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SUMMARY

This thesis addresses four topics in the area of applied harmonic analysis.

First, we show that the affine densities of separable wavelet frames affect the frame

properties. In particular, we describe a new relationship between the affine densities,

frame bounds and weighted admissibility constants of the mother wavelets of pairs

of separable wavelet frames. This result is also extended to wavelet frame sequences.

Second, we consider affine pseudodifferential operators, generalizations of pseudodif-

ferential operators that model wideband wireless communication channels. We find

two classes of Banach spaces, characterized by wavelet and ridgelet transforms, so

that inclusion of the kernel and symbol in appropriate spaces ensures the operator

is Schatten p-class. Third, we examine the Schatten class properties of pseudodif-

ferential operators. Using Gabor frame techniques, we show that if the kernel of a

pseudodifferential operator lies in a particular mixed modulation space, then the op-

erator is Schatten p-class. This result improves existing theorems and is sharp in the

sense that larger mixed modulation spaces yield operators that are not Schatten class.

The implications of this result for the Kohn-Nirenberg symbol of a pseudodifferen-

tial operator are also described. Lastly, Fourier integral operators are analyzed with

Gabor frame techniques. We show that, given a certain smoothness in the phase func-

tion of a Fourier integral operator, the inclusion of the symbol in appropriate mixed

modulation spaces is sufficient to guarantee that the operator is Schatten p-class.

vii



CHAPTER I

INTRODUCTION AND BACKGROUND

1.1 Introduction

Decomposition and reconstruction are ideas fundamental to harmonic analysis and

signal processing. The Fourier transform, arguably the bedrock of these fields, would

not be so interesting if we could not decompose a distribution f into frequencies f̂(w)

and reconstruct f again by

f(x) =

∫
f̂(w)e2πix·w dw.

Other transforms also possess the powerful properties of decomposition and recon-

struction. In particular, by the wavelet transform and the Gabor transform functions

are decomposed into time-scale and time-frequency data, respectively, and are so

characterized by this data that they can be reconstructed from it. There are discrete

transforms controlled by sequences {fx}x∈X which admit dual systems
{
f̃x

}
x∈X

so

that decompositions

f =
∑
x∈X

〈f, f̃x〉fx =
∑
x∈X

〈f, fx〉f̃x, (1)

hold for all f in appropriate function spaces. In general, the combined action of

decomposition and reconstruction is called a resolution of the identity.

This thesis contains new insight into the applications of resolutions of the identity.

It explores how these resolutions of the identity can capture information about integral

operators, that is, operators of the form

Af(t) =

∫
k(t, y)f(y) dy.

A resolution of the identity for either the elements of the domain or codomain of A

gives a resolution of the identity of the operator, and through this decomposition and
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reconstruction, properties of the operator are more apparent. Specifically, suppose

that {ψx}x∈X is some collection of functions generating a resolution of the identity

for L2(Rd) , that is

〈f, g〉 = C

∫
X

〈f, ψx〉〈ψx, g〉 dµ(x) for all f, g ∈ L2(Rd).

Then the mixed norm of the slices of k, i.e. ky(t) = k(t, y), decomposed with the

resolution of the identity determines whether the integral operator with kernel k is

Schatten p-class. Specifically, we show that if(∫
X

(∫
Rd
|〈ky, ψx〉|2 dy

) p
2

dµ(x)

) 1
p

<∞

and p ∈ [1, 2], then the integral operator with kernel k is Schatten p-class. This result

is stated precisely as Theorem 3.3.2.

Theorem 3.3.2 is powerful because of its generality. It is a result applicable to all

integral operators and resolutions of the identity. However, while integral operators

are a broad class of operators, many interesting integral operators are not naturally

expressed in the form Af(t) =
∫
k(t, y)f(y) dy. Pseudodifferential operators, for in-

stance, are integral operators that are superpositions of time-frequency shifts and

these operators are often specified not by their kernels but by their symbols, func-

tions controlling the “amount” of each time-frequency shift present in the operator.

Similarly, affine pseudodifferential operators are superpositions of time-scale shifts.

These operators are determined by their symbols, which describe the amount of each

time-scale shift in the operator. Fourier integral operators are integral operators

determined by both a symbol function and a phase function.

Since pseudodifferential operators, affine pseudodifferential operators, and Fourier

integral operators are naturally formulated in terms of symbol functions, it is desirable

to characterize the properties of these operators by characterizing the properties of

their symbols. It is clear that by relating the symbol of one of these operators to

the kernel of the integral operator, Theorem 3.3.2 can be used to describe some
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property of the symbol that ensures the operator is Schatten p-class. However, the

meaning of this property depends on the resolution of the identity. This thesis shows

that for pseudodifferential operators, affine pseudodifferential operators, and Fourier

integral operators, analyzing the symbol with the “correct” resolution of the identity

yields natural and meaningful conditions on the symbol that ensure the corresponding

operator is Schatten class.

Because of the multipath and Doppler effects, a wideband wireless communica-

tion channel can be modeled as a superposition of time-scale shifts, i.e. as an affine

pseudodifferential operator. Affine pseudodifferential operators have been relatively

unstudied until recently, with [5], [29] and [68] the only mathematical publications on

the topic. However, their application to wireless communications ensures that they

are of interest to mathematicians and engineers alike. As affine pseudodifferential

operators are superpositions of time-scale shifts, it is natural to analyze these opera-

tors with a time-scale resolution of the identity. In Chapter 3, Theorem 3.3.2 is used

with the wavelet resolution of the identity to find new conditions on the kernel and

symbol of an affine pseudodifferential operator that ensure the operator is Schatten

p-class. These conditions on the symbol are equivalent to inclusion in a Banach space

characterized by a mixed norm on the ridgelet transform, a transform which captures

directional time-scale data about the symbol. This chapter also describes smoothness

and decay conditions on the Radon transform of the symbol that imply the given

operator is Schatten class or Calderon-Zygmund.

Pseudodifferential operators are superpositions of time-frequency shifts. Because

the Doppler effect for narrowband wireless communications is best modeled not as a

change in scale but as a shift in frequency, pseudodifferential operators model nar-

rowband wireless communications. In Chapter 4, Theorem 3.3.2 is used with a Gabor

resolution of the identity, a natural choice for analyzing pseudodifferential operators.

The resulting mixed norm is a time-frequency decay condition on the kernel itself.
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We show that this condition holds for kernels belonging to certain Banach spaces

that we call mixed modulation spaces. These spaces are natural generalizations of

the traditional modulation spaces, and in Chapter 4, we show that many of the in-

teresting properties of traditional modulation spaces also hold for mixed modulation

spaces. Furthermore, by exploiting the relationship between the Gabor transforms of

the kernel and Kohn-Nirenberg symbol, we show that inclusion of this symbol in an

appropriate mixed modulation space guarantees the corresponding pseudodifferential

operator is Schatten class.

Fourier integral operators arise naturally in the study of hyperbolic differential

equations because they give approximate solutions to certain partial differential equa-

tions. Although Fourier integral operators are more complex than pseudodifferential

operators and affine pseudodifferential operators because they are controlled by a

symbol and a phase function, we can focus on the influencing properties of the sym-

bol when the phase function is smooth. This is the approach taken in Chapter 5. Like

pseudodifferential operators, Fourier integral operators act on the time-frequency con-

tent of functions. In Chapter 5 we prove that the mixed modulation spaces are the

natural symbol spaces for describing Fourier integral operators. In particular, we

show that if a Fourier integral operator has a sufficiently smooth phase function and

a symbol belonging to an appropriate mixed modulation space, then the operator is

Schatten class.

Although our analysis of pseudodifferential, affine pseudodifferential and Fourier

integral operators begins with the idea in Theorem 3.3.2, our results are not merely

direct applications of this theorem. Rather we use the idea of Theorem 3.3.2 with the

unique properties of each of these types of operators to develop our Schatten class

analysis. As a consequence, each of the Schatten class results in Chapters 3, 4 and 5

has a flavor different from that of Theorem 3.3.2 and different from one another.
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Furthermore, the Schatten class results in Chapters 3, 4 and 5 augment the knowl-

edge of pseudodifferential, affine pseudodifferential and Fourier integral operators

found in the literature. In particular, our result for affine pseudodifferential operators

in Chapter 3 is the first Schatten class result for affine pseudodifferential operators.

Although time-frequency analysis is an oft-used tool to study pseudodifferential op-

erators, the approach in Chapter 4 is new and yields new symbol spaces of Schatten

class pseudodifferential operators undiscovered by previous results. Furthermore, the

kernel results for pseudodifferential operators in Chapter 4 improve upon existing

kernel theorems and are sharp. The results for Schatten class Fourier integral opera-

tors in Chapter 5 are not directly comparable to previously known results. However,

through natural isomorphisms, the largest symbol classes in the literature embed into

the symbol classes described in Chapter 5. In addition, several of the results in this

chapter are sharp. The relationships between the results in this thesis and related

results in the literature are described in greater detail in each chapter.

At their heart, Chapters 3, 4 and 5 depend on the idea of resolution of the identity.

In Chapter 2, we explore the behavior of a specific discrete resolution of the identity

of the form (1). Specifically, we compare pairs of wavelet frames of the form

{σ(u, v)f}u∈U,v∈V and {σ(s, t)g}s∈S,t∈T (see Chapter 3 for a precise definition). Our

main result is a Homogeneous Approximation Property for separable wavelet frames

that allows us to delineate relationships between the densities of U, V, S and T , the ad-

missibility constants of f, g and the frame bounds of the sequences {σ(u, v)f}u∈U,v∈V

and {σ(s, t)g}s∈S,t∈T . This result is interesting because it parallels known results for

other common types of resolutions of the identities, namely LCA frames, and be-

cause it gives insight into the density properties of wavelet frames. In particular,

unlike LCA frames, wavelet frames are known not to exhibit a Nyquist density. Our

main result shows that wavelet frames fail to have a Nyquist density because density

depends on both frame bounds and admissibility.
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1.2 Background

In this section we give precise definitions and properties of the topics fundamental to

the main ideas of the thesis.

Given sets S,X such that S ⊂ X, we define χS : X → R by

χS(x) =

 1 if x ∈ S,

0 if x /∈ S.

We let S (Rd) denote the Schwartz space of functions of d real variables.

Definition 1.2.1. Suppose f, g : X → [0,∞). Then f and g are equivalent, written

f ≡ g, if there exists C ∈ (0,∞) such that

g(x)

C
≤ f(x) ≤ Cg(x) ∀x ∈ X.

1.2.1 Weights and Mixed Norm Spaces

1.2.1.1 Weight functions

Definition 1.2.2. A locally integrable function v : Rd → (0,∞) is called a weight

function. A weight function v : Rd → (0,∞) is submultiplicative if

v(z1 + z2) ≤ v(z1)v(z2) for all z1, z2 ∈ Rd.

A weight function v has polynomial growth if there are C, s ≥ 0 such that v(z) ≤

C (1 + |z|)s for all z ∈ Rd.

For each s ≥ 0, the function vs(z) = (1 + |z|)s is a submultiplicative weight func-

tion with polynomial growth. Notice that vs is equivalent to the weight (1 + |z|2)
s
2 .

We will use (1 + |z|2)
s
2 and (1 + |z|)s interchangeably as weights on mixed norm

spaces.

Definition 1.2.3. Suppose w : Rd → (0,∞) is a weight function and v : Rd → (0,∞)

is submultiplicative. If there is a constant C such that

w (z1 + z2) ≤ C v (z1)w (z2) for all z1, z2 ∈ Rd,

6



then we call w a v-moderate weight.

We will assume throughout this thesis that v : Rd → (0,∞) is a submulti-

plicative weight function of polynomial growth symmetric in each coordinate, i.e.

v(x1, . . . ,−xi, . . . , xd) = v(x1, . . . , xi, . . . , xd) for each i = 1, 2, · · · , d. We also assume

throughout that w is a v-moderate weight.

1.2.1.2 Mixed norm spaces

Definition 1.2.4. Given measure spaces (Xi, µi) and indices pi ∈ [1,∞] for i =

1, 2, . . . , d and given weight function w : X1 ×X2 × · · · ×Xd → (0,∞), we let

Lp1,p2,...,pd
w (X1, X2, . . . , Xd, µ1, µ2, . . . , µd)

consist of all measurable functions F : X1×X2×· · ·×Xd → C for which the following

norm is finite:

‖F‖Lp1,p2,...,pdw

=

(∫
Xd

. . .

(∫
X1

|F (x1, . . . , xd)w(x1, . . . , xd)|p1 dµ1(x1)

) p2
p1

· · · dµd(xd)

) 1
pd

,

with the usual modifications for those indices pi which equal ∞.

If the measures µi for all i = 1, 2, . . . , d are clear from context we simply write

Lp1,p2,...,pd
w (X1, X2, . . . , Xd). If w = 1 we write

Lp1,p2,...,pd (X1, X2, . . . , Xd, µ1, µ2, . . . , µd) .

If Xi = R and µi is Lebesgue measure on R for all i = 1, 2, . . . , d, then we simply

write Lp1,p2,...,pd
w . If each Xi is countable and µi is counting measure on Xi we simply

write `p1,p2,...,pd
w (X1, X2, . . . , Xd).

Unless otherwise noted, we assume that the measure associated to any subset of

R is Lebesgue measure and the measure associated to any countable set is counting

measure.
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The mixed norm spaces Lp1,p2,...,pd
w (X1, X2, . . . , Xd, µ1, µ2, . . . , µ2d) are generaliza-

tions of the classical spaces Lp, and the proof that Lp is a Banach space can be

extended to the mixed norm spaces (see [7]).

A Wiener amalgam norm is a type of mixed norm that measures local boundedness

with global decay.

Definition 1.2.5. Suppose p1, . . . , pd ∈ [1,∞]. Define a norm by

‖f‖W (L
p1,p2,...,pd
w ) =

∥∥∥{∥∥fχ[0,1]d+n

∥∥
∞

}
n∈Zd

∥∥∥
`
p1,p2,...,pd
w

.

The Wiener space W (Lp1,p2,...,pd
w ) is the set of functions for which this norm is finite.

In the case that p1 = p2 = · · · = pd = 1 we write W (L1
w(Rd)) instead of

W (Lp1,p2,...,pd
w ), i.e.

‖f‖W (L1
w(Rd)) =

∑
n∈Zd

∥∥fχ[0,1]d+n

∥∥
∞w(n).

For any multi-index α = (α1, . . . , αd) ∈ Rd with α1, . . . , αd ∈ (0,∞), we can define

an equivalent norm on W (Lp1,p2,...,pd
w ) by

‖f‖ =
∥∥∥{∥∥fχα·[0,1]d+α·n

∥∥
∞

}
n∈Zd

∥∥∥
`
p1,p2,...,pd
w

.

The following lemma, a generalization of Theorem 11.1.5 in [33], is a convolution

relation for the Wiener amalgam spaces.

Lemma 1.2.6. There is some C ∈ (0,∞) so that for all F ∈ W (Lp1,p2,··· ,pd
w ), G ∈

W (L1
v(Rd)) we have

‖F ∗G‖Lp1,p2,··· ,pdw
≤ C ‖F‖W (L

p1,p2,··· ,pd
w ) ‖G‖W (L1

v(Rd)) .

1.2.2 Transforms

1.2.2.1 Continuous Wavelet Transform

Definition 1.2.7. The continuous wavelet transform of h ∈ L2(R) with respect to

ψ ∈ L2(R) is

Wψh(a, b) =

∫
R
h(t) |a|−

1
2ψ

(
t

a
− b
)

dt = 〈h,DaTbψ〉, (a, b) ∈ R+ × R,
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where Da denotes the dilation Daf(t) = |a|− 1
2f( t

a
) and Tb denotes the translation

Tbf(t) = f(t− b). A function ψ ∈ L2(R) is admissible if

Cψ =

∫
R

∣∣ψ̂(w)
∣∣2 dw

|w|
<∞.

If ψ is admissible then Cψ is called the admissibility constant of ψ. If ψ is admissible

and furthermore ∫
(0,∞)

∣∣ψ̂(w)
∣∣2 dw

|w|
=

∫
(−∞,0)

∣∣ψ̂(w)
∣∣2 dw

|w|
,

then inversion formula

h(t) = C−1
ψ

∫∫
R+×R

Wψh(a, b)DaTbψ(t)
da

a
db (2)

holds weakly for all h ∈ L2(R).

The value of Wψf(a, b) is a measure of the time-scale localization of f at position

b and the scale a. See [25] for more information regarding wavelets.

1.2.2.2 Gabor Transform

Suppose f : Rd → C is measurable. For x, ξ ∈ Rd define the translation operator Tx

and modulation operator Mξ by

Txf(t) = f(t− x) and Mξf(t) = e2πit·ξf(t),

and define the time-frequency shift π(x,ξ) by π(x,ξ) = MξTx.

Definition 1.2.8. Fix φ ∈ S (Rd). Given f ∈ S ′(Rd), the Gabor transform of f

with respect to φ is

Vφf(x, ξ) =

∫
Rd
f(t)φ(t− x)e−2πiξ·t dt = 〈f,MξTxφ〉, x, ξ ∈ Rd.

The function φ is called the window function of the Gabor transform.

The value of Vφf(x, ξ) gives information about the time-frequency content of f

around x in time and ξ in frequency. See [33] for background and information about

the Gabor transform.
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Both the wavelet and Gabor transforms arise from unitary representations of lo-

cally compact groups, namely the affine group and the Heisenberg group, respectively.

The general properties of transforms determined by unitary representations are de-

scribed in [39].

Fix φ ∈ S (Rd) and p, q ∈ [1,∞]. For f ∈ S ′(Rd), define

‖f‖Mp,q
w (Rd) = ‖Vφf‖Lp1,p2,...,p2dw

,

where p = p1 = p2 = · · · = pd and q = pd+1 = pd+2 = · · · = p2d. Let

Mp,q
w (Rd) =

{
f ∈ S ′(Rd) : ‖f‖Mp,q

w (Rd) <∞
}
.

Each Mp,q
w (Rd) is a modulation space. For w = 1 we write Mp,q

w (Rd) = Mp,q(Rd).

The modulation space Mp,q
w

(
Rd
)

consists of functions with a particular time-

frequency decay controlled by the parameters p, q and weight w. See [33] for an

overview of modulation spaces and time-frequency analysis.

In particular we have the following inclusion relationship between the modulation

space M1,1(Rd) and the Wiener space W (L1(Rd)) (see Proposition 12.1.4 in [33]).

Lemma 1.2.9. If φ ∈M1,1(Rd), then φ ∈ W (L1(Rd)).

1.2.2.3 The Radon Transform

We let S1 denote the unit sphere in R2. It will be useful to equate S1 with [0, 2π).

Hence, for each θ ∈ S1, let φ(θ) denote the unique number in [0, 2π) such that

θ = (cosφ(θ), sinφ(θ)).

Definition 1.2.10. Let `(θ, s) = {x ∈ R2 : x · θ = s} and let dx`(θ,s) denote the one-

dimensional Lebesgue measure on the set `(θ, s). The Radon transform of L ∈ L1(R2)

is given by

RθL(s) = RL(θ, s) =

∫
{x∈R2:x·θ=s}

L(x) dx`(θ,s), for all (θ, s) ∈ S1 × R.
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1.2.2.4 The Ridgelet Transform

There are a number or ways to generalize the wavelet transform on L2(R) to analyze

functions in L2(Rd) (see [25]). However these wavelet transforms are best used in

analyzing pointwise characteristics of functions and are not suitable for detecting

higher-dimensional singularities. In contrast, the ridgelet transform was developed in

[11] and [13] to analyze the behavior of functions on R2 over lines.

Definition 1.2.11. Suppose ψ ∈ S (R) is admissible. Then the ridgelet transform

of L ∈ L1(R2) is

R(L)(a, b, θ) = 〈RθL, TbDaψ〉 ∀θ ∈ S1, a ∈ R \ {0} , b ∈ R.

1.2.3 Frames

Definition 1.2.12. A frame for a Hilbert space H is a sequence of elements {φx}x∈X

in H such that there are A,B > 0 with

A ‖f‖2 ≤
∑
x∈X

|〈f, φx〉|2 ≤ B ‖f‖2

for all f ∈ H. In this case A,B are frame bounds. If we can take A = B then

{φx}x∈X is a tight frame. A tight frame is Parseval if we can choose A = B = 1.

Frames give nonorthogonal expansions of elements of H in terms of the frame

elements, and these expansions are stable but usually redundant. If {φx}x∈X is a

frame for H, there is a dual sequence {φ̃x}x∈X ⊂ H such that

f =
∑
x∈X

〈f, φx〉φ̃x =
∑
x∈X

〈f, φ̃x〉φx

for all f ∈ H, and the sequence {φ̃x}x∈X can be chosen to be a frame for H. In

particular, if {φx}x∈X is a tight frame for H with frame bound B, we have

f = B−1
∑
x∈X

〈f, φx〉φx ∀f ∈ H.
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The frame operator of {φx}x∈X is the self-adjoint bounded invertible operator

Sf =
∑
x∈X

〈f, φx〉φx ∀f ∈ H.

See [14] for general background on frames.

Definition 1.2.13. A Bessel sequence for a Hilbert space H is a sequence of elements

{φx}x∈X in H such that there is B > 0 with

∑
x∈X

|〈f, φx〉|2 ≤ B ‖f‖2

for all f ∈ H. In this case B is the Bessel bound.

Definition 1.2.14. A sequence {φx}x∈X satisfying

∀h ∈ span{φx}x∈X , A ‖h‖2 ≤
∑
x∈X

|〈h, φx〉|2 ≤ B ‖h‖2

is called a frame sequence. Equivalently, {φx}x∈X is a frame for its closed span.

The best-known frames, frame sequences and Bessel sequences for function spaces

are coherent state frames of the form {σ(x)f}x∈X where σ is a unitary representation

of a locally compact group G on H and X is some collection of points in G. In

particular, wavelet frames and Gabor frames for L2(R) have this form, as do Fourier

frames for L2(I) where I is a compact interval.

1.2.4 Operators

1.2.4.1 Schatten class operators

Definition 1.2.15. Fix 1 ≤ p < ∞. Suppose H is a Hilbert space and A : H → H

is a linear operator. We say A is Schatten p-class and write A ∈ Ip(H) if

‖A‖Ip = sup

(∑
n∈N

|〈Afn, gn〉|p
) 1

p

<∞,

where the supremum is taken over all pairs of orthonormal sequences {fn}n∈N, {gn}n∈N

in H.
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Equivalently, an operator is Schatten p-class if its singular values constitute an

`p sequence. Consequently, trace-class operators are exactly the Schatten 1-class

operators and Hilbert-Schmidt operators are the Schatten 2-class operators. For

p =∞, we define Schatten p-class operators to be bounded operators.

1.2.4.2 Integral operators

Definition 1.2.16. An operator A of the form

Af(t) =

∫
Rd
k(t, y)f(y) dy for all t ∈ Rd

is an integral operator, defined for all f for which these integrals converge. The

function k is the kernel of A. Throughout the paper we write k(t, y) = ky(t).

1.2.4.3 Pseudodifferential Operators

Definition 1.2.17. A pseudodifferential operator with Kohn-Nirenberg symbol τ is

an operator having the form

Kτf(t) =

∫∫
R2d

τ̂ (ξ, x)MξT−xf(t) dx dξ.

A pseudodifferential operator with Weyl symbol σ is an operator having the form

Lσf(t) =

∫∫
R2d

σ̂ (ξ, x) e−πiξ·xT−xMξf(t) dx dξ.

A pseudodifferential operator acting on a function f is a superposition of time-

frequency shifts of f . Every suitable pseudodifferential operator Kτ can be also

realized as an operator Lσ and in this case we have τ̂(ξ, x) = eπix·ξσ̂(ξ, x). Similarly,

suitable Kτ and Lσ can be realized as integral operators.

1.2.4.4 Fourier Integral Operators

Definition 1.2.18. A Fourier integral operator is one of the form

Af(x) =

∫∫
a(x, y, ξ)f(y)eiϕ(x,y,ξ) dy dξ.

In this case, a is called the symbol of the operator A and ϕ is called the phase function.
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Throughout this thesis, we assume the phase functions of Fourier integral opera-

tors are real-valued.

Like a pseudodifferential operator, a Fourier integral operator changes the time-

frequency content of a function. In particular a pseudodifferential operator with

Kohn-Nirenberg symbol τ is a Fourier integral operator with symbol a(x, y, ξ) =

τ(x, ξ) and phase ϕ(x, y, ξ) = 2πx · ξ − 2πy · ξ. Suitable Fourier integral operators

can be realized as integral operators.

1.2.4.5 Affine Pseudodifferential Operators

Definition 1.2.19. An affine pseudodifferential operator with symbol L is an oper-

ator having the form

Af(t) =

∫
R

∫
R
L(a, b)

1

a
f

(
t− b
a

)
da db.

Note that the operators that we call affine pseudodifferential operators have also

been called “wideband channels” in the literature because these operators model the

Doppler and multipath effects of wireless communications. Also the definitions of

affine pseudodifferential operators and wideband channels vary in the literature (see

[4], [75], [68] and [29]). In particular, Definition 1.2.19 is different from these sources

in that dilations are L1 normalized, not L2 normalized.
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CHAPTER II

DENSITY COMPARISON FOR SEPARABLE WAVELET

FRAMES

2.1 Introduction

The best-known frames for function spaces are coherent state frames of the form

{σ(x)f}x∈X where σ is a unitary representation of a locally compact group G and X

is some collection of points in G. The density of X in G, which is in some sense the

“average” number of points of X in a subset of G with unit measure, influences the

properties of the frame. In the case that G is a locally compact abelian (LCA) group,

much is known about the relationship between the frame properties of {σ(x)f}x∈X

and the density of X. In particular, X must have density larger than some fixed “crit-

ical density” or Nyquist density in order for {σ(x)f}x∈X to be a frame. This critical

Beurling density phenomenon underlies the classic Nyquist-Shannon Sampling The-

orem and the work of Landau, both of which characterize frames of exponentials

for L2(I) (see [55], [62], [53]). The Heisenberg group is “almost abelian” in some

sense, and the Nyquist density properties of arbitrary Gabor frames were derived by

Ramanathan and Steger in [58] (see [42] for an exposition of the history of density

theorems for Gabor frames as well as extensive references). These critical density

results were extended to arbitrary LCA groups in [2]. The Homogeneous Approxi-

mation Property (HAP), originally developed in [58], is a powerful tool for analyzing

frames. As demonstrated in [2] and [37], it is the HAP for LCA frames that gives

rise to the critical density that these frames obey. The HAP for LCA frames also

gives rise to a “comparison theorem”: if {σ(x)f}x∈X is a frame with bounds A,B and
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{σ(y)g}y∈Y is a frame with bounds E,F then

A ‖g‖2

F ‖f‖2 ≤
D(X, p, c)

D(Y, p, c)
≤ B ‖g‖2

E ‖f‖2 (3)

(see Theorem 7 in [2]).

If σ is a unitary representation of a locally compact non-abelian group, then a

frame {σ(x)f}x∈X need not demonstrate a critical density phenomenon. In particular,

wavelet frames are well-known for not having a critical density. For any a > 1, b 6= 0

there is some ψ so that {a−m2 ψ
(
x
am
− bn

)
}m,n∈Z is a frame for L2(R), which implies

that for any positive number d, there is a wavelet frame for L2(R) with density d

(see [24]). This fact still holds when we consider ψ having some fixed admissibility

coefficient (see [24]), and in the case that {a−m2 ψ
(
x
am
− bn

)
}m,n∈Z is a Riesz basis,

{a−m2 ψ
(
x
am
− βn

)
}m,n∈Z is still a Riesz basis for all β near b (see [1]). In light of these

facts, it is surprising that wavelet frames do satisfy a homogeneous approximation

property. In [44], the authors prove a HAP for wavelet frames, and for suitable wavelet

frames {σ(x)f}x∈X and {σ(y)g}y∈Y , the HAP gives one-sided density estimates: for

each ε > 0, there is some R(g, ε) so that

1− ε
eR(g,ε)

≤ D(X, p, c)

D(Y, p, c)
. (4)

However the HAP cannot imply a critical density or a two-sided estimate like (3).

These results are generalized to arbitrary locally compact groups in [34], although

the results are qualitative in nature, in contrast to the very precise results known for

LCA frames.

In this chapter we will compare separable wavelet frames of the form

{σ(u, v)f}u∈U,v∈V and {σ(s, t)g}s∈S,t∈T .

Since the best-known wavelet frames have this form, these results are applicable to

a broad class of familiar wavelets as well as certain more general irregular wavelet

systems. The main result in this section is a HAP for separable wavelet frames
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that is both more powerful that the usual HAP in some sense but less powerful

in another. This HAP allows us to delineate relationships between the densities

of U, V, S and T , the admissibility constants of f, g and the frame bounds of the

sequences {σ(u, v)f}u∈U,v∈V and {σ(s, t)g}s∈S,t∈T . As a consequence, we obtain a

comparison theorem for separable wavelet frames analogous to (3). Our comparison

theorem is interesting because it shows a new similarity between wavelet frames and

LCA frames. Both LCA frames and certain wavelet frames have a HAP and have a

two-sided comparison theorem. Yet LCA frames have a critical density, while wavelet

frames do not.

Separable wavelet frames allow us to independently analyze the translation and

dilation parameters comprising the frame. Our main result concerns the dilation

indices. For suitable U, S ⊂ R+ and suitable f, g ∈ L2(R) we show that

0 = lim
M−→∞

1

2M

( ∑
s∈S∩aM [e−M ,eM ]

∑
u∈U

∫
|ĝ(sw)|2 |f̂(uw)|2 dw

|w|

−
∑

u∈U∩aM [e−M ,eM ]

∑
s∈S

∫
|ĝ(sw)|2 |f̂(uw)|2 dw

|w|

)

for all sequences {aM}M∈N ⊂ R+. For separable wavelet frames whose translations

form a Fourier frame, this result is a type of HAP on R+ because it ensures that

functions are well-approximated by finitely many dilations and infinitely many trans-

lations. However, it is in fact more powerful that the usual HAP because it ensures

simultaneous approximation by {σ(u, v)f}u∈U,v∈V and {σ(s, t)g}s∈S,t∈T .

As a consequence of our HAP, we obtain a comparison theorem for the densities

of two wavelet frames. In particular, if {σ(u, v)f}(u,v)∈U×V , {σ(s, t)g}(s,t)∈S×T are

frames for L2(R) with frame bounds A,B and E,F , respectively then

ACg
F Cf

≤ D(U × V, c, p)
D(S × T, c, p)

≤ B Cg
E Cf
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for all suitable f, g ∈ L2(R), U, S ⊂ R+ and V, T ⊂ R, where Cf , Cg are the admissi-

bility constants of f, g.

The remainder of this chapter is organized into five sections. The first contains

definitions and preliminary lemmas necessary to prove key theorems. Section 2.3

contains the main result and its proof. The applications of the main result to wavelet

frames are explored in 2.4. These results are extended to certain wavelet frame

sequences in 2.5.

2.2 Definitions and preliminary lemmas

2.2.1 Affine Group

Definition 2.2.1. Assume G is a locally compact group. Let U
(
L2
(
Rd
))

denote the

set of unitary operators on L2
(
Rd
)
. A unitary representation of G is a homomor-

phism π : G → U
(
L2
(
Rd
))

that is continuous with respect to the strong operator

topology on L2
(
Rd
)
.

Definition 2.2.2. Let G be a locally compact group. The left Haar measure on G

is the unique nonzero Radon measure µ on G which satisfies µ (xE) = µ (E) for all

x ∈ G and all Borel E ⊂ G.

The book [31] explains the theory the unitary representations of locally compact

groups.

Definition 2.2.3. The affine group A is the set R+ × R with multiplication

(a, b)(x, y) =

(
ax, y +

b

x

)
.

For (a, b) ∈ R+ × R, we let σ(a, b) denote the operator DaTb, where Da denotes the

dilation Daf(t) = |a|− 1
2f( t

a
) and Tb denotes the translation Tbf(t) = f(t− b).

It is known that σ is a unitary representation of the affine group on L2(R). We let

µ denote the left Haar measure of the affine group on L2(R); that is, dµ(a, b) = da
a

db.
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It is worth noting that the affine group is sometimes defined with the larger set

R \ {0} × R or with multiplication

(u, v)(x, y) = (ux, v + uy) .

When the affine group is defined with this alternate multiplication the left Haar

measure is du
u2 dv and σ′(u, v) = TvDu is a unitary representation. See [51] for a

comparison of these different definitions of the affine group.

2.2.2 General Density

The density of X in G is in some sense the “average” number of points of X in a

subset of G with unit measure.

Definition 2.2.4. Let G be a locally compact group with left Haar measure µ, and let

{QM}M∈N ⊂ G be a sequence of compact sets satisfying QM ⊂ QM+1 for all M ∈ N

and ∪QM = G. Let X be any collection of points in G. For any free ultrafilter p and

each sequence c = {cM}M∈N ⊂ G, we define the density of X with respect to p and c

to be

DG(X, p, c) = p-lim
|X ∩ cMQM |
µ(QM)

.

The upper density of X is

D+
G(X) = lim sup

M−→∞
sup
g∈G

|X ∩ gQM |
µ(QM)

while the lower density of X is

D−G(X) = lim inf
M−→∞

inf
g∈G

|X ∩ gQM |
µ(QM)

,

where cMQM , gQM denote left multiplication by cM , g, respectively.

The properties of free ultrafilters are described in the appendix of [3]. It is a fact

that every free ultrafilter limit of a sequence is an accumulation point of the sequence.

So for each free ultrafilter p and each sequence c = {cM}M∈N ⊂ G, we have

D−G(X) ≤ DG(X, p, c) ≤ D+
G(X).
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Furthermore, there are p, c so that D+
G(X) = D(X, p, c). Similarly there exist p, c so

that D−G(X) = D(X, p, c).

In general, if there are p, c so that DG(X, p, c) =∞ then no {σ(x)f}x∈X will be a

frame. To avoid such sets we make the following definition.

Definition 2.2.5. Suppose G is a locally compact group and X is a collection of

points in G. If for any compact U ⊂ G, there is some finite K so that∥∥∥∑
x∈X

χxU

∥∥∥
∞
≤ K

then X is relatively separated.

2.2.3 Affine Density

We will consider affine density with respect to the choice of sets {QM}M∈N given by

QM = [e−M , eM ]× [−M,M ]. Henceforth DA(X, p, c), D+
A (X) and D−A (X) are defined

as in Definition 2.2.4 with respect to this particular choice of QM . The set QM is a

rectangle in A centered at (1, 0), and µ(QM) = 4M2.

The following lemma ensures that relatively separated sets in the affine group have

finite density (see Lemma 3.1 in [69] for proof).

