
PROGRAM ANALYSIS TO SUPPORT QUALITY
ASSURANCE TECHNIQUES FOR WEB APPLICATIONS

A Thesis
Presented to

The Academic Faculty

by

William G.J. Halfond

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Computer Science

Georgia Institute of Technology
May 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarly Materials And Research @ Georgia Tech

https://core.ac.uk/display/4739402?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

PROGRAM ANALYSIS TO SUPPORT QUALITY
ASSURANCE TECHNIQUES FOR WEB APPLICATIONS

Approved by:

Professor Alessandro Orso, Advisor
School of Computer Science
Georgia Institute of Technology

Professor Spencer Rugaber
School of Computer Science
Georgia Institute of Technology

Professor Jonathon Giffin
School of Computer Science
Georgia Institute of Technology

Dr. Frank Tip
IBM Research

Professor Mary Jean Harrold
School of Computer Science
Georgia Institute of Technology

Date Approved: 8 January 2010

To my parents,

Ivan and Sandra,

for their continuous love,

support, and encouragement.

iii

ACKNOWLEDGEMENTS

I would like to thank the many people whose help, support, and feedback helped

to improve this dissertation. First and foremost, I would like to thank my advi-

sor, Dr. Alessandro Orso, for his five-and-a-half years of guidance, patience, and

encouragement. My indelible memories of graduate school will always include count-

less all-nighters in the lab, shuffling back and forth to his office as I learned that I

could always write more clearly and explain my ideas more thoroughly. I would also

like to thank my committee members, Drs. Jon Giffin, Mary Jean Harrold, Spencer

Rugaber, and Frank Tip, for all of their assistance and support. Many times they

worked under short deadlines to give me feedback and suggestions, which helped to

significantly improve this dissertation.

I want to thank my friend and labmate, Jim Clause. My countless interactions

with him helped me immensely as I developed my research and wrote my dissertation.

After four years of sitting together in the lab, I will miss the humorous and helpful

feedback he always provided.

I would also like to thank my co-authors who have contributed to the work in this

dissertation. These include Saswat Anand, Pete Manolios, Shauvik Roy Choudhary,

and Jeremy Viegas. It has been a pleasure and privilege to work with all of them.

Lastly, I would like to thank Mike McCracken for encouraging me to enter the

Ph.D. program at Georgia Tech and for providing me with excellent guidance and

advice as I began my graduate studies.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . viii

LIST OF FIGURES . ix

LIST OF ALGORITHMS . x

GLOSSARY . xi

SUMMARY . xv

I INTRODUCTION . 1

II BACKGROUND AND EXAMPLE . 8

2.1 Definitions and Terminology . 8

2.2 Example Web Application . 13

III SUBJECT WEB APPLICATIONS . 24

IV COMPONENT IDENTIFICATION ANALYSIS 27

4.1 Algorithm . 28

4.2 Implementation . 31

V INTERFACE ANALYSIS . 33

5.1 Iterative Data-flow Based Analysis 35

5.1.1 Algorithm . 35

5.1.2 Implementation . 56

5.2 Symbolic Execution Based Interface Analysis 56

5.2.1 Approach . 57

5.2.2 Implementation . 65

5.3 Comparison of Interface Analysis Approaches 68

VI COMPONENT OUTPUT ANALYSIS 75

6.1 Component Output Analysis Algorithms 77

6.1.1 Main Algorithm . 79

v

6.1.2 HTML Fragment Resolution 83

6.1.3 Fragment Filtering . 85

6.1.4 Illustration with Example 86

6.2 Identifying Links and Web Forms 90

6.2.1 Fragment Filtering for Links and Web Forms 91

6.2.2 Analyzing API Based Links 95

6.3 Implementation . 95

6.4 Discussion of Analysis Limitation 96

VII TEST-INPUT GENERATION . 97

7.1 Approach . 98

7.2 Evaluation . 101

7.2.1 RQ1: Criteria coverage . 101

7.2.2 RQ2: Number of test inputs 105

7.3 Conclusions . 106

VIII INVOCATION VERIFICATION . 107

8.1 Technique to Identify Parameter Mismatches 108

8.1.1 Step 1: Identify Interfaces 108

8.1.2 Step 2: Determine Invocations 109

8.1.3 Step 3: Verify Invocations 110

8.2 Implementation . 112

8.3 Evaluation . 113

8.3.1 RQ1: Efficiency . 113

8.3.2 RQ2: Precision . 114

8.4 Conclusions . 120

IX PENETRATION TESTING . 121

9.1 Approach . 125

9.1.1 Information Gathering . 125

9.1.2 Attack Generation . 127

vi

9.1.3 Response Analysis . 128

9.2 Implementation . 130

9.3 Evaluation . 132

9.3.1 RQ1: Practicality . 133

9.3.2 RQ2: Information Gathering Effectiveness 135

9.4 Conclusions . 136

X RELATED WORK . 137

10.1 Analysis and Modeling . 137

10.1.1 Manual Specification . 138

10.1.2 Web Crawling . 138

10.1.3 Static Analysis . 141

10.1.4 Type Inference . 142

10.1.5 Other Analysis Techniques 143

10.2 Web Application Testing . 144

10.3 Vulnerability Detection . 146

10.4 Web Application Verification . 147

XI CONCLUSION . 149

11.1 Future Work . 150

REFERENCES . 153

VITA . 161

vii

LIST OF TABLES

1 Subject programs for the empirical studies. 26

2 Data-flow based interface information for QuoteController. 55

3 Path condition and symbolic state before/after execution of symbolic
operations. 61

4 Comparison of interface analysis statistics. 71

5 Gen and Out sets for the nodes of servlet GetQuoteDetails. 88

6 Invocations generated by GetQuoteDetails. 94

7 Block and branch coverage achieved on subject web applications. . . . 103

8 Command-forms covered in subject web applications. 103

9 Size of test suites for test-input generation. 105

10 Data-flow based interface information for QuoteController. 109

11 Invocations generated by GetQuoteDetails. 110

12 Verification timing results (s). 114

13 Summary of invocation verification. 115

14 Classification of confirmed parameter mismatches. 116

15 Classification of false positive parameter mismatches. 118

16 Interface information for DisplayQuote. 126

17 Number of test cases for penetration testing. 134

18 Number of vulnerabilities discovered. 135

viii

LIST OF FIGURES

1 Deployment context of the example web application. 9

2 Architecture diagram of the example web application. 9

3 Example URL. 10

4 JSP-based implementation of component ErrorMessage. 13

5 Java servlet code of transformed component ErrorMessage. 14

6 Work-flow of the example web application. 15

7 Output of CheckEligibility shown in a web browser. 16

8 Implementation of servlet CheckEligibility. 17

9 Implementation of servlet QuoteController. 19

10 Implementation of servlet GetQuoteDetails. 20

11 Implementation of servlet DisplayQuote. 22

12 Implementation of servlet QuoteController. 41

13 ICFG of QuoteController. 42

14 Annotated ICFG of QuoteController. 45

15 Symbolic state for paths that take branch 5T of QuoteController. . . 64

16 Path conditions for paths that take branch 5T of QuoteController. . . 64

17 IDCs for the paths that take branch 5T of QuoteController. 65

18 Implementation of servlet GetQuoteDetails. 87

19 Link and web form content identified in GetQuoteDetails. 94

20 Architecture of the waive tool. 112

21 The penetration testing process. 122

22 High-level architecture of the sdapt tool. 132

ix

LIST OF ALGORITHMS

1 Identify Components . 29

2 GetDomainInfo . 38

3 GDI . 39

4 ExtractInterfaces . 47

5 SummarizeMethod . 48

6 Web Application Symbolic Execution 58

7 ExtractPages . 79

8 SummarizeMethod . 80

9 VerifyInvocations . 111

x

GLOSSARY

accepted interface Set of name-value pairs that can be accessed by a component
at runtime, page 12.

call graph (CG) A directed graph that represents the calling relationships between
a program’s methods [72]. The graph is of the form 〈E, V 〉 where each
vertex v in V represents a method in the program and each edge in E of
the form 〈v1, v2〉 represents the relationship that method v1 calls method
v2. Page 47.

components The basic implementation units of a web application that can be ac-
cessed by end users and that accept HTTP messages. Examples of com-
ponents are HTML pages, Java Server Pages (JSP), and servlets, page 10.

control-flow graph (CFG) A directed graph that represents the possible intra-procedural
paths of execution in a program method. The graph is of the form 〈E, V 〉
where each vertex v in V represents a basic block (or statement) in the
program and each edge in E of the form 〈v1, v2〉 signifies that execution
can continue from v1 to v2. Page 49.

domain-constraining operation An operation whose execution on the value implies
certain properties about the expected domain of that value. Page 12.

file path Portion of a URL that specifies the location of the resource identified by
the URL on the web server. Despite its name, the file path may or may
not correspond to the actual file layout on the web server. The file path is
interpreted by the server to identify the web application component that
provides the resource identified by the URL. Page 11.

General-Purpose Programming Language (GPL) The base language used to write
a web application and generate object programs written in HTML, HTTP,
and JavaScript. For example, for Java Enterprise Edition based web ap-
plications, the GPL is Java. Page 2.

host name Portion of a URL that specifies the domain name or Internet Protocol
(IP) address of the web server that hosts the resource identified by the
URL, page 11.

Hyper-Text Markup Language (HTML) Structured XML-like language for spec-
ifying the structure and content of a web page. An HTML document is
transmitted over HTTP and then interpreted and displayed in an end-
user’s browser. HTML is the most common markup language used on the
web. Page 8.

Hyper Text Transfer Protocol (HTTP) An application-layer network protocol that
defines a message format for communication between servers and client.

xi

The basic message format contains headers and a data portion. The pro-
tocol also defines parameter naming, character encoding schemes, and the
semantics of specific message headers. Page 8.

input fields HTML elements that allow data to be passed to a web component via
a web form. Input fields can correspond to graphical form elements, such
as text input boxes, or hidden fields that do not display but instead store
values. An input field’s name and value are submitted as a name-value
pair when the containing web form is submitted to its target component.
Page 17.

input vectors (IVs) Points in a web application where an input-based attack may
be introduced, such as user-input fields and cookie fields, page 122.

inter-procedural control-flow graph (ICFG) A directed graph that represents the
possible inter-procedural paths of execution in a program. The graph is
of the form 〈E, V 〉 where each vertex v in V represents a basic block (or
statement) in the program and each edge in E of the form 〈v1, v2〉 signifies
that execution can continue from v1 to v2. Page 36.

interface domain constraint (IDC) A collection of domain-constraining operations
along a path that defines the types and domains of the parameters in an
accepted interface, page 12.

invocation An HTTP request message, URL, or web form that contains one or more
name-value pairs, page 12.

Java Platform Enterprise Edition (JEE) Framework for developing and deploying
Java-based web applications. The JEE framework provides specialized
application libraries that define parameter functions and can interpret
HTTP messages. Until recently, this framework was known as the J2EE
platform. Sun changed the platform name in 2006 to promote branding
of the Java name. Page 13.

name-value pairs Arguments supplied to a component. Name-value pairs are de-
fined either in the query string of a URL or in the data portion of an
HTTP message. Represented using the form name=value, page 11.

non-contributing node A node in the parse tree of an HTML whose corresponding
text value does not contain a placeholder, is syntactically well-formed,
and is not one of the set of HTML tags associated with defining an HTML
element of interest, page 91.

parameter function (PF) A function provided by a web application framework that
is used to access the name-value pairs contained in an HTTP request
message. The PF takes the name of the name-value pair as an argument
and returns its corresponding value. Page 12.

xii

path conditions (PCs) A set of constraints on symbolic inputs that must be satis-
fied in order for execution to reach a specific point in the program, page 57.

placeholder A marker in a computed string value of a variable that denotes a portion
of the string that is defined external to the scope of the variable’s enclosing
method. A placeholder can be used to denote a value that corresponds
to the enclosing method’s formal parameter or that is defined external to
the root method of the analyzed web application. A placeholder may
be resolvable when the string is evaluated in another method’s scope.
Page 83.

query string Optional portion of a URL that contains the set of name-value pairs to
be passed as arguments to the component identified by the URL, page 11.

request method types HTTP message attribute that specifies the location in the
HTTP message where the parameters will be located. The most common
types are GET and POST. Page 12.

resource type Portion of a URL that identifies the underlying transport protocol
to be used to access the resource identified by the URL. Typical transport
protocols include HTTP and FTP. Page 11.

root methods The methods that a web server can call when it accesses an ex-
ecutable component. The web server chooses the correct root method
based on the HTTP request method type. Page 11.

symbolic execution A type of execution of a program in which the program oper-
ates on symbolic inputs, instead of concrete values, which can represent
arbitrary values [49], page 56.

symbolic state (SS) Mapping of variables in a program to their symbolic values,
page 57.

Uniform Resource Locator (URL) Text string that specifies the location and mech-
anism for accessing an Internet-based resource. A URL must be compliant
with Internet Standard 66. Page 10.

URL encoding An encoding scheme for text characters in a URL. The encoding
translates certain non-alphanumeric characters into the hexadecimal rep-
resentation of their ASCII code and uses “%” to denote the special encod-
ing. Page 11.

web address Commonly used term that refers to the URL of a web component,
page 10.

web application A software system available for use over a TCP/IP based network,
page 8.

xiii

web form An HTML-based page that enables the user to enter and submit data
to a web application. A web form is an HTML element delimited by
<form> tags. A web form can contain input fields, such as text input
boxes, radio buttons, and drop-down menu boxes, which allow users to
enter data directly into the web form via a web browser. Page 17.

web links Commonly used term for a URL that is embedded in an HTML page
as a clickable hyper-reference. Typically done using the <a> HTML tag,
page 11.

xiv

SUMMARY

As web applications occupy an increasingly important role in our day-to-day lives,

testing and analysis techniques that ensure that these applications function with a

high level of quality are becoming even more essential. However, many software

quality assurance techniques are not directly applicable to modern web applications.

Certain characteristics, such as the use of HTTP and generated object programs, can

make it difficult to identify software abstractions used by traditional quality assurance

techniques. More generally, many of these abstractions are implemented differently

in web applications, and the lack of techniques to identify them complicates the

application of existing quality assurance techniques to web applications.

For my dissertation, I developed program analysis techniques for modern web ap-

plications and showed that these techniques can be used to improve quality assurance.

The first part of my research focused on the development of a suite of program analysis

techniques that identifies useful abstractions in web applications. The second part of

my research evaluated whether these program analysis techniques can be used to suc-

cessfully adapt traditional quality assurance techniques to web applications, improve

existing web application quality assurance techniques, and develop new techniques

focused on web application-specific issues. My work in quality assurance techniques

focused on improving three different areas: generating test inputs, verifying interface

invocations, and detecting vulnerabilities. My evaluations of the resulting techniques

showed that the use of my program analyses resulted in significant improvements in

existing quality assurance techniques and facilitated the development of new useful

techniques.

xv

CHAPTER I

INTRODUCTION

Web applications play an increasingly important role in the day-to-day lives of millions

of people. In fact, over 70% of Americans use web applications on a daily basis [63].

The growing popularity of web applications has been driven by companies offering

a diverse range of online services that provide users with dynamic and feature-rich

environments. Companies in the United States generate more than three trillion

dollars in revenue from online e-commerce; of that amount, 124 billion dollars is in

direct online retail sales to end users via web applications [89]. This amount continues

to increase at a high rate; since 2000, the dollar amount of e-commerce has grown

each year by an average of 22% [90]. Although this growth rate is impressive, in 2008

this number represented less than 4% of all retail sales. This suggests that the use

and importance of web applications will continue to increase significantly in the years

to come [90].

Software reliability and quality are important for the success of companies that

use web applications. The cost of failure is high, become some companies, such as

Amazon, rely exclusively on their web applications to conduct transactions with their

customers. When Amazon’s web servers went down for two hours in 2008, analysts

estimated that the downtime cost Amazon almost 3.6 million dollars in sales [40];

this translated to more than thirty-one thousand dollars per minute of downtime.

Similarly, an error in the design of part of the Royal Bank of Scotland’s website

allowed hackers to steal personal payment information from 1.5 million users [3, 71].

These types of data breaches are estimated to cost companies almost 4.8 million

dollars per incident [64]. To further compound the problem, reported vulnerabilities

1

in web applications have increased at an average yearly rate of more than 150% since

2001 [60]. This increase has led to web applications overtaking traditional desktop

software in terms of the number of reported vulnerabilities [60]. This combination of

high cost and prevalence of failures in web applications motivates the development of

quality assurance techniques that can detect web application errors.

Although there has been an extensive amount of research in software quality as-

surance techniques, many of the techniques developed as a result are not directly

applicable to modern web applications. The reason is that, even though web appli-

cations are a sub-type of software, many software abstractions, which are used by

quality assurance techniques, are defined very differently in web applications. The

identification of a web application’s interfaces is a good example of this difference.

In traditional software, these interfaces normally are explicitly defined; for example,

with an application programming interface (API). For web applications, this is not

the case; a web application’s interfaces are implicitly defined by the set of param-

eters accessed along different control-flow paths. Quality assurance techniques that

need explicit interface definitions, such as test-input generation, require an additional

intermediate step that can identify the interfaces for which test inputs will be gener-

ated.

More generally, in traditional software, many abstractions are defined by the syn-

tax and semantics of the software’s General-Purpose Programming Language (GPL)

and can be identified using well-known analysis techniques. In contrast, web applica-

tions use Hyper-Text Transport Protocol (HTTP), generated object programs written

in JavaScript and HTML, and coding conventions to partially define many software

abstractions. Many quality assurance techniques do not account for these additional

ways of defining software abstractions and only take into consideration the semantics

of the GPL.

2

In the domain of web application software, there are many such abstractions that

are defined differently than in traditional software: (1) Interfaces, as explained above,

are defined by the set of parameters accessed along control-flow paths. However, the

difference also extends to the names of parameters, which can be defined dynamically

by string expressions, and the domain of the parameters. For parameters defined in

traditional software that uses a statically typed language, the domain is defined by

the type signature of the parameter. In web applications, everything is passed as

character data, and the type of the parameter is implied by the operations performed

on the parameters’ values; (2) The control-flow of web applications includes not only

standard control-flow defined by the GPL of the web application, but control-flow

defined by HTTP-based redirect commands, links in HTML documents, web forms,

and JavaScript commands. Moreover, since users can access components directly via

a typed-in URL or the browser’s back-button, control-flow can also depend on ex-

ternal user behaviors; (3) Similarly, data-flow of a web application includes standard

data-flow defined by the semantics of the GPL and data-flow that occurs in gener-

ated object programs written in HTTP, HTML, and JavaScript; (4) Invocations of

components of a web application can be done in multiple ways, including via uniform

resource locators (URLs), web forms, and specific API calls in the GPL; (5) Appli-

cation state in a web application is maintained differently as well. The underlying

communication mechanism for web applications, HTTP, is stateless, so developers

typically use elaborate mechanisms based on user session IDs passed in cookies and

hidden input fields of HTML pages to maintain state in a web application. In contrast,

conventional applications can use separate processes, threads, or internal memory to

maintain user state. Since many quality assurance techniques assume the identifica-

tion of these abstractions, the additional difficulties of identifying them complicates

the use of these quality assurance techniques on web applications.

Researchers have recognized the need for quality assurance techniques that can

3

work with web applications and have proposed several approaches. Broadly gener-

alizing, these techniques are based on web crawling and modeling languages. The

web crawling approaches use a program to visit the pages of a web application and

check each one using HTML validators or customized heuristics [12, 38]. Modeling

languages provide developers with a way to specify and then check the properties

of a web application [8, 13, 17, 41, 67]. Both of these approaches were very effec-

tive for early web applications. However, their usefulness is limited with respect to

modern web applications, which have new features and capabilities that significantly

increase their complexity. These features and capabilities include dynamically gen-

erated HTML content, interaction with external systems, and data from multiple

sources. In contrast, early web applications were typically composed of static HTML

pages and interacted with users through simple web forms. For this type of web appli-

cation, it was sufficient to focus on the web pages themselves: for example, by using

web crawlers to visit the web pages of an application and validate the HTML. The

dynamic nature of modern web applications limits the use of such techniques. Since

the set of generated web pages can vary at runtime, a web crawler might be unable

to interact with the web application sufficiently to cause it to generate all possible

pages. The increased complexity also causes problems for modeling languages. In

many cases, it is possible for a difference to exist between the intended behavior spec-

ified by the developer-provided model and the actual behavior of the implementation.

These differences can contain errors that would be missed by this approach.

The overall goal of my research is to improve quality assurance for web applica-

tions. My dissertation research focused on two key parts of this task – the development

of program analysis techniques that can identify useful software abstractions in web

applications, and the application of these analyses in several quality assurance areas.

The thesis statement for my dissertation is as follows:

4

Program analysis techniques to identify interfaces and component output of web

applications can be used to improve quality assurance for web applications.

To evaluate my thesis statement, I developed program analysis techniques to iden-

tify abstractions in web applications that are necessary for several quality assurance

techniques. I then showed that the use of these analyses improved the performance

of the quality assurance techniques for web applications. The first part of my disser-

tation research focused on the development of a suite of program analysis techniques

that identify interface information and web application output. The goal of the second

part of the dissertation research is to show that these program analysis techniques can

be used to successfully adapt traditional quality assurance techniques to web appli-

cations, improve existing web application quality assurance techniques, and develop

new techniques focused on web application-specific issues. My research in quality as-

surance techniques focused on three different areas: generating test inputs, verifying

interface invocations, and detecting vulnerabilities. For each of these areas, I used my

program analyses to adapt, improve, or create quality assurance techniques. I evalu-

ated each of the resulting techniques to determine if the use of my program analyses

improved quality assurance in that area. Improvements in the quality assurance areas

showed that my program analysis techniques were useful for quality assurance and

confirmed my thesis statement.

The contributions of the dissertation include several different program analysis

techniques, research in three different quality assurance areas, and extensive empirical

evaluations of the impact of the use of the program analysis techniques.

1. Program analysis techniques:

(a) Components: Identify the components that make up a web application and

additional information regarding calling conventions for the components.

5

(b) Interfaces: Identify interface-related information in a web application, in-

cluding names of the parameters in each interface and domain information

about each of the parameters.

(c) Links: Identify the web links generated by a web application in its HTML

output and through its API calls.

(d) Web forms: Identify the web forms generated by a web application in its

HTML output.

2. Quality assurance areas:

(a) Test-input generation: The goal of this technique is to create test inputs

that can thoroughly exercise the functionality of a web application. My

adaptation of test-input generation incorporates information derived from

my interface identification analyses. I evaluate whether these test suites

achieve better structural coverage of web applications than test suites gen-

erated using information derived from traditional interface identification

techniques.

(b) Penetration testing: In penetration testing, testers attempt to discover

vulnerabilities in a web application to attacks, such as SQL Injection and

Cross Site Scripting, by simulating attacks from a malicious user. My

technique attempts to improve penetration testing by leveraging the infor-

mation derived from my interface analyses. I evaluate whether this leads

to the discovery of more vulnerabilities than penetration testing based on

traditional information-gathering techniques.

(c) Invocation verification: The goal of invocation verification is to identify

incorrect invocations generated by a web application. This is analogous to

a compiler checking to make sure that call sites in an application match

6

the signature of the target method. Prior to the development of the anal-

yses in this dissertation, it was not possible to automatically verify the

invocations of a web application. This technique makes use of the analyses

to identify invocations in links and web forms, and compares these against

the identified interfaces. I evaluate the time to perform this verification

and its accuracy.

The rest of the dissertation is organized as follows: In Chapter 2, I present back-

ground information on web application terminology and introduce a small example

web application that I use for illustrative purposes throughout the rest of the disser-

tation. I introduce a set of subject web applications in Chapter 3, which are used

in the empirical evaluations of the quality assurance techniques. Chapter 4 defines

and illustrates my component analysis (Item 1a). Chapter 5 presents and contrasts

two types of interface analysis (Item 1b). I describe my analysis techniques to iden-

tify links and web forms (Items 1c and 1d) in Chapter 6. The quality assurance

techniques and corresponding evaluation begin with Chapter 7, which contains my

test-input generation technique (Item 2a). Chapter 8 presents my invocation veri-

fication technique (Item 2c). I cover my penetration testing approach (Item 2b) in

Chapter 9. Lastly, I discuss related work in Chapter 10, and the conclusions of my

dissertation, along with future work, in Chapter 11.

7

CHAPTER II

BACKGROUND AND EXAMPLE

This chapter provides background information that is used throughout the rest of

the dissertation. Section 2.1 defines terminology related to web applications. In

Section 2.2, I introduce an example web application that illustrates the definitions

and serves as a running example for the analysis techniques presented in subsequent

chapters.

2.1 Definitions and Terminology

A web application is a software system available for use over a TCP/IP based network.

Figure 1 shows the typical deployment context of a web application. To access a web

application, client systems (e.g., mobile devices and laptops) send a request over the

network to a web server that hosts the web application. The web server receives the

request and, via a process described in more detail below, passes it to the target web

application. The web application processes the request and generates a response,

which is sent back to the client via the web server. The response typically contains

a web page written in Hyper-Text Markup Language (HTML) and JavaScript. In

generating the response, the web application may also access external systems, such

as databases and other web applications. Although it is possible for web applications

and servers to use a wide variety of protocols to encode their requests and responses,

the Hyper Text Transfer Protocol (HTTP) is used by almost all applications intended

for general use on the Internet. HTTP defines a message format that includes a set of

headers and a data portion. The protocol also defines parameter naming, character

encoding schemes, and semantics of specific message headers.

Figure 2 shows the software stack that runs on a web server and supports the

8

Internet

Web Server Databases

Client
Systems

010101010
110100001
000011110011
111010110001
101010110001
000001111010
000110001111

Web
Application}

Figure 1: Deployment context of the example web application.

Web Server

H
a
rd

w
a
re

Operating SystemO
S

HTTP Server

S
e
rv

e
r

Servlet Container

A
p

p Application CodeLibraries

Figure 2: Architecture diagram of the example web application.

9

http://www.host.com/path/to/resource?param1=value¶m2=value

Resource Type Host Name File path

Query string

Name-value pair

{ { {{{
Figure 3: Example URL.

execution of a web application. The bottom layer, the hardware layer, refers to

the actual physical server that is connected to the network. The next layer, the

operating system (OS) layer, provides an operating system (e.g., Linux, Windows

NT, or HP/UX). The server layer can provide several levels of abstraction. Typically,

the first server layer is an HTTP-based server that can translate responses to HTTP

and requests from the client into a standardized form that can be passed to other

layers. The Apache HTTP Server and Microsoft’s Internet Information Server are

two of the most widely used HTTP-based servers. A second server layer, the servlet

container, can provide an environment for executing web application written in a

specific language or using a certain framework. There are many well-known servlet

containers, such as Ruby on Rails based web applications and Tomcat or JBoss for

Java-based web applications. This layer provides a translation from the standardized

HTTP messages to the specific syntax of the language used. Lastly, the application

layer contains the web application implementation and supporting libraries. It is

generally possible for code in the application layer to interact with external systems,

such as databases and other servers.

A web application contains a set of components, which are its basic implementa-

tion units that can be accessed by end users and accept HTTP messages. Examples

of components are HTML pages, Java Server Pages (JSP), and servlets. Each com-

ponent is uniquely identified by a Uniform Resource Locator (URL), which is a text

string compliant with Internet Standard 66.1 A URL is also commonly referred to

as a web address. The general form of a URL for HTTP based web applications is

1http://labs.apache.org/webarch/uri/rfc/rfc3986.html

10

shown in Figure 3. Each URL is comprised of several fields, each of which represents

a certain type of information. The URL’s resource type identifies the underlying

transport protocol to be used, which in this case is HTTP. The host name speci-

fies the address of the web server that hosts the web application. In the example

URL, it is “www.host.com.” The domain name may also be specified as a numeric

IP address (e.g., 192.168.1.1). The file path specifies the location of the resource on

the web server. Despite its name, the file path may or may not correspond to the

actual file layout on the web server. The file path is interpreted by the server to

identify the web application component that is the target of the client’s request. The

query string portion of the URL is optional and is separated from the file path by

the “?” character. When present, it contains name-value pairs to be passed to the

web application. Name-value pairs in the query string are separated from each other

with a “&” character. The names and values of each pair in the query string are

encoded using a well-defined URL encoding scheme. This encoding translates certain

non-alphanumeric characters into the hexadecimal representation of their ASCII code

and uses “%” to denote the special encoding. When a URL is embedded in an HTML

page as a hyper-reference, it is often referred to as a web links.

The process of passing a client request to the web application uses the information

contained in the HTTP message. One of the HTTP message headers contains the

URL of the target component for which the request is intended. The web server

examines the file path of the URL in order to determine which component is the

intended recipient. For component types that are non-executable, the web server

simply outputs the content of the component. Each executable component provides

one or more root methods, which are entry methods that the web server can call when

it executes a component. The web server chooses the correct root method based on

the HTTP request method type, which is explained below. As input, the web server

passes to the component an object that encapsulates the HTTP request received

11

from the client. The HTTP request also contains parameters that can be used by the

component. In this case, it is referred to as an invocation of the target component.

HTTP defines two request method types that can be used to pass parameters to a

component. Each request method type specifies the location in the HTTP message

where the parameters will be located. The first of these is the GET method. This

method, which is shown in Figure 3, passes parameters via the query string portion

of the URL. Since there are size limitations on URLs, HTTP provides a second

mechanism called the POST method. In this method, the query string is placed into

the body portion of the HTTP message. To access the name-value pairs defined in the

query string, a component calls a special API function, called a parameter function

(PF), that takes the name of the name-value pair, and returns the value part.

It is important to note that there is no explicit definition of the set of name-

value pairs that are part of a component’s interfaces. Unlike traditional code, where

the signature of a method’s interface defines the type, ordering, and names of the

parameters, the definition of an interface is implicitly defined by the set of parameters

accessed at runtime. Each set of name-value pairs that can be accessed at runtime

is called an accepted interface. Since all of the name-value pairs are passed as strings

in HTTP, there is also no explicit type information for the pairs. However, there is

implicit domain information. The value of a parameter can be used as an argument in

a domain-constraining operation, which is an operation whose execution on the value

implies certain properties about the expected domain of that value. For example, if

a value is passed to the Java call Integer.parse(string value), it can be inferred

that the expected type of the value is an integer. Similarly, if a value is compared

against several hard-coded strings, it is possible to infer that these strings represent

special relevant values in the value’s domain. A collection of domain constraining

operations along a path can define the types and domains of the parameters in an

interface. Each such unique set is called an interface domain constraint (IDC).

12

1 <html>
2 <body>
3 <h1>An Error Has Occurred</h1>
4

5 <p>An e r r o r was returned by the a p p l i c a t i o n .<p>
6 <p>Error Message :
7 <%
8 r eque s t . getParameter (”msg”) ;
9 %>

10 </p>
11

12 Star t Again
13

14 </body>
15 </html>

Figure 4: JSP-based implementation of component ErrorMessage.

