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Abstract 
 
We investigate the geographical and socioeconomic determinants of childhood 

undernutrition in Malawi, Tanzania and Zambia, three neighbouring countries in 

Southern Africa using the 1992 Demographic and Health Surveys. In particular, we 

estimate models of undernutrition jointly for the three countries to explore regional 

patterns of undernutrition that transcend boundaries, while allowing for country-specific 

interactions. We use geo-additive regression models to flexibly model the effects of 

selected socioeconomic covariates and spatial effects. Inference is fully Bayesian based 

on recent Markov chain Monte Carlo techniques. 

While the socioeconomic determinants generally confirm findings from the 

literature we find distinct residual spatial patterns that are not explained by the 

socioeconomic determinants. In particular, there appears to be a belt transcending 

boundaries and running from Southern Tanzania to North-eastern Zambia which exhibits 

much worse undernutrition. These findings have important implications for planning as 

well as in the search for left-out variables that might account for these residual spatial 

patterns. 

Keywords: Sub-Saharan Africa; Geo-additive models; undernutrition; spatial statistics; 
semi-parametric Bayesian analysis. 
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1 INTRODUCTION  
 
Malawi, Tanzania and Zambia are neighbouring low-income countries in Southern 

Africa, all belonging to the poorest countries in the world, with very poor education, 

health, and human development indicators. They have been affected by years of 

economic stagnation and decline with negative per capita income growth rates throughout 

the 1980s and early 1990s, and have also experienced deterioration in health and 

education indicators (World Bank, 2000).1

 When modelling the determinants of undernutrition, one can distinguish between 

immediate, intermediate, and underlying determinants (see UNICEF, 1998).  While 

undernutrition is always immediately related to either insufficient nutrient intake or the 

inability of the body to absorb nutrients (primarily due to illness), these are themselves 

caused by problems related to food security, care practices, and the health environment at 

the household level, which themselves are influenced by the socioeconomic and 

demographic situation of households and communities (UNICEF; 1998; Smith and 

Haddad, 1999, Klasen, 1999). In order to capture this complex chain of causation, 

researchers have either focused on a particular level of causality (e.g. Smith and Haddad, 

1999; Moradi, 1999, Pelletier, 1999), have estimated structural equations that address 

interactions between the different levels (e.g. Guilkey and Riphahn, 1998), have used 

graphical chain models to assess the causal pathways (Caputo, et al. 2003), or have used 

 Chronic undernutrition is a serious problem in 

all three countries, affecting some 48.7% of children in Malawi, 46.7% in Tanzania, and 

39.6% in Zambia.  Given the centrality of undernutrition for child well-being, it is critical 

to understand its determinants.   

                                                           
1 More recently, they have also been severely affected by the AIDS pandemic.   
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multi-level modelling techniques (e.g. Nyovani et al. 1999, Harttgen and Misselhorn, 

2006).  

In this paper, we estimated a model that mainly focuses on factors that are 

underlying determinants of undernutrition. There is also some discussion in the literature 

on non-linear effects of some of these covariates although they are rarely investigated 

thoroughly (e.g. Smith et al. 2001; WHO, 1995, Stephenson, 1999).   

The particular innovations of the paper are threefold: first, through the use of our 

empirical methods we are able to investigate non-linear effects more flexibly than most 

previous work.  Second, the methods also allow us to investigate the spatial pattern of 

undernutrition, prior to and after controlling for the socioeconomic covariates.  This 

enables us to determine to what extent the substantial spatial pattern of undernutrition is 

driven by the socioeconomic factors we were considering. Third, by using data from 

three adjacent countries in the same year, we are able to investigate the relative 

importance of country-specific socio-economic factors and government policies vis-à-vis 

geographical factors that transcend boundaries.   

 
 
2 DATA, MEASUREMENT OF UNDERNUTRITION, AND COVARIATES 

The data we use are from the 1992 round of the Demographic and Health Surveys (DHS) 

undertaken in the three Sub-Saharan African countries of Malawi, Tanzania and Zambia.   