Lemma 2.2.6. If X is a relatively separated set in A, then there is some finite K so

that

DA(X, p, c) ≤ K

for all free ultrafilters p and all sequences c = {cM}M∈N ⊂ A. In particular, D+
A (X) <

∞.

2.2.3.1 Density in R+,R

In addition to density of sets in A, it will be useful to measure the densities of subsets

of R+ and R. We fix IM = [e−M , eM ]. Following Definition 2.2.4, for S ⊂ R+ and

a = {aM} ⊂ R+ we set

DR+(S, p, a) = p-lim
|S ∩ [aMe

−M , aMe
M ]|

2M
= p-lim

|S ∩ aMIM |
2M

,
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D+
R+(S) = lim sup

M−→∞
sup
r∈R+

|S ∩ rIM |
2M

,

and

D−R+(S) = lim inf
M−→∞

inf
r∈R+

|S ∩ rIM |
2M

.

For T ⊂ R and b = {bM} ⊂ R we set

DR(T, p, b) = p-lim
|T ∩ (bM + [−M,M ])|

2M
,

D+
R (T ) = lim sup

M−→∞
sup
x∈R

|T ∩ (x+ [−M,M ]) |
2M

,

and

D−R (T ) = lim inf
M−→∞

inf
x∈R

|T ∩ (x+ [−M,M ]) |
2M

.

Relatively separated sets in both R+ and R have finite density. In the next two

lemmas, we prove density-like results for relatively separated sets in R+ and R. These

results are needed for the proof of the main theorem.

Lemma 2.2.7. Suppose S ⊂ R+ is relatively separated. Then there is C ∈ [0,∞)

such that

(a) |S ∩ rIM | ≤ 2CM ∀M ∈ N, r ∈ R+ and

(b) |S ∩ r (IM+N \ IM)| ≤ 2CN ∀M,N ∈ N, r ∈ R+.

Proof. First we prove (a). Consider the compact set I1 = [e−1, e]. By definition, there

is some C1 ∈ [0,∞) such that ∥∥∥∑
s∈S

χsI1

∥∥∥
∞
≤ C1.

Thus for each j ∈ Z we have
∑

s∈S
χsI1(rej) ≤ C1. Notice that

∑
s∈S

χsI1(rej) =
∣∣{s ∈ S : se−1 ≤ rej ≤ se

}∣∣
=
∣∣{s ∈ S : rej−1 ≤ s ≤ rej+1

}∣∣ .
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Thus if M = 1 we have

|S ∩ rIM | =
∑
s∈S

χsI1(r) ≤ C1.

For M > 1 we have

S ∩ rIM ⊂
M−1⋃

j=−M+1

{
s ∈ S : rej−1 ≤ s ≤ rej+1

}
,

which means

|S ∩ rIM | ≤
M−1∑

j=−M+1

∣∣{s ∈ S : rej−1 ≤ s ≤ rej+1
}∣∣

=
M−1∑

j=−M+1

∑
s∈S

χsI1(rej)

≤
M−1∑

j=−M+1

C1

≤ C1(2M − 1).

Choosing C = C1 gives (a).

We will show that (b) is also satisfied for C = C1. Notice that

S ∩ r (IM+N \ IM)

=
{
s ∈ S : re−M−N ≤ s < re−M or reM < s ≤ reM+N

}
⊂

−M−1⋃
j=−M−N+1

{
s ∈ S : rej−1 ≤ s ≤ rej+1

}
∪
M+N−1⋃
j=M+1

{
s ∈ S : rej−1 ≤ s ≤ rej+1

}
.

Thus

|S ∩ r (IM+N \ IM)|

≤
−M−1∑

j=−M−N+1

∑
s∈S

χsI1(rej) +
M+N−1∑
j=M+1

∑
s∈S

χsI1(rej)

≤
−M−1∑

n=−M−N+1

C1 +
M+N−1∑
n=M+1

C1

≤ 2C1(N − 1)

≤ 2CN.
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Lemma 2.2.8. Suppose T ⊂ R is relatively separated. Then there is C ∈ [0,∞) such

that

(a) |T ∩ (x+ [−M,M ])| ≤ 2CM ∀M ∈ N, x ∈ R and

(b) |T ∩ (x+ [−M −N,M +N ] \ [−M,M ])| ≤ 2CN ∀M,N ∈ N, x ∈ R.

Proof. Since T is relatively separated, there is some C1 <∞ such that∥∥∥∥∥∑
t∈T

χt+[−1,1]

∥∥∥∥∥
∞

≤ C1.

Choose C = C1. Notice that

∑
t∈T

χt+[−1,1](x+ n) = |{t ∈ T : t ∈ x+ [n− 1, n+ 1]}| .

Thus

|T ∩ x+ [−M,M ]| ≤
M−1∑

n=−M+1

|{t ∈ T : t ∈ x+ [n− 1, n+ 1]}|

=
M−1∑

n=−M+1

∑
t∈T

χt+[−1,1](x+ n)

≤
M−1∑

n=−M+1

C1

≤ C1(2M − 1)

≤ 2C1M.

Also,

|T ∩ x+ [−M −N,M +N ] \ [−M,M ]|

≤
−M−1∑

n=−M−N+1

|{t ∈ T : t ∈ x+ [n− 1, n+ 1]}|

+
M+N−1∑
n=M+1

|{t ∈ T : t ∈ x+ [n− 1, n+ 1]}|

=
−M−1∑

n=−M−N+1

∑
t∈T

χt+[−1,1](x+ n) +
M+N−1∑
n=M+1

∑
t∈T

χt+[−1,1](x+ n)

23



≤
−M−1∑

n=−M−N+1

C1 +
M+N−1∑
n=M+1

C1

≤ 2C1(N − 1)

≤ 2CN.

The following lemma relates density in A to density in R+ and R.

Lemma 2.2.9. Suppose S ⊂ R+ and T ⊂ R. For any sequence {cM} = {(aM , bM)} ⊂

A and any free ultrafilter p we have

D−R (T )DR+(S, a, p) ≤ DA(S × T, c, p) ≤ D+
R (T )DR+(S, a, p)

Proof. Notice that (s, t) ∈ cMQM if and only if s = aMx for some x ∈ [e−M , eM ]

and t = y + aM bM
s

for some y ∈ [−M,M ]. That is (s, t) ∈ cMQM if and only if

s ∈ U ∩ aMIM and t ∈ aM bM
s

+ [−M,M ]. Thus

|S × T ∩ cMQM | ≤
∣∣S ∩ aM [e−M , eM ]

∣∣ · sup
x∈R
|T ∩ x+ [−M,M ]| .

Using the product preservation property of free ultrafilters, we see

p-lim
|S × T ∩ cMQM |

µ(QM)

≤

(
p-lim

|S ∩ aM [e−M , eM ]|
2M

)
·
(
p-lim sup

x∈R

|T ∩ x+ [−M,M ]|
2M

)
= DR+(S, a, p) ·

(
p-lim sup

x∈R

|T ∩ x+ [−M,M ]|
2M

)
.

Since p-lim supx∈R
|T∩x+[−M,M ]|

2M
is an accumulation point of the sequence{

sup
x∈R

|T ∩ x+ [−M,M ]|
2M

}
M∈N

,

we must have

p-lim sup
x∈R

|T ∩ x+ [−M,M ]|
2M

≤ lim sup
M→∞

sup
x∈R

|T ∩ x+ [−M,M ]|
2M

= D+
R (T ).

The other inequality is proven similarly.
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2.2.4 Fourier Frames

Definition 2.2.10. We say that E(T ) = {e2πitx}t∈T is a Fourier frame if there is

some r so that E(T ) is a frame for L2[−r, r].

It is well known that
{
r−

1
2 e2πin

r
x
}
n∈Z

is a frame (and in fact an orthonormal basis)

for L2[− r
2
, r

2
]. The following theorem, from [78], shows that Fourier frames are stable

under `∞ perturbations.

Theorem 2.2.11. Suppose I is a compact interval and E(T ) = {e2πitx}t∈T is a

Fourier frame for L2(I). Then there is some ε > 0 so that if {st}t∈T satisfies

supt∈T |t− st| < ε then {e2πistx}t∈T is also a Fourier frame for L2(I).

The density of a Fourier frame is determined by the frame bounds.

Lemma 2.2.12. Suppose V ⊂ R and E(V ) = {e2πivw}v∈V is a frame for L2[−r, r]

with bounds A,B. Then

A ≤ D−R (V ) ≤ D+
R (V ) ≤ B.

Proof. This holds by Theorem 7 in [2]. The exact details are given in the appendix.

2.2.5 Wavelet Frames

A wavelet frame for L2(R) with frame bounds A,B is a sequence {σ(x)f}x∈X , where

f ∈ L2(R) and X ⊂ A, satisfying

∀h ∈ L2(R), A ‖h‖2 ≤
∑
x∈X

|Wfh(x)|2 ≤ B ‖h‖2 .

A separable wavelet frame is one of the form {σ(s, t)g}(s,t)∈S×T . Separable wavelet

frames of the form {σ(am, bn)g}m,n∈Z have been studied extensively and used widely in

applications. If E(T ) is a Fourier frame then the frame and Bessel sequence properties

of a sequence of the form {σ(s, t)g}(s,t)∈S×T are largely determined by the behavior

of the function
∑

s∈S |ĝ(sx)|2. For this reason, we make the following definition.
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Definition 2.2.13. Let S ⊂ R+. We say that g is Chui-Shi bounded with respect

to S if there is some finite K such that

∑
s∈S

|ĝ(sx)|2 ≤ K a.e.

It was proved in [15] that for regular wavelet frames {σ(am, bn)g}, the function∑
m |ĝ(amx)|2 is bounded almost everywhere. This was generalized in [77] to the

following theorem.

Theorem 2.2.14. Suppose {σ(u, v)f}(u,v)∈U×V is a frame for L2(R) with frame bounds

A,B and E(V ) = {e2πivw}v∈V is a frame for L2[−rV , rV ] with bounds AV , BV . Then

A

BV

≤
∑
u∈U

∣∣∣f̂(uw)
∣∣∣2 ≤ B

AV
a.e.

Definition 2.2.15. Given a free ultrafilter p, sequence c = {cM}M∈N = {(aM , bM)}M∈N

⊂ A and admissible f, g generating wavelet Bessel sequences G = {σ(s, t)g}(s,t)∈S×T

and F = {σ(u, v)f}(u,v)∈U×V , we define the relative admissibility measure of F with

respect to G to be

µF ,G(p, c) = p-lim
1

|U ∩ aMIM |
∑

u∈U∩aM IM

∑
s∈S

∫
|ĝ(sx)|2 |f̂(ux)|2 dx

|x|
.

If g is Chui-Shi bounded with respect to S, then µF ,G(p, c) is a type of average

admissibility constant for f .

In this section we develop results that allow us to estimate sums of the form∑
u∈U∩aM ICM

∑
s∈S
∫
|ĝ(sx)|2 |f̂(ux)|2 dx

|x| .

Definition 2.2.16. Suppose f, g ∈ L2(R). We say that f, g are a localized pair if∫
[0,∞)

(
sup

c∈[ye−1,ye]

∫
|ĝ(x)|2 |f̂(cx)|2 dx

|x|

)
dy

y
<∞.

Notice that∫
[0,∞)

sup
c∈[ye−1,ye]

∫
|ĝ(x)|2 |f̂(cx)|2 dx

|x|
dy

y
=

∫
[0,∞)

sup
c∈[ye−1,ye]

∫
|ĝ(cx)|2 |f̂(x)|2 dx

|x|
dy

y
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so that localization is a symmetric relation.

The following lemma gives a class of functions that form a localized pair with any

admissible wavelet. A generalization of this proof technique shows that any function

in L2(R)∩L∞(R) whose Fourier transform is supported in [−Ω1,−Ω0]∪ [Ω0,Ω1] forms

a localized pair with any admissible wavelet.

Lemma 2.2.17. Fix a > 1. Every admissible function f forms a localized pair with

the function g whose Fourier transform is ĝ = χ
[−1,−a−1]∪[a−1,1].

Proof. Fix an admissible function f . We have ĝ = χ
[−1,−a−1]∪[a−1,1]. Then∫

[0,∞)

|ĝ(x)|2 |f̂(cx)|2 dx

|x|
=

∫
[ca−1,ca]

|f̂(x)|2 dx

|x|
.

For em ≤ y ≤ em+1 and c ∈ [ye−1, ye] we have [ca−1, ca] ⊂ [a−1em−1, aem+2]. Choose

k > 0 so that a2 ≤ ek. Then [a−1em−1, aem+2] ⊂ [a−1em−1, a−1em+k+2]. We have∫
[0,∞)

sup
c∈[ye−1,ye]

∫
[0,∞)

|ĝ(x)|2 |f̂(cx)|2 dx

|x|
dy

y

=
∑
m∈Z

∫
[em,em+1)

sup
c∈[ye−1,ye]

∫
[ca−1,ca]

|f̂(x)|2 dx

|x|
dy

y

≤
∑
m∈Z

∫
[em,em+1)

∫
[a−1em−1,aem+2]

|f̂(x)|2 dx

|x|
dy

y

=
∑
m∈Z

∫
[a−1em−1,aem+2]

|f̂(x)|2 dx

|x|

≤
∑
m∈Z

∫
[a−1em−1,a−1em+k+2]

|f̂(x)|2 dx

|x|

≤ (k + 3)Cf .

Similar estimates hold for ∫
(−∞,0]

|ĝ(x)|2 |f̂(cx)|2 dx

|x|
.

The following result is a special case of Lemma 1 in [34].
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Lemma 2.2.18. Suppose that R ⊂ R+ is relatively separated. If f, g are a localized

pair then there is some finite K independent of f, g and R so that

∑
r∈R∩ICM

∫
|ĝ(x)|2|f̂(rx)|2 dx

|x|
≤ K

∫
ICM−1

sup
r∈[ye−1,ye]

∫
|ĝ(x)|2 |f̂(rx)|2 dx

|x|
dy

y

for all M > 1.

2.3 Main result

We begin by showing that for suitable f, g, certain average admissibility constants of

f, g are proportional. We need not have wavelet frames to derive this result.

Theorem 2.3.1. Suppose that U and S are relatively separated in R+ and f, g ∈

L2(R) are admissible, form a localized pair, and are Chui-Shi bounded with respect to

U, S, respectively. Then for any sequence {aM} ⊂ R+, we have

0 = lim
M→∞

1

2M

( ∑
s∈S∩aM IM

∑
u∈U

∫
|ĝ(sw)|2 |f̂(uw)|2 dw

|w|

−
∑

u∈U∩aM IM

∑
s∈S

∫
|ĝ(sw)|2 |f̂(uw)|2 dw

|w|

)
Proof. Fix ε > 0. Since f, g are a localized pair, we can choose Mε ∈ N so that∫

ICMε−1

sup
r∈[ye−1,ye]

∫
|ĝ(x)|2 |f̂(rx)|2 dx

|x|
dy

y
< ε

and ∫
ICMε−1

sup
r∈[ye−1,ye]

∫
|ĝ(rx)|2 |f̂(x)|2 dx

|x|
dy

y
< ε.

By Lemma 2.2.18, we can choose K1 <∞ so that for all M > 1 we have

∑
u∈U∩ICM

∫
|ĝ(x)|2 |f̂(ux)|2 dx

|x|
≤ K1

∫
ICMε−1

sup
r∈[ye−1,ye]

∫
|ĝ(x)|2 |f̂(rx)|2 dx

|x|
dy

y

and

∑
s∈S∩ICM

∫
|ĝ(sx)|2 |f̂(x)|2 dx

|x|
≤ K1

∫
ICMε−1

sup
r∈[ye−1,ye]

∫
|ĝ(rx)|2 |f̂(x)|2 dx

|x|
dy

y
.
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Since f, g are Chui-Shi bounded with respect to U, S, we can choose K2 <∞ so that

∑
s∈S

|ĝ(sw)|2 < K2 a.e.

and ∑
u∈U

∣∣∣f̂(uw)
∣∣∣2 < K2 a.e.

By Lemma 2.2.7, since U and S are relatively separated in R+, we can choose K3 <∞

so that for all M ∈ N and r ∈ R+ we have

|S ∩ rIM | ≤ 2K3M, |S ∩ r (IM+Mε \ IM)| ≤ 2K3Mε,

|U ∩ rIM | ≤ 2K3M and |U ∩ r (IM+Mε \ IM)| ≤ 2K3Mε.

Write

∑
s∈S∩aM IM

∑
u∈U

∫
|ĝ(sx)|2 |f̂(ux)|2 dx

|x|
−

∑
u∈U∩aM IM

∑
s∈S

∫
|ĝ(sx)|2 |f̂(ux)|2 dx

|x|

=
∑

s∈S∩aM IM

∑
u∈U∩aM ICM

∫
|ĝ(sx)|2 |f̂(ux)|2 dx

|x|

−
∑

u∈U∩aM IM

∑
s∈S∩aM ICM

∫
|ĝ(sx)|2 |f̂(ux)|2 dx

|x|

=
∑

s∈S∩aM IM

∑
u∈U∩aM ICM+Mε

∫
|ĝ(sx)|2 |f̂(ux)|2 dx

|x|

+
∑

s∈S∩aM IM

∑
u∈U∩aM (IM+Mε\IM )

∫
|ĝ(sx)|2 |f̂(ux)|2 dx

|x|

−
∑

u∈U∩aM IM

∑
s∈S∩aM ICM+Mε

∫
|ĝ(sx)|2 |f̂(ux)|2 dx

|x|

−
∑

u∈U∩aM IM

∑
s∈S∩aM (IM+Mε\IM )

∫
|ĝ(sx)|2 |f̂(ux)|2 dx

|x|

= T1 + T2 − T3 − T4

We can estimate T1 by noting that for s ∈ S ∩ aMIM and u ∈ U ∩ aMICM+Mε
, we
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have s
u
∈ ICMε

. Using this fact along with Lemma 2.2.18 we have

|T1| =
∑

s∈S∩aM IM

∑
u∈U∩aM ICM+Mε

∫
|ĝ(sx)|2 |f̂(ux)|2 dx

|x|

≤ |S ∩ aMIM | sup
s∩aM IM

∑
u∈U∩aM ICM+Mε

∫
|ĝ(sx)|2 |f̂(ux)|2 dx

|x|

≤ |S ∩ aMIM | sup
s∩aM IM

∑
u∈U∩aM ICM+Mε

∫
|ĝ(w)|2 |f̂

(u
s
w
)
|2 dw

|w|

≤ |S ∩ aMIM | sup
s∩aM IM

∑
r∈s−1U∩aM ICMε

∫
|ĝ(w)|2 |f̂ (rw) |2 dw

|w|

≤ |S ∩ aMIM | sup
s∩aM IM

K1

∫
ICMε−1

sup
r∈[ye−1,ye]

∫
|ĝ(x)|2 |f̂(rx)|2 dx

|x|
dy

y

= |S ∩ aMIM |K1

∫
ICMε−1

sup
r∈[ye−1,ye]

∫
|ĝ(x)|2 |f̂(rx)|2 dx

|x|
dy

y

≤ 2MK1K3ε.

We estimate T2 by

|T2| =
∑

s∈S∩aM IM

∑
u∈U∩aM (IM+Mε\IM )

∫
|ĝ(sx)|2 |f̂(ux)|2 dx

|x|

≤
∑

u∈U∩aM (IM+Mε\IM )

K2

∫
|f̂(ux)|2 dx

|x|

=
∑

u∈U∩aM (IM+Mε\IM )

K2Cf

≤ 2K2K3CfMε.

Similarly, we can show

|T3| ≤ 2MK1K3ε

and

|T4| ≤ 2K2K3CgMε.
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Thus

1

2M

∣∣∣∣ ∑
s∈S∩aM IM

∑
u∈U

∫
|ĝ(sw)|2 |f̂(uw)|2 dw

|w|
−

∑
u∈U∩aM IM

∑
s∈S

∫
|ĝ(sw)|2 |f̂(uw)|2 dw

|w|

∣∣∣∣
≤ |T1|+ |T2|+ |T3|+ |T4|

2M

≤ 4K1K3ε+ 2K2K3(Cg + Cf )
Mε

M

→ 4K1K3ε as M →∞.

Since ε is arbitrary, the result follows.

For separable wavelet frames and frame sequences in L2(R), Theorem 2.3.1 can

be restated as a useful relationship between the relative admissibility measure of a

frame and the density of its dilation parameters.

Corollary 2.3.2. Suppose U, S are relatively separated in R+ and f, g ∈ L2(R) are

admissible, form a localized pair, and are Chui-Shi bounded with respect to U, S, re-

spectively. Let G = {σ(s, t)g}(s,t)∈S×T and F = {σ(u, v)f}(u,v)∈U×V . Then for any

sequence a = {aM} ⊂ R+,

µF ,G(p, c) ·DR+(U, p, a) = µG,F(p, c) ·DR+(S, p, a),

where c = {(aM , bM)} ⊂ A for any sequence {bM} ⊂ R.

Proof. Notice that

µF ,G(p, c) ·DR+(U, p, a)− µG,F(p, c) ·DR+(S, p, a)

=

(
p-lim

|{U ∩ aMIM}|
2M

)
×

(
p-lim

1

|{U ∩ aMIM}|
∑

u∈U∩aM IM

∑
s∈S

∫
|ĝ(sw)|2 |f̂(uw)|2 dw

|w|

)

−
(
p-lim

|{S ∩ aMIM}|
2M

)
×

(
p-lim

1

|{S ∩ aMIM}|
∑

s∈S∩aM IM

∑
u∈U

∫
|ĝ(sw)|2 |f̂(uw)|2 dw

|w|

)
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=

(
p-lim

|{U ∩ aMIM}|
2M

1

|{U ∩ aMIM}|
∑

u∈U∩aM IM

∑
s∈S

∫
|ĝ(sw)|2 |f̂(uw)|2 dw

|w|

)

−

(
p-lim

|{S ∩ aMIM}|
2M

1

|{S ∩ aMIM}|
∑

s∈S∩aM IM

∑
u∈U

∫
|ĝ(sw)|2 |f̂(uw)|2 dw

|w|

)

= p-lim
1

2M

( ∑
u∈U∩aM IM

∑
s∈S

∫
|ĝ(sw)|2 |f̂(uw)|2 dw

|w|

−
∑

s∈S∩aM IM

∑
u∈U

∫
|ĝ(sw)|2 |f̂(uw)|2 dw

|w|

)
.

By the previous theorem,

0 = lim
M→∞

1

2M

( ∑
u∈U∩aM IM

∑
s∈S

∫
|ĝ(sw)|2 |f̂(uw)|2 dw

|w|

−
∑

s∈S∩aM IM

∑
u∈U

∫
|ĝ(sw)|2 |f̂(uw)|2 dw

|w|

)
.

Since every free ultrafilter limit is an accumulation point, we have

0 = p-lim
1

2M

( ∑
u∈U∩aM IM

∑
s∈S

∫
|ĝ(sw)|2 |f̂(uw)|2 dw

|w|

−
∑

s∈S∩aM IM

∑
u∈U

∫
|ĝ(sw)|2 |f̂(uw)|2 dw

|w|

)
.

Hence

µF ,G(p, c) ·DR+(U, p, a)− µG,F(p, c) ·DR+(S, p, a) = 0

.

2.4 Comparison Theorem for wavelet frames

In this section, we apply Theorem 2.3.1 and Corollary 2.3.2 to wavelet frames for

L2(R) to derive a comparison theorem.

Theorem 2.4.1. Suppose the following conditions hold.

(a) f, g ∈ L2(R) are admissible and form a localized pair.

(b) U and S are relatively separated in R+.

32



(c) V ⊂ R and E(V ) = {e2πivw}v∈V is a frame for L2[−rV , rV ] with bounds AV , BV .

(d) T ⊂ R and E(T ) = {e2πitw}t∈T is a frame for L2[−rT , rT ] with frame bounds

ET , FT .

(e) F = {σ(u, v)f}(u,v)∈U×V is a frame for L2(R) with frame bounds A,B.

(f) G = {σ(s, t)g}(s,t)∈S×T is a frame for L2(R) with frame bounds E,F .

Then for any free ultrafilter p and any sequence a = {aM} ⊂ R+

AET Cg
F BV Cf

≤ DR+(U, a, p)

DR+(S, a, p)
≤ B FT Cg
E AV Cf

Proof. By Theorem 2.2.14, we have

A

BV

≤
∑
u∈U

|f̂(uw)|2 ≤ B

AV
a.e. w ∈ R.

Hence

A

BV

Cg ≤
∑
u∈U

∫
|ĝ(sw)|2 |f̂(uw)|2 dw

|w|
≤ B

AV
Cg,

which implies

A

BV

Cg ≤ µG,F(p, c) ≤ B

AV
Cg (5)

for all p and c = {(aM , bM)} ⊂ A. Similarly,

E

FT
Cf ≤ µF ,G(p, c) ≤

F

ET
Cf (6)

for all p and c = {(aM , bM)} ⊂ A. Finally, by Corollary 2.3.2 we have

DR+(U, a, p)

DR+(S, a, p)
=
µG,F(p, c)

µF ,G(p, c)
. (7)

Combining estimates (5), (6) and (7) proves the theorem.
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Corollary 2.4.2. If F = {σ(u, v)f}(u,v)∈U×V is a frame for L2(R) with frame bounds

A,B and E(V ) = {e2πivw}v∈V a frame for L2[−rV , rV ] with bounds AV , BV , then for

any free ultrafilter p and any sequence a = {aM} ⊂ R+ we have

2A

BV Cf
≤ DR+(U, a, p) ≤ 2B

AV Cf
.

Proof. Letting ĝ = χ
[−1,− 1

2
]∪[ 1

2
,1] and G = {σ(2m, n)g}m,n∈Z we obtain an orthonormal

basis for L2(R) with Cg = 2 ln 2. Notice {e2πinx}n∈Z is an orthonormal basis for

L2[−1
2
, 1

2
]. We have

DR+({2m}m∈Z , a, p) =
1

ln 2

for all p, a. Since Lemma 2.2.17 ensures that f, g are a localized pair, the result

follows from Theorem 2.4.1.

We can use Theorem 2.4.1 to draw conclusions about the affine density of wavelet

frames.

Theorem 2.4.3. Suppose that the hypotheses of Theorem 2.4.1 hold. Then for any

sequence c = {cM} ⊂ A and free ultrafilter p we have

AAV ET Cg
F BV FT Cf

≤ DA(U × V, c, p)
DA(S × T, c, p)

≤ BBV FT Cg
E AV ET Cf

Proof. Write {cM} = {(aM , bM)}. By Theorem 2.4.1, we have

AET Cg
F BV Cf

≤ DR+(U, a, p)

DR+(S, a, p)
≤ B FT Cg
E AV Cf

,

where a = {aM} . By Lemma 2.2.12, we obtain

AV ≤ D−R (V ) ≤ D+
R (V ) ≤ BV

and

ET ≤ D−R (T ) ≤ D+
R (T ) ≤ FT .

Combining these estimates with Lemma 2.2.9 proves the result.
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We recover the main theorem in [50] as a corollary to Theorem 2.4.3.

Corollary 2.4.4. If F = {σ(u, v)f}(u,v)∈U×V is a frame for L2(R) with frame bounds

A,B and E(V ) = {e2πivw}v∈V is a frame for L2[−rV , rV ] with bounds AV , BV , then

for any free ultrafilter p and any sequence c = {cM} ⊂ A we have

2AAV
BV Cf

≤ DA(U × V, c, p) ≤ 2BBV

AV Cf
.

Proof. Let ĝ = χ
[−1,− 1

2
]∪[ 1

2
,1] and G = {σ(2m, n)g}m,n∈Z so G is an orthonormal basis

for L2(R) with Cg = 2 ln 2. We have

DA({(2m, n)}m,n∈Z , c, p) =
1

ln 2

for all p, c. Since Lemma 2.2.17 ensures that f, g are a localized pair, the result

follows from Theorem 2.4.3.

2.5 Comparison Theorem for wavelet frame sequences

It may appear that the crux of the proofs of Theorems 2.4.1 and 2.4.3 is the estimates

A

BV

≤
∑
u∈U

∣∣f̂(uw)
∣∣2 ≤ B

AV
a.e. w ∈ R (8)

and

E

FT
≤
∑
s∈S

|ĝ(sw)|2 ≤ F

ET
a.e. w ∈ R, (9)

which are guaranteed by [77] when F , G are frames for L2(R). However, this is not

true. We can adapt our above approach to obtain similar comparison results for

certain separable wavelet frame sequences for which the inequalities (8) and (9) need

not hold.

Define an operator ∆ by

(∆h)∧(w) =
ĥ(w)√
|w|

.

A function h is admissible if and only if h ∈ L2(R) and ∆h ∈ L2(R). The admissibility

constant of h is Ch = ‖∆h‖2
2.
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Theorem 2.5.1. Suppose the following conditions hold.

(a) U and S are relatively separated in R+.

(b) f, g ∈ L2(R) are admissible, form a localized pair, are Chui-Shi bounded with

respect to U, S, respectively, and f̂ , ĝ have compact support.

(c) V ⊂ R and E(V ) = {e2πivw}v∈V is a frame for L2(supp f̂) with bounds AV , BV .

(d) T ⊂ R and E(T ) = {e2πitw}t∈T is a frame for L2(supp ĝ) with bounds ET , FT .

(e) SF is the frame operator for sequence F = {σ(u, v)f}(u,v)∈U×V .

(f) SG is the frame operator for sequence G = {σ(s, t)g}(s,t)∈S×T .

Then there exist constants αs,t ∈ [B−1
V , A−1

V ] and λu,v ∈ [F−1
T , E−1

T ] so that

0 = lim
M−→∞

1

2M

( ∑
s∈S∩aM IM

αs,t
〈
σ(s, t)∆g, SFσ(s, t)∆g

〉
−

∑
u∈U∩aM IM

λu,v
〈
σ(u, v)∆f, SGσ(u, v)∆f

〉)
for any sequence a = {aM} ⊂ R+.

Proof. Note that

〈
σ(s, t)∆g, SFσ(s, t)∆g

〉
=

∑
(u,v)∈U×V

∣∣〈σ(s, t)∆g, σ(u, v)f
〉∣∣2

=
∑

(u,v)∈U×V

∣∣∣〈σ ( s
u
, t
)

∆g, σ(1, v)f
〉∣∣∣2

=
∑

(u,v)∈U×V

∣∣∣∣∫ |x|− 1
2 ĝ
(sx
u

)
e2πitsxu−1

f̂(x)e−2πivx dx

∣∣∣∣2

36



≤ BV

∑
u∈U

∫ ∣∣∣ĝ (sw
u

)∣∣∣2 ∣∣f̂(w)
∣∣2 dw

|w|
, (10)

where estimate (10) comes from the fact E(V ) is a frame for L2(supp f̂) with bounds

AV , BV . Similarly,

〈
σ(s, t)∆g, SFσ(s, t)∆g

〉
≥ AV

∑
u∈U

∫ ∣∣∣ĝ (sw
u

)∣∣∣2 ∣∣f̂(w)
∣∣2 dw

|w|
.

Choose αs,t ∈ [B−1
V , A−1

V ] so that

αs,t
〈
σ(s, t)∆g, SFσ(s, t)∆g

〉
=
∑
u∈U

∫ ∣∣ĝ(sw)
∣∣2∣∣f̂(uw)

∣∣2 dw

|w|

and choose λu,v ∈ [F−1
T , E−1

T ] so that

λu,v
〈
σ(u, v)∆f, SGσ(u, v)∆f

〉
=
∑
s∈S

∫ ∣∣ĝ(sw)
∣∣2∣∣f̂(uw)

∣∣2 dw

|w|
.

Then∑
s∈S∩aM IM

αs,t
〈
σ(s, t)∆g, SFσ(s, t)∆g

〉
−

∑
u∈U∩aM IM

λu,v
〈
σ(u, v)∆f, SGσ(u, v)∆f

〉
=

∑
s∈S∩aM IM

∑
u∈U

∫ ∣∣ĝ(sw)
∣∣2∣∣f̂(uw)

∣∣2 dw

|w|
−

∑
u∈U∩aM IM

∑
s∈S

∫ ∣∣ĝ(sw)
∣∣2∣∣f̂(uw)

∣∣2 dw

|w|
.

The technique used to prove Theorem 2.3.1 can be used to complete the proof.

We can think of

p-lim
1

|U ∩ aMIM |
∑

u∈U∩aM IM

λu,v
〈
σ(u, v)∆f, SGσ(u, v)∆f

〉
as a value similar to µF ,G(p, c). With this understanding, Theorem 2.5.1 is analogous

to Theorem 2.3.1.

Theorem 2.5.2. Suppose the following conditions hold.

(a) U and S are relatively separated in R+.

(b) f, g ∈ L2(R) are admissible, form a localized pair, are Chui-Shi bounded with

respect to U, S, respectively, and f̂ , ĝ have compact support.
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(c) V ⊂ R and E(V ) = {e2πivw}v∈V is a frame for L2(supp f̂) with bounds AV , BV .

(d) T ⊂ R and E(T ) = {e2πitw}t∈T is a frame for L2(supp ĝ) with bounds ET , FT .

(e) F = {σ(u, v)f}(u,v)∈U×V and G = {σ(s, t)g}(s,t)∈S×T are frames for some com-

mon subspace of L2(R) with frame bounds A,B and E,F , respectively.

Then for any free ultrafilter p and any sequence a = {aM} ⊂ R+, we have

AET Cg
F BV Cf

≤ DR+(U, a, p)

DR+(S, a, p)
≤ B FT Cg
E AV Cf

.

Proof. Let {αs,t}(s,t)∈S×T ⊂ [B−1
V , A−1

V ], {λu,v}(u,v)∈U×V ⊂ [F−1
T , E−1

T ] be defined as in

the proof of Theorem 2.5.1 and let SF , SG be the frame operators for F , G respectively.

Since A ≤ SF ≤ B and αs,t ∈ [B−1
V , A−1

V ], we see

αs,t
〈
σ(s, t)∆g, SFσ(s, t)∆g

〉
= αs,t

∥∥∥S 1
2
F∆g

∥∥∥2

∈
[
ACg
BV

,
BCg
AV

]
.

Therefore

p-lim
1

2M

( ∑
s∈S∩aM IM

αs,t
〈
σ(s, t)∆g, SFσ(s, t)∆g

〉)
∈
[
ACg
BT

,
BCg
AT

]
·DR+(S, a, p).

Similarly,

λu,v
〈
σ(u, v)f, SGσ(u, v)f

〉
= λu,v

∥∥∥S 1
2
G∆f

∥∥∥2

∈
[
ECf
FT

,
FCf
ET

]
,

which implies

p-lim
1

2M

( ∑
u∈U∩aM IM

λu,v
〈
σ(u, v)∆f, SGσ(u, v)∆f

〉)
∈
[
ECf
FT

,
FCf
ET

]
·DR+(U, a, p).

