that the mean of

each cluster was at 0◦, giving an overall distribution for that movement type. The results

are illustrated in Figure 19. We then calculated error rates for different radial and angular

button widths. We accomplished this by creating simulated buttons (red dotted lines in
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Table 3: Fits of error rate vs log of area data to Equation 2. The “all” condition represents
the data for all three conditions aggregated together.

Condition x y R2 RMSE
tap 4.895 5.932 0.9939 0.0225
through 4.382 5.831 0.9964 0.0172
rim 4.247 5.878 0.9970 0.0157
all 4.476 5.881 0.9939 0.0224

Figure 19) for every integer combination of 0–100 pixels of radial width and 0–100◦ of

angular width. Each button was placed against the rim and centered on 0◦. The error

rate for that button was then calculated simply by counting the number of inflection points

falling inside the button versus those falling outside. For each combination of radial and

angular widths, we also calculated the area (in pixels) of the button:

area =
ang

360
π
(
R2 − (R− rad)2

)
(1)

where R is the radius of the watch (100 pixels), ang is the angular width of the button,

and rad is the radial width. This area is equivalently expressible in terms of the number of

buttons placed around the edge numbt and the percentage of center area (relative to the

entire surface area) available for other purposes pctctr:

area =
πR2

numbt
(1− pctctr)

By plotting the error rate (0–100%) against the log of the area of the button that resulted

in that error rate, we observe a sigmoidal shape (Figure 20). We performed a least-squares

fit to the data using the equation 1/
(

1 + xy−ln(area)
)

(2)

where area is the button area as calculated in Equation 1. Close fits were found, as reported

in Table 3.

The close fit of the data to Equation 2 allows us to model error rates for given angular

and radial widths. A visualization of predicted error rates for one to fifty buttons with sizes

such that zero to one-hundred percent of the center area remains is displayed in Figure 21,

with contour lines at 10% error increments.

Because of finger width, participants could not touch the screen at the full radius; for

the tap condition, the average distance away from the rim was 23.8 pixels (SD = 6.8),
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Figure 21: Number of buttons to be placed around the edge vs amount of surface area to be
left for center area vs calculated error rate (Equation 2) using “all” row of Table 3. Error
rate contour lines are displayed on the surface at 10% increments (solid white lines) and
projected downwards (solid black lines).

for through 21.1 pixels (SD = 7.2), and for rim 17.7 pixels (SD = 6.7). We measured

the amount of time for participants to move between targets; perhaps because of the small

distances involved, there was no correlation between inter-target movement time and dis-

tance. Mean per-condition movement times are tap: 0.32s (SD = 0.08); through: 0.27s

(SD = 0.14); rim: 0.39s (SD = 0.19).

4.2.7 Discussion

Given the equations above, we can now think about how a wristwatch interface might look.

Because participants were requested to move between the targets as quickly and accurately

as possible, the error rates can be assumed to be worst-case. By taking into account the

desired application or situation, the correct number of buttons and center area can be found

for a desired error rate. For example, if we want an error rate of 5% for ten buttons, we
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Figure 22: Illustrations of the effect of holding constant one of radial width, angular width,
or error rate. Images (a)–(c) use x and y from the “all” row in Table 3. Image (a) shows the
effect of holding angular width constant to 30◦ (for 12 buttons); each button is annotated
with (the percentage of center area left / predicted error rate). Image (b) shows the effect
of holding the radial width constant such that there is 50% center area remaining; each
button is annotated with (the angular width of the resultant button / predicted error rate).
Image (c) shows the effect of holding the error rate constant while picking a variety of radial
and angular widths; each button is annotated with (angular width / percent of center area
left). Finally, image (d) uses x and y from the “rim” row of Table 3 to illustrate a possible
layout using 12 buttons with 75% center area left. Each circle is printed at the actual size
of the watch face used in the experiment.
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will have about 90% of the surface area left for the display. Figure 22 illustrates several

possibilities for different combinations of button size and error rate based on our results.

As a general rule, it was difficult for participants to get their fingers close to the rim;

this is reflected in the sharp slope nearing 100% in the “center area” axis of Figure 21. We

would therefore recommend keeping the radial width of buttons above the mean distance

from the edge for each movement type.

4.3 Conclusions

The results of our experiment yielded a mathematical model of error rate given the angular

and radial widths for buttons placed around the edge of a circular touchscreen watch. We

determined constants x and y for the model for three inter-target movement types: tapping

(tap), sliding in a straight line between targets (through) and sliding along the bezel of the

display (rim).

Our experiment gave us a wealth of data and many directions for future exploration. We

wish to experimentally validate our results by running another study with various button

sizes to ascertain how well our model predicts error rate with real buttons, rather than

simple lines.

We intend to investigate whether there is a bias in error rate based on the location of the

target on the watch: observation during the experiment suggested that targets in the upper-

left quadrant of the watch—from 9 o’clock to 12 o’clock—are more likely to be obscured

by the user’s finger, while targets on the bottom rim—from 4 o’clock to 8 o’clock—may be

more difficult to hit due to the shape of the user’s finger.

Other work has addressed the issue of screens obscured by fingers, for example the Shift

offset cursor technique by Vogel and Baudisch [100]; however, such techniques usually rely

on having extra screen real-estate where the obscured content can be displayed. Possible

methods for accomplishing a similar interaction style in our extremely limited display space

include mirroring the content across the face of the watch or using fisheye views.

The ultimate motivation for this work is to allow fast access and use of the watch in any

situation, including while actually in motion. We are particularly interested in whether the
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stabilization offered by the bezel in the rim movement condition confers an advantage over

the other two movement types while the user is in motion.

The next chapter considers an alternate method for enabling microinteractions: through

gesture.
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CHAPTER V

MAGIC: A GESTURE DESIGN TOOL

In this Chapter, I discuss a second way of enabling mobile microinteractions: through

gesture. I have created a Multiple Action Gesture Interface Creation tool (MAGIC) to

assist designers of motion gesture-based interfaces. Gesture design can be a complex task,

and there are few extant tools that support it. In this chapter, I present the design of the

MAGIC software. I discuss the rationale for the design, the workflow MAGIC is designed

to support, and the back- and frontend components of the design. In Chapter 6, I present

the results of an evaluation of MAGIC, and in Chapter 7 I discuss the implications of the

evaluation results with respect to future designs.

The design and evaluation of MAGIC are important for several reasons:

• Motion gesture design software for non-expert users is presented. Even those familiar

with statistical machine learning can have difficulty using it in software [71], and

for non-experts the difficulties are much worse. MAGIC is a tool to assist users in

designing motion gestures that simplifies much of the complexity inherent in such a

task.

• A method for designing low-false-positive gestures is included in MAGIC. Even after

successfully creating a set of gestures, a designer must ensure that they are only

activated when the user desires it. MAGIC includes a feature called the Everyday

Gesture Library which assists gesture designers in designing freeform gestures that

are unlikely to be falsely triggered by a person’s everyday movements.

• Strategies used by non-domain experts in designing motion gestures are detailed.

These strategies could be used in the future as automated suggestions to help other

non-experts design gestures that may work well.

• A corpus of everyday movements by seven users of varying backgrounds. Although due
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to privacy concerns and IRB regulations the accompanying video cannot be released,

I have an extensive corpus of accelerometer recordings extending for over 60 hours.

This data may be used for future gesture design and recognition testing using MAGIC

or independently.

5.1 Motivation

As addressed in the Introduction (Chapter 1), this dissertation deals with microinteractions.

In the case of instant commands, an interaction so fast that it is almost thought-free is

desirable, and gestures may fit this requirement. However, as discussed in Related Work

(Chapter 2), motion gestures (as opposed to pen gestures) have not become prevalent outside

of gaming systems such as the Nintendo Wii. Research indicates that users prefer devices

that are fast to access [18, 94], and motion gestures can provide this desired speed by

obviating the need to press buttons or look at screens. Gestures can even enable hands-free

usage for on-body devices such as wristwatches. Users could control tiny music players with

subtle shoulder movements, look at upcoming appointments on a watch display without

having to touch the watch, or dial a mobile phone with a wave of the hand. Both the

sensing and gesture recognition technology exist to create these kinds of interfaces, but

currently the Apple iPod is the only device implementing quick gestures, with its “shake to

shuffle” motion. I see two causes for this lack of gesture recognition in everyday life.

The first issue is that interaction designers are not generally domain experts in gesture

or pattern recognition [22]. A number of off-the-shelf tools for experimenting with pattern

recognition exist, such as Weka [105]; these tools, however, act more as libraries of techniques

rather than full-fledged design tools.

The second issue is that testing gestures in everyday life can be very difficult. This

challenge is not just normal user testing; for gestures to really move into everyday usage,

they must be usable in everyday situations. In particular, only movements that are in-

tended for the device should cause functionality to be activated; that is, performing normal

activities such as eating, walking or normally gesticulating during conversation should not

cause unwanted activity on the device. One solution to this problem is a “push to gesture”
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mechanism, where a user first presses a button and then makes a gesture; however, such

an interaction obviates the need for gestures in the first place, as the user could simply

press the button to activate the desired functionality without making a gesture. Pushing

to gesture can also slow down the interaction and make it inconvenient for the user.

With these needs in mind in this chapter, I define a list of desiderata for a gesture design

tool and introduce my system for Multiple Action Gesture Interface Creation (MAGIC),

and describe its implementation. In Chapter 6 I discuss the results of an evaluation of

MAGIC’s usability, and in Chapter 7 I discuss future work and implications for design of

further systems.

5.2 Motion gesture design tool desiderata

In my experience, creating a gesture system has three basic stages (Figure 23). In the first

stage (a), the designer gathers requirements, performs formative user studies and market

research, and decides what functionality to consider controlling with gesture. In the second

stage (b), the designer determines how motions by the user will map to functionality acti-

vated on the device. She ensures that only intended movements activate functionality, that

the gestures work reliably, and performs initial user testing, especially related to how the

designed gestures work in conjunction with a user’s everyday movements. The last stage

(c) is summative: the designer performs final user testing and deploys the finished product.

Figure 24 illustrates how—in the experience of my advisor’s research group [3, 10, 40,

55, 91, 101, 102]—gesture interface design currently proceeds. If gestures conflict with each

other, new gestures must be created. If gestures conflict with everyday life—that is, if there

is a high rate of false positives—new gestures must be created. The process is highly linear,

and it can be difficult to create a working gesture set.

In this chapter, I discuss the creation of a tool to support the middle stage of design. I

have identified the following desiderata for such a tool; the tool should:

allow non-expert use. Just as desktop UI designers are not required to know details

about circuit design, USB protocols, or operating system drivers to build a system that

responds to mouse clicks, interaction designers should not be required to understand
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Figure 23: The three stages of gesture design.
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Figure 24: The current method used to design gestures—a linear process which must be
restarted when problems arise.

the underlying complexities of gesture recognition in order to build a working system.

This philosophy has been applied in other projects that seek to make machine learning,

pattern recognition and computer vision accessible to non-expert designers [22, 30, 54,

59].

allow expert use. As designers use a system or a particular algorithm, they will naturally

gain more expertise, and may wish to push beyond novice-level support. Expert use

should be supported, and a smooth novice-to-expert transition should be possible.

encourage iteration. Iterative design is one of the cornerstones of good UI creation prac-

tices [66]. Tools should encourage iteration by making it easy to explore alternatives.

In terms of gesture design, users should be able to quickly try different motions for

a gesture-activated function and experiment with recognition parameters in order to

get the desired results.

support retrospection. In contrast to pen gestures, motion gestures can be difficult to

represent graphically, with only limited success in this area [43, 50]. However, de-

signers still need the ability to reflect on the gestures they’ve created, understand
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Figure 25: The procedure used within MAGIC to design gestures. Testing whether gestures
conflict with each other and if they might have high numbers of false positives in everyday
life (tested via proxy with the EGL) are independent activities and may be done in any
order.

how they are similar or different from other gestures, and to remember what motion

corresponds to what function. I define the term retrospection to be a facility to allow

the user to retrospectively consider input in as close to its original form as possible.

MAGIC provides this functionality primarily through video recordings of the user

performing gestures.

support further testing. Outside of general recognition concerns, there may be a number

of other needs that the designer should consider. Included may be social acceptabil-

ity, memorability, and usability in different situations. The designer may want to

customize the gesture set for different user groups or cultures. Support should be

available for the designer to perform further testing after the initial design phase.

I have developed MAGIC, a Multiple Action Gesture Interface Creation tool designed

to meet these goals.

56



5.3 MAGIC: A Gesture Design Tool

MAGIC is partially inspired by the design/test/analyze model developed by Klemmer et

al. [41], and supports a similar three-part workflow. The parts are not strictly linear; a

designer will move between them as the gesture design process progresses. MAGIC reflects

these stages with three tabs in the interface, between which the designer may freely move:

Gesture Creation, Gesture Testing, and Everyday Gesture Library (see Figures 28, 29, and

30). The stages—illustrated in Figure 25—are:

1. Gesture Creation In this stage, the designer creates gesture classes and gesture

examples. A gesture class represents one kind of movement—such as a punching

forward motion—that usually maps to one function in the interface, such as “volume

up”. A gesture example is an instance of actual recorded motion data associated with

a class. In MAGIC, the gesture examples are used directly in recognition; see section

5.5.1 for more information. Typically a designer will create several examples for each

class in order to account for variation in how a user might make the gesture.

The Gesture Creation tab (Figure 28) includes support for creating gesture classes,

recording examples, and understanding how examples and classes relate to each other

in terms of recognition performance. Gestures may be created and deleted, or, as an

alternative to deletion, gestures and examples may be temporarily disabled by toggling

the checkbox next to the item.

2. Gesture Testing In the testing phase, the designer tests recognition by making

motions that should be recognized as one of the gesture classes trained in the creation

phase, or by making motions that should not be recognized. For example, the designer

might perform a punching forward motion to make sure it is recognized, and also reach

for a glass of water to make sure that it is not falsely recognized as the punching

motion.

The Gesture Testing tab (Figure 29) allows the designer to create free-form sequences

of movements that—from a recognition standpoint—are treated exactly the same as

if they were performed live. The results of recognition are visualized, and the designer
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can re-run tests multiple times after adjusting parameters. If portions of a test are

not recognized as members of the proper class, the user can select that portion of the

test sample and add it to a class as a gesture example.

3. False Positive Testing One potential pitfall when creating gestures intended for

everyday use is that end-users may perform actions that the designer can’t anticipate,

which might lead to unwanted activation of functionality. For example, the designer

might think that adding a twist to the end of a forward punch will take care of

any confusion between the gesture performed intentionally and picking up a glass of

water, but it might instead be activated when turning a doorknob. For this reason,

it is important to test the gestures during the actual daily activities of representative

end-users.

The Everyday Gesture Library tab (Figure 30) presents the designer with an interface

similar to the Gesture Testing tab. In this case, however, the movements used for

recognition are pre-recorded by a representative set of users, allowing the designer

to determine if the system will confuse the created gestures with end-users’ everyday

movements. This pre-recorded data is called the “Everyday Gesture Library” (EGL).
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Figure 26: The MAGIC interface as seen by the user. The auxiliary window on the right (a “drawer” in Apple Macintosh parlance—as
in “desk drawer” rather than “that which draws”) shows live and recorded video of a user performing gestures. The top video is from
the hat-mounted camera and the bottom from the monitor camera (Figure 33).
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Figure 27: The MAGIC interface as seen by the user. The auxiliary window on the right (a “drawer” in Mac parlance—as in “desk
drawer” rather than “that which draws”) shows graphs illustrating how the gesture classes and examples in the system relate to each
other.
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Figure 28: The Gesture Creation tab. A: recorded gesture view; B: live sensor view; C: list
of gestures and gesture examples; D: sorted list of distances from currently selected example
to every other example.

5.4 Gesture Design Workflow Support

Designing gestures can be a complex task, especially for those not familiar with pattern

recognition techniques and terminology. MAGIC provides several features to assist users in

their task; recall that the three stages are gesture creation, gesture testing, and false positive

testing.

5.4.1 Everyday Gesture Library

In order to choose an effective set of gestures for everyday use, it is essential to test each

iteration of the gestures with users: a user’s natural motions may, to the computer, resemble

the defined gesture, and therefore trigger undesired actions. My advisor’s research group has

over a decade’s experience with gesture interfaces for everyday life [3, 10, 40, 55, 91, 101, 102]

and has struggled with this issue. One solution is to lengthen the design cycle, and, each

time a new gesture is designed, test it in the field. Doing so can lead to very long iterations,

however; the designer of one interface spent two weeks in this manner before giving up and

adding a push-to-gesture feature to the system.
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Figure 29: The Gesture Testing tab. A: recorded test sample view with boxes highlighting
matches; B: live sensor view; C: list of test samples; D: list of gestures matching currently
selected test sample.

A

B

C D

Figure 30: The Everyday Gesture Library tab. A: EGL view with boxes highlighting
gesture occurrences; B: EGL video synchronized to EGL view; C: gestures with number of
occurrences in EGL (# Hits); D: list of occurrences in EGL for selected gestures.
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This issue can be particularly severe when designing a variety of highly iconic gestures.

As I discovered in my evaluation of MAGIC (Chapter 6), one common tactic in gesture

design is to make related gestures map to related commands; for example, moving one’s

hand upward for Volume Up and downward for Volume Down. Interrupting this process to

test gestures makes for slow work, and if the designer discovers that, for example, Volume

Down is not a good gesture, it may mean redesigning Volume Up as well.