2.2 Example Web Application

The example web application introduced in this section allows web users to obtain a

quote for an auto insurance policy. The web application is comprised of five compo-

nents, which I list here using the file path portion of their URLs: CheckEligibility,

QuoteController, GetQuoteDetails, DisplayQuote, and ErrorMessage. These compo-

nents are implemented using the Java Platform Enterprise Edition (JEE) framework

for developing web applications in the Java language. Although the example is im-

plemented in Java, the general concepts are similar across language frameworks and

would be found in most HTTP-based web applications.

One of the components of the example web application, ErrorMessage, is shown

in Figure 4. This component displays error messages passed to it by the other com-

ponents. ErrorMessage is implemented as a JSP file, which is a format that allows

developers to embed Java code in HTML. The Java code is embedded using the spe-

cial characters “<%” and “%>,” which are shown at lines 7 and 9. At runtime, the

servlet container executes a JSP file by first transforming it into Java code that im-

plements a servlet interface, compiling it, and then executing the resulting bytecode

in a customized Java Virtual Machine (JVM).

Figure 5 shows the code that is generated after the JSP version of ErrorMessage

13

1 public f ina l class ErrorMessage j sp extends HttpJspPage {
2

3 public void j s p S e r v i c e (HttpServ letRequest request , HttpServletResponse re sponse)
{

4 try {
5 JspFactory j spxFactory = JspFactory . getDefau l tFactory () ;
6 re sponse . setContentType (” text /html”) ;
7 PageContext pageContext = jspxFactory . getPageContext (this , r equest ,

response , null , true , 8192 , true) ;
8 PageContext j s p x p a g e c o n t e x t = pageContext ;
9 Serv le tContext a p p l i c a t i o n = pageContext . ge tServ l e tContext () ;

10 Se rv l e tCon f i g c o n f i g = pageContext . g e t S e r v l e t C o n f i g () ;
11 HttpSess ion s e s s i o n = pageContext . g e t S e s s i o n () ;
12 JspWriter out = pageContext . getOut () ;
13 JspWriter j s p x o u t = out ;
14

15 out . wr i t e (”<html>\n<body>\n”)
16 out . wr i t e (”<h1>An Error Has Occurred</h1>\n\n”) ;
17 out . wr i t e (”<p>An e r r o r was returned by the a p p l i c a t i o n .<p>\n”)
18 out . wr i t e (”<p>Error Message : \n”) ;
19 out . wr i t e (r eque s t . getParameter (”msg”)) ;
20 out . wr i t e (”\n</p>\n\n”) ;
21 out . wr i t e (”<a h r e f =\”http :// host . com/ C h e c k E l i g i b i l i t y . j sp\”>Star t Again\

n\n”) ;
22 out . wr i t e (”</body>\n</html>\n”) ;
23

24 } catch (Throwable t) {
25 i f (! (t instanceof SkipPageException)) {
26 out = j s p x o u t ;
27 i f (out != null && out . g e t B u f f e r S i z e () != 0)
28 out . c l e a r B u f f e r () ;
29 i f (j s p x p a g e c o n t e x t != null) j s p x p a g e c o n t e x t . handlePageException (t)

;
30 }
31 } f ina l ly {
32 i f (j spxFactory != null) j spxFactory . re l easePageContext (j s p x p a g e c o n t e x t

) ;
33 }
34 }
35 }

Figure 5: Java servlet code of transformed component ErrorMessage.

14

DisplayQuote.jsp

Check Eligibility.jsp

GetUserInformation.jsp

QuoteController.java
1 2

3

4

5 6

ErrorMessage.jsp

Figure 6: Work-flow of the example web application.

is transformed into an equivalent Java servlet. The transformation translates implicit

actions in the JSP into explicit actions implemented by JEE API calls. For example,

an HTML tag in a JSP is transformed into a JEE API call that prints the HTML tag

to a Response object. Line 3 starts the definition of the root method of the servlet.

Lines 5–13 represent auto-generated code that is included as part of the transfor-

mation from a JSP to Java servlet. These objects provide environment information

and configuration options that can be used by servlets implementing more advanced

functionality. Lines 15–18 write strings to the output stream of the servlet. These

strings represent the HTML tags generated by lines 1–6 of Figure 4. At line 19, the

servlet uses a PF to access and then output one of the name-value pairs passed in as

part of an invocation. Line 20–22 output the remaining HTML tags on lines 10–15 of

Figure 4. Finally, lines 24–33 represent auto-generated error handling code ensuring

framework consistent error processing.

Figure 6 shows the intended workflow of the example web application. The num-

bered arrows indicate the relative ordering of a user’s interactions with each of the

components. In the first step, the user visits CheckEligibility, which requests entry

of basic information to determine if the user is eligible for auto insurance. In the

second step, this information is passed to QuoteController, which checks it against

business rules. If the user is eligible for a policy, then the third step requests entry of

more detailed information in a form that is displayed by GetQuoteDetails. After the

15

Figure 7: Output of CheckEligibility shown in a web browser.

user has entered this information, the fourth step returns to QuoteController, which

analyzes the information and prepares the quote. In the fifth step, the user is directed

to DisplayQuote, which outputs the final quote and provides the option of purchasing

the policy. In the sixth and final step, the user is directed to the components that

implement the purchasing functionality. If an error occurs at any time in this process,

a component redirects the user to ErrorMessage, which displays the error message as

explained above.

The rest of this section explains each of these steps in more detail and also presents

the implementation of the CheckEligibility, QuoteController, GetQuoteDetails, and

DisplayQuote components. Although these components are defined as JSP files, I

show only the transformed Java versions. This is done to simplify the presentation

and provide a standardized representation of the web application code, which shortens

the explanations of the analysis techniques in subsequent chapters.

16

1 public f ina l class C h e c k E l i g i b i l i t y j s p extends HttpJspPage {
2 public void j s p S e r v i c e (HttpServ letRequest request , HttpServletResponse re sponse)

{
3 re sponse . out . wr i t e (”<html><body><h1>Check E l i g i b i l i t y </h1>”) ;
4 re sponse . out . wr i t e (”<form ac t i on =\”QuoteContro l l e r \” method=\”Get\”>”) ;
5 re sponse . out . wr i t e (”<input type=text name=age>”) ;
6 re sponse . out . wr i t e (”<input type=text name=c i ty >”) ;
7 re sponse . out . wr i t e (”<s e l e c t name=sta t e s >”) ;
8 for (S t r ing s t a t e :ARRAY OF STATES) {
9 re sponse . out . wr i t e (”<opt ion value=” + s t a t e + ”>”) ;

10 }
11 re sponse . out . wr i t e (”</s e l e c t >”) ;
12 re sponse . out . wr i t e (”<input type=hidden name=act i on value=\” C h e c k E l i g i b i l i t y \”>”

) ;
13 re sponse . out . wr i t e (”<input type=submit>”) ;
14 re sponse . out . wr i t e (”</form>”) ;
15 re sponse . out . wr i t e (”</body></html>”) ;
16 }
17 }

Figure 8: Implementation of servlet CheckEligibility.

Step 1

In the first step, the user visits the CheckEligibility component. This component

requests entry of the user’s age, city, and state of residence. CheckEligibility does

this by printing a set of HTML tags that direct the user’s web browser to display a

web form, which is an HTML based page that enables the user to enter and submit

data to a web application. More formally, a web form is defined as an HTML element

delimited by <form> tags. A web form can contain input fields, such as text input

boxes, radio buttons, and drop-down menu boxes, which allow users to enter data

directly into the web form via a web browser. The web form generated by CheckEl-

igibility is shown in Figure 7. It contains two input text boxes that request the end

user’s age and city of residence. It also contains a drop-down menu that allows the

user to select his state of residence. When the user clicks on the web form’s submit

button, the browser encodes the data in the web form’s input fields into name-value

pairs and invokes the target component specified by the web form’s HTML tag (this

is QuoteController, as explained below).

The Java code that implements CheckEligibility is shown in Figure 8. Only the

17

root method of CheckEligibility is shown. Line 3 outputs the opening HTML tags and

title of the HTML page. In the <form> tag, the target of the form-based invocation is

specified as QuoteController (via the action attribute), and the method request type

is specified as “GET” (via the method attribute). Lines 5 and 6 create <input> tags

that instruct the browser to display text boxes and allow the end-user to enter his age

and city of residence. The <select> tags generated at lines 7 and 11 together define

a combo drop-down box that allows the user the choose his state of residence. The

values in the combo box are generated in the loop at lines 8–10. A submit button is

created using the <input> tag at line 12. Finally, the closing HTML tags for <form>,

<body>, and <html> are generated at lines 13–14. All of the HTML generated by the

root method is sent to the end user and displayed to create the web form shown in

Figure 7.

Step 2

The second step is initiated by an invocation of QuoteController by CheckEligi-

bility. The invocation is as follows: http://www.host.com/QuoteController.jsp?

action=CheckEligibility&age=18&city=Atlanta&state=GA. This invocation de-

fines four parameters: action, age, city, and state. The component QuoteController

checks the values of these parameters and, if the checks pass, issues a command to

redirect the user to GetQuoteDetails.

The Java code that implements the second step is shown in lines 3–23 of Figure 9.

On receiving the invocation, QuoteController first calls a PF at line 4 to access the

value of “action.” (This name-value pair was set to “CheckEligibility” by CheckEli-

gibility at line 12 of Figure 8.) For this invocation, the condition at line 5 is true, so

QuoteController accesses the values of “age” and “state” at lines 6 and 7. If either of

these values fail the checks at lines 10 and 14, then at line 19 QuoteController redi-

rects the user to ErrorMessage with an invocation that contains the corresponding

18

1 public class QuoteContro l l e r extends HttpServ l e t {
2

3 public void s e r v i c e (HttpServ letRequest request , HttpServletResponse re sponse)
throws IOException {

4 St r ing act ionValue = reques t . getIP (” ac t i on ”) ;
5 i f (act ionValue . equa l s (” C h e c k E l i g i b i l i t y ”)) {
6 int ageValue = getNumIP(request , ”age ”) ;
7 St r ing stateValue = reques t . getIP (” s t a t e ”) ;
8 St r ing errorMessage = ”” ;
9 boolean e r r o r=fa l se ;

10 i f (! s tateValue . equa l s (”GA”)) {
11 e r r o r=true ;
12 errorMessage = ”Bad s t a t e ” ;
13 }
14 i f (ageValue < 16) {
15 e r r o r=true ;
16 errorMessage += ”Too young to dr i ve . ” ;
17 }
18 i f (e r r o r) {
19 re sponse . sendRedi rect (” http :// host . com/ ErrorMessage . j sp ?msg=”+

errorMessage) ;
20 } else {
21 re sponse . sendRedi rect (” http :// host . com/ GetQuoteDetai ls . j sp ? s t a t e=”+

stateValue+”&age=”+ageValue) ;
22 }
23 }
24 i f (act ionValue . equa l s (” QuoteInformation ”)) {
25 St r ing nameValue=reques t . getIP (”name”) ;
26 St r ing stateValue = reques t . getIP (” s t a t e ”) ;
27 int ageValue = getNumIP(request , ”age ”) ;
28 i f (! s tateValue . equa l s (””) && ageValue > 15) {
29 St r ing carTypeValue = reque s t . getIP (” type ”) ;
30 int carYearValue = getNumIP(request , ” year ”) ;
31 i f (carTypeValue . conta in s (” motorcyc le ”) && nameValue . equa l s (” Evel Knieve l

”)) {
32 re sponse . sendRedi rect (” http :// host . com/ ErrorMessage . j sp ?msg=No way . ”) ;
33 } else {
34 int quoteID = saveQuoteDeta i l s (nameValue , stateValue , carTypeValue ,

carYearValue) ;
35 re sponse . sendRedi rect (” http :// host . com/ DisplayQuote . j sp ? quoteID=”+

quoteID) ;
36 }
37 } else {
38 re sponse . sendRedi rect (” http :// host . com/ ErrorMessage . j sp ?msg=Time out . ”) ;
39 }
40 }
41 i f (! act ionValue . equa l s (” C h e c k E l i g i b i l i t y ”) && ! act ionValue . equa l s (”

QuoteInformation ”)) {
42 re sponse . sendRedi rect (” http :// host . com/ C h e c k E l i g i b i l i t y . j sp ”) ;
43 }
44 }
45

46 private int getNumIP(Serv l e tReques t request , S t r ing name) {
47 St r ing value = reques t . getIP (name) ;
48 int param = I n t e g e r . pa r s e In t (va lue) ;
49 return param ;
50 }
51

52 private int saveQuoteDeta i l s (S t r ing nameValue , S t r ing stateValue , S t r ing
carTypeValue , int carYearValue) {

53 // save quote and return quote re f e r ence number
54 }
55 }

Figure 9: Implementation of servlet QuoteController.

19

1 public f ina l class GetQuoteDeta i l s j sp extends HttpJspPage {
2 public void j s p S e r v i c e (HttpServ letRequest request , HttpServletResponse re sponse)

{
3 int ageValue = getNumIP(request , ”age ”) ;
4 St r ing stateValue = getIP (request , ” s t a t e ”) ;
5 re sponse . out . wr i t e (”<html><body><h1>Get Quote Deta i l s </h1>”) ;
6 re sponse . out . wr i t e (”<form ac t i on =\”QuoteContro l l e r \” method=\”Get\”>”) ;
7 re sponse . out . wr i t e (”<input type=text name=name>”) ;
8 re sponse . out . wr i t e (”<input type=text name=type>”) ;
9 re sponse . out . wr i t e (”<input type=text name=year>”) ;

10 i f (ageValue <= 25) {
11 re sponse . out . wr i t e (”<t ex ta r ea name=inc iden t s >”) ;
12 re sponse . out . wr i t e (” L i s t prev ious a c c i d e n t s and moving v i o l a t i o n s here . ”) ;
13 re sponse . out . wr i t e (”</textarea >”) ;
14 }
15 re sponse . out . wr i t e (”<input type=hidden name=\” s t a t e \” value=” + stateValue + ”>

”) ;
16 re sponse . out . wr i t e (”<input type=hidden name=\”age \” value=” + ageValue + ”>”) ;
17 re sponse . out . wr i t e (”<input type=hidden name=QuoteInformation value=\”

GetQuoteDetai ls\”>”) ;
18 re sponse . out . wr i t e (”<input type=submit>”) ;
19 re sponse . out . wr i t e (”</form>”) ;
20 re sponse . out . wr i t e (”</body></html>”) ;
21 }
22 }

Figure 10: Implementation of servlet GetQuoteDetails.

error messages. If both checks pass, at line 21 QuoteController redirects the user to

GetQuoteDetails with an invocation that contains “age” and “state” as name-value

pairs.

Step 3

The third step occurs when QuoteController invokes GetQuoteDetails. Following

with the example from the previous step, this invocation would be: http://www.

host.com/QuoteController.jsp?age=18&state=GA. Component GetQuoteDetails

displays a web form, customized according to the user’s age that prompts the user

for additional information about the policy he wants to purchase. Once the user has

entered in this information, the clicking of the submit button causes the browser to

invoke QuoteController with name-value pairs defined in the web form.

The Java code that implements the root method of GetQuoteDetails is shown in

Figure 10. At lines 3 and 4, GetQuoteDetails accesses two name-value pairs that

20

are part of the invocation received from QuoteController. Lines 5 creates the open-

ing HTML tags and the title of the web page. The opening tag of a web form is

generated at line 6. It specifies that the target of the web form based invocation is

QuoteController and the request method is “GET.” Lines 7, 8, and 9 create <input>

elements that allow the user to enter in values for his name, car type, and car year.

If the user specified that they are under 25, then the condition at line 25 is true and

a text area is displayed that prompts the user to list all accidents and tickets he may

have received. The values for the state and age parameters are saved in hidden fields

at lines 15 and 16. Hidden fields are a subtype of <input> tags that do not have a

graphical representation in a web form, but can hold a value that is used as a name-

value pair when the web form in submitted. Another hidden field is used at line 17

to store state information used by QuoteController. Finally, lines 18–20 generate a

submit button, and the closing form and HTML document tags.

Step 4

The fourth step is the invocation of QuoteController by GetQuoteDetails. The

invocation would be as follows: http://www.host.com/QuoteController.jsp?age=

18&state=GA&action=QuoteInformation&name=GJ&year=2001&type=Jeep. Quote-

Controller analyzes the values submitted by GetQuoteDetails, makes a check to ensure

that Evel Knievel2 is not trying to insure his motorcycle, prepares and saves the quote,

then finally redirects the user, via an invocation, to DisplayQuote, which displays the

final quote.

The Java code that implements this functionality in QuoteController is shows in

lines 3–5 and 24–40 of Figure 9. When QuoteController is invoked by GetQuoteDetails

the value of “action” is set to “GetQuoteDetails,” which causes the condition at line

5 to be false and the condition at line 24 to be true. QuoteController then accesses

2See http://en.wikipedia.org/wiki/Evel_Knievel for further information as to why an in-
surance company might not want to insure Evel Knievel.

21

1 public f ina l class Disp layQuote j sp extends HttpJspPage {
2 public void j s p S e r v i c e (HttpServ letRequest request , HttpServletResponse re sponse)

{
3 St r ing name = getIP (request , ”name”) ;
4 St r ing quoteID = getIP (request , ”quoteID”) ;
5 i f (isAlphaNumeric (quoteID) {
6 re sponse . out . wr i t e (”<html><body><h1>Your Per sona l i z ed Quote</h1>”) ;
7 Connection con = new Connection (” l o c a l h o s t : quoteDatabase ”) ;
8 Resu l tSet r s = con . executeQuery (” s e l e c t ∗ from quotes where name = ’ ” + name

+ ” ’ quoteID=” + quoteID) ;
9 Quote q = new Quote (r s [0]) ;

10 re sponse . out . wr i t e (”Name: ” + q . getName ()) ;
11 re sponse . out . wr i t e (”Age: ” + q . getAge ()) ;
12 re sponse . out . wr i t e (”Car Type: ” + q . getCarType ()) ;
13 re sponse . out . wr i t e (”Car Year : ” + q . getCarYear ()) ;
14 re sponse . out . wr i t e (”City : ” + q . getCity ()) ;
15 re sponse . out . wr i t e (”State : ” + q . ge tS ta t e ()) ;
16 re sponse . out . wr i t e (”Your Quote: ” + q . getQuotePrice ()) ;
17 re sponse . out . wr i t e (”<a h r e f = http :// host . com/ BuyPolicy . j sp ? quoteID=”+

quoteID+”&name=”+q . getName ()+”>Purchase Pol icy ”) ;
18 re sponse . out . wr i t e (”</body></html>”) ;
19 } else {
20 re sponse . sendRedi rect (” http :// host . com/ ErrorMessage . j sp ?msg=I n v a l i d ID . ”) ;
21 }
22 }
23 }

Figure 11: Implementation of servlet DisplayQuote.

“name,” “state,” and “age” at lines 25–27. If the check on “state” and “age” passes,

QuoteController accesses the values of “type” and “year”. At line 31, QuoteController

checks whether Evel Knievel is trying to insure his motorcycle. If he is, then line 32

redirects him to ErrorMessage via an invocation, and no quote is generated; otherwise,

at lines 34 and 35, the quote details are saved, and the user is redirected via an

invocation to DisplayQuote. In this case, the invocation contains a “quoteID” that

references the prepared quote to be displayed.

Step 5

The fifth step is the invocation of DisplayQuote by QuoteController. The compo-

nent DisplayQuote retrieves the prepared quote and displays it to the end user.

The Java code that implements the root method of DisplayQuote is shown in

Figure 11. At lines 3 and 4 the servlet first accesses two name-value pairs, “quoteID”

and “name”. The value of “quoteID” is checked, at line 5, to ensure that it is an

22

alphanumeric string. If this check passes, line 6 generates the opening HTML tags

and title for the page. Lines 7–9 search the database for the quote associated with the

user and then create a Quote object that encapsulates the information in the quote.

Lines 10–16 display the quote-related information and the price of the policy. A link

to purchase the policy is generated at line 17. Finally the closing HTML tags are

generated at line 18. If “quoteID” fails the check at line 5, then line 20 redirects the

user to ErrorMessage, which displays an error message.

Step 6

The sixth step is triggered when a user clicks on the link generated by Dis-

playQuote at line 17 of Figure 11. Clicking this link allows the user to purchase

the quoted insurance policy. The implementation of this and subsequent steps is not

part of the example.

23

CHAPTER III

SUBJECT WEB APPLICATIONS

This chapter introduces a set of web applications that are used throughout my disser-

tation as experiment subjects. These applications were chosen for several reasons: (1)

They come from different sources including commercial companies, student-developed

projects, and open-source projects; (2) the applications have been widely used in re-

lated work or downloaded frequently; (3) the General-Purpose Programming Language

(GPL) of the applications is Java, which is the target language of my analyses’ im-

plementation; (4) the applications are implemented using several different Java-based

technologies including: Java Server Pages (JSP), servlet class implementations, and

proprietary frameworks; (5) several applications contain known vulnerabilities; and

(6) several applications are mature and have multiple versions.

The set of subjects is comprised of ten Java-based web applications. Five of them:

Bookstore, Classifieds, Employee Directory, Events, and Portal are commercial open-

source applications available from GotoCode.1 These applications are based on a

mix of JSP pages and classes written in Java. Checkers and OfficeTalk are student-

developed projects that have been used in related work [29]. These two applications

directly implement Java servlet classes in order to provide all of the required func-

tionality of a web application. Filelister, JWMA, and Daffodil are also open-source

projects that have been used in related work on detecting vulnerabilities in web appli-

cations [52]. All three contain known vulnerabilities and are part of the SecuriBench

suite of benchmark web applications [51]. They are available on Sourceforge2 and

their different versions have over 100 thousand downloads combined. These three

1http://www.gotocode.com/
2http://www.sourceforge.net/

24

applications use a mix of JSP, servlet class implementations, and proprietary frame-

works in their implementation.

Table 1 shows detailed information for each of the subject web applications. For

each subject, the table lists a brief description of the intended use of the application

(Description), the non-commented lines of Java code (LOC), the number of classes

that implement a servlet interface (Servlets), and the number of other classes in the

web application (Other). As can be seen from the data in the table, the number

of lines of code of the applications runs from 54 hundred to over 29 thousand and

their size in terms of the total number of classes ranges from 12 to 129. Although

these subjects represent small to medium sized web applications, as I discuss in later

chapters, the analyses can scale to larger web applications. Smaller sized web appli-

cations were used in the evaluations to simplify the manual checking of the results.

Furthermore, all of the subject applications contain characteristics of modern web

applications that make the application of traditional quality assurance techniques

difficult, such as dynamically generated output and interfaces determined at runtime.

25

Table 1: Subject programs for the empirical studies.

Subject Description LOC
Classes

Servlets Other

Bookstore Browse and purchase books 19,402 27 1

Checkers Checkers game 5,415 33 28

Classifieds Post and manage ads 10,702 19 1

Daffodil Customer relations management 19,305 70 59

Employee Directory Maintain employee information 5,529 11 1

Events Manage calendar of events 7,164 13 1

Filelister File browser 8,630 10 31

JWMA Webmail 29,402 20 77

Office Talk Inter-office communication 4,670 38 27

Portal Manage group websites 16,089 28 1

26

CHAPTER IV

COMPONENT IDENTIFICATION ANALYSIS

The identification of components in a web application is important for effective testing

and analysis. In general, the implementation of a web application is comprises a col-

lection of modules, framework libraries, and Hyper-Text Markup Language (HTML)

content. Components represent a special subset of the modules that are directly

addressable by a Hyper Text Transfer Protocol (HTTP) request. Since a web appli-

cation’s interaction with the end user begins via an HTTP request, the components

are analogous to the public entry methods of traditional software (e.g., the main()

method in an application). This makes the identification of the components impor-

tant: For analyses, the components provide additional important semantic informa-

tion; for quality assurance tasks, they represent the point at which tasks, such as

verification (Chapter 8) and test-input generation (Chapter 7), should start interac-

tion with the application. More generally, although the identification of components

is not directly used in a quality assurance technique, the analyses presented in Chap-

ters 5 and 6 use information about components as a means of identifying where to

start their own analyses.

Unfortunately, the identification of web application components is not as straight-

forward as identifying entry methods of traditional software. The problem is that

each web application framework has its own requirements for the implementation of

a component. Often these differences are minor; for example, a component might be

required to implement only a specially named function or interface. For most lan-

guages, there is a multitude of implementation constructs that can be used to satisfy

these requirements. This makes it difficult for developers to use manual inspection of

27

the code and motivates the need for automated analysis to identify components. It

can also be difficult to determine the set of HTTP request methods that are supported

by a component. Although in some web frameworks the required request methods

can be explicitly defined, in most the request method is implied by the methods im-

plemented in an interface or by the way input data is accessed. The identification of

the supported request methods is important because it specifies how parameters in an

HTTP request must be packaged in order to be accessed correctly by the component.

In Section 4.1, I present a general analysis technique that can identify the compo-

nents of a web application, each component’s root methods, and the HTTP request

methods supported by each root method. The analysis works for a broad range of

web application frameworks, including those written in PHP, Java, Perl, and Python.

Customization for a particular framework requires the definition of a set of functions

that handles the peculiarities of each framework. In Section 4.2, I present one such

customization for the Java Platform Enterprise Edition (JEE) framework, which is

the framework used by my subject applications.

4.1 Algorithm

The goal of the component identification analysis is to identify components, root

methods, and each root method’s supported HTTP request methods. From a high

level, the analysis processes each file in the web application and determines if it

is (1) an HTML page, (2) a configuration file, or (3) a file written in the general

purpose language of the web framework. In the first case, the analysis simply extracts

the name of the HTML file and adds it to the list of components. In the second

case, the analysis invokes custom handling, which updates the list of components

based on the contents of the configuration file. In the third case, the analysis parses

the file and then determines whether the implementation represents a component.

Finally, after all files are processed, the analysis returns a set of tuples, each one of

28

Algorithm 1 Identify Components

Input: files: all files that implement the web application
Output: components: set of triplets describing components, root methods, and their

supported HTTP request methods
1: for all file ∈ files do
2: if file is an HTML file then
3: components← components ∪ {〈nameOf(file), /,{GET}〉}
4: else if isConfigurationFile(file) then
5: processConfigurationFile(components, file)
6: else if isLanguageFile(file) then
7: modules← parse(file)
8: for all module ∈ modules do
9: for all method ∈ methodsOf(module) do

10: if isComponentRootMethod(method) then
11: components ← components ∪ {〈nameOf(file), method,

{requestType(method)}〉}
12: end if
13: end for
14: end for
15: end if
16: end for
17: return components

the form 〈Cname, Mname, {h1, h2, . . . , hn}〉. In this tuple, Cname represents the file

path of a component, Mname is the name of the root method of the component, and

{h1, h2, . . . , hn} is the set of HTTP request methods supported by the root method.

Line by Line Explanation of Algorithm

Algorithm 1 shows Identify Components, which implements my component

identification analysis. The input to Identify Components is the set of all

files that implement a web application. The output is a set of triplets,

each of which contains the name of the component, a root method of the

component, and the corresponding request methods supported by that root

method. The algorithm assumes the implementation of several framework-specific

functions: isConfigurationFile, processConfigurationFile, isLanguageFile,

29

parse, nameOf, methodsOf, requestType, and isComponentRootMethod. The spe-

cialization of these functions for the JEE framework is explained in Section 4.2.

Processing in Identify Components begins at line 1, which iterates over each file in

the input. At line 2, the analysis checks whether file is a static HTML page. If this is

the case, at line 3 the name of the HTML file is used as the component name, and the

default request method for HTML files (GET) is added to components. The special

symbol “/” is used to denote that the root method is the name of the resource.1 At

line 4, the analysis checks whether file is a configuration file. Here a framework-

customizable function, isConfigurationFile, is utilized and a similar framework-

specific function, processConfigurationFile, updates components based on the

contents of the configuration file at line 5. This functionality is based entirely on

the framework used, since some frameworks provide partial component definitions or

entry point definitions in a configuration file. At line 6, the analysis checks whether

file is written in the general purpose programming language of the web framework.

Here again, this is customized per framework. If the check passes, at line 7 file is

parsed using a language specific parser to identify the defined modules (e.g., classes in

a Java file). The analysis iterates over each module’s methods in lines 9–13. At line

10, if the method signature matches one of the framework’s known root methods, then

components is updated at line 11: The components set is updated with the name

of the component and the root method is set to the method name. A framework-

specific function, requestType, returns the HTTP request type that corresponds to

that root method. Lastly, line 17 returns the list of components and the discovered

information.

1This notation is widely used in HTTP to denote the default root entry point of a component.

30

4.2 Implementation

The implementation of the component identification analysis is written in Java for

web applications developed using the JEE framework. The specialization of Identify

Components is accomplished by implementing the list of framework-specific functions.

In the following list, I enumerate each of these and briefly explain how they are

implemented for the JEE framework.

• isConfigurationFile: JEE configuration files are XML-based files that im-

plement a certain document type definition (DTD). If a file implements this

DTD, it is treated as a configuration file.

• processConfigurationFile: In the JEE framework, configuration files contain

mapping information between URL file paths and the corresponding class to be

executed. This information is read in and stored for use by the nameOf function.

• isLanguageFile: Files that end with “.jsp” or “.java”

• parse: Parser for the Java language and JEE extensions. Returns the classes

defined in the file. This is implemented by leveraging the Soot static analysis

framework.2

• methodsOf: Done by walking the parse tree and identifying all public method

definitions. This is implemented by leveraging the Soot static analysis frame-

work.2

• isComponentRootMethod: For a method m, if the containing class of m im-

plements one of the servlet interfaces and m’s signature matches one of the

predefined servlet root methods, then m is a component root method. This is

implemented by leveraging the Soot static analysis framework.2

2http://www.sable.mcgill.ca/soot/

31

• nameOf: Returns either the name of the HTML file or the name of the URL

mapped to the class implemented in the file. For the JEE framework, the

mapping between a class and the URL file path used to access it is defined in a

specific configuration file, so this is a simple lookup.

• requestType: Matches the method name with the types of request methods

that it can handle. This is accomplished by using a pre-built lookup table that

contains a mapping between special root method names in the JEE framework

and the HTTP request methods they must support.

32

CHAPTER V

INTERFACE ANALYSIS

Interfaces are used extensively in modern web applications, and their identification is

important for many quality assurance tasks. To provide the advanced functionality

users have come to expect in modern web applications, components must communi-

cate extensively with each other and with end users. This communication is done

by sending Hyper Text Transfer Protocol (HTTP) requests that target the accepted

interfaces of a component. As a result, these interfaces are also used extensively

by quality assurance techniques. For example, to create effective test inputs, it is

necessary to know the names and groupings of the parameters accessed by a web

application. This information needs to be identified before any type of input gener-

ation strategy can be employed. Other techniques, such as penetration testing and

invocation verification, also make use of interface information to detect errors and

vulnerabilities in web applications.