The DHSs collect information on a nationally representative sample of women in child-

bearing age (15-49). The questionnaire collects socioeconomic indicators for the 

respondent and her partner as well as the household she resides in and then gathers a 

large amount of information on fertility patterns, health and care practices, health 

knowledge, and assesses the anthropometric status of all children of these women who 
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were born within the past five years.  Data collection and analysis is highly standardized 

and supported from Macro, Inc. on behalf of the US Agency for International 

Development.  The DHS have long been considered to be the most reliable sources of 

demographic, nutrition, and child health and mortality information in developing 

countries, particularly in Africa where administrative data on these issues are largely 

incomplete or missing.  Unfortunately, the surveys do not generate an income variable 

and we therefore rely on a household asset index as a proxy for the income situation of 

the households which has been found to be quite reliable by Filmer and Pritchett (2001). 

The 1992 DHS data sets of Malawi, Tanzania and Zambia are pooled to form one data set 

with the same socio-economic, demographic and health characteristics of the household. 

This is possible because the DHS surveys were carried out in standardized form, with the 

same list of socio-economic and demographic characteristics.  

The DHS samples for the three countries were drawn through stratified clustered 

sampling comprising some 18000 children in 835 clusters.  Although not available in the 

dataset, we were able to obtain the district location of each cluster and can therefore base 

our spatial analysis on the 156 districts in the three countries.2

 Undernutrition among children is usually measured by determining the 

anthropometric status of the child with most research focusing on children below six 

years of age (e.g. WHO, 2006). Researchers typically distinguish between three types of 

undernutrition: wasting or insufficient weight for height indicating acute undernutrition; 

stunting or insufficient height for age indicating chronic undernutrition; and underweight 

or insufficient weight for age which could be a result of both stunting and wasting (e.g. 

   

                                                           
2 We cannot use later DHS surveys undertaken in the three countries as they either did not take place in the 
same year or the district information was not available.   
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UNICEF, 1998). Wasting, stunting, and underweight for a child i are typically 

determined using a Z-score which is defined as: 

 
where AI refers to the individual anthropometric indicator (e.g. height at a certain age), 

MAI refers to the median of a reference population, and refers to the standard deviation 

of the reference population. The reference standard typically used for the calculation is 

the National Center for Health Statistics (NCHS)-Center for Disease Control (CDC) 

Growth Standard that has been recommended for international use by World Health 

Orgainasation (WHO, 1983; 1995).3

The percentage of children whose Z-scores were below -2 standard deviations 

(SD) from the median of the reference category are considered  as undernourished 

(stunted, wasted, and underweight, depending on the indicator chosen), while those with 

Z-Scores below -3 are considered severely undernourished. In this paper we focus on 

stunting as our covariates were better able to explain chronic than acute undernutrition. 

We used the Z-Score (in a standardized form) as a continuous variable to use the 

maximum amount of information available in the data set. 

 

                                                           
3 Recently, a new reference standard has been generated from which Z-scores can be calculated.  For the 
purpose of this paper, the use of the new reference standard would not change the qualitative results.  For a 
discussion of the new reference standard, see WHO (2006) and Klasen (2007).  

σ
MAIAIZ i

i
−

=
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Figure 1 Observed mean Z-score of stunting by districts (left) and regions (right).   
Note: Darker areas indicate low Z-Scores and thus poor undernutrition, those lighter ones suggest high Z-
Scores. Moreover, hashed areas refer to districts for which no information was available in the data set.  
 

The geographical distribution of the standardized Z-scores4

                                                           
4 The standardized Z-score calculated as the actual Z-score minus its median divided by its standard 
deviation was used for computation purposes. 

 for the response variable 

stunting, averaged by district (left) and region (right), is displayed in Figure 1.  It shows 

distinct spatial patterns of undernutrition. While in South-Western Zambia and Northern 

Tanzania, it appears that stunting is lower, there seem to be more areas of high stunting in 

North-Eastern Zambia, Northern Malawi and Southern Tanzania.  In addition to local 

small-area variability, there might also be an underlying smooth spatial component which 

crosses borders, something we investigate below.  The comparison between the left and 

right panel of Figure 1 also suggests that it is well worth examining the spatial pattern of 
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undernutrition at a more disaggregated district level as the regional analysis gloss over 

important intra-regional differentials.   