MAGIC offers a partial solution to this problem. Rather than requiring user testing

in the initial phases of gesture design, MAGIC allows designers to rapidly iterate through

designs while increasing the likelihood that the chosen gestures will not be confused with

everyday movements. MAGIC uses a corpus of pre-recorded data that is representative of

the everyday motions of the designer’s target population. The designer recruits a number

of people to wear the same sensor that will be used in the end product. Those people then

perform their daily activities, not explicitly interacting with the sensor at all, but simply

allowing it to record data. The recorded data set—called an “Everyday Gesture Library”

(EGL)—is used by MAGIC to help the designer more rapidly iterate through gestures. At

any point in the workflow, the designer may test the currently defined set of gestures against

the EGL to see how frequently the gestures occur. Each occurrence indicates a time when

the end user would have accidentally triggered the functionality represented by the gesture.

If the number of occurrences for a gesture are deemed unacceptable by the designer, she

may continue to iterate.

5.4.2 Retrospection

One of the most important aspects of MAGIC is retrospection—the ability to return to

previously-created content and review the actions taken. MAGIC implements retrospection

by graphically plotting recorded gestures and by making available video of the designer

performing the gesture (Figure 26).

In both the creation and testing phases, the designer records motions. MAGIC displays

a continuously-updating graph of the output from the accelerometer (Figure 28B). The x,

y, and z axes are each displayed as a red, green, or blue line, respectively. This visual style

63



(a) (b)

(c) (d)

Figure 31: Mean and standard deviation distance graphs for (a) each example within a
class, (b) each class versus all other classes in aggregate, (c) each class versus all other
classes individually, and (d) a magnified view of a single row of (c). The horizontal scale in
each case represents the DTW distance. The dots in (d) represent occurrences in the EGL;
see Section 5.4.4 for further explanation.

is maintained after a gesture has been recorded: each training example is displayed in the

same way (Figure 28A). The live output is located to the right of the training example
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display and continually scrolls to the left, to give the impression that recorded training

examples have simply continued leftward to be “captured” by the example’s display.

When experimenting with many potential movements for different functions, it can be

easy to forget what movements were made. MAGIC automatically records video of the

designer’s movements during gesture creation and testing sample creation. Two cameras

with 170◦ fisheye lenses are used: one is mounted on top of the designer’s monitor, and

the other is located in the brim of a hat (Figure 33). The hat-mounted camera provides a

first-person view of movements to the designer, while the monitor-mounted camera offers a

view that may be more legible to others.

As the accelerometer view and the video are representations of the same thing—a move-

ment by the designer—they change in concert. The user can scrub back and forth through

the video by dragging a cursor within the recorded accelerometer display. The user may

also play back video at any time, in which case the cursor follows along with the video.

5.4.3 Visualization: Gesture Design

Table 4: Confusion matrix between eight classes. The labels across the top represent the
class an example belongs to, while the labels along the side represent the class that each
example was classified as. It illustrates, for example, that class B was incorrectly classified
as F three times and as D once.

A B C D E F G H
A 10 0 0 0 0 0 0 0
B 0 6 0 0 0 0 0 0
C 0 0 10 0 0 0 0 0
D 0 1 0 10 0 0 0 0
E 0 0 0 0 10 0 0 0
F 0 3 0 0 0 10 0 0
G 0 0 0 0 0 0 10 0
H 0 0 0 0 0 0 0 10

For classification tasks such as gesture recognition, a confusion matrix is a standard

visualization of classification results, helping the user understand the source of incorrect

classifications. An example confusion matrix is shown in Table 4. Because confusion ma-

trices can be difficult to read for non-experts [54], MAGIC provides different visualizations

derived from the same information.

The confusion matrix in Table 4 was constructed by comparing every example in every
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Figure 32: Examples of a match list for a (a) gesture with low (53%) goodness and (b)
with high (100%) goodness. The low-goodness example has green dots for examples from
other classes, and does not include all of its own class’s examples (1–4); the high-goodness
example includes all of its own and only of its own class examples with green dots.

class with every other example in every class. MAGIC displays this information on an

example-by-example basis in the match list (Figure 28D). The match list displays a given

example’s distance to every other example, sorted by distance. The small dots to the left

of each entry in the match list denote whether the distance to that example falls under

the threshold for the given gesture or not. In Figure 28D, the threshold for Wave is set to

16.42, and the match list for example Wave 4 is being shown. Every listing with a distance

≤ 16.42 is considered as a match to Wave, and shows a green dot; every other listing is not

a match and has a red dot. Further examples are illustrated in Figure 32.

The Recognized As column in the interface (Figure 28C) uses the information from the

match list to determine what class a given example would be recognized as. See the section

on implementation (Section 5.5.3) for details on how the column is populated.

Along with the Recognized As column, MAGIC provides a summary of the match list by

calculating a “goodness” value for each example. The details of how goodness is calculated

are explained in Section 5.5.3; intuitively, an example has 100% goodness if all of the

examples in its class are shown with green dots in the example’s match list, and if only

those from its class have green dots in the match list. A low goodness score may indicate a
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problem with an example, or with the class as a whole. MAGIC provides visualizations to

assist the user in determining the source of low goodness scores.

It is important to note (as was emphasized to study participants) that goodness is not

the main metric of success in gesture design. It is important that gestures be recognized

reliably, but it is also important that false positives are not found when checking against

the EGL. Gesture creation is a balancing act, which is one of the reasons it is so difficult.

One of the visualizations is of intra-class variability. Figure 31(a) is an example of a

graph representing intra-class variability for the class Wave. Each numbered bar represents

a single example in the class; in this case, six examples have been created. For each bar, the

thick center line shows the average distance between that example and each other example

in that class. A dotted line extends downward from the thick line to a circle at the bottom

of the graph; this is simply so that the overall distribution of distances may be ascertained

at a glance. The width of each bar represents the standard deviation of the distances to

each other example in the class. The thicker dotted line with the number above it illustrates

the recognition threshold for the class; the user may drag this line to interactively adjust

the threshold. By looking at the graph, the designer is able to visually identify outliers. In

this case, two examples—5 and 6—are quite different from the other examples, and might

cause a low goodness score.

Figure 31(b)–(d) shows graphs visualizing inter-class variability for each class as com-

pared to all other classes. In Figure 31(b), each shaded row represents a single class. The

box in the row with a solid outline (on the left in each row) shows the mean and standard

deviation of the intra-class distances, while the box with a dotted line (on the right in each

row) shows the mean and standard deviation of distances between the class and all other

classes. There is no relationship between the shaded rows of the table except that they are

shown on the same numeric scale. This graph can be used to determine how confusable a

class is with other classes. For example, class Thump shows very good differentiation from

other classes, while class Wave is more confusable.

Figure 31(c) is similar to Figure 31(b), but splits the dotted-line box into its constituent

classes. While the graph in 31(b) gives a general overview of how each class performs with
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respect to the other classes, this graph allows the user to determine if a single class is

causing the problem. (With many classes, the graph can become very dense; Figure 31(d)

shows a zoomed-in view of the row for class Wave.) The box that is the same color as the

background represents the class in question; for Wave it is the bottom box. Each other box

is color-coded according to the other classes, and shows the mean and standard deviation

of the distances from (in this case) Wave to that class. A quick glance reveals that Wave

and Punch (the top box in Wave’s row) are similar to each other. Looking at Wave’s box

in the other rows of Figure 31(c) (the bottom box in every row), it can bee seen that the

standard deviation of Wave with respect to each of these other classes is high.

5.4.4 Visualization: Gesture Testing

During gesture testing—both on the Testing tab and the EGL tab—the gestures created

by the designer are compared with streams of pre-recorded data. In the Testing tab, the

designer creates the streams; in the EGL tab, the sensor streams are recorded a priori by

representative members of the designer’s target user population. MAGIC provides visual-

izations of the results of the gesture search in two places.

The first is the results list (Figures 29D and 30D), which lists the matches between the

testing stream and the gesture examples the designer has created. Each entry in the list

gives the distance between the two examples, the time at which the match was found, and

the name of the matching example.

The same information is visualized in the recorded sensor graph (Figures 29A and 30A).

Each entry in the results list has a corresponding box superimposed on the sensor graph.

The vertical space of the graph is divided into N slices, where N is the number of gesture

classes defined; this allows overlapping boxes to remain distinguishable (this may be seen

in Figure 30A). Clicking on a box in the recorded sensor graph highlights any matching

results in the results list; the inverse is also true. Double-clicking in either location plays

the video (Figures 33(b), 33(c), 30B) associated with that portion of the sensor stream.

Because it may often be the case that results from a comparison with the data in the

EGL tab will number in the hundreds or thousands, it can be difficult to tell the root cause
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(a) (b) (c)

Figure 33: Experiment setup, showing participant wearing accelerometer and in-hat camera
(a), view from in-hat camera (b) and view from on-monitor camera (c).

of the problem. MAGIC displays each match in the EGL as a black dot on the inter-class

graphs, which is illustrated for the Wave class in Figure 31(b)–(d). The dots are plotted

according to distance on the same horizontal scale as the rest of the graph elements, while

the vertical scale is according to time. This display allows the designer to tell, at a glance:

if there are many or few EGL matches; if all of the matches occur at one time or are evenly

distributed throughout the EGL; and if the threshold for the gesture can be adjusted to

remove most of the matches. (In Figure 31(d), the threshold cannot be moved to the left

far enough to eliminate all EGL matches.)

5.5 Implementation Details

MAGIC is comprised of several interrelated pieces: the graphical user interface, the sensing

backend, and the recognition backend. I used Python as the main language for MAGIC,

due to its ease of use for prototyping. The GUI is implemented for the Apple Macintosh

OS X operating system in Python Objective C, a Python-based bridge to the Objective

C language in which OS X programs are written. Due to uneven threading support for

Bluetooth-based applications in OS X, the sensing backend is a separate Python program

that communicates with the GUI over local sockets.

5.5.1 Sensing and gesture recognition

MAGIC operates on time-series sensor data, and can accommodate a variety of sensors. For

the purposes of this thesis, I used a wrist-mounted Bluetooth ±2G 3-axis accelerometer,
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sampling at 40Hz. Accelerometers are inexpensive and widely available, and are the current

sensor of choice in consumer devices such as the Wii and iPhone. I chose to mount the

accelerometer on the wrist, which I have shown to be a location that is easily accessible

(Chapter 3) for control and display, and can allow for hands-free operation of devices.

When creating gestures, MAGIC automatically starts and stops recording movement.

The starting and ending points of movement are detected by a simple threshold: if the

average (over the three axes) variance of the last N points1 exceeded a threshold value2,

recording started; when the same calculation yields less than the threshold, recording stops.

The start and stop points of the gestures are then refined using an exponential moving

average (EMA) algorithm3; the same algorithm is used when initially loading the EGL to

find “interesting” segments. For an acceleration sample at time t defined by St =< x, y, z >,

the Euclidean distance is calculated as

Dt =
√

(xt − xt−1)2 + (yt − yt−1)2 + (zt − zt−1)2.

The exponential moving average E at time t is then calculated as

Et = αDt + (1− α)Et−1,

where α is a smoothing factor; following Prekopcsák [77], I used α = .2. Desirable data

can then be taken at any t where Et > thresh; I empirically determined thresh = .2 as the

best value. Figure 34 illustrates the results of the EMA algorithm applied to a portion of

the EGL.

MAGIC can utilize of a variety of gesture recognition algorithms. Due to its ease of

implementation and relative computational efficiency (when optimized—see Section 5.5.2

for more details), I chose to use dynamic time warping (DTW). Given two signals, DTW

returns a “distance”, or difference, between them.

Figure 35(a) illustrates two continuous signals to be compared to each other using DTW.

For example, the top (solid line) signal might be a recorded example from a 1D accelerome-

ter, and the bottom (dotted line) signal might be an incoming sample that is to be compared.

1N was set to 10, or 0.25s
2Experimentally calculated at .001
3http://en.wikipedia.org/wiki/Moving_average
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Figure 34: A segment of the Everyday Gesture Library, illustrating higher-energy
segments—in color—that are checked for matches; the grey segments are skipped.

The signals look similar, but are not exactly the same; for example, the bump comes ear-

lier in the lower signal. Figure 35(b) shows how DTW aligns the two signals. Essentially,

DTW finds a way to transform the signals into each other with a minimum of stretching

and shrinking. Each grey line connecting the two signals shows how DTW has determined

that they correspond to each other. Notice how the grey lines illustrate that for the dotted

line to become the solid line, the dotted line’s bump must be shifted towards the the right.

Figure 35(c) shows how a similarity score is computed. The signals are placed on top of

each other in a way to minimize the lengths of the grey lines, and then the lengths of all of

the grey lines are added up. Intuitively, if the two signals were exactly the same, the grey

lines would all be of length zero. The further from zero the sum of the lengths is, the less

good of a match between the two signals has been found.

I extended the basic DTW algorithm using the SWM (Scaled and Warped Matching)

method of Fu et al. [24]. SWM scales a query sequence by factors from 1/s to s in order to

provide better matching.

To perform recognition, MAGIC takes a potential gesture (a candidate) and, using

DTW, compares it in turn to each recorded training example (each belonging to a particular

class). MAGIC uses the three axes of acceleration as well as FFT-based features computed

for each input sample. In order to be considered a match, an example’s distance must

first fall below a per-class threshold value. Each example falling under the threshold is

considered, and the class with the overall lowest score according to weighted voting is

considered to be the match. By default, the threshold is set automatically by MAGIC to
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Figure 35: A graphical explanation of dynamic time warping (DTW). (a) shows two signals
to be matched; (b) shows the best fit between the two signals, and by adding the length of
the lines in (c) the similarity between the two signals is calculated. (Image adapted from
[24]).

maximize the “goodness” value (discussed below) for the gesture class. If desired, the user

may manually set the threshold, or may revert to the automatic behavior through use of

an “Automatically Calculate Threshold” button.

In the EGL search process, if a training example is shorter than a segment of the EGL,

MAGIC slides the training example along the candidate and finds the distance at each

point. Matches are then computed in the same way as described above.
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5.5.2 Optimization

I initially wrote the recognition backend to MAGIC in pure Python, but quickly discovered

that it was extremely slow. Cython4 allows C code to be mixed in with Python code,

allowing code to be quickly prototyped and then incrementally “upgraded” to higher speeds.

I took several other steps to improve MAGIC’s speed. The EGL search process was a

major focus of these efforts. Because the EGL is searched using dynamic time warping, an

O(n2) algorithm, it can be very slow. Compounding the speed issues is that, in order to

elicit better performance, I implemented the SWM (Scaling With Matching) extension to

EGL as described by Fu et al. [24].

One possible approach to speeding up DTW is using a lower bound and then performing

an early abandon [64]; in the context of MAGIC, if a distance in the middle of a DTW com-

putation ever exceeded the threshold for a gesture, the computation could be abandoned,

since it could not possibly be a match. An issue with this approach, however, is that the

threshold can change; it is adjusted both manually by users and automatically by MAGIC

itself. Using the early abandon approach means re-searching large sections of the EGL if

the threshold is ever adjusted to a lower value.

Therefore, I took a different approach to optimizing the EGL search. The first was

adding a skip factor. When a gesture example is shorter than a piece of the EGL to be

searched, MAGIC slides the example along the EGL segment and computes the distance

at every point. Setting the skip factor to n allows MAGIC to jump n samples rather than

sliding along every point within the EGL segment. I used a skip factor of 10, or 0.25

seconds; due to the warping nature of DTW, gestures are still detected when using this

method. The second optimization step was to cache EGL results for each gesture example;

then, whenever the threshold was adjusted, a simple O(n) search was performed for each

example to find locations where the EGL distance was lower than the new threshold. The

only time a new EGL search must be done is when a new gesture example is added to the

system.

4http://www.cython.org
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Finally, the EGL search is a process extremely amenable to parallelization. Because the

EGL is divided into discrete chunks by the EMA process (Section 5.5.1), and because each

gesture example is independent of the others when it comes to searching, there are C = N ·E

separate computations to do, where N is the number of gesture examples to search for and

E is the number of chunks the EGL has been divided into. These C computations can

then be run in parallel; in my implementation, I used the multiprocessing Python library

to launch 8 separate processes (one per processor core) and divided the C computations

amongst the processes.

I also optimized distance computations between gesture examples by caching; in retro-

spect, I should have parallelized the search in the same way as the EGL, as multiple study

participants complained about lag that was brought on by extensive example-to-example

distance computation.

5.5.3 Recognized As and Goodness

The Recognized As and Goodness columns require some explanation as to their calculation.

The computation of Recognized As is best explained by an example. Consider the match

list for the example Thumbs up 5 as shown in Figure 36. Here, the threshold for Thumbs

up (TU) has been set to 18.5, so there are seven green-dotted examples. Of these, five

belong to Thumbs up and two to Hello wave (HW ). To determine the class that Thumbs

up 5 belongs to, a score is calculated for each of the represented classes, the class with

the minimum score is chosen. First, the similarity scores for the green-dotted examples are

divided by class:

TU = (0, 6.764, 6.934, 7.545, 7.744)

HW = (17.807, 18.443)

Next, the median value for each group is calculated:
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Figure 36: This Figure helps to illustrate how the Recognized As value is calculated for each
gesture example.

TUmed = 6.934

HWmed = 18.125

Then, the median value is divided by the proportion of the green dots that class makes

up:

TUscore =
TUmed

|TU |/(|TU |+ |HW |)
= 9.708

HWscore =
HWmed

|HW |/(|TU |+ |HW |)
= 25.375

Finally, the class with the lowest score is chosen as the Recognized as class; in this case,

TU is the winner.

Note that other methods—such as k-nearest neighbor—could have been used here. The

method I used was developed organically while writing the software, and was intended to

cope with outliers while yielding intuitive results.