Identifying interfaces in web applications is difficult. For traditional software, it

is normal to have method signatures that provide a significant amount of information

about the interfaces of a software module. These signatures include information, such

as the name of the method, its set of named parameters, and domain information

about each of the parameters. As explained in Chapter 2, web application interfaces

are not explicitly defined in this manner. Instead, the set of named parameters in an

interface is implicitly defined by the set of parameters accessed by a component during

a given execution. Similarly, the domain information for each of these parameters is

implied by the domain-constraining operations performed on the parameter values.

Both the set of accessed parameters and domain-constraining operations can vary

33

along different paths of a component. This complicates the identification of interfaces

and interface domain constraints (IDC).

Many current approaches for identifying interface information have limitations

that reduce their effectiveness. Generally, proposed techniques are either incomplete

with respect to identifying interfaces or do not discover enough information to be use-

ful for many quality assurance tasks. For small web applications, it is possible to use

manual inspection to identify interfaces. However, for larger and more complex web

applications, multiple layers of abstraction and the use of frameworks can obscure the

intended function of the components. Several approaches rely on developer-provided

interface specifications [8, 41, 67]. Although developer-provided specifications can

accurately specify the intended behavior of an application, they are time-consuming

to produce and may not be consistent with the implementation. Other approaches

interact with the web application at runtime and use dynamic analysis to identify

interfaces exposed during the interaction [25, 38]. The main limitation of these ap-

proaches is that they cannot provide any guarantees of completeness, as they may

not identify hidden interfaces or interfaces that are not accessed during the observed

executions. Lastly, another approach uses static analysis to identify interface-related

information [23]. However, this approach does not provide interface domain con-

straints and does not precisely group name-value pairs into logical interfaces.

My work in interface identification analysis led to the development of two new

techniques for identifying the interfaces of a web application. Both techniques are

based on static analysis of a web application’s code. The first technique is based on a

multi-phase iterative data-flow analysis. It computes a conservative approximation of

the interface information of a web application. This technique can be applied to any

web application that accesses name-value pairs by using calls to a parameter function

(PF). Since almost all web applications are written using frameworks that define a set

of PFs, in practice, this technique can be easily applied to almost all web applications.

34

However, in some cases, quality assurance techniques need more precise interface

information than can be provided by the data-flow based approach. To address this

situation, I developed a second technique, which is based on symbolic execution.

The information provided by this technique is more precise, but it can potentially

require more developer intervention to successfully analyze a web application. For

many quality assurance tasks, this increased effort can be worth the time, since the

increased precision results in more accurate results and significant improvements in

efficiency.

In the rest of this chapter, I present both techniques for interface identification.

This includes the algorithms, detailed line-by-line explanations, and illustrations with

the example web application. Section 5.1 describes the first technique, and the second

technique is presented in Section 5.2. I compare and contrast the two techniques in

terms of their trade-offs in Section 5.3.

5.1 Iterative Data-flow Based Analysis

This section describes my iterative data-flow analysis based approach for identifying

the interfaces of a web application. Section 5.1.1 presents the algorithms that define

the two phases of the technique, and Section 5.1.2 describes the architecture of a tool

that implements my algorithms for Java-based web applications.

5.1.1 Algorithm

My data-flow based algorithm for identifying the interfaces of a web application has

two phases. The first phase computes domain information for name-value pairs ac-

cessed by a component. The second phase identifies the names associated with each

name-value pair and groups them into logical interfaces based on the control flow

of the component. In the following sections, I explain each of these phases in more

depth and illustrate how they work using the example web application presented in

Chapter 2. Note that in the rest of the discussion I assume that (1) there are no global

35

variables in the applications under analysis, (2) each node in the program contains

only one definition, and (3) the inter-procedural control-flow graph (ICFG) does not

contain control-flow edges associated with thrown exceptions. I make these assump-

tions only to simplify the presentation of the algorithms, and they do not limit the

applicability of the approach in any way. For the first two assumptions, although

none of the subjects violated them, any program could be automatically transformed

so that it satisfies both. For the third assumption, it is sufficient to ignore control-flow

edges in the ICFG that are associated with exceptions.

5.1.1.1 Phase 1

In the first phase, my approach analyzes each component of the web application and

outputs domain information for the name-value pairs accessed within the component.

From a high level, the approach works by analyzing each PF call site within a com-

ponent and following the sequence of definitions and uses that starts with the return

value of the PF call site. For example, if a call site is of the form value = PF (name),

then the approach identifies all uses of value. If one of these uses of value is found

in another assignment, this process is repeated. For example, if the next use is

value′ = f(value), then the approach uses the semantics of f() to identify domain

information about parameter name and then examines the uses of value′. By follow-

ing this sequence, the approach can examine all direct and indirect uses of the return

value to determine if it is being used within the context of a domain-constraining

operation.

My approach recognizes two types of domain-constraining operations: (1) compar-

ison of the return value with hard-coded constants, and (2) conversion of the return

value to numeric types. For example, if a variable that contains the return value of

the PF call is used as a parameter to a function that converts strings to a numeric

value, the approach infers that the domain type of the value is numeric. Similarly, if a

36

variable that contains the return value of the PF call is compared against a constant

value, the approach infers that this constant value is a special value in the domain

of the parameter. More complex and varied types of domain-constraining operations

can be considered if the underlying web application framework has defined functions

that represent conversions to those types.

If domain-constraining operations are present, the approach annotates the com-

ponent’s ICFG with the identified domain information. The approach annotates two

kinds of nodes in the ICFG: (1) nodes that contain a call to a PF and (2) return sites

from methods that either directly invoke a PF or indirectly invoke a PF through a

chain of method calls. An annotation for a node contains three elements: (1) the

location of the original PF call, (2) the domain type expected for all parameter val-

ues used at that node, and (3) special values in the domain of the parameter used

at that node. After each PF call site is processed, the output of the algorithm is an

ICFG with annotations that describe the domain of the parameters accessed by the

component.

The runtime complexity of the Phase 1 analysis is dominated by following the

sequences of definitions and uses that originate with the return value of each PF

call. In the worst case, following this sequence requires visiting every node in the

ICFG once for each PF in the web application. Note that a check in the algorithm

prevents the following of cyclical dependencies. Therefore, the runtime complexity of

the analysis is O(pn) where p is the number of PF calls in the web application and n

is the number of nodes in the ICFG.

Line by Line Explanation of Algorithm

Algorithm 2 shows a function GetDomainInfo, which computes the domain in-

formation of a web application. The input to GetDomainInfo is the ICFG of the

web application and its output is the ICFG annotated with the computed domain

37

Algorithm 2 GetDomainInfo

Input: ICFG: Inter-procedural control flow graph of the web application
Output: ICFG′: ICFG annotated with domain information

1: for all node ∈ PF call site nodes of ICFG do
2: newannot← new annotation
3: newannot.pf ← node
4: newannot.type← ANY

5: newannot.values← {}
6: associate newannot with node
7: GDI(node, null, node, {})
8: end for
9: return ICFG′

information. GetDomainInfo uses the ICFG to identify all PF call sites in the web

application (line 1). For each call site, node, GetDomainInfo creates a new annota-

tion (line 2), initializes the annotation’s pf field to node (lines 3), its type field to

ANY (line 4), and its values field to the empty set (line 5). The new annotation is

then associated with node in the ICFG (line 6). Finally, GetDomainInfo begins the

analysis of node by calling an auxiliary function GDI (line 7). When all PF calls have

been processed, GetDomainInfo returns the annotated ICFG.

Algorithm 3 shows GDI, which recursively follows the sequence of definitions and

uses that begins with a PF call site. GDI takes four parameters as input: node is the

node to be analyzed; var is the variable that stores the value derived from the original

PF call site and that is used at node; root node is the node to be annotated with the

discovered domain information; and visited nodes is the set of nodes encountered in

the path being traversed. To understand the algorithm, it is important to note that,

by construction, the statement represented by node is always a use of variable var.

In turn, var always stores the original return value or a value that was derived from

the original value. GDI has no output, but its side effect is to annotate the ICFG

being analyzed by GetDomainInfo.

GDI first checks to ensure that node is not in the set of visited nodes (line 1). This

check ensures that cyclic data dependencies are explored only once in a path. If node

38

Algorithm 3 GDI
Input: node: current node to examine

var: variable storing the value used at node
root node: node to be annotated
visited nodes: nodes visited along current path

1: if node 6∈ visited nodes then
2: if node is a return node then
3: returnsites← possible return sites of node
4: for all retsite ∈ returnsites do
5: newannot← root node’s annotation
6: associate newannot with node retsite
7: GDI(retsite, null, retsite, visited nodes ∪ {node})
8: end for
9: else

10: if node compares var with a constant then
11: compval← value used in the comparison
12: addValueToAnnotation(root node, compval)
13: else if node converts var to another type then
14: type← target type of the convert operation
15: setDomainTypeInAnnotation(root node, type)
16: end if
17: if node contains a definition of a variable then
18: var′ ← variable defined at node
19: for all n ∈ DUchain(var′, node) do
20: GDI(n, var′, root node, visited nodes ∪ {node})
21: end for
22: end if
23: end if
24: end if

is a return node (line 2), GDI identifies all return sites for the method that contains

node (line 3). For each return site (line 4), GDI copies root node’s annotation (line

5), and associates the annotation with node retsite (line 6). Annotations are copied

to allow the domain information to be context-sensitive, which improves the precision

of the derived information. Finally, GDI invokes itself recursively on the return site,

updating the visited nodes set appropriately (line 7).

If node is not a return node (line 2), then GDI checks if node is a comparison with

a constant value (line 10). If it is, GDI identifies the constant value (line 11) and adds

it the set of values in the annotation associated with root node (line 12). If node is

not a comparison statement (line 10), then GDI checks if node is a type conversion

statement. If it is, GDI identifies the target type of the conversion operation (line

14) and updates the domain type of the annotation associated with root node (line

39

15). Finally, GDI checks if node contains a definition of another variable (line 17).

If it does, GDI identifies the new definition (line 18). For each node n that uses this

new definition (line 19), GDI invokes itself recursively, updating the visited nodes

set appropriately (line 20). (The function DUchain(v, n) returns the set of nodes

where the definition of variable v at node n is used without any other superseding

definitions [4].)

Illustration with Example Web Application

To illustrate the first phase with an example, I explain the execution of Get-

DomainInfo on QuoteController. The source code of QuoteController is shown in

Figure 121 and its corresponding ICFG is shown in Figure 13. Each node in the

ICFG is numbered based on the source code line number it represents. In the sub-

sequent explanation, I distinguish lines of the algorithm and ICFG by referring to

each line n in the algorithm as An and each node n of the ICFG as Nn. For this

illustration, I use the PF at node N48 as a representative example; other PFs that

would be analyzed are at nodes N4, N7, N25, N26, and N29. GetDomainInfo begins

the analysis by initializing a new empty annotation for the PF and then calling:

GDI(N48, null, N48, {})

On this iteration, node N48 has not been analyzed yet, so it passes the check at line A1

of GDI. The conditions at lines A2, A10, and A13 are false, so the analysis continues

at line A17, whose condition evaluates to true. At line A18, GDI identifies the variable

defined at node N48 as value. At line A19 it identifies node N49 as the next use of

value, so it calls itself recursively:

GDI(N49, value, N48, {N48})

1This figure is a duplicate of Figure 9. It is reproduced to make referencing easier for readers.

40

1 public class QuoteContro l l e r extends HttpServ l e t {
2

3 public void s e r v i c e (HttpServ letRequest request , HttpServletResponse re sponse)
throws IOException {

4 St r ing act ionValue = reques t . getIP (” ac t i on ”) ;
5 i f (act ionValue . equa l s (” C h e c k E l i g i b i l i t y ”)) {
6 int ageValue = getNumIP(request , ”age ”) ;
7 St r ing stateValue = reques t . getIP (” s t a t e ”) ;
8 St r ing errorMessage = ”” ;
9 boolean e r r o r=fa l se ;

10 i f (! s tateValue . equa l s (”GA”)) {
11 e r r o r=true ;
12 errorMessage = ”Bad s t a t e ” ;
13 }
14 i f (ageValue < 16) {
15 e r r o r=true ;
16 errorMessage += ”Too young to dr i ve . ” ;
17 }
18 i f (e r r o r) {
19 re sponse . sendRedi rect (” http :// host . com/ ErrorMessage . j sp ?msg=”+

errorMessage) ;
20 } else {
21 re sponse . sendRedi rect (” http :// host . com/ GetQuoteDetai ls . j sp ? s t a t e=”+

stateValue+”&age=”+ageValue) ;
22 }
23 }
24 i f (act ionValue . equa l s (” QuoteInformation ”)) {
25 St r ing nameValue=reques t . getIP (”name”) ;
26 St r ing stateValue = reques t . getIP (” s t a t e ”) ;
27 int ageValue = getNumIP(request , ”age ”) ;
28 i f (! s tateValue . equa l s (””) && ageValue > 15) {
29 St r ing carTypeValue = reque s t . getIP (” type ”) ;
30 int carYearValue = getNumIP(request , ” year ”) ;
31 i f (carTypeValue . conta in s (” motorcyc le ”) && nameValue . equa l s (” Evel Knieve l

”)) {
32 re sponse . sendRedi rect (” http :// host . com/ ErrorMessage . j sp ?msg=No way . ”) ;
33 } else {
34 int quoteID = saveQuoteDeta i l s (nameValue , stateValue , carTypeValue ,

carYearValue) ;
35 re sponse . sendRedi rect (” http :// host . com/ DisplayQuote . j sp ? quoteID=”+

quoteID) ;
36 }
37 } else {
38 re sponse . sendRedi rect (” http :// host . com/ ErrorMessage . j sp ?msg=Time out . ”) ;
39 }
40 }
41 i f (! act ionValue . equa l s (” C h e c k E l i g i b i l i t y ”) && ! act ionValue . equa l s (”

QuoteInformation ”)) {
42 re sponse . sendRedi rect (” http :// host . com/ C h e c k E l i g i b i l i t y . j sp ”) ;
43 }
44 }
45

46 private int getNumIP(Serv l e tReques t request , S t r ing name) {
47 St r ing value = reques t . getIP (name) ;
48 int param = I n t e g e r . pa r s e In t (va lue) ;
49 return param ;
50 }
51

52 private int saveQuoteDeta i l s (S t r ing nameValue , S t r ing stateValue , S t r ing
carTypeValue , int carYearValue) {

53 // save quote and return quote re f e r ence number
54 }
55 }

Figure 12: Implementation of servlet QuoteController.

41

exit
service

4

5

6

7

8

9

10

11

12

14

15

16

18

2119

24

48

49

50

25

26

27

28

29

30

31

3234

35

38

41

42

entry
service

entry
getNumIP

exit
getNumIP

Figure 13: ICFG of QuoteController.

42

On this iteration, the condition at line A13 is true. GDI identifies the target type as

Integer and updates the annotation at node N48 accordingly. The condition at line

A17 is also true, so GDI identifies the variable defined at node N49 as param and the

next use of that variable at node N50. GDI then calls itself recursively:

GDI(N50, param, N48, {N48, N49})

On this iteration of GDI, the condition at line A2 is true, since node N50 is a return

statement. GDI identifies nodes N6, N27, and N30 as possible return sites and, at

line A6, assigns to them the same annotation as that of node N48. (At this point in

the example, the annotation specifies that the value must be an Integer.) GDI then

makes three recursive calls:

1) GDI(N6, null, N6, {N48, N49, N50})

2) GDI(N27, null, N27, {N48, N49, N50})

3) GDI(N30, null, N30, {N48, N49, N50}

On the first call, the conditions at lines A2, A10, and A13 are false, but the one at line

A17 is true. GDI identifies ageValue as the new definition, and node N14 as the next

use of ageValue. GDI then calls itself recursively:

GDI(N14, ageValue, N6, {N6, N48, N49, N50})

On this iteration, the condition at line A10 is true. GDI identifies “16” as the relevant

value and updates the annotation at node N6 to include it in the domain information.

The condition at line A17 is true, but there are no further uses of ageValue, so no

additional calls to GDI are made. Note that the reference to ageValue at node N28

is actually a reference to a different variable.

On the second call listed earlier, the conditions at lines A2, A10, and A13 are false,

but the one at line A17 is true. GDI identifies ageValue as the new definition, and

node N28 as the next use of ageValue. GDI then calls itself recursively:

43

GDI(N28, ageValue, N27, {N27, N48, N49, N50})

On this iteration, the condition at line A10 is true. GDI identifies “15” as the relevant

value and updates the annotation at node N27 to include it in the domain information.

The condition at line A17 is true, but there are no further uses of ageValue so no

additional calls to GDI are made.

On the third call listed earlier, the conditions at lines A2, A10, and A13 are false,

but the one at line A17 is true. GDI identifies carYearValue as the new definition.

This is a use as an argument to a non domain-constraining operation, so GDI identifies

the next use as the argument inside the method SaveQuoteDetails and follows the

sequence of definitions and uses into the method. Since SaveQuoteDetails is not

part of the example code, I do not consider it further.

At this point, the analysis of the PF at node N48 is complete and there are anno-

tations at nodes N6, N27, N30, and N48 with a domain type of Integer. Additionally,

node N6 has “16” as a relevant value, and node N27 has “15” as a relevant value.

The output of GetDomainInfo is shown in Figure 14. This figure shows the ICFG

from Figure 13 with the annotations generated during the Phase 1 analysis. This

includes the annotations that were explained in the illustration (nodes N6, N27, N30,

and N48) and the annotations that were created as a results of the PFs at nodes N4,

N7, N25, N26, and N29.

5.1.1.2 Phase 2

In the second phase, my approach analyzes each component’s annotated ICFG to

identify the name associated with each name-value pair, groups names into logical in-

terfaces, and associates domain information with each name. Intuitively, the approach

works by grouping sets of name-value pairs accessed along the same path into an in-

terface and associating any domain information on that path with the corresponding

name-value pairs.

44

pf: 4
type: String
values: {"CheckEligibility", "QuoteInformation"}

pf: 7
type: String
values: {"GA"}

pf: 25
type: String
values: {"Evel Knievel"}

pf: 26
type: String
values: {}

pf: 29
type: String
values: {"motorcycle"}

exit
service

pf: 48
type: Integer
values: {}

pf: 48
type: Integer
values: {16}

pf: 48
type: Integer
values: {15}

pf: 48
type: Integer
values: {}

4

5

6

7

8

9

10

11

12

14

15

16

18

2119

24

48

49

50

25

26

27

28

29

30

31

3234

35

38

41

42

entry
service

entry
getNumIP

exit
getNumIP

Figure 14: Annotated ICFG of QuoteController.

45

To avoid the potentially exponential cost of analyzing each path individually, the

approach computes method summaries that can be reused whenever it analyzes code

that calls a method that has already been analyzed. The method summaries also

allow the analysis to be context-sensitive, as relevant information from the call site

can be substituted in to the summary. To ensure that a method is processed before

any method that calls it, the approach processes each method in reverse topological

order with respect to the call graph. Groups of methods that call each other are ana-

lyzed together as one “super-method.” Within each method, the approach computes

summary information using a worklist-based forward iterative data-flow analysis [48].

Each summary contains sets of name-value pairs that are on a path from the entry

to the exit of the method. When all methods in the ICFG have been processed, the

output is the summary of the component’s root methods.

The core of Phase 2 is the iterative data-flow analysis that summarizes each

method of the web application. This analysis converges on a fixed point for two

reasons: (1) The value domain for the sets in the data flow equations is finite, it can

only include those nodes that either directly or indirectly access a name-value pair

(which is at most the number of nodes n in the web application’s ICFG); and (2)

the transfer function is monotonic because no values are removed from the calculated

data-flow sets. The runtime complexity of this analysis is, like most iterative data-

flow analyses, dependent on the number of nested loops in the code [44]. In the worst

case, the number of nested loops is equivalent to the number of nodes n in the web

application’s ICFG. Each nested loop could cause the analysis to iterate over each of

the nodes in the ICFG. Therefore, the runtime complexity of Phase 2 is O(n2). Note

that I assume the nodes are processed in reverse postorder.

One additional runtime cost for Phase 2 is the use of string analysis in the resolve

function to determine the name of each name-value pair. The string analysis values

46

Algorithm 4 ExtractInterfaces

Input: ICFG: annotated ICFG produced by GetDomainInfo
CG: call graph for the component

Output: summary : list of interfaces exposed by the component
1: SCC ← set of strongly connected components in CG
2: for all mset ∈ SCC, in reverse topological order do
3: summary ← SummarizeMethod(mset)
4: for all m ∈ mset do
5: associate summary to method m
6: end for
7: end for
8: return interfaces of the component’s root methods

can be precomputed so that each lookup is O(1) in cost. In most cases, the compu-

tation is linear with respect to the number of nodes in the ICFG, but in the worst

case it can be doubly exponential [20]. The resolve function and its complexity are

discussed in more detail below.

Line by Line Explanation of Algorithm

Algorithm 4 shows ExtractInterfaces, which identifies the interfaces of a compo-

nent. The inputs to ExtractInterfaces are the ICFG annotated by GDI and the call

graph (CG) of the component. The output of ExtractInterfaces is the set of identified

interfaces of the component. At line 1 ExtractInterfaces begins the analysis by iden-

tifying the sets of strongly connected components in the CG and assigning them to

SCC. All nodes in CG are in SCC as either a singleton set (i.e., a strongly connected

component of size one) or as a member of a set of methods that make up a strongly

connected component of size greater than one. ExtractInterfaces then calls Summa-

rizeMethod for each method set in SCC in reverse topological order (lines 2–7). Each

method in the method set is assigned the summary returned by SummarizeMethod

(lines 3–6). Finally, ExtractInterfaces returns the summaries of the root methods of

the servlet (line 8).

SummarizeMethod, which is shown in Algorithm 5, calculates the summary for

47

Algorithm 5 SummarizeMethod
Input: methodset: set of methods
Output: summary: summary of methods in methodset
1: N ←

⋃
m∈methodset

nodes in methodset’s CFG

2: worklist← {}
3: for all n ∈N do
4: In[n] ← {}
5: if n corresponds to a PF call then
6: nv ← new name-value pair
7: nv.node← n
8: nv.name← parameter of the PF call
9: nv.domain← n’s domain information annotation
10: Gen[n] ← {{nv}}
11: worklist← worklist ∪ succ(n)
12: else if n is a callsite AND target(n) has summary s then
13: Gen[n] ← map(n, s)
14: for all interface ∈ Gen[n] do
15: for all IP ∈ interface do
16: if IP.node == annot.IPnode then
17: IP.domain← annotation associated with n’s return site
18: end if
19: end for
20: end for
21: worklist← worklist ∪ succ(n)
22: else if n is a method entry point then
23: Gen[n]← {{}}
24: worklist← worklist ∪ succ(n)
25: else
26: Gen[n]← ∅
27: end if
28: end for
29: Out[] ← Gen[]
30: while |worklist| 6= 0 do
31: n← first element in worklist
32: In[n]←

⋃
p∈pred(n)

Out[p]

33: Out′ ← {}
34: for all i ∈ In[n] do
35: for all g ∈ Gen[n] do
36: Out′ ← Out′ ∪ {i ∪ g}
37: end for
38: end for
39: if Out′ 6= Out[n] then
40: Out[n] ← Out′

41: if n is a callsite AND target(n) ∈ methodset then
42: worklist← worklist ∪ target(n)’s entry node
43: else
44: worklist← worklist ∪ succ(n)
45: end if
46: end if
47: end while
48: for all m ∈ methodset do
49: summary ← Out[m’s exit node]
50: for all interface ∈ summary do
51: for all IP ∈ interface do
52: if IP.name is not a concrete value then
53: IP.name← resolve(IP)
54: end if
55: end for
56: end for
57: end for
58: return summary

48

a set of methods. The input to SummarizeMethod is methodset, which contains a

set of methods to analyze. The output of SummarizeMethod is the summary of the

methods in methodset. The summary is a set of sets of name-value pairs that are

accessed along paths of execution in methodset. In some cases, the name of a pair

is not defined within the method scope. For example, the name could be provided

by one of the formal parameters to the method. In these situations, a placeholder is

used instead of a name-value pair. When the summary of the method is evaluated

within a calling context that allows resolution of the name of the name-value pair, the

placeholder is replaced by the resolved value for that evaluation. Using the previous

example, the placeholder would be resolved at call sites where the formal parameter

can be matched with an actual parameter.

In the explanation of SummarizeMethod, I assume the availability of the following

functions: target(n), which returns the set of methods that could be called at a call

site n; succ(n), which returns all successors of n in n’s control-flow graph (CFG); and

pred(n), which returns all predecessors of n in n’s CFG.

SummarizeMethod first initializes the data structures used in the rest of the al-

gorithm. Set N is initialized with all of the nodes in all of the methods in methodset

(line 1) and worklist is initialized to the empty set (line 2). For each node n, its Gen

set is initialized in one of four ways (lines 3–28):

1. If n represents a PF call, a new name-value pair nv that corresponds to the

parameter accessed at node n is created (line 6). The fields of nv are initialized

with the information at n: node ID (line 7), variable that contains the name of

the name-value pair (line 8), and domain information computed during the first

phase (line 9). Then the Gen set for n is initialized (line 10), and all successors

of n are added to the worklist (line 11).

2. If n is a callsite and the target of the call is a summarized method with summary

49

s, n’s Gen set is initialized with the value returned by function map invoked on

n and s (line 13). The map function takes a method m’s summary and a callsite

invoking m and replaces each placeholder with the corresponding argument at

the callsite. Then, for each entity in each interface contained in n’s Gen set

(lines 14 and 15), SummarizeMethod checks whether the annotations created

by Phase 1 for n’s return site apply to any of the entities; that is, whether they

refer to the same IP node (line 16). If so, it updates the domain information for

the entity using the domain information in the relevant annotations (line 17).

After performing this operation, SummarizeMethod adds n’s successors to the

worklist (line 21).

3. If n is a method entry point, its Gen set is initialized to a set containing an

empty set (line 23), and n’s successors are added to the worklist (line 24).

4. Finally, if n is not a callsite, SummarizeMethod initializes n’s Gen set to the

empty set (line 26).

After initializing the data structures, SummarizeMethod enters its iterative part,

where it processes nodes until the worklist is empty (lines 30–47). For each node n in

the worklist, SummarizeMethod computes the value of n’s In set as the union of the

Out sets of n’s predecessors (line 32). Then SummarizeMethod computes Out′ as the

product of n’s In and Gen sets; for each interface (i.e., set of name-value pairs) i in

In and each interface g in Gen, SummarizeMethod generates an interface that is the

union of i and g and adds it to Out′ (line 34–36). If Out′ is different than Out[n] from

the previous iteration over n (line 39), SummarizeMethod updates Out[n] (line 40)

and updates the worklist as follows. If n is a callsite and its target method m is one

of the methods in the input set (i.e., m is in the same strongly connected component

of the CG as the current method), SummarizeMethod adds m’s entry node to the

50

worklist (line 42).2 Otherwise, SummarizeMethod simply adds n’s successors to the

worklist (line 44). Note that, if n is a callsite but its target method m is not in the

input set, m’s return site would be added to the worklist.

When the worklist is empty, SummarizeMethod performs the following operations

for each method m in the input set. First, at line 49 it identifies the set of interfaces

in the Out set of m’s exit node. Then for each name-value pair of each interface (lines

50 and 51), SummarizeMethod calls resolve, at lines 52–54, for any name that is not

a concrete value (i.e., defined using a variable). Finally, at line 58, SummarizeMethod

returns the summary associated with methodset. Note that all methods in methodset

have the same summary.

The purpose of function resolve is to identify the names of each name-value pair.

As input, resolve takes a string variable or a placeholder and attempts to find one

or more statements in the current method where the variable is initialized. To do

this, resolve starts at the variable’s point of use and follows use-definition chains

backwards within the method’s scope until it reaches a definition involving (1) a string

constant, (2) an expression, or (3) a method parameter. In the first case, resolve

returns the identified string constant. In the second case, it computes a conservative

approximation of the values of the string expression using the Java string analysis

developed by Christensen, Møller, and Schwartzbach [20] and returns the resulting

set of strings. Finally, in the third case, resolve identifies the formal parameter and

returns a placeholder that maps to that formal parameter.

The runtime complexity of the resolve function varies depending on the type

of string value to be analyzed. For the first case described above, the cost is O(1),

since resolving a string constant is simply a table lookup operation. The third case

is similarly trivial. In the worst case the exploration of the sequence of definitions

2By doing so, SummarizeMethod treats nodes in a set of strongly connected methods as a single
super-method, as described earlier.

51

and uses covers every node in the method, which can be bounded by O(n), where

n is the number of nodes in the CFG. The second case has the highest worse case.

Extracting the automaton that represents the possible values of a string expression

can be doubly exponential (i.e., O(abn
)) [20]. Although, in most cases, the actual

runtime is O(n) since most string expressions are simple linear concatenations of

string constants. The worst case corresponds to a program that modifies the string

expression and branches in every statement. An implementation optimization is to

precompute the string values that correspond to each string variable. At runtime,

each string resolution then becomes an O(1) operation. In my implementation this

optimization was not needed, and all of the runtime measurements of the analysis

include the string resolution.

Illustration with Example Web Application

To illustrate the second phase, I illustrate ExtractInterfaces using QuoteCon-

troller. There are two inputs to ExtractInterfaces: 1) the ICFG that was annotated

by GetDomainInfo, and 2) the call graph for QuoteController. The annotated ICFG

is shown in Figure 14. Each node in the ICFG is numbered based on the source code

line number it represents. To distinguish lines of the algorithm and ICFG, I number

each line n in the algorithm as An and each node n of the ICFG as Nn.

ExtractInterfaces begins by analyzing the call graph of QuoteController. There are

no non-trivial strongly connected components in this call graph, so SCC contains three

sets, one for each method of QuoteController. These are, in reverse topological order:

{saveQuoteDetails}, {getNumIP}, {service}. (Since method saveQuoteDetails

is stubbed in the example, I will skip over it.) The first method to be processed is

getNumIP, and SummarizeMethod is called as follows:

SummarizeMethod({getNumIP})

The first action of SummarizeMethod is to initialize the Gen set for each of the nodes

52

in getNumIP, which are {N48, N49, N50}. Node N48 corresponds to a PF call, so its

Gen set is initialized to {{N48}}, the domain information from the ICFG is copied,

and node N49 is added to the worklist. Node N49 and N50 are not PFs, callsites, or

method entry points, so their Gen sets are initialized to ∅. For all three nodes, their

Out sets are set equal to their Gen sets.

The iterative part of SummarizeMethod begins by iterating over the contents of

the worklist, which contains only node N49. In[N49] is set to the union of the out sets

of its predecessor. In this case, this is equal to Out[N48], which is {{N48}}. Similarly,

the Out′ value is also equal to {{N48}}. Out′ is different from the previous Out[N49],

so the Out set is updated. Node N49 is not a callsite, therefore the worklist is updated

with the successor of node N49, which is node N50. The next node in the worklist

is node N50. In[N50] is set to the union of the out sets of its predecessor. In this

case, this is equal to Out[N49], which is {{N48}}. Once again, the Out′ value is equal

to {{N48}}, which differs from the previous Out[N50], therefore Out[N50] is updated.