Hence from Theorem 2.5.1, we obtain

AET Cg
F BV Cf

≤ DR+(U, a, p)

DR+(S, a, p)
≤ B FT Cg
E AV Cf

.
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Corollary 2.5.3. Suppose the hypotheses of Theorem 2.5.2 hold. Then for any free

ultrafilter p and any sequence c = {cM} ⊂ A we have

AAV ET Cg
F BV FT Cf

≤ D(U × V, c, p)
D(S × T, c, p)

≤ BBV FT Cg
E AVET Cf

.

Proof. Corollary 2.5.3 follows from Theorem 2.5.2 for the same reasons that Theorem

2.4.3 follows from Theorem 2.4.1.
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CHAPTER III

AFFINE PSEUDODIFFERENTIAL OPERATORS

3.1 Introduction

In this chapter, we investigate the Schatten class properties of affine pseudodifferential

operators. An affine pseudodifferential operator is a superposition of translation and

dilation operators. More precisely, an affine pseudodifferential operator is one of the

form

Af(t) =

∫∫
R2

L(a, b)
1

a
f

(
t− b
a

)
da db,

Affine pseudodifferential operators arise naturally in the study of wideband mobile

communications, as noted in [4], [29], [38], [68] and [75]. Due to the multipath effect,

a signal is received via a wireless communications channel as a superposition of delays

of the transmitted signal. If the transmitter or receiver are moving, then the Doppler

effect implies that the signal received is a superposition of rescalings of the signal

transmitted. Hence, the received signal consists of superpositions of time-scale shifts

of the transmitted signal f of the form f
(
t−b
a

)
. The quantity L(a, b) represents

the “amount” of the transmitted signal, distorted by scale-shift amount a and delay

amount b, comprising the received signal.

3.1.1 Relationship to Pseudodifferential Operators

Affine pseudodifferential operators are so-named because they are analogous to the

more widely-studied pseudodifferential operators. Just as an affine pseudodifferential

operator is a superposition of time-scale shifts, a pseudodifferential operator is a

superposition of time-frequency shifts. Pseudodifferential operators have appeared

widely in the literature of physics, signal processing and differential equations. In

40



particular, since the Doppler effect for narrowband wireless communications is closely

modeled not as a change in scale but a shift in frequency, pseudodifferential operators

are models for narrowband wireless communications (see [38] and [68]).

Because of the role of pseudodifferential operators in partial differential equations,

the smoothness of the Weyl and Kohn-Nirenberg symbols of a pseudodifferential op-

erator has traditionally been used to characterize properties of the operator, with

the Hörmander symbol classes playing key roles. More recently, the continuity and

Schatten class properties of pseudodifferential operators have been well-described by

time-frequency analysis. In particular the modulation spaces Mp,q
w (Rd), which are Ba-

nach spaces characterized by time-frequency shifts, have been useful symbol spaces

for studying continuity and Schatten class properties of pseudodifferential operators.

Using the Gabor transform, elements in these spaces can be decomposed into a su-

perposition of time-frequency shifts, and this Gabor decomposition of the symbol of

a pseudodifferential operator can be used to characterize the properties of the opera-

tor. Results of this type appear in [21], [35], [41], [52], [71] and [73], while modulation

spaces appear implicitly in [23], [45], [47], [59] and [64]. See [33] for an overview of

modulation spaces and time-frequency analysis of pseudodifferential operators.

3.1.2 Summary of Results

3.1.2.1 Schatten class integral operators

Both affine pseudodifferential operators and pseudodifferential operators are types of

integral operators. In this paper we develop a technique for analyzing the kernel of

an integral operator to determine its Schatten-class properties. To obtain our main

result, we analyze the “slices” of the kernel of an integral operator using a resolution

of the identity. If these decomposed slices have a certain decay, then the operator is

Schatten p-class. As a special case, we obtain the following theorem.

Theorem 3.1.1. Suppose X is a locally compact group and σ is an irreducible unitary
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representation of X on U
(
L2(Rd)

)
with left Haar measure µ . Assume A is an integral

operator with kernel k and let k(t, y) = ky(t). Then there exists ψ ∈ L2(Rd) such that

if (∫
X

(∫
R
|〈ky, σ(x)ψ〉|2 dy

) p
2

dµ(x)

) 1
p

<∞, (11)

for p ∈ [1, 2], then A is Schatten p-class on L2(Rd).

Notice that the integral in (11) is a mixed norm. The idea of using mixed norm

spaces to classify the Schatten class properties of an integral operator is not new.

In [60] and [56], it is shown that if the kernel of an integral operator belongs to

an appropriate mixed norm space, then the operator is Schatten class. However,

Theorem 3.1.1 is distinct from these older results. In particular, the mixed norm

in (11) is not a mixed norm on the kernel k. Instead, it is a mixed norm on a

transformation of k given by (Zk) (x, y) = 〈ky, σ(x)ψ〉, arising from analyzing the

slices of the kernel with the resolution of the identity determined by {σ(x)ψ}x∈X .

Theorem 3.1.1 is a general result that is applicable to all integral operators in-

cluding pseudodifferential operators, affine pseudodifferential operators and Fourier

integral operators. The implications of this theorem for pseudodifferential operators

and Fourier integral operators will be examined in Chapters 4 and 5.

3.1.2.2 Kernel and Symbol classes

The success of time-frequency analysis in characterizing pseudodifferential operators

suggests that time-scale analysis may be useful in analyzing affine pseudodifferential

operators. A direct application of Theorem 3.1.1 to affine pseudodifferential operators

yields a slice-wavelet condition on the kernel which ensures the operator is Schatten

class. Furthermore, because of the relationship between the kernel and symbol of

an affine pseudodifferential operator, Theorem 3.1.1 gives rise to conditions on the

ridgelet transform of the symbol which ensure certain spectral properties of the op-

erator. The importance of the ridgelet transform of the symbol of a Schatten class
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affine pseudodifferential operator is surprising to us because it is not analogous to

the symbol results for pseudodifferential operators and Fourier integral operators in

Chapters 4 and 5.

The wavelet and ridgelet conditions on the kernel and symbol, respectively, of an

affine pseudodifferential operator give rise to families of spaces, Sq,p and Rs
q,p (defined

precisely in Section 3.4), useful for characterizing the Schatten class properties of

affine pseudodifferential operators. In particular, we obtain the following theorem.

Theorem 3.1.2. Suppose A is an affine pseudodifferential operator with kernel k and

symbol L.

(a) If k ∈ S2,p for some p ∈ [1, 2], then A ∈ Ip (L2(R)).

(b) If L ∈ T 1
2,p for some p ∈ [1, 2], then A ∈ Ip (L2(R)).

We will show that the spaces S2,p and T 1
2,p are Banach spaces and Banach algebras

under operations corresponding to composition of affine pseudodifferential operators.

Furthermore, we find smoothness and decay conditions on the kernel and Radon

transform of the symbol of an affine pseudodifferential operator that ensure the kernel

and symbol lie in S2,p and T 1
2,p, respectively. Interestingly, these types of conditions

also imply that the corresponding affine pseudodifferential operator is a Calderon-

Zygmund operator.

The chapter is organized as follows. Definitions and basic lemmas are given in

Section 3.2. In Section 3.3, we develop a Schatten class result for the kernel of an

arbitrary integral operator. In Section 3.4, we describe new function classes that

will be useful for characterizing Schatten class affine pseudodifferential operators. In

Section 3.5, we state the main result and prove that these new function classes are

nonempty. In Section 3.6, we find conditions on the Radon transform of the symbol

which ensure the operator is Calderon-Zygmund.
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3.2 Definitions and preliminary lemmas

3.2.1 Integral operator composition

This chapter concerns integral operators and affine pseudodifferential operators in

particular. We introduce two operations to describe the effects of operator composi-

tion on these operators.

Definition 3.2.1. Suppose k1, k2 : R2d → C. Define k = k1]k2 by

k(t, y) =

∫
Rd
k1(t, x)k2(x, y) dx,

for all (t, y) ∈ R2d for which this integral converges.

Definition 3.2.2. For L1,L2 : R2 define the affine convolution of L1,L2 by

L1 ~ L2(a, b) =

∫
R

∫
R−{0}

L1(u, v)L2

(
a

u
,
b− v
u

)
du

u2
dv

for all (a, b) ∈ R \ {0} × R for which this integral converges.

We note that this definition of affine convolution agrees with the more general

definition of convolution on locally compact groups (see [30] for background) for the

affine group multiplication given by (u, v)(x, y) = (ux, v + uy). However, this fact is

not relevant to the analysis in this chapter.

The composition of two integral operators is an integral operator and the compo-

sition of two affine pseudodifferential operators is again an affine pseudodifferential

operator. The following lemma, which is proved by direct computation, describes

how new kernels and symbols are obtained through operator composition.

Lemma 3.2.3. Suppose A1, A2 are affine pseudodifferential operators with symbols,

L1,L2, respectively and kernels k1, k2, respectively. Then A1 ◦ A2 is an affine pseu-

dodifferential operator with symbol L1 ~ L2 and kernel k1]k2.
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3.2.2 Singular integral operators

An integral operator whose kernel is singular along its diagonal is a called singular

integral operator. The following theorem concerning singular integral operators comes

from [26].

Theorem 3.2.4. Suppose T is an integral operator with kernel k such that T :

L2(R)→ L2(R) is bounded. If there is some finite C such that

sup
t,t′

∫
|t−t′|< 1

2
|t−y|
|k(t, y)− k(t′, y)| dy ≤ C

and

sup
y,y′

∫
|y−y′|< 1

2
|t−y|
|k(t, y)− k(t, y′)| dt ≤ C,

then T : Lp(R) → Lp(R) is bounded for all p ∈ (1,∞). In this case, T is called a

(generalized) Calderon-Zygmund operator

See [26], [32] and [67] for background on Calderon-Zygmund operators.

3.2.3 The relationship between kernel and symbol

Recall that the Radon transform of L ∈ L1(R2) is given by

RθL(s) = RL(θ, s) =

∫
{x∈R2:x·θ=s}

L(x) dx`(θ,s), for all (θ, s) ∈ S1 × R,

where dx`(θ,s) denotes the one-dimensional Lebesgue measure on the set `(θ, s) =

{x ∈ R2 : x · θ = s}. The next lemma describes a well-known property of the Radon

transform. See [57] for the proof.

Lemma 3.2.5. For each θ ∈ S1 we have ‖RθL‖L1(R) ≤ ‖L‖L1(R2).

We also recall that for admissible ψ ∈ S (R), the ridgelet transform of L ∈ L1(R2)

is

R(L)(a, b, θ) = 〈RθL, TbDaψ〉 =
(
RθL ∗D−aψ

)
(b) ∀θ ∈ S1, a ∈ R \ {0} , b ∈ R.
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Comparing Definitions 1.2.19 and 1.2.16, we see that each affine pseudodifferential

operator is also an integral operator, and the kernel of the affine pseudodifferential

operator with symbol L is

k(t, y) =

∫
R
L(a, t− ay) da.

This shows that the kernel and symbol of an affine pseudodifferential operator are re-

lated via the Radon transform. It is this relationship, stated precisely in the following

lemma, that will allow us to use kernel conditions of Schatten class integral operators

to draw conclusions about the symbols of affine pseudodifferential operators. Direct

computation gives the following result.

Lemma 3.2.6. Suppose A is an affine pseudodifferential operator with symbol L

and kernel k. Then k = RL ◦ O where O : R2 −→ S1 × R is given by O(t, y) =((
y√
y2+1

, 1√
y2+1

)
, t√

y2+1

)
.

Since the kernel of an affine pseudodifferential operator is closely related to the

Radon transform of the symbol, the wavelet transform of the kernel corresponds to

the ridgelet transform of the symbol. The exact relationship is given in the next

lemma, which is proved directly using Lemma 3.2.6

Lemma 3.2.7. Suppose A is an affine pseudodifferential operator with kernel k and

symbol L. Then

〈ky, TvDuψ〉 =
(
y2 + 1

) 1
4 R(L)

(
u√
y2 + 1

,
v√
y2 + 1

,

(
y√
y2 + 1

,
1√
y2 + 1

))
.

3.3 A Schatten Class Result for Integral Operators

In this section, we develop a general Schatten class result for integral operators.

Although the result (Theorem 3.3.2) is elementary, it does not seem to be in the

literature. The crux of the proof lies in the following lemma.
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Lemma 3.3.1. Assume {fj}j∈N , {gj}j∈N are orthonormal sequences in L2(Rd). Sup-

pose {ψx}x∈X is some collection of functions in L2(Rd) with B = supx∈X ‖ψx‖
2
L2(Rd) <

∞ and suppose that (X,µ) is a measure space satisfying

〈f, g〉 = K−1
ψ

∫
X

〈f, ψx〉〈ψx, g〉 dµ(x), for all f, g ∈ L2(Rd).

For G ∈ L2,p(Rd, X) define

T (G) =

{∫
X

〈fj, G(·, x)〉〈ψx, gj〉 dµ(x)

}
j∈N

.

Then for all p ∈ [1, 2], T : L2,p(Rd, X) −→ `p (N) is bounded with ‖T‖ ≤ B
1
p
− 1

2K
1− 1

p

ψ .

Proof. By Tonelli’s Theorem and the Cauchy-Schwarz inequality, we have

‖T (G)‖`1 =
∑
j∈N

∣∣∣∣∫
X

〈fj, G(·, x)〉〈ψx, gj〉 dµ(x)

∣∣∣∣
≤
∫
X

∑
j∈N

|〈fj, G(·, x)〉| |〈ψx, gj〉| dµ(x)

≤
∫
X

(∑
j∈N

|〈fj, G(·, x)〉|2
) 1

2
(∑

j∈N

|〈ψx, gj〉|2
) 1

2

dµ(x)

≤
∫
X

‖G(·, x)‖L2(Rd) ‖ψx‖L2(Rd) dµ(x)

≤ B
1
2

∫
X

‖G(·, x)‖L2(Rd) dµ(x)

= B
1
2 ‖G‖L2,1(Rd,X)

and

‖T (G)‖`2 =

(∑
j∈N

∣∣∣∣∫
X

〈fj, G(·, x)〉〈ψx, gj〉 dµ(x)

∣∣∣∣2) 1
2

≤
(∑

j∈N

(∫
X

|〈fj, G(·, x)〉|2 dµ(x)

)(∫
X

|〈ψx, gj〉|2 dµ(x)

)) 1
2

=

(∑
j∈N

(∫
X

|〈fj, G(·, x)〉|2 dµ(x)

)
Kψ ‖gj‖2

L2(Rd)

) 1
2

= K
1
2
ψ

(∫
X

∑
j∈N

|〈fj, G(·, x)〉|2 dµ(x)

) 1
2
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≤ K
1
2
ψ

(∫
X

‖G(·, x)‖2
L2(Rd) dµ(x)

) 1
2

= K
1
2
ψ ‖G‖L2,2(Rd,X) .

Hence the theorem holds for p = 1 and p = 2. The Riesz-Thorin Interpolation

Theorem (see [8]) gives the result for p ∈ (1, 2).

The next theorem gives sufficient conditions on the kernel of an integral operator

so that the operator is Schatten p-class when p ∈ [1, 2]. Notice that part (b) of the

theorem shows that the analogous conditions are not sufficient for p ∈ (2,∞].

Theorem 3.3.2. Suppose {ψx}x∈X is some collection of functions in L2(Rd) with

B = supx∈X ‖ψx‖
2
L2(Rd) <∞ and suppose that (X,µ) is a measure space satisfying

〈f, g〉 = K−1
ψ

∫
X

〈f, ψx〉〈ψx, g〉 dµ(x) for all f, g ∈ L2(Rd).

Assume A is an integral operator with kernel k.

(a) If p ∈ [1, 2] then

‖A‖Ip(L2(Rd)) ≤ B
1
p
− 1

2K
− 1
p

ψ

∥∥∥∥∥
(∫

Rd
|〈ky, ψx〉|2 dy

) 1
2

∥∥∥∥∥
Lp(X,µ)

.

(b) If p ∈ [2,∞] then∥∥∥∥∥
(∫

Rd
|〈ky, ψx〉|2 dy

) 1
2

∥∥∥∥∥
Lp(X,µ)

≤ B
1
2
− 1
pK

1− 1
p

ψ ‖A‖Ip(L2(Rd)) .

Proof. Suppose p ∈ [1, 2] and {fj}j∈N , {gj}j∈N are orthonormal sequences in L2(Rd).

Let G(y, x) = 〈ψx, ky〉. Notice that

〈Afj, ψx〉 =

∫∫
fj(y)k(t, y)ψx(t) dy dt = 〈fj, G(·, x)〉.

Using the previous lemma, we have(∑
j∈N

|〈Afj, gj〉|p
) 1

p

= K−1
ψ

(∑
j∈N

∣∣∣∣∫
X

〈Afj, ψx〉〈ψx, gj〉 dµ(x)

∣∣∣∣p
) 1

p
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= K−1
ψ

(∑
j∈N

∣∣∣∣∫
X

〈fj, G(·, x)〉〈ψx, gj〉 dµ(x)

∣∣∣∣p
) 1

p

≤ K−1
ψ B

1
p
− 1

2K
1− 1

p

ψ ‖G‖L2,p(Rd,X)

= B
1
p
− 1

2K
− 1
p

ψ

(∫
X

(∫
Rd
|〈ky, ψx〉|2 dy

) p
2

dµ(x)

) 1
p

.

Taking the supremum over all orthonormal sequences gives (a).

Now we prove (b). In the case p = 2 we have∥∥∥∥∥
(∫

Rd
|〈ky, ψx〉|2 dy

) 1
2

∥∥∥∥∥
Lp(X,µ)

=

(∫
X

∫
Rd
|〈ky, ψx〉|2 dy dµ(x)

) 1
2

= K
1
2
ψ

(∫
Rd
‖ky‖2

L2(Rd) dy

) 1
2

= K
1
2
ψ ‖k‖L2(R2d)

= K
1
2
ψ ‖A‖I2(L2(Rd))

Consider the case p =∞. We see that 〈ky, ψx〉 = A∗φx(y). Hence∥∥∥∥∥
(∫

Rd
|〈ky, ψx〉|2 dy

) 1
2

∥∥∥∥∥
Lp(X,µ)

= sup
x∈X

(∫
Rd
|〈ky, ψx〉|2 dy

) 1
2

= sup
x∈X
‖A∗ψx‖L2(Rd)

≤ sup
x∈X
‖A∗‖ ‖ψx‖L2(Rd)

≤ B
1
2 ‖A‖I∞(L2(Rd)) .

The case p ∈ (2,∞) now follows by interpolation.

The conditions assumed in Lemma 3.3.1 and Theorem 3.3.2 are valid for two

common types of resolution of the identity, namely frames and irreducible unitary

representations.

Example 3.3.3. Suppose X is a locally compact group and σ is an irreducible unitary

representation of X on U
(
L2(Rd)

)
with left Haar measure µ . Then for some ψ ∈
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L2(Rd) with ‖ψ‖L2(Rd) = 1, there is Kψ ∈ (0,∞) with

〈f, g〉 = K−1
ψ

∫
X

〈f, ψx〉〈ψx, g〉 dµ(x) for all f, g ∈ L2(Rd).

Thus the conditions of Theorem 3.3.2 are satisfied with B = 1.

Example 3.3.4. Suppose {ψn}n∈Λ is a tight frame for L2(Rd) with frame bound B.

Then

f = B−1
∑
n∈Λ

〈f, ψn〉ψn ∀f ∈ L2(Rd).

Hence

〈f, g〉 = B−1
∑
n∈Λ

〈f, ψn〉〈ψn, g〉 ∀f, g ∈ L2(Rd),

which in turn implies ‖ψn‖2 ≤ B for all n ∈ Λ. Thus we see the conditions of

Theorem 3.3.2 are satisfied with Kψ = B and µ equal to counting measure on Λ.

As a consequence of these examples, we obtain following corollaries as special

cases of Theorem 3.3.2.

Corollary 3.3.5. Suppose X is a locally compact group and σ is an irreducible unitary

representation of X on U
(
L2(Rd)

)
with left Haar measure µ . Assume A is an

integral operator with kernel k. Then for some ψ ∈ L2(Rd) with ‖ψ‖L2(Rd) = 1, there

is Kψ ∈ (0,∞) depending only on the group X, the representation σ and the function

ψ with

‖A‖Ip(L2(Rd)) ≤ K
− 1
p

ψ

(∫
X

(∫
Rd
|〈ky, σ(x)ψ〉|2 dy

) p
2

dµ(x)

) 1
p

∀p ∈ [1, 2].

Corollary 3.3.6. Suppose {ψn}n∈Λ is a tight frame for L2(Rd) with frame bound B.

Assume A is an integral operator with kernel k . Then

‖A‖Ip(L2(Rd)) ≤ B−
1
2

(∑
n∈Λ

(∫
Rd
|〈ky, ψn〉|2 dy

) p
2

) 1
p

∀p ∈ [1, 2].

50



Corollary 3.3.7. Suppose p ∈ [1, 2] and {ψm}m∈Λ is a Parseval frame for L2(Rd).

If A is an integral operator with kernel k and∑
n∈Λ

(∑
m∈Λ

|〈k, ψn ⊗ ψm〉|2
) p

2

 1
p

<∞,

then A ∈ Ip(L2(Rd)).

Proof. Since {ψm}m∈Λ is a Parseval frame for L2(Rd), Lemma 3.2 in [45] implies

{ψn ⊗ ψm}m,n∈Λ is a Parseval frame for L2(R2d).

By Corollary 3.3.6, we have

‖A‖Ip(L2(Rd)) ≤

(∑
n∈Λ

(∫
Rd
|〈ky, ψn〉|2

) p
2

dy

) 1
p

.

Letting Fn(y) = 〈ky, ψn〉, we see that

‖A‖Ip(L2(Rd)) ≤

(∑
n∈Λ

‖Fn‖pL2(Rd)

) 1
p

=

∑
n∈Λ

(∑
m∈Λ

|〈Fn, ψm〉|2
) p

2

 1
p

(12)

=

∑
n∈Λ

(∑
m∈Λ

|〈k, ψn ⊗ ψm〉|2
) p

2

 1
p

<∞

where (12) comes from the fact {ψm}m∈Λ is a Parseval frame for L2(Rd).

3.4 New Kernel and Symbol Classes

Corollary 3.3.5 points to new kernel classes useful in identifying Schatten class integral

operators. These kernel spaces also give rise to symbol classes for Schatten class affine

pseudodifferential operators. In this section, we define these spaces and examine their

properties.
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3.4.1 Kernel Spaces

Definition 3.4.1. Let ψ ∈ S (R) be an admissible function with Cψ = ‖ψ‖L2(R) = 1.

For k ∈ S ′(R2) define

‖k‖Sq,p =

(∫
R

∫
R−{0}

(∫
R
|〈ky, TvDuψ〉|q dy

) p
q du

u2
dv

) 1
p

,

with the usual modifications when p or q is ∞. Let

Sq,p =
{
k ∈ S ′(R2) : ‖k‖Sq,p <∞

}
.

Theorem 3.4.2. (a) For each p ∈ [1, 2], S2,p is a normed linear space.

(b) For each p ∈ [1, 2], we have ‖k‖L2(R2) ≤ ‖k‖S2,p
.

(c) For each 1 ≤ p ≤ q ≤ 2, we have ‖k‖S2,q
≤ ‖k‖S2,p

.

(d) If p ∈ [1, 2], then S2,p is a Banach space under the norm ‖·‖S2,p
.

Proof. First we prove (b). Note that equation (2) implies that ‖k‖L2(R2) = ‖k‖S2,2
.

For p ∈ [1, 2), let 1
q

= p
2
. Then q ∈ (1, 2] and the dual index of q is q′ = 2

2−p ∈ [2,∞).

We have

‖k‖2
L2(R2) =

∫
R

∫
R−{0}

∫
R
|〈ky, TvDuψ〉|2 dy

du

u2
dv

≤
∫

R

∫
R

∫
R−{0}

‖ky‖2−p
L2(R) |〈ky, TvDuψ〉|p

du

u2
dv dy

≤
(∫

R
‖ky‖q

′(2−p)
L2(R) dy

) 1
q′
(∫

R

(∫
R

∫
R−{0}

|〈ky, TvDuψ〉|p
du

u2
dv

)q
dy

) 1
q

= ‖k‖2−p
L2(R2)

(∫
R

(∫
R

∫
R−{0}

|〈ky, TvDuψ〉|p
du

u2
dv

) 2
p

dy

) p
2

≤ ‖k‖2−p
L2(R2)

∫
R

∫
R−{0}

(∫
R
|〈ky, TvDuψ〉|2 dy

) p
2 du

u2
dv (13)

≤ ‖k‖2−p
L2(R2) ‖k‖

p
S2,p

,
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where (13) results from Minkowski’s integral inequality. Hence ‖k‖pL2(R2) ≤ ‖k‖
p
S2,p

,

from which (b) follows.

Now we prove (a). Routine calculations show that ‖·‖S2,p
is a seminorm. If

‖k‖S2,p
= 0 then (b) implies ‖k‖L2(R2) = 0. Hence k = 0 and ‖·‖S2,p

is in fact a norm.

To prove (c), we let Gu,v(y) = 〈TvDuψ, ky〉 and suppose 1 ≤ p ≤ q ≤ 2. Since

‖Gu,v‖L2(R) ≤ ‖k‖L2(R2) for all (u, v) ∈ R+ × R, we have

‖k‖qS2,q
=

∫∫
‖Gu,v‖qL2(R)

du

u2
dv

≤
∫∫
‖k‖q−pL2(R2) ‖Gu,v‖pL2(R)

du

u2
dv

= ‖k‖q−pL2(R2) ‖k‖
p
S2,p

= ‖k‖
q−p

2

L2(R2) ‖k‖
q−p

2

L2(R2) ‖k‖
p
S2,p

≤ ‖k‖
q−p

2
S2,q
‖k‖

q−p
2

S2,p
‖k‖pS2,p

.

Hence ‖k‖q−
q−p

2
S2,q

≤ ‖k‖p+
q−p

2
S2,p

. But q− q−p
2

= q
2

+ p
2

= p+ q−p
2

, so that ‖k‖S2,q
≤ ‖k‖S2,p

.

Now we prove (d). Suppose {km}m∈N is a Cauchy sequence in the ‖·‖S2,p
norm.

Since ‖km − kn‖L2(R2) ≤ ‖km − kn‖S2,p
, it follows that {km}m∈N is a Cauchy sequence

in L2(R2). So there is some k ∈ L2(R2) such that km → k in L2(R2). In particular,

we have (km)y → ky in L2(R) for a.e. y ∈ R.

Define a linear isometry H : S2,p → L2,p,p(R,R \ {0} ,R) by

H(f)(y, u, v) = |u|−
2
p 〈fy, TvDuψ〉.

It follows that {H(km)}m∈N is a Cauchy sequence in L2,p,p(R,R \ {0} ,R). Since

L2,p,p(R,R \ {0} ,R) is a Banach space, there is some g ∈ L2,p,p(R,R \ {0} ,R) so that

‖g −H(km)‖L2,p,p → 0 as m→∞. Hence {H(km)}m∈N converges to g in measure so

that there is a subsequence
{
H(kmj)

}
j∈N of {H(km)}m∈N with limj H(kmj)(y, u, v) =

g(y, u, v) for a.e. (y, u, v) ∈ R×R\{0}×R. But for almost all (y, u, v) ∈ R×R\{0}×R

we have

lim
m→∞

H(km)(y, u, v) = lim
m→∞

|u|−
2
p 〈(km)y , TvDuψ〉
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= |u|−
2
p 〈ky, TvDuψ〉

= H(k)(y, u, v).

Hence H(k)(y, u, v) = g(y, u, v) a.e. and

lim
m→∞

‖k − km‖S2,p
= lim

m→∞
‖g −H(km)‖L2,p,p(R×R\{0}×R) = 0.

The next two results show that the kernel operation corresponding to affine pseu-

dodifferential operator composition is well-behaved in S2,p.

Proposition 3.4.3. (a) For each p ∈ [1, 2] we have ‖k1]k2‖S2,p
≤ ‖k1‖S2,p

‖k2‖L2(R2).

(b) ‖k1]k2‖L2(R2) ≤ ‖k1‖L2(R2) ‖k2‖L2(R2).

(c) For each p ∈ [1, 2] we have ‖k1]k2‖S2,p
≤ ‖k1‖S2,p

‖k2‖S2,p
.

Proof. Let k = k1]k2 and assume p ∈ [1, 2]. Then

〈ky, TvDuψ〉 =

∫
R
k(t, y)TvDuψ(t) dt

=

∫∫
R2

k1(t, x) k2(x, y)TvDuψ(t) dx dt

=

∫
R
〈(k1)x, TvDuψ〉 k2(x, y) dx.

By Cauchy-Schwarz we have

|〈ky, TvDuψ〉|2 ≤
(∫

R
|〈(k1)x, TvDuψ〉|2 dx

)(∫
R
|k2(x, y)|2 dx

)
.

Therefore ∫
|〈ky, TvDuψ〉|2 dy ≤

(∫
R
|〈(k1)x, TvDuψ〉|2 dx

)
‖k2‖2

L2(R2) .

Thus

‖k‖S2,p
=

(∫∫ (∫
R
|〈ky, TvDuψ〉|2 dy

) p
2 du

u2
dv

) 1
p
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≤

(∫∫ (∫
R
|〈(k1)x, TvDuψ〉|2 dx

) p
2

‖k2‖pL2(R2)

du

u2
dv

) 1
p

= ‖k1‖S2,p
‖k2‖L2(R2) .

Using the fact that ‖f‖L2(R2) = ‖f‖S2,2
, we see that (b) follows from (a). Statement

(c) follows from (a) and Theorem 3.4.2(b).

Corollary 3.4.4. For p ∈ [1, 2], S2,p is a Banach algebra and a left ideal in L2(R2)

under ].

3.4.2 Symbol Spaces

In the remainder of this section we seek to define spaces useful for categorizing symbols

of affine pseudodifferential operators and to identify their important properties.

Definition 3.4.5. Define Q : R× R\{0} × R→ R\ {0} × R× S1 by

Q(y, u, v) =

(
u√
y2 + 1

,
v√
y2 + 1

,

(
y√
y2 + 1

,
1√
y2 + 1

))
.

Define

‖L‖T sq,p = ‖L‖L1(R2) +

(∫
R

∫
R−{0}

(∫
R
|R(L)(Q(y, u, v))|q vs(y) dy

) p
q du

u2
dv

) 1
p

,

with the usual modifications when p or q is ∞. Let

T sq,p =
{
L ∈ L1(R2) : ‖L‖T sq,p <∞

}
.

Because the ridgelet transform is

R(L)(a, b, θ) = 〈RθL, TbDaψ〉 =
(
RθL ∗D−aψ

)
(b) ∀θ ∈ S1, a ∈ R \ {0} , b ∈ R,

the norm in Definition 3.4.5 depends implicitly on the choice of ψ. Also notice that

if k = RL ◦O ∈ Sq,p, then Lemma 3.2.7 implies that

‖k‖Sq,p ≡

(∫
R

∫
R−{0}

(∫
R
|R(L)(Q(y, u, v))|q [v1(y)]

q
2 dy

) p
q du

u2
dv

) 1
p

.

55



Lemma 3.4.6. For each p, q ∈ [1,∞] and each s ∈ R, T sq,p is a normed linear space.

Proof. Since the ridgelet transform is linear, it follows that ‖·‖T sq,p is a seminorm. If

‖L‖T sq,p = 0 then ‖L‖L1 = 0 so that L = 0.

In order to show that T sq,p is a Banach space, we need the following lemma.

Lemma 3.4.7. Suppose limn→∞ ‖L − Ln‖L1(R2) = 0. Then for a.e. (y, u, v) ∈ R ×

R\ {0} × R we have R(L)(Q(y, u, v)) = limn→∞R(Ln)(Q(y, u, v)).

Proof. By definition we have

R(L − Ln)(Q(y, u, v)) =

(
R(

y√
y2+1

, 1√
y2+1

)(L − Ln) ∗D −u√
y2+1

ψ

)(
v√
y2 + 1

)
.

Using Lemma 3.2.5, we have for all y ∈ R, u ∈ R\ {0}∥∥∥∥∥R( y√
y2+1

, 1√
y2+1

)(L − Ln) ∗D −u√
y2+1

ψ

∥∥∥∥∥
L∞(R)

≤

∥∥∥∥∥R( y√
y2+1

, 1√
y2+1

)(L − Ln)

∥∥∥∥∥
L1(R)

∥∥∥∥D −u√
y2+1

ψ

∥∥∥∥
L∞(R)

≤ ‖L − Ln‖L1(R2)

∥∥∥∥D −u√
y2+1

ψ

∥∥∥∥
L∞(R)

=

∣∣∣∣∣ u√
y2 + 1

∣∣∣∣∣
− 1

2

‖L − Ln‖L1(R2) ‖ψ‖L∞(R)

→ 0 as n→∞.

Hence for almost every (y, u, v) ∈ R× R\ {0} × R we have

lim
n→∞

∣∣∣∣∣
(
R(

y√
y2+1

, 1√
y2+1

)(L − Ln) ∗D −u√
y2+1

ψ

)(
v√
y2 + 1

)∣∣∣∣∣ = 0.

The result follows.

Theorem 3.4.8. For each p, q ∈ [1,∞] and each s ∈ R, T sq,p is a Banach space.
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Proof. Suppose {Ln} is Cauchy in T sq,p. Then {Ln} is Cauchy in L1(R2). Hence there

is some L ∈ L1(R2) with ‖L − Ln‖L1 → 0 as n→∞. By the previous lemma, we see

that R(L)(Q(y, u, v)) = limn→∞R(Ln)(Q(y, u, v)) for a.e. (y, u, v) ∈ R×R\ {0}×R.