An example’s goodness is based on the precision and recall for cross-validation (the

example compared to every other example in all classes). In statistical machine learning,

precision is the percentage of results labeled as a class that actually belong to the class and

recall is the percentage of a class as a whole that was labeled as belonging to the class. The
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(a) p=.80, r=1.0,
g=.89

(b) p=1.0, r=.75,
g=.86

(c) p=.78, r=.88,
g=.82

(d) p=1.0, r=1.0,
g=1.0

Figure 37: These examples visually illustrate precision (p) and recall (g) and how they
relate to goodness (g). The orange circles can be thought of as examples from a single class
of gestures, and the blue crosses as examples from other classes. Any shape encircled by
the dotted line is considered to belong to the class of orange circles. In (a), ten shapes are
encircled, but only eight belong to the correct class, so the precision is 80%. However, all of
the orange circles are included, so recall is 100%. The harmonic mean of these two numbers
gives a goodness value of 89%. In (b), all of the shapes encircled are of the orange circle
class, so precision is 100%; however, two of the eight members of the class were missed, and
so recall is only 75%, giving a goodness of 86%. Illustration (c) illustrates both imperfect
precision and recall, and (d) shows both at 100%.

F1 measure, or goodness, is the harmonic mean of precision and recall:

goodness = 2 · precision · recall
precision + recall

Goodness ranges from 0–100%. Intuitively, an example only gets a goodness score of 100%

if it matches all and only all of the other examples from its class. Figure 37 illustrates these

ideas.

5.6 Conclusions

This chapter has presented the design and operation of MAGIC, a Multiple Action Gesture

Interface Creation tool. The next chapter details the design and results of an evaluation of

MAGIC.
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CHAPTER VI

MAGIC: EVALUATION

In order to determine the efficacy of MAGIC, I conducted a user study. My goals in the

study were to:

1. qualitatively assess the usability of MAGIC by observing users utilizing it to design

gestures;

2. understand the design strategies used by designers when creating gestures;

3. determine how effective the Everyday Gesture Library is in helping users to design

gesture sets that are unlikely to be accidentally activated by everyday movements;

and

4. determine if different designers use the same movements for the same gesture com-

mands.

6.1 Procedure

In order to understand the efficacy of the Everyday Gesture Library (goal 3), there were

three experimental groups, illustrated in Figure 38. Each group received the same experi-

mental task. The main difference was between group noEGL and groups EGL and myEGL:

group noEGL received the MAGIC interface with the EGL tab removed, and participants

in this group were not initially informed of the existence of the EGL. Groups EGL and

myEGL both received the full interface.

Groups noEGL and EGL consisted of people with user-centered design experience, and

group EGL used a standard EGL collected by the first author. Group myEGL was comprised

of volunteers who collected EGL data (see Section 6.2), and each myEGL participant used

their own EGL data during the study.

Each participant was seated at a desk in a chair without arms (to allow for free arm
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Figure 38: The three study conditions.

movement). To begin, the participant was requested to wear the hat with the camera and

to wear the wireless accelerometer on the left wrist (Figure 33(a)).

Each participant worked through a tutorial (see Appendix E for the tutorial used for

conditions EGL and myEGL; condition noEGL’s tutorial was identical aside from references

to the EGL) walking them through use of the MAGIC software and giving a brief introduc-

tion to gesture recognition (similar to that presented in Section 5.5.1). The tutorial also

included a section on troubleshooting, designed to assist users in solving common problems

with gesture creation. This section was added after pilot tests revealed that users frequently

got stuck with certain problems (for example, gestures with low goodness scores or with

many EGL occurrences).

Participants took about an hour to complete the tutorial; afterwards, they were given

the opportunity to ask any questions, and then were given a printout explaining the exper-

imental task.
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The printout asked participants to take on the role of an employee of the Gesture Engi-

neering Group at “Pear” Computer (see Appendices C and D). Participants were requested

to design and create eight gestures to control a new wrist-mounted, gesture-controlled digital

audio player, the “uPod Touchless.” The functions to control were:

• Play/Pause

• Next Track

• Previous Track

• Volume Up 10%

• Volume Down 10%

• Next Playlist

• Previous Playlist

• Shuffle

These functions were chosen because they are commands that would be plausible to con-

trol with gestures, and for a type of device that participants would be familiar with. Volume

up and down were specified as “10%” in order to make a discrete command; MAGIC’s ges-

ture recognition does not currently work with continuous motions.

The instructions also asked participants to ensure that each gesture met the following

criteria, chosen as requirements that would be important for creating an actual product:

• The gesture must reliably activate the desired function.

• Performing the gesture must not activate other functions.

• The functionality associated with a gesture must not be activated by a user’s everyday

movements.

• The gesture should be easy to remember.
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• The gesture should be easy to perform.

• The gesture should be socially acceptable.

Participants were provided scrap paper and the tutorial, and were given approximately

2.5 hours to complete the task using the MAGIC software.

When participants in condition noEGL indicated that they were finished, the researcher

compared the created gestures to the same EGL given to group EGL. The researcher then

verbally informed the participant of the results, asking them to fix any gestures that had a

large number of occurrences in the EGL. The goal was to simulate the current state of the

art in gesture system design, in which a designer must equip one or more users with the

device and allow them to use it for several days, reporting back with how it worked or did

not.

At completion of the experiment, the researcher conducted a semi-structured interview

with each participant, focusing on overall strategy of gesture creation and use of the soft-

ware. After the interview, each participant was asked to complete a paper survey about

the experiment (see Appendix B), comprised of the Questionnaire for User Interface Satis-

faction (QUIS) [15], QUIS-inspired questions about the gestures, and a section requesting

descriptions of why the participant chose the particular movements for each gesture.

6.2 EGL Creation

In order to create Everyday Gesture Libraries to test against, we recruited eight volunteers to

collect everyday life data. Table 5 summarizes the volunteers and amount of data collected.

Volunteers were compensated US$10 per hour of collected data. With the exception of

myself (EGL1), the volunteers did not know any details about the study.

Each participant was provided with a data collection system and an instruction sheet

detailing the use of the system. The data collection systems consisted of a wrist-mounted

wireless accelerometer, an Asus eeePC 901 netbook computer, a shoulder-mounted bag or

backpack, and a hat with a fisheye camera lens mounted in the brim, pointing downwards

(see Figure 39 for representative images). Participants were requested to collect up to ten
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Table 5: Summary data of EGL collection volunteers. Some volunteers collected more data
than is represented here, but some data was discarded due to fragmentation and other
hardware issues; only data actually used is shown.

EGL Age Gender Occupation Hours collected
EGL1 32 M PhD CS 19:18
EGL2 26 M MS CS 9:33
EGL3 27 F Librarian 7:40
EGL4 28 M Civil engineer 6:53
EGL5 30 F IT professional 4:50
EGL6 37 M IT professional 4:08
EGL7 28 F Food writer 3:57
EGL8 29 F Project manager 2:09

hours worth of data, and were asked to provide variation in the data so as to avoid ten

hours of sitting at a desk or watching television.

Participants collected over 58 hours of data, encompassing activities such as attending

a major academic conference, brewing beer, knitting, vacationing at the beach and in the

mountains, working at the computer, hiking, cooking, performing home repair tasks, and

attending work meetings.

Four of the volunteers (vEGL2, vEGL3, vEGL4, vEGL5) also volunteered for the

MAGIC evaluation; due to hardware difficulties, the video data from one of the four

(vEGL5) was lost and that participant used MAGIC without video associated with the

EGL. These four volunteers comprise condition myEGL.

6.2.1 EGL Data Used in Evaluation

In order to provide EGL data for participants in condition EGL to use, and with which to

provide feedback to condition noEGL, some data had to be taken from one of the collected

EGLs. In pilot testing, I found that there appeared to be a high correlation between

a smaller portion of an EGL and the rest of it, so during the evaluation I provided all

participants with the same small portion of an EGL.

When creating classifiers, pattern recognition experts use a portion of data for training

the classifier, and reserve the rest of the data for testing. Novices often forgo this step and

end up testing on training, which gives invalid results: the idea is that the classifier has

been tuned to the training data, so naturally will perform well on the same data. Providing
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(a) (b)

(c) (d)

Figure 39: Sample images from EGLs: (a) cooking, (b) eating lunch, (c) talking with a
colleague, (d) playing with a dog.
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“fresh” data to the classifier will give results in line with what would be expected in the

real world.

I used the same philosophy with the EGL. In the case of MAGIC, the user is the

“classifier”, and in the evaluation, I wanted to ensure that the results that participants

tuned on would generalize to other situations. Therefore, I provided one segment of EGL1

(“EGL1 training”) to condition EGL participants. The segment was simply one complete

5-hour collection. The remaining 14 hours of EGL1 (“EGL1 testing”) were reserved for

post-hoc testing (see Section 6.4.1.1). Participants in condition myEGL similarly received

abbreviated training portions of their own EGLs.

6.2.2 EGL Limitations

An Everyday Gesture Library is subject to several limitations in terms of its generalizability.

Essentially, an EGL cannot be guaranteed to span the entire space of everyday life, even

for a single person. Too many new situations can arise that might not have been part of

the EGL, even if an EGL was recorded over years. For example, a person might decide to

go bungee jumping for the first time in their lives, and such a situation might cause a false

positive. A less extreme example is moving between accommodations: a person might live

in a house for ten years, and then decide to move. The motions made while packing and

moving could be novel with respect to the EGL.

Aside from this limitation, an EGL is limited by three other factors; if any one changes,

a new EGL is needed. The factors are sensor, situation, and target population.

The sensor refers to the actual sensor that is used—both for EGL collection and eventual

product use—as well as the sensor’s orientation and location on the body. If, for example,

a gyroscope is to be used, an EGL collected with an accelerometer will not provide the

correct data with which to test. Likewise, if an EGL has been collected with the sensor on

the left wrist, moving to an application where the sensor is to be on the right wrist, or on

the foot, will necessitate the collection of a new EGL.

Everyday Gesture Libraries should be collected according to the situation in which the

end device is intended to be used. For example, an EGL based on several weeks’ worth
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of recordings of high school teenagers would not be very useful for use in designing an in-

cockpit gestural interface for fighter pilots; however, even the everyday activities of a fighter

pilot might not be relevant. An EGL should be collected based on the use context of the

planned interface; that is, it should include activities that might reasonably be expected to

cause false positives in the actual usage situation.

Finally, the target population for the end product must be taken into account when

creating an EGL. As with the fighter pilot example above, the planned users of the device

may influence the situation. They may also influence the sensor or sensor placement; an

EGL to help design interfaces for amputees to control prosthetic arms (such as DEKA’s

robotic arm1) may require gyroscopes for high precision, or may need for sensors to be placed

on the foot for easy control. Finally, users with differing abilities will necessitate differing

EGLs; teenagers will not be good models for elderly adults, and people with Parkinson’s

disease will provide very different databases than will someone with a broken arm.

6.3 Participants

I recruited a total of 16 participants; one participant took over two hours to complete the

tutorial and was therefore discarded as an outlier, leaving 15 participants. My criteria for

recruitment for conditions noEGL and EGL was a familiarity with user-centered design

or building user interfaces; participants were mostly graduate students or recent graduates

from the HCI and Computer Science programs at my institution. Condition myEGL partic-

ipants were recruited based on a willingness to wear data collection hardware for extended

lengths of time and included a student of library science, a civil engineer, an HCI graduate

student, an IT professional, and a freelance food writer.

I requested participants to complete a brief demographic survey before starting the

experiment (Appendix A). The questions included experience with motion-sensing devices

such as the Nintendo Wii game system and the iPhone or T-Mobile G1 mobile phones. On a

9-point scale it included experience with user-centered design, with designing user interfaces,

and with pattern recognition. See Table 6 for a summary of participant information.

1http://www.dekaresearch.com/deka_arm.shtml
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Table 6: Demographic information for participants. Columns from left to right are: ex-
perimental conditions; number of participants; mean age; number of female participants;
number of participants wearing a watch (“sometimes” responses counted as .5); experience
with Nintendo Wii (1-9); experience with motion-sensing mobile phones (0-5); experience
with user-centered design (1-9); experience in designing user interfaces (1-9); and experience
with pattern recognition (1-9).

Cond # Age #F Watch Wii Phone UCD UI PR
noEGL 7 29.0 2 3.5 3.2 2.0 5.9 6.7 4.0

EGL 8 31.6 2 2.0 3.4 1.4 6.6 5.6 3.0
myEGL 4 27.8 2 1.5 3.0 2.0 3.5 2.5 3.8

6.4 Results

In this section, I assume p < .05 for statistical significance. Participant 9 was determined

to be an outlier due to EGL performance (greater than 2SD from the mean) and was not

used in the statistics in this section.

6.4.1 User Performance

6.4.1.1 Everyday Gesture Library

There are two ways to think about—and therefore normalize—EGL data. One way is to

normalize the number of occurrences in each EGL by the length of the EGL. This tell us

how many false positives can be expected per length of time (i.e., per hour) for a normal

day. These are the numbers reported in Table 8. The other way to normalize the EGL is by

length of data actually considered. Because the EGL is segmented by “energy” (see Section

5.5.1), only a subset is actually searched. Normalizing by the length of data searched allows

meaningful comparisons to be made between EGLs: therefore, I use this normalized number

of hits for statistical computations.

As expected, the participants with access to the EGL (conditions EGL and myEGL)

had significantly fewer EGL occurrences on the training EGL portions—an average of 1.9

per gesture per hour (SD = 9.6)—than those without (condition noEGL), who had an

average of 52.1 (SD = 117.8) occurrences per gesture per hour. Five participants (one

from condition noEGL, three from EGL, and one from myEGL) achieved zero occurrences

in the EGL. (The noEGL participant performed multiple repeats of each of his gestures,

such as making a circle three times.) Four (one noEGL, two EGL and one myEGL) had
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an average of one occurrence/gesture/hour, one (EGL) had four occurrences/gesture/hour,

and the rest of the participants had more than five occurrences/gesture/hour. There was

no statistically significant difference between conditions EGL and myEGL.

Clearly, 1.9 accidental activations per gesture per hour is not an acceptable number

for a real system. However, looking at the gestures individually—rather than grouped by

participants—nearly a third of the gestures created (50 of 152) had zero occurrences in any

EGL (see Table 8)! Chapter 7.2.3 discusses how better sensing—leading to more reliable

recognition—can improve on these results.

As mentioned earlier, five hours of EGL1 data (EGL1 testing) was used during the

experiment. An independent-samples t-test on the number of occurrences in the reserved

data revealed a significant difference between the two conditions. There was a significant

99.28% correlation between the number of occurrences in EGL1 training and EGL1 testing.

For the additional EGLs collected by other volunteers (EGL2–8), the difference in num-

ber of occurrences between the conditions EGL and noEGL was also found to be significant.

The correlation between the number of EGL occurrences in the experimental portion of

EGL1 and each of the additional EGLs was significant and greater than 87%.

The high rate of correlation between the part of EGL1 used for the EGL condition and

the other EGLs implies that—at least for this particular combination of sensor, recognition

algorithm, and task—that a small EGL is as useful as a large one.

The EGL proved a success in terms of avoiding gestures that might appear in everyday

life, activating undesired functionality. In terms of this goal, participants were positive

about the utility of the EGL and the usability of the interface. Some participants, however,

experienced difficulty with finding gestures that did not occur in the EGL. In the words of

one condition EGL participant, “I just kinda feared the EGL.” Many participants, however,

appeared to quickly learn from their mistakes and were able to create new gestures with

few or no EGL occurrences in just one or two tries.

Surprisingly, few participants took advantage of the EGL video to determine what move-

ments made by the subject of the EGL conflicted with the created gesture. In general, the

reason stated by participants was that while the cause of the occurrences was intellectually
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interesting, it was not very useful in determining what to do next. As one participant

commented, “I didn’t care why I was hitting the Everyday Gesture Library; I can’t change

what’s in there!” Another reason for the lack of interest in the EGL video may be that

watching that many video clips seemed overwhelming: even clicking to see the video for ten

different occurrences would take a minute or two, and when thousands of occurrences were

found, it makes sense for users to not even try.

Condition myEGL participants differed, showing interest in their recorded activities and

how their created gesture examples matched; however, most said that the video did not help

in understanding how to proceed in creating new gestures that would not conflict with the

EGL.

Participant 24, in condition myEGL, had problems with her data collection system,

which only recorded about two minutes of video. She therefore used MAGIC without

EGL video, being able to see only the accelerometer recording. When asked in the post-

experiment interview if she would have liked to see the video, she responded with a strong

affirmative, saying that she thought it would have helped her to adjust her gestures so they

would not conflict with the EGL.

6.4.1.2 Gesture Creation

Overall, participants were successful in the gesture creation task, with none failing to cre-

ate distinct gestures for the eight “uPod” functions. On average, participants created 5.1

examples per gesture (SD=1.5); it is likely, however, that participants were influenced by

the tutorial, which instructed them to make five examples for each gesture.

The mean goodness value for the gestures over all the participants was 86.3% (SD =

23.5%), with three achieving 100% goodness for all eight gestures and seven with scores

for all gestures above 97%. The poorest-performing participant had an average goodness

(across all classes) of 68%, with the worst gesture having a 44.9% goodness. There was no

significant correlation between the goodness of gestures and the experimental condition.

The implication of this high level of gesture goodness is that participants were able to

use the software to design a set of eight gestures that had high internal consistency—that
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is, a movement intended to be of a particular gesture is likely to be recognized as such—and

high differentiability—that is, a movement intended to be of a particular gesture is unlikely

to be mistaken for a different gesture. Both consistency and differentiability are important

factors for real-world gesture use.

Although participants were given no instructions as to how long to make their gestures,

most opted for short motions. The average length of gestures was 2.6 seconds (SD = 1.5),

which falls well under the four second threshold for microinteractions as discussed in Chapter

1.

6.4.1.3 Software Usage

On average, participants took two hours to complete the experimental task, regardless of

the condition. This was somewhat surprising—prior to the study, I had surmised that

noEGL participants would create a set of gestures in a fairly short amount of time and then

be finished. However, participants in all conditions found it challenging to create a set of

gestures with high goodness, and the noEGL group simply used the time to try to improve

their goodness values (although they did not necessarily succeed; as related in Section 6.4.1.2

there was no correlation between experimental condition and goodness values).