Node N50 is not a callsite and does not have any successors, so the worklist is now

empty.

SummarizeMethod then identifies the names in the interfaces of getNumIP. To do

this, SummarizeMethod iterates over each of the elements of the Out set of getNumIP’s

exit node, node N50. Out[N50] is {{N48}}. The resolve function follows the use-

definition chain of the variable name backwards through the method and identifies

that it was defined as one of the method’s formal parameters. The resolve function

returns a placeholder that denotes that the name is defined by the second formal

parameter to the method. The final summary for getNumIP is {{FP2}}.

The second method to be processed by SummarizeMethod is service. Nodes

N4, N7, N25, N26, and N29 contain calls to PFs, so their Gen sets are initialized to

{{N4}}, {{N7}}, {{N25}}, {{N26}}, and {{N29}}, respectively. Nodes N6, N27, and

N30 are callsites to getNumIP, which has a summary, so the map function substitutes

53

in the placeholder for the variable at each node that contains the second formal

parameter. The corresponding Gen sets are {{“age”}}, {{“age”}}, and {{“year”}}.

The remainder of the nodes are assigned a Gen set of ∅. Once again, the Out set of

each node is initialized to the node’s Gen set.

For the iterative part of SummarizeMethod, the worklist contains the successors

of the nodes that did not have empty Gen sets, {N5, N7, N8, N26, N27, N28, N30, N31}.

Analysis begins with node N5. In[N5] is equal to the Out set of its predecessor, node

N4. The new Out[N5] is {{N4}}, and its successors, nodes N6 and N24, are added

to the worklist. Node N6 is the next node to be processed and In[N6] is {{N4}}.

Out[N6] set is calculated to be {{N4, “age”}} and its successor, node N7, is added

to the worklist. Node N7 is the next node to be processed. Its In set is Out[N6].

The new Out[N7] is {{N4, “age,” N7}}, and its successors are added to the worklist.

Node N8 is the next node to be processed. In[N8] is equal to Out[N7]. Gen[N8] is

∅, so Out[N8] set is equal to In[N8]. Nonetheless, the new Out[N8] is different from

its previous value, so it is updated, and node N8’s successor, node N9, is added to

the worklist. Processing of nodes N9–N23 does not add any additional information,

therefore Out[N23] is equal to the union of Out[N8] and Out[N4], which is {{N4}, {N4,

“age,” N7}}.

SummarizeMethod continues processing at node N24. In[N24] is the union of the

Out set of its predecessors, nodes N4 and N23: {{N4}, {N4, “age,” N7}}. Node N24

does not add any information to the In set, therefore its Out set is equal to its In set,

and processing continues at node N25. Gen[N25] is non empty, so Out[N25] is {{N4,

N25}, {N4, “age,” N7, N25}}. Similarly, nodes N26 and N27 have non-empty Gen sets,

so Out[N27] is {{N4, N25, N26, N27}, {N4, “age,” N7, N25, N26, N27}}. Node N28

does not add any additional information, therefore processing continues at nodes N29

and N30, which both have non-empty Gen sets. Out[N30] is {{N4, N25, N26, “age,”

N29, “year”}, {N4, “age,” N7, N25, N26, “age,” N29, “year”}}. Nodes N31–N36 do not

54

Table 2: Data-flow based interface information for QuoteController.

Sets in Root Method Summary Interface

1 {N4} {action}

2 {N4, N6, N7} {action, age, state}

3 {N4, N25, N26, N27} {action, name, state, age}

4 {N4, N6, N7, N25, N26, N27} {action, age, state, name}

5 {N4, N25, N26, N27 N29, N30} {action, name, state, age, type, year}

6 {N4, N6, N7, N25, N26, N27 N29, N30} {action, age, state, name, type, year}

add any additional information, so Out[N36] is equal to Out[N30]. Node N38 has an

empty Gen set, therefore Out[N38] is equal to that of node N28. At node N39, the Out

set is equal to the union of the two sets in Out[N36] and the two sets in Out[N38].

Similarly, Out[N40] is equal to the union of the two sets in Out[N23] and the four

sets in Out[N38]. Nodes N41–N43 do not add any information to the Out sets, so the

Out[N44] (the exit node of service) is equal to Out[N38].

Table 2 summarizes the interface information computed as a result of running the

data-flow based approach on the example servlet, QuoteController. In the second

column (Sets in Root Method Summary), the table shows each of the six sets in the

Out set of the exit node of QuoteController’s root method, which is N44 of method

service. The third column (Interface) shows the set of names computed by running

resolve on each of the sets in the second column. Note that nodes N6, N27, and

N30, have the second argument at each callsite substituted for the placeholder in

GetNumIP’s summary.

55

5.1.2 Implementation

I developed a prototype tool, wam-df, that implements my approach for web appli-

cations developed using the JEE framework.3 As input, wam-df takes the set of Java

classes in a web application. For each servlet in the application, wam-df analyzes

its bytecode and outputs a list of the servlet’s interfaces. To generate call-graphs,

CFGs, and ICFGs, wam-df uses the soot program analysis framework.4 For re-

solving points-to information, Soot uses an implementation of the Class Hierarchy

Analysis (CHA) [22], and to compute data-dependency information, wam-df lever-

ages indus,5 a data analysis library built on top of soot. Lastly, the resolve function

that is used in Phases 1 and 2 uses the Java String Analysis (JSA) library [20] to

compute a conservative approximation of the different values a string can assume at

a given point in a program.

5.2 Symbolic Execution Based Interface Analysis

This section describes my second technique for identifying interfaces of a web applica-

tion. The primary goal of this approach is to improve the precision of the identification

of the interfaces and the interface domain constraints. To accomplish this, this tech-

nique performs a symbolic execution of a web application. The technique represents

certain types of input data to a web application as symbolic values and models in-

terface related operations during symbolic execution. The technique then uses the

results of the symbolic execution to identify the interfaces of the web application.

3http://java.sun.com/javaee/
4http://www.sable.mcgill.ca/soot/
5http://indus.projects.cis.ksu.edu/

56

5.2.1 Approach

My symbolic execution based approach for identifying the interfaces of a web appli-

cation can be broken down into three main steps. The first step performs a transfor-

mation of the web application so that name-value pairs are represented as symbolic

values and domain-constraining operations are modeled by symbolic operations. This

is done by performing a type-dependence analysis [5] on the web application to deter-

mine which operations need to be transformed. The second step symbolically executes

the web application and generates the path conditions (PCs) and symbolic state (SS)

for each component. The third step identifies the accepted interfaces and interface

domain constraints of the web application by analyzing the PCs and SSs generated

during symbolic execution.

All three steps of the algorithm are shown in Algorithm 6. Lines 1–13 show the

first step (Section 5.2.1.1), line 14 is the second step (Section 5.2.1.2), and the third

step (Section 5.2.1.3) is shown in lines 15–24. In the following sections, I explain each

of the three steps in more detail.

5.2.1.1 Step 1: Symbolic Transformation

In the first step, the approach transforms the web application so that its symbolic

execution will provide information about accepted interfaces and interface domain

constraints. Step 1 is shown in lines 1–13 of Algorithm 6. There are two parts to this

transformation. The first is to identify points in the application where symbolic val-

ues must be introduced to precisely model the application’s name-value pairs. This

is done by replacing each call to a PF with a customized version that initializes

and returns a symbolic value (lines 1–3). The second part is to identify and replace

domain-constraining operations with special symbolic operators that will appropri-

ately update the PC and SS as the application is symbolically executed. This is done

by using type-dependence analysis [5] to identify operations that need to be replaced

57

Algorithm 6 Web Application Symbolic Execution

Input: webapp: web application to analyze
Output: summary : set of tuples that contain interface definitions and IDCs

1: for all pf ∈ PF call sites of webapp do
2: pf ← reference to customized PF′

3: end for
4: operations← runTypeDependenceAnalysis(webapp)
5: for all op ∈ operations do
6: if op ∈ {>, <, 6=,≥,≤, =} then
7: op← symbolic(op)
8: else if op = equals(String) then
9: op← symbolicEquals(String)

10: else if op ∈ {Integer.parse(), Float.parse()} then
11: op← symbolicConversion(op)
12: end if
13: end for
14: symex← runSymbolicExecution(webapp)
15: for all 〈PC, SS〉 ∈ symex do
16: interface ← ∅
17: for all sn ∈ SS do
18: interface ← interface ∪ nameOf(sn)
19: end for
20: for all sn ∈ PC do
21: replace(sn, nameOf(sn))
22: end for
23: summary ← summary ∪ 〈interface, PC 〉
24: end for
25: return summary

by symbolic versions (lines 4–13). Each of these two parts are explained in more

detail below.

Introduce Symbolic Values: A straightforward symbolic execution of a web ap-

plication would not capture information related to the individual name-value pairs

accessed by the application. Since name-value pairs are passed to the application

as part of an invocation, many symbolic execution techniques would model them as

an array of symbolic characters. This could create scalability issues and would not

provide name-value pair information at the right level of abstraction. To address this

58

issue, the approach models each individual name-value pair as a symbolic value.

My approach replaces each PF with a customized version so that when the appli-

cation accesses a name-value pair, it returns a reference to a symbolic string instead

of a normal string object. The length of the value of this symbolic string is bounded

so that comparisons of its value and looping constructs over its characters are not in-

finite. The bound for this value was determined empirically by examining the subject

web applications and using the length of the longest string constant compared against.

The only imprecision introduced by this bound is that any values compared against

that are larger than the bound will not be accurately modeled by the approach. Al-

though this value was determined manually for my approach, its determination could

be automated via static analysis of the code.

Each symbolic string returned by a PF is uniquely identified by the name of the

name-value pair that was passed as an argument to the PF. This name is always

known at the time of execution, unless the name itself is also a symbolic string or it is

defined externally (e.g., in a resource file). In this case, it is not possible to determine

the name of the name-value pair, and the approach adds a constraint to the PC that

specifies that the name-value pair’s name is equal to the value of another name-value

pair or is defined externally. If a specific name-value pair is accessed more than once

along a path, a reference to the previously returned symbolic string is returned. This

is consistent with the normal behavior of the PFs, which return the same value when

called with the same name-value pair name.

Identify and Replace Domain-Constraining Operations: To accurately cap-

ture the constraints placed on name-value pair values during the symbolic execution,

the approach replaces domain-constraining operations with specialized symbolic ver-

sions. These specialized versions provide special handling for the symbolic name-value

59

pairs in addition to the normal semantics of the operation. The special handling up-

dates the PC and SS to reflect the domain constraints the operations place on the

symbolic name-value pairs.

The type of operations replaced during the transformation can vary according to

the programming language and framework utilized in the web application implemen-

tation. In general, the following type of operation are replaced with symbolic versions:

(1) string comparators, (2) functions that convert a string to an integer or float, and

(3) arithmetic comparison operations: >, <, 6=, ≥, ≤, and =. In Section 5.2.1.2, I

formally define the symbolic semantics of each of these domain-constraining opera-

tions. If a specific language or framework provides additional domain-constraining

operations, the implementation of this approach can take advantage of the additional

semantics of these operation to provide even more precise domain information.

My approach uses type-dependence analysis to identify specific instances of domain-

constraining operations in the web application that need to be replaced. Type de-

pendence analysis is a static analysis that identifies the flow of symbolic values in

software that is being transformed for symbolic execution [5]. The use of type de-

pendence analysis allows my approach to precisely replace only those operations that

could actually operate on symbolic values at runtime. By introducing symbolic oper-

ations only for instances that have a symbolic value flow to them, the overall runtime

of the analysis is reduced by avoiding unnecessary and expensive symbolic operations.

5.2.1.2 Step 2: Generating Path Conditions

In the second step, the approach generates a set of tuples of the form 〈PC, SS〉

by symbolically executing the transformed web application. Step 2 corresponds to

line 14 of Algorithm 6. For each tuple generated in this step, PC represents a family

of paths from the entry to the exit of one of the application’s web components and

SS represents the corresponding symbolic state of the web application. The symbolic

60

Table 3: Path condition and symbolic state before/after execution of symbolic oper-
ations.

(PC, state)–Before Operation (PC, state)–After

(C, SS) s = getIP(name) (C, SS[s ↪→ sname])

(C, SS[s ↪→ sname]) v = Integer.parse(s) (C ∧ type(sname) = int, SS[s ↪→ sname, v ↪→ vname])

(C, SS[s ↪→ sname]) v = Float.parse(s) (C ∧ type(sname) = float, SS[s ↪→ sname])

(C, SS[s ↪→ sn, t ↪→ tm]) if(s.equals(t)){} (C ∧ sn = tm, SS[s ↪→ sn, t ↪→ tm])
else{} (C ∧ sn 6= tm, SS[s ↪→ sn, t ↪→ tm])

(C, SS[v ↪→ vn, w ↪→ wm]) if(v ⊗ w)){} (C ∧ vn ⊗ wm, SS[v ↪→ vn, w ↪→ wm])
else{} (C ∧ ¬(vn ⊗ wm), SS[v ↪→ vn, w ↪→ wm])

execution generates these tuples by collecting constraints on the symbolic values dur-

ing execution of the component and tracking the creation of symbolic variables in

the web application. These constraints and variables are created by the operations

introduced in the first step.

To explain the details of the symbolic execution, I use the table in Figure 3. This

table formally defines the effect of different program statements on the PC and SS.

The PC is shown as a conjunction of constraints, and the SS is represented by a

valuation function SS that maps each variable in the program to its corresponding

value in the state. For example, SS[x ↪→ v] specifies that, in the symbolic state,

variable x is mapped to the symbolic value v. Symbolic values are shown with an

overline notation. Subscripts on symbolic values are used to show the name of the

name-value pair that is represented by the symbolic value. For example, saction shows

a symbolic value s that is associated with the name-value pair named “action.” In

the table, the left-hand column shows the PC and relevant parts of SS before the

operation, the middle column shows the operation, and the right-hand column shows

the PC and the relevant parts of SS after the operation.

Accessing the Name-value Pair: The symbolic execution of a PF (i.e., s =

getIP(name)) creates a symbolic string sname and assigns it to s. The access creates

61

a one-to-one mapping in SS between the name-value pair name and the symbolic

string. In the example servlet, a name-value pair is accessed at lines 1, 3, 5, 22, 23,

and 43. The execution of these lines updates the symbolic state of the program with

new symbolic strings. For example, line 4 of QuoteController (Figure 12) creates the

symbolic string saction and maps it to the variable actionValue.

Conversion to Numeric Type: When a statement of type i = Integer.parse(s)

is executed, and the value of s is a symbolic string sname, the technique updates SS

and the PC. The constraint type(sname) = int is added to the PC to record the fact

that, on the current path, the symbolic string sname is converted to an integer value.

The approach updates SS by adding a new symbolic integer vname that represents the

numeric value of the symbolic string. (In the table, the relation between the symbolic

string and symbolic integer is shown by using the same name in the subscript.) A

symbolic string can also be converted to other types, such as float. These types are

handled similarly to the case of int. A one-to-one mapping between a symbolic string

and its corresponding symbolic numeric value is maintained via the name attribute.

As a consequence, if a symbolic string is converted to a numeric value multiple times

on a path, only one symbolic value is created during the first conversion and then

reused for subsequent accesses.

In the example, every name-value pair that is accessed via getNumIP is converted

to an int by the call to Integer.parse() at line 49. For example, the call to

getNumIP at line 6 modifies the PC by adding the constraint type(sage) = int and

adds a mapping ageValue ↪→ vage to SS.

String Comparison: When a branch condition uses a symbolic string in a string

equality operation (e.g., s.equals(t)), the approach determines whether the con-

straints in the PC are sufficient to evaluate the condition. If the constraints are

62

sufficient, the approach can determine which branch to follow. Otherwise, the sym-

bolic execution follows both branches. Along the true branch, the approach conjoins

the PC with the branch condition; along the false branch, it conjoins the PC with

the negation of the branch condition.

To illustrate with an example, consider the comparison of saction at line 5. When

this comparison is evaluated, saction is not a concrete value, and the correct branch to

follow cannot be determined. Therefore, the symbolic execution follows both branches

and creates two PCs, one with the constraint saction = “CheckEligibility”, and the

other with saction 6= “CheckEligibility”. Along one of the paths reaching line 24, saction

is equal to “CheckEligibility”, so the constraint solver can evaluate this comparison

and determine that saction cannot also be equal to “QuoteInformation”. Along another

path reaching line 24, saction is not equal to “CheckEligibility”. Therefore, saction may

or may not be equal to “QuoteInformation” and, once again, two PCs are generated,

one for each branch.

Arithmetic Constraints: If an arithmetic expression of the form i⊗j is evaluated

in a predicate and one of the operands is a symbolic numeric value, the approach adds

the arithmetic constraint to the PC. Operator⊗ can be one of the following arithmetic

comparison operators: >, <, 6=, ≥, ≤, and =.

In the example servlet, an arithmetic comparison on a symbolic value occurs at

line 14. Since the value of vage cannot be determined, the result of the evaluation of

this statement is two PCs, one with the constraint as true (vage < 16) and the other

one with the constraint as false (vage ≥ 16).

5.2.1.3 Step 3: Interface Identification

In the third step, my approach identifies accepted interfaces and IDCs by analyzing

the set of tuples generated in the second step. Step 3 is shown in lines 15–24 of

Algorithm 6. The first part of Step 3 is to identify the names that define the accepted

63

interface referenced by each tuple. The intuition for this part is that each name-

value pair accessed along a path is added to SS; therefore, the unique collection of

names associated with symbolic strings in SS corresponds to the names that define an

accepted interface of the component. Lines 16–19 of Algorithm 6 compute these names

by iterating over each symbolic string (sn) in SS, identifying the name associated

with the symbolic string, and adding it to interface. The second part of Step 3 is

to identify the IDC associated with the interface. This is simply the PC with the

names of the symbolic variables rewritten to match the naming of the parameters

in interface. Lines 20–22 of Algorithm 6 perform this rewrite by iterating over each

symbolic string (sn) in the PC and replacing the reference to the symbolic string with

the name associated with the symbolic string.

SS[actionValue ↪→ saction, ageValue ↪→ sage, stateValue ↪→ sstate]

Figure 15: Symbolic state for paths that take branch 5T of QuoteController.

To illustrate with an example, consider the PC and SS of the family of paths that

take the true branch at line 5 of QuoteController (shown in Figure 12). As described

in Section 5.2.1.2, lines 4, 6, and 7 contain statements that create symbolic strings.

The relevant part of the symbolic state for this family of paths is shown in Figure 15.

Iterating over each of the symbolic strings in SS leads to the identification of action,

age, state as the parameter names that define the accepted interface.

1. saction = “CheckEligibility” ∧ type(sage) = int ∧ sage ≥ 16 ∧ sstate = “GA”

2. saction = “CheckEligibility” ∧ type(sage) = int ∧ sage < 16 ∧ sstate = “GA”

3. saction = “CheckEligibility” ∧ type(sage) = int ∧ sage ≥ 16 ∧ sstate 6= “GA”

4. saction = “CheckEligibility” ∧ type(sage) = int ∧ sage < 16 ∧ sstate 6= “GA”

Figure 16: Path conditions for paths that take branch 5T of QuoteController.

Figure 16 shows the path conditions for paths that take the true branch at line 5

of QuoteController. By iterating over each of the symbolic strings in each of the four

64

path conditions and performing the rewrite of their name, the four interface domain

constraints shown in Figure 17 are generated.

1. action = “CheckEligibility” ∧ type(age) = int ∧ age ≥ 16 ∧ state = “GA”

2. action = “CheckEligibility” ∧ type(age) = int ∧ age < 16 ∧ state = “GA”

3. action = “CheckEligibility” ∧ type(age) = int ∧ age ≥ 16 ∧ state 6= “GA”

4. action = “CheckEligibility” ∧ type(age) = int ∧ age < 16 ∧ state 6= “GA”

Figure 17: IDCs for the paths that take branch 5T of QuoteController.

5.2.2 Implementation

I developed a prototype tool called wam-se (Web Application Modeling with Sym-

bolic Execution) that implements my symbolic execution based approach. wam-se is

written in Java and implements the approach for web applications written in the Java

Enterprise Edition (JEE) framework. The implementation consists of three modules,

transform, se engine, and pc analysis, which correspond to the three steps of

the approach.

The transform module implements the symbolic transformation described in Sec-

tion 5.2.1.1. The input to this module is the bytecode of the web application and

the specification of program entities to be considered symbolic (in this case, sym-

bolic strings). The module transforms the application to introduce symbolic values

and replaces domain-constraining operations with their special symbolic counterparts.

The output of the module is the transformed web application, which is ready to be

symbolically executed in Step 2.

To perform the transformation, I use Stinger, a previously developed technique

and tool [6]. Stinger identifies points in an application where symbolic values are

introduced. It then analyzes the code to determine which operations and types in the

code may interact with the symbolic values and transforms them into their symbolic

65

counterparts. A benefit of using Stinger is that it allows the approach to only translate

types and operations that should be symbolic and avoid the unnecessary overhead

that would be introduced by transforming the entire application.

To specify the program entities to be considered symbolic, I built a customized

version of the JEE libraries. This version creates a new symbolic string for a name-

value pair when a PF function in the JEE library is symbolically executed. I made

two main customizations: (1) the definition and implementation of a symbolic string

class for Java, and (2) the rewrite and modification of all PFs so that they return a

symbolic representation of each accessed name-value pair. The symbolic string is im-

plemented as an extension to the normal Java String class with overridden member

functions to account for the different semantics of a symbolic string. Currently, the

only string operator modeled by my implementation is string equality, which includes

equality between two symbolic strings, two constant strings, or a constant string and

a symbolic string. Constraints involving more complex operations, such as matching

of regular expressions, are not handled by the symbolic execution and undelrying

constraint solver. Extending the technique to model these types of constraints using

specializing string constraint solvers, such as HAMPI [46], would increase the pre-

cision of the IDCs, but would also increase the cost of the constraint solving. My

examination of subject applications suggests that the increase in code coverage would

be minimal with this extension.

The modified PFs, when accessed, create a symbolic string, associate the name

of the accessed name-value pair with the symbolic string, and maintain a map of

names to symbolic values to ensure that the same symbolic value is returned when a

name-value pair name is accessed multiple times. Along with these customizations, I

also implemented symbolic versions of the numeric conversion functions. No further

implementation was necessary to handle arithmetic operations, as symbolic versions

of these operations are provided by the underlying symbolic execution engine.

66

Stinger also identifies two types of situations in the code that might cause problems

for the symbolic execution: (1) constraints that cannot be handled by the underlying

decision procedure, and (2) symbolic values that may flow outside the scope of the

symbolically executed code (e.g., to native code). For the first situation, a limitation

of the underlying decision procedure that I used was that it could not handle symbolic

floating point values. When Stinger detected floating point values and operations

that needed to be replaced, I rewrote the code in the applications so that the same

operations were expressed in terms of integer values. This occurred in several of the

applications I used for my evaluation and involved rewriting predicates of the form

“value⊗X.0” to “value⊗X,” where ⊗ is any of the arithmetic operators and X is

some integer value. In several of the subject applications, the use of floating point

values was integral to the correct semantics of the application and was extensive

throughout the application. This prevented me from easily making similar changes

and meant that it was not possible to run the symbolic execution based approach

on these applications. There were no other types of constraints present in the web

applications that could not be handled by the decision procedure. Almost all of

the constraints that did involve symbolic name-value pair values were fairly small

(2 – 4 conditions) and typically only involved numeric equality, string equality, or a

numeric conversion. For the second potentially problematic situation, I found that

although there was extensive use of external libraries in the subject applications, for

the most part, none of the symbolic values flowed into these libraries. For two of

the applications, however, the symbolic values were passed to external libraries that

could not be transformed and it was not possible to run the symbolic execution based

approach on these applications.

The se engine module implements the symbolic execution described in Sec-

tion 5.2.1.2. The input to this module is the bytecode of the transformed web ap-

plication, and the output is the set of all PCs and corresponding symbolic states for

67

each component in the application. To implement the symbolic execution, wam-se

leverages a symbolic execution engine [45] built on top of Java Path Finder (JPF) [91]

and the YICES6 constraint solver. JPF is an explicit-state model checker for Java

programs that supports all features of Java. JPF explores all program paths systemat-

ically, when it reaches the end of the program it backtracks to every non-deterministic

branch on the path and explores other paths from that branch. This process continues

until every path in the program has been explored. The symbolic execution engine

handles recursive data structures, arrays, numeric data, and concurrency. If the sat-

isfiability of the path condition cannot be determined, as the problem of checking

satisfiability is undecidable in general, JPF assumes that both branches are feasible.

This is a safe way to handle the situation, but can reduce the precision of the analysis.

The pc analysis module implements the analysis described in Section 5.2.1.3. The

input to this module is the set of PCs and SSs for each component in the application,

and the output is the set of IDCs and accepted interfaces. The module iterates over

every PC and SS, identifies the accepted interfaces, and associates the constraints on

each name-value pair with its corresponding accepted interface.

5.3 Comparison of Interface Analysis Approaches

The two approaches to interface analysis each have benefits and drawbacks to their

usage. In this section, I contrast the two approaches and discuss their benefits and

drawbacks in terms of their usefulness and applicability.

The first technique for interface identification is based on iterative data flow analy-

sis. The primary benefit of this technique is that it can be used to analyze almost any

web application. To use the technique, the basic requirement is that the web applica-

tion must use a framework that provides an identifiable PF for accessing name-value

pairs. Since almost all frameworks define a set of PFs, in practice, this technique is

6http://yices.csl.sri.com/

68

widely applicable. However, there are two issues that can affect the usefulness of the

information generated by the approach:

1. The technique computes a conservative over-approximation of the interfaces of a

web application. The underlying cause of this over approximation is infeasible

paths. The technique propagates data-flow information over all paths in the

control flow graph, regardless of whether the paths are feasible. This means

that if there are infeasible paths in the code of the web application and interface

elements are accessed along parts of those paths, the results of the analysis

could contain infeasible interfaces. As the empirical results presented later in

the dissertation show, for some types of quality assurance techniques, the over

approximation of the interfaces can lead to: (1) inefficiencies when the infeasible

interface information causes extra test cases to be generated or analysis to

be performed, and (2) incorrect results in quality assurance techniques that

assume the interface identification is precise. These problems are particularly

pronounced for applications with a high number of infeasible paths.

2. The domain information identified by the data flow based technique is associated

on a per-PF-callsite basis. This type of association means that all name-value

pairs accessed through the same PF are assigned the same domain information.

The reason this occurs is that the computation of the domain information fol-

lows all sequences of definitions and uses originating from the PF call and does

not distinguish the domain information on a per-path basis. Although copying

annotation summary information provides context sensitivity to the domain in-

formation, the net effect is still that a name-value pair can be assigned overly

conservative domain information. Case in point, for QuoteController in Fig-

ure 12, the name-value pair named action is assigned the relevant values of

69

“checkeligibility” and “register.” Although this is a safe approximation, cor-

relating the domain information with a specific path would be more precise.

This issue can also lead to inefficiencies and incorrect results for certain qual-

ity assurance techniques. This effect is higher for applications whose interface

domain constraints vary significantly along different paths.

My second approach for interface identification, which is based on symbolic execu-

tion, is designed to address the limitations in precision introduced by infeasible paths.

The use of symbolic execution allows the second approach to identify some infeasible

paths and, consequently, not calculate interface information along those paths. It also

allows the approach to associate domain information on a per path basis as opposed

to associating it with a specific PF callsite. However, there are several issues that

may arise that can prevent the symbolic execution based approach from being applied

as easily as the data-flow based approach:

1. For some web applications, it might not be possible to perform the symbolic

transformation step. Although in most cases the transformation can be done au-

tomatically, certain cases can prevent it from completing successfully. Namely,

these cases are when symbolic values flow to external libraries or are used in

constraints that can’t be handled by the underlying constraint solver. (See Sec-

tion 5.2.1.1) If the analysis identifies these special cases, developer intervention

is required. The intervention could range from a simple change in the code to

the development of stubbed symbolic methods, which might be time consuming

and error prone for developers.

2. Path conditions whose truth value cannot be determined by the constraint

solver. In these cases, my approach treats both paths as if they were feasible.

Although this is safe, it can introduce imprecision into the results. However,

70

Table 4: Comparison of interface analysis statistics.

Subject
Interfaces Domain Constraints Time (s)
DF SE DF SE DF SE

Bookstore 338 70 527,517 10,611 2,322 1,479

Checkers 37 - 44 - 160 -

Classifieds 222 41 92,470 3,954 1,797 766

Daffodil 101 - 1012 - 1,271 -

Employee Directory 88 18 1,426,884 3,764 741 905

Events 118 25 74,809 1,724 333 586

Filelister 31 - 32 - 248 -

Office Talk 54 - 80 - 207 -

Portal 322 51 29,444,929 11,217 988 1,528

unless all paths with interface information contain branch conditions that can-

not be satisfied, this approach is still more precise than the data-flow based

approach. In the worst case, this approach would be no less precise than the

data-flow based approach.

3. Large web applications can cause scalability problems. Although, most web ap-

plications are highly modular, with each module well within the size that most

modern symbolic engines can handle efficiently, applications could have unusu-

ally large modules, which could cause the symbolic execution based approach to

take significantly longer. It is possible that this increase in analysis time would

make the technique impractical for these applications.

For the purpose of quantitatively comparing the two interface analysis approaches,

I ran both on the subject applications introduced in Chapter 3. Table 4 shows a sum-

mary of the interface information identified by the data-flow (DF) and symbolic exe-

cution (SE) based approaches. The table shows comparisons based on the number of

71

interfaces discovered by each approach(Interfaces), the number of domain constraints

(Domain Constraints) identified for the interfaces, and the analysis time in seconds

(Time (s)) for each application. It was not possible to analyze four applications us-

ing the symbolic execution based approach. These applications either had symbolic

values that flowed to external libraries that could not be modified or the applications

placed constraints on the symbolic values that could not be handled by the YICES

constraint solver. The corresponding data points for these applications are shown as

a dash (-) symbol. The results in the table indicate three noteworthy observations.

1. The symbolic execution based approach discovers fewer interfaces than the data-

flow based approach. Although the discovery of more interfaces is generally good

for quality assurance purposes, in this case the data-flow based technique’s num-

ber reflects the presence of spurious interfaces. I determined this by inspecting

the interfaces reported by both approaches for one of the subjects, Bookstore.

For this subject, the difference of the two sets was comprised exclusively of in-

terfaces that corresponded to infeasible paths. The specific effect of the spurious

interface information varies by its application. However, in general spurious in-

terfaces can result in inefficiencies for quality assurance techniques that perform

analysis on each discovered interface.