Let w(u) = 1
u2 . Since {Ln} is Cauchy in T sq,p, we see that {R(Ln) ◦Q} is Cauchy

in the space Lq,p,pvs⊗w⊗v0
(R,R\ {0} ,R), which is a Banach space. Therefore there is

some H ∈ Lq,p,pvs⊗w⊗v0
(R,R\ {0} ,R) so that ‖H −R(Ln) ◦Q‖Lq,p,pvs⊗w⊗v0

(R,R\{0},R) → 0 as

n → ∞. Hence R(Ln) ◦ Q converges to H in measure, implying that there is some

subsequence
{
R(Lnj) ◦Q

}
j

of {R(Ln) ◦Q}n so that limj→∞R(Lnj)(Q(y, u, v)) =

H(y, u, v) for almost every (y, u, v) ∈ R × R\ {0} × R. Thus R(L)(Q(y, u, v)) =

H(y, u, v) for a.e. (y, u, v) ∈ R× R\ {0} × R and

lim
n→∞

‖L − Ln‖T sq,p

= lim
n→∞

‖L − Ln‖L1(R2) + lim
n→∞

‖R(L) ◦Q−R(Ln) ◦Q‖Lq,p,pvs,w,v0
(R,R\{0},R)

= lim
n→∞

‖L − Ln‖L1(R2) + lim
n→∞

‖H −R(Ln) ◦Q‖Lq,p,pvs,w,v0
(R,R\{0},R)

= 0.

Now we show that certain T sq,p spaces are well-behaved with respect to affine

convolution. We need the following lemma.

Lemma 3.4.9. If L1,L2 ∈ L1(R2), then L1 ~ L2 ∈ L1(R2) with

‖L1 ~ L2‖L1(R2) ≤ ‖L1‖L1(R2) ‖L2‖L1(R2) .

Proof.

‖L1 ~ L2‖L1(R2) =

∫
R

∫
R−{0}

∣∣∣∣∫
R

∫
R−{0}

L1(u, v)L2

(
a

u
,
b− v
u

)
du

u2
dv

∣∣∣∣ da db

≤
∫

R

∫
R−{0}

|L1(u, v)|
(∫

R

∫
R−{0}

∣∣∣∣L2

(
a

u
,
b− v
u

)∣∣∣∣ da db

)
du

u2
dv

=

∫
R

∫
R−{0}

|L1(u, v)|
(∫

R

∫
R−{0}

|L2 (c, d)|u2 dc dd

)
du

u2
dv

= ‖L1‖L1(R2) ‖L2‖L1(R2) .
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If µ is the left Haar measure of the affine group with multiplication (u, v)(x, y) =

(ux, v+uy) then we have ‖L1 ~ L2‖L1(R2,µ) ≤ ‖L1‖L1(R2,µ) ‖L2‖L1(R2,µ), by the theory

of convolution on locally compact groups (see [30]). Lemma 3.4.9 is different from

this result because Lebesgue measure is used rather than the Haar measure.

Proposition 3.4.10. For each p ∈ [1, 2] we have

(a) ‖L1 ~ L2‖T 1
2,p
≤ ‖L1‖T 1

2,p
‖L2‖T 1

2,2
and

(b) ‖L1 ~ L2‖T 1
2,p
≤ ‖L1‖T 1

2,p
‖L2‖T 1

2,p
.

Proof. Let K(L) = RL ◦ O for all L ∈ L1(R2). Then the mapping K is linear with

‖L‖T 1
2,p

= ‖L‖L1 + ‖K(L)‖S2,p
. Furthermore, K(L1 ~ L2) = K(L1)]K(L2) as the

following computation shows.

K (L1 ~ L2) (t, y) = R (L1 ~ L2) (O(t, y))

=

∫
(L1 ~ L2) (z1, t− z1y) dz1

=

∫∫∫
L1(u, v)L2

(
z1

u
,
t− z1y − v

u

)
du

u2
dv dz1

=

∫∫∫
L1(u, v)L2

(
z2,

t− v
u
− z2y

)
du

u
dv dz2

=

∫∫∫
L1(u, t− ux)L2 (z2, x− z2y) du dx dz2

=

∫
RL1 (O(t, x))RL2 (O(x, y)) dx

= K(L1)]K(L2)(t, y).

Using Proposition 3.4.3(a) and Lemma 3.4.9 we have

‖L1 ~ L2‖T 1
2,p

= ‖L1 ~ L2‖L1 + ‖K(L1 ∗ L2)‖S2,p

≤ ‖L1‖L1 ‖L2‖L1 + ‖K(L1)]K(L2)‖S2,p

≤ ‖L1‖L1 ‖L2‖L1 + ‖K(L1)‖S2,p
‖K(L2)‖S2,2

≤
(
‖L1‖L1 + ‖K(L1)‖S2,p

)(
‖L2‖L1 + ‖K(L2)‖S2,2

)
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= ‖L1‖T 1
2,p
‖L2‖T 1

2,2
.

Statement (b) is proved similarly.

Corollary 3.4.11. For each p ∈ [1, 2], T 1
2,p is a Banach algebra and a left ideal in

T 1
2,2 under affine convolution.

3.5 Schatten Class Affine Pseudodifferential Operators

In this section, we draw connections between the spaces developed in the previous

section and the Schatten class results of Section 3.3. In particular, we obtain the

following theorem.

Theorem 3.5.1. Suppose A is an affine pseudodifferential operator with kernel k and

symbol L, and suppose p ∈ [1, 2]. Then there is a C ∈ (0,∞) such that the following

statements hold.

(a) If k ∈ S2,p, then A ∈ Ip(L2(R)) and ‖A‖Ip(L2(R)) ≤ C ‖k‖S2,p
.

(b) If L ∈ T 1
2,p, then A ∈ Ip(L2(R)) and ‖A‖Ip(L2(R)) ≤ C ‖L‖T 1

2,p
.

Proof. Statement (a) follows immediately from Theorem 3.3.2(a) and Proposition

2.4.1 in [25], which states that for any admissible ψ ∈ L2(R) we have

〈f, g〉 = C−1
ψ

∫∫
R2

〈f, TvDuψ〉〈TvDuψ, g〉
du

u2
dv ∀f, g ∈ L2(R).

By Lemma 3.2.7, we have ‖k‖S2,p
≤ ‖L‖T 1

2,p
. Thus statement (a) implies statement

(b).

In light of the previous theorem, it is desirable to know which functions belong

to S2,p and T 1
2,q. In the remainder of this section, we describe smoothness and decay

conditions which guarantee inclusion in these spaces. The following lemma, adapted

from the techniques in [46], will be useful.
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Lemma 3.5.2. Suppose f, g : R→ C satisfy

|f(t)| ≤ Cf (1 + t2)−
γ
2 and |g(t)| ≤ Cg(1 + t2)−

γ
2 for a.e. t ∈ R,

for some γ > 1. Then there is a constant Cγ, independent of f, g, so that

|f ∗Dug(v)| ≤

 CfCgCγ|u|γ−
1
2 (1 + v2)

−γ
2 if |u| ≥ 1,

CfCgCγ|u|−
1
2 (1 + v2)

−γ
2 if 0 < |u| < 1.

Proof. Let w−γ(t) = (1 + t2)
− γ

2 . By Lemma 11.0.1 in [46], since γ > 1 there is some

Cγ so that (w−γ ∗ w−γ)(t) ≤ Cγw−γ(t) for all t ∈ R.

Notice that for |u| ≥ 1, we have(
1 +

t2

u2

)
= |u|−2 (u2 + t2

)
≥ |u|−2 (1 + t2

)
.

Thus for |u| ≥ 1 we have (
1 +

t2

u2

)− γ
2

≤ |u|γ
(
1 + t2

)− γ
2 .

If 0 < |u| < 1, then t2

u2 > t2, which implies(
1 +

t2

u2

)
>
(
1 + t2

)
.

Thus for 0 < |u| < 1, we have(
1 +

t2

u2

)− γ
2

<
(
1 + t2

)− γ
2 .

Therefore

Duw−γ(t) = |u|−
1
2

(
1 +

t2

u2

)− γ
2

≤

 |u|
γ− 1

2 (1 + t2)
− γ

2 if |u| ≥ 1

|u|− 1
2 (1 + t2)

− γ
2 if 0 < |u| < 1

Hence

|(f ∗Dug)(v)| ≤ CfCg (w−γ ∗Duw−γ) (v)
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≤

 CfCg|u|γ−
1
2 (w−γ ∗ w−γ) (v) if |u| ≥ 1

CfCg|u|−
1
2 (w−γ ∗ w−γ) (v) if 0 < |u| < 1

≤

 CfCgCγ|u|γ−
1
2 (1 + v2)

−γ
2 if |u| ≥ 1

CfCgCγ|u|−
1
2 (1 + v2)

−γ
2 if 0 < |u| < 1.

Recall that the definitions of Sq,p and T sq,p depend on the choice of admissible

function ψ ∈ S (R). If ψ possesses additional “nice” wavelet characteristics, made

precise in the following definition, we can better analyze S2,p and T 1
2,p.

Definition 3.5.3. Let

B1 = {ψ ∈ S (R) : ψ is admissible and ψ = Ψ′ for some Ψ ∈ S (R)} .

The Mexican hat wavelet ψ(t) = (1− t2)e
−t2

2 is in B1.

Theorem 3.5.4. Suppose ψ ∈ B1, α > 3 and β > 1
4
. If

|k(t, y)| ≤ C
(
1 + y2

)−β (
1 + t2

)−α
2 for a.e. t, y ∈ R,

and there exists a C ∈ (0,∞) such that almost every ky has a derivative satisfying

∣∣k′y(t)∣∣ ≤ C
(
1 + y2

)−β (
1 + t2

)−α
2 for all t ∈ R,

then k ∈ S2,p for all p ∈ [1, 2]. In particular S (R2) ⊂ S2,p for p ∈ [1, 2].

Proof. Since ψ ∈ B1, we have ψ = Ψ for some Ψ ∈ S (R). Without loss of generality,

we assume

|ψ(t)| ≤ C
(
1 + t2

)−α
2 and |Ψ(t)| ≤ C

(
1 + t2

)−α
2 for all t ∈ R.

For p ∈ [1, 2) write

‖k‖pS2,p
=

∫
|v|<1

∫
|u|≥1

(∫
R
|〈ky, TvDuψ〉|2 dy

) p
2 du

u2
dv

+

∫
|v|<1

∫
|u|<1

(∫
R
|〈ky, TvDuψ〉|2 dy

) p
2 du

u2
dv
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+

∫
|v|≥1

∫
|u|≥1

(∫
R
|〈ky, TvDuψ〉|2 dy

) p
2 du

u2
dv

+

∫
|v|≥1

∫
|u|<1

(∫
R
|〈ky, TvDuψ〉|2 dy

) p
2 du

u2
dv

= I1 + I2 + I3 + I4.

To estimate I1 we note that

|〈ky, TvDuψ〉| =
∣∣ky ∗D−uψ(v)

∣∣
≤ ‖ky‖L2(R) ‖Duψ‖L2(R)

= ‖ψ‖L2(R)

(∫
|k(t, y)|2 dt

) 1
2

≤ ‖ψ‖L2(R)

(∫
C2

(1 + y2)2β (1 + t2)α
dt

) 1
2

≤ ‖ψ‖L2(R) C
(
1 + y2

)−β (∫
R

1

(1 + t2)α
dt

) 1
2

.

Hence

I1 ≤ Cp ‖ψ‖pL2(R)

(∫
R

1

(1 + t2)α
dt

) p
2

∫
|v|<1

∫
|u|≥1

(∫
R

1

(1 + y2)2β
dy

) p
2

du

u2
dv

 ,

and this quantity is finite since β > 1
4

and α > 1.

To estimate I2, we use Theorem A.1 in [43]. By the proof of the this theorem,

there is some C2 satisfying

|〈ky, TvDuψ〉| ≤ C2|u|
3
2

∥∥k′y∥∥∞ ∀y ∈ R, u ∈ R \ {0} , v ∈ R. (14)

Hence

I2 ≤ Cp
2

(∫
|v|<1

∫
|u|<1

|u|
3p
2
−2 du dv

)(∫
R

∥∥k′y∥∥2

∞ dy

) p
2

≤ CpCp
2

(∫
|v|<1

∫
|u|<1

|u|
3p
2
−2 du dv

)(∫
R

1

(1 + y2)2β
dy

) p
2

<∞,
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as β > 1
4

and 3p
2
− 2 > −1.

As in the proof of Lemma 3.5.2, let w−γ(t) = (1 + t2)
− γ

2 for all γ ∈ R, t ∈ R. Notice

that for any γ ≤ α we have w−α(t) ≤ w−γ(t) for all t ∈ R. Hence for all 1 < γ ≤ α

we have |ky(t)| ≤ C (1 + y2)
−β
w−γ(t) and |ψ(t)| ≤ Cw−γ(t). If 1 < γ ≤ α then by

Lemma 3.5.2 there is some Cγ satisfying the following inequality for all |u| ≥ 1:

|〈ky, TvDuψ〉| = |ky ∗Duψ(v)| ≤ CγC
2
(
1 + y2

)−β |u|γ− 1
2

(
1 + v2

)−γ
2 . (15)

Choose γo ∈ (1, 1
p

+ 1
2
). By (15), we have

I3 ≤ Cp
γoC

2p

(∫
|v|≥1

1

(1 + v2)
γop
2

dv

)(∫
|u|≥1

|u|p(γo−
1
2

)−2 du

)(∫
R

1

(1 + y2)2β
dy

) p
2

<∞,

since β > 1
4

and 1 < γo <
1
p

+ 1
2
.

To estimate I4, we use integration by parts to obtain

|〈ky, TvDuψ〉| = |u|
∣∣〈k′y, TvDuΨ〉

∣∣ .
By Lemma 3.5.2, there is some Cα satisfying the following inequality for all 0 < |u| <

1:

|〈ky, TvDuψ〉| = |u|
∣∣〈k′y, TvDuΨ〉

∣∣ ≤ CαC
2|u|

1
2

(
1 + y2

)−β (
1 + v2

)−α
2 (16)

Using (14) and (16) we obtain the following estimates for 0 < |u| < 1:

|〈ky, TvDuψ〉| = |〈ky, TvDuψ〉|
2
3 |〈ky, TvDuψ〉|

1
3

≤ C
1
2
2 |u|

C
2
3

(1 + y2)
2β
3

|〈ky, TvDuψ〉|
1
3

≤ C
1
2
2 |u|

C
2
3

(1 + y2)
2β
3

C
1
3
αC

4
3

(1 + y2)
β
3

|u|
1
6

1

(1 + v2)
α
6

.

Hence

I4 ≤ C2pC
p
2
2 C

p
3
α

(∫
|v|≥1

1

(1 + v2)
αp
6

dv

)(∫
|u|<1

|u|p(
7
6

)−2 du

)(∫
R

1

(1 + y2)2β
dy

) p
2

,
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and this quantity is finite since α > 3 and β > 1
4
.

Since S2,2 = L2(R2) direct computation gives the result when p = 2.

Recall that for θ ∈ S1, φ(θ) denotes the unique number in [0, 2π) such that θ =

(cosφ(θ), sinφ(θ)). In particular, cosφ(θ) = θ1 and sinφ(θ) = θ2 when θ = (θ1, θ2) ∈

S1.

Theorem 3.5.5. Suppose ψ ∈ B1 and L ∈ L1(R2) satisfies

|RLθ(s)| = |RL(θ, s)| ≤ C |sinφ(θ)|2β+α

(1 + s2)
α
2

for a.e. (θ, s) ∈ S1 × R, (17)

and

|RL′θ(s)| ≤
C |sinφ(θ)|2β+α−1

(1 + s2)
α
2

for a.e. (θ, s) ∈ S1 × R (18)

for some β > 1
4
, α > 3. Then L ∈ T 1

2,p for p ∈ [1, 2]. In particular, T 1
2,p is nontrivial

for p ∈ [1, 2].

Proof. Let k = RL ◦O. Then by (17) we have

|k(t, y)| =

∣∣∣∣∣RL
((

y√
y2 + 1

,
1√
y2 + 1

)
,

t√
1 + y2

)∣∣∣∣∣
≤ C(√

y2 + 1
)2β+α (

1 + t2

1+y2

)α
2

=
C

(1 + y2)β
1

(1 + y2 + t2)
α
2

≤ C

(1 + y2)β
1

(1 + t2)
α
2

and by (18) we have

∣∣k′y(t)∣∣ =
1√

1 + y2

∣∣∣∣∣RL′( y√
y2+1

, 1√
y2+1

)
(

t√
1 + y2

)∣∣∣∣∣
≤ C√

1 + y2

1(√
y2 + 1

)2β+α−1 (
1 + t2

1+y2

)α
2

=
C

(1 + y2)β
1

(1 + y2 + t2)
α
2
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≤ C

(1 + y2)β
1

(1 + t2)
α
2

.

By Theorem 3.5.4, k ∈ S2,p. Hence L ∈ T 1
2,p.

To complete the proof of the theorem, it suffices to show that there is some

L ∈ L1(R2)\ {0} satisfying (17) and (18). Fix m,n ∈ N with n ≥ β and m ≥ α.

Choose f ∈ S (R) with f even and
∫

R f(s) ds = 0. Set F (θ, s) = sin2n+m(2φ(θ))f(s).

Then F ∈ S (S1 × R), F is even and F satisfies

|Fθ(s)| = |F (θ, s)| ≤ C |sinφ(θ)|2β+α

(1 + s2)
α
2

|F ′θ(s)| ≤
C |sinφ(θ)|2β+α−1

(1 + s2)
α
2

for some C > 0. Furthermore
∫

R F (θ, s) ds = 0 for all θ ∈ S1. By Theorem 7.7 in [65]

there is L ∈ C∞(R2) ∩ L1(R2) such that RL = F .

Notice that the integral of a function L satisfying (17) over almost any horizontal

line must be zero.

3.6 Affine Pseudodifferential Operators as Calderon-Zygmund
Operators

The conditions on the Radon transform of L in Theorem 3.5.5 are almost enough to

imply that the affine pseudodifferential operator with symbol L is Calderon-Zygmund.

In this section we find sufficient conditions for an affine pseudodifferential operator

to be a Calderon-Zygmund operator.

Throughout the paper we have defined φ(θ) ∈ [0, 2π) by θ = (cosφ(θ), sinφ(θ)).

Similarly, we can define θ : R→ S1 by θ(φ) = (cosφ, sinφ).

Theorem 3.6.1. Suppose A is an affine pseudodifferential operator with kernel k and

symbol L.

(a) If A : L2(R)→ L2(R) is bounded and k satisfies

|k(t, y)| ≤ C

|t− y|δ
,
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|k(t, y)− k(t′, y)| ≤ C |t− t′|δ

|t− y|δ+1
if |t− t′| < 1

2
|t− y| ,

and

|k(t, y)− k(t, y′)| ≤ C |y − y′|δ

|t− y|δ+1
if |y − y′| < 1

2
|t− y|

for some δ > 0, then A is a Calderon-Zygmund operator.

(b) If L satisfies

|RL(θ, s)| ≤ C |sinφ(θ)|β

(1 + |s|)
,

|RθL′(s)| ≤
C |sinφ(θ)|2

(1 + |s|)3 ,

and ∣∣∣∣( d

dφ
RL
)

(θ(φ), s)

∣∣∣∣ ≤ C

(1 + |s|)2 ,

for some β > 3
2
, then A is a Calderon-Zygmund operator.

Furthermore, if either (a) or (b) holds, then A : Lp(R) → Lp(R) is bounded for all

1 < p <∞.

Proof. Statement (a) is a direct consequence of Theorem 5.10 in [26].

Suppose (b) holds. Then

|k(t, y)| =

∣∣∣∣∣R( y√
y2+1

, 1√
y2+1

)L
(

t√
y2 + 1

)∣∣∣∣∣
≤ C√

y2 + 1
β

1(
1 + |t|√

y2+1

)
=

C

(y2 + 1)
β−1

2

1√
y2 + 1 + |t|

≤ C

(y2 + 1)
β−1

2

1

(1 + |t|)
,

which implies k ∈ L2(R2). Hence A : L2(R)→ L2(R) is bounded.

Also

|k(t, y)| =

∣∣∣∣∣R( y√
y2+1

, 1√
y2+1

)L
(

t√
y2 + 1

)∣∣∣∣∣
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≤ C√
y2 + 1

1(
1 + |t|√

y2+1

)
=

C√
y2 + 1 + |t|

≤ C

|y − t|
.

Fix t, y ∈ R and assume |t− t′| < 1
2
|t− y|. By the Intermediate Value Theorem,

we have

|k(t, y)− k(t′, y)| =
∣∣∣∣( ∂

∂t
k

)
(t0, y)

∣∣∣∣ |t− t′|
for some t0 between t and t′. But∣∣∣∣( ∂

∂t
k

)
(t0, y)

∣∣∣∣ =
(
y2 + 1

)− 1
2

∣∣∣∣∣R( y√
y2+1

, 1√
y2+1

)L′
(

t0√
y2 + 1

)∣∣∣∣∣
≤ C(√

y2 + 1 + |t0|
)2 .

Because t0 is between t and t′ and |t− t′| < 1
2
|t− y|, we must have |t0 − y| ≥ 1

2
|t− y|.

Hence

|k(t, y)− k(t′, y)| =
∣∣∣∣( ∂

∂t
k

)
(t0, y)

∣∣∣∣ |t− t′|
≤ C |t− t′|(√

y2 + 1 + |t0|
)2

≤ C |t− t′|
|y − t0|2

(19)

≤ 4C |t− t′|
|y − t|2

,

where (19) holds because |y − t0| ≤ |y|+ |t0| <
√
y2 + 1 + |t0|.

Now assume |y − y′| < 1
2
|t− y| and consider |k(t, y)− k(t, y′)|. By the Interme-

diate Value Theorem, there is some y0 between y and y′ so that |k(t, y)− k(t, y′)| =∣∣∣( ∂
∂y
k
)

(t, y0)
∣∣∣ |y − y′|. By Lemma 3.2.6,

k(t, y) = RL (θ(φ), s) ,

67



where

cosφ =
y√
y2 + 1

, sinφ =
1√
y2 + 1

, and s =
t√
y2 + 1

.

By the chain rule we have(
∂

∂y
k

)
(t, y) =

(
∂

∂φ
RL
)

(θ(φ), s) · ∂φ
∂y

+

(
∂

∂s
RL
)

(θ(φ), s) · ∂s
∂y

=

(
∂

∂φ
RL
)

(θ(φ), s) · −y
|y|
· 1

y2 + 1
+

(
∂

∂s
RL
)

(θ(φ), s) · −ty√
y2 + 1

.

Thus∣∣∣∣( ∂

∂y
k

)
(t, y0)

∣∣∣∣ =

∣∣∣∣∣
(
∂

∂φ
RL
)((

y0√
y2

0 + 1
,

1√
y2

0 + 1

)
,

t√
y2

0 + 1

)
· −y0

|y0|
· −1

y2
0 + 1

+

R(
y0√
y2
0+1

, 1√
y2
0+1

)L
′( t√

y2
0 + 1

)
· −ty0

(y2
0 + 1)

3
2

∣∣∣∣∣∣
≤ C

y2
0 + 1

· 1(
1 + |t|√

y2
0+1

)2 +
C|ty0|

(y2
0 + 1)

3
2

· 1

(y2
0 + 1)

1
2

· 1(
1 + |t|√

y2
0+1

)3

=
C(√

y2
0 + 1 + |t|

)2 +
C|t|√

y2
0 + 1 + |t|

· |y0|√
y2

0 + 1
· 1(√

y2
0 + 1 + |t|

)2

≤ 2C(√
y2

0 + 1 + |t|
)2

Because |y − y′| < 1
2
|t− y| and y0 between is y and y′, we have |y0 − t| ≥ 1

2
|y − t|.

Hence

|k(t, y)− k(t, y′)| =
∣∣∣∣( d

dy
k

)
(t, y0)

∣∣∣∣ |y − y′|
≤ 2C |y − y′|(√

y2
0 + 1 + |t|

)2

≤ 8C |y − y′|
|y − t|2

Thus k satisfies (a) for δ = 1.
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CHAPTER IV

MIXED MODULATION SPACES AND

PSEUDODIFFERENTIAL OPERATORS

4.1 Introduction

Integral operators arise naturally in many areas of mathematics and science. Pseudod-

ifferential operators, which are a particular type of integral operator, have appeared

widely in the literature of physics, signal processing and differential equations. An

overview of pseudodifferential operators is given in Chapter 14 of [33], while more

detailed expositions are found in [30], [48], and [67]. Because of the role of pseudod-

ifferential operators in partial differential equations, the smoothness of the Weyl and

Kohn-Nirenberg symbols of a pseudodifferential operator has traditionally been used

to characterize properties of the operator, with the Hörmander symbol classes playing

key roles.

More recently, pseudodifferential operators have been studied from a time-fre-

quency perspective. Every pseudodifferential operator is a superposition of time-

frequency shifts, and the properties of pseudodifferential operators have been well-

described by time-frequency analysis. Results with this flavor appear in [22], [72]

and [76]. In particular the classical modulation spaces Mp,q
w (Rd), which are Banach

spaces characterized by time-frequency shifts and mixed norms, have been useful

symbol spaces for studying continuity and Schatten class properties of pseudodiffer-

ential operators. (See [66] for applications of mixed norms in other areas of harmonic

analysis.) Using Gabor frames, elements in these spaces can be decomposed into a

superposition of time-frequency shifts, and this Gabor frame decomposition of the

symbol of a pseudodifferential operator can be used to characterize the properties of
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the operator. In particular, the following two theorems, from [41] and [33], respec-

tively, can be proven with Gabor decomposition techniques.

Theorem 4.1.1. Suppose A is a pseudodifferential operator with Kohn-Nirenberg

symbol τ , Weyl symbol σ and kernel k. If one of τ, σ, k lies in M2,2
vs (R2d) with s >

d(2−p)
p

and s ≥ 0, then A ∈ Ip
(
L2(Rd)

)
.

Theorem 4.1.2. Suppose A is a pseudodifferential operator with Kohn-Nirenberg

symbol τ and Weyl symbol σ. If one of σ, τ belongs to M∞,1(R2d), then

A : Mp,q(Rd)→Mp,q(Rd)

is bounded for all p, q ∈ [1,∞].

Both of these theorems generalize results in [35]. Other modulation space results

for pseudodifferential operators appear in [21], [52], [71] and [73], while modulation

spaces appear implicitly in [45], [64], [23], [47] and [59].

In this chapter we develop a technique for analyzing the kernel of an integral

operator which generalizes existing time-frequency analysis techniques of pseudod-

ifferential operators and yields new classes of non-smooth Kohn-Nirenberg symbols

which ensure that a given pseudodifferential operator is Schatten p-class. To obtain

the main result of this chapter, we use Corollary 3.3.7 to analyze the kernel of an in-

tegral operator with a frame. In particular, analyzing the kernel as in Corollary 3.3.7

with a Gabor frame gives a time-frequency condition on the kernel which ensures the

operator is Schatten p-class. We show that this condition holds for kernels belong-

ing to certain Banach spaces M(c)p1,p2,...,p2d
w that we call mixed modulation spaces,

which are natural generalizations of the traditional modulation spaces Mp,q
w (Rd). In

this chapter we show that many of the interesting properties of traditional modu-

lation spaces also hold for mixed modulation spaces. Furthermore, inclusion of the

Kohn-Nirenberg symbol in an appropriate mixed modulation space ensures the cor-

responding operator is Schatten p-class. The relationship between mixed modulation
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spaces and the kernels and Kohn-Nirenberg symbols of Schatten p-class operators is

summarized in the following theorem.

Theorem 4.1.3. Let A be a pseudodifferential operator with kernel k and Kohn-

Nirenberg symbol τ . Assume p ∈ [1, 2] and set 2 = p1 = · · · = p2d, p = p2d+1 =

· · · = p4d, 2 = q1 = · · · = qd and p = qd+1 = · · · = q4d. For suitable c, c′, if

k ∈M(c)p1,p2,...,p4d or τ ∈M(c′)q1,q2,...,q4d, then A is Schatten p-class on L2(Rd).

The strongest known Schatten class result for pseudodifferential operators ob-

tained by time-frequency analysis is Theorem 4.1.1. Although the crux of both The-

orem 4.1.3 and Theorem 4.1.1 is time-frequency analysis with Gabor frames, our

Theorem 4.1.3 is obtained by analyzing the slices of the kernel with a Gabor frame,

thus permitting a finer control on the properties of the kernel. As a result, we can

show that Theorem 4.1.3 is stronger than Theorem 4.1.1 for kernels, in the sense

that the mixed modulation space described by Theorem 4.1.3 strictly contains the

space M2,2
vs (R2d). In fact, we show that Theorem 4.1.3 is sharp for kernels in the

sense that larger mixed modulation spaces contain kernels of pseudodifferential op-

erators that are not Schatten p-class. We also show that Theorem 4.1.3 gives a new

class of Kohn-Nirenberg symbols of Schatten class operators distinct from the Kohn-

Nirenberg symbol class described by Theorem 4.1.1.

The remainder of the chapter is organized as follows. Section 4.2 contains defi-

nitions and basic lemmas. In Section 4.3, the definition of mixed modulation spaces

M(c)p1,p2,...,p2d
w is given and the properties of these spaces are developed. In Section

4.4, we show how the mixed modulation spaces can be used to generalize boundedness

results for pseudodifferential operators. In Section 4.5, we apply the results of Section

4.3 and Corollary 3.3.6 to pseudodifferential operators and compare our results with

Theorem 4.1.1.
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4.2 Definitions and preliminary lemmas

In order to characterize the time-frequency properties of kernels and symbols of pseu-

dodifferential operators, we need more information about frames and bases of time-

frequency shifts, as well as the relationships between the kernels and symbols.

4.2.1 Gabor Frames and Wilson Bases

Definition 4.2.1. A Gabor frame for L2(Rd) is a sequence {MξTxφ}(x,ξ)∈Λ that is a

frame for L2(Rd).

There are tight Gabor frame for L2(Rd) whose generator φ is a nice function, e.g.,

φ ∈ C∞c (Rd). However, the different statements of the Balian-Low Theorem show

that the elements of a Gabor frame which offers unique expansions (i.e. a Gabor

Riesz basis) necessarily have poor time-frequency localization. See [33] for examples

and properties of Gabor frames.

Wilson bases are orthonormal bases similar to Gabor Riesz bases in that they allow

for unique, discrete expansions of the elements of L2(Rd) in terms of time-frequency

“molecules.” However, in contrast with Gabor Riesz bases, the elements of a Wilson

basis may be well-localized in time and frequency.

For each k ∈ Zd, n ∈ (Z+)
d

let

Ψk,n(t) = ψk1,n1(t1)ψk2,n2(t2) · · ·ψkd,nd(td),

where

ψki,ni(ti) =

 Tkiψ(ti), if ni = 0,

1√
2
T ki

2

(
Mni + (−1)ki+niM−ni

)
ψ(ti), if ni > 0.

For suitable ψ ∈ L2(R), the sequence {Ψk,n}k∈Zd,n∈(Z+)d constitutes an orthonor-

mal basis for L2(Rd). In this case we call {Ψk,n}k∈Zd,n∈(Z+)d the Wilson basis generated

by ψ (see [33] for details).
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4.2.2 The relationship between kernel and symbols

Recall that the pseudodifferential operator with Kohn-Nirenberg symbol τ is

Kτf(t) =

∫∫
R2d

τ̂ (ξ, x)MξT−xf(t) dx dξ

and the pseudodifferential operator with Weyl symbol σ is

Lσf(t) =

∫∫
R2d

σ̂ (ξ, x) e−πiξ·xT−xMξf(t) dx dξ.

Every suitable pseudodifferential operator Kτ can be also realized as an operator Lσ

and in this case we have τ̂(ξ, x) = eπix·ξσ̂(ξ, x). Similarly, suitable Kτ and Lσ can be

realized as integral operators. In particular, if we let F2 denote the partial Fourier

transform on the last d variables of a function of 2d variables, i.e.

(F2F ) (x,w) =

∫
Rd
F (x, y) e2πiy·w dy for all x,w ∈ Rd,

then Kτ is an integral operator with kernel k = F−1
2 τ ◦N , where N(x, y) = (x, x− y)

for x, y ∈ Rd, and Lσ is an integral operator with kernel k = F−1
2 σ ◦ M , where

M(x, y) =
(
x+y

2
, x− y

)
for x, y ∈ Rd.

Lemma 4.2.2. Suppose f ∈ S (Rd) and Φ ∈ S (Rd).

(a) 〈f ◦N−1,M(c,d)T(a,b)Φ〉 = 〈f,M(c+d,−d)T(a,a−b)(Φ ◦N)〉

(b) 〈f ◦N,M(c,d)T(a,b)Φ〉 = 〈f,M(c+d,−d)T(a,a−b)(Φ ◦N−1)〉

(c) 〈f ◦M−1,M(c,d)T(a,b)Φ〉 = 〈f,M( c
2

+d, c
2
−d)T(a+ b

2
,a− b

2
)(Φ ◦M)〉

(d) 〈f ◦M,M(c,d)T(a,b)Φ〉 = 〈f,M(c+d, c−d
2

)T(a+b
2
,a−b)(Φ ◦M−1)〉

(e)
∣∣〈F2f,M(c,d)T(a,b)Φ〉

∣∣ =
∣∣〈f,M(c,b)T(a,−d)(F−1

2 Φ)〉
∣∣

(f)
∣∣〈F−1

2 f,M(c,d)T(a,b)Φ〉
∣∣ =

∣∣〈f,M(c,−b)T(a,d)(F2Φ)〉
∣∣
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Proof. It is easy to show that N−1 = N . Hence (a) and (b) are equivalent. To prove

them we have

〈f ◦N,M(c,d)T(a,b)Φ〉

=

∫∫
f(s, s− t)e−2πic·se−2πid·tΦ(s− a, t− b) ds dt

=

∫∫
f(s, u)e−2πic·se−2πid·(s−u)Φ(s− a, s− u− b) ds du

=

∫∫
f(s, u)e−2πic·se−2πid·(s−u)Φ(s− a, (s− a)− (u− (−b+ a))) ds du

=

∫∫
f(s, u)e−2πi(c+d)·se2πid·uT(a,a−b)(Φ ◦N)(s, u) ds du

= 〈f,M(c+d,−d)T(a,a−b)(Φ ◦N)〉

Notice that M−1(x, y) = (x+ y
2
, x− y

2
). Hence we can prove (c) by

〈f ◦M−1,M(c,d)T(a,b)Φ〉

=

∫∫
f

(
s+

t

2
, s− t

2

)
e−2πic·se−2πid·tΦ(s− a, t− b) ds dt

=

∫∫
f(x, x− t)e−2πic·(x− t

2
)e−2πid·tΦ

(
x− t

2
− a, t− b

)
dx dt

=

∫∫
f(x, y)e−2πic·(x−x−y

2
)e−2πid·(x−y)Φ

(
x− x− y

2
− a, x− y − b

)
dx dy

=

∫∫
f(x, y)e−2πi( c

2
+d)·xe−2πi( c

2
−d)·yΦ

(
x+ y

2
− a, x− y − b

)
dx dy

=

∫∫
f(x, y)e−2πi( c

2
+d)·xe−2πi( c

2
−d)·y

× Φ

(
x− (a+ b

2
) + y − (a− b

2
)

2
, x−

(
a+

b

2

)
−
(
y −

(
a− b

2

)))
dx dy

= 〈f,M( c
2

+d, c
2
−d)T(a+ b

2
,a− b

2
)(Φ ◦M)〉.