Also contrary to my expectations, almost all participants proceeded through the task in

a very linear manner, creating all of the classes and examples first, then trying them out on

the Testing or EGL tabs, rather than creating one gesture at a time and testing each one. I

expected the latter rather than the former because it would lead to less restarting of gesture

creation. I frequently observed a participant discovering that a particular gesture had many

EGL occurrences, and not only recreating the gesture but the related gesture, if any. For

example, if Next Track had many EGL occurrences, and Previous Track was a mirror of the

movement, the participant might re-create both gestures to maintain consistency, regardless

of whether Previous Track had EGL occurrences or not.

Within the creation tab, the approach was also quite linear, with the usual flow being

as follows: create a gesture class; record one or more examples for that class; troubleshoot

the class if it has a low goodness; record any desired final examples; repeat by starting with
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a new class. Several participants followed an alternate approach of recording examples for

all eight gestures initially, and then troubleshooting as a whole.

After observing almost all of the participants following the same pattern, I have come

to the conclusion that the linear process may be a result of the layout of MAGIC. Until

nearing the end of the process, participants tended to proceed in a tab-by-tab manner. A

more unified interface might encourage users to consider different approaches. The tutorial

also may be a cause; in order to provide clear explanation, it walked participants through

the process in a linear fashion.

A second possible explanation for the linear approach is the responsiveness issues the

system experienced as more gestures and examples were created. As shown in Section

6.4.2.1, participants rated MAGIC poorly with respect to system speed. The lack of

responsiveness—especially when creating new gesture examples after a large number already

exist—may have discouraged participants from iterating further than absolutely necessary.

Overall, participants used MAGIC in an exploratory and iterative fashion. Only one

of the participants pre-planned gestures; the rest immediately started to experiment with

different movements. As particular examples (or entire gesture classes) failed to conform

to expectations, participants disabled or deleted the offending item and tried to create

something that would work better. Participants moved fluidly between checking whether

their gestures worked as expected on the testing and EGL tabs and modifying the gestures

on the creation tab.

6.4.1.4 Performance Statistics

Statistically controlling for participant and experimental condition (using ANCOVA, the

analysis of covariance), few predictors of performance could be found, either for goodness

or number of EGL occurrences. Participants’ self-rated pattern recognition experience (on

a scale of 1–9) appeared to have a significant impact on the goodness of gestures. Using

Spearman’s rho non-parametric correlation coefficient to further test, the data show that

participants with a self-rated expertise of 1 had significantly lower goodness scores than

several (but not all) higher-rated groups.
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Aside from this one statistic, there were no other predictors of EGL performance or

goodness, either amongst the collected demographic data or the creation strategies used

(Section 6.4.5). Further ANCOVA testing shows that gesture goodness is predicted by the

person, and that number of EGL occurrences is predicted by the experimental condition.

6.4.2 Qualitative Results

Participant response to the software was very positive, with comments such as “gesture

creation was easy” and “it’s really fun.” Some participants expressed some frustration with

the difficulty of the task, both in terms of creating gestures with high goodness values and

finding gestures that did not conflict with the EGL. One such participant commented, “I

found the experiment pretty frustrating. . . [but] a relatively small fraction was due to the

software itself.”

Although the tutorial included a section on troubleshooting—including advice on what

to do when gestures have low goodness values or appear too many times in the EGL—few

participants made use of it. When asked, several said that they had forgotten it was there.

This suggests that such information would be better integrated into MAGIC itself, much

like quill ’s [54] automated advice.

6.4.2.1 Questionnaire Results

The Questionnaire for User Interaction Satisfaction (QUIS) is a 9-point Likert questionnaire

in several categories. The QUIS was included in the questionnaire that participants com-

pleted after finishing the experiment. In addition to the standard set of QUIS categories, I

added an Experiment section that asked a number of more specific questions about MAGIC.

The results of the questionnaire are summarized in Table 7.

The mean (std) response to all questions was 6.9 (1.8), while the mean (std) response

to only the questions in the original QUIS questionnaire (sans my added Experiment sec-

tion) was 6.9 (1.7). The lowest mean response—and the only mean with a score less than

five—was 4.7, to “System speed (too slow · · · fast enough)” in the “System Capabilities”

category. The highest mean score, 8.4, was to “Use of terminology throughout the system

(inconsistent · · · consistent)” in the “Terminology and System Information” category.
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Table 7: The results of the questionnaire are summarized as mean/std, with the bar graph illustrat-
ing the same. The responses for each question are indicated in parentheses; the response on the left
is scored as 1 and the response on the right as 9. Each section also had space for the participant to
provide additional comments.

Overall Reactions to the Software mean / std
(terrible · · · wonderful) 7.3 / 0.9
(frustrating · · · satisfying) 6.4 / 1.7
(dull · · · stimulating) 7.2 / 2.0
(difficult · · · easy) 5.8 / 1.4
(inadequate power · · · adequate power) 7.0 / 1.5
(rigid · · · flexible) 6.7 / 1.4

Information Presentation
Screen layouts were helpful (never · · · always) 7.5 / 1.1
Amount of information that can be displayed on the screen
(inadequate · · · adequate)

7.5 / 1.1

Arrangement of information on the screen (illogical · · · logical) 7.6 / 1.1
Sequence of screens (Gesture Creation/Gesture Testing/Everyday
Gesture Library) (confusing · · · clear)

8.1 / 1.3

Progression of work-related tasks (confusing · · · clearly marked) 7.1 / 1.8

Terminology and System Information
Use of terminology throughout system (inconsistent · · · consistent) 8.4 / 0.8
Computer keeps you informed about what it is doing
(never · · · always)

6.3 / 1.6

Performing an operation leads to a predictable result
(never · · · always)

6.8 / 1.3

Information about quality of gestures (confusing · · · clear) 6.7 / 1.9

Learning
Learning to operate the system (difficult · · · easy) 6.9 / 1.8
Time to learn to use the system (slow · · · fast) 6.4 / 2.0
Exploration of features by trial and error
(discouraging · · · encouraging)

7.0 / 1.8

Tasks can be performed in a straight-forward manner
(never · · · always)

7.1 / 1.6

Steps to complete a task follow a logical sequence
(never · · · always)

7.3 / 1.5

System Capabilities
System speed (too slow · · · fast enough) 4.7 / 2.0
Correcting your mistakes (difficult · · · easy) 6.5 / 2.1
Ease of operation depends on your level of experience
(never · · · always)

6.9 / 1.4

Experiment
Match between designed gestures and intended purposes
(low · · · high)

6.7 / 1.8

Ease for someone else to learn designed gestures
(low · · · high)

6.2 / 1.7

I would like to own the uPod Touchless, to use with my designed
gestures (no way · · · definitely)

6.7 / 2.8
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The Experiment section of the questionnaire was intended to discover whether the par-

ticipants were satisfied with the gestures they had created and with the concept of gesture

control as a whole. Participants were somewhat satisfied, with the median response being

7 to the first two questions in the section. Response to “I would like to own the uPod

Touchless, to use with my designed gestures” saw some of the most divergent opinions; the

median response was 8, but there were were four responses of three or less, and nine ‘9’ re-

sponses. Interestingly, there was no correlation between the desire to own a uPod Touchless

and the performance of the participant, either with the EGL or gesture goodness.

The Experiment section of the survey also had a free-response section which asked

participants to consider if there were other devices they might like to control with gestures.

Ten of the 19 participants responded, and the imagined devices were surprisingly varied.

Several participants said they would like to control a mobile phone; other responses included

day trading software, presentation control, stereo controls, devices for the visually impaired,

and a “Roomba mess indicator”.

The final section of the questionnaire asked participants to comment on their gestures:

“We’re interested in your design choices; for each gesture, please write a short description

of why you chose the particular gesture for the given functionality. If you had a strong

impression of what the gesture should be, but ended up not using that idea, please write

down the idea and why it didn’t work out. You can go back and watch your videos if you

need a reminder of what the gestures looked like.” Although many participants simply

described their gestures, this section proved invaluable in conjunction with the recorded

gesture videos for determining the strategies used, as discussed in Section 6.4.5.

6.4.3 Retrospection

Some of the aspects of MAGIC that the study revealed to be most important were those

that enabled easy experimentation, both in the creation and testing of gestures. The key

characteristic in this regard was retrospection—the ability to return to previously-created

content and review the actions taken.
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Figure 40: A visual comparison of three different pen gesture examples in Quill [54]; such vi-
sual comparisons are difficult for non-visual motion-based gesture systems. (Image redrawn
from [54].)

This functionality is important when designing non-visual interactions, because the de-

signer may forget the mapping between specific inputs and outputs; in my study, partici-

pants often forgot the motions they made to activate specific commands, especially during

the initial period of trying out many different gestures.

During the post-experiment interviews, the feature that participants most frequently

cited as being of primary usefulness was the video playback of gesture examples. This was

due to the need for retrospection: by the time a participant reached the testing phase, or

wanted to record some more examples for a particular gesture class (for instance, to improve

its goodness score), she may have forgotten the movements that defined the gesture. In such

situations, participants watched the video recordings of themselves making the gestures to

remind themselves of the proper movements. Retrospection is also useful due to the nature

of a non-visual recognition-based interface: in a visual system such as Quill [54], two pieces

of training input may be visually compared to note their differences (Figure 40). In a

motion-based system such as MAGIC, however, such visual comparisons are much more

difficult.

In an example of what I term retrospective realization, some participants used the retro-

spective facilities in MAGIC to modify gestures based on unintentional movements. Several

participants related occasions when one example of a class—thought to be nearly identical

to the others—performed markedly better or worse in terms of the goodness score. In such

cases, the participant watched the video for the affected example and two or three others

of the same class to discern the difference. Frequently it was found that some unintentional

movement had been included in the gesture; in some cases, where the example in question

performed better than the others, the participant incorporated the unintentional movement
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into the gesture, re-recording the other examples to include the motion. Figure 41 illustrates

retrospective realization for one participant.

The video saved along with each testing sample that was recorded was also found to be

useful by many participants. While some performed gestures from only one class in each

testing sample, other participants made multiple gestures in sequence. Frequently, some

of the motions would fail to be recognized—either at all, or as from the correct gesture

class—and the participant would watch the video to ascertain whether the movement had

been made poorly or if it really should have been recognized. It was in such situations that

many participants made use of the ability to select a portion of the test sample and add it

as an example to a particular class, allowing free-form movements made during testing to

be used post hoc as input to the system.

As can be seen in Figure 33, participants were recorded by both a hat-mounted and

a monitor-mounted camera during gesture recording. Contrary to my expectations, the

monitor camera was more popular amongst participants than was the hat camera. I antic-

ipated that users would prefer a first-person view to help them understand and remember

the movements they performed; however, many participants indicated they felt more able

to understand their gestures from a forward perspective than from a top-down view.

The least-used visualization was the recorded accelerometer graph (Figure 28A). Similar

to the graph of a sound wave in an audio program, participants were able to determine the

magnitude of the movement but little else. The graph was of use to them, however: several

participants mentioned using the appearance of the graphs to determine whether a newly

recorded example sufficiently matched the previously recorded examples. Some users were

able to glean more information by looking at the differently-colored axes—one participant

mentioned being able to remember what a movement was like based on the directions

implied by the colors—but most were unable to connect the shape of the three lines to the

arm and wrist movements that produced them. It is interesting to note that, while this

visualization was little-used, it is the visualization currently used in most systems involving

interaction with time-series data [30, 101].
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For participants in condition myEGL, an additional retrospection capability was avail-

able: the EGL recorded by each person. Condition myEGL participants reported that,

because the EGL was personal, they took time to look at the portions of their EGL that

their gestures conflicted with. Most myEGL participants said they liked the ability and

would want to have it in the future, but admitted that it may not have been helpful to

them in making gestures that did not occur in the EGL.
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Figure 41: The two sequences of images show two examples of the previous playlist gesture for a participant, and illustrate retrospective
realization. The top sequence shows the gesture as initially created—a double “sweeping” motion in the air. The bottom sequence shows
the same gesture, but here the participant put his arm down before MAGIC stopped recording. When he discovered that the latter
movement was much less confused with other gestures than the former, he re-recorded all of his previous playlist examples to include the
arm-down portion.
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6.4.4 Comprehension

In addition to aiding designers in understanding what they have done, MAGIC offers visu-

alization features designed to help users understand what the system has done, including

the visualizations and “Recognized As” and “Goodness” columns.. Overall, I consider the

set of features a success. There was no feature that participants did not report using, likely

due to the complexity of the task and the difficulty in understanding pattern recognition

topics by non-experts in the domain.

Some participants found the live accelerometer graph (Figure 28B) useful, especially

for experimenting with the effects of arm movements on the resulting shape of the trace.

Contrary to my expectations, no participants reported looking at the live graph during

actual example recording, instead remaining focused on the list of examples to see when

the newly recorded example appeared.

Participants considered essential the statistics about the performance of individual ges-

ture examples. These included the “Recognized As” and “Goodness” columns (Figure 28C),

the match box showing similarity scores (Figure 28D), and the intra-gesture graph (Figure

31(a)). Several participants found that gesture examples that they intuitively felt to be

exactly what they wanted were shown to be outliers by the goodness score or intra-gesture

graph. A minority of users found the match box to be confusing, and few compared the

numbers within the box to each other, instead relying on the ordering of examples.

The intra- and inter-class graphs (Figure 31(b)–(d)) were not as widely used. Many

users found them confusing, or interpreted them in a way that was not consistent with the

design. One of the major criticisms brought up was that these graphs were overwhelming,

without the benefit of providing guidance on how to fix the problems revealed therein.

Many users did state that they felt the graphs were “essential”, however, implying that

they should not be discarded, but tweaked for better usability.

6.4.5 Design Strategies

In an experiment asking participants to generate gestures for various commands using a

tabletop display, Wobbrock et al. found that for many commands, participants generated
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the same or very similar gestures [107]. I did not find the same results for participants in

the current experiment. Instead, gestures varied between participants, sometimes wildly.

In designing gestures, participants had several competing concerns, which became clear

while observing participants over the course of the experiment. For those in condition

noEGL, I observed the concerns to be (in decreasing order of importance to participants):

1. gestures should be easy to remember;

2. gesture examples should have high goodness scores;

3. gesture classes should have high average goodnesses;

4. testing samples should be recognized correctly; and

5. gestures should be socially acceptable.

Conditions EGL and myEGL added the EGL, and with it the further concern, most

important of all to the participants, that

1. gesture examples should have few or no EGL occurrences;

with the other concerns shifted downward in priority accordingly.

These concerns influenced how participants interacted with the system and the strategies

that were used to design gestures. Reviewing the videos recorded for each gesture example

across all gesture classes and participants, I identified several ways in which the participants

attempted to achieve these conflicting goals.

Some strategies were exercised solely for the sake of memorability, usually involving

iconic gestures—movements intended to represent particular objects or visuals in the world.

One of the most common iconics used by participant was making movements in the form of

shapes—both simple and more complex—such as circles, letters, or familiar icons such as

the play ( ) or pause ( ) symbols. More complex iconics were also used; a motion used

by several participants for the Next and Previous Playlist commands was to mime turning

pages in a book.

Another strategy frequently used for memorability was pairing—defining gestures for

two related commands in such a way that the motions are also related. An example is the
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Next Track and Previous Track commands: a gesture for Next Track might be to wave the

hand to the left, while the Previous Track gesture might be waving the hand in the opposite

direction.

Frequently, motions used for memorability were modified or composed with other mo-

tions in order to influence recognition by improving goodness scores or testing performance,

or to reduce the number of occurrences found in the EGL. A very common strategy was

to repeat a motion multiple times to make it more distinguishable, for example by tracing

a circle in the air twice. Another approach was to add an impact somewhere in the move-

ment, such as hitting one hand with another, or by snapping the fingers. Motions were

also modified by adding another movement component, for example by adding abrupt stops

(jerks) or directional changes to the motion. A special case of this approach is the common

“shake to Shuffle” motion that several participants implemented.

Some participants developed the idea of a trigger motion. In the same manner that one

might unlock a mobile phone by pushing a particular sequence of buttons, the participants

designed either pre- or post-fix motions that were common across all gestures, indicating that

the motion was intended to be a command to the system. For example, one participant

prefixed every command with an ear-cupping motion, while another ended every motion

with a confirmatory wrist-twist.

A few strategies appeared to be intended solely to prevent occurrences in the EGL.

These tended to involve extremes, either in motion or in time. One participant quickly

developed a strategy of shooting his arm outstretched at a sharp angle, and then drawing

symbols in the air (Figure 42). Another participant made very deliberate motions with

several repetitions of the motion (Figure 43).

The most successful gestures—in terms of low numbers of occurrences in the EGL—fell

into two categories. Many were of the “extreme” type just described. Other successful

gestures, however, involved impacts or near-impacts in the form of direction changes. One

participant clapped his hands once, rotated the gesturing hand, and clapped again with the

back of his hand. The same participant also had success in short, sharp movements, with

abrupt directional changes (Figure 44).
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Figure 42: Participant 5 performing the Volume Up gesture, which consists of the arm
moving straight up, tracing a “V” for “Volume” and then tracing a “+” for “increase”.

Figure 43: Participant 10 performing the Volume Up gesture, which consists of raising and
lowering the hand three times, with the palm turned up.
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Figure 44: Participant 7 performing the Next Track gesture, which consists of quickly
moving the hand down and then across the body, with a sharp directional change.

The various strategies used by participants can be broken down into six categories of

movements; many gestures are composed of multiple motions, or have a single motion that

falls into multiple categories (for example, drawing the play triangle is both iconic and

involves sharp directional changes). I determined the categories by watching all of the videos

recorded when participants created gestures, and as such the categorization is subject to

observer error. The categories are as follows:

Iconic movements are those that make reference to some concept or symbol. An example

is drawing a triangle in the air to represent the play symbol.