2. The number of IDCs is substantially lower for the symbolic execution approach.

This is significant because quality assurance techniques, such as test-input gen-

eration, directly use the IDCs to generate test cases. If a significant number

of these IDCs relate to infeasible paths, then a significant number of the test-

inputs are not likely to add additional coverage or fault detection ability to

their test suites. This difference in the number of IDCs also reflects the effect

of path-sensitive domain information. Since the data-flow based approach does

72

not track domain information in a path-sensitive manner, the number of possi-

ble IDCs is actually the Cartesian product of every possible domain constraint

on each parameter in an interface. As can be seen in the table, this number can

grow to be very large.

3. The analysis time for the symbolic execution based approach is comparable in

analysis time to the data-flow based approach. This seems counter-intuitive

since symbolic execution is a notoriously expensive analysis; however, there are

several factors that contribute to this result. First, the subject applications

contain a high number of infeasible paths, which indicates the possibility that

the time to propagate data-flow information along the extra infeasible paths is

higher than the cost of the constraint solving that determines the path is in-

feasible. Second, as compared to typical symbolic execution, my approach only

symbolically models the name-value pairs, and there are not many constraints

that involve name-value pairs (2–4 per name-value pair in my subjects). This

means that the path conditions generated by the symbolic execution tend to be

relatively small and can be solved quickly by the constraint solver. Third, the

implementation of the data-flow based approach is a prototype, whereas Stinger

and JPF are more mature and have been optimized for performance. Fourth,

as compared to traditional software, web applications do not cause as many

scalability problems for symbolic execution. Web applications are highly mod-

ular, components can be analyzed independently to identify interfaces, and the

size of a typical component is generally no more than several thousand lines of

code, which can be handled efficiently by most modern symbolic execution im-

plementations. Lastly, my approach models the name-value pairs at the string

level, which reduces the total number of constraints that would otherwise be

generated by modeling the name-value pairs at the character level.

73

Both approaches to interface analysis identify the names of parameters that make

up an interface and domain information about those parameters. As the results

presented later in the dissertation will show, information from either approach is

useful for improving quality assurance techniques; however, each approach has its

own strengths. The approach based on data-flow analysis is widely applicable and

can be used for most all web applications. The symbolic execution based approach

can increase the precision of the interface information, but could potentially require

more developer intervention to run successfully.

74

CHAPTER VI

COMPONENT OUTPUT ANALYSIS

Accounting for the semantics of a component’s output is important for understand-

ing the overall behavior of a web application. Component output, which is trans-

mitted over Hyper Text Transfer Protocol (HTTP), generally comprises web pages

that contain Hyper-Text Markup Language (HTML), images, and client-side scripts.

Together, these elements create a generated object program that is then interpreted

and displayed by the end user’s client system (e.g., browser). By interacting with

these object programs, an end user can make requests to the application and, via

web forms, supply data for invocations. This gives the generated object programs

an important role in defining the overall functionality of a web application. Because

this role can often represent a considerable portion of the functionality of a web ap-

plication, it is important to include the generated object programs’ semantics when

considering the behavior of a web application.

Identifying the content and structure of a component’s generated object programs

is a challenging task. Part of the reason for this is that many modern web appli-

cations generate their content at runtime. This practice has the benefit of allowing

developers to generate customized content for end users, but it also complicates the

identification of the object programs because their content can vary significantly be-

tween executions. Although a careful manual inspection could identify the structure

and content of the generated programs, there are many characteristics of modern

web applications that preclude the widespread application of this technique. The

first characteristic is that component output is often generated using complex string

operations that combine data from multiple sources. This makes it complicated to

75

accurately identify the content that is outputted by a statement in a component.

The second characteristic is that the structure of the output can vary along different

control flow paths. This means that manual inspection must account for the differ-

ent ways that output-generating statements can combine their output along different

paths. The third challenge is one of scalability. A large component can have several

thousand lines of code, of which a significant majority can generate output or mod-

ify data that eventually becomes part of the component’s output. This means that

manual inspection must be able to track operations involving a large combination of

different output-generating statements. Taken together, these characteristics make it

difficult to identify object programs through manual inspection and suggest that the

use of automated analyses is more appropriate.

Despite the importance of identifying a component’s output, there has only been

sporadic attention devoted by the research community to this problem. Early tech-

niques relied on web crawling to identify an application’s web pages. These techniques

were sufficient for early web applications, whose content was composed primarily of

static HTML pages. However, they are generally incomplete for modern web ap-

plications that generate content dynamically. Other techniques attempt to address

this problem for web applications written in specialized language frameworks such as

<bigwig> [15]. The limitation of these types of approaches is that they are only appli-

cable for certain frameworks and generally do not translate well to web applications

written in more general purpose languages. One technique uses a context-free gram-

mar to estimate the possible HTML pages that could be generated by a component,

but the technique is not easily applied to a wide variety of web applications [58].

More recent work has utilized concolic execution to identify component output in

PHP-based web applications [10]. For applications that are analyzable using this ap-

proach, this is a very effective technique. However, typical problems associated with

concolic execution, such as path explosion and constraints that cannot be handled

76

by the underlying constraint solver, can limit the type of applications that can be

analyzed.

My analysis technique provides a way to conservatively identify the output of a web

component. The technique can handle dynamic generation of HTML content and can

be easily applied to a wide variety of web applications. The basic mechanism of the

technique is to perform an iterative data-flow analysis over the control-flow graph of

a web application and identify sets of statements that can generate HTML along each

path. These sets are then analyzed to identify their generated HTML output using

two specialized techniques: Fragment Filtering and HTML Fragment Resolution. An

additional feature of the technique is that it provides customization points, which

allows the analysis to be used to identify only certain HTML elements of interest.

For my dissertation work, I customize the analysis to allow for the identification of

links and web forms that could be part of a component’s HTML output.

The organization of the rest of this chapter is as follows: Section 6.1 describes the

various algorithms and supporting analyses that make up the Component Output

Analysis. The customizations to identify links and web forms are discussed in Sec-

tion 6.2. Both the main algorithms and the customizations are illustrated using the

example web application from Chapter 2. The implementation details are presented

in Section 6.3, and I discuss limitations of the analysis in Section 6.4.

6.1 Component Output Analysis Algorithms

The goal of the component output analysis is to compute the set of HTML pages that

can be generated by a component. To make the approach practical, the technique

relies on a worklist-based data-flow analysis and a modular analysis based on the use

of method summaries that represent the HTML fragments generated by the method.

The basic idea is to analyze each method, or group of strongly connected methods,

of the component. The strongly connected components that are greater than size

77

one represent methods that recursively call each other. Each of these is treated

as one “super-method” and its methods are analyzed together. The methods are

analyzed in reverse topological order with respect to the call graph to ensure that a

method’s summary is computed before its summary is needed. The use of method

summaries provides two benefits. They allow the technique to analyze each method

once and then use the method summary whenever the method is called again and

they provide context sensitivity to the analysis. Iterative data-flow analysis is used

within each method (or set of methods mutually involved in recursion) to compute

summary information [48]. The analysis also provides a “plug-in” point that allows it

to be customized to identify specific types of HTML elements. This “plug-in point”

is implemented via a process called Fragment Filtering. Aside from allowing for

customization of the analysis, Fragment Filtering also provides a way to reduce the

size of the method summaries since HTML fragments can be minimized to remove

content unrelated to the elements of interest. At the end of the analysis of a web

component, the summaries of its root methods represent a conservative approximation

of the pages that can be generated by the component (minus content removed by

Fragment Filtering). This set of pages is then analyzed by an HTML parser to

extract the elements of interest.

The runtime complexity and convergence of the Component Output Analysis are

similar to those of wam-df in Section 5.1.1, since both are based on iterative data-

flow analysis. The core of the Component Output Analysis is the iterative data-flow

analysis that summarizes each method of the web application. This analysis converges

for two reasons: (1) The value domain for the sets in the data flow equations is finite,

as it can only include those nodes that either directly or indirectly generate output

(which is at most the number of nodes n in the web application’s ICFG); and (2)

the transfer function is monotonic because no values are removed from the calculated

data-flow sets. The runtime complexity of this analysis is dependent on the number

78

Algorithm 7 ExtractPages

Input: CG: call graph of the web component
Output: content: component’s generated content

1: SCC ← set of strongly connected methods in CG
2: for all mset ∈ SCC, in reverse topological order do
3: summary ← SummarizeMethod(mset)
4: for all m ∈ mset do
5: associate summary to method m
6: end for
7: end for
8: pages← summaries of component’s root method
9: content← extractContent(pages)

10: return content

of nested loops in the code [44]. The number of nested loops is, in the worst case,

equivalent to the number of nodes n in the web application’s ICFG. Additionally,

each nested loop could cause the analysis to iterate over each of the nodes in the

ICFG. Therefore, the runtime complexity is O(n2). I assume the nodes are processed

in reverse postorder.

One important additional cost not included in the this runtime complexity is the

cost of the HTML Fragment Resolution. The string analysis used by this analysis

can vary widely in its runtime cost. Section 6.1.2 explains the HTML Fragment

Resolution and its complexity in more detail.

In the following sections, I present the algorithms for computing a component’s

output in detail. The algorithms that are at the core of the technique are presented

in Sections 6.1.1, 6.1.2, and 6.1.3. Section 6.1.4 illustrates the algorithms using the

running example.

6.1.1 Main Algorithm

Algorithm 7 shows ExtractPages, which initializes the algorithm’s data structures

and calls SummarizeMethod for each method set in the current component. The

input to ExtractPages is the call graph (CG) of the component to be analyzed, and

79

Algorithm 8 SummarizeMethod
Input: methodset: set of methods
Output: summary: summary of methods in methodset
1: N ←

⋃
m∈methodset nodes in m’s CFG

2: worklist← {}
3: for all n ∈N do
4: if n is the method entry point then
5: Gen[n] ← {{}}
6: Out[n] ← Gen[n]
7: worklist← worklist ∪ succ(n)
8: else if n writes to the component’s output stream then
9: Gen[n] ← {n}

10: else if n is a callsite AND target(n) has a summary then
11: Gen[n] ← {n}
12: else
13: Gen[n] ← ∅
14: end if
15: end for
16: while |worklist| 6= 0 do
17: n← first element in worklist
18: In[n]←

⋃
p∈pred(n)Out[p]

19: Out′ ← {}
20: for all i ∈ In[n] do
21: Out′ ← Out′ ∪ {append(i, Gen[n])}
22: end for
23: if Out′ 6= Out[n] then
24: Out[n] ← Out′

25: if n is a callsite AND target(n) ∈ methodset then
26: worklist← worklist ∪ entry node of target(n)
27: else
28: worklist← worklist ∪ succ(n)
29: end if
30: end if
31: end while
32: summary ← {}
33: for all m ∈ methodset do
34: for all nodeset ∈ Out[m’s exit node] do
35: htmlfragments← {}
36: for all n ∈ nodeset do
37: generatedstrings← resolve(n)
38: htmlfragments← htmlfragments× generatedstrings
39: htmlfragments← reduce(htmlfragments)
40: end for
41: summary ← summary ∪ htmlfragments
42: end for
43: end for
44: return summary

80

the output is the output generated by the component. To begin the analysis, Ex-

tractPages identifies the sets of strongly connected components in the CG and assigns

them to SCC (line 1). All nodes in CG are in SCC as either a singleton set (i.e., a

strongly connected component of size one) or as a member of a set of methods that

make up a strongly connected component of size greater than one. ExtractPages then

calls SummarizeMethod for each method set in SCC in reverse topological order with

respect to the call graph (lines 2–7). Reverse topological ordering ensures that each

method set is summarized before any method calls it. Each method in the method

set is assigned the summary returned by SummarizeMethod (lines 4–6). Finally, Ex-

tractPages passes the summaries of the root methods to an HTML parser to identify

the content of interest (line 8–10).

Algorithm 8 shows SummarizeMethod, which computes the summaries for each

method set. The input to SummarizeMethod is methodset, which contains the set of

methods to analyze and summarize. After completing the analysis SummarizeMethod

associates the computed summary with the methods in methodset. Each method

summary created by the algorithm is comprised of a set of strings that represent

the distinct page fragments generated by the method. A page fragment represents

HTML content that could be generated by an invocation of the associated method.

It is comprised of HTML tags and placeholders for content that cannot be resolved

within the method (see Section 6.1.2).

In the description of the algorithms, I assume the availability of several standard

helper functions that operate on a node n of a method’s control-flow graph (CFG):

target(n) returns the methods called at a call site n; succ(n) returns all successors of

n in n’s CFG; and pred(n) returns all predecessors of n in n’s CFG. Additionally, I

assume that the CFG for a given method is globally available.

SummarizeMethod first initializes the algorithm’s data structures. Set N is ini-

tialized with all of the nodes of the methods in methodset (line 1). For each node n

81

in N , the algorithm initializes Gen[n] in one of several ways, depending on the con-

tribution n makes to the HTML page generated by the component. If n is a method

entry point, Gen[n] is initialized to contain the empty set, and n’s successor nodes

are added to the worklist for later processing (lines 4–7). If n contains a call to either

a function that writes to the component’s output stream or a function with a sum-

mary, Gen[n] is initialized with n itself (lines 8–11). Lastly, if none of the previous

conditions hold, Gen[n] is empty (line 13).

After initializing the Gen set, SummarizeMethod processes each node n in the

worklist (lines 16–31). The processing begins by calculating In[n] as the union of

the Out sets of n’s predecessors (line 18). SummarizeMethod then computes Out′ by

appending the contents of Gen[n] to each set in In[n] (lines 19–22) and compares the

value of Out′ against its old value (line 23). If no change has occurred, the processing

of n is done, and the next node in the worklist is processed. If the value has changed,

Out[n] is updated (line 24), and the successors of n are added to the the worklist.

If n is a callsite and its target is one of the other methods in methodset, then the

entry node of the target is added to the worklist (lines 25–26). Otherwise, the nodes

returned by succ(n) are added to the worklist (line 27). The processing of the nodes

continues in this manner until the worklist is empty.

After processing the worklist, SummarizeMethod translates the ordered sets of

nodes into page fragments. For each method m in methodset, SummarizeMethod

iterates over the Out set associated with the exit node of m (lines 33–43). Each

element of Out is an ordered set, nodeset, which contains nodes that generate HTML

along a path in the method’s CFG. For each node n in nodeset, the algorithm does the

following: (1) calls resolve to perform HTML fragment resolution (see Section 6.1.2),

which determines the HTML fragments contributed by the node (line 37), (2) appends

the node’s HTML content to the HTML content generated by the previous nodes in

nodeset (line 38), and (3) calls function reduce (line 39) to perform Fragment Filtering

82

on the HTML fragments, which removes HTML tags that do not contribute to the

definition of the HTML elements of interest (see Section 6.1.3). Finally, at line 44,

SummarizeMethod returns the summary associated with methodset. Note that all

methods in methodset have the same summary.

6.1.2 HTML Fragment Resolution

The process of HTML fragment resolution determines the HTML content contributed

by a given node in the CFG of a web component. This process uses a string analysis

based on the Java String Analysis (JSA) package developed by Christensen, Møller,

and Schwartzbach [20]. The JSA takes as input a reference to a string variable at a

given point in an application and computes a conservative approximation of the values

the string variable can assume at that point. The analysis is performed by analyzing

the control and data flow of the application and modeling the string manipulation

operations performed on the string variable. My string analysis is based on JSA, but

is limited in scope to the method that contains the reference to the string variable. If

a string variable is partially defined by one of the method’s parameters or by a global

variable,1 a placeholder is inserted into the computed string value. A placeholder is

a marker that specifies which of the method’s formal parameters should be used to

complete the string value when the method is called at a specific callsite. The use of

placeholders makes the string analysis context-sensitive; at each callsite, the value of

the unknown parameter is substituted in to more accurately calculate the potential

values of the string variable.

In the output analysis, HTML fragment resolution is implemented by function

resolve, which is called at line 37 of SummarizeMethod. Function resolve takes a

node n as input and returns a set of strings (possibly with placeholders) that represent

the HTML fragments contributed by the node. The resolution of n proceeds in one of

1The analysis treats globals as additional parameters.

83

two ways depending on whether n writes data to the component’s output stream or

calls a method that is associated with a summary. In the first case, if n writes data to

the output stream, resolve runs the string analysis on the argument that contains

the data to be written. Function resolve returns the set of strings computed by

the string analysis as n’s contributed HTML content. In the second case, if n calls a

method with a summary, resolve retrieves the summary associated with the target

method of n. If the summary contains any placeholders, resolve runs the string

analysis on the corresponding arguments provided by the callsite and replaces the

placeholders with the results of the string analysis. Function resolve then returns

the substituted strings as n’s contributed HTML content.

In some cases, a placeholder cannot be resolved even after processing the root

method of a component. This happens when the placeholder represents external

input to the component, such as user input or data read from a file. In this scenario,

the analysis assumes that it can ignore the placeholder but generates a warning to

notify developers of the situation. This assumption is unsafe only in cases where

external input could contain HTML that affects the definition of interface-related

tags. However, this assumption is rarely violated, since it could lead to a Cross Site

Scripting (XSS) vulnerability, and it did not occur for any of the analyzed subjects

in my evaluation. Moreover, if needed, it would be straightforward to incorporate a

mechanism that lets developers specify the possible content of external fragments.

The resolve function’s complexity varies significantly. When it is necessary to

run the string analysis on a node, determining the possible string values can be

done in several ways: (1) In the most common case, the string variable is defined

by a string constant and the lookup of that value is an O(1) operation; (2) when

the value is defined by a formal parameter, in the worst case the exploration of

the sequence of definitions and uses covers every node in the method, which can be

bounded by O(n), where n is the number of nodes in the CFG; and (3) when the

84

string variable is defined by a complex string expression extracting the automaton

that represents the possible values of a string expression can be doubly exponential

(i.e., O(abn
)) [20]. However, this worst case corresponds to a program that modifies

the string expression and branches in every statement. In most cases, the actual

runtime is O(n) since most string expressions are simple linear concatenations of string

constants. One possible optimization for the analysis is to precompute and cache the

string values that correspond to each string variable. This reduces the actual runtime

of the analysis and makes each string resolution an O(1) operation. However, in

practice this optimization was not needed, and all of the runtime measurements of

the analysis include the string resolution.

6.1.3 Fragment Filtering

Fragment Filtering reduces the amount of string data that must be stored and prop-

agated by the analysis. In the output analysis, Fragment Filtering is implemented by

function reduce, which is called at line 39 of algorithm SummarizeMethod. Function

reduce takes an HTML fragment as input and returns an HTML fragment from which

irrelevant tags have been removed.

The motivation for Fragment Filtering is that storing all HTML fragments that

can be generated by a component creates a high memory overhead for the analysis.

One insight that allows for the reduction of the overhead is that many of the HTML

fragments contain tags that do not affect the HTML elements of interest and are only

used to display text or visually enhance a web page. Examples of these tags include

, <hr>, and
. Such tags occur frequently, and can be removed from the

propagated strings without affecting the analysis results.

The reduce function uses a customized HTML parser to identify HTML tags in

the input strings and then remove tags that do not contribute to the definition of the

HTML elements of interest. In order to be safe, reduce only removes tags that can

85

be completely identified in the parsed string and that do not involve the use of any

placeholders introduced by the resolve function. These two conditions are necessary

in order to avoid removing tags that are either only partially completed because their

construction spans several nodes or whose final structure may vary once a placeholder

has been resolved. Note that the specific tags removed by reduce can be customized

depending on the definition of the HTML elements of interest.

My experience with Fragment Filtering revealed that in addition to the size reduc-

tion of each string, eliminating tags also helps to expose duplicate fragments. This

happens because many of the propagated strings vary only in the substrings that

define tags unrelated to the HTML elements of interest. When these tags are elimi-

nated, the strings contain the same tags, and the duplicate entries can be eliminated.

Since line 38 of SummarizeMethod computes the Cartesian product of the propagated

strings, this results in significant savings. Case in point, the analysis of one large web

component without Fragment Filtering produced almost 23 million page variations.

By employing Fragment Filtering, this number was reduced to less than 4,500.

6.1.4 Illustration with Example

I illustrate the output analysis using GetQuoteDetails. The source code of GetQuot-

eDetails is shown in Figure 18.2 For the purpose of the illustration, instead of refer-

ring to the ICFG of GetQuoteDetails, I use GetQuoteDetails’s line numbers to denote

nodes. In the subsequent explanation, I distinguish lines of the algorithm and nodes

by referring to each line n in the algorithm as An and each node n in the example as

Nn. GetQuoteDetails has a simple structure, so manual inspection reveals that there

are two paths through the component; one that causes the content at nodes N11–N13

to be output and one that omits these nodes. The result of running the analysis on

GetQuoteDetails identifies these two different pages produced by the component.

2This figure is a duplicate of Figure 10. It is reproduced here to make referencing easier for
readers.

86

1 public f ina l class GetQuoteDeta i l s j sp extends HttpJspPage {
2 public void j s p S e r v i c e (HttpServ letRequest request , HttpServletResponse re sponse)

{
3 int ageValue = getNumIP(request , ”age ”) ;
4 St r ing stateValue = getIP (request , ” s t a t e ”) ;
5 re sponse . out . wr i t e (”<html><body><h1>Get Quote Deta i l s </h1>”) ;
6 re sponse . out . wr i t e (”<form ac t i on =\”QuoteContro l l e r \” method=\”Get\”>”) ;
7 re sponse . out . wr i t e (”<input type=text name=name>”) ;
8 re sponse . out . wr i t e (”<input type=text name=type>”) ;
9 re sponse . out . wr i t e (”<input type=text name=year>”) ;

10 i f (ageValue <= 25) {
11 re sponse . out . wr i t e (”<t ex ta r ea name=inc iden t s >”) ;
12 re sponse . out . wr i t e (” L i s t prev ious a c c i d e n t s and moving v i o l a t i o n s here . ”) ;
13 re sponse . out . wr i t e (”</textarea >”) ;
14 }
15 re sponse . out . wr i t e (”<input type=hidden name=\” s t a t e \” value=” + stateValue + ”>

”) ;
16 re sponse . out . wr i t e (”<input type=hidden name=\”age \” value=” + ageValue + ”>”) ;
17 re sponse . out . wr i t e (”<input type=hidden name=QuoteInformation value=\”

GetQuoteDetai ls\”>”) ;
18 re sponse . out . wr i t e (”<input type=submit>”) ;
19 re sponse . out . wr i t e (”</form>”) ;
20 re sponse . out . wr i t e (”</body></html>”) ;
21 }
22 }

Figure 18: Implementation of servlet GetQuoteDetails.

Analysis begins with ExtractPages. Since there is only one method in GetQuot-

eDetails, SummarizeMethod is called as follows: SummarizeMethod({ jspService}).

After initializing the algorithm’s data structures (lines A1 and A2), the analysis of

jspService iterates over each node in the method and initializes its Gen set. The

condition at line A1 applies to node N3 of the example, so its Gen set is {{}}, and

its successor, node N4, is added to the worklist. Nodes N5–N9, N11–N13, and N15–N20

all write to the component’s output stream, so the condition at line A8 is true, and

each node’s Gen set is initialized to a set that contains a reference to itself. Nodes

N4, N10, and N14’s Gen sets are initialized to the empty set.

Table 5 shows the values of the Gen[Nn] and Out[Nn] sets for each node in

GetQuoteDetails after the computation at lines A16–A31. Note that the original value

of each node’s Out set is the empty set, except for node N3, which has its Out set

initialized at line A6. As I explain the next part of SummarizeMethod, I reference

the values in this table instead of repeating them in the text.

87

Table 5: Gen and Out sets for the nodes of servlet GetQuoteDetails.

Node Gen Set Out Set

N3 {{}} {{}}

N4 ∅ {{}}

N5 {N5} {{N5}}

N6 {N6} {{N5, N6}}

N7 {N7} {{N5, N6, N7}}

N8 {N8} {{N5, N6, N7, N8}}

N9 {N9} {{N5, N6, N7, N8, N9}}

N10 ∅ {{N5, N6, N7, N8, N9}}

N11 {N11} {N5, N6, N7, N8, N9, N11}}

N12 {N12} {N5, N6, N7, N8, N9, N11, N12}}

N13 {N13} {N5, N6, N7, N8, N9, N11, N12, N13}}

N14 ∅ {N5, N6, N7, N8, N9, N11, N12, N13}}

N15 {N15} {{N5, N6, N7, N8, N9, N15}, {N5, N6, N7, N8, N9, N11, N12,
N13, N15}}

N16 {N16} {{N5, N6, N7, N8, N9, N15, N16}, {N5, N6, N7, N8, N9, N11,
N12, N13, N15, N16}}

N17 {N17} {{N5, N6, N7, N8, N9, N15, N16, N17}, {N5, N6, N7, N8, N9,
N11, N12, N13, N15, N16, N17}}

N18 {N18} {{N5, N6, N7, N8, N9, N15, N16, N17, N18}, {N5, N6, N7, N8,
N9, N11, N12, N13, N15, N16, N17, N18}}

N19 {N19} {{N5, N6, N7, N8, N9, N15, N16, N17, N18, N19}, {N5, N6, N7,
N8, N9, N11, N12, N13, N15, N16, N17, N18, N19}}

N20 {N20} {{N5, N6, N7, N8, N9, N15, N16, N17, N18, N19, N20}, {N5,
N6, N7, N8, N9, N11, N12, N13, N15, N16, N17, N18, N19, N20}}

88

The main iterative portion of SummarizeMethod begins at line A16 by accessing

the first node in worklist, which is node N4. The In set of node N4 is the union of its

predecessors’ Out sets. Node N3 is the only predecessor, so In[N4] is equal to Out[N3].

Since Gen[N4] is the empty set, after the computation at line A22, Out′ is also {{}}.

The value of Out[N4] is updated, and node N4’s successor, node N5, is added to the

worklist. In[N5] is equal to Out[N4]. Since Gen[N5] contains a reference to itself,

the computation at lines A20–A22 sets Out′ to {{N5}}. Out[N5] is updated, and its

successor, node N6, is added to the worklist. The computation of the Out sets for

nodes N6–N9 proceeds similarly, each adding its Gen set to the previous In set. After

updating Out[N9], node N10 is added to the worklist. In[N10] is equal to Out[N9].

Since Gen[N10] is empty, Out[N10] is equal to In[N10]. Out[N10] is updated and node

N10’s successors, nodes N11 and N15 are added to the worklist. Continuing with the

analysis at node N11, In[N11] is equal to Out[N10]. Gen[N11] is added to this set, and

the process repeats similarly for nodes N12, N13 and N14. The analysis continues at

node N15, whose predecessors are nodes N10 and N14. In[N15] is the union of Out[N10]

and Out[N14], which is {{N5, N6, N7, N8, N9}, {N5, N6, N7, N8, N9, N11, N12, N13}}.

Gen[N15] is added to both sets in In[N15] to compute Out[N15]. This process repeats

for nodes N16–N20, each of which add their Gen set to the Out sets of the previous

node. After N20, there are no further nodes to process, so the worklist is now empty.

The analysis now continues at line A32, which begins the translation of the node

sets into the HTML they represent. At line A34, the exit node of jspService is

node N20, so lines A34–A42 will iterate over the two sets in Out[N20]. Line A36 begins

to iterate over each node in the first of these two sets. The call to resolve(N5) re-

turns the string “<html><body><h1>Get Quote Details</h1>,” which is appended

to htmlfragments. (For this example, we will assume reduce() does not remove any

tags. The next section will introduce an example of reduce() that removes tags.)

The call to resolve is repeated for each node in the node set, and its return value

89

is appended to htmlfragments. The result of analyzing the first node set is a string

whose content is concatenation of the HTML strings generated at nodes N5, N6, N7,

N8, N9, N15, N16, N17, N18, N19, and N20. The second node set is similarly analyzed

and generates a string whose content is the concatenation of the HTML generated at

lines N5, N6, N7, N8, N9, N11, N12, N13, N15, N16, N17, N18, N19, and N20. These two

strings comprise the method summary of jspService.

After jspService is summarized, the analysis returns to ExtractPages. The

method jspService is the root method, so the two strings in its summary are

assigned to pages. At this point, ExtractContent analyzes the strings in pages and

identifies the HTML elements of interest, which are returned at line A10. In this

example, ExtractContent simply returns the two unaltered HTML pages.

6.2 Identifying Links and Web Forms

Links and web forms contribute to the definition of important software abstractions

in web applications, such as control flow and invocations. The web forms generated

by a component define parameter names and input fields that will be part of an

invocation sent by the browser to the target component. Links can also contribute to

defining invocations since they are encoded as URLs and can provide parameters in

the URL’s query string. HTML based links can also represent control flow between

components of a web application that is not directly expressed in the general purpose

language of the web application. Identifying the links and web forms in the output of

a component allows quality assurance techniques to more completely define and use

the corresponding software abstractions.

Since links and web forms are primarily part of a component’s output, they can be

identified by the algorithm presented in Section 6.1. The output analysis algorithm

is customizable via Fragment Filtering, so the analysis can be customized to identify

links and web forms. In this section, I define the customizations of the Fragment

90

Filtering that facilitate the identification of links and web forms. I also use the

example from Section 6.1.4 to demonstrate how the Fragment Filtering works in

practice.

Although links are primarily defined in the generated HTML output of a web

application, its also possible for them to be defined via API calls in the general

purpose language of the web application. Many web application frameworks provide

commands, such as redirect or open, that can take a URL as a parameter. This URL

could represent a branch in the control flow of the web application or an invocation

of another component, neither of which would be accounted for in the traditional

CFG. Identifying and analyzing these links is fairly straightforward; however, for

completeness, I also outline an algorithm that identifies and processes these types of

links.

The rest of this section is organized as follows: Section 6.2.1 defines and illustrates

the customizations to the Fragment Filtering that allow for the identification of the

links and web form. In Section 6.2.2, I present the algorithm for identifying and

analyzing API based links.

6.2.1 Fragment Filtering for Links and Web Forms

As explained in Section 6.1.3, Fragment Filtering analyzes the HTML fragments and

removes tags that are not associated with the definition of the HTML elements of

interest. The removal is performed safely, so that the definition of HTML elements

of interest is not affected. To perform the Fragment Filtering, the reduce function

builds a parse tree of the HTML fragment it receives as input and then walks the tree

to mark and remove all non-contributing nodes. A node is a non-contributing node if

it does not contain a placeholder, is syntactically well-formed, and is not one of the

set of HTML tags associated with defining an HTML element of interest.

Only certain HTML elements can define either web forms or links. For web forms,

91

the following tags (and their corresponding closing tags, if applicable) can contribute

to their definition: <form>, <input>, <select>, <option>, and <textarea>. No

other HTML tags contribute to defining parts of the web form that correspond to

invocation-related information. The target of the invocation and HTTP request

method are defined as attributes of the <form> tag, and names of the parameters

in the invocation are defined by attributes of the <input>, <select>, <option>, and

<textarea> tags.

Links are similarly only defined by a few elements. By far, the most common

one is the anchor (<a>) tag, which contains a hyper-reference attribute that takes a

URL value. A user clicks on the visual representation of the link and the URL is

fetched. The query portion of the URL can contain a set of name-value pairs, which

turns the fetching of the URL into an invocation. Other tags also provide attributes

that can contain a URL. One example of this is the image () tag. The source

for the image is also a URL. Other tags that have URL based attributes include the

<script> and <frame> tags.