  Figure 2 shows a histogram and kernel density estimates of the distribution of the 

Z-scores, together with a normal density, with mean and variance estimated from the 

sample. This gives clear evidence that a Gaussian regression model is a reasonable choice 

for inference. 

 

Figure 2 Histogram (left) and kernel density estimates (right) of “stunting” 

 

 Regarding the covariates, we were guided by the previous literature on the subject 

and the conceptual framework outlined in UNICEF (1998).  Among the underlying 

determinants of chronic undernutrition, we consider socio-economic factors measured by 

an asset index, household size, the nutritional status of the mother (measured by her Body 

Mass Index), and access to electricity, health knowledge and care practices measured by 

mother’s education, mother’s marital status, birth interval, place of delivery, and 

vaccinations, and access to a radio.  We also control for the sex of the child, urban-rural 

location, and the age of child.  Based on prior own work as well as other literature (e.g. 

Kandala et al. 2001; 2002; WHO 1995; Moradi and Klasen, 2000), we investigate a 

potentially non-linear pattern of effects of the mother’s BMI as well as the age pattern on 
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undernutrition. For illustration, the empirical distribution of the stunting Z-score by 

child’s age is shown in Figures 3. It is obvious that the effect of child’s age on the mean 

Z-score of stunting is nonlinear. It will be difficult to model the possibly nonlinear effect 

of such covariates through a parametric functional form, which well justifies our use of a 

flexible semi-parametric model.   

 

Figure 3 Mean standardized Z-score for stunting by child’s age  
 

Empirical distributions of categorical covariates, together with coding used in the 

analysis, are given in Table 1. Most of the factors are placed in categories to be 

comparable to previous studies. For instance, household size is split into ‘Small 

households of < than 6 members’ (reference), ‘Medium households of 6-10 members’ 

and ‘Large households of >10 members’ in the three countries.  Ownership of consumer 

items, such as a radio or car, as well as characteristics of the dwelling such as floor or 

roof type, toilet facilities and water source are items that measure poverty in these setting 

and the World Bank and others have used these items to generate an asset index, using 

Principal Components Analysis (PCA) (Filmer and Pritchett (2001). We use the first 
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principal component derived from the pooled data from the three countries to obtain the 

index for each household. We sort children by the asset index and establish cut-off values 

for percentiles of the population.  We then refer to the bottom third as ‘low 

socioeconomic status’, the next third as ‘medium socioeconomic status’, the top third as 

‘high socioeconomic status’ (see Table 1).5

While all three countries do relatively poorly on the reported socioeconomic 

indicators, there are significant differences between the countries as well. In particular, 

households in Zambia appear to be better off in terms of access to electricity, radio, and 

female educational attainment. Income as proxied by the asset index and education levels 

are also higher in Zambia (Table 1). This country is also more heavily urbanized than the 

other two. Malawi and Tanzania are more similar, with Malawi doing somewhat worse 

on access to electricity. Malawi also has worse educational attainment at the lower levels 

but slightly higher among the highest levels than Tanzania. Since the effect of education 

and the asset index might vary across countries, it seems appropriate to test for 

interactions for these variables. 

 