Directional movements are those that have meaning to the direction: many of the paired

next/previous gestures included left/right components.

Prefix/postfix movements precede or follow other movements without being meaningful

for the gesture itself. In practice, this mean that a participant pre- or postfixed every

gesture with a common motion.

Impacts occur when the gesturing hand encounters a solid object such as the table, the
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Figure 45: The acceleration graph of participant 7’s Previous Playlist gestures, which con-
sists of two quick claps, with the left hand on top for the first clap and on bottom for the
second.

gesturer’s body, or the gesturing hand itself (with a snap or a flicking motion). Impacts

make a distinct spike in acceleration that may be clearly seen on the acceleration graph

(Figure 45).

Repeated motions were common, especially as strategy to avoid occurrences in the EGL.

Examples include drawing the same iconic multiple times or making several directional

movements (Figure 43).

Jerks and directional changes produce acceleration spikes similar to those elicited by

impacts. Jerks start or end a gesture with an abrupt motion, while directional changes

are sharp deviations from the current course.

Table 8 lists the movement types for each gesture by each participant. Although many

participants show similar patterns, almost no two gestures are alike. The one commonality

was using a shaking motion for the Shuffle gesture; participants 9, 16, 18, 19, 22 and 24 all

used a variation on this movement.

The numbers presented in Table 8 bear some explanation with respect to how the ges-

tures have been standardized. Some participants were confused and made separate “Play”
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and “Pause” gestures, in which cases the gesture with the lower number of EGL occurrences

was chosen to represent “Play/Pause”. In other cases, participants made extra gestures:

one created a garbage class to hold false positive portions of testing gestures; another (con-

dition noEGL) participant created his own “EGL” gestures. For these participants, the

standardization process affects the goodness values shown in the table. Additionally, a bug

in MAGIC influenced the number of EGL occurrences: some gestures shown in the table

with many occurrences for EGL1 actually had zero occurrences for the participant during

testing (“TestEGL” column).
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Table 8: Gestures categorized by movement types. P# indicates participant number and Cnd condition (or EGL in the case of condition myEGL); movement

types are Iconic, Directional, starting or ending with a Prefix/Postfix, having an Impact, with Repeated movements, and containing a Jerk or directional

change. Len is the average length of each gesture example in the class in seconds, on a 0–10s scale. The thick red line indicates four seconds, under which a

gesture qualifies as a microinteraction. Goodness shows the average goodness of a gesture class, from 0–100%. The “# EGL hits” columns show the number

of occurrences in each of the indicated EGLs, per hour (normalized by total length of data; see Section 6.4.1.1 for more information). For participants in EGL

conditions, the number of occurrences per hour on the EGL used in the interface is shown under “TestEGL” (this is EGL1 Test for EGL participants). The

number in this column for participant 21 was lost due to a disk error.

Strategies # EGL occurrences

P#Cnd Gesture Ic D PP Im R J Len (s) Goodness (%) TestEGL EGL1 EGL2 EGL3 EGL6/8 EGL4 EGL7 EGL5 Total

5/EGL Play/Pause • • • (2.5) (85) 0 1 0 0 0 0 0 0 1

5/EGL Next Track • • • (3.2) (38) 0 0 0 0 0 0 0 1 1

5/EGL Previous Track • • • (2.8) (100) 0 0 0 0 0 0 0 0 0

5/EGL Next Playlist • • • (2.6) (68) 0 0 0 0 0 0 0 0 0

5/EGL Previous Playlist • • • (2.1) (97) 0 0 0 0 0 0 0 0 0

5/EGL Volume Up • • • (3.1) (72) 0 0 0 0 0 0 0 0 0

5/EGL Volume Down • • • (2.3) (87) 0 0 0 0 0 0 0 0 0

5/EGL Shuffle • • • (2.6) (88) 0 115 25 23 30 25 17 17 252

6/EGL Play/Pause • • (2.7) (96) 0 0 0 0 2 1 0 0 3

6/EGL Next Track • • • (2.2) (100) 0 0 0 0 0 0 0 0 0

6/EGL Previous Track • • • (2.4) (100) 1 10 1 2 5 3 1 3 25

6/EGL Next Playlist • • (3.1) (69) 0 2 1 0 3 0 1 2 9

6/EGL Previous Playlist • • (3.3) (100) 0 0 0 0 0 0 0 0 0

6/EGL Volume Up • • • (2.8) (81) 0 0 0 0 0 0 0 0 0

6/EGL Volume Down • • • (2.2) (100) 0 1 0 0 0 0 1 0 2

6/EGL Shuffle • • (2.7) (74) 0 0 0 0 0 0 0 0 0
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Strategies # EGL occurrences

P#Cnd Gesture Ic D PP Im R J Len (s) Goodness (%) TestEGL EGL1 EGL2 EGL3 EGL6/8 EGL4 EGL7 EGL5 Total

7/EGL Play/Pause • (1.5) (100) 0 4 3 1 6 2 0 1 17

7/EGL Next Track • • (1.4) (100) 0 0 0 0 0 0 0 0 0

7/EGL Previous Track • • (1.5) (100) 0 0 0 0 0 0 0 0 0

7/EGL Next Playlist • • (1.3) (100) 0 0 0 0 0 0 0 0 0

7/EGL Previous Playlist • • (1.4) (100) 0 0 0 0 0 0 0 0 0

7/EGL Volume Up • • (1.6) (77) 0 0 0 0 0 0 0 3 3

7/EGL Volume Down • • (1.5) (100) 0 0 0 0 0 0 0 0 0

7/EGL Shuffle • • (1.8) (100) 0 0 0 0 0 0 0 0 0

8/EGL Play/Pause • • (1.3) (100) 0 1 0 0 1 0 0 0 2

8/EGL Next Track (2.2) (95) 22 129 39 39 70 36 24 30 367

8/EGL Previous Track • • (1.2) (100) 1 6 5 1 7 2 1 1 23

8/EGL Next Playlist • • • (7.4) (100) 0 0 0 0 0 0 0 0 0

8/EGL Previous Playlist • • • (6.9) (100) 0 0 0 0 0 0 0 0 0

8/EGL Volume Up • • • (7.1) (100) 1 3 1 0 1 0 1 1 7

8/EGL Volume Down • • • (4.9) (100) 10 42 4 9 8 4 15 13 95

8/EGL Shuffle • • (6.5) (100) 0 0 0 0 0 0 0 0 0

9/EGL Play/Pause • • (1.9) (100) 0 2 0 0 0 0 0 0 2

9/EGL Next Track • • • (1.8) (98) 6 236 45 32 38 28 73 18 470

9/EGL Previous Track • • • (1.8) (75) 54 506 93 95 131 86 78 59 1048

9/EGL Next Playlist • • (1.9) (91) 156 1256 230 253 713 318 192 176 3138

9/EGL Previous Playlist • • (1.9) (90) 3 473 140 170 213 142 108 77 1323

9/EGL Volume Up • • • (2.2) (82) 32 636 125 260 118 102 188 196 1625

9/EGL Volume Down • • • (2.2) (98) 0 1 1 0 0 0 0 0 2

9/EGL Shuffle • • (2.0) (100) 70 441 183 141 297 154 84 189 1489

10/noEGL Play/Pause • • • (4.1) (79) 0 89 9 9 53 24 4 7 195

10/noEGL Next Track • • (3.9) (100) 0 0 0 0 0 0 0 0 0

10/noEGL Previous Track • • (3.8) (100) 0 0 0 0 0 0 0 0 0

10/noEGL Next Playlist • • (4.7) (100) 0 0 0 0 0 0 0 0 0

10/noEGL Previous Playlist • • (4.4) (100) 0 0 0 0 0 0 0 0 0

10/noEGL Volume Up • • • (4.8) (80) 0 16 1 3 21 3 12 7 63

10/noEGL Volume Down • • (4.4) (84) 0 0 0 0 0 0 0 0 0

10/noEGL Shuffle • (4.5) (95) 0 0 0 0 0 0 0 0 0
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Strategies # EGL occurrences

P#Cnd Gesture Ic D PP Im R J Len (s) Goodness (%) TestEGL EGL1 EGL2 EGL3 EGL6/8 EGL4 EGL7 EGL5 Total

12/noEGL Play/Pause • (1.6) (67) 0 3 3 3 7 3 3 3 25

12/noEGL Next Track • • (1.1) (50) 6 270 32 51 129 36 29 34 581

12/noEGL Previous Track • • (1.1) (52) 28 421 109 110 62 42 68 40 852

12/noEGL Next Playlist • (1.5) (63) 0 113 36 80 120 21 68 91 529

12/noEGL Previous Playlist • (1.4) (74) 0 51 6 8 46 4 25 16 156

12/noEGL Volume Up • • • (2.3) (66) 22 1352 495 576 703 609 321 391 4447

12/noEGL Volume Down • • • (2.0) (49) 19 2768 613 714 1443 817 457 476 7288

12/noEGL Shuffle • • (3.0) (100) 0 0 0 0 0 0 0 0 0

13/noEGL Play/Pause • • (1.9) (69) 7 15 4 4 14 4 3 4 48

13/noEGL Next Track • • (1.6) (100) 32 1158 184 201 706 271 154 166 2840

13/noEGL Previous Track • • (1.4) (71) 3 1800 592 1569 545 387 610 743 6246

13/noEGL Next Playlist • • (1.6) (85) 20 98 47 224 70 44 48 33 564

13/noEGL Previous Playlist • • (1.5) (100) 0 1 1 0 1 1 0 0 4

13/noEGL Volume Up • • (1.7) (77) 11 44 15 54 18 5 7 17 160

13/noEGL Volume Down • • (1.8) (100) 6 11 1 3 3 0 5 4 27

13/noEGL Shuffle • • (3.3) (100) 1 1 1 1 1 1 0 0 5

14/noEGL Play/Pause • • (3.3) (100) 0 2 0 1 0 1 1 1 6

14/noEGL Next Track • • (3.2) (43) 0 1750 392 531 432 332 625 563 4625

14/noEGL Previous Track • • (3.1) (66) 0 9 1 3 0 1 1 1 16

14/noEGL Next Playlist • • • (2.8) (95) 1 0 0 0 0 0 0 0 0

14/noEGL Previous Playlist • • • (4.2) (61) 0 400 176 735 195 258 217 298 2279

14/noEGL Volume Up • • (3.5) (100) 0 0 0 0 0 0 0 0 0

14/noEGL Volume Down • • (3.4) (29) 0 5383 1811 3807 2101 1966 2151 2551 19770

14/noEGL Shuffle • • (2.7) (100) 0 0 0 0 0 0 0 0 0

15/noEGL Play/Pause • • • (2.6) (95) 0 2 1 4 0 1 0 0 8

15/noEGL Next Track • (1.8) (82) 25 121 48 156 43 27 34 19 448

15/noEGL Previous Track • • (1.1) (100) 0 15 7 5 14 2 8 4 55

15/noEGL Next Playlist • • (1.5) (95) 18 188 105 232 49 47 58 52 731

15/noEGL Previous Playlist • • (2.0) (100) 0 0 0 0 0 0 0 0 0

15/noEGL Volume Up • • (1.4) (100) 0 0 0 0 0 0 0 0 0

15/noEGL Volume Down • • (1.4) (100) 31 609 79 76 624 116 50 117 1671

15/noEGL Shuffle • • (1.8) (100) 1 0 0 0 0 1 0 0 1
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Strategies # EGL occurrences

P#Cnd Gesture Ic D PP Im R J Len (s) Goodness (%) TestEGL EGL1 EGL2 EGL3 EGL6/8 EGL4 EGL7 EGL5 Total

16/noEGL Play/Pause • • (2.0) (68) 32 57 14 65 15 4 11 53 219

16/noEGL Next Track • (1.4) (69) 69 288 113 985 73 49 64 217 1789

16/noEGL Previous Track • (1.1) (74) 3 77 21 70 20 5 19 43 255

16/noEGL Next Playlist • • (1.6) (84) 1 0 0 0 0 0 2 0 2

16/noEGL Previous Playlist • • (1.2) (74) 0 0 0 0 0 0 0 0 0

16/noEGL Volume Up • (1.2) (86) 3 27 9 66 9 3 5 35 154

16/noEGL Volume Down • (1.6) (64) 32 277 89 398 117 56 55 141 1133

16/noEGL Shuffle • • • (3.6) (98) 7 27 12 35 7 2 3 63 149

17/EGL Play/Pause • • (5.1) (100) 0 0 0 0 0 0 0 0 0

17/EGL Next Track (3.9) (100) 0 0 0 0 0 0 0 0 0

17/EGL Previous Track • • (3.9) (100) 0 2 0 1 0 0 0 0 3

17/EGL Next Playlist • • (2.5) (76) 0 0 0 0 4 0 0 0 4

17/EGL Previous Playlist • • (1.8) (100) 0 1 0 0 3 0 0 0 4

17/EGL Volume Up • • (2.8) (95) 0 0 0 0 0 0 0 0 0

17/EGL Volume Down • • (1.8) (100) 6 44 9 3 27 13 4 7 107

17/EGL Shuffle • (2.7) (64) 1 122 36 22 61 47 27 22 337

18/EGL3 Play/Pause • (2.4) (100) 47 217 57 136 111 98 104 46 769

18/EGL3 Next Track • (3.3) (100) 0 0 0 0 0 0 0 0 0

18/EGL3 Previous Track • • (2.8) (95) 4 5 2 2 4 8 5 2 28

18/EGL3 Next Playlist • (3.0) (100) 54 328 48 38 223 69 52 55 813

18/EGL3 Previous Playlist • (3.3) (65) 1366 24 14 2 18 10 5 5 78

18/EGL3 Volume Up • (2.8) (100) 0 0 0 0 0 0 0 0 0

18/EGL3 Volume Down • • (2.3) (100) 0 0 0 0 0 0 0 0 0

18/EGL3 Shuffle • • (3.1) (95) 66 336 71 74 60 45 49 44 679

19/EGL Play/Pause • • • • (3.2) (66) 0 0 0 0 0 0 0 0 0

19/EGL Next Track • • • • • (3.9) (33) 0 0 0 0 0 0 0 0 0

19/EGL Previous Track • • • • (4.5) (100) 0 0 0 0 0 0 0 0 0

19/EGL Next Playlist • • • • • (4.0) (40) 0 0 0 0 0 0 0 0 0

19/EGL Previous Playlist • • • • (3.1) (40) 0 0 0 0 0 0 0 0 0

19/EGL Volume Up • • • (4.0) (100) 0 0 0 0 0 0 0 0 0

19/EGL Volume Down • • • (4.2) (100) 0 0 0 0 0 0 0 0 0

19/EGL Shuffle • • • • (4.8) (69) 0 25 7 10 5 8 9 8 72
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Strategies # EGL occurrences

P#Cnd Gesture Ic D PP Im R J Len (s) Goodness (%) TestEGL EGL1 EGL2 EGL3 EGL6/8 EGL4 EGL7 EGL5 Total

20/noEGL Play/Pause • • (1.7) (61) 5 1571 821 1203 729 641 375 665 6005

20/noEGL Next Track • • (1.4) (100) 17 118 139 7 17 42 7 36 366

20/noEGL Previous Track • • (1.2) (100) 1 36 23 0 63 23 4 8 157

20/noEGL Next Playlist • • (2.4) (100) 0 0 0 0 0 0 0 0 0

20/noEGL Previous Playlist • • (2.2) (100) 0 3 1 4 2 9 2 2 23

20/noEGL Volume Up • (1.8) (62) 21 473 192 991 153 127 123 194 2253

20/noEGL Volume Down • (1.9) (58) 80 1254 428 850 478 352 254 311 3927

20/noEGL Shuffle • • • (2.8) (62) 45 831 251 1764 314 353 349 531 4393

21/EGL Play/Pause • (6.1) (53) 23 7 18 15 14 27 12 116

21/EGL Next Track • (5.1) (84) 1869 557 1042 779 652 721 693 6313

21/EGL Previous Track • (2.4) (97) 18 3 5 15 9 4 4 58

21/EGL Next Playlist • • (8.0) (100) 0 0 0 0 0 0 0 0

21/EGL Previous Playlist • • (3.0) (81) 0 0 0 0 0 0 0 0

21/EGL Volume Up • • • (3.6) (87) 0 0 0 0 0 0 0 0

21/EGL Volume Down • • • (3.4) (75) 2 0 0 1 1 1 0 5

21/EGL Shuffle • (5.2) (100) 0 0 0 0 0 0 0 0

22/EGL4 Play/Pause • • (1.6) (100) 1 3 1 3 1 4 1 0 13

22/EGL4 Next Track • • • (1.7) (100) 0 1 0 1 0 0 0 0 2

22/EGL4 Previous Track • • (1.6) (100) 3 2 0 0 4 0 1 0 7

22/EGL4 Next Playlist • • • • (2.6) (100) 0 61 11 15 10 5 13 27 142

22/EGL4 Previous Playlist • • • (2.8) (100) 0 0 0 0 0 0 0 0 0

22/EGL4 Volume Up • • (3.0) (100) 0 0 0 0 1 0 0 0 1

22/EGL4 Volume Down • • (2.9) (76) 0 72 18 422 14 6 6 18 556

22/EGL4 Shuffle • • (2.0) (100) 0 0 0 2 0 0 0 0 2

23/EGL2 Play/Pause • • (1.2) (97) 0 0 0 0 0 0 0 0 0

23/EGL2 Next Track • • (1.6) (95) 0 2 0 0 1 1 0 0 4

23/EGL2 Previous Track • • (1.5) (100) 0 0 0 0 0 0 2 0 2

23/EGL2 Next Playlist • • (2.0) (100) 0 2 1 0 0 1 1 1 6

23/EGL2 Previous Playlist • • (2.1) (100) 0 0 0 0 0 0 0 0 0

23/EGL2 Volume Up • (1.2) (93) 0 0 0 0 0 0 0 0 0

23/EGL2 Volume Down • (1.2) (90) 0 2 2 0 1 0 0 0 5

23/EGL2 Shuffle • (1.7) (100) 0 0 0 0 0 0 0 0 0
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Strategies # EGL occurrences

P#Cnd Gesture Ic D PP Im R J Len (s) Goodness (%) TestEGL EGL1 EGL2 EGL3 EGL6/8 EGL4 EGL7 EGL5 Total

24/EGL5 Play/Pause • (1.5) (95) 1 103 17 8 14 10 29 35 216

24/EGL5 Next Track • (1.2) (84) 17 240 28 10 232 17 17 39 583

24/EGL5 Previous Track • (1.2) (72) 5 75 7 4 4 4 18 7 119

24/EGL5 Next Playlist • • • (1.6) (83) 4 131 4 5 8 8 10 3 169

24/EGL5 Previous Playlist • • • (1.5) (76) 3 73 9 8 3 5 13 7 118

24/EGL5 Volume Up • • • (1.6) (81) 12 219 67 41 42 36 43 29 477

24/EGL5 Volume Down • • • (1.4) (69) 12 76 14 19 5 4 18 16 152

24/EGL5 Shuffle • • (2.0) (51) 1 5 1 2 3 1 5 1 18
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6.5 Discussion

Overall, I consider MAGIC to be a success. It received positive comments from the par-

ticipants in the study, and users were able to complete the experimental task with high

rates of success. MAGIC’s support of retrospection was highly popular, and although many

participants had some difficulty with the graphs, the visualizations were usable for compre-

hension.