Also, we have

〈f ◦M,M(c,d)T(a,b)Φ〉

=

∫∫
f

(
s+ t

2
, s− t

)
e−2πic·se−2πid·tΦ(s− a, t− b) ds dt
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= 2

∫∫
f(x, 2x− 2t)e−2πic·(2x−t)e−2πid·tΦ(2x− t− a, t− b) dx dt

=

∫∫
f(x, y)e−2πic·(2x−(x− y

2
))e−2πid·(x− y

2
)Φ
(

2x−
(
x− y

2

)
− a, x− y

2
− b
)

dx dy

=

∫∫
f(x, y)e−2πix·(c+d)e−2πiy·( c

2
− d

2
)Φ(x+

y

2
− a, x− y

2
− b) dx dy

=

∫∫
f(x, y)e−2πix·(c+d)e−2πiy·( c

2
− d

2
)

× Φ

(
x− a+ b

2
+
y − (a− b)

2
, x− a+ b

2
− y − (a− b)

2

)
dx dy

= 〈f,M(c+d, c
2
− d

2
)T(a+b

2
,a−b)(Φ ◦M

−1)〉,

proving (d). To prove (e), we note

〈F2f,M(c,d)T(a,b)Φ〉 = 〈f,F−1
2

(
M(c,d)T(a,b)Φ

)
〉

= e2πib·d〈f,M(c,b)T(a,−d)(F−1
2 Φ)〉

and (f) is proved similarly.

Corollary 4.2.3. Let A be a pseudodifferential operator with kernel k, Weyl symbol

σ and Kohn-Nirenberg symbol τ .

(a)
∣∣〈k,M(c,d)T(a,b)Φ〉

∣∣ =
∣∣〈τ,M(c+d,b−a)T(a,−d)F2(Φ ◦N−1)

∣∣
(b)

∣∣〈k,M(c,d)T(a,b)Φ〉
∣∣ =

∣∣∣〈σ,M(c+d,b−a)T(a+b
2
, c−d

2
)F2(Φ ◦M−1)〉

∣∣∣
(c)

∣∣〈σ,M(c,d)T(a,b)Φ〉
∣∣ =

∣∣∣〈τ,M(c,d)T(a− d
2
,b− c

2
)F2(F−1

2 Φ ◦M ◦N−1)〉
∣∣∣.

Proof. Using the previous lemma we have

∣∣〈k,M(c,d)T(a,b)Φ〉
∣∣ =

∣∣〈F−1
2 τ ◦N,M(c,d)T(a,b)Φ〉

∣∣
=
∣∣〈F−1

2 τ,M(c+d,−d)T(a,a−b)(Φ ◦N−1)〉
∣∣

=
∣∣〈τ,M(c+d,b−a)T(a,−d)F2(Φ ◦N−1)〉

∣∣
and

∣∣〈k,M(c,d)T(a,b)Φ〉
∣∣ =

∣∣〈F−1
2 σ ◦M,M(c,d)T(a,b)Φ〉

∣∣
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=
∣∣∣〈F−1

2 σ,M(c+d, c−d
2

)T(a+b
2
,a−b)(Φ ◦M

−1)〉
∣∣∣

=
∣∣∣〈σ,M(c+d,b−a)T(a+b

2
, c−d

2
)F2(Φ ◦M−1)〉

∣∣∣
and

∣∣〈σ,M(c,d)T(a,b)Φ〉
∣∣ =

∣∣〈F2

(
k ◦M−1

)
,M(c,d)T(a,b)Φ〉

∣∣
=
∣∣〈F2

(
F−1

2 τ ◦N ◦M−1
)
,M(c,d)T(a,b)Φ〉

∣∣
=
∣∣〈F−1

2 τ ◦N ◦M−1,M(c,b)T(a,−d)F−1
2 Φ〉

∣∣
=
∣∣∣〈F−1

2 τ ◦N,M( c
2

+b, c
2
−b)T(a− d

2
,a+ d

2
)F
−1
2 Φ ◦M〉

∣∣∣
=
∣∣∣〈F−1

2 τ,M(c,b− c
2

)T(a− d
2
,−d)F

−1
2 Φ ◦M ◦N−1〉

∣∣∣
=
∣∣∣〈τ,M(c,d)T(a− d

2
,b− c

2
)F
−1
2

(
F−1

2 Φ ◦M ◦N−1
)
〉
∣∣∣

Notice that Corollary 4.2.3 is different than the relationship between the kernel

and Kohn-Nirenberg symbol of an operator given on page 263 of [9]. Corollary 4.2.3

is in fact the correct relationship between the kernel and Kohn-Nirenberg symbol of

an operator.

4.3 Mixed Modulation Spaces

In this section we introduce a generalization of the modulation spaces Mp,q
w (Rd).

Recall that the Gabor transform of f ∈ S ′(Rd) is Vφf(x, ξ) = 〈f,MξTxφ〉 ∀x, ξ ∈

Rd, where φ ∈ S (Rd) is fixed. Also recall that vs(z) = (1 + |z|)s. We will assume

throughout this chapter that v : R2d → (0,∞) is a submultiplicative weight function

of polynomial growth symmetric in each coordinate, i.e.

v(x1, . . . ,−xi, . . . , x2d) = v(x1, . . . , xi, . . . , x2d)

for each i = 1, 2, · · · , 2d. We also assume that w is a v-moderate weight and c is

a permutation of {1, 2, . . . , 2d}. To simplify some notation, we identify c with the

bijection c : R2d → R2d given by c(x1, . . . x2d) = (xc(1), . . . , xc(2d)).
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Lemma 4.3.1. Suppose w is a v-moderate weight. Then so is 1
w

.

Proof. Since w is a v-moderate, there exists C such that for all z1, z2 ∈ R2d we have

w(z1 + z2) ≤ Cv(z1)w(z2). Then for any z1, z2 ∈ R2d, we have

w(z2) = w(−z1 + z1 + z2) ≤ Cv(−z1)w(z1 + z2) = Cv(z1)w(z1 + z2),

which implies

1

w(z1 + z2)
≤ Cv(z1)

w(z2)
.

Definition 4.3.2. Suppose φ ∈ S (Rd) and c is a permutation of {1, 2, . . . , 2d} cor-

responding to the map c. Let M(c)p1,p2,...,p2d
w be the mixed modulation space consisting

of all f ∈ S ′(Rd) for which

‖f‖M(c)
p1,p2,...,p2d
w

= ‖Vφf ◦ c‖Lp1,p2,...,p2dw
<∞.

When w = 1 we write M(c)p1,p2,...,p2d
w = M(c)p1,p2,...,p2d.

The most interesting properties of modulation spaces carry over to the mixed

modulation spaces. What follows is an adaptation of the properties of modulation

spaces that are presented in [33].

Lemma 4.3.3. (a) If c is the identity permutation and p = p1 = p2 = · · · = pd and

q = pd+1 = · · · = p2d then M(c)p1,p2,...,p2d
w = Mp,q

w (Rd).

(b) If p = p1 = p2 = · · · = pd = pd+1 = · · · = p2d then M(c)p1,p2,...,p2d
vs = Mp,p

vs (Rd)

for any permutation c.

Proof. Both statements follow directly from the definition of mixed modulation spaces.

Lemma 4.3.3(a) shows that the mixed modulation spaces are indeed generaliza-

tions of the modulation spaces. It is shown in [41] that Mp,p
vs (Rd) is invariant under

the Fourier transform. Lemma 4.3.3(b) can be viewed as a generalization of this fact

to the mixed modulation spaces.
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4.3.1 The Inversion Formula for Mixed Modulation Space

It will be useful to consider the formal adjoint of f −→ Vφf ◦ c, given by Γφ in the

following definition.

Definition 4.3.4. Suppose c is a permutation of {1, 2, . . . , 2d}. For each x ∈ R2d let

πx = M(xd+1,...,x2d)T(x1,...,xd). For measurable ψ : Rd → C define an operator Γψ by

ΓψF (t) =

∫
R2d

F (x) πc(x)ψ(t) dx,

where the integral is interpreted in the weak sense.

Lemma 4.3.5. Suppose c is a permutation of {1, 2, . . . , 2d} associated to c and sup-

pose F ∈ S (R2d). Then F ◦ c ∈ S (R2d).

Lemma 4.3.6. Suppose ψ ∈ S (Rd) is given. Then Γψ : Lp1,p2,··· ,p2d
w −→M(c)p1,p2,··· ,p2d

w

is a bounded linear map satisfying

‖ΓψF‖M(c)
p1,p2,··· ,p2d
w

≤ ‖F‖Lp1,p2,··· ,p2dw
‖Vφψ ◦ c‖L1

v(R2d) .

Proof. We adapt the proof of Proposition 11.3.2(a) in [33]. Clearly Γψ is linear.

Choose F ∈ Lp1,p2,··· ,p2d
w . First we must show ΓψF is a tempered distribution. Choose

γ ∈ S (Rd). We have

|〈ΓψF, γ〉| =
∣∣∣∣∫ F (x)〈πc(x)ψ, γ〉 dx

∣∣∣∣
= |〈F, Vψγ ◦ c〉|

≤ ‖F‖Lp1,p2,··· ,p2dw
‖Vψγ ◦ c‖

L
p′1,p
′
2,··· ,p

′
2d

1
w

≤ ‖F‖Lp1,p2,··· ,p2dw
‖Vψγ(c(x)) (1 + |c(x)|)n‖∞

∥∥(1 + |c(x)|)−n
∥∥
L
p′1,p
′
2,··· ,p

′
2d

1
w

= ‖F‖Lp1,p2,··· ,p2dw
‖Vψγ(x) (1 + |x|)n‖∞

∥∥(1 + |x|)−n
∥∥
L
p′1,p
′
2,··· ,p

′
2d

1
w

.

This value is finite for n sufficiently large. Using Corollary 11.2.6 in [33], ΓψF is in

fact a tempered distribution.
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Consequently, VφΓψF is a well-defined, continuous function and

|VφΓψF (c(x))| =
∣∣〈ΓψF, πc(x)φ〉

∣∣
=

∣∣∣∣∫ F (y)〈πc(y)ψ, πc(x)φ〉 dy
∣∣∣∣

≤
∫
|F (y)|

∣∣〈ψ, πc(x)−c(y)φ〉
∣∣ dy

=

∫
|F (y)|

∣∣〈ψ, πc(x−y)φ〉
∣∣ dy

= (|F | ∗ |Vφψ ◦ c|) (x).

Thus

‖ΓψF‖M(c)
p1,p2,··· ,p2d
w

= ‖VφΓψF ◦ c‖Lp1,p2,··· ,p2dw

≤ ‖|F | ∗ |Vφψ ◦ c|‖Lp1,p2,··· ,p2dw

≤ ‖F‖Lp1,p2,··· ,p2dw
‖Vφψ ◦ c‖L1

v(R2d) .

Since φ, ψ ∈ S (Rd), Theorem 11.2.5 in [33] implies Vφψ ∈ S (R2d). Therefore

‖Vφψ ◦ c‖L1
v(R2d) is finite, and we obtain the desired boundedness of Γψ.

Theorem 4.3.7. Suppose ψ ∈ S (Rd). For any f ∈M(c)p1,p2,··· ,p2d
w , we have

Γψ (Vφf ◦ c) = 〈ψ, φ〉f.

Proof. We adapt the proof of Proposition 11.3.2(b) in [33]. By Corollary 11.2.7 in [33]

we have for all f ∈ S ′(Rd) that f = 1
〈ψ,φ〉

∫
Vφf(x)πxψ dx. Hence for all f ∈ S ′(Rd),

we have

f =
1

〈ψ, φ〉

∫
Vφf (c(x))πc(x)ψ dx =

1

〈ψ, φ〉
Γψ (Vφf ◦ c) .

This equality is valid inM(c)p1,p2,··· ,p2d
w because Lemma 4.3.6 ensures that Γψ (Vφf ◦ c) ∈

M(c)p1,p2,··· ,p2d
w .

Corollary 4.3.8. Suppose ψ, γ ∈ S (Rd) and f ∈ M(c)p1,p2,··· ,p2d
w are given. Then

there exists some constant C independent of f, ψ and γ satisfying
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(a) ‖Vγf ◦ c‖Lp1,p2,··· ,p2dw
≤ C ‖Vφγ ◦ c‖L1

v(R2d) ‖f‖M(c)
p1,p2,··· ,p2d
w

,

(b) ‖Vγf ◦ c‖W (L
p1,p2,··· ,p2d
w ) ≤ C ‖Vφγ ◦ c‖W (L1

v(R2d)) ‖f‖M(c)
p1,p2,··· ,p2d
w

, and

(c) ‖Vγψ ◦ c‖W (L1
v(R2d)) ≤ C ‖Vφψ ◦ c‖L1

v(R2d) ‖Vφγ ◦ c‖L1
v(R2d)

Proof. Notice that for any γ, ψ ∈ S (Rd), Theorem 11.2.5 in [33] and Lemma 4.3.5

imply Vγψ ◦ c ∈ S (R2d), so ‖Vγψ ◦ c‖W (L1
v(R2d)) is finite.

Fix f ∈ M(c)p1,p2,··· ,p2d
w . By the previous theorem we have f = 1

〈φ,φ〉Γφ (Vφf ◦ c).

Thus

|Vγf (c(x))| =
∣∣〈f, πc(x)γ〉

∣∣
=

1

|〈φ, φ〉|
∣∣〈Γφ (Vφf ◦ c) , πc(x)γ〉

∣∣
=

1

|〈φ, φ〉|

∣∣∣∣∫ Vφf(c(y))〈πc(y)φ, πc(x)γ〉 dy
∣∣∣∣

≤ 1

|〈φ, φ〉|

∫
|Vφf(c(y))|

∣∣〈φ, πc(x−y)γ〉
∣∣ dy

≤ 1

|〈φ, φ〉|

∫
|Vφf(c(y))| |Vγφ (c(x− y))〉| dy

=
1

|〈φ, φ〉|
(|Vφf ◦ c| ∗ |Vγφ ◦ c|) (x). (20)

Since for all x ∈ R2d we have v(−x) = v(x) and

|Vγφ(x)| =
∣∣〈φ, πc(x)γ〉

∣∣ =
∣∣〈γ, πc(−x)φ〉

∣∣ = |Vφγ(−x)| ,

it follows that ‖Vγφ ◦ c‖L1
v(R2d) = ‖Vφγ ◦ c‖L1

v(R2d) . By Young’s inequality we have

‖Vγf ◦ c‖Lp1,p2,··· ,p2dw
≤ |〈φ, φ〉|−1 ‖Vφf ◦ c‖Lp1,p2,··· ,p2dw

‖Vγφ ◦ c‖L1
v(R2d)

= |〈φ, φ〉|−1 ‖Vφf ◦ c‖Lp1,p2,··· ,p2dw
‖Vφγ ◦ c‖L1

v(R2d) . (21)

By Lemma 1.2.6 and (20), there exists some constant C1 independent of f, γ, φ

such that

‖Vγf ◦ c‖W (L
p1,p2,··· ,p2d
w ) ≤ |〈φ, φ〉|

−1 ‖|Vφf ◦ c| ∗ |Vγφ ◦ c|‖W (L
p1,p2,··· ,p2d
w )
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≤ C1 |〈φ, φ〉|−1 ‖Vφf ◦ c‖Lp1,p2,··· ,p2dw
‖Vγφ ◦ c‖W (L1

v(R2d))

= C1 |〈φ, φ〉|−1 ‖Vφf ◦ c‖Lp1,p2,··· ,p2dw
‖Vφγ ◦ c‖W (L1

v(R2d)) , (22)

where the last equality follows from the fact v(−x) = v(x) ∀x ∈ R2d.

Note that by (22) we have

‖Vγψ ◦ c‖W (L1
v(R2d)) ≤ C1 |〈φ, φ〉|−1 ‖ψ‖M(c)1,··· ,1

v
‖Vφγ ◦ c‖W (L1

v(R2d)) .

Applying (22) again to ‖Vφγ ◦ c‖W (L1
v(R2d)) gives

‖Vγψ ◦ c‖W (L1
v(R2d))

≤ C1 |〈φ, φ〉|−1 ‖ψ‖M(c)1,··· ,1
v
‖Vφγ ◦ c‖W (L1

v(R2d))

≤ C2
1 |〈φ, φ〉|

−2 ‖ψ‖M(c)1,··· ,1
v
‖Vφγ ◦ c‖L1

v(R2d) ‖Vφφ ◦ c‖W (L1
v(R2d))

≤ C2
1 |〈φ, φ〉|

−2 ‖Vφψ ◦ c‖L1
v(R2d) ‖Vφγ ◦ c‖L1

v(R2d) ‖Vφφ ◦ c‖W (L1
v(R2d)) . (23)

Examining the inequalities (21), (22) and (23), we see that the theorem is satisfied

for

C ≥ max
{
|〈φ, φ〉|−1 , C1 |〈φ, φ〉|−1 , C2

1 |〈φ, φ〉|
−2 ‖Vφφ ◦ c‖W (L1

v(R2d))

}
.

4.3.2 Mixed Modulation Spaces as Banach Spaces

In this section we show that the mixed modulation spaces are Banach spaces and we

compute their duals.

Corollary 4.3.9. For any p1, p2, . . . , p2d ∈ [1,∞], M(c)p1,p2,...,p2d
w is a Banach space.

Proof. Routine calculations show that M(c)p1,p2,··· ,p2d
w is a normed linear space. Sup-

pose {fn}n∈N is Cauchy inM(c)p1,p2,··· ,p2d
w . Then {Vφfn ◦ c}n∈N is Cauchy in Lp1,p2,··· ,p2d

w .

Since Lp1,p2,··· ,p2d
w is a Banach space, there is some F ∈ Lp1,p2,··· ,p2d

w with

lim
n→∞

‖Vφfn ◦ c− F‖Lp1,p2,··· ,p2dw
= 0.

Let f = ‖φ‖−2 ΓφF . Then f ∈ Lp1,p2,··· ,p2d
w and

lim
n→∞

‖fn − f‖M(c)
p1,p2,··· ,p2d
w

= lim
n→∞

‖φ‖−2 ‖Γφ (Vφfn ◦ c)− ΓφF‖M(c)
p1,p2,··· ,p2d
w
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≤ lim
n→∞

‖φ‖−2 ‖Γφ‖ ‖Vφfn ◦ c− F‖Lp1,p2,··· ,p2dw

= 0.

Therefore {fn}n∈N is convergent in M(c)p1,p2,··· ,p2d
w .

Theorem 4.3.10. If p1, p2, . . . , p2d ∈ [1,∞) then M(c)
p′1,p

′
2,...,p

′
2d

1
w

is the dual space of

M(c)p1,p2,...,p2d
w , where each p′i ∈ [1,∞] satisfies 1

pi
+ 1

p′i
= 1.

Proof. Note that f → Vφf ◦ c is the adjoint of Γφ. Suppose g ∈ M(c)
p′1,p

′
2,··· ,p′2d

1
w

. We

have

|〈f, g〉| = ‖φ‖−2 |〈Γφ(Vφf ◦ c), g〉|

=

∣∣∣∣∫ Vφf(c(x))Vφg(c(x)) dx

∣∣∣∣
≤ ‖Vφf ◦ c‖Lp1,p2,··· ,p2dw

‖Vφg ◦ c‖
L
p′1,p
′
2,··· ,p

′
2d

1
w

= ‖f‖M(c)
p1,p2,··· ,p2d
w

‖g‖
M(c)

p′1,p
′
2,··· ,p

′
2d

1
w

so that g induces a bounded linear functional on M(c)p1,p2,··· ,p2d
w .

Now suppose α ∈ (M(c)p1,p2,··· ,p2d
w )∗. Because M(c)p1,p2,··· ,p2d

w is a Banach space,

the space

V = {F ∈ Lp1,p2,··· ,p2d
w : F = Vφf ◦ c for some f ∈M(c)p1,p2,··· ,p2d

w }

is closed and isometrically isomorphic to M(c)p1,p2,··· ,p2d
w via Γ∗φ. Hence α induces

a functional on V . By the Hahn-Banach Theorem, α extends to a functional on

Lp1,p2,··· ,p2d
w . Hence there is G ∈ Lp

′
1,p
′
2,··· ,p′2d

1
w

with

α(f) = 〈Γ∗φf,G〉 ∀f ∈M(c)p1,p2,··· ,p2d
w .

Let g = ΓφG. Then g ∈M(c)
p′1,p

′
2,··· ,p′2d

1
w

by Lemma 4.3.6 and

α(f) = 〈Γ∗φf,G〉 = 〈f,ΓφG〉 = 〈f, g〉.

Hence (M(c)p1,p2,··· ,p2d
w )∗ = M(c)

p′1,p
′
2,··· ,p′2d

1
w

.
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4.3.3 A larger window class

Many of the mixed modulation spaces results for windows in S (Rd) to also hold

for windows in M(c)1,1,··· ,1
v . We focus on these type results in this section. First a

technical lemma is needed.

Lemma 4.3.11. S (Rd) is dense in M(c)p1,p2,··· ,p2d
w for all p1, p2, · · · , p2d ∈ [1,∞).

Proof. First, suppose f ∈ S (Rd). Since v has polynomial growth, so does w and

there is some s ≥ 0 with ‖w‖Lp1,p2,··· ,p2dv−s
< ∞. Since f ∈ S (Rd), Theorem 11.2.5 in

[33] and Lemma 4.3.5 imply Vφf ◦ c ∈ S (R2d), so ‖Vφf ◦ c‖L∞vs (R2d) <∞. Hence

‖f‖M(c)
p1,p2,··· ,p2d
w

= ‖Vφf ◦ c‖Lp1,p2,··· ,p2dw

≤ ‖Vφf ◦ c‖L∞vs (R2d) ‖w‖Lp1,p2,··· ,p2dv−s

<∞.

Thus f ∈M(c)p1,p2,··· ,p2d
w , so S (Rd) ⊂M(c)p1,p2,··· ,p2d

w .

Now suppose f ∈ M(c)p1,p2,··· ,p2d
w . Let Fn = Vφf · χ[−n,n]2d . By Proposition 11.2.4

in [33],

fn = ‖φ‖−2
L2

∫
Fn(x)πxφ dx = ‖φ‖−2

L2

∫
Fn(c(x))πc(x)φ dx = ‖φ‖−2

L2 Γφ(Fn◦c) ∈ S (Rd).

Notice that by Lemma 4.3.6(b), we have Vφf ◦ c ∈ W (Lp1,...,p2d
w ), which implies

lim
n→∞

∥∥∥∥(Vφf ◦ c) · χ
([−n,n]2d)

C

∥∥∥∥
L
p1,p2,··· ,p2d
w

= 0.

Also by Lemma 4.3.6,

‖f − fn‖M(c)
p1,p2,··· ,p2d
w

= ‖φ‖−2
L2 ‖Γφ(Vφf ◦ c)− Γφ(Fn ◦ c)‖M(c)

p1,p2,··· ,p2d
w

≤ ‖φ‖−2
L2 ‖Vφψ ◦ c‖L1

v(R2d)

∥∥∥∥(Vφf ◦ c) · χ
([−n,n]2d)

C

∥∥∥∥
L
p1,p2,··· ,p2d
w

→ 0.

Hence S (Rd) is dense in M(c)p1,p2,··· ,p2d
w .
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Lemma 4.3.12. Suppose ψ, γ ∈M(c)1,1,··· ,1
v .

(a) For all p1, . . . , p2d ∈ [1,∞], f −→ Vγf◦c is a bounded operator from M(c)p1,p2,··· ,p2d
w

to Lp1,p2,··· ,p2d and there is some constant C independent of f and γ such that

‖Vγf ◦ c‖Lp1,p2,··· ,p2d ≤ C ‖γ‖M(c)1,1,··· ,1
v

‖f‖M(c)
p1,p2,··· ,p2d
w

.

(b) For all p1, . . . , p2d ∈ [1,∞], F −→ ΓψF is a bounded operator from Lp1,p2,··· ,p2d

to M(c)p1,p2,··· ,p2d
w with

‖ΓψF‖M(c)
p1,p2,··· ,p2d
w

≤ ‖F‖Lp1,p2,··· ,p2d ‖ψ‖M(c)1,1,··· ,1
v

.

Proof. First we prove (a). Fix p1, . . . , p2d ∈ [1,∞] and let f ∈ M(c)p1,p2,··· ,p2d
w . By

Theorem 4.3.7 we have f = 1
〈φ,φ〉Γφ (Vφf ◦ c). Thus

|Vγf (c(x))| =
∣∣〈f, πc(x)γ〉

∣∣
=

1

|〈φ, φ〉|
∣∣〈Γφ (Vφf ◦ c) , πc(x)γ〉

∣∣
=

1

|〈φ, φ〉|

∣∣∣∣∫ Vφf(c(y))〈πc(y)φ, πc(x)γ〉 dy
∣∣∣∣

≤ 1

|〈φ, φ〉|

∫
|Vφf(c(y))|

∣∣〈φ, πc(x−y)γ〉
∣∣ dy

≤ 1

|〈φ, φ〉|

∫
|Vφf(c(y))| |Vγφ (c(x− y))〉| dy

=
1

|〈φ, φ〉|
(|Vφf ◦ c| ∗ |Vγφ ◦ c|) (x).

Thus by Young’s inequality we have

‖Vγf ◦ c‖Lp1,p2,··· ,p2dw
≤ |〈φ, φ〉|−1 ‖Vφf ◦ c‖Lp1,p2,··· ,p2dw

‖Vγφ ◦ c‖L1
v(R2d)

= |〈φ, φ〉|−1 ‖Vφf ◦ c‖Lp1,p2,··· ,p2dw
‖Vφγ ◦ c‖L1

v(R2d)

= |〈φ, φ〉|−1 ‖γ‖M(c)1,1,··· ,1
v

‖f‖M(c)
p1,p2,··· ,p2d
w

.

Now we prove (b). Fix p1, . . . , p2d ∈ [1,∞]. By Lemma 4.3.1, 1
w

is v-moderate.

Thus by (a), f → Vψf ◦ c is a bounded operator from M(c)
p′1,p

′
2,··· ,p′2d

1
w

to L
p′1,p

′
2,··· ,p′2d

1
w

.
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Since Γψ is the adjoint of this operator, we see F −→ ΓψF is a bounded operator

from Lp1,p2,··· ,p2d to M(c)p1,p2,··· ,p2d
w .

Fix F ∈ Lp1,p2,··· ,p2d . By Lemma 4.3.6 we see that τ −→ ΓτF is a linear operator

from S (Rd) to M(c)p1,p2,··· ,p2d
w satisfying

‖ΓτF‖M(c)
p1,p2,··· ,p2d
w

≤ ‖F‖Lp1,p2,··· ,p2d ‖Vφτ ◦ c‖L1
v(R2d) .

Since Lemma 4.3.11 shows S (Rd) is dense in M(c)1,1,··· ,1
v , this operator extends to a

bounded linear operator from M(c)1,1,··· ,1
v to M(c)p1,p2,··· ,p2d

w with

‖ΓψF‖M(c)
p1,p2,··· ,p2d
w

≤ ‖F‖Lp1,p2,··· ,p2d ‖ψ‖M(c)1,1,··· ,1
v

.

Lemma 4.3.13. Suppose ψ, γ ∈ S (Rd). For any f ∈ M(c)p1,p2,··· ,p2d
w , we have

Γψ (Vγf ◦ c) = 〈ψ, γ〉f .

Proof. By Corollary 11.2.7 in [33] we have for all f ∈ S ′(Rd) that

f = 1
〈ψ,γ〉

∫
Vγf(x)πxψ dx. Hence for all f ∈ S ′(Rd), we have

f =
1

〈ψ, γ〉

∫
Vγf (c(x))πc(x)ψ dx =

1

〈ψ, γ〉
Γψ (Vγf ◦ c) .

This is an equality of distributions, but it is also valid in M(c)p1,p2,··· ,p2d
w because

Lemmas 4.3.11 and 4.3.12 ensure that Γψ (Vγf ◦ c) ∈M(c)p1,p2,··· ,p2d
w .

Theorem 4.3.14. Suppose ψ, γ ∈M(c)1,...,1
v are given.

(a) For any f ∈M(c)p1,p2,...,p2d
w , we have Γψ (Vγf ◦ c) = 〈ψ, γ〉f .

(b) |||f ||| = ‖Vψf ◦ c‖Lp1,p2,...,p2dw
is an equivalent norm on M(c)p1,p2,...,p2d

w .

Proof. First we prove (a). Choose {ψn} , {γn} ⊂ S (Rd) with ‖ψ − ψn‖M(c)1,1,··· ,1
v

→ 0

and ‖γ − γn‖M(c)1,1,··· ,1
v

→ 0. Fix f ∈M(c)p1,p2,··· ,p2d
w . Using Lemma 4.3.13 we have

∥∥f − 〈ψ, γ〉−1Γψ (Vγf ◦ c)
∥∥
M(c)

p1,p2,··· ,p2d
w

=
∥∥〈ψn, γn〉−1Γψn (Vγnf ◦ c)− 〈ψ, γ〉−1Γψ (Vγf ◦ c)

∥∥
M(c)

p1,p2,··· ,p2d
w
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≤
∣∣〈ψn, γn〉−1 − 〈ψ, γ〉−1

∣∣ ‖Γψ (Vγf ◦ c)‖M(c)
p1,p2,··· ,p2d
w

+ |〈ψn, γn〉|−1 ‖Γψ (Vγ−γnf ◦ c)‖M(c)
p1,p2,··· ,p2d
w

+ |〈ψn, γn〉|−1 ‖Γψ−ψn (Vγnf ◦ c)‖M(c)
p1,p2,··· ,p2d
w

Using Lemma 4.3.12, we see that each term in this sum can be made arbitrarily small,

proving (a).

To prove (b), fix f ∈ M(c)p1,p2,··· ,p2d
w . Then by part (a) and Lemma 4.3.12, we

have

‖f‖M(c)
p1,p2,··· ,p2d
w

= |〈φ, ψ〉|−1 ‖Γφ (Vψf ◦ c)‖M(c)
p1,p2,··· ,p2d
w

≤ |〈φ, ψ〉|−1 ‖φ‖M(c)1,...,1
v
‖Vψf ◦ c‖Lp1,p2,··· ,p2dw

= |〈φ, ψ〉|−1 ‖φ‖M(c)1,...,1
v
|||f |||

= |〈φ, ψ〉|−1 ‖φ‖M(c)1,...,1
v
‖Vψf ◦ c‖Lp1,p2,··· ,p2dw

≤ |〈φ, ψ〉|−1 ‖φ‖M(c)1,...,1
v

C ‖ψ‖M(c)1,1,··· ,1
v

‖f‖M(c)
p1,p2,··· ,p2d
w

Theorem 4.3.14(b) states that the definition of the mixed modulation spaces is in-

dependent of the choice of φ ∈ S (Rd), with different φ giving equivalent norms. Fur-

thermore, this fact also holds for φ in the larger space M(c)1,...,1
v . Theorem 4.3.14(a)

states that for Gabor window functions in M(c)1,...,1
v , there is an inversion formula

valid on each M(c)p1,p2,...,p2d
w .

4.3.4 Banach Frames

Lemma 4.3.15. If ψ, γ ∈M(c)1,1,··· ,1
v , then Vγψ ◦ c ∈ W (L1

v(R2d)) and there exists C

independent of ψ, γ with

Proof. If ψ, γ ∈ S (Rd) then Corollary 4.3.8(c) implies

‖Vγψ ◦ c‖W (L1
v)(R2d)) ≤ C ‖ψ‖M(c)1,...,1

v
‖γ‖M(c)1,...,1

v
,

for some C independent of ψ, γ. By the density of S (Rd) in M(c)1,1,··· ,1
v , this result

extends to ψ, γ ∈M(c)1,1,··· ,1
v .
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Proposition 4.3.16. Suppose ψ ∈ M(c)1,1,...,1
v . Then the analysis operator Cψ :

M(c)p1,...,p2d
w −→ `p1,...,p2d

w defined by

Cψf =
{
〈f, πc(α·n)ψ〉

}
n∈Z2d

is bounded for all p1, . . . , p2d ∈ [1,∞] and all α = (α1, . . . , α2d) with α1, . . . , α2d ∈

(0,∞).

Proof. First notice that we can define an equivalent norm on W (Lp1,p2,...,p2d
w ) by

‖F‖ =
∥∥∥{∥∥Fχα·[0,1]2d+α·n

∥∥
∞

}
n∈Z2d

∥∥∥
`
p1,p2,...,p2d
w

.

Hence, there exists finite K such that∥∥∥{∥∥Fχα·[0,1]2d+α·n
∥∥
∞

}
n∈Z2d

∥∥∥
`
p1,p2,...,p2d
w

≤ K ‖F‖W (L
p1,p2,...,p2d
w )

for all F ∈ W (Lp1,p2,...,p2d
w ).

If ψ ∈ S (Rd), then by Corollary 4.3.8(b) and (c) there is some C independent of

ψ, f such that for all f ∈M(c)p1,...,p2d
w we have

‖Cψf‖`p1,...,p2dw
=
∥∥∥{Vψf ◦ c

∣∣
α·n

}
n∈Z2d

∥∥∥
`
p1,...,p2d
w

≤
∥∥∥{∥∥(Vψf ◦ c) · χα·[0,1]2d+α·n

∥∥
∞

}
n∈Z2d

∥∥∥
`
p1,p2,...,pd
w

≤ K ‖Vψf ◦ c‖W (L
p1,...,p2d
w )

≤ KC ‖Vφψ ◦ c‖W (L1
v(R2d)) ‖f‖M(c)

p1,...,p2d
w

≤ KC2 ‖Vφφ ◦ c‖L1
v(R2d) ‖Vφψ ◦ c‖L1

v(R2d) ‖f‖M(c)
p1,...,p2d
w

≤ KC2 ‖Vφφ ◦ c‖L1
v(R2d) ‖ψ‖M(c)1,...,1

v
‖f‖M(c)

p1,...,p2d
w

. (24)

By the density of S (Rd) in M(c)1,1,...,1
v , the inequality (24) extends to all ψ ∈

M(c)1,1,...,1
v .

Proposition 4.3.17. Suppose ψ ∈ M(c)1,1,··· ,1
v . Then the Gabor synthesis operator

Dψ : `p1,...,p2d
w −→M(c)p1,...,p2d

w defined by

Dψd =
∑
n∈Z2d

dnπc(α·n)ψ

87



is bounded for all p1, . . . , p2d ∈ [1,∞] and all α = (α1, . . . , α2d) with α1, . . . , α2d ∈

(0,∞).