                                                           
5 Other categorical covariates, such as employment situation of the mother and type of toilet facility, turned 
out to be non-significant in the preliminary data analysis and are thus omitted. 
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Table 1 Overview of Covariates 
Factor    Malawi (%)  Tanzania(%)  Zambia (%)  Coding 
Residence 
Rural     74.5%   84.3%   57.3%  0: rural, reference 
Urban     25.5%   15.7%   42.7%     1: urban 
Has radio 
No     54.8%   64.2%   57.2%  0: reference  
Yes     45.0%   34.1%   42.4%  1 
Has electricity 
No     94.8%   92.8%   80.5%  0: reference 
Yes     5.0%   5.6%   19.2%   1 
Educational attainment 
No education   41.6%   37.2%   17.9%         0: reference 
Incomplete primary    42.8%   18.9%   30.3% 
Complete primary    10.1%   40.6%   32.8%            1 (incl.  inc. prim.) 
Incomplete secondary   3.5%   3.0%   15.3% 
Completed secondary    1.7%   0.1%   2.1 %             2 (incl. inc. & higher) 
Higher     0.2%   0.2%   1.5% 
Sex of child 
Female     49.3%   49.9%   49.9%   0: reference 
Male     50.7%   50.1%   50.1%   1: male 
Child’s place of delivery 
Born at home    62.5%   50.2%   49.6%   0: reference 
Born in hospital    37.5%   49.8%   60.4%   1: hospital 
Current marital status 
Single mothers    11.5%   15.3%   15.2%   1: single 
Married women    88.5%   84.7%   84.8%   0: reference 
Child’s receive vaccination 
No     22.1%   24.1%   27.18%   0: reference 
Yes     77.5%   75.9%   72.8%   1 
Asset index 
High socioeconomic status   31.5%   23.4%   50.4%   0: reference 
Low socioeconomic status   24.3%   38.9%   32.4%   1: low 
Medium socioeconomic status   44.2%   37.8%   17.2%   2: medium 
Birth interval  
Short: ≤24 months   23.85%  21.34%  22.84%   0: reference 
Long: >24 months   76.15%  78.66%  77.16%   1:long birth 
Size of household  
Small size: < 6 members  46.72%  32.40  33.45   0: reference 
Medium size: 6-10 members  47.23%  50.37  53.94   1 
Large size: > 10 members  6.05%  17.23  12.61   2 
Mean of BMI    21.96   21.75   21.96    metrical 
District     32   62   62   spatial covariate 

 
 
3. BAYESIAN GEO-ADDITIVE REGRESSION MODELS 
 
Spatial analyses of undernutrition often are confined to using region-specific dummy 

variables to capture the spatial dimension. Here, we go a step further by exploring 

regional patterns of childhood undernutrition and, possibly nonlinear, effects of other 

factors within a simultaneous, coherent regression framework using a geo-additive semi-

parametric mixed model. Because the predictor contains usual linear terms, nonlinear 

effects of metrical covariates and geographic effects in additive form, such models are 

also called geo-additive models. Kammann and Wand (2003) proposed this type of 

models within an empirical Bayesian approach. Here, we apply a fully Bayesian approach 
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as suggested in Fahrmeir and Lang (2001), Lang and Brezger (2004) which is based on 

Markov priors and uses MCMC techniques for inference and model checking. 

 
Classical linear regression models of the form  
 

,),0(~,' 2σεεγ Nwy iiii +=                           (1) 
 
for observations ,,....,1,),( niwy ii =  on a response variable y and a vector w of 

covariates assume that the mean )|( ii wyE  can be modeled through a linear predictor

γ'iw . In our application to childhood under-nutrition and in many other regression 

situations, we are facing the following problems: First, for the continuous covariates in 

the data set, the assumption of a strictly linear effect on the response y may not be 

appropriate. In our study, such covariates are the child’s age (age), the mother’s age at 

birth (mab), and the mother’s body mass index (BMI). Generally, it will be difficult to 

model the possibly nonlinear effect of such covariates through a parametric functional 

form, which has to be linear in the parameters, prior to any data analysis. 

Second, in addition to usual covariates, geographical small-area information was 

given in form of a location variable s, indicating the region, district or community where 

individuals or units in the sample size live or come from. In our study, this geographical 

information is given by the districts of the three countries Malawi, Tanzania and Zambia. 

Attempts to include such small-area information using district-specific dummy-variables 

would in our case entail more than 200 dummy-variables and using this approach we 

would not assess spatial inter-dependence. The latter problem cannot also be resolved 

through conventional multilevel modeling using uncorrelated random effects (Goldstein, 

1999). It is reasonable to assume that areas close to each other are more similar than areas 

far apart, so that spatially correlated random effects are required. 
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To overcome these difficulties, we replace the strictly linear predictor through a geo-

additive predictor, leading to the geo-additive regression model 

yi = f1(xi1) + ... + fp(xip) + fspat(si) + w’i γ +εi        .                                                           (2)                                                       

here, f1,...,fp are non-linear smooth effects of the metrical covariates, and fspat  is the effect 

of the spatial covariate  si ∈ {1,...,S} labelling the districts in the three countries. 