Illustration with Example

To identify links and web forms in GetQuoteDetails, the analysis proceeds in

the same manner as in Section 6.1.4, until it reaches line A32 of SummarizeMethod.

This is the point where the node sets are translated into their corresponding HTML

content. With the customized version of the Component Output Analysis, Fragment

Filtering no longer returns the unaltered HTML, it now filters for only the HTML

elements of interest.

To illustrate the Fragment Filtering, I continue the analysis at line A34 of Sum-

marizeMethod. The exit node of jspService is node N20, so lines A34–A42 will

iterate over Out[N20] (See Table 5). Line A36 iterates over each node in the first

of these two sets. Calling resolve(N5) returns the string “<html><body><h1>Get

92

Quote Details</h1>,” which is appended to htmlfragments. The call to reduce

at line A39 performs the Fragment Filtering detailed in the previous section. Using the

definition of non-contributing nodes, the <h1> tag and its enclosed data can be safely

eliminated, since it is syntactically well-formed, does not contain a placeholder, and

does not define either a link or a web form. Note that the <html> and <body> tags are

not removed since they are not well formed (i.e., , they lack their corresponding clos-

ing tags). The loop at line A36 processes node N6. The call to resolve returns “<form

action =‘‘QuoteController’’ method=Get>.” This is appended to the previously

reduced HTML fragment, so the call at line A39 is reduce(‘‘<html><body><form

action =‘‘QuoteController’’ method=Get>’’). The Fragment Filtering does not

reduce this fragment any further, since the <form> tag is part of the definition of a

web form. Nodes N7, N8, and N9, evaluate similarly to node N6. The HTML frag-

ments associated with nodes N15 and N16 both contain placeholders. This is because

the variables stateValue and ageValue are externally defined and cannot be resolved

to a concrete value within the current method context. Since this is the root method

of the component, the analysis will generate a warning to the developer about this

situation and assumes that these placeholders do not contain HTML content (i.e.,

they are placeholders for literal values). As stated earlier, this is almost always a

safe assumption for web applications. Nodes N17, N18, and N19 also contribute their

HTML fragments without any reduction from the Fragment Filtering. The last and

final addition of the HTML content at node N20 allows the <body> and <html> tags

to be removed from the summary since they are now well formed.

The HTML content saved for the first nodeset is shown in Figure 19(a). The

second node set is similarly analyzed and generates a string whose content is the

concatenation of the HTML generated by the nodes in the second nodeset. This

HTML content is shown in Figure 19(b). Together, the two HTML strings in Figure 19

comprise the method summary of jspService.

93

<form action=QuoteContro l l e r
method=Get>

<input type=text name=name>
<input type=text name=type>
<input type=text name=year>
<input type=hidden

name=s t a t e
value=””>

<input type=hidden
name=age
value=””>

<input type=hidden
name=QuoteInformation
value=GetQuoteDetai ls>

<input type=submit>
</form>

(a) First node set.

<form action=QuoteContro l l e r
method=Get>

<input type=text name=name>
<input type=text name=type>
<input type=text name=year>
<textarea name=i n c i d e n t s>
</textarea>
<input type=hidden

name=s t a t e
value=””>

<input type=hidden
name=age
value=””>

<input type=hidden
name=QuoteInformation
value=GetQuoteDetai ls>

<input type=submit>
</form>

(b) Second node set.

Figure 19: Link and web form content identified in GetQuoteDetails.

Table 6: Invocations generated by GetQuoteDetails.

Target Argument Names

1 QuoteController {name, car, year, state, age, action}

2 QuoteController {name, car, year, incidents, state, age, action}

Once the HTML content associated with links and web forms has been identi-

fied, it can be analyzed to gather additional information about the web application.

The two HTML fragments in jspService’s summary are analyzed by an HTML

parser to identify invocations. This analysis identifies the attributes of the <form>,

<textarea>, and <input> tags, such as argument names and the target of the in-

vocation. Table 6 shows the two invocations that would identified by analyzing the

HTML fragments in Figure 19. The target of the invocation is identified by the

action attribute in the <form> tags, the names of the arguments are defined as the

name attribute in the <textarea>, and <input> tags.

94

6.2.2 Analyzing API Based Links

Components can perform invocations by creating a URL containing the invocation

and passing it to a specific API method. To identify such invocations, the technique

visits each node of the component’s inter-procedural control flow graph (ICFG), iden-

tifies all call sites that invoke API methods used to make direct invocations, and

analyzes the parameters of these calls to extract the invocation URL. For example,

in Java the parameter containing the URL is represented as a string. My technique

determines the value of the URL using the string analysis and then parses the URL

to identify information about the invocation’s target and arguments.

6.3 Implementation

I implemented the analyses described Sections 6.1 and 6.2 in a prototype tool called

the Component Output Analyzer (COA). The COA prototype is written in Java and

can analyze web applications built using Java Enterprise Edition (JEE). Although the

implementation targets only Java-based web applications, the analyses are generally

applicable to a wide range of other web development languages, such as PHP, ASP,

and Perl. COA analyzes each class in a web application and outputs a list of the

identified HTML elements of interest. Users can introduce their own implementation

of Fragment Filtering by replacing a JAR file that implements the Fragment Filtering

interface defined in COA. The analysis in COA leverages several other program

analysis libraries: (1) Soot program analysis framework3 to generate call graphs and

control-flow graphs. Soot uses an implementation of the Class Hierarchy Analysis

(CHA) [22] to resolve points-to information; (2) A modified version of JSA [20] to

perform string analysis, and (3) A customized version of HTML Parser4 to parse

HTML pages and fragments in the Fragment Filtering.

3http://www.sable.mcgill.ca/soot/
4http://htmlparser.sourceforge.net/

95

6.4 Discussion of Analysis Limitation

The output of a component can include HTML markup and client-side JavaScript.

The analysis presented in Section 6.1 models the content of all of the output, re-

gardless of whether it represents HTML markup or JavaScript code. However, one

important limitation of my analysis is that it only considers the semantics of the part

of the output that represents HTML markup. This can cause inaccuracies in the

analysis because scripts written in JavaScript can perform a wide range of actions,

including communicating with other components and changing the HTML page at

runtime. These actions could potentially affect the definition of web forms or links

in an HTML page. Since my approach does not account for the semantics of these

JavaScript actions, the changes to the HTML elements would go undetected. The

result of this is that my analysis technique will identify output that would actually

be different from the actual output because of actions performed by the scripts.

Analysis of the semantics of the generated JavaScript is challenging and is of itself

an ongoing area of research. JavaScript presents many challenges for static analysis

because it is loosely typed and can create and execute JavaScript commands on the

fly (e.g., via an eval function). As discussed further in Chapter 8, the impact of

JavaScript on the accuracy of quality assurance techniques is low. For the most

part, JavaScript is used to modify and affect operations that do not impact the

correct identification of links or web forms. Nonetheless, the growing use of JavaScript

motivates the need to include its semantics in approaches oriented towards AJAX

based web applications.

96

CHAPTER VII

TEST-INPUT GENERATION

Test-input generation is an important underlying technique for many quality assur-

ance tasks. High-quality test inputs allow testers to more completely execute the

application and possibly discover more errors. For test-input generation, knowing the

interfaces of an application is a necessary step. The interfaces (e.g., the signatures of

a method) tell the tester what parameters must be supplied in a valid test case and

can also specify domain information about those parameters. The lack of such ex-

plicitly defined interfaces for web applications means that testers must rely on other

techniques to identify interfaces. If these techniques are incomplete or not precise

enough, parts of the application may remain untested, and could contain faults that

may be exhibited in the field or vulnerabilities that can be exploited by attackers.

Existing techniques for interface identification have limitations that negatively

impact the effectiveness of test-input generation for web applications. Techniques

that rely on developer-supplied specifications [8, 41, 67] can provide an indication

of the intended interfaces of a web application, but if the implementation differs

from the specification, testing may be inadequate. With dynamic techniques [25, 38],

lack of completeness creates similar limitations for testing. Parts of the application

that are not discovered via interactions with the web application will go untested.

Lastly, even techniques that perform static analysis but discover inadequate domain

information [23] can lead to incomplete testing. Consider QuoteController in Figure 9.

Without the domain information that specifies that “userAction” must be equal to

“CheckEligibility,” a test-input generator must guess the correct relevant values, or

lines 5–23 will not be executed.

97

In the rest of this chapter, I describe test-input generation in more detail and

present the results of an empirical evaluation focused on the usefulness of my interface

identification approaches. In the evaluation, I compare test-input generation using

interface information identified by my analysis (Chapter 5) against the results of

test-input generation using other interface identification approaches. The results are

compared based on structural coverage and the number of test cases used to achieve

that coverage.

7.1 Approach

The technique that I use for test-input generation is fairly straightforward with respect

to how it uses interface information. For each identified interface of an application,

the test-input generation creates sets of test-inputs that satisfy the interface’s domain

constraints. However, each of the four approaches I evaluate differs slightly in the

structure of the interface information discovered. So, for each approach, I explain

how its interface information is used to create test inputs.

wam-se: For the wam-se approach, generating test inputs is conceptually straight-

forward. An interface domain constraint (IDC) corresponds to the constraints

introduced by a specific path. Each IDC is submitted to a constraint solver,

and the values in the solution are used as test inputs. For values that are un-

bound by any constraint in the IDC, the constraint solver generates a random

string. Although it is possible that an IDC may contain constraints that cannot

be solved, in practice, all of the constraints identified in the subject applica-

tions were fairly simple and were solved by the constraint solver. The wam-se

approach is described in more detail in Section 5.2 and its implementation in

Section 5.2.2.

98

wam-df: Domain information in the wam-df approach is tracked per callsite. The

primary complication that this introduces is that the domain information as-

signed to a name-value pair is not path sensitive, so there is no way to correlate

domain information for different name-value pairs and know which ones go to-

gether on the same path. The implications of this are that to ensure that all

correct combinations are tested, the set of test inputs that must be used is the

Cartesian product of all of the domain constraints identified for each name-value

pair in an interface. If a name-value pair does not have any domain constraints

associated with it, a random string is used as its value. For example, con-

sider QuoteController in Figure 9. Parameters “actionValue” and “state” each

have two domain constraints. In this example, “actionValue” is either equal to

“CheckEligibility” or “QuoteInformation,” and “state” is not equal to “GA”

or the empty string. By examining the application, it is clear that the first

and second constraint for each parameter should go together and coverage can

be achieved on both paths using two test inputs. However, wam-df must use

the Cartesian product of all of the domain constraints. This results in four

sets of test inputs, which achieves coverage, but with more test inputs than

needed. The wam-df approach is described in more detail in Section 5.1 and

its implementation in Section 5.1.2.

spider: The spider approach is based on the OWASP WebScarab Project,1 which

is a widely-used Java-based implementation of a web crawler. I extended the

OWASP spider by adding to it the capability of extracting interface related

information from each web page it visited during the crawl by parsing the

HTML and analyzing web forms and links. (Typically, these HTML elements

are used by web application testers to infer the interfaces of a web application.)

1http://www.owasp.org/index.php/Category:OWASP_WebScarab_Project

99

The spider approach does not normally collect domain information during a

crawling of a web application. So to collect this information I also extended the

approach to record default values, if present, that have been provided in the web

forms and links. Since these values are supplied by the web application, they are

a good source of legal values for the name-value pairs and can be reused as test

inputs. If no default values are discovered for a name-value pair, a randomly

generated string is used as the value. Additionally, I enabled the spider to

perform the most thorough exploration possible by giving it administrator-level

access to the subject web applications.

dfw: The dfw approach was developed by Deng, Frankl, and Wang [23] in 2004.

The original purpose of dfw was to model basic attributes of a web appli-

cation. As part of this technique, dfw identifies some of the same type of

interface information as my interface analysis approaches, namely, the names of

the name-value pairs. The primary difference between dfw and my techniques

is that dfw does not identify domain information or group parameter names

into logical interfaces. These differences complicate test-input generation. To

address the first of these differences, I assume all parameters identified by dfw

should be defined in each set of test inputs (i.e., they are all part of the same

interface). This is less than ideal, as some web application code checks for the

presence of defined parameters and responds differently based on which param-

eters are defined, but this reflects a limitation of the information provided by

this approach. For the domain information, I assign each name-value pair a

random alphanumeric string, an empty string, or a numeric value. These values

are used since they correspond to common checks or domain constraints within

web application code and can therefore increase code coverage. For the imple-

mentation, the authors provided me with the original dfw implementation, and

I used their code as a guide to reimplement the technique so that it would work

100

within my analysis framework. I also extended the technique to address an

implementation limitation where it could only identify names that were defined

by constant strings in the same method scope.

7.2 Evaluation

The purpose of the evaluation is to determine whether interface information can im-

prove test-input generation. To do this, I compare my two approaches for interface

identification, wam-df and wam-se, against two currently proposed alternative ap-

proaches, spider and dfw. This evaluation used five of the ten subject applications

introduced in Chapter 3. Those for which I did not have wam-se based information

were not included. (See Section 5.3 for a discussion on the reasons why wam-se could

not be run for all applications.) In the evaluation, I consider two research questions.

The first is related to the effectiveness of my interface information in improving test-

input generation, which is measured by structural coverage of the web applications.

The second is related to the practicality of using the information, which is measured

in the number of test cases generated. The two research questions are as follows:

RQ1: Effectiveness – Do my interface identification techniques lead to higher test

criteria coverage of the web applications than spider and dfw?

RQ2: Practicality – Are the number of test-inputs lower for my techniques than for

spider and dfw?

7.2.1 RQ1: Criteria coverage

To address the first research question, I measured the coverage achieved on the subject

applications by test suites generated using interface information identified by the four

approaches discussed in Section 7.1. For each of these approaches, I generated test

inputs that satisfied all of the IDCs identified by the approach. For techniques that

did not explicitly identify IDCs, I used the heuristics described in Section 7.1 to create

101

appropriate values. For example, for dfw I assigned each name-value pair a random

alphanumeric string, an empty string, or a numeric value. The only exception to this

was Portal. For the wam-df and spider approaches, test suites that satisfied all of

the IDCs contained over 20 million different test inputs. This many test inputs would

have taken over 10 days to run. To reduce the number of test inputs for these two

approaches, I randomly chose IDCs to generate test cases until approximately 5% of

the estimated test cases were generated for each approach. In Tables 7, 8, and 9, the

corresponding coverage and test suite size numbers are marked with an asterisk (*)

as a reminder that these test suites were sampled down in size.

To measure the coverage achieved by each interface identification approach, I ran

the generated test suites against their target application. These test inputs were

submitted directly to the application, instead of through the application’s web forms,

in a process called bypass testing [61]. Some of the applications required a priming

script to be executed before the actual test inputs were run (e.g., a login to create a

session ID). For these applications, the testing infrastructure ran the priming script

before each test input. I measured the coverage achieved using three coverage criteria:

basic block, branch, and database command-form. Basic block coverage measures

the number of distinct basic blocks of the program that are executed by a test suite.

Branch coverage measures the number of distinct branches (e.g., the true or false

branches of each if) that are traversed during the execution of a test suite. To monitor

these two criteria, I used Cobertura,2 a coverage tool for Java-based applications.

Database command-form coverage measures the number of distinct types of database

commands generated by an application [35]. Since most web applications are data-

centric, database command-form coverage is useful to determine if the application is

exhibiting different behaviors with respect to its underlying database. To measure

command-form coverage I used ditto [35], a tool that I developed in previous work.

2http://cobertura.sourceforge.net/

102

Table 7: Block and branch coverage achieved on subject web applications.

Block (%) Branch (%)
Subject Wdf Wse Spi. dfw Wdf Wse Spi. dfw

Bookstore 84.1 87.3 75.6 68.7 55.2 59.7 42.1 34.8

Classifieds 81.6 83.7 76.0 66.3 51.3 54.8 41.7 32.3

Empl. Dir. 83.0 84.6 76.4 69.3 52.9 56.1 42.4 34.9

Events 83.5 84.8 76.8 68.2 55.3 57.2 43.9 34.5

Portal 57.2* 86.6 53.7* 71.0 30.5* 59.3 24.9* 36.8

Average 78 85 72 69 49 57 39 35

Table 8: Command-forms covered in subject web applications.

Command-forms (#)
Subject Wdf Wse Spi. dfw

Bookstore 88 737 63 54

Classifieds 96 366 99 19

Empl. Dir. 30 351 22 16

Events 37 186 22 16

Portal 345* 2,964 362* 55

Average 119 921 114 32

The results of this study are presented in Table 7 and Table 8. Table 7 shows,

for each application and approach (Wdf , Wse and Spi., and dfw), the level of basic

block (Block) and branch (Branch) coverage achieved by the test cases. The numbers

shown represent a percentage. Table 8 shows the amount of command-forms covered

by the test cases. This number represents the actual number of command-forms

covered instead of the percentage, since ditto cannot accurately estimate an upper

bound on the total number of test requirements for this criterion.

The results in Table 7 and 8 show almost consistently higher coverage for the

103

wam-df and wam-se approaches. For all of the subjects and criteria, the wam-se

based test suites had the highest amount of coverage. This approach averaged 7%

higher block coverage, 8% higher branch coverage, and covered over 7 times as many

command-forms as compared to the next best approach, which was wam-df. The

wam-df approach also did well and was consistently higher than the remaining two

approaches. The only exception to this was Portal, where the dfw approach showed

higher coverage than the wam-df approach. This was most likely due to the fact

that, as mentioned previously, the full wam-df and spider based test suites were

randomly sampled down in size. Nonetheless, wam-df averaged 6% higher block

coverage, 10% higher branch coverage, and five more command-forms per subject

than the best score of either of the two remaining approaches.

One particularly interesting trend in the data was that command-form coverage

(shown in Table 8) had a higher relative increase with the wam-se approach than the

other metrics. Case in point, the percentage increase in branch and block coverage, as

compared to wam-df, was less than 10%, but the increase in command-form coverage

was over 7X. I manually inspected several of the servlets to investigate this increase. I

found that many branch conditions in the subjects compare hard-coded strings against

the value of the argument or check that an argument’s value is numeric. Both of my

approaches identify these types of constraints and generate test cases that cause them

to be covered. However, wam-se has the advantage that it can model the constraints

of two arguments being equal to each other. For example, in registration pages, a

servlet only proceeded if the user entered the same new password twice. The other

approaches were not able to model these types of constraints and were thus unable to

get high coverage of these servlets. I also found that database queries were built using

multiple nested if statements. Therefore, even though the branch increase provided

by wam-se was small, the few additional covered branches resulted in a significant

increase in command-form coverage.

104

Table 9: Size of test suites for test-input generation.

Size of test suite
Subject Wdf Wse Spi. dfw

Bookstore 258,565 10,634 68,304 33,279

Classifieds 47,352 3,968 7,238 10,732

Employee Dir. 627,820 3,772 46,099 54,887

Events 36,448 1,735 4,145 5,566

Portal 1,000,000* 11,243 750,000* 1,550,029

Total 1,970,185 31,352 875,786 1,654,493

7.2.2 RQ2: Number of test inputs

In the second research question, I addressed the issue of practicality of the different

approaches. For practicality, I measured the number of test inputs generated for

each approach. Since the time to run test inputs is roughly linear with respect to

the number of test inputs, this measurement gives an indication of the amount of

resources necessary to achieve the coverage numbers presented in the previous study.

For each application, Table 9 shows the number of test inputs generated using the

interface information identified by each approach. This number represents the number

of test cases that were generated using the available interface information. Note that

two of the test suites for Portal were sampled down in size and are denoted with an

asterisk (*).

The numbers in Table 9 lead to two interesting observations. The first is that the

size of wam-df based test suites is significantly larger than those of other approaches.

This result is not surprising given the conservative technique used to estimate the

domain information of each name-value pair. The conservative approximation of the

domain information leads to the use of IDCs for test-input generation that do not

correspond to feasible paths. (This aspect of wam-df is discussed in more depth

105

in Sections 7.1 and 5.3.) The second observation is that the test suites for wam-se

are significantly smaller than the test suites generated using the other approaches.

In some cases, the test suites are an order of magnitude smaller, but still generate

higher coverage than all other approaches. Because of the increased precision of the

wam-se approach, there are a fewer number of IDCs, which leads to a lower number

of test inputs. However, since the IDCs are more precise and can model more types of

constraints (e.g., arithmetic constraints), they achieve better coverage. Overall, the

results show that interface information generated by wam-df leads to the generation

of more test inputs than other approaches. As compared to dfw and spider this

increase leads to higher coverage. However, the increased precision of wam-se leads

to greater efficiency; more coverage is achieved using significantly fewer test inputs.

7.3 Conclusions

Overall, the results of the evaluation show that test-input generation can be improved

by the use of my interface identification approaches. Test suite generation based on

the wam-df approach led to higher coverage than spider and dfw across all of the

measured criteria. However, this increased coverage came at the cost of increased

test suite size. The wam-se approach improved coverage over the wam-df approach,

while at the same time using over an order of magnitude fewer test cases. Although

the wam-se analysis requires more set up and configuration time, the results of this

empirical evaluation suggest that this time is justified by the benefits of increased

coverage with significantly smaller test suites.

106

CHAPTER VIII

INVOCATION VERIFICATION

The components of a web application communicate extensively to provide a feature-

rich environment that integrates content and data from multiple sources. As explained

in Chapter 2, communication between web components is different than that between

traditional program modules. When a web component A communicates with another

component B, it does so by sending an HTTP request to B that invokes one of

B’s accepted interfaces and provides a set of arguments in the form of name-value

pairs. An error in this communication can occur for several reasons: B may expect

additional arguments, A or B may refer to the same argument by different names,

or A may send too many arguments. I refer to these types of errors as parameter

mismatches.

For modern web applications, parameter mismatches have become a serious and

common problem. In fact, a recent empirical study [24] reported that parameter

mismatches are one of the most frequent types of errors made by web application

developers. The complexity of inter-component communication, where both the gen-

eration of interface invocations and the definition of a component’s accepted interfaces

occur at runtime, contributes to the likelihood of these errors occurring. Because pa-

rameter mismatches affect the ability of web components to communicate correctly,

this type of error can be serious and can cause a component to fail unexpectedly or

return incorrect results.

Automatically identifying parameter mismatches in modern web applications is

challenging for current testing and analysis techniques. Many current techniques

were designed for simple static web applications, which contain hard-coded interface

107

invocations. For these applications, it is sufficient to inspect their HTML code and

ensure that each invocation contains the correct arguments and matches an accepted

interface of the target component. For modern web applications, which are generally

more complex and dynamic, the presence of implicitly defined accepted interfaces and

dynamically generated invocations precludes such a straightforward solution.

Using my analysis techniques, I developed a technique to automatically identify

parameter mismatches in web applications. This technique is able to handle com-

plex web applications that dynamically generate interface invocations in HTML and

have implicitly defined accepted interfaces. In the rest of this chapter, I discuss my

technique in more detail and illustrate it using the example web application. I also

present the results of an evaluation of the invocation verification technique. In the

evaluation, I report on the time needed to perform the various steps of the verification

and determine the precision of the technique.

8.1 Technique to Identify Parameter Mismatches

The goal of my technique is to automatically identify parameter mismatches in web

applications. To do this, the technique performs a static verification of the invocations

made by the web application. The approach consists of three main steps. Step 1

identifies the accepted interfaces of each component in the web application. Step

2 analyzes each component to determine its set of interface invocations. Finally,

Step 3 checks whether each interface invocation matches an accepted interface of the

invocation’s target. In the following sections, I describe each step of the technique in

more detail.

8.1.1 Step 1: Identify Interfaces

The first step of the technique identifies the accepted interfaces of each web com-

ponent. To do this, the technique uses the information generated by the interface

108

Table 10: Data-flow based interface information for QuoteController.

Interface

1 {action}

2 {action, age, state}

3 {action, name, state, age}

4 {action, age, state, name}

5 {action, name, state, age, type, year}

6 {action, age, state, name, type, year}

analysis techniques presented in Chapter 5. Note that the verification itself is not de-

pendent on a specific interface identification technique. As long as the information is

expressed in a standardized form, it can be used for verification purposes. Although,

both interface analysis techniques also generate IDCs, this information is not used as

part of the verification process.

For illustrative purposes, Table 10 shows the accepted interfaces of QuoteCon-

troller that were identified by the data-flow based interface analysis (Chapter 5). The

information in this table is based on a summarization of information shown in Ta-

ble 2 of Chapter 5. The first column (#) shows the interface number and the second

(Interface) lists the names of the parameters that comprise the interface.

8.1.2 Step 2: Determine Invocations

The second step of the technique identifies each component’s set of interface invo-

cations. To do this, the technique uses the customized component output analysis

described in Chapter 6. The customized analysis identifies the invocations generated

by the component via links, web forms, and API calls.

For illustrative purposes, Table 11 shows the invocations of GetQuoteDetails that

are identified by the customized output analysis (Chapter 6). For each of the two

109

Table 11: Invocations generated by GetQuoteDetails.

Target Argument Names

1 QuoteController {name, car, year, state, age, action}

2 QuoteController {name, car, year, incidents, state, age, action}

invocations, the table shows the invocation’s target (Target) and the names of the

arguments defined in the invocation (Argument Names).

8.1.3 Step 3: Verify Invocations

The third and final step of the technique verifies each component’s interface invo-

cations. For each identified invocation, the technique identifies the target of the

invocation and checks that the invocation matches one of the target’s accepted inter-

faces. An invocation matches an accepted interface if the invocation’s set of argument

names equals the names of the parameters in the accepted interface. Each invocation

that does not match an accepted interface is reported to the developers as a potential

error.

VerifyInvocations, which is shown in Algorithm 9, verifies the invocations. The

input to VerifyInvocations is a set of interface invocations, and the output is the set

of parameter mismatches. For each invocation, invk, the algorithm first identifies the

target component of the invocation (line 3) and the accepted interfaces of the target

component (line 4). Before beginning the main loop, the algorithm initializes invokeok

to false (line 5). This boolean flag is used to track when a matching interface has

been found in the accepted interfaces. The algorithm then iterates over each accepted

interface, interface (lines 6–10). match returns true only if invk matches interface

(line 7). When a match is found, the invokeok flag is set to true (lines 8). Finally,

if there is no match, invk is added to mismatches (lines 11–13), and mismatches

contains the output of VerifyInvocations (line 15).

110

Algorithm 9 VerifyInvocations

Input: invocations: set of interface invocations
Output: mismatches: set of invocations with parameter mismatches

1: mismatches← {}
2: for all invk ∈ invocations do
3: target← target component of invk
4: acptinterfaces← accepted interfaces of target
5: invokeok ← false
6: for all interface ∈ acptinterfaces do
7: if match(invk, interface) then
8: invokeok ← true
9: end if

10: end for
11: if not invokeok then
12: mismatches← mismatches ∪ invk
13: end if
14: end for
15: return mismatches

To illustrate, consider the verification of GetQuoteDetails’s invocations, which

are shown in Table 11. VerifyInvocations iterates over the first invocation. The

target of the invocation is QuoteController, so acptinterfaces is assigned to the

set of QuoteController’s accepted interfaces, which are shown in Table 10. Then

VerifyInvocations compares the first invocation against each of the accepted in-

terfaces. The first invocation does not match any of the accepted interfaces. This

happens for two reasons: (1) The invocation contains the argument “incidents,” which

is not used by QuoteController, and (2) GetQuoteDetails labels the argument that

contains the car type as “car” instead of “type,” which is how QuoteController refers

to the same argument. As a result of these two mismatches, the invocation is classi-

fied as a mismatch. The process is repeated for the second invocation. Here again,

the invocation does not match any of the accepted interfaces because of the second

reason above, so it is also classified as a mismatch. Both parameter mismatches are

returned to the developer for debugging. At this point, the developer would inspect

the parameter mismatches and identify their root causes.

111

WAIVE

Web
App

Interface
Analysis

Parameter Mismatch
Report

Output
Analysis

Verify
Invocations

Figure 20: Architecture of the waive tool.

8.2 Implementation

I developed a prototype implementation of the technique for invocation verification.

The prototype, called Web Application Interface Verification Engine (waive), is writ-

ten in Java and can analyze web applications built using Java Enterprise Edition

(JEE). Although the implementation targets only Java-based web applications, the

approach is generally applicable to a wide range of other web development languages,

such as PHP, ASP, and Perl. waive analyzes the classes in a web application and

outputs a list of interface invocations that do not match any accepted interface. The

architecture of waive is shown in Figure 20. waive consists of three modules that

implement the three steps of the technique. The first module, which extracts ac-

cepted interfaces, uses interface information in a standardized XML format. For the

evaluation (Section 8.3), I implemented filters to convert interface information from

both of my interface identification approaches into this standardized format. The sec-

ond module, which identifies invocations, uses the implementation of the customized

output analysis described in Chapter 6. The third module implements Algorithm 9,

which was presented in Section 8.1.3.

112

8.3 Evaluation

The goal of the evaluation is to assess the usefulness and effectiveness of the invocation

verification technique. To perform this assessment, I measured the time required

to run the verification and its accuracy in identifying parameter mismatches. The

evaluation addresses the following two research questions:

RQ1: How efficient is the technique when run on real web applications?

RQ2: What percentage of the reported parameter mismatches represent actual errors

in the web applications?

8.3.1 RQ1: Efficiency

To address RQ1, I ran waive against the subject applications and, for each subject,

measured the time necessary to complete the three steps of the approach. I also noted

cases in which it was not possible to run the analysis, due to either memory limitations

or problems with libraries used in the implementation. I performed the experiments

on a single machine with a Pentium D 3.0Ghz processor running GNU/Linux 2.6

and 2GB of memory, of which 1.5GB was dedicated to the heap space of the Java

virtual machine (JVM). Table 12 shows the measurements for each of the subject

applications. For each application, I show the time taken to perform each step (Step

1, Step 2, and Step 3), and the total amount of time for all three steps (Total).

Note that the values in the column labeled Step 1 partially reproduce timing data

presented in Chapter 5.

The measurements in Table 12 show that the verification process for each applica-

tion took from 1,779 to 16,953 seconds (i.e., from 30 minutes to five hours, roughly).

The timing measurements obtained in the study indicate that the technique, although

expensive, is efficient enough to be incorporated into existing quality assurance pro-

cesses. Anecdotal evidence indicates that the execution time of this technique is

significantly faster than manual inspection. Although I did not formally measure the

113

Table 12: Verification timing results (s).

Subject
Step 1 Step 2 Step 3 Total

Wdf Wse Wdf Wse

Bookstore 2,322 1,479 462 1 2,785 1,942

Checkers 160 - 23,727 1 23,888 -

Classifieds 1,797 766 177 1 1,969 944

Daffodil 1,271 - 4,724 1 5,996 -

Empl. Dir. 741 905 104 1 846 1010

Events 333 586 105 1 439 692

Filelister 248 - 1,458 1 1,707 -

JWMA 1,589 - 10,126 1 11,716 -

Officetalk 207 - 142 1 350 -

Portal 988 1,528 482 1 1,471 2,011

time associated with manual inspection, my experience during the testing and evalu-

ation of waive gives a point of comparison. While developing waive, I verified the

implementation by manually calculating sets of interface invocations and accepted

interfaces for a subset of the servlets. Although I was familiar with the applications,

it took close to 12 hours to inspect the code and derive the correct sets for just four

classes.