Proof. Choose K such that

‖F‖W (L
p1,p2,...,p2d
w ) ≤ K

∥∥∥{∥∥Fχα·[0,1]2d+α·n
∥∥
∞

}
n∈Z2d

∥∥∥
`
p1,p2,...,p2d
w

for all F ∈ W (Lp1,p2,...,p2d
w ).

Since ψ ∈ M(c)1,1,··· ,1
v we have Vφψ ◦ c ∈ W (L1

v(R2d)). Consequently, there is a

sequence a ∈ `1
v(Z2d) with am =

∥∥(Vψf ◦ c) · χα·[0,1]2d+α·m
∥∥
∞ and

‖Vφψ ◦ c‖W (L1
v) =

∑
m∈Z2d

|am| v(α ·m).

Thus

|Vφψ(c(x))| ≤
∑
m∈Z2d

|am|Tα·mχα·[0,1]2d(x) a.e.

It follows that

|Vφ(Dψd)(c(x))| =

∣∣∣∣∣ ∑
n∈Z2d

dn〈πc(α·n)ψ, πc(x)φ〉

∣∣∣∣∣
≤
∑
n∈Z2d

|dn| |Vφψ(c(x− α · n))|

≤
∑
n∈Z2d

∑
m∈Z2d

|dn| |am|Tα·mχα·[0,1]2d(x− α · n)

=
∑
n∈Z2d

∑
m∈Z2d

|dn| |am|Tα·(m+n)χα·[0,1]2d(x)

=
∑
n∈Z2d

∑
m∈Z2d

|dn| |am−n|Tα·mχα·[0,1]2d(x)

=
∑
m∈Z2d

(|d| ∗ |a|)m Tα·mχα·[0,1]2d(x).

Thus

‖Dψd‖M(c)
p1,...,p2d
w

= ‖Vφ (Dψd) ◦ c‖Lp1,...,p2dw

≤

∥∥∥∥∥ ∑
m∈Z2d

(|d| ∗ |a|)m Tα·mχα·[0,1]2d(x)

∥∥∥∥∥
L
p1,...,p2d
w
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≤ C

∥∥∥∥∥ ∑
m∈Z2d

(|d| ∗ |a|)m Tα·mχα·[0,1]2d(x)

∥∥∥∥∥
W (L

p1,...,p2d
w )

≤ CK ‖|d| ∗ |a|‖`p1,...,p2dw

≤ CK ‖d‖`p1,...,p2dw
‖a‖`1v ,

where C is some constant depending only on the Lebesgue measure of α · [0, 1]2d.

Corollary 4.3.18. Fix α = (α1, . . . , α2d) with α1, . . . , α2d ∈ (0,∞). Suppose ψ ∈

M(c)1,1,··· ,1
v . If d ∈ `p1,...,p2d

w then the sum

Dψd =
∑
n∈Z2d

dnπc(α·n)ψ

converges unconditionally in M(c)p1,...,p2d
w for all p1, . . . , p2d ∈ [1,∞) and converges

weak∗ unconditionally in M(c)∞,...,∞1
v

.

Proof. First we assume p1, . . . , p2d ∈ [1,∞). Fix d ∈ `p1,...,p2d
w and ε > 0. Choose a

finite set S0 ⊂ Z2d so that ‖d− dχS0‖`p1,...,p2dw
< ε. Then for each S0 ⊂ S ⊂ Z2d we

have ∥∥∥∥∥Dψd−
∑
n∈S

dnπc(α·n)ψ

∥∥∥∥∥
M(c)

p1,...,p2d
w

= ‖Dψ (d− dχS)‖

≤ ‖Dψ‖ ‖d− dχS‖`p1,...,p2dw

< ‖Dψ‖ ε.

Hence
∑

n∈Z2d dnπc(α·n)ψ converges unconditionally to Dψd.

More generally, assume p1, · · · , p2d ∈ [1,∞]. Fix f ∈ M(c)1,··· ,1
v and let ε > 0.

Then Cψf ∈ `1,...,1
v and there is a finite set S0 ⊂ Z2d so that

‖Cψf − (Cψf)χS0‖`1,··· ,1v (Z2d) < ε.

Thus for each S0 ⊂ S ⊂ Z2d∣∣∣∣∣〈Dψd−
∑
n∈S

dnπc(α·n)ψ, f〉

∣∣∣∣∣ = |〈Dψ (d− dχS) f〉|
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= |〈d (1− χS) , Cψf〉|

= |〈d, Cψf (1− χS)〉|

≤ ‖d‖`∞1
v

‖Cψf − (Cψf)χS‖`1,··· ,1v

≤ ‖d‖`∞1
v

‖Cψf − (Cψf)χS0‖`1,··· ,1v

< ‖d‖`∞1
v

ε

It follows that
∑

n∈Z2d dnπc(α·n)ψ converges weak∗ unconditionally to Dψd in M(c)∞1
v

.

The next theorem states that if the window function is nice then a Gabor frame

for L2(Rd) gives bounded decompositions for all mixed modulation spaces.

Theorem 4.3.19. Fix β > 0. Suppose p1, p2, . . . , p2d ∈ [1,∞] and ψ ∈ M(c)1,...,1
v .

Further suppose that {πβnψ}n∈Z2d is a frame for L2(Rd) with dual frame {πβnγ}n∈Z2d.

Then

(a) {πβnψ}n∈Z2d is a Banach frame for M(c)p1,p2,...,p2d
w and there exist 0 < A ≤ B <

∞ independent of p1, p2, . . . , p2d such that

A ‖f‖M(c)
p1,p2,...,p2d
w

≤
∥∥∥Vψf ◦ c

∣∣
βZ2d

∥∥∥
`
p1,p2,...,p2d
w

≤ B ‖f‖M(c)
p1,p2,...,p2d
w

,

for all f ∈M(c)p1,p2,...,p2d
w .

(b) If p1, p2, . . . , p2d ∈ [1,∞) then

f =
∑
m∈Z2d

〈f, πβmψ〉πβmγ =
∑
m∈Z2d

〈f, πβmγ〉 πβmψ

for all f ∈M(c)p1,p2,...,p2d
w with unconditional convergence in M(c)p1,p2,...,p2d

w .

(c) If p1, p2, . . . , p2d ∈ [1,∞] then

f =
∑
m∈Z2d

〈f, πβmψ〉πβmγ =
∑
m∈Z2d

〈f, πβmγ〉 πβmψ

for all f ∈M(c)p1,p2,...,p2d
w with weak* convergence in M(c)∞,...,∞1

v

.
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Proof. Set α = (β, β, . . . , β) ∈ R2d.

Since {πβnψ}n∈Z2d is a frame for L2(Rd) with dual frame {πβnγ}n∈Z2d , we have

f =
∑
m∈Z2d

〈f, πβmψ〉 πβmγ = DγCψf ∀f ∈ S (Rd).

By Proposition 4.3.17, Corollary 4.3.18, and Lemma 4.3.11, this equality extends to

each mixed modulation space M(c)p1,...,p2d
w , with unconditional convergence if

p1, p2, . . . , p2d ∈ [1,∞) and weak* convergence in M(c)∞,...,∞1
v

. Arguing similarly with

for Dψ and Cγ completes the proof of (b) and (c).

To prove (a), we note that

‖f‖M(c)
p1,...,p2d
w

= ‖DγCψf‖M(c)
p1,...,p2d
w

≤ ‖Dγ‖ ‖Cψf‖`p1,...,p2dw

≤ ‖Dγ‖ ‖Cψ‖ ‖f‖M(c)
p1,...,p2d
w

,

and ∥∥∥Vψf ◦ c
∣∣
βZ2d

∥∥∥
`
p1,...,p2d
w

= ‖Cψf‖`p1,...,p2dw
.

Letting B = ‖Cψ‖ and A = ‖Dγ‖−1 gives (a).

4.3.5 Mixed Modulation Embeddings

Theorem 4.3.19 can be used to prove embeddings among the mixed modulation spaces.

Lemma 4.3.20. If s ≥ t and pi, ri ∈ [1,∞] with pi ≤ ri for all i = 1, 2, . . . , 2d then

M(c)p1,p2,...,p2d
vs ⊂M(c)r1,r2,...,r2dvt .

Proof. Since vt(x) ≤ vs(x), we see M(c)r1,r2,··· ,r2dvs ⊂M(c)r1,r2,··· ,r2dvt from the definition

of mixed modulation spaces. Hence it suffices to prove M(c)p1,...,p2d
vs ⊂M(c)r1,r2,··· ,r2dvs .

By Theorem 12.2.2 in [33], `p1,...,p2d
vs ⊂ `r1,r2,··· ,r2dvs with

‖d‖`r1,r2,··· ,r2dvs
≤ ‖d‖`p1,...,p2dvs
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for all d ∈ `p1,...,p2d
vs . Choose ψ ∈ M(c)1,··· ,1

vs and β > 0 so that {πβnψ}n∈Z2d is a frame

for L2(Rd). By Theorem 4.3.19(a) we have for any f ∈M(c)p1,...,p2d
vs that

‖f‖M(c)
r1,r2,··· ,r2d
vs

≡
∥∥∥Vψf ◦ c

∣∣
βZ2d

∥∥∥
`
r1,···r2d
vs

≤
∥∥∥Vψf ◦ c

∣∣
βZ2d

∥∥∥
`
p1,...,p2d
vs

≡ ‖f‖M(c)
p1,...,p2d
vs

4.3.6 Wilson Bases

Let X1 = X2 = · · · = Xd = Z and Xd+1 = Xd+2 = · · · = X2d = Z+.

Let

C̃ψf =
{
〈f,Ψnc(1),··· ,nc(2d)〉

}
n1∈Xc−1(1),n2∈Xc−1(2),··· ,n2d∈Xc−1(2d)

be the Wilson basis analysis operator. The formal adjoint of C̃ψ is

D̃ψλ =
∑

n1∈Xc−1(1), ..., n2d∈Xc−1(2d)

λn1,··· ,n2d
Ψnc(1),··· ,nc(2d) .

For submultiplicative weights v : R2d → (0,∞) define a weight v′ as follows. For

each t ∈ R let v′(t) = max {v(t, 0, · · · , 0), v(0, t, 0, · · · , 0), · · · , v(0, · · · , 0, t)}.

Proposition 4.3.21. Assume p1, . . . , p2d ∈ [1,∞). If ψ ∈M1,1
v′⊗v′(R) then

C̃ψ : M(c)p1,...,p2d
v → `p1,...,p2d

v

(
Xc−1(1), . . . , Xc−1(2d)

)
and

D̃ψ : `p1,...,p2d
v

(
Xc−1(1), . . . , Xc−1(2d)

)
→M(c)p1,...,p2d

v

are bounded linear operators.

Proof. Since C̃ψ, D̃ψ are adjoints, it suffices to prove that

D̃ψ : `p1,...,p2d
v

(
Xc−1(1), . . . , Xc−1(2d)

)
→M(c)p1,...,p2d

v

is bounded. Let Ψ(t) = Ψ0,0(t) = ψ(t1)ψ(t2) · · ·ψ(td). Since ψ ∈ M1,1
v′⊗v′(R) we see

Ψ ∈M1,1
v′⊗v′⊗···⊗v′⊗v′(Rd). Because v(t) ≤ v′(t1) · · · v′(t2d) we haveM1,1

v′⊗v′⊗···⊗v′⊗v′(Rd) =

M(c)1,1,··· ,1
v′⊗v′⊗···⊗v′ ⊂M(c)1,1,··· ,1

v . Hence Ψ ∈M(c)1,1,··· ,1
v .
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Let {Λ1,Λ2, · · · ,Λ2d} be the set of d× d diagonal matrices with diagonal entries

in {0, 1} and let I denote the d × d identity matrix. Let Mi be the 2d × 2d block

diagonal matrix with first entry I − 1
2
Λi and second entry I. Let

Si =
{

(nc(1), · · · , nc(2d)) ∈ Zd × (Z+)d : (Λi − I)(nc(d+1), · · · , nc(2d)) = 0
}
.

Then {S1, · · · , S2d} partitions Zd × (Z+)d according to the presence and position of

zeros of the last d coordinates. If (nc(1), · · · , nc(2d)) ∈ Si, then we have

Ψnc(1),nc(2),··· ,nc(2d) =
∑

ε=(ε1,··· ,εd)∈{−1,1}d
ci,επMi(nc(1),··· ,nc(d),ε1nc(d+1),··· ,εdnc(2d))Ψ,

where ci,ε is a scalar satisfying |ci,ε| = 2−d+
trace(Λi)

2 .

Fix λ ∈ `p1,...,p2d
v

(
Xc−1(1), . . . , Xc−1(2d)

)
. Then

D̃φλ

=
2d∑
i=1

∑
(nc(1),··· ,nc(2d))∈Si

λn1,··· ,n2d
Ψnc(1),··· ,nc(2d)

=
2d∑
i=1

∑
(nc(1),··· ,nc(2d))∈Si

∑
ε=(ε1,··· ,εd)∈{−1,1}d

λn1,··· ,n2d
ci,επMi(nc(1),··· ,nc(d),ε1nc(d+1),··· ,εdnc(2d))Ψ

For each 1 ≤ i ≤ 2d and ε = (ε1, · · · , εd) ∈ {−1, 1}d, define a sequence λ̃i,ε by

(λ̃i,ε)n1,··· ,nd,β1nd+1,··· ,βdn2d

=

 λn1,··· ,n2d
ci,ε if (nc(1), · · · , nc(2d)) ∈ Si and (β1, · · · , βd) = (ε1, · · · , εd),

0 otherwise,

where (n1, · · · , n2d) ∈ Zd × (Z+)d and (β1, · · · , βd) ∈ {−1, 1}d. Then∥∥∥λ̃i,ε∥∥∥
`
p1,...,p2d
v

≤ 2−d+
trace(Λi)

2 ‖λ‖`p1,...,p2dv (Xc−1(1),...,Xc−1(2d))

for all i, ε and we have

D̃φλ
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=
2d∑
i=1

∑
ε=(ε1,··· ,εd)∈{−1,1}d

∑
n1,··· ,n2d∈Z

(λ̃i,ε)n1,··· ,nd,nd+1,··· ,n2d
πMi(nc(1),··· ,nc(d),nc(d+1),··· ,nc(2d))Ψ

=
2d∑
i=1

∑
ε=(ε1,··· ,εd)∈{−1,1}d

∑
n∈Z2d

(λ̃i,ε)nπMic(n)Ψ.

But

πMic(n)Ψ = πc(α(i)·n)Ψ

for α(i) = (α(i)1, α(i)2, . . . , α(i)2d) where α(i)d+1 = · · ·α(i)2d = 1 and α(i)1, · · · , α(i)d ∈

{1, 2}.

By Corollary 4.3.18, we have

D̃ψλ =
2d∑
i=1

∑
ε=(ε1,...,εd)∈{−1,1}d

D(i,ε),ψλ̃i,ε

and each D(i,ε),ψ : `p1,...,p2d
w −→M(c)p1,...,p2d

w is a bounded linear operator. Thus∥∥∥D̃ψλ
∥∥∥
M(c)

p1,...,p2d
w

≤
2d∑
i=1

∑
ε=(ε1,...,εd)∈{−1,1}d

∥∥∥D(i,ε),ψλ̃i,ε

∥∥∥
M(c)

p1,...,p2d
w

≤
2d∑
i=1

∑
ε=(ε1,...,εd)∈{−1,1}d

∥∥D(i,ε),ψ

∥∥ 2−d+
trace(Λi)

2 ‖λ‖`p1,...,p2dv (Xc−1(1),...,Xc−1(2d))

=

 2d∑
i=1

∑
ε=(ε1,...,εd)∈{−1,1}d

∥∥D(i,ε),ψ

∥∥ 2−d+
trace(Λi)

2

 ‖λ‖`p1,...,p2dv (Xc−1(1),...,Xc−1(2d))
.

Corollary 4.3.22. Assume p1, . . . , p2d ∈ [1,∞). If ψ ∈M1,1
v′⊗v′(R) then

D̃ψd =
∑

n1∈Xc−1(1),...,n2d∈X−1(2d)

dn1,...,n2d
Ψnc(1),...,nc(2d)

converges unconditionally in M(c)p1,...,p2d
v .

Proof. The proof is similar to that of Corollary 4.3.18.

The following theorem states that Wilson bases are bases for the mixed modulation

spaces.

94



Theorem 4.3.23. Let v : R2d → (0,∞) be a weight and w a v-moderate weight.

For each t ∈ R define v′(t) = max {v(t, 0, . . . , 0), v(0, t, 0, . . . , 0), . . . , v(0, . . . , 0, t)}.

Assume ψ ∈M1,1
v′⊗v′(R) generates an orthonormal Wilson basis {Ψk,n}n∈(Z+)d,k∈Zd for

L2(Rd). Then {Ψk,n}n∈(Z+)d,k∈Zd is an unconditional basis for M(c)p1,p2,...,p2d
w for each

p1, p2, . . . , p2d ∈ [1,∞).

Proof. Since {Ψk,n}k∈Zd,n∈(Z+)d is an orthonormal basis for L2(Rd), we have f =

D̃ψC̃ψf for all f ∈ S (Rd). By the density of S (Rd) in M(c)p1,...,p2d
w and the bound-

edness of D̃ψ, C̃ψ we have f = D̃ψC̃ψf for all f ∈M(c)p1,...,p2d
w .

Hence, given f ∈ M(c)p1,...,p2d
w and ε > 0, we can choose a finite set S0 so that∥∥∥C̃ψf − (C̃ψf)χS0

∥∥∥
`
p1,...,p2d
v (Xc−1(1),...,Xc−1(2d))

< ε. Then

∥∥∥∥∥∥f −
∑

(n,k)∈S0

〈f,Φn,k〉Φn,k

∥∥∥∥∥∥
M(c)

p1,...,p2d
w

<
∥∥∥D̃φ

∥∥∥ ε.
It follows that {Ψk,n}k∈Zd,n∈(Z+)d is complete in M(c)p1,...,p2d

w .

Also, if λ ∈ `p1,...,p2d
v

(
Xc−1(1), . . . , Xc−1(2d)

)
, then λ = C̃ψD̃ψλ and for any S0 ⊂

S ⊂ Zd × (Z+)
d

we have∥∥∥∥∥∥
∑

(k,n)∈S

µk,nλk,nΨk,n

∥∥∥∥∥∥
M(c)

p1,...,p2d
w

=
∥∥∥D̃ψ

∥∥∥ ‖µλχS‖`p1,...,p2dv

≤
∥∥∥D̃ψ

∥∥∥ ‖µ‖`∞ ‖λχS‖`p1,...,p2dv
.

≤
∥∥∥D̃ψ

∥∥∥ ‖µ‖`∞ ∥∥∥C̃ψ∥∥∥∥∥∥D̃ψ (λχS)
∥∥∥
M(c)

p1,...,p2d
w

.

=
∥∥∥D̃ψ

∥∥∥ ‖µ‖`∞ ∥∥∥C̃ψ∥∥∥
∥∥∥∥∥∥
∑

(k,n)∈S

λk,nΨk,n

∥∥∥∥∥∥
M(c)

p1,...,p2d
w

.

The result follows.

Corollary 4.3.24. Assume ψ ∈ M1,1
v′⊗v′(R) generates an orthonormal Wilson basis.

Let X1 = X2 = · · · = Xd = Z and Xd+1 = Xd+2 = · · · = X2d = Z+. Then

M(c)p1,p2,...,p2d
w is isomorphic to `p1,p2,...,p2d

w

(
Xc−1(1), . . . , Xc−1(2d)

)
via the map C̃ψ.
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4.4 Bounded Pseudodifferential Operators

The proof technique used for Theorem 4.1.2 can be extended to results involving

mixed modulation spaces defined by the following types of permutations.

Definition 4.4.1. A switch permutation c is one that satisfies

(a) c maps {2d+ 1, 2d+ 2, . . . , 3d, 3d+ 1, 3d+ 2, . . . , 4d} to {1, 2, . . . , 2d} bijectively

and

(b) c maps {1, 2, . . . , d, d+ 1, d+ 2, . . . , 2d} to {2d+ 1, . . . , 4d} bijectively.

A first slice permutation c is one that satisfies

(a) c maps {1, 2, . . . , d, 2d+ 1, 2d+ 2, . . . , 3d} to {1, 2, . . . , 2d} bijectively and

(b) c maps {d+ 1, d+ 2, . . . , 2d, 3d+ 1, 3d+ 2, . . . , 4d} to {2d+ 1, . . . , 4d} bijec-

tively.

A second slice permutation c is one that satisfies

(a) c maps {d+ 1, d+ 2, . . . , 2d, 3d+ 1, 3d+ 2, . . . , 4d} to {1, 2, . . . , 2d} bijectively

and

(b) c maps {1, 2, . . . , d, 2d+ 1, 2d+ 2, . . . , 3d} to {2d+ 1, . . . , 4d} bijectively.

Theorem 4.4.2. Suppose A is a pseudodifferential operator with Weyl symbol σ.

Suppose cs is a switch permutation, s1 is a first-slice permutation and s2 is a second-

slice permutation. Let q1 = · · · = q2d =∞ and q2d+1 = · · · = q4d = 1. If

(a) σ ∈M∞,1(R2d),

(b) σ ∈M(cs)
q1,q2,...,q4d ,

(c) σ ∈M(s1)q1,q2,...,q4d , or

(d) σ ∈M(s2)q1,q2,...,q4d ,
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then A : M(c)p1,...,p2d → M(c)p1,...,p2d is bounded for all p1, . . . , p2d ∈ (1,∞) and all

permutations c.

Proof. By Proposition 14.3.3 in [33] we can write 〈Lσf, g〉 = 〈σ,W (g, f)〉 for all

f, g ∈ S (Rd), where W denotes the Wigner distribution. Also, by Lemma 14.5.1 in

[33] we have

∣∣VW (φ,φ) (W (g, f)) (z1, z2, ζ1, ζ2)
∣∣ =

∣∣∣∣Vφf (z1 +
ζ2

2
, z2 −

ζ1

2

)∣∣∣∣ ∣∣∣∣Vφg(z1 −
ζ2

2
, z2 +

ζ1

2

)∣∣∣∣
for all z1, z2, ζ1, ζ2 ∈ Rd. Hence for φ ∈ L2(Rd) with ‖φ‖L2 = 1 we have for all

f, g ∈ S (Rd) that

|〈Lσf, g〉|

≤
∫∫∫∫ ∣∣VW (φ,φ)σ(z1, z2, ζ1, ζ2)

∣∣∣∣∣∣Vφf (z1 +
ζ2

2
, z2 −

ζ1

2

)∣∣∣∣ ∣∣∣∣Vφg(z1 −
ζ2

2
, z2 +

ζ1

2

)∣∣∣∣ dz1 dz2 dζ1 dζ2. (25)

To prove the sufficiency of (a), notice that (25) satisfies

|〈Lσf, g〉|

≤
∫∫

sup
z1,z2∈Rd

∣∣VW (φ,φ)σ(z1, z2, ζ1, ζ2)
∣∣ dζ1 dζ2

× sup
ζ1,ζ2∈Rd

∫ ∣∣∣∣Vφf (z1 +
ζ2

2
, z2 −

ζ1

2

)∣∣∣∣ ∣∣∣∣Vφg(z1 −
ζ2

2
, z2 +

ζ1

2

)∣∣∣∣ dz1 dz2

= sup
ζ1,ζ2∈Rd

‖f‖M(c)p1,...,p2d ‖g‖M(c)
p′1,...,p

′
2d

∫∫
sup

z1,z2∈Rd

∣∣VW (φ,φ)σ(z1, z2, ζ1, ζ2)
∣∣ dζ1 dζ2

≤ ‖f‖M(c)p1,...,p2d ‖g‖M(c)
p′1,...,p

′
2d

∫∫
sup

z1,z2∈Rd

∣∣VW (φ,φ)σ(z1, z2, ζ1, ζ2)
∣∣ dζ1 dζ2

≡ ‖σ‖M∞,1 ‖f‖M(c)p1,...,p2d ‖g‖M(c)
p′1,...,p

′
2d
.

Since S (Rd) is dense in M(c)p1,...,p2d and M(c)p
′
1,...,p

′
2d , (a) implies that

A : M(c)p1,...,p2d →M(c)p1,...,p2d is bounded.

Suppose (b) holds. Then (25) implies that

|〈Lσf, g〉|
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≤
∫

sup
ζ1,ζ2∈Rd

∣∣VW (φ,φ)σ(z1, z2, ζ1, ζ2)
∣∣ dz1 dz2

× sup
z1,z2∈Rd

∫ ∣∣∣∣Vφf (z1 +
ζ2

2
, z2 −

ζ1

2

)∣∣∣∣ ∣∣∣∣Vφg(z1 −
ζ2

2
, z2 +

ζ1

2

)∣∣∣∣ dζ1 dζ2

≤ 22d sup
z1,z2∈Rd

‖f‖M(c)p1,...,p2d ‖g‖M(c)
p′1,...,p

′
2d

∫
sup

ζ1,ζ2∈Rd

∣∣VW (φ,φ)σ(z1, z2, ζ1, ζ2)
∣∣ dz1 dz2

≡ 22d ‖σ‖M(cs)∞,1
‖f‖M(c)p1,...,p2d ‖g‖M(c)

p′1,...,p
′
2d
.

Again the density of S (Rd) in the mixed modulation spaces impliesA : M(c)p1,...,p2d →

M(c)p1,...,p2d is bounded.

Suppose (c) holds. By (25) we have

|〈Lσf, g〉|

≤
∫∫

sup
z1,ζ1∈Rd

∣∣VW (φ,φ)σ(z1, z2, ζ1, ζ2)
∣∣ dz2 dζ2

× sup
z2,ζ2∈R2d

∫∫ ∣∣∣∣Vφf (z1 +
ζ2

2
, z2 −

ζ1

2

)∣∣∣∣ ∣∣∣∣Vφg(z1 −
ζ2

2
, z2 +

ζ1

2

)∣∣∣∣ dz1 dζ1

≤ 2d sup
z2,ζ2∈R2d

‖f‖M(c)p1,...,p2d ‖g‖M(c)
p′1,...,p

′
2d

∫∫
sup

z1,ζ1∈Rd

∣∣VW (φ,φ)σ(z1, z2, ζ1, ζ2)
∣∣ dz2 dζ2

≡ 2d ‖σ‖M(s1)∞,1 ‖f‖M(c)p1,...,p2d ‖g‖M(c)
p′1,...,p

′
2d
.

Again the density of S (Rd) in the mixed modulation spaces impliesA : M(c)p1,...,p2d →

M(c)p1,...,p2d is bounded.

Assume (d) holds. Then from (25), we have

|〈Lσf, g〉|

≤
∫∫

sup
z2,ζ2∈Rd

∣∣VW (φ,φ)σ(z1, z2, ζ1, ζ2)
∣∣ dz1 dζ1

× sup
z1,ζ1∈R2d

∫∫ ∣∣∣∣Vφf (z1 +
ζ2

2
, z2 −

ζ1

2

)∣∣∣∣ ∣∣∣∣Vφg(z1 −
ζ2

2
, z2 +

ζ1

2

)∣∣∣∣ dz2 dζ2

≤ 2d sup
z1,ζ1∈R2d

‖f‖M(c)p1,...,p2d ‖g‖M(c)
p′1,...,p

′
2d

∫∫
sup

z2,ζ2∈Rd

∣∣VW (φ,φ)σ(z1, z2, ζ1, ζ2)
∣∣ dz1 dζ1

≡ 2d ‖σ‖M(s2)∞,1 ‖f‖M(c)p1,...,p2d ‖g‖M(c)
p′1,...,p

′
2d
.

Again the density of S (Rd) in the mixed modulation spaces impliesA : M(c)p1,...,p2d →

M(c)p1,...,p2d is bounded.
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4.5 Pseudodifferential Operators and Schatten classes

4.5.1 New Kernel and Symbol classes

In this section we will use Theorem 3.3.2 and its corollaries to find conditions on the

kernel and Kohn-Nirenberg symbol of a pseudodifferential operator that guarantee

the operator is Schatten p-class.

Theorem 4.5.1. Let c be a slice permutation and 2 = p1 = p2 = · · · = p2d and

p = p2d+1 = · · · = p4d. If p ∈ [1, 2], k ∈ M(c)p1,...,p4d and A is an integral operator

with kernel k, then A ∈ Ip(L2(Rd)).

Proof. We first prove the theorem in the case c is a second slice permutation. Let

{παmφ}m∈Z2d = {φm}m∈Z2d be a Parseval Gabor frame for L2(Rd) with φ ∈M1,1(Rd)

and let Φ(t, y) = φ(t)φ(y). Then Φ ∈M1,1(R2d).

By the proof of Corollary 3.3.7, we have

‖A‖Ip(L2(Rd)) ≤

∑
n∈Z2d

( ∑
m∈Z2d

|〈k, φn ⊗ φm〉|2
) p

2

 1
p

.

For m1,m2, n1, n2 ∈ Zd, with m = (m1,m2) and n = (n1, n2), we have

〈k, φn ⊗ φm〉 = VΦk(αn1, αm1, αn2, αm2).

Since c is a second slice permutation, we see that(∑
n∈Z2d

( ∑
m∈Z2d

|〈k, φn ⊗ φm〉|2
) p

2
) 1

p

=

( ∑
n1,n2∈Zd

( ∑
m1,m2∈Zd

|VΦk(αn1, αm1, αn2, αm2)|2
) p

2
) 1

p

≤ B ‖k‖M(c)p1,p2,...,p4d ,

where B is the constant ensured by Theorem 4.3.19(a). Hence if k ∈ M(c)p1,...,p4d ,

then A ∈ Ip(L2(Rd)).

99



Now suppose c is a first slice permutation and k ∈ M(c)p1,...,p4d . Let k̃ be the

kernel of A∗. Then k̃ ∈ M(c′)p1,...,p4d , where c′ is the second slice permutation given

by

c′(1) = c(d+ 1), c′(2) = c(d+ 2), . . . , c′(d) = c(2d),

c′(d+ 1) = c(1), c′(d+ 2) = c(2), . . . , c′(2d) = c(d),

c′(2d+ 1) = c(3d+ 1), c′(2d+ 2) = c(3d+ 2), . . . , c′(3d) = c(4d),

and

c′(3d+ 1) = c(2d+ 1), c′(3d+ 2) = c(2d+ 2), . . . , c′(4d) = c(3d).

Hence, A∗ ∈ Ip(L2(Rd)). But ‖A‖Ip = ‖A∗‖Ip .

By Lemma 4.3.20, increasing any one of the exponent parameters p1, . . . , p4d or

decreasing the weight parameter s yields a mixed modulation space larger than

M(c)p1,p2,...,p4d
vs . The next theorem shows Theorem 4.5.1 is sharp in the following

sense: increasing the exponent parameters or decreasing the weight parameter of the

mixed modulation space in Theorem 4.5.1 gives a larger mixed modulation space, but

integral operators with kernels in this larger space need not be Schatten class.

Theorem 4.5.2. Assume s ≤ 0, q1, . . . , q2d ∈ [2,∞], q2d+1, . . . , q4d ∈ [p,∞] and c is

a slice permutation. Assume at least one of the following is true:

(a) s < 0.

(b) At least one of q1, . . . , q2d is larger than 2.

(c) At least one of q2d+1, . . . , q4d is larger than p.

If 1 ≤ p ≤ 2 then there are integral operators with kernels in M(c)q1,q2,...,q4dvs that are

not in Ip(L2(Rd)).
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Proof. To avoid complicated notation, we prove the theorem only for the permutation

c(1) = d+ 1, c(2) = d+ 2, . . . , c(d) = 2d,

c(d+ 1) = 3d+ 1, . . . , c(2d) = 4d,

c(2d+ 1) = 1, . . . , c(3d) = d

and

c(3d+ 1) = 2d+ 1, . . . , c(4d) = 3d.

The result is proven similarly for other slice permutations.

In the case that (a) or (b) holds, we can adapt some of the arguments in [36] to

complete the proof. In particular, if k(t, y) = k1(t)k2(y) is the kernel of an integral

operator A, then Af = 〈f, k2〉k1. Hence if k1 /∈ L2(Rd), then A does not map into

L2(Rd), and if k2 /∈ L2(Rd), then A : L2(Rd)→ L2(Rd) is not bounded. Let c′ be the

permutation of {1, 2, . . . , 2d} with

c′(1) = d+ 1, . . . , c′(d) = 2d

and

c′(d+ 1) = 1, . . . , c′(2d) = d.

If (a) holds, choose k1 ∈ M2,2
vs (Rd) \ L2(Rd) and k2 ∈ Mp,p(Rd). If (b) holds,

choose k1 ∈ M(c′)q1,...,q2d \ L2(Rd) and k2 ∈ M(c′)q2d+1,...,q4d . In either case k(t, y) =

k1(t)k2(y) ∈ M(c)q1,q2,...,q4dvs , but the integral operator with kernel k is not a bounded

operator on L2(Rd).

Hence we assume (c) is true. Choose

λ ∈ `q2d+1,...,q3d,q3d+1,...q4d((Z+)d,Zd) \ `p,p((Z+)d,Zd).

Assume {ψj,l}j∈Zd,l∈(Z+)d is a Wilson basis for L2(Rd) generated by ψ ∈ M1,1(R).

Then {
Ψ(j1,j2),(l1,l2)

}
j1,j2∈Zd,l1,l2∈(Z+)d

= {ψj1,l1 ⊗ ψj2,l2}j1,j2∈Zd,l1,l2∈(Z+)d
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is a Wilson basis for L2(R2d) generated by ψ ∈M1,1(R). Set

k(t, y) =
∑
j∈Zd

∑
l∈(Z+)d

λl,j ψj,l(t)ψj,l(y).

Then

Ψ(nc(1),nc(2),...,nc(2d)),(nc(2d+1),...,nc(4d))

= Ψ(nd+1,...,n2d,n3d+1,...,n4d),(n1,...,nd,n2d+1,...n3d)

= ψ(nd+1,...,n2d),(n1,...,nd) ⊗ ψ(n3d+1,...,n4d),(n2d+1,...n3d).

By Corollary 4.3.24

‖k‖M(c)
q1,q2,...,q4d
vs

≡
( ∑
n4d∈Xc−1(4d)

. . .

( ∑
n1∈Xc−1(1)

∣∣∣〈k,Ψ(nc(1),...,nc(2d)),(nc(2d+1),...,nc(4d))〉
∣∣∣q1) q2

q1

. . .

) 1
q4d

=

(∑
n4d∈Z

(
. . .

( ∑
n2d+1∈Z+

∣∣λ(n2d+1,...,n3d),(n3d+1,...,n4d)

∣∣q2d+1

) q2d+2
q2d+1

. . .