Regression models with predictors as in (2) are sometimes referred to as geo-additive 

models. The observation model (2) may be extended by including interaction f(x)w 

between a continuous covariate x and a binary component of w, say, leading to so called 

varying coefficient models, or by adding a nonlinear interaction f1,2 (x1, x2) of two 

continuous covariates.  

In a Bayesian approach unknown functions fj and parameters γ as well as the 

variance parameter σ2 are considered as random variables and have to be supplemented 

with appropriate prior assumptions. In the absence of any prior knowledge we assume 

independent diffuse priors γj ∝ const, j=1,...,r  for the parameters of fixed effects. 

Another common choice is highly dispersed Gaussian priors. 

Several alternatives are available as smoothness priors for the unknown functions 

fj (xj), see Fahrmeir and Lang (2001), Fahrmeir, Kneib and Lang (2004). We use Bayesian 

P(enalized) – Splines, introduced by Eilers and Marx in a frequentist setting. It is 

assumed that an unknown smooth function fj (xj) can be approximated by a polynomial 

spline of low degree. The usual choices are cubic splines, which are twice continuously 

differentiable piecewise cubic polynomials defined for a grid of k equally spaced knot p 

on the relevant interval [ ]ba,  of the x-axis. Such a spline can be written in terms of a 

linear combination B-spline basis functions ( )xBm , i.e. 
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( ) ( )xBxf m

l

m
m∑

=

=
1
β          (3) 

These basis functions have finite support on four neighbouring intervals of the grid, and 

are zero elsewhere. A comparably small number of knots (usually between 10 and 40) is 

chosen to ensure enough flexibility in combination with a roughness penalty based on 

second order difference of adjacent B-spline coefficients to guarantee sufficient 

smoothness of the fitted curves. In our Bayesian approach this corresponds to second 

order random walks 

mmmm u+−= −− 212 βββ ,     (4) 

with Gaussian errors ( )2,0~ τNum . The variance parameter 2τ  controls the amount of 

smoothness, and is also estimated from the data. More details on Bayesian P-Splines can 

be found in Lang and Brezger (2004). Note that random walks are the special case of B-

Splines of degree zero. 

We now turn our attention to the spatial effects fstr and funstr. For the spatially 

correlated effect fstr (s), s = 1, … S, we choose Markov random field priors common in 

spatial statistics (Besag, et al. 1991). These priors reflect spatial neighbourhood 

relationships. For geographical data one usually assumes that two sites or regions s and r 

are neighbours if they share a common boundary. Then a spatial extension of random 

walk models leads to the conditional, spatially autoregressive specification   

)/,/)((~),(|)( 2∑
∂∈

≠
sr

ssstrstrstr NNrfNsrrfsf τ                                                       (3)        

 where Ns is the number of adjacent regions, and  r ∈ ∂s denotes that region r is a 

neighbour of region s. Thus the (conditional) mean of fstr(s) is an average of function 

evaluations fstr(s) of neighbouring regions. Again the variance  τ2
str controls the degree of 

smoothness. 
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For a spatially uncorrelated (unstructured) effect funstr  a common assumption is that the 

parameters funstr(s)  are i.i.d. Gaussian 

funstr(s) | τ2
unstr  ~ N(0, τ2

unstr)                                                                                    (4) 

Variance or smoothness parameters τ2
j, j=1,...,p, str, unstr, are also considered as 

unknown and estimated simultaneously with corresponding unknown functions fj. 

Therefore, hyper-priors are assigned to them in a second stage of the hierarchy by highly 

dispersed inverse gamma distributions p(τ2
j) ~ IG(aj,bj)  with known hyper-parameters aj 

and bj.  For model choice, we routinely used the Deviance Information Criterion (DIC) 

developed in  Spiegelhalter et. al. (2001) as a measure of fit and model complexity. 