8.3.2 RQ2: Precision

To investigate RQ2, I ran waive on the subject applications and checked the param-

eter mismatches reported by the tool. I manually inspected the code that generated

every mismatch to determine whether the mismatch represented an actual error or

was a false positive. The inspection also enabled me to determine the root cause of

the mismatch. This study only looked at false positives for two reasons: (1) there

was no previous technique for detecting parameter mismatches that the results of my

114

Table 13: Summary of invocation verification.

Subject Total Invk.
Mismatches

False Pos. Errors
Wdf Wse Wdf Wse

Bookstore 26 0 0 12 11

Checkers 8 0 - 4 -

Classifieds 20 0 0 12 14

Daffodil 23 11 - 1 -

Empl. Dir. 10 0 0 4 5

Events 12 0 0 0 4

Filelister 4 0 - 3 -

JWMA 124 7 - 117 -

Officetalk 26 0 - 3 -

Portal 24 0 1 2 10

Total 277 18 1 159 43

technique could be compared against, and (2) the subject web applications did not

have any previously reported parameter mismatches.

Table 13 shows the results of the second study. For each application, I list the num-

ber of interface invocations (Total Invk.) and the number of the reported mismatches

classified as either false positives (False Pos.) or confirmed parameter mismatches

(Errors). The results are further classified depending on the source of the interface in-

formation used. The results achieved using the data-flow based approach are listed as

Wdf , and the results obtained using the symbolic execution based approach are listed

as Wse. As the results show, waive using the data-flow based interface information

correctly identified 159 parameter mismatches and generated 18 false positives. Using

the symbolic execution based interface information, waive correctly identified 43 pa-

rameter mismatches and generated 1 false positive. Although the symbolic execution

based approach discovered less mismatches in total, this can be attributed to the fact

115

Table 14: Classification of confirmed parameter mismatches.

Subject
Confirmed Parameter Root Causes
Missing Syntax Ignored

Wdf Wse Wdf Wse Wdf Wse

Bookstore 6 10 2 0 4 1

Checkers 0 - 2 - 2 -

Classifieds 8 11 0 1 4 2

Daffodil 0 - 0 - 1 -

Empl. Dir. 5 4 0 0 0 0

Events 0 4 0 0 0 0

Filelister 1 - 2 - 0 -

JWMA 33 - 17 - 67 -

Officetalk 2 - 0 - 1 -

Portal 2 10 0 0 0 0

Total 57 39 23 1 79 3

that it was a viable approach for only half of the subject web applications. Overall,

both approaches had a relatively low rate of false positives (about 10% for Wdf and

2% for Wse). This suggests that the technique would be useful for developers, as most

of the reported mismatches were caused by actual errors in the web applications.

For each confirmed parameter mismatch, I further analyzed the code in order to

determine the root cause of the mismatch. The results of this analysis are shown

in Table 14. I classified the root cause of each mismatch according to the following

categorization:

Ignored parameter: An argument in the invocation is not accessed by the target

component.

Missing parameter: An invocation does not contain an argument that is accessed

by the accepted interfaces of the target component.

116

Syntax error: An invocation does not match because of a misspelling in an argu-

ment name or a formatting error in the invocation (e.g., in an HTML tag or

URL string).

As the results in Table 14 show, parameter mismatches due to ignored parameters

occurred with the highest frequency. This type of mismatch is very difficult to detect

during testing. The reason for this is that the invocations contains extra name-

value pairs that are simply not used by the target component. Therefore, at best,

the only observable symptom is an HTML page that does not reflect the use of the

extra information, and identifying or precomputing the subtle change in the output

that corresponds with an unused parameter is a substantial effort. The second most

common mismatch, missing parameters, represents scenarios where additional name-

value pairs were accessed by the target but not provided in the invocation. In most

cases, this type of error leads to a crash, as the value returned is null. However, not

all mismatches in this category are necessarily errors. During my manual inspection, I

found cases where the developers had placed error handling code around the access of

the name-value pair. This suggests that the developers could have felt that supplying

the name-value pair was optional, and not necessarily required for execution. On the

other hand, it could also be good defensive coding. Without a specification of the

correct behavior and usage of the component, it is difficult to make this determination.

Finally, the occurrence of the last group of mismatches, syntax errors, highlights one

of the problems with creating invocations via web forms and links. This technique

forces developers to remember the exact spelling of each of the parameters that must

be supplied. The prevalence of mismatches in this category indicates that this can be

difficult for developers.

In the manual inspection of the code, I found that the impact of the defects

varied widely. Most would cause null pointer exceptions, but for some, the errors

were more subtle. For example, in Filelister two mismatches led to incorrect filtering

117

Table 15: Classification of false positive parameter mismatches.

Subject
False Positive Root Causes

WAM JavaScript R & I
Wdf Wse Wdf Wse Wdf Wse

Bookstore 0 0 0 0 0 0

Checkers 0 - 0 - 0 -

Classifieds 0 0 0 0 0 0

Daffodil 2 - 3 - 6 -

Empl. Dir. 0 0 0 0 0 0

Events 0 0 0 0 0 0

Filelister 0 - 0 - 0 -

JWMA 0 - 7 - 0 -

Officetalk 0 - 0 - 0 -

Portal 0 1 0 0 0 0

Total 2 1 10 0 6 0

of a search query and caused the application to return erroneous results to the end

user. In Bookstore, three mismatches allowed a user to click a link to display updated

information, but the intended action was not completed and no error message was

displayed to the user. The result of one of the mismatches in JWMA was that a data

field associated with a customer’s profile was not saved. Through the code inspection,

I also found that the actual errors that led to the mismatches ranged from complicated

logic to typos in the names of arguments and parameters. For example, four of the

mismatches in Bookstore were due to erroneous logic in the target components that

did not anticipate legal combinations of arguments. Conversely, the errors in Filelister

and JWMA were caused by a syntax error in an indirect invocation and a misspelling

of the name of an accessed parameter, respectively.

I analyzed the false positives to determine their root causes. Table 15 shows the

result of this analysis. I classified each root cause using the following categories:

118

WAM: These false positives are due to limitations in the implementation of the inter-

face identification approaches; the implementations may miss interface elements

of the target component in cases where a web application uses non-standard

ways of extracting parameters from a request object.

JavaScript: JavaScript code in a generated HTML page can add additional argu-

ments to an invocation before it is submitted to the target component. Neither

approach analyzes JavaScript, so they cannot detect changes to the affected

invocation done via JavaScript.

Redirects and Imports: A web application component can redirect requests to

other components or import code fragments that change the component’s set of

interface invocations or accepted interfaces. Neither analysis accounts for the

effects of redirections and imports.

As the results in Table 15 show, the two dominant root causes of false positives are

“JavaScript” and “Redirects and Imports.” Although addressing these limitations is

conceptually straightforward and would eliminate most of the related false positives, it

would require non-trivial extensions to the implementation of the technique. I there-

fore decided to postpone these extensions to a later stage of the research. The third

root cause, “WAM,” can be addressed by improving the precision and completeness

of the analysis techniques for accepted interfaces.

The results of the evaluation show that the false positive rate of the technique is

low. Only one of the applications, Daffodil, had a high false positive rate. However,

as explained earlier, these can be eliminated with further engineering. Overall, the

false positive ratio is low and suggests that my technique is a useful approach for

detecting parameter mismatches.

119

8.4 Conclusions

Overall, the results of the evaluation are positive. Invocation verification was able to

discover many incorrect invocations in the subject applications with a relatively low

false positive rate. Since there were no previous techniques for discovering parameter

mismatches in web applications, many of these errors might have remained undiscov-

ered until found by users in deployed web applications. Additionally, the results of

the evaluation show that invocation verification is practical and can be accomplished

in a reasonable amount of time.

120

CHAPTER IX

PENETRATION TESTING

Detecting and preventing vulnerabilities in web applications has become an important

concern for software developers. Many companies use web applications to gather and

maintain customer information. As a result, these applications must often store in-

formation that is confidential. If attackers obtained this information, the result could

be substantial losses to both consumers and companies. Case in point: Analysts esti-

mate that the average data breach costs a company more than 4.5 million dollars [64].

Unfortunately, vulnerabilities that lead to these incidents are far from rare. Reported

vulnerabilities since 2001 have grown at a rate of 150% per year, and web applications

have overtaken desktop software as the most vulnerable platform [60]. The rising cost

and incidence of successful attacks has increased the importance of techniques that

identify vulnerabilities in web applications.

One such technique, penetration testing, has become widely used by software

developers. Penetration testing identifies vulnerabilities in web applications by sim-

ulating attacks by a malicious user. Developers use information about which attacks

were successful to find vulnerabilities and improve the security of the web application.

Penetration testing is popular among developers for several reasons: (1) it generally

has a low rate of false vulnerabilities because it discovers vulnerabilities by exploiting

them; (2) it tests applications in context, which allows for the discovery of vulnerabil-

ities that arise due to the actual deployment environment of the web application; and

(3) it provides concrete inputs for each vulnerability that can guide the developers

in correcting the code. The widespread usage of penetration testing has led many

government agencies and trade groups, such as the Communications and Electronic

121

Attack

Generation

Response

Analysis

Report

Information

Gathering

Attacks
Information

Responses

Target

Selection

Analysis

feedback

Pen Tester

Web

Application

Figure 21: The penetration testing process.

Security Group in the U.K., OWASP,1 and OSSTMM,2 to accredit penetration testers

and establish standardized “best practices” for penetration testing.

Although individual penetration testers perform a wide variety of tasks, the gen-

eral process can be divided into three phases: information gathering, attack gener-

ation, and response analysis. Figure 21 shows a high-level overview of these three

phases. Penetration testers select a target web application and begin the informa-

tion gathering phase. In this phase, penetration testers obtain information about the

target application using techniques that include automated scanning, web crawlers,

and social engineering. The results of this phase allow penetration testers to perform

the attack generation phase, which is the development of attacks on the target ap-

plication. Often this phase can be automated by customizing well-known attacks or

using automated attack scripts. Once the attacks have been executed, penetration

testers perform response analysis — they analyze the application’s responses to de-

termine whether the attacks were successful and then prepare a final report about

the discovered vulnerabilities.

During information gathering, the identification of an application’s input vectors

1http://www.owasp.org/
2http://www.osstmm.org/

122

(IVs) — points in an application where an attack may be introduced, such as user-

input fields and cookie fields — is of particular importance. Better information about

an application’s IVs generally leads to more thorough penetration testing of the appli-

cation. Currently, it is common for penetration testers to use automated web crawlers

or similar black-box techniques to identify the IVs of a web application [2, 43, 79, 82].

A web crawler visits the HTML pages generated by a web application and analyzes

each page to identify potential IVs. The main limitation of this approach is that

it is incomplete because web crawlers are typically unable to visit all of the pages

of a web application or must provide certain values to the web application to cause

additional HTML pages to be shown. Although penetration testers can effectively

use the information discovered by web crawlers, the potential incompleteness of such

information can result in a large number of vulnerable IVs remaining undiscovered.

One of the example servlets, DisplayQuote (Figure 11), contains a vulnerability

to SQL Injection Attacks (SQLIA) at line 8. An SQLIA is a type of attack in which a

malicious user enters specially crafted input that, when submitted by a web applica-

tion to the underlying database, causes an SQL command of the attacker’s choice to

be executed. To perform an SQLIA, an attacker could, for instance, submit the follow-

ing malicious payload for the “name” parameter: “anyname’ -- ” and any alphanu-

meric string for “quoteID”. The following query would be generated and sent to the

database: “select * from quotes where name=‘anyname’ -- ’ and quoteId=abc123.”

In SQL syntax, “--” is the comment operator, so everything after it would be ignored.

This means that, by carefully choosing “name”, it would be possible for an attacker

to display the insurance quote details of any person in the database. More serious

attacks could be executed as well. Attackers could insert commands to erase the

contents of a table or add new entries with values of their choosing. More generally,

line 8 could be vulnerable to a wide range of SQLIAs [36].

A traditional approach to information gathering, such as a web crawler, would

123

likely fail to discover this vulnerability. There are two reasons why this could hap-

pen. The first reason is that the servlet imposes a domain constraint on the value of

“quoteID”. Unless a web crawler is able to guess that this parameter has an alphanu-

meric constraint imposed on it, execution of DisplayQuote will never proceed along

the true branch at line 5. This means that any type of penetration testing approach

that uses IV information provided by a web crawler would be unlikely to cause line

8 to be executed unless it happens to provide a valid and legal value for “quoteID”.

Although guessing of this particular constraint is possible, real applications generally

have more complex constraints, which would be much harder for a crawling-based

approach to guess. The second reason the traditional approach might fail is more

subtle. Using a web crawler, it is possible that DisplayQuote might not even be

discovered. This could happen because a web crawler would only be directed to Dis-

playQuote if it was able to correctly guess the domain constraints checked by servlet

QuoteController (Figure 9) at lines 24, 28, and 31. As with the domain constraints

in DisplayQuote, it is highly unlikely that a crawling-based approach would be able

to do this without additional interface information.

In this chapter, I present a penetration testing approach and tool that uses my

interface analysis (Chapter 5) to improve the information-gathering phase of penetra-

tion testing. Although it is common to assume that penetration testing is a black-box

approach, current best practices (e.g., OWASP1 and OSSTMM2) recommend that

penetration testers assume that attackers have access to one or more versions of the

source code of the application. By leveraging static analysis of the source code, my

approach can outperform the typical black-box only approaches to penetration test-

ing. In this chapter, I also discuss the result of an extensive empirical evaluation of

my approach. For this approach, I modified two penetration testing tools to use my

interface analysis and then compared the number of vulnerabilities they found in the

subject web applications against other approaches. The results of the evaluation are

124

positive and indicate that my approach to penetration testing leads to the discovery

of a higher number of vulnerabilities.

The rest of this chapter is organized as follows: Section 9.1 describes my approach

to penetration testing in more detail. The implementation of the approach is discussed

in Section 9.2. Finally, I present the results of the evaluation in Section 9.3.

9.1 Approach

The goal of the approach is to improve penetration testing of web applications by

focusing primarily on improving the identification of IVs in a web application. To do

this, I developed a new approach to penetration testing that leverages the interface

analysis presented in Chapter 5. In the information gathering phase, the approach

leverages the interface analysis techniques to analyze the code of the application and

identify IVs, how they are grouped (i.e., which sets of IVs are accessed together by a

servlet), and their domain information (i.e., IVs’ relevant values and type constraints).

In the attack generation phase, the approach targets the identified IVs and uses the

domain and grouping information to generate realistic values for the penetration test

cases. Finally, in the response analysis phase, the approach uses a dynamic analysis

technique to assess in an automated way whether an attack was successful.

In the rest of this section, I explain the details of the approach by discussing

how it performs each of the three phases of penetration testing. Where applicable, I

illustrate the details of the approach using the running example from Chapter 2.

9.1.1 Information Gathering

As described earlier, during the information gathering phase, testers analyze the

target application to identify information useful for generating attacks. In particular,

testers are interested in gathering information about the application’s IVs—their

names, groupings, and domain information. To identify IV related information, my

penetration testing approach leverages the interface analysis techniques in Chapter 5.

125

Table 16: Interface information for DisplayQuote.

Path IVs Domain

1 5T {name, quoteID} isAlphaNumeric(quoteID)

2 5F {name, quoteID} !isAlphaNumeric(quoteID)

In my approach, the use of the interface analysis augments the information gath-

ered by penetration testers. The names of the name-value pairs represent potential

IVs, and the IDCs represent useful domain information that can be leveraged during

attack generation. Either of the two interface analysis techniques can serve as the

basis for the information gathering in my approach. For practical purposes, I use the

data-flow based technique since it is more easily applied and allows me to evaluate

my approach with a larger set of web application subjects. The only drawback to

using the data-flow based technique is that the conservative nature of the domain

information leads to a high number of test inputs, which reduces the overall efficiency

of the approach. This effect can be seen in the part of the evaluation (Section 9.3)

that evaluates the penetration testing in terms of the number of test inputs used.

Table 16 shows the IVs and interface domain constraints identified by running

the interface analysis on servlet DisplayQuote (Figure 11). The column labeled Path

shows the path in terms of the branches in the servlet for which the interface infor-

mation corresponds. Column IVs lists the names of the parameters accessed along

that path and column Domain lists interface domain constraints imposed along the

path. As the table shows, both interfaces are comprised of two parameters. Along

the path that takes the true branch at line 5, the condition that “quoteID” has a

domain constraint of alphanumeric is imposed. The path along the false branch has

the negation of this constraint.

126

9.1.2 Attack Generation

During the attack generation phase, the information gathered in the previous phase

is used to create attacks on the target application. To do this, testers typically target

each identified IV using a set of attack heuristics, while supplying realistic and “harm-

less” input values for the other IVs that must be part of a complete request. The

identification of suitable realistic input values for the IVs not involved in an attack

is a crucial part of this process. Traditionally, testers would determine such values

by interacting with the developers, using values supplied as defaults in the web pages

examined during the previous phase, or generating random strings. Although practi-

cal, these approaches may not provide realistic values that will enable a vulnerability

to be exposed, as I explained earlier.

My approach addresses this problem by using the domain and grouping informa-

tion identified by the interface analysis to provide relevant values for all IVs that are

not being injected with potential attacks. My approach does not create new attack

heuristics; it provides a way to generate more realistic and relevant values for the

penetration test cases.

To illustrate with an example, consider the first IV grouping shown in Table 16.

During attack generation for SQLIAs, testers would target each of the IVs with attacks

based on some heuristics. When the first IV, “name,” is targeted, both my approach

and traditional approaches would generate an attack string and use it as the value

for “name.” The difference between my approach and other approaches is how the

value for the other IV is determined. My approach leverages the domain information

discovered by the interface analysis, which would result in using an alphanumeric

value for “quoteID.” The use of this domain information allows the penetration test

cases to pass the check at line 5, and thus successfully exploit the vulnerability at

line 8. In contrast, approaches that do not have this domain information would have

to either involve the developer, which would affect the practicality of the approach,

127

or use random values, which would be unlikely to satisfy the domain constraints on

the IVs.

9.1.3 Response Analysis

The goal of the response analysis phase is to analyze the output of the target applica-

tion after an attempted attack to (1) determine whether the attack succeeded and (2)

extract any additional information that was revealed in the response. Because manual

checking of web pages is extremely time consuming and error-prone, testers typically

use automated heuristic-based tools to check whether an attack was successful. For

example, to detect whether an SQLIA was successful, some tools search the web page

in the response for exceptions thrown by the database. Unfortunately, the success

of these approaches is often highly application specific, and it is difficult to identify

automated heuristics that are broadly applicable. In fact, my previous work shows

that current techniques for doing so can be highly ineffective [30]. In my approach,

I perform automated response analysis by adapting two existing techniques, one for

SQLIA and the other for XSS attacks. The adapted techniques work by adding an

out-of-band indicator of successful attacks to the response of the web application.

This indicator can be readily recognized by the penetration testing tool.

For detecting SQLIAs, the primary challenge is that a successful attack results in

the execution of an unintended SQL command on the database. In most cases, this

does not influence the content of the HTML pages generated by the web application

and therefore may not be easily observable. To address this issue, I leverage wasp, a

technique I developed in previous work [31, 32]. wasp uses a combination of positive

tainting and syntax-aware evaluation to accurately detect SQLIAs. Positive tainting

marks and tracks all of the trusted strings in an application that may be used to

build a database command—in practice, all hard-coded strings in the application.

Syntax-aware evaluation parses a query right before it is issued to the database and

128

checks that only trusted strings are used to form the parts of a database command

that correspond to SQL keywords and operators; if a database command violates this

policy, it is prevented from executing on the database. To use wasp in the context

of penetration testing, I extended it so that it adds a special HTTP header to the

application’s response when it detects an attack. The header informs the response

analysis whether an attempted attack was successful. The response analysis can

thus correlate this information with the information provided by the attack generator

to identify and report each vulnerable IV and the attack that was able to reveal the

vulnerability. From a high-level, this approach of using an attack detection techniques

is similar to one used by Wassermann and Su to evaluate the usefulness of a concolic

execution based approach to detecing SQLIAs [94]. However, in this case, their

technique uses a different underlying mechanism for detecting succesful attacks [78].

To illustrate this part of the approach, consider the example SQLIA that targets

line 8 of DisplayQuote (shown in Figure 11 of Chapter 2). Before the servlet executes,

wasp marks all of the trusted strings in the servlet, that is, the hard-coded strings

used to build the database query at lines 9. (The other hard-coded strings, which are

used to build the HTML page, are also marked as trusted, but are not used to build

database queries, so I do not discuss them further.) Then, at runtime, wasp tracks

the trust markings on the strings. When the servlet attempts to execute a database

query, wasp parses and checks the string that contains the query to be executed. In

this case, the check would reveal that the “- -” operator was generated using a string

that was not trusted. This causes wasp to block the attack and return the special

HTTP header that flags a detected attack.

The detection of successful XSS attacks is more straightforward than that for

SQLIAs. The reason for this is that, by definition, XSS attacks produce an observable

side effect in the generated HTML, namely the injected HTML content. For XSS the

complication is that a vulnerable IV and the point where the malicious tags appear

129

may be on different pages, as is the case in the running example. This makes it difficult

to identify the corresponding IV through which the successful XSS was injected.

To address this issue, the approach leverages a commonly used technique for

detecting when an XSS attack has been successful. This technique uses seeded

<SCRIPT> tags as part of the attack payload. Each <SCRIPT> tag contains a source

attribute that the approach sets to a specifically encoded value. If these seeded

<SCRIPT> tags appear on any pages in the web application during penetration test-

ing, the approach detects their presence and uses the encoded values to correlate

the successful attack with the vulnerable IV. For example, when performing pene-

tration testing, the attack payload would carry a tag in the following form: <SCRIPT

SRC=‘‘X-Y-Z.js’’></SCRIPT>, where X is the number of the component where the

payload was introduced, Y is the number of the IV used to inject the payload, and

Z is the number of test case that performed the XSS attack. The response analysis

parses each page visited during the penetration testing to determine if it contains one

of the seeded tags. If a seeded tag is found, the response analysis parses the source

attribute to determine the corresponding vulnerable IV. Using the example <SCRIPT>

tag, it would identify that the Yth IV of the Xth component was injected using test

case Z. This information is then correlated with an indexed table of components and

IVs to determine the name of the IV.

9.2 Implementation

The approach is implemented as a prototype tool, sdapt (Static and Dynamic Anal-

ysis based Penetration Testing). The sdapt tool is written in Java, works on Java-

based web applications, and performs penetration testing for discovering SQLIA and

XSS vulnerabilities. The high-level architecture of sdapt is shown in Figure 22.

sdapt inputs the code of a web application (i.e., a set of servlets in bytecode for-

mat) and produces a report with a list of the successful attacks and the corresponding

130

vulnerable IVs. I chose SQL injection and XSS as the attack types because many

web applications contain vulnerabilities to these types of attacks.

The information gathering module analyzes the servlets’ code and outputs infor-

mation about the IVs of each servlet. For this module, I used the implementation of

the data-flow based interface analysis described in Chapter 5.

The attack generation module consists of several sub-modules. The controller

inputs the IV-related information and passes the IV groups, one at a time, to the IV

selector. The IV selector, in turn, iterates over each of the IVs in a group and, for each

selected IV, passes it to the attack heuristics module, which generates possible attack

strings for the IV. The injection engine generates penetration test cases by combining

these attack strings for the selected IV and legitimate values for the remaining IVs

in the current IV group. To generate legitimate values, the engine leverages the

IVs’ domain information. The generated attacks are then sent to the target web

application. In the implementation, the controller and IV selector were built from

scratch, but the attack heuristics and injection engine modules were built on top

of the code base of SQLmap3 and wapiti.4 These two penetration testing tools

were used for several reasons: 1) wapiti and SQLmap are widely used, popular,

and actively maintained penetration testing tools for discovering XSS (wapiti) and

SQLIA (SQLmap) vulnerabilities; 2) the architecture of both tools is highly modular,

which made it easier to integrate them into sdapt; and 3) both tools contain heuristics

for performing many different types of SQLIAs and XSS attacks and can interact with

a wide range of applications that communicate using different HTTP request methods.

The response analysis module receives the HTML responses generated by the

target web application and analyzes them to determine whether the attack was suc-

cessful. It then correlates the results of this analysis with the vulnerable IV. After

3http://sqlmap.sourceforge.net/
4http://wapiti.sourceforge.net/

131

Attack generation

Servlets

Information
gathering

WAM
IV-related

information
(IVs,

domain,
grouping)

Penetration
testing
report

Controller

IV group

IV selector

IV to be
injected

Attack
heuristics

IV's attack
strings

Injection
engine

Attack

Web
server

Response

Response analysis

WASP

Figure 22: High-level architecture of the sdapt tool.

all of the responses have been analyzed, the output of this module is a report that

lists all of the vulnerable IVs along with the test inputs that were able to reveal the

vulnerability. For detecting successful SQLIAs, I used a previous implementation of

wasp [31, 32]. Other similar techniqus, such as Amnesia [33, 34], CSSE [65], and

web application hardening [65], could be used as well. However, wasp has several

practical advantages over these techniques since CSSE and web application hardeing

are not implemented for JEE web applications and it scales better than Amnesia. For

detecting successful XSS attacks, the response analysis in wapiti was used with code

that tracked the specially marked XSS injection tags and correlated their presence in

a web page with the IV that introduced the tag (see Section 9.1.3).

9.3 Evaluation

The goal of the empirical evaluation is to assess the usefulness of my penetration

testing approach, implemented in the sdapt tool, when compared to a traditional

penetration testing tool. To do this, I measure sdapt’s practicality in terms of the

resources needed to perform the information gathering and attack generation phases

and effectiveness in terms of the number of vulnerabilities discovered. The evaluation

addressed the following research questions:

132

RQ1: Is sdapt practical in terms of its time and number of test cases?

RQ2: Does sdapt’s information gathering lead to the discovery of more vulnerabil-

ities than a traditional approach?

As an instance of a traditional approach for penetration testing, I used im-

proved versions of SQLmap3 and wapiti4. The improved tools, sqlmap++ and

wapiti++, are extended in two ways. First, a web crawler is integrated into each

tool to perform information gathering. Web crawling is one of the most widely-used

techniques for gathering information about a web application and is thus a good

representative of current approaches. The web crawler is based on the OWASP Web-

Scarab1 project and modified so that it collects IVs and any default values for these

IVs in the web pages it visits. (The default values are used as possible values for

the IVs during attack generation.) Second, the improved response analysis (see Sec-

tions 9.1.3 and 9.2) is integrated into both tools.

To reduce the threats to the internal validity of the studies as much as possible,

the implementations of sdapt, sqlmap++, and wapiti++ maximize code reuse

wherever possible. In particular, sdapt uses the same attack heuristics that are

contained in the original SQLmap and wapiti tools. Also, sdapt, sqlmap++, and

wapiti++ use the same implementation of the response analysis for their respective

attacks.

9.3.1 RQ1: Practicality

In the first research question, I evaluated the practicality of my penetration testing

approach. For practicality, I measured the number of test cases generated for each

approach. Since the time to run test cases is roughly linear with respect to the num-

ber of test cases, this measurement gives an indication of the amount of resources

necessary to perform the penetration testing using my approach. Table 17 shows

the number of test cases generated during penetration testing by sqlmap++ and

133

Table 17: Number of test cases for penetration testing.

Number of test cases
Subject trad. sdapt

Bookstore 802 14,711

Checkers 5 492

Classifieds 544 8,557

Daffodil 442 20,698

Empl. Dir. 223 3,237

Events 106 3,746

Filelister 45 4,465

OfficeTalk 18 208

Portal 393 9,266

Total 2,578 65,380

wapiti++ (shown together as “trad.” in Table 17), which both use a traditional

approach to information gathering, and sdapt. The number of test cases is the num-

ber of IV and domain information groupings given to the attack generation module

of each approach.

In terms of the number of test cases generated, sdapt consistently generated

at least an order of magnitude more test cases than sqlmap++ and wapiti++.

This result is to be expected, given sdapt’s more complete identification of IV-

related information; richer IV information is likely to result in more test cases being

generated. Although a higher number of test cases results in more testing time, the

maximum testing time I observed for any subject during the penetration testing was

below ten hours on a Pentium D 3.0Ghz processor running GNU/Linux 2.6 with 2GB

of memory. Moreover, as the results for RQ4 show, the additional test cases always

resulted in the discovery of more vulnerabilities.

134

Table 18: Number of vulnerabilities discovered.

Number of Vulnerabilities
Cross Site Scripting SQL Injection

Subject wp++ sdapt sm++ sdapt

Bookstore 19 63 7 11

Checkers 0 1 0 2

Classifieds 10 36 4 14

Daffodil 1 3 6 11

Empl. Dir. 6 24 1 11

Events 10 27 4 11

Filelister 0 0 1 1

Office Talk 1 1 2 12

Portal 20 42 11 17

Total 67 197 36 90

9.3.2 RQ2: Information Gathering Effectiveness

To evaluate the effectiveness of my technique for information gathering, I measured

the number of vulnerabilities discovered by sqlmap++, wapiti++, and sdapt. I

ran both tools against each of the subject applications. Table 18 shows the number of

vulnerabilities discovered by sqlmap++ (sm++), wapiti++ (wp++), and sdapt.

For SQL Injection and Cross Site Scripting (XSS), sdapt discovered more vul-

nerabilities than either wapiti++ or sqlmap++. For vulnerability to SQL injec-

tion, sdapt discovered a total of 90 vulnerable IVs, as compared to 36 found by

sqlmap++. Of particular interest are the results for the applications with known

vulnerabilities. For Filelister, both tools discovered the single known vulnerable IV.

For Daffodil, there were two known vulnerable IVs. sqlmap++ discovered an ad-

ditional 4, and sdapt discovered an additional 9. For vulnerability to XSS attacks,

sdapt identified a total of 197 vulnerable IVs, whereas wapiti++ found 66.

135

In addition to discovering more vulnerabilities, my approach also had a very low

false positive rate. Each reported vulnerability was inspected in order to determine if

it was a real vulnerability or a false positive. The results of this inspection showed that

sqlmap++ reported three false positives, wapiti++ reported no false positives, and

sdapt reported two false positives. (These were not included in the vulnerability

totals in Table 18.) For sdapt and sqlmap++, the false positives were caused

by limitations in the implementation of wasp and could be eliminated with further

engineering. For wapiti++, the observable side effect of XSS means that attacks can

generally be detected with high precision and, as in the evaluation, no false positives.

Overall, the results show that, at least for the subjects considered, my approach

can outperform more traditional penetration testing techniques and that the improved

information gathering technique plays an important role in the effectiveness of the

approach.