) q4d
q4d−1

) 1
q4d

= ‖λ‖`q2d+1,...,q3d,q3d+1,...q4d ((Z+)d,Zd)

so k ∈M(c)q1,q2,...,q4d ⊂M(c)q1,q2,...,q4dvs . The pseudodifferential operator A with kernel

k has singular values equal to the elements of the sequence λ. Hence A /∈ Ip(L2(Rd)).

Notice that the proof of the previous theorem shows that Theorem 4.5.1 does not

hold for p > 2. That is, if p > 2 and k ∈ M(c)2,2,...,2,p,...,p, the corresponding integral

operator may not even be bounded on L2(Rd).

We can extend Theorem 4.5.1 to conditions on the symbol of a pseudodifferential

operator.

Theorem 4.5.3. Assume 1 ≤ p ≤ 2 and c1, c2 are permutations on R4d satisfying

the following conditions.
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(a) c1 maps {2d+ 1, 2d+ 2, . . . , 3d} to {1, 2, . . . , d} and maps

{1, 2, . . . , 2d, 3d+ 1, 3d+ 2, . . . , 4d} to {d+ 1, d+ 2, . . . , 4d}.

(b) c2 maps {3d+ 1, 3d+ 2, . . . , 4d} to {1, 2, . . . , d} and maps {1, 2, . . . , 3d} to

{d+ 1, d+ 2, . . . , 4d}.

Suppose A is a pseudodifferential operator with Kohn-Nirenberg symbol τ . Let 2 =

p1 = · · · = p2d and p = p2d+1 = · · · = p4d. If τ ∈ M(c1)p1,p2,...,p4d or τ ∈

M(c2)p1,p2,...,p4d then A ∈ Ip(L2(Rd)).

Proof. Let k be the kernel of A, and let 2 = q1 = · · · = qd and p = qd+1 = · · · = q4d.

Let s1 be a first slice permutation and s2 be a second slice permutation. By Lemma

4.3.20 and its proof we have for any permutation c, M(c)p1,...,p4d ⊂ M(c)q1,...,q4d and

‖τ‖M(c)q1,...,q4d ≤ C ‖τ‖M(c)p1,...,p4d for some finite C . Hence, using Corollary 4.2.3, we

have

‖k‖M(s1)q1,...,q4d =

(∫∫ (∫∫
|VΦk(a, b, c, d)|2 da dc

) p
2

db dd

) 1
p

=

(∫∫ (∫∫ ∣∣VF2(Φ◦N)τ(a,−d, c+ d, b− a)
∣∣2 da dc

) p
2

db dd

) 1
p

≤ C

(∫∫∫ (∫ ∣∣VF2(Φ◦N)τ(a,−d, c+ d, b− a)
∣∣2 dc

) p
2

da db dd

) 1
p

= C

(∫∫∫ (∫ ∣∣VF2(Φ◦N)τ(a, d, c, b)
∣∣2 dc

) p
2

da db dd

) 1
p

≡ ‖τ‖M(c1)p1,...,p4d

and

‖k‖M(s2)q1,...,q4d =

(∫∫ (∫∫
|VΦk(a, b, c, d)|2 db dd

) p
2

da dc

) 1
p

=

(∫∫ (∫∫ ∣∣VF2(Φ◦N)τ(a,−d, c+ d, b− a)
∣∣2 db dd

) p
2

da dc

) 1
p
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≤ C

(∫∫∫ (∫ ∣∣VF2(Φ◦N)τ(a,−d, c+ d, b− a)
∣∣2 db

) p
2

da dc dd

) 1
p

= C

(∫∫∫ (∫ ∣∣VF2(Φ◦N)τ(a, d, c, b)
∣∣2 db

) p
2

da dc dd

) 1
p

≡ ‖τ‖M(c2)p1,...,p4d .

The result now follows from Theorem 4.5.1.

4.5.2 Relationship between old and new kernel and symbol classes

In this section, we explain the relationship between Theorems 4.5.1 and 4.5.3 and the

previously known results for Schatten class pseudodifferential operators. The most

powerful previously known result for Schatten class pseudodifferential operators is

Theorem 4.1.1. We will show that Theorem 4.5.1 is stronger than Theorem 4.1.1

as a kernel result. We will also show that Theorem 4.5.3 is neither stronger nor

weaker than Theorem 4.1.1 as a Kohn-Nirenberg symbol result. Rather, it represents

a distinct condition on the Kohn-Nirenberg symbol that ensures the corresponding

operator is Schatten class.

Lemma 4.5.4. If s > d(2−p)
p

and s ≥ 0, then `2,2
vs

(
Z2d,Z2d

)
( `2,p

(
Z2d,Z2d

)
and there

exists finite C such that

‖c‖`2,p ≤ C ‖c‖`2,2vs ∀c ∈ `2,2
vs

(
Z2d,Z2d

)
.

Proof. In the case that p ≥ 2 we have `2,2
vs ( `2,2 ( `2,p trivially.

Suppose p ∈ [1, 2). Let q = 2
p

so that q ∈ (1, 2]. Let q′ = 2
2−p be the dual index of

q. Then

‖c‖`2,p =

∑
k∈Z2d

∑
j∈Z2d

|cj,k|2


p
2


1
p

=

∑
k∈Z2d

∑
j∈Z2d

|cj,k|2


p
2

(1 + |k|)sp

(1 + |k|)sp


1
p

104



≤

∑
k∈Z2d

∑
j∈Z2d

|cj,k|2


pq
2

(1 + |k|)spq


1
pq (∑

k∈Z2d

1

(1 + |k|)spq′

) 1
pq′

=

∑
k∈Z2d

∑
j∈Z2d

|cj,k|2 (1 + |k|)2s

 1
2 (∑

k∈Z2d

1

(1 + |k|)
2sp
2−p

) 2−p
2p

≤

∑
k∈Z2d

∑
j∈Z2d

|cj,k|2 (1 + |(j, k)|)2s

 1
2 (∑

k∈Z2d

1

(1 + |k|)
2sp
2−p

) 2−p
2p

= ‖c‖`2,2vs

(∑
k∈Z2d

1

(1 + |k|)
2sp
2−p

) 2−p
2p

<∞,

as s > d(2−p)
p

implies 2sp
2−p > 2d.

All that remains to be shown is that `2,2
vs

(
Z2d,Z2d

)
6= `2,p

(
Z2d,Z2d

)
. Since s >

d(2−p)
p

, we can choose q ∈
(

2d
p
, d+ s

]
. Choose f ∈ S (R2d) and set

cj,k =
f(j)

(1 + |k|)q
∀j, k ∈ Z2d.

Then

‖c‖`2,2vs =

∑
j∈Z2d

∑
k∈Z2d

|f(j)|2 (1 + |(j, k)|)2s

(1 + |k|)2q

 1
2

≥

∑
j∈Z2d

∑
k∈Z2d

|f(j)|2

(1 + |k|)2(q−s)

 1
2

=∞,

as q ≤ d+ s implies 2(q − s) ≤ 2d. But

‖c‖`2,p =

(∑
k∈Z2d

1

(1 + |k|)qp

) 1
p

∑
j∈Z2d

|f(j)|2
 1

2

<∞

as 2d
p
< q implies 2d < qp.
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Proposition 4.5.5. Let c be a slice permutation and let 2 = p1 = · · · = p2d, p =

p2d+1 = · · · = p4d. If s > d(2−p)
p

with s ≥ 0, then M2,2
vs (R2d) ( M(c)p1,p2,...,p4d.

Proof. Let X1 = X2 = · · · = X2d = Z and X2d+1 = X2d+2 = · · · = X4d = Z+. Since

M2,2
vs (R2d) = M(c)2,2,...,2

vs , Corollary 4.3.24 implies that we can find a map S so that

S : M2,2
vs (R2d)→ `2,2,...,2

vs

(
Xc−1(1), . . . , Xc−1(4d)

)
and

S : M(c)p1,p2,...,p4d → `p1,p2,...,p4d
(
Xc−1(1), . . . , Xc−1(4d)

)
are both isomorphisms. In particular we can choose S = C̃ψ for appropriate ψ.

Furthermore, since c is a slice permutation, we see that there is a map T by which

`2,2,...,2
vs

(
Xc−1(1), . . . , Xc−1(4d)

)
is isomorphic to `2,2

vs

(
Z2d,Z2d

)
and

`p1,p2,...,p4d
(
Xc−1(1), . . . , Xc−1(4d)

)
is isomorphic to `2,p

(
Z2d,Z2d

)
. Hence, using the pre-

vious lemma, we obtain the following diagram.

M2,2
vs (R2d)

S
��

M(c)p1,p2,...,p4d

S
��

`2,2,...,2
vs

(
Xc−1(1), . . . , Xc−1(4d)

)
T

��

`p1,p2,...,p4d
(
Xc−1(1), . . . , Xc−1(4d)

)
T

��
`2,2
vs

(
Z2d,Z2d

)
� � // `2,p

(
Z2d,Z2d

)
.

Since S, T are isomorphisms, the result follows.

The next five results are intended to give context to Theorem 4.5.3.

Lemma 4.5.6. If s > 3
2
d(2−p)
p

or s = 0 then

`2,2,2,2
vs

(
Zd,Zd,Zd,Zd

)
( `2,p,p,p

(
Zd,Zd,Zd,Zd

)
and there exists finite C such that

‖c‖`2,p,p,p ≤ C ‖c‖`2,2,2,2vs
∀c ∈ `2,2,2,2

vs

(
Zd,Zd,Zd,Zd

)
.
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Proof. In the case that p ≥ 2 or s = 0 we have `2,2,2,2
vs ⊂ `2,2,2,2 ( `2,p,p,p trivially.

Otherwise, let q = 2
p
. Then q ≥ 1 and its dual index is q′ = 2

2−p . We have

‖c‖`2,p,p,p =

∑
k,l,m

(∑
j

|cj,k,l,m|2
) p

2

 1
p

=

∑
k,l,m

(∑
j

|cj,k,l,m|2
) p

2
(1 + |(k, l,m)|)sp

(1 + |(k, l,m)|)sp

 1
p

≤

∑
k,l,m

(∑
j

|cj,k,l,m|2
) pq

2

(1 + |(k, l,m)|)spq
 1

qp (∑
k,l,m

1

(1 + |(k, l,m)|)spq′

) 1
pq′

=

(∑
j,k,l,m

|cj,k,l,m|2 (1 + |(k, l,m)|)2s

) 1
2
(∑
k,l,m

1

(1 + |(k, l,m)|)
2sp
2−p

) 2−p
2p

≤ ‖c‖`2,2,2,2vs

(∑
k,l,m

1

(1 + |(k, l,m)|)
2sp
2−p

) 2−p
2p

and this sum converges since s > 3
2
d(2−p)
p

implies 2sp
2−p > 3d.

Furthermore since s > 3
2
d(2−p)
p

, we can choose q ∈
(

3d
p
, 3d

2
+ s
]
. Choose f ∈ S (Rd)

and set

cj,k,l,m =
f(j)

(1 + |(k, l,m)|)q
∀j, k, l,m ∈ Zd.

Then c ∈ `2,p,p,p
(
Zd,Zd,Zd,Zd

)
\ `2,2,2,2

vs

(
Zd,Zd,Zd,Zd

)
.

Proposition 4.5.7. Let c be a permutation on R4d satisfying one of the following

conditions.

(a) c maps {2d+ 1, 2d+ 2, . . . , 3d} to {1, 2, . . . , d} and maps

{1, 2, . . . , 2d, 3d+ 1, 3d+ 2, . . . , 4d} to {d+ 1, d+ 2, . . . , 4d}.

(b) c maps {3d+ 1, 3d+ 2, . . . , 4d} to {1, 2, . . . , d} and maps {1, 2, . . . , 3d} to

{d+ 1, d+ 2, . . . , 4d}.

Let 2 = p1 = · · · = pd, p = pd+1 = · · · = p4d. If s > 3
2
d(2−p)
p

or s = 0, then

M2,2
vs (R2d) ( M(c)p1,p2,...,p4d.
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Proof. Using Lemma 4.5.6, this proposition can be proven like Proposition 4.5.5.

Lemma 4.5.8. If s > 0 then

`2,p,p,p
(
Zd,Zd,Zd,Zd

)
\ `2,2,2,2

vs

(
Zd,Zd,Zd,Zd

)
is nonempty.

Proof. Choose q ∈
(
d
2
, d

2
+ s
)

and choose f ∈ S (R3d). Set

cj,k,l,m =
1

(1 + |j|)q
f(k, l,m) ∀j, k, l,m ∈ Zd.

Then

‖c‖`2,2,2,2s
=

 ∑
j,k,l,m∈Zd

(1 + |j|+ |(k, l,m)|)2s

(1 + |j|)2q |f(k, l,m)|2
 1

2

≥

 ∑
j,k,l,m∈Zd

|f(k, l,m)|2

(1 + |j|)2(q−s)

 1
2

=∞

as 2(q − s) ∈ (d− s, d). Also

‖c‖`2,p,p,p =

 ∑
k,l,m∈Zd

∑
j∈Zd

|f(k, l,m)|2

(1 + |j|)2q


p
2


1
p

=

 ∑
k,l,m∈Zd

|f(k, l,m)|p
 1

p
∑
j∈Zd

1

(1 + |j|)2q

 1
2

<∞,

as q > d
2

and f ∈ S (R3d).

Lemma 4.5.9. If 3
2
d(2−p)
p

> s > 0, then

`2,2,2,2
vs

(
Zd,Zd,Zd,Zd

)
\ `2,p,p,p

(
Zd,Zd,Zd,Zd

)
is nonempty.
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Proof. Since 3d(2−p)
2p

> s > 0, we can choose q ∈
(

3d
2

+ s, 3d
p

]
. Choose f ∈ S (Rd).

Set

cj,k,l,m = f(j)
1

(1 + |(k, l,m)|)q
∀j, k, l,m ∈ Zd.

Then

‖c‖`2,2,2,2s
=

 ∑
j,k,l,m∈Zd

(1 + |j|+ |(k, l,m)|)2s

(1 + |(k, l,m)|)2q |f(j)|2
 1

2

≤

 ∑
j,k,l,m∈Zd

(1 + |j|)2s (1 + |(k, l,m)|)2s

(1 + |(k, l,m)|)2q |f(j)|2
 1

2

≤

∑
j∈Zd

(1 + |j|)2s |f(j)|2
 1

2
 ∑
k,l,m∈Zd

1

(1 + |(k, l,m)|)2(q−s)

 1
2

<∞

as q > 3d
2

+ s and f ∈ S (Rd). On the other hand

‖c‖`2,p,p,p =

 ∑
k,l,m∈Zd

1

(1 + |(k, l,m)|)pq

 1
p
∑
j∈Zd
|f(j)|2

 1
2

=∞

as q ≤ 3d
p

.

Proposition 4.5.10. Let c be a permutation on {1, 2, . . . , 4d} satisfying one of the

following conditions.

(a) c maps {2d+ 1, 2d+ 2, . . . , 3d} to {1, 2, . . . , d} and maps

{1, 2, . . . , 2d, 3d+ 1, 3d+ 2, . . . , 4d} to {d+ 1, d+ 2, . . . , 4d}.

(b) c maps {3d+ 1, 3d+ 2, . . . , 4d} to {1, 2, . . . , d} and maps {1, 2, . . . , 3d} to

{d+ 1, d+ 2, . . . , 4d}.

Let 2 = p1 = · · · = pd and p = pd+1 = · · · = p4d. If 3
2
d(2−p)
p

> s > 0 then neither one

of M2,2
vs (R2d), M(c)p1,p2,...,p4d contains the other.
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Proof. Using the previous two lemmas, this proposition can be proven like Proposition

4.5.5.
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CHAPTER V

SCHATTEN CLASS FOURIER INTEGRAL OPERATORS

5.1 Introduction

Fourier integral operators, which arise in the study of hyperbolic differential equations

(see [74]), are operators of the form

Af(x) =

∫∫
a(x, y, ξ)f(y)eiϕ(x,y,ξ) dy dξ. (26)

For the Fourier integral operator in (26), a is the symbol and ϕ is the real-valued

function called the phase function of A. The properties of Fourier integral operators

with smooth symbols and phase functions have been studied extensively. In partic-

ular the boundedness properties of such operators are well-known (see [61] and the

references therein). More recently, in [12] and [40], it was shown that the curvelet

and shearlet representations of a Fourier integral operator with smooth symbol and

phase function are sparse. Much less is known about Fourier integral operators with

non-smooth symbols.

Both pseudodifferential operators and Fourier integral operators with smooth

phase functions act on the time-frequency content of functions, although the time-

frequency action of a Fourier integral operator is much more general and less explicit

than the action of a pseudodifferential operator. However, this action still suggests

that time-frequency analysis may play an important role in understanding Fourier

integral operators with non-smooth symbols. Indeed, recent results confirm this intu-

ition. In [10] it was shown that inclusion of the symbol of a Fourier integral operator

with smooth phase in Sjöstrand’s class implies boundedness of the operator on L2(Rd).

In [19] and [20], the authors use time-frequency analysis to obtain boundedness on

certain modulation spaces for a particular type of Fourier integral operator. More
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generally, in [16] and [17], the authors prove Schatten p-class membership for Fourier

integral operators with sufficiently smooth phase functions whose symbols belong to

Mp,1(R3d). Note that while Fourier integral operators generalize pseudodifferential

operators, pseudodifferential operator analysis techniques do not appear to generalize

to Fourier integral operators. The results in [10], [16], [17], [19] and [20] are proved

with new Gabor frame techniques.

In this chapter, we use time-frequency techniques to prove that if the symbol of

a Fourier integral operator belongs to the mixed modulation space M(c)2,...,2,p,...,p,1,∞

or M(c)∞,2,...,2,p,...,p,1 for appropriate permutations c and if the phase function is suf-

ficiently smooth, then the operator is Schatten p-class for p ∈ [1, 2]. Although these

results are not directly comparable to previously known Schatten class results for

Fourier integral operators, such as those in [16] and [17], they seem stronger in the

sense that M(c)2,...,2,p,...,p,1,∞, M(c)∞,2,...,2,p,...,p,1 are isomorphic to `2,...,2,p,...,p,1,∞ and

`∞,2,...,2,p,...,p,1, respectively, while Mp,1 is isomorphic to `p,...,p,1,...,1 and `p,...,p,1,...,1 (

`2,...,2,p,...,p,1,∞ and `p,...,p,1,...,1 ( `∞,2,...,2,p,...,p,1. Furthermore, our main results are sharp

in the sense that larger mixed modulation spaces contain symbols of Fourier integral

operators that are not Schatten p-class.

The remainder of this chapter is organized as follows. In Section 5.2, we prove a

time-frequency condition on the product of the symbol and phase of a Fourier integral

operator that ensures the operator is Schatten class. In Section 5.3, we prove mixed

modulation space embeddings for products. Finally, in Section 5.4, we use the results

of the previous two sections to give mixed modulation space conditions on the symbol

of a Fourier integral operator that ensure the operator is Schatten class and prove

the sharpness of these results.
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5.2 A Schatten class result for Fourier Integral Operators

The mixed modulation spaces defined in Chapter IV depend on a permutation of the

variables of the Gabor transform. For Fourier integral operators (FIOs), we will be

interested in permutations c of {1, 2, . . . , 6d} satisfying the following definition.

Definition 5.2.1. A first FIO slice permutation c is a permutation of {1, 2, . . . , 6d}

such that

(a) c maps {1, 2, . . . , d, 3d+ 1, 3d+ 2, . . . , 4d} to {1, 2, . . . , 2d},

(b) c maps {d+ 1, d+ 2, . . . , 2d, 4d+ 1, 4d+ 2, . . . , 5d} to {2d+ 1, 2d+ 2, . . . , 4d},

(c) c maps {2d+ 1, 2d+ 2, . . . , 3d} to {4d+ 1, 4d+ 2, . . . , 5d}, and

(d) c maps {5d+ 1, 5d+ 2, . . . , 6d} to {5d+ 1, 5d+ 2, . . . , 6d}.

A second FIO slice permutation c is a permutation of {1, 2, . . . , 6d} such that

(a) c maps {d+ 1, d+ 2, . . . , 2d, 4d+ 1, 4d+ 2, . . . , 5d} to {1, 2, . . . , 2d},

(b) c maps {1, 2, . . . , d, 3d+ 1, 3d+ 2, . . . , 4d} to {2d+ 1, 2d+ 2, . . . , 4d},

(c) c maps {2d+ 1, 2d+ 2, . . . , 3d} to {4d+ 1, 4d+ 2, . . . , 5d}, and

(d) c maps {5d+ 1, 5d+ 2, . . . , 6d} to {5d+ 1, 5d+ 2, . . . , 6d}.

These FIO slice permutations relate to the slice analysis in Theorem 3.3.2 and

can be used to analyze Fourier integral operators.

Theorem 5.2.2. Suppose p ∈ [1, 2] and c is a FIO slice permutation. Let p1 = p2 =

· · · = p2d = 2, p2d+1 = p2d+2 = · · · = p4d = p, p4d+1 = p4d+2 = · · · = p5d = 1 and

p5d+1 = p5d+2 = · · · = p6d =∞. If A is a Fourier integral operator with symbol a and

phase function ϕ and aeiϕ ∈M(c)p1,p2,...,p6d, then A ∈ Ip(L2(Rd)).
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Proof. We prove the result in the case c is a second FIO slice permutation. The case

that c is a first FIO slice permutation can be proven similarly.

Let {fn}n∈N, {gn}n∈N be arbitrary orthonormal sequences in L2(Rd) and let

{Mαk2Tαk1φ}k1,k2∈Zd be a Parseval Gabor frame for L2(Rd) with φ ∈M1,1(Rd). Choose

C such that ∥∥∥∥{∥∥∥φ̂χα[0,1]d+αn

∥∥∥
∞

}
n∈Zd

∥∥∥∥
`1(Zd)

≤ C
∥∥∥φ̂∥∥∥

W (L1(Rd))
.

We have

〈Afn, gn〉 = 〈aeiϕ, gn ⊗ fn ⊗ 1〉.

Since 1 ∈M∞,1(Rd), we have

1 =
∑

k1,k2∈Zd
〈1,Mαk2Tαk1φ〉Mαk2Tαk1φ weakly.

Thus

〈Afn, gn〉 =
∑

k1,k2∈Zd
〈1,Mαk2Tαk1φ〉〈aeiϕ, gn ⊗ fn ⊗Mαk2Tαk1φ〉

=
∑

k1,k2∈Zd
〈1,Mαk2Tαk1φ〉〈Ak1,k2fn, gn〉,

where Ak1,k2 is the integral operator with kernel

kk1,k2(x, y) =

∫
a(x, y, ξ)eiϕ(x,y,ξ)Mαk2Tαk1φ(ξ) dξ.

In the case p = 1 we have

∑
n∈N

|〈Afn, gn〉| =
∑
n∈N

∣∣∣∣∣∣
∑

k1,k2∈Zd
〈1,Mαk2Tαk1φ〉〈Ak1,k2fn, gn〉

∣∣∣∣∣∣
≤

∑
k1,k2∈Zd

∑
n∈N

∣∣∣〈1,Mαk2Tαk1φ〉〈Ak1,k2fn, gn〉
∣∣∣

=
∑

k1,k2∈Zd

∑
n∈N

∣∣∣φ̂(αk2)
∣∣∣ |〈Ak1,k2fn, gn〉|

=
∑

k1,k2∈Zd

∣∣∣φ̂(αk2)
∣∣∣∑
n∈N

|〈Ak1,k2fn, gn〉|
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≤

∑
k2∈Zd

∣∣∣φ̂(αk2)
∣∣∣
 sup

k2∈Zd

∑
k1∈Zd

∑
n∈N

|〈Ak1,k2fn, gn〉|


≤ C

∥∥∥φ̂∥∥∥
W (L1(Rd))

sup
k2∈Zd

∑
k1∈Zd

∑
n∈N

|〈Ak1,k2fn, gn〉|

≤ C
∥∥∥φ̂∥∥∥

W (L1(Rd))
sup
k2∈Zd

∑
k1∈Zd

‖Ak1,k2‖I1

By the proof of Theorem 4.5.1, we have

‖Ak1,k2‖I1 ≤
∑

n1,n2∈Zd

 ∑
m1,m2∈Zd

|Vφ⊗φkk1,k2(αn1, αm1, αn2, αm2)|2
 1

2

=
∑

n1,n2∈Zd

 ∑
m1,m2∈Zd

∣∣VΦ(aeiϕ)(αn1, αm1, αk1, αn2, αm2, αk2)
∣∣2 1

2

,

where Φ = φ⊗ φ⊗ φ. Thus if

sup
k2∈Zd

∑
k1∈Zd

∑
n1,n2∈Zd

 ∑
m1,m2∈Zd

∣∣VΦ(aeiϕ)(αn1, αm1, αk1, αn2, αm2, αk2)
∣∣2 1

2

<∞,

then A ∈ I1(L2(Rd)). Notice that this quantity is finite if and only if aeiϕ ∈

M(c)p1,p2,...,p6d .

For the case p = 2 we have

(∑
n∈N

|〈Afn, gn〉|2
) 1

2

=

∑
n∈N

∣∣∣∣∣∣
∑

k1,k2∈Zd
〈1,Mαk2Tαk1φ〉〈Ak1,k2fn, gn〉

∣∣∣∣∣∣
2

1
2

≤
∑

k1,k2∈Zd

(∑
n∈N

∣∣∣φ̂(αk2)
∣∣∣2 |〈Ak1,k2fn, gn〉|

2

) 1
2

(27)

≤

∑
k2∈Zd

∣∣∣φ̂(αk2)
∣∣∣
 sup

k2∈Zd

∑
k1∈Zd

(∑
n∈N

|〈Ak1,k2fn, gn〉|
2

) 1
2


≤ C

∥∥∥φ̂∥∥∥
W (L1(Rd))

sup
k2∈Zd

∑
k1∈Zd

‖Ak1,k2‖I2 ,

where (27) holds by Minkowski’s integral inequality. Again, by the proof of Theorem
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4.5.1, we have

‖Ak1,k2‖I2 ≤

 ∑
n1,n2∈Zd

∑
m1,m2∈Zd

|Vφ⊗φkk1,k2(αn1, αm1, αn2, αm2)|2
 1

2

=

 ∑
n1,n2∈Zd

∑
m1,m2∈Zd

∣∣VΦ(aeiϕ)(αn1, αm1, αk1, αn2, αm2, αk2)
∣∣2 1

2

.

Thus if

sup
k2∈Zd

∑
k1∈Zd

 ∑
n1,n2∈Zd

∑
m1,m2∈Zd

∣∣VΦ(aeiϕ)(αn1, αm1, αk1, αn2, αm2, αk2)
∣∣2 1

2

<∞,

then A ∈ I2(L2(Rd)). This quantity is finite if and only if aeiϕ ∈M(c)p1,p2,...,p6d .

Taking the supremum of
∑

n∈N |〈Afn, gn〉| and
(∑

n∈N |〈Afn, gn〉|
2) 1

2 over all or-

thonormal sequences gives the result for p = 1 and p = 2. For 1 < p < 2, the result

follows by interpolation.

5.3 Pointwise Multiplication in the Mixed Modulation Spaces

In this section, we find conditions on the symbol and phase function of a Fourier

integral operator so that their product lies in given mixed modulation spaces. We

begin by stating a special case of Proposition 1.2 in [17], which describes multiplication

properties of modulation spaces.

Lemma 5.3.1. Suppose p, q, p1, p2, q1, q2 ∈ [1,∞] satisfy 1
p1

+ 1
p2

= 1
p

and 1
q1

+ 1
q2

=

1 + 1
q
. Then there exists a finite C such that

‖fg‖Mp,q(Rd) ≤ C ‖f‖Mp1,q1 (Rd) ‖g‖Mp2,q2 (Rd) ∀f ∈Mp1,q1(Rd), g ∈Mp2,q2(Rd).

In particular, there is a finite C such that

‖fg‖Mp,q(Rd) ≤ C ‖f‖Mp,q(Rd) ‖g‖M∞,1(Rd) ∀f ∈Mp,q(Rd), g ∈M∞,1(Rd).

Corollary 5.3.2. There is a finite C such that

‖fn‖M∞,1(Rd) ≤ Cn ‖f‖nM∞,1(Rd) ∀f ∈M∞,1(Rd).
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Now we will generalize Lemma 5.3.1 to mixed modulation spaces.

Theorem 5.3.3. Let p ∈ [1,∞]. Suppose c is a FIO slice permutation and p1 =

p2 = · · · = p2d = 2, p2d+1 = p2d+2 = · · · = p4d = p, p4d+1 = p4d+2 = · · · = p5d = 1

and p5d+1 = p5d+2 = · · · = p6d = ∞. Then for some finite C we have for all

a1 ∈M(c)p1,p2,...,p6d , a2 ∈M∞,1(R3d) that

‖a1a2‖M(c)p1,p2,...,p6d ≤ C ‖a1‖M(c)p1,p2,...,p6d ‖a2‖M∞,1(R3d) .

Proof. We prove the result in the case c is a first FIO slice permutation and p ∈ [1,∞).

The proof is similar if c is a second FIO slice permutation or p =∞.

Choose φ1, φ2 ∈ M1,1(R3d). Then by Proposition 1.2 of [18] we have φ1φ2 ∈

M1,1(R3d) and

Vφ1φ2a1a2(x1, x2, x3, y1, y2, y3)

= F
((
a1 · Txφ1

)
·
(
a2 · Txφ2

))
(y1, y2, y3)

=
(
F
(
a1 · Txφ1

)
∗ F

(
a2 · Txφ2

))
(y1, y2, y3)

=

∫∫∫
F
(
a1 · Txφ1

)
(y1 − t1, y2 − t2, y3 − t3)F

(
a2 · Txφ2

)
(t1, t2, t3) dt1 dt2 dt3

=

∫∫∫
Vφ1a1(x1, x2, x3, y1 − t1, y2 − t2, y3 − t3)Vφ2a2(x1, x2, x3, t1, t2, t3) dt1 dt2 dt3.

Since c is a first FIO slice permutation we have

‖a1a2‖M(c)p1,p2,...,p6d

≡ sup
y3

∫ (∫∫ (∫∫
|Vφ1φ2a1a2(x1, x2, x3, y1, y2, y3)|2 dx1 dy1

) p
2

dx2 dy2

) 1
p

dx3.

Thus letting

F1,x1,x2,x3,y2,y3(y1) = Vφ1a1(x1, x2, x3, y1, y2, y3)

and

F2,x1,x2,x3,y2,y3(y1) = Vφ2a2(x1, x2, x3, y1, y2, y3)
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we have(∫
|Vφ1φ2a1a2(x1, x2, x3, y1, y2, y3)|2 dy1

) 1
2

=

(∫ ∣∣∣∣∫∫ (F1,x1,x2,x3,y2−t2,y3−t3 ∗ F2,x1,x2,x3,t2,t3) (y1) dt2 dt3

∣∣∣∣2 dy1

) 1
2

≤
∫∫ (∫

|(F1,x1,x2,x3,y2−t2,y3−t3 ∗ F2,x1,x2,x3,t2,t3) (y1)|2 dy1

) 1
2

dt2 dt3 (28)

=

∫∫
‖F1,x1,x2,x3,y2−t2,y3−t3 ∗ F2,x1,x2,x3,t2,t3‖L2 dt2 dt3

≤
∫∫
‖F1,x1,x2,x3,y2−t2,y3−t3‖L2 ‖F2,x1,x2,x3,t2,t3‖L1 dt2 dt3, (29)

where (28) holds by Minkowski’s integral inequality and (29) holds by Young’s con-

volution inequality.

Hence∫
|Vφ1φ2a1a2(x1, x2, x3, y1, y2, y3)|2 dy1

≤
(∫∫

‖F1,x1,x2,x3,y2−t2,y3−t3‖L2 ‖F2,x1,x2,x3,t2,t3‖L1 dt2 dt3

)2

,

which implies(∫∫
|Vφ1φ2a1a2(x1, x2, x3, y1, y2, y3)|2 dx1 dy1

) p
2

≤

(∫ (∫∫
‖F1,x1,x2,x3,y2−t2,y3−t3‖L2 ‖F2,x1,x2,x3,t2,t3‖L1 dt2 dt3

)2

dx1

) p
2

≤

(∫∫ (∫
‖F1,x1,x2,x3,y2−t2,y3−t3‖

2
L2 ‖F2,x1,x2,x3,t2,t3‖

2
L1 dx1

) 1
2

dt2 dt3

)p

(30)

≤

(∫∫ (∫
‖F1,x1,x2,x3,y2−t2,y3−t3‖

2
L2 dx1

) 1
2
(

sup
x1

‖F2,x1,x2,x3,t2,t3‖L1

)
dt2 dt3

)p

=

(∫∫
G1,x2,x3,y3−t3(y2 − t2)G2,x2,x3,t3(t2) dt2 dt3

)p
=

(∫
(G1,x2,x3,y3−t3 ∗G2,x2,x3,t3) (y2) dt3

)p
,

where

G1,x2,x3,y3(y2) =

(∫
‖F1,x1,x2,x3,y2,y3‖

2
L2 dx1

) 1
2
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and

G2,x2,x3,y3(y2) =

(
sup
x1

‖F2,x1,x2,x3,y2,y3‖L1

)
.

Note that (30) holds by Minkowski’s integral inequality.

Consequently, we have(∫∫ (∫∫
|Vφ1φ2a1a2(x1, x2, x3, y1, y2, y3)|2 dx1 dy1

) p
2

dx2 dy2

) 1
p

≤
(∫∫ (∫

(G1,x2,x3,y3−t3 ∗G2,x2,x3,t3) (y2) dt3

)p
dx2 dy2

) 1
p

≤

(∫ (∫ (∫
|(G1,x2,x3,y3−t3 ∗G2,x2,x3,t3) (y2)|p dy2

) 1
p

dt3

)p

dx2

) 1
p

(31)

=

(∫ (∫
‖G1,x2,x3,y3−t3 ∗G2,x2,x3,t3‖Lp dt3

)p
dx2

) 1
p

≤
(∫ (∫

‖G1,x2,x3,y3−t3‖Lp ‖G2,x2,x3,t3‖L1 dt3

)p
dx2

) 1
p

≤
∫ (∫

‖G1,x2,x3,y3−t3‖
p
Lp ‖G2,x2,x3,t3‖

p
L1 dx2

) 1
p

dt3 (32)

≤
∫ (∫

‖G1,x2,x3,y3−t3‖
p
Lp dx2

) 1
p
(

sup
x2

‖G2,x2,x3,t3‖L1

)
dt3

=

∫
H1,y3−t3(x3)H2,t3(x3) dt3 (33)

where H1,y3(x3) =
(∫
‖G1,x2,x3,y3‖

p
Lp dx2

) 1
p and H2,y3(x3) =

(
supx2

‖G2,x2,x3,y3‖L1

)
.