4. RESULTS 

Based on previous analysis carried out separately for each country (Kandala et al., 2001), 

we choose a geo-additive model with interactions between country-effects and 

educational attainment as well as the asset index. Taking Tanzania as the reference 

country, we arrived at the model with interaction terms in Zambia and Malawi for the 

three levels of education and asset indices (see Table 1) 

yi = f1(agci) + f2(bmii)+ fstr(si) + funstr(si)+   w’i γ +εi                                           (5)  

 

The model assumes that f1 ( ) ,  f2( ) and  fstr  are nonlinear effects and  spatial effects  

were the same for all three countries. This was confirmed by prior separate analyses of 

the non-linear effects in each of the countries, which were found to be remarkably 

similar.  
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Table 2 Posterior mean of fixed effects  
 
Variable        mean   10% quant.           90% quant. 
Constant        -0.14   -0.22   -0.07 
Urban        0.15   0.11  0.21 
Male        -0.10   -0.12   -0.08 
Incomplete primary & complete primary education in Tanzania   0.03  -0.01   0.06 
Incomplete & complete secondary and higher in Tanzania  0.35   0.24   0.46 
Additive effect of incomplete & complete primary education in Malawi 0.08   -0.04   0.12 
Additive effect of incomplete & complete secondary and higher in Malawi  0.07   -0.02   0.13 
Additive effect of incomplete & complete primary education in Zambia -0.003   -0.06   0.05 
Additive effect of incomplete & complete secondary and higher in Zambia  -0.17   -0.30   -0.05 
Middle household in Tanzania      0.01  -0.02   0.05 
Rich household in Tanzania      0.18   0.14   0.23 
Additive effect of middle household in Malawi    -0.05  -0.11  -0.01 
Additive effect of rich household in Malawi     -0.06  -0.13  0.02 
Additive effect of middle household in Zambia    -0.01  -0.07  0.06  
Additive effect of rich household in Zambia    -0.02  -0.09  0.05 
Single mothers       -0.07  -0.10  -0.04 
Long birth interval (>24 months)      0.08    0.06   0.11 
Medium household (6-10 members)     0.03    -0.004   0.05 
Large household (>10 members)      0.07    0.03   0.09  

Note: Left-out categories are rural, female, no education, poor households in Tanzania, married women, short birth-
interval, and small households. 
 
Table 2 contains the fixed effects, and the non-linear effects of BMI and child’s age are 

shown in Figure 4. In the left-hand map of Figure 5 we show the mean Z-scores by 

district predicted by considering the socioeconomic covariates only; in the right-hand 

map we then subtract these predicted Z-score from the left-hand figure from the raw Z-

score to generate the residuals by district that are not explained by the socioeconomic 

variables. These are then allocated to structured and unstructured effects. The posterior 

mean estimate of the structured spatial effects fstr is shown in the maps of Figures 6.  

Figure 7 shows the unstructured spatial effects.6

                                                           
6 The unstructured effects are smaller in magnitude and none are significant so that we do not include a 
significance map with this figure but briefly comment on them.   

  In addition, posterior probability maps 

indicate significance of the spatial effects (white/black = significantly positive/negative 

effect on the Z-score, grey = not significant).  Note that the spatial effects are centred 

around zero, i.e. the average over all districts is zero, while the overall level is estimated 

through the intercept term.  Before commenting on the substantive results, it is important 

to point out this model had the best fit after evaluation of the fit criteria using Deviance 

Information Criteria (DIC). 
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The results for the fixed effects in Table 2 suggest that female children are 

slightly less stunted which had also been found in other studies (Klasen, 1996; Kandala et 

al., 2001; Kandala et al. 2006).  This is indicated by the fact that the corresponding 

posterior mean, -0.09 for male, is negative and the 10% and 90% quantiles are both 

negative - indicating that the effect is statistically significant. It also is the case that 

children living with both parents (married women) are less stunted than other children, 

apparently benefiting from extra care of both parents. Alternatively couples may benefit 

from economies of scales for child care as well as in expenditures (Kandala, 2002; 

Kandala et al. 2006). Children from low socioeconomic households were, as expected, 

more stunted than children from high income backgrounds. The prior birth interval 

matters for the nutritional status of the child. The analysis shows that children born after a 

long birth interval are better off than other children.   

Better nutritional status is observed in households with a large number of adult 

members. The impact of the household's size should, however, not be over-interpreted, 

since to some extent it directly mirrors infant mortality. For instance, a household with 

high mortality risk will remain small. In contrast, a household's size might also reflect its 

wealth, as a rich household will attract occupants (Kandala, 2002). Again, in a large 

household, a child might benefit from the help of several adults. Large households may 

benefit from scale economies in time for childcare as well as in expenditures. 