In Chapter 5.2, I introduced a number of desiderata for a motion-gesture design tool. I

now revisit these items and discuss how well MAGIC fulfills them.

allow non-expert use. I consider MAGIC to be a success on this point. As can be seen

in Table 6, the participants were not expert in pattern recognition; however, all were

able to successfully use MAGIC to design gestures, and those in condition EGL were

often successful in creating gestures that did not conflict with the Everyday Gesture

Library.

allow expert use. Some facilities exist in MAGIC for a user more expert in pattern recog-

nition to adjust system behavior: users can pick between examples to use, and can

adjust the recognition threshold for any gesture. The three participants who rated

themselves as expert or near-expert in pattern recognition also appeared to have an

easier time understanding the intra/extra graphs; this makes sense, as those graphs

present familiar information such as inter- and intra-class variance.

encourage iteration. Participants used MAGIC in an iterative manner. Most partici-

pants heavily iterated on their gestures during the creation phase, especially when

trying to gain a high goodness score. Participants also iterated on single gesture

classes when working with the EGL, trying to change a gesture so that it had fewer

occurrences. Most participants did not, however, change many or all of their gestures

at once. This behavior may be due to the time and effort involved in gesture creation

and troubleshooting; given a longer period of time, I would expect users to go through

many different gesture sets.
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support retrospection. MAGIC’s support for retrospection was heavily used, and widely

regarded by participants as essential. Some users requested more support for com-

parative retrospection; they wanted to watch two more more videos simultaneously,

or view multiple recorded sensor graphs overlaid. Retrospection was also used to dis-

cover how unintentional movements incorporated into a gesture example influenced

the example’s goodness and EGL performance.

support further testing. Both the EGL and recorded video support post-hoc testing.

The EGL allows a designer to test new gestures on a wide variety of subjects, in

dozens of different circumstances. The video that is recorded alongside each gesture

example is not only useful for retrospection during design, but could also be used for

training others to use the gestures, or to test for others’ reactions in terms of social

acceptability.

6.6 Conclusion

In this chapter, I described the evaluation of MAGIC. I found that MAGIC was usable by my

participants, that they enjoyed it, and that they were able to accomplish the experimental

task. The EGL support in MAGIC helped users to create gestures with lower false positive

rates than could those without the EGL.

In the next chapter, I will discuss the various limitations in MAGIC revealed by the

experiment, and what future research avenues could be taken.
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CHAPTER VII

MAGIC: IMPLICATIONS FOR DESIGN

The evaluation of MAGIC imparted many lessons, both specific to the implementation of

MAGIC, and generalizable to other sensor-based system design tools. In this chapter, I

discuss the lessons learned from the design, implementation and evaluation of MAGIC,

changes and enhancements I intend to make in future work, and how the lessons from

MAGIC can be generalized to other software.

7.1 Future Work

There are a number of features that would enhance the usability of MAGIC, but that I did

not have time to implement.

The ability for more complex annotation was a frequently requested feature. Many par-

ticipants made use of the gesture name to include notes or mnemonics about the gesture,

such as “Pause (||)” or “next playlist (flip forward 90)”. Multiple users requested further

capabilities, such as making notes for each gesture example or testing sample, or annotat-

ing the testing tab accelerometer graph with the correct gesture for comparison with the

system’s results.

Although not addressed directly by participants, I realized during observation of their

actions that the three-tab design should be reconsidered. Several times I watched a par-

ticipant rapidly switch back and forth between the creation tab and the testing or EGL

tab, making a small adjustment to a gesture and then observing its results. It also may be

the case that the three-tab design locked participants into a particular workflow, encourag-

ing them to first create all of the gestures and examples, then test, and then use the EGL.

While SUEDE featured a similar three-part interface, modeled around a design/test/analyze

paradigm [41], MAGIC is primarily a design tool; as such, users may benefit from a uni-

fied interface. Caution in design is called for, however; while Quill featured a single-stage

interface, Long contemplated that “it may be useful to adopt a more workflow-oriented
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approach, such as Klemmer and colleagues used in SUEDE” [54].

As many of the participants remarked, gesture creation is a surprisingly challenging

task, especially for non-experts. Several expressed a desire for more guidelines in creating

gestures, hoping for guidance as to what sort of motions would make gestures with high

goodness and low rates of EGL occurrences. As far as I am aware, no such guidelines exist.

However, given the data I now possess, it may be possible to create an automated gesture

advisor, not unlike Long’s Quill system for pen gestures [54].

Lacking specific guidelines on motions, I can provide automated behavior in other areas.

For example, very few participants manually adjusted the threshold—preferring the default

automatic behavior—and most of those who did quickly reverted to the “Automatically

Calculate Threshold” button. The threshold calculation routine simply optimized for the

highest overall goodness score for a given class, but there is no reason that it could not

further take into account the EGL and attempt to minimize the number of matches as well.

The tutorial (Appendix E) included troubleshooting tips for gesture creation (“My ges-

ture has low goodness”, “My gesture example is misrecognized”), testing (“The wrong things

are recognized in my testing sample”) and the EGL (“There are too many EGL hits”). At

the least, this information should be included as part of the program. Many of the condi-

tions under which troubleshooting is needed (low goodness, misrecognized example, EGL

hits) can be automatically detected, and relevant help information could be provided.

Many participants requested further abilities to compare gesture examples to each other.

Such a facility could be generalized to compare gesture examples against testing samples

and the Everyday Gesture Library as well. Gestures are represented with acceleration

traces and video. Using dynamic time warping, the best match between each sample of

two acceleration traces may be determined. This information could then be used to warp

the graphical representation of the gestures to show how the computer interprets them; it

could also be used to play two videos simultaneously, aligning them according to the best

time warp. Implementing these visualizations could help users understand how two gestures

match (or fail to match) each other, and perhaps help them to understand how to modify

their movements to achieve a better result.
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The Testing tab was confusing to some participants, and essential to others. One im-

provement would be to take inspiration from Exemplar [30] and make the testing graph

live, such that it always shows recognition results. This change might help users better

understand the testing portion of MAGIC and create more robust gestures.

7.2 Shortcomings

There are a number of shortcomings in MAGIC that I plan to address in a future version.

These can be roughly divided into the categories of performance, visual, and mechanical. I

also discuss the shortcomings of the experiment.

7.2.1 Performance Shortcomings

In the manner of all alpha software, MAGIC was occasionally crash-prone. Early on I took

the precaution of having it automatically save all of the gesture and testing data created

by the participants any time a change was made, which allowed me to quickly recover from

crashes, restore the state of the program, and allow the participant to proceed with the

experiment.

More seriously, MAGIC suffered from severe slowdowns when many gesture examples

were created. Despite caching, combinatorial calculations which were necessary to update

the goodness value for a gesture example when added: each new example requires an O(n2)

DTW distance check against every other example. This check often slowed the system to a

crawl for tens of seconds. Such slowdowns were the source of the majority of complaints I re-

ceived about the system in the post-task interview and on the questionnaire; user dissatisfac-

tion was reflected in the low (4.7) QUIS score for “System speed (too slow · · · fast enough)”

recorded in Section 6.4.2.1. Unlike the EGL search, the inter-example distance calculations

were not parallelized; clearly they should be.

The EGL search is also a very processor-intensive task. Most EGL searches took between

5 and 25 seconds to complete, depending upon the length of the query gestures. The EGL

search was a user-directed task, where the user had to explicitly click a “Check” button

to initiate it. I chose this mechanism due to an assumption that users would create a

small number of gesture examples for one gesture and then proceed to check the EGL.
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The evaluation proved this assumption wrong; in fact, most users concentrate the creative

gesture creation task at the beginning, and only later check the gestures against the EGL.

This behavior suggests that automatically searching the EGL in the background, as gestures

are created, is a better model that will lead to a more responsive interface.

7.2.2 Visual Shortcomings

The difficulty experienced by some participants in understanding the intra- and inter- graphs

(Figure 31) points to the need for more research into the best way to visualize the infor-

mation presented therein. Many participants gave up entirely on those graphs, instead

gleaning the desired information from the match box or from the goodness scores; however,

the information is not entirely redundant, and I believe there is value in communicating it.

The match box (Figure 28D) itself was found to be overwhelming by some. I did not

observe any user scrolling in the box to see higher-distance matches; in fact, more than

one user commented that they simply looked at the first few lines in the match box to see

whether the first few examples were correctly classified. Despite some difficulty, however, a

majority of participants felt the match box to be essential to the task.

Maintaining consistency in gesture coloring was a concern of some participants. In

particular, they were reluctant to delete gesture classes (when replacing a non-working

motion with a new one), preferring to delete each example within the class in order to keep

the same color for the command.

7.2.3 Mechanical Shortcomings

I consider mechanical shortcomings to be those which involve the operation of MAGIC itself,

and influence the completion of the task. Several of these considerations center around the

gesture recognition itself.

One issue that was frustrating to participants was encountering too many occurrences

in the Everyday Gesture Library. Frequently matches were non-intuitive. For example, the

candidate gesture might be a swift movement of the hand across the body, traversing 2–3

feet of space; this motion might match a very subtle movement in the EGL, such as the

movement of the hand from the keyboard to the trackpad on a laptop. Clearly, these two
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motions should be considered to be different.

One solution to this problem is to improve the recognition. Although dynamic time

warping is no longer the method of choice for gesture recognition—often being replaced by

techniques such as hidden Markov models [101]—it is still being successfully used [30, 42,

51, 98, 108], and techniques from current implementations could be incorporated to improve

MAGIC’s performance.

Another method to improve performance is to add additional sensors. The problem

with accelerometers, as used in the evaluation, is that low-amplitude movements look very

similar to each other—at least from the perspective of recognition algorithms. As discussed

in Chapter 5.5.1, dynamic time warping tries to find the best way to match two signals, and

so a gentle movement to the left may match a gentle movement to the right more closely

than a violent leftward movement.

Non-acceleration-based sensors, offer the possibility of better recognition performance.

Gyroscopes are now appearing in many devices and, in conjunction with accelerometers,

can provide more precise sensing capabilities. For example, the Dutch company Xsens1

sells a complete wireless motion-capture system based on accelerometers and gyroscopes.

Microphones also present interesting possibilities for sensing [101].

7.2.4 Study Shortcomings

While I feel that the experiment accomplished my goals to assess MAGIC’s usability, un-

derstand users’ design strategies, and determine the efficacy of the EGL, my evaluation was

lacking in some areas due to its preliminary nature. A primary area to be improved upon

is the amount of time given to the software: 3.5 hours was a long time for participants to

spend at once, but not as much time as I wanted for them to achieve expert status with

the system. Further studies should be divided over multiple days to understand how users

interact with the software longer term, especially as they become more expert in its use.

Another issue with my study is the lack of variability in gesturing situations. All of my

participants were seated during gesture creation and testing, while the EGL was recorded

1http://xsens.com
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in many different mobility situations. I plan to make a mobile variant of the data collection

system to allow designers to move about as they record gestures.

7.3 Implications for Design

Many of the lessons learned during the evaluation of MAGIC can be generalized to other

interactive, sensor-based interface design tools. In this section, I discuss some of those

lessons and how they may be applied.

In the course of the evaluation, participants revealed many strategies for designing

memorable gestures. As discussed in other gesture research, gestures that are iconic are

highly memorable [62]; therefore, it is not surprising that 14 of 19 participants used an iconic

motion for at least one gesture. Related to iconicity is directionality, which was another

popular strategy; similarly, many participants paired related gestures (for example, Volume

Up involving a raising motion and Volume Down a lowering motion). Although no strategy

was shown to lower the number of occurrences in the EGL, no strategy raised occurrences

either; therefore, it may be feasible to use the strategies employed by participants as general

suggestions for designers in the future.

One of the most important features to study participants was retrospection, which

helped them to understand and compare their previous input. The direct manipulation

principles of having a continuous representation of the object of interest, and of näıve realism

[32] are relevant here. In a pen-based system, the strokes on the screen are the object of

interest and are continually visible to the user; likewise, they “feel” like actual ink to the

user—the strokes look and behave (at least at a basic level) like actual strokes from an

actual pen. In such a system, there is no need for explicit retrospection functionality: the

output rendering on the screen looks exactly like the input.

In a non-visual input system, however, näıve realism is lost, and with it continuous

representation. Although time-series signals such as acceleration, sound, or gyroscopic

angle can be represented in a graphical form, such an output form does not resemble the

input, creating a gulf of evaluation. As such, either the user must train herself to understand

“ ” as equivalent to her input, or the system must bridge this gulf and provide
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alternate output to assist in her understanding. In MAGIC, that alternate output attempted

to restore the sense of näıve realism by providing video; in this way, the output again

resembled the input. Because video is represented over time, it cannot provide a truly

continuous representation of the motion made by the user (however, see Romero et al. [82]

for visualizations of the movement of people over time); the users of MAGIC were able to

overcome this lack, however, and effectively use the video for retrospection.

Another lesson from MAGIC relates to representing complex information. As discussed

in Section 5.4.3, MAGIC re-presents the standard confusion matrix in multiple ways: the

“recognized as” and “goodness” columns for each gesture example (Figure 28C); the match

box (Figure 28D); and the intra-class and inter-class variability graphs (Figures 31(a)–(c)).

Some participants used all of these sources of information, while most used only a subset.

By providing a layering of simple-to-complex data, MAGIC allowed users to work with the

information that they were most comfortable interpreting. While a single experiment is not

enough to show this, I believe that such a gradient of information complexity may encourage

a smooth novice-to-expert transition.

In a complex task such as the one that the participants in the evaluation were asked to do,

there is a lot of information to be absorbed and simultaneously considered. More than one

participant described the task as “overwhelming.” This difficulty can help explain why so

many participants found the “Automatically Calculate Threshold” button useful: it allowed

them to worry about one less thing. Several participants mentioned that, for all of the

information MAGIC gave them, it only showed them what was wrong with their gestures;

it did not help them understand what to change to make better ones. These two findings

suggest that automation can be a useful part of sensor-based design interfaces. Although

[65] cautions that automatic interfaces can be frustrating to the user when unpredictable,

giving users an explicit “automatically perform task” button can allow the user to maintain

the feeling of control.

Offering automated advice may be useful in such situations as well. Although the no-

torious Microsoft Office Assistant “Clippy” has made many suspicious of automated help
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tools, following the same user-driven approach as I suggested above for automatic calcula-

tions could remove the distracting factors associated with such tools. A simple “help me

with this gesture” button could trigger a help system giving suggestions for the most likely

causes of problems.
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CHAPTER VIII

CONCLUSIONS

As I stated in Chapter 1, my thesis statement is:

1. Wrist-mounted sensors can be used to create gesture-based interface where the inter-

actions occur in under four seconds.

2. Providing interaction designers with databases including peoples’ everyday motions

allows them to create gestures with fewer false positives than can be created without

the databases.

I showed part 1 in Chapters 4, 5 and 6. Chapter 4 introduced the idea of using the

finger to interact with a round touchscreen wristwatch. In that chapter, I showed how to

determine the optimal button layout for a given error rate, and demonstrated that users

can activate functions in under four seconds. In Chapters 5 and 6, I introduced a Multiple

Action Gesture Interface Creation tool, MAGIC, and showed that it could help designers

create motion gestures that take a short amount of time to activate. Despite not being

given instructions to keep the gestures short, the majority of users in my study of MAGIC

created gestures well under four seconds long.

Chapter 6 also showed part 2 of my thesis. The Everyday Gesture Library functionality

of MAGIC was successful in assisting designers in creating gestures with low rates of false

positives. Several users were able to tune their gestures to have no false positives on the

provided EGL, and very low rates on the other collected EGLs.

In addition to the two parts of my thesis statement, I made a number of other contribu-

tions centering around the concept of microinteractions and suggesting approaches of how

they may be achieved. First, I defined microinteractions as interactions with a device that

take less than four seconds to initiate and complete. The microinteraction concept is a useful

lens through which to view mobile interaction, and can help steer mobile HCI research in a
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direction that may yield devices more usable in difficult situations such as being on-the-go.

Through the Quickdraw study, I demonstrated that that placing devices on the wrist allows

them to be quickly accessed, even while walking. These results provided justification for

investigating the wrist as a platform for interaction.