Note that (31) and (32) both follow from Minkowski’s integral inequality.

From (33) we see

sup
y3

∫ (∫∫ (∫∫
|Vφ1φ2a1a2(x1, x2, x3, y1, y2, y3)|2 dx1 dy1

) p
2

dx2 dy2

) 1
p

dx3

≤ sup
y3

∫∫
H1,y3−t3(x3)H2,t3(x3) dt3 dx3

≤ sup
y3

∫
‖H1,y3−t3‖L1 ‖H2,t3‖L∞ dt3

= sup
y3

(K1 ∗K2) (y3)

= ‖K1 ∗K2‖L∞
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≤ ‖K1‖L∞ ‖K2‖L1 ,

where K1(y3) = ‖H1,y3‖L1 and K2(y3) = ‖H2,y3‖L∞ .

Notice that

‖K1‖L∞ = sup
y3

‖H1,y3‖L1

= sup
y3

∫
|H1,y3(x3)| dx3

= sup
y3

∫ (∫
‖G1,x2,x3,y3‖

p
Lp dx2

) 1
p

dx3

= sup
y3

∫ (∫∫
|G1,x2,x3,y3(y2)|p dy2 dx2

) 1
p

dx3

= sup
y3

∫ (∫∫ (∫∫
|F1,x1,x2,x3,y2,y3(y1)|2 dy1 dx1

) p
2

dy2 dx2

) 1
p

dx3

= sup
y3

∫ (∫∫ (∫∫
|Vφ1a1(x1, x2, x3, y1, y2, y3)|2 dy1 dx1

) p
2

dy2 dx2

) 1
p

dx3

≡ ‖a1‖M(c)p1,...,p6d

and

‖K2‖L1 =

∫
‖H2,y3‖L∞ dy3

=

∫ (
sup
x3

|H2,y3(x3)|
)

dy3

=

∫ (
sup
x3

(
sup
x2

‖G2,x2,x3,y3‖L1

))
dy3

=

∫ (
sup
x3

(
sup
x2

∫
sup
x1

‖F2,x1,x2,x3,y2,y3‖L1 dy2

))
dy3

=

∫ (
sup
x3

(
sup
x2

∫
sup
x1

(∫
|Vφ2a2(x1, x2, x3, y1, y2, y3)| dy1

)
dy2

))
dy3

≤
∫∫∫

sup
x3

sup
x2

sup
x1

|Vφ2a2(x1, x2, x3, y1, y2, y3)| dy1 dy2 dy3

≡ ‖a2‖M∞,1(R3d) .

The following lemma comes from Proposition 3.2 in [10].
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Lemma 5.3.4. There exists a C such that

‖τ (t·)‖M∞,1(R3d) ≤ C ‖τ‖M∞,1(R3d) ∀τ ∈M∞,1(R3d), t ∈ [0, 1].

Theorem 5.3.5. Suppose p ∈ [1,∞]. Suppose c is a FIO slice permutation and

p1 = p2 = · · · = p2d = 2, p2d+1 = p2d+2 = · · · = p4d = p, p4d+1 = p4d+2 = . . . p5d = 1

and p5d+1 = p5d+2 = . . . p6d = ∞. If a ∈ M(c)p1,p2,...,p6d has compact support and

ϕ ∈ C2
(
R3d
)

is real valued and satisfies Dαϕ ∈ M∞,1(R3d) for all multi-indices α

with |α| = 2, then aeiϕ ∈M(c)p1,p2,...,p6d.

Proof. By our suppositions on ϕ we have the following Taylor expansion.

ϕ(w) = ϕ(0, 0, 0) +
∑
|α|=1

(Dαϕ) (0, 0, 0)wα +
∑
|α|=2

2

α!

(∫ 1

0

(1− t) (Dαϕ) (tw) dt

)
wα.

Let

ψ1(w) = ϕ(0, 0, 0) +
∑
|α|=1

(Dαϕ) (0, 0, 0)wα

and

ψ2(w) =
∑
|α|=2

2

α!

(∫ 1

0

(1− t) (Dαϕ) (tw) dt

)
wα.

Choose χ such that χ(w) = 1 for all w in the support of a and

χ(w)wα ∈M∞,1(R3d) ∀α, |α| = 2.

Then

∥∥aeiϕ∥∥
M(c)p1,...,p6d

=
∥∥aeiψ1eiψ2

∥∥
M(c)p1,...,p6d

=
∥∥∥aeiψ1ei

χψ2

∥∥∥
M(c)p1,...,p6d

≤
∥∥aeiψ1

∥∥
M(c)p1,...,p6d

∥∥∥eiχψ2

∥∥∥
M∞,1

, (34)

where (34) holds by Proposition 5.3.3.

Choose finite C such that

‖fg‖M∞,1(R3d) ≤ C ‖f‖M∞,1(R3d) ‖g‖M∞,1(R3d) ∀f ∈M∞,1(R3d), g ∈M∞,1(R3d).
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Since

ei
χ(w)ψ2(w) =

∑
n≥0

(iχ(w)ψ2(w))n

n!
,

we have ∥∥∥eiχψ2

∥∥∥
M∞,1

=

∥∥∥∥∥∑
n≥0

(iχψ2)n

n!

∥∥∥∥∥
M∞,1

≤
∑
n≥0

‖(iχψ2)n‖M∞,1
n!

≤
∑
n≥0

Cn ‖χψ2‖nM∞,1
n!

= eC‖χψ2‖
M∞,1

By Lemma 5.3.4, we can choose C ′ so that

‖τ (t·)‖M∞,1(R3d) ≤ C ′ ‖τ‖M∞,1(R3d) ∀τ ∈M∞,1(R3d), t ∈ [0, 1].

Hence

‖χψ2‖M∞,1

=

∥∥∥∥∥∥
∑
|α|=2

χ(w)wα
2

α!

(∫ 1

0

(1− t) (Dαϕ) (tw) dt

)∥∥∥∥∥∥
M∞,1

≤
∑
|α|=2

2

α!

∥∥∥∥χ(w)wα
(∫ 1

0

(1− t) (Dαϕ) (tw) dt

)∥∥∥∥
M∞,1

≤
∑
|α|=2

2C

α!
‖χ(w)wα‖M∞,1

∥∥∥∥∫ 1

0

(1− t) (Dαϕ) (tw) dt

∥∥∥∥
M∞,1

=
∑
|α|=2

2C

α!
‖χ(w)wα‖M∞,1

∫
sup
x∈R3d

∣∣∣∣∫ ∫ 1

0

(1− t) (Dαϕ) (tw)MξTxφ(w) dt dw

∣∣∣∣ dξ

≤
∑
|α|=2

2C

α!
‖χ(w)wα‖M∞,1

∫
sup
x∈R3d

∫ 1

0

(1− t)
∣∣∣∣∫ (Dαϕ) (tw)MξTxφ(w) dw

∣∣∣∣ dt dξ

≤
∑
|α|=2

2C

α!
‖χ(w)wα‖M∞,1

∫ 1

0

(1− t)
∫

sup
x∈R3d

∣∣∣∣∫ (Dαϕ) (tw)MξTxφ(w) dw

∣∣∣∣ dξ dt

=
∑
|α|=2

2C

α!
‖χ(w)wα‖M∞,1

∫ 1

0

(1− t) ‖(Dαϕ) (tw)‖M∞,1 dt
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≤
∑
|α|=2

2C

α!
‖χ(w)wα‖M∞,1

∫ 1

0

(1− t)C ′ ‖(Dαϕ) (w)‖M∞,1 dt

≤
∑
|α|=2

2CC ′

α!
‖χ(w)wα‖M∞,1 ‖(D

αϕ) (w)‖M∞,1

<∞.

Notice that

aeiψ1 = Mb

(
eiϕ(0,0,0)a

)
,

where the components of b ∈ R3d are (Dαϕ) (0, 0, 0) for multi-indices α with |α| = 1.

Thus since a ∈ M(c)p1,p2,...,p6d , we have
∥∥aeiψ1

∥∥
M(c)p1,...,p6d

= ‖a‖M(c)p1,...,p6d < ∞ as

well. Hence ‖aeiϕ‖M(c)p1,...,p6d <∞.

Note that Theorem 5.3.5 is similar in spirit to Lemma 2.2 in [17].

In the remainder of this section, we develop alternate conditions on the symbol

and phase function of a Fourier integral operator so that their product lies in mixed

modulation spaces relevant to Schatten class integral operators. To this end, the

following definition will be useful.

Definition 5.3.6. A first FIO symbol permutation c is a permutation of {1, 2, . . . , 6d}

such that

(a) c maps {5d+ 1, 5d+ 2, . . . , 6d} to {1, 2, . . . , d},

(b) c maps {1, 2, . . . , d, 3d+ 1, 3d+ 2, . . . , 4d} to {d+ 1, d+ 2, . . . , 3d},

(c) c maps {d+ 1, . . . , 2d, 4d+ 1, 4d+ 2, . . . , 5d} to {3d+ 1, 3d+ 2, . . . , 5d}, and

(d) c maps {2d+ 1, 2d+ 2, . . . , 3d} to {5d+ 1, 5d+ 2, . . . , 6d}.

A second FIO symbol permutation c is a permutation of {1, 2, . . . , 6d} such that

(a) c maps {5d+ 1, 5d+ 2, . . . , 6d} to {1, 2, . . . , d},

(b) c maps {d+ 1, d+ 2, . . . , 2d, 4d+ 1, 4d+ 2, . . . , 5d} to {d+ 1, d+ 2, . . . , 3d},
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(c) c maps {1, 2, . . . , d, 3d+ 1, 3d+ 2, . . . , 4d} to {3d+ 1, 3d+ 2, . . . , 5d}, and

(d) c maps {2d+ 1, 2d+ 2, . . . , 3d} to {5d+ 1, 5d+ 2, . . . , 6d}.

Under certain smoothness assumptions on ϕ, we can show that the mixed modu-

lation space norm of aeiϕ appearing in Theorem 5.2.2, which is determined by a FIO

slice permutation, is dominated by a mixed modulation space norm on a determined

by a FIO symbol permutation. First, a technical lemma is needed.

Lemma 5.3.7. Suppose Φ ∈ M1,1
(
R3d
)

and M is a 3d-by-3d self-adjoint matrix.

Define a operator SM by

SMf(w) = eπiw·Mwf(w), ∀f ∈M∞,∞ (R3d
)
.

Then

|VΦSMf (x, ξ)| =
∣∣VS−MΦf (x, ξ −Mx)

∣∣ , ∀x, ξ ∈ R3d.

Proof.

VS−MΦf (x, ξ −Mx)

=

∫
f(w) Φ(w − x)eπi(w−x)·M(w−x)e−2πi(ξ−Mx)·w dw

= eπix·Mx

∫
eπiw·Mwf(w) Φ(w − x)e−πix·Mwe−πiw·Mxe−2πi(ξ−Mx)·w dw

= eπix·Mx

∫
eπiw·Mwf(w) Φ(w − x)e−2πiξ·w dw

= eπix·MxVΦSMf (x, ξ)

Theorem 5.3.8. Let p ∈ [1,∞]. Suppose c is a first FIO slice permutation and

p1 = p2 = · · · = p2d = 2, p2d+1 = p2d+2 = · · · = p4d = p, p4d+1 = p4d+2 = . . . p5d = 1

and p5d+1 = p5d+2 = . . . p6d =∞. Suppose the following conditions hold.

(a) c′ is a first FIO symbol permutation.

(b) q1 = · · · = qd = ∞, qd+1 = qd+2 = · · · = q3d = 2, q3d+1 = q3d+2 = · · · = q5d = p

and q5d+1 = q5d+2 = . . . q6d = 1.
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(c) a ∈M(c′)q1,q2,...,q6d.

(d) All the second order partial derivatives of ϕ are constant and ϕxiyj = 0 for all

i, j ∈ {1, 2, . . . , d}.

Then aeiϕ ∈M(c)p1,p2,...,p6d.

Proof. Again, we have ϕ = ψ1 + ψ2, where

ψ1(w) = ϕ(0, 0, 0) +
∑
|α|=1

(Dαϕ) (0, 0, 0)wα

and

ψ2(w) =
∑
|α|=2

2

α!

(∫ 1

0

(1− t) (Dαϕ) (tw) dt

)
wα.

Notice that eiψ2(w) = eiπw·Mw where M is the block matrix

M =


M1 M2 M3

M∗
2 M4 M5

M∗
3 M∗

5 M6

 ,
with

(M1)i,j =
ϕxixj(0, 0, 0)

2
∀i, j ∈ {1, 2, . . . , d} ,

(M2)i,j =
ϕxiyj(0, 0, 0)

2
= 0 ∀i, j ∈ {1, 2, . . . , d} ,

(M3)i,j =
ϕxiξj(0, 0, 0)

2
∀i, j ∈ {1, 2, . . . , d} ,

(M4)i,j =
ϕyiyj(0, 0, 0)

2
∀i, j ∈ {1, 2, . . . , d} ,

(M5)i,j =
ϕyiξj(0, 0, 0)

2
∀i, j ∈ {1, 2, . . . , d} ,

and

(M6)i,j =
ϕξiξj(0, 0, 0)

2
∀i, j ∈ {1, 2, . . . , d} .

Thus

∣∣VΦ

(
aeiϕ

)
(x1, x2, x3, ξ1, ξ2, ξ3)

∣∣
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=
∣∣VΦ

(
aeiϕ

)
(x, ξ)

∣∣
=
∣∣VΦ

(
aeiψ1eiψ2

)
(x, ξ)

∣∣
=
∣∣VΦSM

(
aeiψ1

)
(x, ξ)

∣∣
=
∣∣VS−MΦ

(
aeiψ1

)
(x, ξ −Mx)

∣∣ (35)

=
∣∣VS−MΦ

(
aeiψ1

)
(x1, x2, x3, ξ1 −M1x1 −M2x2 −M3x3,

ξ2 −M∗
2x1 −M4x2 −M5x3, ξ3 −M∗

3x1 −M∗
5x2 −M6x3)|

=
∣∣VS−MΦ

(
aeiψ1

)
(x1, x2, x3, ξ1 −M1x1 −M3x3,

ξ2 −M4x2 −M5x3, ξ3 −M∗
3x1 −M∗

5x2 −M6x3)|

where (35) follows from Lemma 5.3.7.

Since c is a first FIO slice permutation we have

∥∥aeiϕ∥∥
M(c)p1,...,p6d

= sup
ξ3

∫ (∫∫ (∫∫ ∣∣VΦ(aeiϕ)(x1, x2, x3, ξ1, ξ2, ξ3)
∣∣2 dξ1 dx1

) p
2

dξ2 dx2

) 1
p

dx3

= sup
ξ3

∫ (∫∫ (∫∫ ∣∣VS−MΦ

(
aeiψ1

)
(x1, x2, x3, ξ1 −M1x1 −M3x3,

ξ2 −M4x2 −M5x3, ξ3 −M∗
3x1 −M∗

5x2 −M6x3)|2 dξ1 dx1

) p
2 dξ2 dx2

) 1
p

dx3

≤
∫ (∫∫ (∫∫

sup
ξ3

∣∣VS−MΦ

(
aeiψ1

)
(x1, x2, x3, ξ1 −M1x1 −M3x3,

ξ2 −M4x2 −M5x3, ξ3 −M∗
3x1 −M∗

5x2 −M6x3)|2 dξ1 dx1

) p
2 dξ2 dx2

) 1
p

dx3

=

∫ (∫∫ (∫∫
sup
ξ3

∣∣VΦ(aeiϕ)(x1, x2, x3, ξ1, ξ2, ξ3)
∣∣2 dξ1 dx1

) p
2

dξ2 dx2

) 1
p

dx3

≡
∥∥aeiψ1

∥∥
M(c′)q1,...,q6d

.

As in the proof of Theorem 5.3.5, we have

aeiψ1 = Mb

(
eiϕ(0,0,0)a

)
,

where the components of b ∈ R3d are (Dαϕ) (0, 0, 0) for multi-indices α with |α| = 1.
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Therefore ∥∥aeiψ1
∥∥
M(c′)q1,...,q6d

= ‖a‖M(c′)q1,...,q6d <∞,

which implies aeiϕ ∈M(c)p1,p2,...,p6d .

Theorem 5.3.9. Let p ∈ [1,∞]. Suppose c is a second FIO slice permutation and

p1 = p2 = · · · = p2d = 2, p2d+1 = p2d+2 = · · · = p4d = p, p4d+1 = p4d+2 = . . . p5d = 1

and p5d+1 = p5d+2 = . . . p6d =∞. Suppose the following conditions hold.

(a) c′ is a second FIO symbol permutation.

(b) q1 = · · · = qd = ∞, qd+1 = qd+2 = · · · = q3d = 2, q3d+1 = q3d+2 = · · · = q5d = p

and q5d+1 = q5d+2 = . . . q6d = 1.

(c) a ∈M(c′)q1,q2,...,q6d

(d) All the second order partial derivatives of ϕ are constant and ϕxiyj = 0 for all

i, j ∈ {1, 2, . . . , d}.

Then aeiϕ ∈M(c)p1,p2,...,p6d.

Proof. The proof is similar to that of Theorem 5.3.8.

5.4 Sharp Time-Frequency Conditions on the Symbol of a
Fourier Integral Operator

In this section, we combine results from the previous two sections to give smoothness

and time-frequency conditions on the phase function and symbol, respectively, of a

Fourier integral operator that ensure the operator is Schatten class and prove the

sharpness of these conditions.

Theorem 5.4.1. Let c be a FIO slice permutation and p1 = p2 = · · · = p2d = 2,

p2d+1 = p2d+2 = · · · = p4d = p for some p ∈ [1, 2], p4d+1 = p4d+2 = . . . p5d = 1

and p5d+1 = p5d+2 = . . . p6d = ∞. Suppose A is a Fourier integral operator with
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symbol a and phase function ϕ satisfying ϕ ∈ C2(R3d) and Dαϕ ∈M∞,1(R3d) for all

multi-indices α with |α| = 2. If a ∈ M(c)p1,p2,...,p6d has compact support then A ∈

Ip(L2(Rd)). Furthermore, this result is sharp in the sense that if one of the following

conditions holds, then there are Fourier integral operators that are not in Ip(L2(Rd))

with symbols in M(c)q1,q2,...,q5d,p5d+1,p5d+2,...p6d and phase functions ϕ satisfying ϕ ∈

C2(R3d) and Dαϕ ∈M∞,1(R3d) for all multi-indices α with |α| = 2.

(a) At least one of q1, q2, . . . , q2d is larger than 2.

(b) At least one of q2d+1, q2d+2, . . . , q4d is larger than p.

(c) At least one of q4d+1, q4d+2, . . . , q5d is larger than 1.

Proof. The sufficiency of a ∈ M(c)p1,...,p6d follows from Theorems 5.2.2 and 5.3.5.

Hence all that remains to be shown is that this result is sharp.

Notice that if we fix ϕ = 0 and a(x, y, ξ) = a1(x, y)a2(ξ) and let A be the Fourier

integral operator with phase function ϕ and symbol a, then A is the integral operator

with kernel equal to Ca1(x, y), where C =
(∫

a2(ξ) dξ
)
.

Let c1 be the permutation of {1, 2, . . . , 4d} such that

c1(1) = c(1), c1(2) = c(2), . . . , c1(d) = c(d)

c1(d+ 1) = c(d+ 1), c1(d+ 2) = c(d+ 2), . . . , c1(2d) = c(2d)

c1(2d+ 1) = c(3d+ 1), c1(2d+ 2) = c(3d+ 2), . . . , c1(3d) = c(4d)

and

c1(3d+ 1) = c(4d+ 1), c1(3d+ 2) = c(4d+ 2), . . . , c1(4d) = c(5d)

and let c2 be the permutation of {1, 2, . . . , 2d} such that

c2(1) = c(2d+ 1)− 4d, c2(2) = c(2d+ 2)− 4d, . . . , c2(d) = c(3d)− 4d

and

c2(d+ 1) = c(5d+ 1)− 4d, c2(d+ 2) = c(5d+ 2)− 4d, . . . , c2(2d) = c(6d)− 4d.
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Then c1 is a slice permutation and

‖a‖M(c)q1,q2,...,q5d,p5d+1,p5d+2,...p6d = ‖a1 ⊗ a2‖M(c)q1,q2,...,q5d,p5d+1,p5d+2,...p6d

= ‖a1‖M(c1)q1,q2,...,q4d ‖a2‖M(c2)q4d+1,q4d+2,...,q5d,p5d+1,p5d+2,...p6d

Suppose (a) or (b) holds. By Theorem 4.5.2, we can choose a1 ∈ M(c1)q1,q2,...,q4d

so that the integral operator with kernel a1 is not in Ip(L2(Rd)). Hence the Fourier

integral operator with symbol a(x, y, ξ) = a1(x, y)a2(ξ) and phase function ϕ = 0 is

not in Ip(L2(Rd)) either (for any choice of a2).

Now suppose (c) holds. Choose λ ∈ `q4d+1,q4d+2,...,q5d
(
Zd
)
\ `1,...,1

(
Zd
)

and set

a2 =
∑
j,k∈Zd

|λj| 〈1, ψj,k〉ψj,k,

where {ψj,k}j,k∈Zd = {MαkTαjψ}j,k∈Zd is a Parseval frame for L2
(
Rd
)

with ψ ∈

M1,1
(
Rd
)
. Then by Theorem 4.3.19, a2 ∈M(c2)q4d+1,q4d+2,...,q5d,p5d+1,...,p6d . But∫

a2(ξ) dξ = 〈a2, 1〉 =
∑
j,k∈Zd

|λj| 〈1, ψj,k〉〈ψj,k, 1〉 =
∑
j,k∈Zd

|λj|
∣∣∣ψ̂ (αk)

∣∣∣ =∞,

so that A is not a well defined operator, and hence, not in Ip(L2(Rd)).

Theorem 5.4.2. Let p ∈ [1, 2] and A be a Fourier integral operator with symbol a

and phase function ϕ. Suppose the following conditions hold.

(a) c is a FIO symbol permutation.

(b) p1 = · · · = pd =∞, pd+1 = pd+2 = · · · = p3d = 2, p3d+1 = p3d+2 = · · · = p5d = p

and p5d+1 = p5d+2 = . . . p6d = 1.

(c) a ∈M(c)p1,p2,...,p6d.

(d) All the second order partial derivatives of ϕ are constant and ϕxiyj = 0 for all

i, j ∈ {1, 2, . . . , d}.
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Then A ∈ Ip(L2(Rd)). Furthermore, this result is sharp in the sense that if one of

the following conditions hold, then there exist Fourier integral operators with phase

functions satisfying (d) and symbols in M(c)p1,p2,...,pd,qd+1,qd+2,...,q6d that are not in

Ip(L2(Rd)).

(e) At least one of qd+1, qd+2, . . . , q3d is larger than 2.

(f) At least one of q3d+1, q3d+2, . . . , q5d is larger than p.

(g) At least one of q5d+1, q5d+2, . . . , q6d is larger than 1.

Proof. Sufficiency of conditions (a), (b), (c) and (d) follows from Theorems 5.2.2,

5.3.8 and 5.3.9.

If we fix ϕ = 0 and a(x, y, ξ) = a3(x, y)a4(ξ) and let A be the Fourier integral

operator with phase function ϕ and symbol a, then A is the integral operator with

kernel equal to Ca3(x, y), where C =
(∫

a4(ξ) dξ
)
.

Let c3 be the permutation of {1, 2, . . . , 4d} such that

c3(1) = c(1)− d, c3(2) = c(2)− d, . . . , c3(d) = c(d)− d

c3(d+ 1) = c(d+ 1)− d, c3(d+ 2) = c(d+ 2)− d, . . . , c3(2d) = c(2d)− d

c3(2d+ 1) = c(3d+ 1)− d, c3(2d+ 2) = c(3d+ 2)− d, . . . , c3(3d) = c(4d)− d

and

c3(3d+ 1) = c(4d+ 1)− d, c3(3d+ 2) = c(4d+ 2)− d, . . . , c3(4d) = c(5d)− d

and let c4 be the permutation of {1, 2, . . . , 2d} such that

c4(1) = c(2d+ 1)− 4d, c4(2) = c(2d+ 2)− 4d, . . . , c4(d) = c(3d)− 4d

and

c4(d+ 1) = c(5d+ 1), c4(d+ 2) = c(5d+ 2), . . . , c4(2d) = c(6d).
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Then c3 is a slice permutation and

‖a‖M(c)p1,p2,...,pd,qd+1,qd+2,...,q6d = ‖a3‖M(c3)qd+1,qd+2,...,q5d ‖a4‖M(c4)p1,p2,...,pd,q5d+1,...,q6d .

If (e) or (f) hold, then by Theorem 4.5.2 we can choose a3 ∈ M(c3)qd+1,qd+2,...,q5d

so that the integral operator with kernel a3 is not in Ip(L2(Rd)). Hence the Fourier

integral operator with symbol a(x, y, ξ) = a3(x, y)a4(ξ) and phase function ϕ = 0 is

not in Ip(L2(Rd)) either.

Suppose (g) holds. Choose λ ∈ `q5d+1,q5d+2,...,q6d
(
Zd
)
\ `1,...,1

(
Zd
)

and set

a4 =
∑
j,k∈Zd

|λj| 〈1, ψj,k〉ψj,k,

where {ψj,k}j,k∈Zd = {MαkTαjψ}j,k∈Zd is a Parseval frame for L2
(
Rd
)

with ψ ∈

M1,1
(
Rd
)
. Then a4 ∈M(c4)p1,...,pd,q5d+1,...q6d but∫

a4(ξ) dξ = 〈a4, 1〉 =
∑
j,k∈Zd

|λj| 〈1, ψj,k〉〈ψj,k, 1〉 =
∑
j,k∈Zd

|λj|
∣∣∣ψ̂ (αk)

∣∣∣ =∞,

so that A is not a well defined operator.

The previous theorem has implications for a common type of Fourier integral

operator, namely the type with phase function ϕ(x, y, ξ) = 2πx · ξ − 2πy · ξ.

Corollary 5.4.3. Suppose p ∈ [1, 2] and p1 = · · · = pd = ∞, pd+1 = pd+2 = · · · =

p3d = 2, p3d+1 = p3d+2 = · · · = p5d = p and p5d+1 = p5d+2 = . . . p6d = 1. Let c be

a FIO symbol permutation. If A is a Fourier integral operator with phase function

ϕ(x, y, ξ) = 2πx · ξ − 2πy · ξ and symbol a ∈M(c)p1,p2,...,p6d, then A ∈ Ip(L2(Rd)).
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APPENDIX A

FOURIER FRAME LEMMA

In this section, we give a detailed proof of Lemma 2.2.12. Our proof relies on the

following theorem, a special case of Theorem 7 in [2].

Theorem A.0.4. Suppose F = {fi}i∈I , E = {ej}j∈Z are frames for Hilbert space H

with frame bounds A,B and E,F respectively. Also suppose there is a map a : I → Z

so that the following properties hold.

(a) ∀ε > 0,∃Nε ∈ N ∑
{i∈I:|a(i)−j|>Nε

2 }
|〈fi, ej〉|2 < ε ∀j ∈ Z.

(b) ∀ε > 0,∃Nε ∈ N ∑
{j∈Z:|a(i)−j|>Nε

2 }
|〈fi, ej〉|2 < ε ∀i ∈ I.

Then

A lim inf ‖ej‖2

F lim sup ‖fi‖2 ≤ D−(I, a) ≤ D+(I, a) ≤ B lim sup ‖ej‖2

E lim inf ‖fi‖2 ,

where

D+(I, a) = lim sup
K→∞

sup
j∈Z

∣∣{i ∈ I : |a(i)− j| ≤ K
2

}∣∣∣∣{n ∈ Z : |n− j| ≤ K
2

}∣∣
and

D−(I, a) = lim inf
K→∞

inf
j∈Z

∣∣{i ∈ I : |a(i)− j| ≤ K
2

}∣∣∣∣{n ∈ Z : |n− j| ≤ K
2

}∣∣ .
Proof of Lemma 2.2.12. Suppose V ⊂ R and F = {e2πivw}v∈V = {fv}v∈V is a frame

for L2[−r, r] with bounds A,B. By Lemma 2 in [49], V is relatively separated in R.

Notice that E =
{

(2r)−
1
2 e2πi n

2r
w
}
n∈Z

= {en}n∈Z is an orthonormal basis for L2[−r, r]
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Define a : V → Z so that |2rv−a(v)| ≤ 1
2

for all v ∈ V . We will show that conditions

(a) and (b) in Theorem A.0.4 are satisfied.

First, we observe that

|〈fv, ej〉|2 =

∣∣∣∣(2r)− 1
2

∫
[−r,r]

e2πi(v− j
2r )w dw

∣∣∣∣2 ≤ 1

2rπ2
∣∣v − j

2r

∣∣2 ∀v ∈ V, j ∈ Z.

Fix ε > 0. Since V is relatively separated, so is 4rV . Hence by Lemma 2.2.8, we can

choose C ∈ (0,∞) so that

|4rV ∩ x+ [−M −N,M +N ] \ [−M,M ]| ≤ 2CN ∀M,N ∈ N, x ∈ R.

Choose Nε ∈ N so that

48rC

π2

∑
n≥Nε

1

(n− 1)2 < ε

and

16r

π2

∑
n≥Nε

1

(n− 1)2 < ε.

Then for any j ∈ Z, we have

∑
{v∈V :|a(v)−j|>Nε

2 }
|〈fv, ej〉|2 =

∑
n≥Nε

∑
{v∈V :n+1

2
≥|a(v)−j|>n

2}
|〈fv, ej〉|2 .

But if n+1
2
≥ |a(v)− j| > n

2
then n+2

4r
≥
∣∣v − j

2r

∣∣ > n−1
4r

. Thus

∑
{v∈V :|a(v)−j|>Nε

2 }
|〈fv, ej〉|2

=
∑
n≥Nε

∑
{v∈V :n+1

2
≥|a(v)−j|>n

2}
|〈fv, ej〉|2

≤
∑
n≥Nε

∑
{v∈V :n+1

2
≥|a(v)−j|>n

2}

1

2rπ2
∣∣v − j

2r

∣∣2
≤
∑
n≥Nε

∑
{v∈V :n+1

2
≥|a(v)−j|>n

2}

16r2

2rπ2 (n− 1)2

=
8r

π2

∑
n≥Nε

∣∣{v ∈ V : n+1
2
≥ |a(v)− j| > n

2

}∣∣
(n− 1)2
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≤ 8r

π2

∑
n≥Nε

∣∣{v ∈ V : n+2
4r
≥
∣∣v − j

2r

∣∣ > n−1
4r

}∣∣
(n− 1)2

=
8r

π2

∑
n≥Nε

|{v ∈ V : n+ 2 ≥ |4rv − 2j| > n− 1}|
(n− 1)2

=
8r

π2

∑
n≥Nε

|4rV ∩ 2j + [−n− 2, n+ 2] \ [−n+ 1, n− 1]|
(n− 1)2

≤ 48rC

π2

∑
n≥Nε

1

(n− 1)2

< ε.

Hence (a) is satisfied.

To prove that (b) is satisfied, we note that for any v ∈ V and any n ∈ N, there

can be at most two j ∈ Z satisfying n+1
2
≥ |a(v) − j| > n

2
. Thus for any v ∈ V we

have ∑
{j∈Z:|a(v)−j|>Nε

2 }
|〈fv, ej〉|2

=
∑
n≥Nε

∑
{j∈Z:n+1

2
≥|a(v)−j|>n

2}
|〈fv, ej〉|2

≤
∑
n≥Nε

∑
{j∈Z:n+1

2
≥|a(v)−j|>n

2}

1

2rπ2
∣∣v − j

2r

∣∣2
≤
∑
n≥Nε

∑
{j∈Z:n+1

2
≥|a(v)−j|>n

2}

16r2

2rπ2 (n− 1)2

≤ 8r

π2

∑
n≥Nε

∣∣{j ∈ Z : n+1
2
≥ |a(v)− j| > n

2

}∣∣
(n− 1)2

≤ 16r

π2

∑
n≥Nε

1

(n− 1)2

< ε.

Thus (b) is also satisfied.

Since lim infv∈V ‖fv‖2
L2[−r,r] = lim supv∈V ‖fv‖

2
L2[−r,r] = 2r, Theorem A.0.4 implies

A

2r
≤ D−(I, a) ≤ D+(I, a) ≤ B

2r
.
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Fix N ∈ N. Choose KN ∈ N such that KN−1
2

< 2rN + 1 ≤ KN
2

. Notice that if

|v − x| ≤ N then |a(v) − a(x)| = |a(v) − 2rv + 2rv − 2rx + 2rx − a(x)| ≤ 2rN + 1.

Thus

sup
x∈R

|V ∩ x+ [−N,N ]|
2N

≤ sup
x∈R

|{v ∈ V : |a(v)− a(x)| ≤ 2rN + 1}|
2N

≤ sup
j∈Z

|{v ∈ V : |a(v)− j| ≤ 2rN + 1}|
2N

≤ 2r · sup
j∈Z

∣∣{v ∈ V : |a(v)− j| ≤ KN
2

}∣∣
KN − 3

= 2r · sup
j∈Z

∣∣{n ∈ Z : |n− j| ≤ KN
2

}∣∣
KN − 3

∣∣{v ∈ V : |a(v)− j| ≤ KN
2

}∣∣∣∣{n ∈ Z : |n− j| ≤ KN
2

}∣∣
≤ 2r

KN + 1

KN − 3
· sup
j∈Z

∣∣{v ∈ V : |a(v)− j| ≤ KN
2

}∣∣∣∣{n ∈ Z : |n− j| ≤ KN
2

}∣∣
which implies

D+
R (V )

= lim sup
N→∞

sup
x∈R

|V ∩ x+ [−N,N ]|
2N

≤ lim sup
N→∞

(
2r
KN + 1

KN − 3
· sup
j∈Z

∣∣{v ∈ V : |a(v)− j| ≤ KN
2

}∣∣∣∣{n ∈ Z : |n− j| ≤ KN
2

}∣∣
)

≤ 2r

(
lim sup
K→∞

KN + 1

KN − 3

)(
lim sup
K→∞

sup
j∈Z

∣∣{v ∈ V : |a(v)− j| ≤ KN
2

}∣∣∣∣{n ∈ Z : |n− j| ≤ KN
2

}∣∣
)

= 2rD+(I, a)

≤ B.

Similar arguments show A ≤ 2rD−(I, a) ≤ D−R (V ).
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