Alternatively, they may have become better at raising children through accumulated 

experience (Christiansen and Alderman, 2001). 

 The only country interactions that turned out to be significant and thus were 

retained in the model are the interactions with mother’s education and asset index. Here 

we find that the positive effect of high mother’s education is much smaller in Zambia 
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than in Tanzania. This might be related to the fact that the economic crises of the early 

1990s in Zambia also affected more educated groups, who were unable to shield their 

children from these adverse conditions.  Similarly, the positive effect of middle and high 

income household is also much smaller in Malawi and Zambia. It thus appears that these 

two socioeconomic indicators have a much larger effect in Tanzania than elsewhere. 

   

 
Figure 4 Non-linear effects of mother’s body mass index (left) and child’s age (right) on 
stunting 
 

The left panel of Figure 4 shows the flexible modelling of the effect of the BMI of 

the mother. Shown are the posterior means together with 80 % and 95% pointwise 

credible intervals. We found the influence to be in the form of an inverse U shape. While 

the inverse U looks nearly symmetric, the descending portion exhibited a much larger 

range in the credible region. This appears quite reasonable as obesity of the mother 

(possibly due to a poor quality diet) is likely to pose less of a risk for the nutritional status 

of the child as very low BMIs which suggest acute undernutrition of the mother. The Z-

score is highest (and thus stunting lowest) at a BMI of around 30-35. 

The right panel of Figure 4 shows the effect of the child’s age on its nutritional 

status. As suggested by the nutritional literature, we are able to discern the continuous 

worsening of the nutritional status up until about 20 months of age. This deterioration 

sets in right after birth and continues, more or less linearly, until 20 months. Such an 
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immediate deterioration in nutritional status is not quite as expected as the literature 

typically suggests that the worsening is associated with weaning at around 4-6 months. 

One reason for this unexpected finding could be that, according to the surveys, most 

parents give their children liquids other than breast milk shortly after birth which might 

contribute to infections. 

After 20 months the effect of age on stunting stabilizes at a low level. Through 

reduced growth and the waning impact of infections, children are apparently able to reach 

a low-level equilibrium that allows their nutritional status to stabilize.  We also see a blip 

around 24 months of age. This is picking up the effect of a change in the data set that 

makes up the reference standard. Until 24 months, the currently used international 

reference standard is based on white children in the US of high socioeconomic status, 

while after 24 months; it is based on a representative sample of all US children (WHO, 

1995). Since the latter sample exhibits worse nutritional status, comparing the Tanzanian 

children to that sample leads to a sudden improvement of their nutritional status at 24 

months. This drawback of the reference standard is one reason for WHO’s recent 

introduction of a new reference standard (WHO, 2006). 

Figure 5 (left) shows that the socioeconomic effects are able to explain a fair 

amount of the spatial variation of undernutrition in the three countries. We calculate that 

the average residual spatial effect in the right-hand panel of Figure 5 is about 30% lower 

than the original spatial effects plotted in Figure 1, showing that the socioeconomic 

effects explain some but not all of the spatial variation. 
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Light – low prevalence of stunting    
Dark – high prevalence of stunting  
     
 
Figure 5 Mean of stunting predicted by the covariates for Model 5 (left) and residual 
spatial effects of stunting (right). 
 

However, the spatial residuals in the right-hand side of Figure 5 show that much of the 

variation in stunting remains to be explained.  These spatial effects are then allocated by 

the model into structured effects which are shown in Figure 6 and unstructured residual 

effects in Figure 7. 

Several important findings emerged. First, many of these structured spatial effects 

are significant as indicated by the probability map (Figure 6 right). The right panel of 

Figure 6 shows the posterior probability maps of undernutrition at a 95% credible 

interval. The districts in black indicated a significant negative spatial effect (more 

undernutrition), while the districts in white imply a significant positive spatial effect. The 

rest of the districts (in grey) have no significant effect on undernutrition. Thus we clearly 

have a pattern of worse nutrition in Eastern and North-Eastern Zambia, Central Malawi, 

and Southern Tanzania.  
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Conversely, Z-scores are significantly better in Northern Tanzania and South-Western 

Zambia. Second, while these structured effects suggest worse undernutrition in a belt 

ranging from Northern Zambia to Southern Tanzania, it is interesting to note that the 

districts in Northern Malawi are not significant components in that belt. Thus while some 

spatial residuals do spill significantly across borders, e.g. between Northern Zambia and 

Central Malawi, some borders do seem to matter in the sense that spatial residuals remain 

noticeably distinct in the analysis on the two sides of borders. 