I explored microinteractions on the wrist using a touchscreen watch. I investigated

ways to interact with a round touchscreen watch with a finger, rather than a stylus, and

introduced the idea of rim-based interaction for the watch. My exploratory study showed

how to calculate error rates and button sizes for three different types of movement, and I

illustrated interaction concepts.

Finally, I investigated motion gesture as a method for performing microinteractions,

and introduced MAGIC—a tool for designing low false-positive gestures. I presented an

evaluation of the software, and discussed future directions. MAGIC was shown to be usable

for creating gestures that are internally consistent and externally differentiable, and that

have a low rate of false positives with respect to everyday life. I also identified strategies

utilized by gesture designers to make their gestures more memorable and less likely to be

accidentally activated by motions made by people during normal activities.

This dissertation can act as a starting point for researchers interested in mobile technol-

ogy used in non-traditional situations, and provides new ways to think about interaction.

The specific interaction techniques presented herein can be extended in a variety of ways

to create new interfaces for mobile devices, and the idea of microinteractions provides a

framework to use for thinking about devices in mobile situations.
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[39] Këpuska, V. and Klein, T., “A novel wake-up-word speech recognition system,
wake-up-word recognition task, technology and evaluation,” Nonlinear Analysis: The-
ory, Methods & Applications, vol. In press, 2009.

124



[40] Kim, J., He, J., Lyons, K., and Starner, T., “The gesture watch: A wireless
contact-free gesture based wrist interface,” International Symposium on Wearable
Computers (ISWC), Jan 2007.

[41] Klemmer, S., Sinha, A., Chen, J., Landay, J., Aboobaker, N., and Wang,
A., “Suede: a wizard of oz prototyping tool for speech user interfaces,” UIST ’00:
Proceedings of the 13th annual ACM symposium on User interface software and tech-
nology, Nov 2000.

[42] Ko, M. H., West, G., Venkatesh, S., and Kumar, M., “Using dynamic time
warping for online temporal fusion in multisensor systems,” Information Fusion, vol. 9,
no. 3, pp. 370–388, 2008.

[43] Kratz, S. and Ballagas, R., “Unravelling seams: Improving mobile gesture recog-
nition with visual feedback techniques,” CHI ’09: Proceeding of the twenty-seventh
annual SIGCHI conference on Human factors in computing systems, pp. 1–4, Jan
2009.

[44] Kristoffersen, S. and Ljungberg, F., ““Making place” to make IT work: em-
pirical explorations of HCI for mobile CSCW,” in GROUP ’99: Proceedings of the
international ACM SIGGROUP conference on Supporting group work, (New York,
NY, USA), pp. 276–285, ACM, 1999.

[45] Krum, D., Omoteso, O., Ribarsky, W., Starner, T., and Hodges, L., “Speech
and gesture multimodal control of a whole earth 3d visualization environment,” VIS-
SYM ’02: Proceedings of the symposium on Data Visualisation 2002, May 2002.

[46] Kurtenbach, G., The Design and Evaluation of Marking Menus. PhD thesis, Uni-
versity of Toronto, 1993.

[47] LaViola, J., Feliz, D., Keefe, D., and Zeleznik, R., “Hands-free multi-scale
navigation in virtual environments,” I3D ’01: Proceedings of the 2001 symposium on
Interactive 3D graphics, Mar 2001.

[48] Lee, C., Ghyme, S., Park, C., and Wohn, K., “The control of avatar motion using
hand gesture,” VRST ’98: Proceedings of the ACM symposium on Virtual reality
software and technology, Nov 1998.

[49] Lenman, S., Bretzner, L., and Thuresson, B., “Using marking menus to develop
command sets for computer vision based hand gesture interfaces,” NordiCHI ’02:
Proceedings of the second Nordic conference on Human-computer interaction, Oct
2002.
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APPENDIX A

MAGIC DEMOGRAPHIC SURVEY

The next page is the demographic survey that participants were requested to fill out before

the MAGIC evaluation (described in Chapter 6) began.
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About You
This questionnaire asks you about yourself. All information will be kept confidential.

Sex:
 
 
 
 Male / Female

Age:
 
 
 
 _______

Do you wear a watch?
 
 Yes / No / Sometimes

If so, on which wrist?
 
 Right / Left

How much experience do you have with the Nintendo Wii game system?

never played I play it every day

1 2 3 4 5 6 7 8 9

How  much experience do you  have with  motion-sensing  mobile phones such  as the Apple 
iPhone or the T-Mobile G1?

Never used Have tried, but 
don’t own

Owned

< 6 months

Owned

6 mos.–1 year

Owned

1 year–1.5 years

Owned

 > 1.5 years

If you own such a mobile phone, which one? ___________________________________

How much experience do  you have with user-centered design?

completely inexperienced very experienced

1 2 3 4 5 6 7 8 9

How experienced are you in designing user interfaces?

completely inexperienced very experienced

1 2 3 4 5 6 7 8 9

Participant #: Date: _____ / _____ / 2009

MAGIC Study Demographic Questionnaire Page 1/1



APPENDIX B

MAGIC POST-STUDY QUESTIONNAIRE

The next 9 pages consist of the questionnaire that participants were requested to complete

after the study (described in Chapter 6) ended.
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Experiment Questionnaire
We would like you  to tell  us about your  experiences with  the MAGIC software.  Please be honest
—we really want to know what you think!
Please select the numbers which most appropriately  reflect  your  impressions about the software 
and the experimental task. Note: NA = Not Applicable.
If you have strong feelings about  any  part  of the software or  about  the experiment, please write 
them  down  in the space provided at  the bottom  of each  page. If you  have suggestions on  how  to 
improve the MAGIC software,  please write those down  as well.  Your ratings and anything  you 
write will be kept confidential.

Please enter any general comments about the experiment below:

Participant #: Date: _____ / _____ / 2009

MAGIC Study Questionnaire Page 1/9



Overall Reactions to the Software

terrible wonderful

1 2 3 4 5 6 7 8 9 NA

frustrating satisfying

1 2 3 4 5 6 7 8 9 NA

dull stimulating

1 2 3 4 5 6 7 8 9 NA

difficult easy

1 2 3 4 5 6 7 8 9 NA

inadequate power adequate power

1 2 3 4 5 6 7 8 9 NA

rigid flexible

1 2 3 4 5 6 7 8 9 NA

Please write any comments about the software below:

Participant #: Date: _____ / _____ / 2009

MAGIC Study Questionnaire Page 2/9



Information Presentation

Screen layouts were helpful:

never always

1 2 3 4 5 6 7 8 9 NA

Amount of information that can be displayed on the screen:

inadequate adequate

1 2 3 4 5 6 7 8 9 NA

Arrangement of information on the screen:

illogical logical

1 2 3 4 5 6 7 8 9 NA

Sequence of screens (Gesture Creation/Gesture Testing/Everyday Gesture Library):

confusing clear

1 2 3 4 5 6 7 8 9 NA

Progression of work-related tasks:

confusing clearly marked

1 2 3 4 5 6 7 8 9 NA

Please write any comments about the presentation of information in the software below:

Participant #: Date: _____ / _____ / 2009

MAGIC Study Questionnaire Page 3/9



Terminology and System Information

Use of terminology throughout system:

inconsistent consistent

1 2 3 4 5 6 7 8 9 NA

Computer keeps you informed about what it is doing:

never always

1 2 3 4 5 6 7 8 9 NA

Performing an operation leads to a predictable result:

never always

1 2 3 4 5 6 7 8 9 NA

Information about quality of gestures:

confusing clear

1 2 3 4 5 6 7 8 9 NA

Please write any comments about the presentation of information in the software below:

Participant #: Date: _____ / _____ / 2009

MAGIC Study Questionnaire Page 4/9



Learning

Learning to operate the system:

difficult easy

1 2 3 4 5 6 7 8 9 NA

Time to learn to use the system:

slow fast

1 2 3 4 5 6 7 8 9 NA

Exploration of features by trial and error:

discouraging encouraging

1 2 3 4 5 6 7 8 9 NA

Tasks can be performed in a straight-forward manner:

never always

1 2 3 4 5 6 7 8 9 NA

Steps to complete a task follow a logical sequence:

never always

1 2 3 4 5 6 7 8 9 NA

Please write any comments about the learnability of the software below:

Participant #: Date: _____ / _____ / 2009

MAGIC Study Questionnaire Page 5/9



System Capabilities

System speed:

too slow fast enough

1 2 3 4 5 6 7 8 9 NA

Correcting your mistakes:

difficult easy

1 2 3 4 5 6 7 8 9 NA

Ease of operation depends on your level of experience:

never always

1 2 3 4 5 6 7 8 9 NA

Please write any comments about the capabilities of the software below:

Participant #: Date: _____ / _____ / 2009

MAGIC Study Questionnaire Page 6/9



Experiment

Match between designed gestures and intended purposes:

low high

1 2 3 4 5 6 7 8 9 NA

Ease for someone else to learn designed gestures:

low high

1 2 3 4 5 6 7 8 9 NA

I would like to own the uPod Touchless, to use with my designed gestures:

no way definitely

1 2 3 4 5 6 7 8 9 NA

Are there any  other  devices you’d like to control with  gestures? If so, please briefly  describe each 
device and what gestural control you would like for it to have:

Participant #: Date: _____ / _____ / 2009

MAGIC Study Questionnaire Page 7/9



Gesture Design page 1
We’re interested in  your  design  choices; for each  gesture,  please write a short description of why 
you  chose the particular  gesture for  the given  functionality. If you  had a  strong  impression  of 
what  the gesture should be,  but  ended up not  using that  idea,  please write down  the idea and 
why  it  didn’t  work  out.  You  can  go back and watch  your videos if you  need a  reminder  of what 
the gestures looked like.

play/pause:

next track:

previous track:

next playlist:

Participant #: Date: _____ / _____ / 2009

MAGIC Study Questionnaire Page 8/9



Gesture Design page 2
We’re interested in  your  design  choices; for each  gesture,  please write a short description of why 
you  chose the particular  gesture for  the given  functionality. If you  had a  strong  impression  of 
what  the gesture should be,  but  ended up not  using that  idea,  please write down  the idea and 
why  it  didn’t  work  out.  You  can  go back and watch  your videos if you  need a  reminder  of what 
the gestures looked like.

previous playlist:

volume up by 10%:

volume down by 10%:

shuffle:

Participant #: Date: _____ / _____ / 2009

MAGIC Study Questionnaire Page 9/9



APPENDIX C

MAGIC CONDITION A TASK SHEET

The next page is the handout given to participants in condition A describing the experi-

mental task to be completed for the study described in Chapter 6.
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The year is 2012. Pear Computer is working on their latest uPod product. In keeping 
with their well-known “less is more” strategy, the new “uPod Touchless” will be a wrist-
wearable music player that is controlled through gestures. Rather than having to fumble 
for buttons, the user will control her music with simple wrist motions.

There is just one problem: early  user testing has revealed that usersʼ everyday motions
—such as waving hello to someone or eating a sandwich—tend to trigger undesired 
uPod functions. This is particularly a problem with the new “always on” wireless earbuds 
the uPod is supposed to come with: when a customer waves hello to a friend, 
accidentally starting her music playing, she canʼt hear the friendʼs response!

Your job, as an employee of the newly-formed Gesture Engineering Group at Pear, is to 
create a new set of potential gestures for the uPod Touchless. The goal is to create 
gestures that are easy to learn and remember, but that arenʼt similar enough to usersʼ 
everyday lives to accidentally activate uPod functionality.

The gesture-activated uPod functions that management has decided to include are:
• play/pause
• next track
• previous track
• next playlist
• previous playlist
• volume up by 10%
• volume down by 10%
• shuffle

In order for a gesture to be good enough to include on the uPod, it must meet the 
following criteria:

1. The gesture must reliably activate the desired function.
2. Performing the gesture must not activate other functions.
3. The functionality  associated with a gesture must not be activated by a userʼs 

everyday movements.
4. The gesture should be easy to remember.
5. The gesture should be easy to perform.
6. The gesture should be socially acceptable.

Using MAGIC, youʼll create gestures for each of the above uPod functions, test them 
out, and try to determine if the gestures you create will occur in a userʼs everyday life. 
When youʼre finished, an Pear Gesture Test Engineer will evaluate your gesture set to 
see how well it met the above criteria.

CONFIDENTIAL—PEAR COMPUTER INC. INTERNAL DOCUMENT—DO NOT RELEASE



APPENDIX D

MAGIC CONDITION B TASK SHEET

The next page is the handout given to participants in condition B describing the experi-

mental task to be completed for the study described in Chapter 6.
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The year is 2012. Pear Computer is working on their latest uPod product. In keeping 
with their well-known “less is more” strategy, the new “uPod Touchless” will be a wrist-
wearable music player that is controlled through gestures. Rather than having to fumble 
for buttons, the user will control her music with simple wrist motions.

There is just one problem: early  user testing has revealed that usersʼ everyday motions
—such as waving hello to someone or eating a sandwich—tend to trigger undesired 
uPod functions. This is particularly a problem with the new “always on” wireless earbuds 
the uPod is supposed to come with: when a customer waves hello to a friend, 
accidentally starting her music playing, she canʼt hear the friendʼs response!

Your job, as an employee of the newly-formed Gesture Engineering Group at Pear, is to 
create a new set of potential gestures for the uPod Touchless. The goal is to create 
gestures that are easy to learn and remember, but that arenʼt similar enough to usersʼ 
everyday lives to accidentally activate uPod functionality.

The gesture-activated uPod functions that management has decided to include are:
• play/pause
• next track
• previous track
• next playlist
• previous playlist
• volume up by 10%
• volume down by 10%
• shuffle

In order for a gesture to be good enough to include on the uPod, it must meet the 
following criteria:

1. The gesture must reliably activate the desired function.
2. Performing the gesture must not activate other functions.
3. The functionality  associated with a gesture must not be activated by a userʼs 

everyday movements.
4. The gesture should be easy to remember.
5. The gesture should be easy to perform.
6. The gesture should be socially acceptable.

Using MAGIC, youʼll create gestures for each of the above uPod functions, test them 
out, and use the EGL to try to determine if the gestures you create will occur in a userʼs 
everyday life. When youʼre finished, an Pear Gesture Test Engineer will evaluate your 
gesture set to see how well it met the above criteria.

CONFIDENTIAL—PEAR COMPUTER INC. INTERNAL DOCUMENT—DO NOT RELEASE



APPENDIX E

MAGIC CONDITION B TUTORIAL

The next 26 pages consist of the tutorial provided to condition B and C participants; the

tutorial for condition A participants was identical, but with all references to the EGL

removed.
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MAGIC Tutorial

1

Using MAGIC

MAGIC—the Multiple Action Gesture 
Interface Creation tool—is a piece of 
software used to help designers create 
gestures.

When we talk about gestures, we’re talking 
about gestures made with your body, in 
three dimensions. This is different from 
gestures made on a touchscreen or other 
surface; the movements made with the 
Nintendo Wii controller are examples of 
the kinds of gestures we’re concerned with.

Gestures can be used for a lot of different 
things, from video games to controlling 
robotic prosthetics. Normally, one gesture 
(like a cutting motion with the Wii remote) 
will activate one particular function (like 
swinging a sword in a video game).

One reason that gesture-based interfaces 
are currently mostly used for games is that 
they can be difficult to design. MAGIC was 
created to help.

Phases of Gesture Design

MAGIC supports two main phases of 
gesture design: creation and testing.

In the creation phase, you, as the designer, 
come up with with gestures that might be 
good to use for the functions you want to 
control. You might decide that a cutting 
motion is just the thing for your sword-
fighting game. You next create some 
examples of that gesture, training the 
system to recognize the gesture.

In the testing phase, you test out your 
gestures. You make some motions that are 
like your gestures, and some that aren’t, to 
make sure that each gesture is recognized 
correctly, and that movements that aren’t 
intentional gestures aren’t recognized.

This tutorial will help you learn how to use 
MAGIC to design gestures.
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Eat Your Vegetables!

For the purposes of this tutorial, we’ll 
consider this Japanese vegetable vending 
machine.

We want to make it gesture activated, so 
you can wave your hand and automatically 
dispense a vegetable!

For example, you might have a gesture to 
get out a Pickle, or a Parsnip, or a Turnip!

We have to be sure to think about the user: 
will the gesture be easy to remember and 
perform? And will the gesture be unique 
enough to avoid accidentally dispensing 
vegetables when someone waves to a 
friend?

To prevent people from getting vegetables 
for free, we’re going to put the gesture-
sensing device into a handy wristwatch 
form-factor. This way we can only give 
vegetables to people who have accounts 
with the farmer.

The amazing new VegiWatchTM uses an 
accelerometer to sense gestures. You’ll 
learn about how it works on the next page.

Turnips

Turnips

3

Accelerometers
In this tutorial, and in the rest of the 
experiment, you’ll use an accelerometer for 
designing and testing your gestures.

An accelerometer is a device that senses 
acceleration. Acceleration simply means 
changes in speed.

The accelerometer that you’ll use during this 
experiment can sense acceleration in three 
directions; we’ll call them x, y and z.

In the picture at right, the box shows the 
accelerometer, in the way that it is mounted 
on your wrist. Each colored line shows a 
direction that the accelerometer can sense in.

At bottom right is a typical view that you’ll 
see in the MAGIC software. It shows a 
recorded gesture. Time is shown on the 
horizontal axis, and the magnitude of 
acceleration is shown on the vertical axis.

Each colored line in the plot corresponds to 
one of the directions sensed by the 
accelerometer. Plots like this can be difficult 
to interpret, but this is the same information 
that the computer has. It is not possible to 
take acceleration values and figure out the 
movements that lead to those values.