                           

Light – low prevalence of stunting    Black–significant negative effect 
Dark – high prevalence of stunting   Grey – not significant 
      White–significant positive effect   
 
Figure 6 Structured residual spatial effect of stunting (left) and posterior probabilities 
(right) of stunting for Model 5. 
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Figure 7 Unstructured spatial effects 

Light – low prevalence of stunting     
Dark – high prevalence of stunting 

  
Third, the unstructured spatial effects shown in Figure 7, while being much smaller and 

not significant, also displayed an interesting pattern. While in Tanzania large cities have 

significantly higher Z-scores this was not the case in Zambia where some of the large 

cities in the Copperbelt (the small districts in the central North of the country) actually 

have lower Z-scores.  This may be related to the effect of the decline in copper 

production and the impact of general economic decline and structural adjustment policies 

that have affected urban areas more than rural areas (World Bank, 2000).  

The clear structured pattern begs for an explanation. None of the socioeconomic 

variables we tried in addition to the ones mentioned are able to reduce these pronounced 

spatial effects. One common factor to most of the areas that are negatively affected is that 

these areas are at comparatively low elevations. This distinction is most noticeable and 

clear in the South-North divide in Tanzania but it is also noticeable elsewhere. The 

difference could well be due to differences in disease prevalence such as Malaria, 

Schistosomasis, and other diseases that thrive at lower elevations and were particularly 
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problematic along the Rift Valley. In an exploratory analysis, we compare the spatial 

pattern of prevalence of fever, diarrhoea; cough or any of the three illnesses combined 

with the structured spatial pattern and found that the spatial distribution of fever 

(presumably related to Malaria) has a fairly close resemblance to the structured spatial 

effects while the others did not appear to play a significant role. Future work should 

explore this linkage further. The measure of disease prevalence used here, recall of 

whether anyone in the household had been ill with fever, cough, or diarrhoea in the past 2 

weeks is less than perfect as it is quite subjective, based on a short-term recall, and has 

considerable noise. Future work needs to address the question of disease environment 

more closely. 

Moreover, the poor nutritional status in North-eastern Zambia could additionally 

be related to the poor access to health facilities and the general remoteness of these areas 

which are poorly served with transportation links (World Bank, 2000). These issues 

deserve closer attention and this procedure is merely able to highlight the important 

spatial patterns of undernutrition without being able to fully explain them. 

Quite clearly, the methods used here are able to identify more subtle 

socioeconomic and spatial influences on undernutrition than reliance on linear models 

with regional dummy variables. As such, they are useful for diagnostic purposes to 

identify the need to find additional variables that can account for this spatial structure. 

Moreover, even if the causes of spatial structure are not fully explained, one can use this 

spatial information for poverty mapping and associated planning purposes, which is 

gaining increasing importance in policy circles that attempt to focus the allocation of 

public resources to the most deprived sections of the population. 
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4 CONCLUSIONS 
 
In this paper we pooled the 1992 Demographic and Health surveys of Malawi, Tanzania, 

and Zambia to model the socioeconomic and spatial determinants of undernutrition. We 

find strong support for our approach of flexibly modelling some covariates that clearly 

have non-linear influences and for including a spatial analysis. The spatial analysis shows 

distinct patterns that point to the influence of omitted variables with strong spatial 

structure or possibly epidemiological processes that account for this spatial structure. 

The maps generated could be used for targeting development efforts or for 

exploring relationships between welfare indicators and others variables. For example, a 

mortality or undernutrition map could be overlaid with maps of other types of data, say 

on poverty, agro-climatic or other environmental characteristics. The visual nature of the 

maps may highlight unexpected relationships that would be overlooked in a standard 

regression analysis. These maps are novel tools to help policy-makers achieve 

Millennium Development Goals (MDGs) for child health in these countries.  
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