This is because two different movements can 
lead to very similar acceleration plots. 
Imagine quickly moving your arm from left 
to right. Now imagine rotating your wrist by 
90° and moving it quickly up. The plot 
produced will be the same with each! Time

Ac
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x
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Gesture Recognition

In MAGIC, gesture recognition 
works through a process called 
example matching.  This is a method 
of taking some input, called the 
candidate, and trying to figure out 
which gesture it most closely 
matches, if any.

Let’s take an example. Say  you’re 
building a device that will detect 
different kinds of waves. You want it 
to be able to tell the difference 
between a friendly wave, a “parade 
wave”, and the “thumbs up” gesture.

First, you would record a bunch of 
examples for each type of wave. 
Then, given an unknown candidate, 
the system would try to figure out 
which of your examples is the closest 
match.

This happens through a process 
called Dynamic Time Warping 
(DTW). This works by looking for 
similar parts of two signals. For 
example, say  your candidate gesture 
looks like the red line at top right. 
The blue line represents one of the 
examples you recorded for “Hello!”.

The two signals, red and blue, look 
pretty similar. But they’re not exactly 
the same—the hump happens later 
in the red signal than in the blue.

This is where DTW comes in! DTW 
works by  looking for parts of two 
signals that are most similar.

In the middle picture, you can see 
the results. The grey lines connect 
parts of the two signals that are most 
similar to each other, so the two 
humps get connected at their peaks.

But how can we be sure this is the 
best match? What if there’s another 
example that is better? To find out, 
we can assign a similarity  score to 
the example gesture. The more 
similar the example gesture is to the 
candidate, the more like each other 
they are.

To visualize the calculation of the 
similarity score, look at the bottom 
picture. The two signals have been 
put on top of each other, and the 
grey lines have moved along with 
them. Now, to get the similarity 
score, we just have to add up the 
lengths of all of the grey lines!

If the blue and red signals were 
exactly the same, the grey lines 
would all be of length zero, so the 
similarity score would be zero—the 
best. In this case, they’re close, but 
not exact. You’ll see the similarity 
score used several places in MAGIC.

DTW aligns the signals 
to each other…

…and calculates a 
similarity score.

similarity = 3.675

Introduction to MAGIC
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MAGIC main screen

There are three parts to the MAGIC 
interface. You can switch between them 
using the tabs at the top of the window.

The first tab, Gesture Creation, 
lets  you create gestures that 

you want to try out. It gives you 
lots of information about the 
gestures you create, including 
how they relate to each other.

The next few pages 
in this tutorial will 
introduce the parts 

of the Gesture 
Creation tab.

This image shows the main 
screen of MAGIC, mid-project.

Gestures are like containers 
that hold examples. Examples 
are similar movements that 
should be considered by the 

system to be the same.

For example, the Parsnip 
gesture is made up of five 

different examples.
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MAGIC main screen

This part of the interface 
lets you create new 

gestures, and shows you all 
of the gestures you’ve 

created so far.
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MAGIC main screen

This area shows a visual 
representation of the 

selected gesture.

9

MAGIC main screen

This area shows live data 
coming from the wireless 

acceleration sensor, and lets 
you connect and disconnect 

from the sensor.
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MAGIC main screen

This box helps you 
understand how well your 
gestures will be recognized 

by the computer.
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MAGIC main screen

When the program is 
busy calculating 

something, you’ll see 
this spinner appear. 
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First, let’s make sure video 
is working. Click this button

to show this panel

14



and from the hat on your head:

As you create gestures, the 
motions you make will be 

automatically recorded by the 
cameras. You’ll be able to go 

back later and watch the video 
to help you remember the 
motions you were making.

This recorded video for 
each gesture will show up 
in the “Recorded Video” 
tab on the Video panel.

The video panel shows a 
live view from monitor-

mounted camera:
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Let’s make your first gesture!

To begin, click on the 
Connect to: button, to let 
the computer talk to the 

wireless sensor.

16



Try moving your arm 
around to get an idea of 

what can be sensed.

Look back at the page in this tutorial 
about the accelerometer to remind 
you what the colored lines mean.

If the sensor successfully 
connected, you’ll see the live 

signal coming in!

17

When you click “Add 
Gesture”, you’re adding a 
group that will keep all of 
the examples of one type 

of gestures together.

It shows up as “New 
Gesture” here

Let’s try making a 
gesture!

Click on the “Add 
Gesture” button.

18



You can double-click 
the name and change 
it to something else if 
you like. Press return 
when you’re done.
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Next, let’s add a new 
example for this 

gesture.

When you click the “Add 
Example” button, the system 

starts listening right away.

It will automatically start 
recording when you start 

moving, and stop recording 
when you stop moving. 

This means that you should put 
your arm in the position that 
you want to start the gesture 

example in before you push the 
“Add Example” button.

When you’re ready, go ahead 
and push “Add Example” and 

record an example!

20



After you stop moving your 
arm, you’ll see something that 

looks like this screen.

You may notice that parts of the example are gray. 
These are parts that aren’t “interesting” because 

there’s not much movement there. If your gesture 
example is entirely gray, you should delete it and 

make a more energetic gesture!

Record four more gesture 
examples, for a total of five.

They should all be the same kind 
of movement, but try to vary 

them somewhat.

Think about what might happen in 
real life if a person were trying to 
use your gesture—might they do 
it faster, or slower, or hold their 
arm slightly differently? Try to 

make examples that account for 
such possibilities.

This shows the example 
you just recorded.
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The checkboxes in this 
column enable and 
disable gestures and 

gesture examples. When 
an example is enabled, 
the system calculates 

statistics about it. When 
it’s disabled, the system 

ignores it.

If you click the enable 
checkbox for the gesture 

group, all of the examples in 
that group will be enabled.

Do that now.

Once you’ve recorded several 
examples, let’s look at how they 

compare to each other.

22



Now you’ll see some 
information in the 

columns next to each of 
your gesture examples.

This column 
shows what other 

example is the 
closest match.

The goodness value is calculated 
using the results in this box, 

called the match box. We’ll learn 
more about the match box on 

the next page.

This column 
shows the 

length of the 
example, in 
seconds.

This column is a measure of the 
“goodness” of a gesture example. 
Goodness relates to whether a 

example matches only other 
examples of the same kind, and 
whether it matches all other 
examples of the same kind.

If you want to watch the example you 
recorded, switch the video tab to 

Recorded  Video and double-click on 
the example (just not on the name). 
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The match box shows how well the 
currently selected example (in this 
case, Pickle 5) matches each of the 

other examples you’ve created.

Remember, when comparing two 
gesture examples, a lower similarity 

score means a better match.

Each row in the match box shows 
an example and the similarity score 

between it and the selected 
example. Pickle 5 and Pickle 3 have 
a similarity to each other of 6.835.

The red and green dots 
show whether the example 
was successfully recognized 

or not. You’ll learn more 
about this is determined on 

the next page. First, click the 
“Show graphs” 

button.

You’ll notice that the first entry in 
the box is always the currently 
selected example itself, with a 
similarity score of zero. This is 

because Pickle 5 and Pickle 5 are 
exactly the same, naturally!
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Ignore the upper part of 
the graphs drawer for the 
moment. We’ll look at just 

the bottom for now.

Each bar represents one of 
your examples. The dark 
center line is the average 

similarity that example has 
with respect to all the other 

examples of this gesture. The width of each 
bar shows the 

variability of the 
similarity scores: 

Pickle 2 has more 
widely varying 
similarities as 

compared to other 
examples than does

Pickle 5.

The circles at the bottom show the 
average similarity scores all along 
the same line so you can more 

easily see how they’re distributed. 
The light dotted lines connect each 

circle to the center of its box.

This graph illustrates how each 
of your examples compares, on 

average, with all the other 
examples of the same gesture.
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In comparison to example 
5, example 3 has a 

similarity of 6.835. Because 
this is less than the 

threshold of 8.67, example 
3 is considered a match, 

and so gets a green dot   .

Example 4, however, has a 
similarity score of 8.682. 
This is higher than the 

threshold, so example 4 is 
not considered a match. 
Therefore, it gets a red 

dot   .

When a gesture example 
is considered a match, it 

gets a green dot    next to 
it. When it’s not a match, it 

gets a red dot    .

This dotted line is important. It’s called the 
threshold, and is the maximum similarity score that 
an example can have to be considered an example 

of this gesture. The threshold is initially 
automatically set by the computer. In this example, 

the threshold is set to 8.67.

An easy way to think about the threshold is that any 
example on the left side of the threshold is 

considered a match to the gesture, and any example 
on the right is not.
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Let’s try adjusting the threshold. 
Using the right mouse button, 
drag the line to the left or right.

Watch how changing the 
threshold affects the red and 

green dots in the match box…

and the goodness score in the 
gesture list.

An example only gets a goodness 
score of 100% if it matches all other 
examples in its category, and no other 

examples from other categories.
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Now add two more gestures. Make 
five examples for each.

When you’re done, enable each 
gesture, and try adjusting the 

thresholds for each one. Watch how 
the goodness values and red and green 

dots change when you do so.
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Notice how each gesture has 
its own color (Pickle, Turnip, 

Parsnip). These colors will help 
you identify each gesture 
throughout the program.



Now let’s look at the top graph. Its 
purpose is to help you see how well 

each gesture as a whole can be 
distinguished from the other gestures 

you’ve made.

The top graph has two 
tabs. We’ll first look at 
“Intra/Extra Combo.”

Each row in the graph 
represents one of  your 

gestures.

The dotted lines show the 
threshold for each gesture. You can 
adjust the thresholds here as well, 

using the right mouse button.
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Each solid line box 
represents a gesture as 
a whole. It’s basically 
the average of the 
bottom graph, and 
shows the overall 

spread of the examples 
for this gesture.

Each dotted-line box shows 
the same thing, but for 

examples not belonging to 
the same gestures. So this 
box shows how similar, on 

average, each example 
within Pickle is to each 

example within Turnip and 
Parsnip.

The point of this graph is to help you figure out 
whether your gestures as a whole are too similar to 
each other. If, for example, Pickle’s two boxes were 

very close together, that might indicate that Pickle and 
other gestures could be confused with each other.30



Next, let’s look at “Intra/Extra Split.”

The solid-line box on 
the left is the same as 
with the “Intra/Extra 

Combo” graph.

The boxes on the right 
represent the other gestures, 
and their average similarity 
scores with respect to the 

gesture on the left.

For example, in this row, 
we can see that Turnip is a 

little more similar to 
Parsnip than is Pickle.

The idea behind this graph is to help you figure out if one of 
your gesture is particularly confusable with another one. If you 

need to, you can adjust the threshold line here as well. For 
example, the threshold for Turnip might be a little too close to 
the boxes for Pickle and Parsnip, so it might be a good idea to 

drag it to the left a bit. 31
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The second tab, Gesture Testing, 
lets you test out the gestures 

you’ve created.

During testing, you’ll typically 
record a variety of gesture and 

non-gesture movements, to 
make sure that only the desired 

motions are detected.

The next few pages 
in this tutorial will 
introduce the parts 

of the Gesture 
Testing tab.

This image shows the testing 
screen of MAGIC, mid-project.
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The purpose of the testing tab is 
to make sure that the gestures 

you’ve created are properly 
recognized. It lets you test out 

your gestures without 
necessarily creating new ones.

In this picture, a test category 
(“Test veggies”) has been 

created, with one test sample 
(“Test veggies 1”). 

The colored blocks 
show places in the test 
sample where gestures 

were found.

Next, you’ll learn about 
the different parts of 

the testing tab.
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This area of the interface has 
a similar function to its 

counterpart on the Creation 
tab. It lets you create testing 

categories and samples.

A testing category is a 
container that holds similar 

test samples together.

A testing sample is kind of like 
a gesture example. It’s a 
recording of motion you 
make. Unlike a gesture 

example, however, a testing 
sample can contain multiple 

distinct movements. 35

This area shows a visual 
representation of the 

selected testing sample.
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This area shows live data coming 
from the wireless acceleration 
sensor, lets you connect and 

disconnect from the sensor, and 
allows you to tell the computer 

when to start and stop recording 
your testing sample.
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Although similar to the 
match box in the creation 

tab, this box serves a 
different purpose. It shows 

you what gestures have 
been recognized in your 

test sample, where in time 
the matches occurred, and 
how close the matches are.
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First, let’s create a new 
testing category. Like the Add 

Gesture button on the 
creation tab, the Add Category 
button will make a container 
to hold things. In this case, 
you’ll be holding samples.

Unlike gestures, categories are free-form; 
they can mean whatever you want them to.

If you want to make one category to hold 
testing samples of Pickle and another to 
hold samples of Turnip, you can do that.

You could also make one category to hold 
samples of gestures done carefully, and 

another to hold samples of gestures made 
sloppily.

Or you could just make one category and 
put everything in it. It’s up to you!

Click the Add 
Category button.

40



Like gestures on the 
creation tab, you can 

double-click the name of 
the category to rename it.

MAGIC will automatically 
add “Test” to the beginning 

of the name.

Now, let’s add a new sample. 
Click the Add Sample button.

Unlike with the Add Example 
button, MAGIC will not 

automatically start recording.
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Now, you’ll record yourself 
performing the gestures 

you created on the 
creation tab. If you can’t 

remember what you did, go  
back to the creation tab 
and watch the videos.

When you’re ready, click the 
Record button. The system 
will start recording your 
gestures, and the Record 
button will change to the 

Stop button. Click it to stop 
recording when you’re 

finished.

42



The next step is to determine if your 
gestures were recognized.

The recognition process works 
similarly to how gesture examples are 

compared on the creation tab.

Each part of the movement you 
recorded is checked against each of 

your gesture examples. If the similarity 
score between an example the part of 

the test sample is underneath the 
threshold for the gesture that the 

example is part of, it’s a match.

In order to test your 
sample, click the 
Check button.
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When matches between your gesture 
examples and your test sample are found, 
they’re highlighted with colored boxes. The color of the box corresponds to 

the gesture found. You can also hover 
your mouse over a box to see which 

particular example was found.

Each gesture is show in a different row 
on the graph so that multiple gestures 

can be shown without overlapping, as in 
this spot where both a Pickle and a 

Turnip example were found.

This box 
shows each 

match between 
your test 

sample and 
one of your 

gesture 
examples.

It shows the 
similarity between 
the example and 
the part of your 

sample…

…the time 
within your 
sample at 
which the 
match was 
found…

…and the name of 
the example that 

matched the sample.



You can click on any of the boxes
to highlight the matching gesture 

examples.

Or you can click a 
matching example, and 
the corresponding box 

will highlight.

If you have matches that are wrong, you can use 
the graph drawer to adjust the thresholds until 

you get the desired results. But be sure to check 
the creation tab to avoid undesired effects!
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If you have a part of your 
test sample that should 

have been recognized, but 
wasn’t, you can use it as a 

gesture example.

Using the left mouse 
button, drag to highlight 
the area that you want.

Then, use this drop-down
to select the gesture you 

want to add the selection to.
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That’s all you have to know 
about the testing tab!
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The Everyday Gesture Library (EGL)

48

One consideration when designing 
gestures is whether they’ll be usable. 
An important aspect of usability is 
everyday use—that is, using the 
gestures while doing other things. 

For our vegetable vending machine, 
we don’t want customers’ normal 
motions to accidentally dispense 
unwanted vegetables! This means 
that when Mr. Onara waves hello to 
Mrs. Ishuu, the machine shouldn’t 
dump out a load of pickles!

How can you solve this problem? 
One way is to try to think of every 
possible movement that Mr. Onara 
might make, and avoid designing 
gestures like that. Then you can give 
the system to him—and other 
willing customers—to test, and see 
how many accidental vegetable 
deliveries you end up with.

The problem with this solution is 
that it’s very time consuming (and 
wasteful of vegetables!). Every time 
you find that one of the gestures you 
made is too similar to a customer’s 
usual movements, you have to 
design a new gesture and run the 
test all over again!

This is where the Everyday Gesture 
Library—or EGL—tab comes in. 
The EGL is a recording of a typical 
person’s everyday movements. The 
person has simply worn the sensor 
and proceeded with his life, letting it 
record his motions. This person has 
also worn a hat with a camera, so 
you’ll be able to see what kinds of 
motions were made.

The EGL tab works a lot like the 
testing tab, but you’re provided with 
samples instead of making your 
own. You’ll learn a bit more about 
the EGL tab on the next page.



The EGL tab is laid out like a 
combination between the 
creation and testing tabs.

This part shows the 
stream of movements 
collected by the user, 
and, like the testing 
tab, shows boxes 

whenever a match is 
found. Also like the 
testing tab, you can 

click a box to select all 
of the matching results 

in the match box.

You can move this cursor 
through the EGL by dragging 

with your right mouse button. 
The video will follow along.

A hit in the EGL is when 
there’s a match between a 

gesture example and part of 
the EGL. This column shows 
you how many were found 
for each example, and for 
each gesture as a whole.

The Check EGL button 
looks through the EGL 

for hits for each selected 
gesture and/or example. 

This can take a long 
time, so patience is key!

If you double-click an 
example, the video of you 
performing the gesture 
will play simultaneously 

with the EGL video.
The match box looks and 

acts the same as the match 
box on the testing tab.

Introduction to MAGIC
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It’s important to 
remember the relationship 

between the thresholds 
and the three tabs.

When you adjust the 
threshold, you affect…

…on the Creation tab, 
the goodness value for each 

gesture example. This, 
remember, tells you 

whether a given example 
matches all other examples 
of its gesture type, and only 

examples of its type.

…on the Testing tab, the 
matches to your test 

samples. If your threshold 
is too high, some of your 

test sample gestures won’t 
match. If it’s too low, some 
of the samples may match 
more than one gesture.
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…on the EGL tab, the hits 
for each of your examples in 
the EGL. You want to have as 

few as possible, but if you 
make the threshold too low, 
your gestures might not be 
recognized at all anymore.

Questions?
If you have any questions, 

please ask the researcher now.
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