9.4 Conclusions

Penetration testing is a widely used technique to help ensure the security of web

applications. Identifying the input vectors of a web application is a fundamentally

important part of penetration testing. In this chapter, I proposed a new approach to

penetration testing that improves information gathering by leveraging my interface

analysis technique to identify input vectors directly from the application’s code. My

approach is implemented in a prototype tool, sdapt. I compared sdapt’s perfor-

mance against two state-of-the-art penetration testing tools on nine web applications.

The results show that sdapt was able to discover more vulnerabilities than either of

the other two tools, while still being practical. These results indicate that my ap-

proach is both useful and effective and can outperform existing alternative approaches

to penetration testing.

136

CHAPTER X

RELATED WORK

This chapter discusses research work that relates to analysis and quality assurance

techniques for web applications. I first discuss techniques that are used for analyz-

ing and modeling web applications in Section 10.1. For quality assurance areas, I

discuss approaches related to test-input generation, vulnerability detection, and web

application verification in Sections 10.2, 10.3, and 10.4.

Although web services are closely related to web applications, I do not discuss

work that focuses on web services. Web services have interfaces and interactions

that are specified and described by languages such as BPEL and WSDL. Quality

assurance techniques for web services make use of these specifications and therefore

address very different types of issues than those that are relevant for web application

quality assurance.

10.1 Analysis and Modeling

Understanding the structure and properties of a web application is important for many

quality assurance techniques. For this reason, there has been a substantial amount of

research and techniques developed that can analyze and model web applications. In

my overview of this aspect of the related work, I broadly group the techniques based

on their general mechanism for obtaining information about the web application.

These are: manual specification of the web application properties, web crawling, type

inference, and static analysis.

137

10.1.1 Manual Specification

One group of techniques relies on manual specification of the properties of a web

application. An early technique by Ricca and Tonella [67] is based on UML models.

In this approach, developers model the links and interface elements of each page in

the web application, and these models are used to guide test-input generation and

estimate coverage of the web application during testing. Jia and Liu [41] propose

a similar technique that relies on a formal specification instead of a UML model.

These particular techniques are well-suited for early web applications that had a

primarily static structure. They are not as useful for capturing aspects of modern

web applications, such as dynamic generation of content and state-based behavior.

Later work addressed these shortcomings by using more expressive modeling tech-

niques. Andrews and colleagues proposed using finite-state machines to model web

applications [8]. Betin-Can and Bultan [13, 17] developed more expressive modeling

languages that allowed developers to represent dynamic interactions between compo-

nents in a web application.

The primary drawback of the manual specification techniques is that they rely

on developers to completely and accurately specify a web application’s properties.

Although developers may be capable of doing this for small web applications, the size

and complexity of modern web applications makes it challenging, time consuming, and

error prone. Furthermore, developer-provided specifications can reflect the intended

behavior of the application, but this may differ from the actual implementation.

Differences between the two views of the software can lead to inadequate testing or

verification of the implementation.

10.1.2 Web Crawling

Another group of techniques for modeling and analyzing web applications is based

on web crawling. In this approach, a program called a web crawler, visits an initial

138

page of the web application. It analyzes this page and identifies links and references

to other pages in the application. The web crawler repeats this process for each page

discovered during the analysis. This process is repeated until there are no new pages

to be discovered. Web crawling is currently one of the most popular and widely used

techniques for gathering information about a web application. There are countless

commercial and open source implementation available online. In fact, in my empirical

evaluations, I make use of one such implementation, the OWASP WebScarab Project,

which provides a state of the art actively maintained web crawler. Most work on web

crawlers has been commercially driven; however, many researchers have also proposed

useful extensions to web crawling, which I will summarize below.

Early web crawlers were very simplistic. They primarily followed static hyper

references encoded as links (e.g., <a> tags) in web applications. As web applica-

tions became more dynamic, they included web forms and client-side scripts that

could also link to web pages. This posed a problem for the early simple approaches.

One of the early techniques from the research community to address this problem

was VeriWeb [12]. Features of this technique included the ability to fill in and

submit web forms with developer-provided values, and automatic execution of any

JavaScript occurring in the web page. Although these features represented substan-

tial improvements over preceding techniques, interaction with the web application

via the web forms remained a problematic area. Developers had to painstakingly

specify name-value pairs to be used with the application. Subsequent work by Huang

and colleagues [38] introduced the use of sophisticated heuristics that guided the

web crawler’s interaction with the web application. These heuristics required ini-

tial set up and configuration by the developer but then allowed the crawler to more

autonomously interact with the web application. In spite of these advancements,

automated autonomous interaction between a web crawler and a web application re-

mains problematic. Without extensive set up and configuration for each application

139

to be explored, it is difficult for web crawlers to determine how to interact with a web

application in order to explore all of its possible pages.

The introduction of new client-side technologies in web applications has further

complicated web crawling. Technologies, such as JavaScript and Adobe Flash, are

widely used to implement functionality on web applications written in the AJAX

framework, which is becoming increasingly popular. Researchers have proposed web

crawling techniques to address these new technologies. A recent example of this work

is crawljax [55], which builds “state-flow” graphs of the client-side of an AJAX

based web application. This information is used to build a more complete model

of the elements of a web application that would be missed by traditional crawling

techniques.

A recent approach by Elbaum and colleagues [25] uses a web crawling based ap-

proach to infer interface related information about a web application. In their ap-

proach, they submit a large number of requests to a web application and use the

response to infer constraints on the interfaces exposed by the web application. The

type of information obtained by this approach is similar in nature to the interface do-

main constraints that I identify in Chapter 5. However, instead of directly identifying

the constraints as is done by my static analysis, this approach indirectly infers the

constraints by identifying crashes and error messages that are caused by the requests.

Overall, web crawling is a popular and widely used technique for many reasons:

(1) It is easy to set up and run on a web application, (2) The information discovered

by web crawling is generally precise because it correlates with an actual execution of

the web application, and (3) It is possible to use web crawling without having access

to the source code of the web application. However, the drawback to using web

crawlers is that they cannot provide any guarantees of completeness. As I mentioned

earlier, it is often required that a web crawler enters specific values or interacts with a

web application in a specific way in order to visit all of the pages of a web application.

140

If the web crawler cannot visit every page of a web application, the information it

gathers will be incomplete.

10.1.3 Static Analysis

Static analysis techniques have recently been employed to identify information about

the structure, behavior, and properties of a web application. Much like my program

analysis techniques, these approaches examine the source code of a web application

to determine possible properties, such as name-value pairs and component output.

One of the earliest static analysis techniques for web applications was developed

by Deng, Frankl, and Wang [23]. This approach used static analysis to develop testing

requirements for web applications based on paths through the web application. As

part of this work, the static analysis identifies the names of parameters accessed in

the web application. However, it does not identify domain information or group the

names of parameters into interfaces. My interface analysis makes several important

improvements over this approach. In particular, the analysis that I use is context-

and flow-sensitive, which allows it to be more precise and to capture distinct inter-

faces that correspond to different paths of execution. Also, in addition to identifying

distinct interfaces, my analysis can associate domain information with the elements

of the discovered interfaces. As demonstrated by the results in Chapter 7, the ability

to identify domain information, in terms of both type and relevant values of state

parameters, can result in much more thorough testing of a web application.

Several approaches have addressed the issue of identifying the component output

of a web application. The first of these is a technique proposed by Brabrand and

colleagues [15]. This technique performs a static analysis of web applications written

in the <bigwig> framework in order to identify the structure and content of the

output HTML pages. The analysis technique facilitate the static verification of the

dynamically generated HTML pages. The primary drawback of this technique is that

141

it works only for the <bigwig> framework [16], and is not easily translated to other

more general web application frameworks.

Minamide proposed a technique for a more general purpose language, PHP, that

approximated the output of a component using a context-free grammar (CFG). This

grammar could then be analyzed to verify the HTML. The primary limitation of

this technique is that the combination of the use of a CFG to model the output and

the analysis used to build it, results in an approximation of the output. Techniques

that need a precise model of the HTML could incur false positives or false negatives

as a result of using the approximation. A new technique by Artzi and colleagues

addresses this issue of precision through the use of concolic execution of the web

application [10]. This approach collects the HTML output that results from each

concolic execution and verifies it with an HTML validator. The primary limitation of

this technique is its dependence on the concolic execution of a web application. While

this was accomplished in their evaluation for relatively small PHP applications, my

own experience with symbolic execution of web applications indicates that its not

clear yet if this approach can be easily applied to larger web applications written in

PHP or other frameworks, such as the Java Enterprise Edition.

10.1.4 Type Inference

Type systems serve to prevent errors related to the type of a variable from occurring

during the run time of an application [18]. Type systems describe the relationships

that can exist between applications and their typed variables. In web applications, the

value of the parameters passed to a component have types. However, these types can

not be determined from the formal type system of the web application’s GPL. Hence,

the domain information analyses performed by my interface analyses in Chapter 5 can

be described as type inference analyses, since they attempt to discover the domain of

the parameters.

142

As compared to traditional type inference [19, 21, 57, 59] and dynamic sub-

typing [1], the problem of type inference addressed by my approaches has several

unique characteristics. The first is that the types identified by my domain analysis

do not map directly to types in the GPL. For example, the relevant values define an

enumeration of the possible values a parameter can be expected to equal. However,

this enumeration does not map directly to any type in the GPL. Second, violations

of the type information my approaches discover do not cause violations of the GPL’s

type system. Instead, they are handled in much the same way as input that fails

validation checks.

There has been some work in type inference specifically for web applications [7,

62, 83]. However, this work has focused on developing type inference system for

JavaScript, which is embedded in the HTML generated by the web application. This

work has not addressed the issue of the types of the parameters submitted beyond

ensuring that they are correctly converted to string types and can be transmitted

over HTTP.

10.1.5 Other Analysis Techniques

Licata and Krishnamurthi [50] use static analysis to build models of the control flow of

a web application. A noteworthy aspect of their approach is that they build models

of the web application that account for user actions, such as the use of the back

button in a browser. This consideration allows their approach to discover potential

errors that might not be discovered by more generic model checking approaches. The

primary limitation of their analysis is that it is developed for web applications written

in Scheme and takes advantage of features of that framework that are not present in

other more general purpose language frameworks, such as PHP and JEE.

Ricca and Tonella propose an approach for program slicing for web applica-

tions [69]. This approach computes the traditional program slice [95], but takes into

143

account special aspects of the web application. The authors later expanded on this

work by proposing a form of the system dependence graph for web applications [70].

More recently, the authors expanded their technique to handle applications that gen-

erate a significant portion of their content at runtime [88]. This work also includes

data-flow based algorithms for approximating the component output of the applica-

tion. These approaches do not identify interface information, but do deal with many

of the same problems my approaches deal with; namely, accounting for the additional

semantics of web application specific operations. The primary limitation of these ap-

proaches is that they are developed for web applications written in a simplistic web

application language and might not generalize to other frameworks based on more

generally used languages.

10.2 Web Application Testing

One of the most common approaches to testing web applications is usage-based test-

ing. This group of approaches is based on capturing user-session data and using this

information to guide test case generation. The basic idea behind most of these tech-

niques is that web servers can keep track of every HTTP request that is made to

the web application. The requests can be saved and then later replayed to create a

realistic test suite for the web application. The saved requests can also be analyzed

and modified to add new test cases to the test suite.

Elbaum and colleagues propose and evaluate a technique that uses user session

information in this manner [26, 27]. In their approach, user session data is recorded,

and the saved requests are used directly as test inputs. Their evaluation of this

approach showed that this technique was as effective as then current model-based

techniques in terms of exposing faults. Sprenkle and colleagues [76, 77] proposed an

automated tool that can support this approach and generate additional test cases

based on the captured user-session data.

144

Other related approaches mined the web server usage logs to build a statistical

model of the web application [37, 42]. This is useful for a range of quality assurance

techniques that require usage models of an application, such as reliability testing.

A subsequent approach by Sant, Souter, and Greenwald [75] used these statistical

models to generate test cases. An approach by Sampath and colleagues used the

statistical models to generate testing requirements for web applications [73, 74]. Their

evaluations of this approach showed that augmenting test requirements with usage-

based requirements is useful for improving coverage of a web application.

Overall the usage-based testing approaches provide useful and realistic test data

for web applications. Another benefit is that the test data is inexpensive and easy

to obtain. However, the primary issue with using this technique is incompleteness.

Unless the test suites are augmented, they will only allow testing for parts of the ap-

plication with which users have interacted. Therefore, ensuring that users completely

and thoroughly interact with the web application is important for this approach to

achieve high coverage levels.

Another group of techniques uses developer-provided models of web applications

to generate test inputs [11]. These approaches assume the existence of a mathematical

model of a web application, such as one generated by the techniques in Section 10.1.1.

The success of these techniques is heavily dependent on the completeness and accuracy

of the developer-provided models. To address this issue, there has also been research

work on reverse engineering models of web applications [66, 68, 85, 86, 87]. These

approaches are satisfactory for web applications with primarily static HTML pages,

but are not able to accurately reverse engineer web applications that generate content

at runtime because they do not consider the semantics of the web application’s GPL.

145

10.3 Vulnerability Detection

A technique by Miller, Fredricksen, and So [56], called fuzzing, was an early influential

work that led to the development of many subsequent penetration testing techniques.

In their work, Miller and colleagues submitted byte streams of random data to com-

mon UNIX utilities to assess whether they could crash them. This technique was

later adopted and expanded by many testers to discover bugs and security vulnera-

bilities [80].

Although the concepts and principles behind penetration testing have been known

for quite some time, it was not until recently that penetration testing began to receive

significant attention [84]. Geer and Harthorne provided an early definition of the goals

and techniques of penetration testers [28]. Subsequent work has motivated the need

for penetration testing and proposed ways to incorporate the technique into software

engineering processes [9, 14].

McAllister, Kirda, and Kruegel propose a hybrid approach to penetration testing

that leverages usage-based information [54]. Similar to my work in Chapter 9, the

authors attempt to improve penetration testing by improving the underlying infor-

mation gathering technique. In this case, they use collected user sessions to provide

more detailed information about interfaces and legal values. Their evaluation shows

that this approach improves over typical web crawling based approaches. However,

like usage based testing, the technique is still limited by the quality of the initial set

of user session information.

There has also been a large amount of research work in static analysis techniques

to detect vulnerabilities to SQL Injection (SQLI) and Cross Site Scripting (XSS)

attacks. These approaches typically model vulnerabilities as information flows that

allow untrusted data to perform sensitive operations at certain points in the ap-

plications. Techniques, such as PQL [53] and information flow analysis [39], allow

developers to more expressively model the different possible vulnerabilities using an

146

information-flow description language. These techniques analyze a web application

and identify information-flows that might cause an application to be vulnerable. How-

ever, because these techniques can not precisely model all input validation routines

and information-flow operations, they often have a high rate of false positives.

Two recent approaches by Wassermann and Su address the issue of imprecision

by combining string analysis and information-flow analysis to more precisely identify

vulnerabilities in code [92, 93]. Their evaluation shows that this is very effective

approach for discovering vulnerabilities to SQLI and XSS attacks. Another recent

approach by Kiezun and colleagues uses concolic execution to drive the identification

of SQLI and XSS vulnerabilities [47]. As compared to traditional information-flow

based approaches, this approach has a low false positive rate since vulnerabilities are

discovered while executing the application. One drawback of using concolic execution

to identify vulnerabilities is that the question of what to model in the environment can

directly affect the number of vulnerabilities discovered. Many vulnerabilities in web

applications exist because of subtle configuration issues or environment settings. To

make concolic execution approaches efficient, often only a subset of the environment

is modeled. If vulnerabilities depend on aspects that are not modeled, its very likely

these vulnerabilities will not be detected. One advantage of traditional penetration

testing compared to concolic based approaches is that it tests web applications in

context, that is, in the environment that they are deployed.

10.4 Web Application Verification

There has been relatively little work in the area of verification of web applications.

Most early approaches focused on validating the HTML pages of a web application.

Well-known validators, such as the one provided by the World Wide Web Consortium

(W3C) [96], have existed since the early days of the Internet. Validators take an

HTML based web page as input and then check the syntax for conformance with

147

legal HTML structure. These types of approaches diminished in usefulness as web

applications became more dynamic, and generated web page content at runtime.

Since validators can only check static HTML content, these approaches fell out of

use.

An approach by Artzi and colleagues (discussed in Section 10.1.3) uses concolic

execution of a web application to identify and then verify the application’s HTML

output [10]. This approach allows HTML verification to be performed on modern

dynamic web applications since the HTML generated along each path of the execution

is checked. An earlier approach by Brabrand and colleagues [15] also allowed for the

verification of HTML generated by a web application, but its use was limited to

applications written in the <bigwig> framework [16] and it does not generalize well

to other frameworks. Another approach focuses on the verification of flow properties

in the JavaScript contained in the generated HTML [81]. However, unlike Artzi and

colleagues’ approach, these properties must be specified by the developer.

Closely related to these approaches is a technique by Gould, Su, and Devanbu [29],

which performs a static verification of dynamically generated SQL queries. Their

technique performs string analysis on the variable passed to functions that execute

SQL database queries and then examines the possible queries to check that they are

valid. At a high-level, this approach is somewhat similar to my invocation verification,

but applied to SQL queries instead of interface invocations. Invocation verification,

however, is complicated by the fact that 1) the identification of interface invocations

involves path-dependent properties and 2) the structure of valid accepted interfaces

is not known a priori, as is the case for valid SQL queries.

148

CHAPTER XI

CONCLUSION

The goal of my research is to improve quality assurance for web applications. My

dissertation work furthers this goal by developing program analyses for web applica-

tions and using these analyses to improve existing quality assurance techniques and

develop new techniques focused on specific characteristics of web applications. My

thesis statement is:

Program analysis techniques to identify interfaces and component output of web

applications can be used to improve quality assurance for web applications.

There are two parts to the evaluation of my thesis statement. In the first part, I

developed a suite of program analysis techniques that identify interfaces and compo-

nent output in a web application. In the second part, I showed that these program

analysis techniques can be used to successfully adapt traditional quality assurance

techniques to web applications, improve existing web application quality assurance

techniques, and develop new techniques focused on web application specific issues.

To address the first part of the dissertation work, I developed analyses that com-

pute three different abstractions in web applications, components, interfaces, and

component output. All three represent useful software abstractions that are defined

differently in web applications than in traditional software and are useful for a wide

range of quality assurance tasks. My component analysis technique analyzes a web

application and identifies its components, entry points, and HTTP request methods.

It provides basic information that is leveraged by my other analyses. For interface

analysis, I developed two approaches, one based on iterative data-flow analysis and

149

another on symbolic execution. Both approaches identify parameters accessed by

a web application, group these into logical interfaces, and identify domain informa-

tion about each of the parameters. The two approaches complement each other,

as the symbolic-execution-based approach is more precise, but the data-flow-based

technique can be easily run on a wide variety of web applications. The component

output analysis identifies the web forms and web links that can be generated by an

application.

In the second part of the dissertation work, I focused on three quality assurance

areas: test-input generation, interface invocation verification, and vulnerability de-

tection. In each of these areas, I used my program analyses to either adapt, improve,

or define quality assurance techniques. Test-input generation and penetration testing

were significantly improved by using my interface information – test suites achieved

more structural coverage and discovered more vulnerabilities than by using other tech-

niques for interface identification. The combination of interface information and the

component output analysis allowed me to define a new technique to verify interface

invocations in web applications and identify parameter mismatches. The empirical

evaluation of this technique showed that it found many errors in the web application

with a low rate of false positives. The empirical evaluations of the quality assurance

techniques confirmed my thesis statement – the use of the information generated by

my analyses was able to improve quality assurance for web applications in all three

areas.

11.1 Future Work

In the future, web applications will continue to play an important role in the day-to-

day lives of millions of users. My dissertation work lays the foundation for developing

techniques that can help ensure that these applications deliver their services reliably

150

and with a high degree of quality. The analysis techniques developed in my disserta-

tion represent a starting point for the development of additional analyses that will be

able to identify increasingly higher-level and more sophisticated software abstractions

in web applications. In turn, the identification of these abstractions will allow for the

development of additional web-application-oriented quality assurance techniques.

The techniques that I have developed provide software developers with the ability

to analyze and model the interfaces, components, and output of a web application.

These abstractions are useful for certain quality assurance tasks, but they provide

only a limited view of the static structure and runtime behavior of a web application.

They nevertheless are basic building blocks on which more advanced techniques can

be built. These include: (1) control-flow analysis that models the inter-component

control flow implemented by HTTP and HTML commands, (2) data-flow analysis

that accounts for the underlying HTTP-based message passing between components,

and (3) object-program analysis that allows for more in-depth analysis and correlation

with generated JavaScript programs and SQL queries. The development of analyses

to identify these abstractions could enable developers to create new techniques that

would allow for more thorough testing and verification of web applications.

Security remains a very challenging problem for web applications; vulnerability

reports show that web applications are an easy and lucrative target for computer

hackers. I believe that part of this problem is the inherent complexity of modern

web applications. This complexity arises because modern web applications interact

extensively with external systems, combine data from multiple sources, and leverage

large complex frameworks, all of which make it difficult for developers to readily

identify vulnerabilities. In fact, vulnerability to two of the most notorious web-

based attacks, SQL Injection and Cross Site Scripting, is hard to identify because

the complexity of web applications makes it difficult for developers to anticipate all

of the possible runtime interactions of an application. Additional analyses, such as

151

control-flow, data-flow, and object-program analysis, will facilitate the development

of additional techniques that can detect higher-level problems in code that can lead

to vulnerabilities.

152

REFERENCES

[1] Abadi, M., Cardelli, L., Pierce, B., and Plotkin, G., “Dynamic Typing
in a Statically Typed Language,” ACM Transactions on Programming Languages
and Systems, vol. 13, no. 2, pp. 237–268, 1991.

[2] Acunetix, “Acunetix Web Vulnerability Scanner.” http://www.acunetix.com/,
2008.

[3] Adhikari, R., “RBS WorldPay Data Breach Hits 1.5 Million.” Inter-
netNews.com, http://www.internetnews.com/security/article.php/3793386, De-
cember 24 2008.

[4] Aho, A., Sethi, R., and Ullman, J., Compilers, Principles, Techniques, and
Tools. Addison-Wesley, 1986.

[5] Anand, S., Orso, A., and Harrold, M. J., “Type-dependence Analysis
and Program Transformation for Symbolic Execution,” in Proceedings of the
International Conference on Tools and Algorithms for the Constructions and
Analysis of Systems, pp. 117–133, 2007.

[6] Anand, S., Pasareanu, C. S., and Visser, W., “JPF-SE: A Symbolic Exe-
cution Extension to Java Pathfinder,” in Proceedings of the International Con-
ference on Tools and Algorithms for the Constructions and Analysis of Systems,
pp. 134–138, 2007.

[7] Anderson, C. and Giannini, P., “Type Checking for JavaScript,” in Pro-
ceedings of the Workshop on Object Oriented Developments, ENTCS, Elsevier,
2005.

[8] Andrews, A. A., Offutt, J., and Alexander, R. T., “Testing Web Ap-
plications by Modeling with FSMs,” Software Systems and Modeling, vol. 4,
pp. 326–345, July 2005.

[9] Arkin, B., Stender, S., and McGraw, G., “Software Penetration Testing,”
IEEE Security & Privacy, vol. 3, no. 1, pp. 84 – 87, 2005.

[10] Artzi, S., Kieżun, A., Dolby, J., Tip, F., Dig, D., Paradkar, A., and
Ernst, M. D., “Finding Bugs in Dynamic Web Applications,” in Proceedings
of the International Symposium on Software Testing and Analysis, July 2008.

[11] Bellettini, C., Marchetto, A., and Trentini, A., “TestUml: User-
Metrics Driven Web Applications Testing,” in Proceedings of the Symposium
on Applied Computing, (New York, NY, USA), pp. 1694–1698, ACM, 2005.

153

[12] Benedikt, M., Freire, J., and Godefroid, P., “VeriWeb: Automatically
Testing Dynamic Web Sites,” in Proceedings the International World Wide Web
Conference, May 2002.

[13] Betin-Can, A. and Bultan, T., “Verifiable Web Services with Hierarchi-
cal Interfaces,” in Proceedings of the International Conference on Web Services,
pp. 85–94, July 2005.

[14] Bishop, M., “About Penetration Testing,” IEEE Security & Privacy, vol. 5,
no. 6, pp. 84–87, 2007.

[15] Brabrand, C., Møller, A., and Schwartzbach, M. I., “Static Validation
of Dynamically Generated HTML,” in Proceedings of the Workshop on Program
Analysis for Software Tools and Engineering, pp. 221–231, June 2001.

[16] Brabrand, C., Møller, A., and Schwartzbach, M. I., “The Bigwig
Project,” Transactions on Internet Technology, vol. 2, no. 2, pp. 79–114, 2002.

[17] Bultan, T., “Modeling Interactions of Web Software,” in Proceedings of the In-
ternational Workshop on Automated Specification and Verification of Web Sys-
tems, Nov. 2006.

[18] Cardelli, L., “Type Systems,” ACM Computing Surveys, vol. 28, no. 1,
pp. 263–264, 1996.

[19] Cardelli, L. and Wegner, P., “On Understanding Types, Data Abstraction,
and Polymorphism,” ACM Computing Surveys, vol. 17, pp. 471–522, 1985.

[20] Christensen, A. S., Møller, A., and Schwartzbach, M. I., “Precise Anal-
ysis of String Expressions,” in Proceedings of the International Static Analysis
Symposium, pp. 1–18, June 2003.

[21] Damas, L. and Milner, R., “Principal Type-schemes for Functional Pro-
grams,” in Proceedings of the Symposium on Principles of Programming Lan-
guages, (New York, NY, USA), pp. 207–212, ACM, 1982.

[22] Dean, J., Grove, D., and Chambers, C., “Optimization of Object-Oriented
Programs Using Static Class Hierarchy Analysis,” in Proceedings of the Euro-
pean Conference on Object-Oriented Programming, (London, UK), pp. 77–101,
Springer-Verlag, 1995.

[23] Deng, Y., Frankl, P., and Wang, J., “Testing Web Database Applications,”
SIGSOFT Software Engineering Notes, vol. 29, no. 5, pp. 1–10, 2004.

[24] Elbaum, S., Chilakamarri, K.-R., Gopal, B., and Rothermel, G.,
“Helping End-Users ”Engineer” Dependable Web Applications,” in Proceedings
of the International Symposium of Software Reliability Engineering, pp. 22–31,
November 2005.

154

[25] Elbaum, S., Chilakamarri, K.-R., II, M. F., and Rothermel, G., “Web
Application Characterization Through Directed Requests,” in Proceedings of the
International Workshop on Dynamic Analysis, pp. 49–56, May 2006.

[26] Elbaum, S., Karre, S., and Rothermel, G., “Improving Web Application
Testing with User Session Data,” in Proceedings of the International Conference
on Software Engineering, pp. 49–59, November 2003.

[27] Elbaum, S., Rothermel, G., Karre, S., and II, M. F., “Leveraging User-
Session Data to Support Web Application Testing,” Transactions On Software
Engineering, vol. 31, pp. 187–202, March 2005.

[28] Geer, D. and Harthorne, J., “Penetration Testing: A Duet,” in Proceedings
of the Computer Security Applications Conference., pp. 185–195, December 2002.

[29] Gould, C., Su, Z., and Devanbu, P., “Static Checking of Dynamically Gen-
erated Queries in Database Applications,” in Proceedings of the International
Conference on Software Engineering, pp. 645–654, May 2004.

[30] Halfond, W. G. J., Choudhary, S. R., , and Orso, A., “Penetration
Testing with Improved Input Vector Identification,” in Proceedings of the Inter-
national Conference on Software Testing, Verification, and Validation, (Denver,
Colorado, USA), pp. 346–355, Apr. 2009.

[31] Halfond, W. G. J., Orso, A., and Manolios, P., “Using Positive Tainting
and Syntax-Aware Evaluation to Counter SQL Injection Attacks,” in Proceed-
ings of the Symposium on the Foundations of Software Engineering (FSE 2006),
pp. 175–185, November 2006.

[32] Halfond, W. G. J., Orso, A., and Manolios, P., “WASP: Protecting Web
Applications Using Positive Tainting and Syntax-Aware Evaluation,” Transac-
tions on Software Engineering, vol. 34, no. 1, pp. 65–81, 2008.

[33] Halfond, W. G. and Orso, A., “AMNESIA: Analysis and Monitoring for
NEutralizing SQL-Injection Attacks,” in Proceedings of the International Con-
ference on Automated Software Engineering, pp. 174–183, November 2005.

[34] Halfond, W. G. and Orso, A., “Combining Static Analysis and Runtime
Monitoring to Counter SQL-Injection Attacks,” in Proceedings of the Interna-
tional Workshop on Dynamic Analysis, (St. Louis, MO, USA), pp. 22–28, May
2005.

[35] Halfond, W. G. and Orso, A., “Command-Form Coverage for Testing
Database Applications,” in Proceedings of the International Conference on Au-
tomated Software Engineering, pp. 69–78, September 2006.

[36] Halfond, W. G., Viegas, J., and Orso, A., “A Classification of SQL-
Injection Attacks and Countermeasures,” in Proceedings of the International
Symposium on Secure Software Engineering, Mar. 2006.

155

[37] Hao, J. and Mendes, E., “Usage-based Statistical Testing of Web Applica-
tions,” in Proceedings of the International Conference on Web Engineering, (New
York, NY, USA), pp. 17–24, ACM, 2006.

[38] Huang, Y., Huang, S., Lin, T., and Tsai, C., “Web Application Security
Assessment by Fault Injection and Behavior Monitoring,” in Proceedings of the
International World Wide Web Conference, pp. 148–159, May 2003.

[39] Huang, Y., Yu, F., Hang, C., Tsai, C. H., Lee, D. T., and Kuo, S. Y.,
“Securing Web Application Code by Static Analysis and Runtime Protection,”
in Proceedings of the International World Wide Web Conference, pp. 40–52, May
2004.

[40] James, A., “Amazon’s 2-hour crash thwarts shoppers.” Seattle Post-
Intelligencer, June 6, 2008.

[41] Jia, X. and Liu, H., “Rigorous and Automatic Testing of Web Applications,”
in Proceedings of the International Conference on Software Engineering and Ap-
plications, pp. 280–285, November 2002.

[42] Kallepalli, C. and Tian, J., “Measuring and Modeling Usage and Reliability
for Statistical Web Testing,” Transactions on Software Engineering, vol. 27,
no. 11, pp. 1023–1036, 2001.

[43] Kals, S., Kirda, E., Kruegel, C., and Jovanovic, N., “SecuBat: A Web
Vulnerability Scanner,” in Proceeding of the World Wide Web Conference, 2006.

[44] Kam, J. and Ullman, J., “Global Data Flow Analysis and Iterative Algo-
rithms,” Journal of the ACM, vol. 23, pp. 158–171, Jan. 1976.

[45] Khurshid, S., Păsăreanu, C., and Visser, W., “Generalized Symbolic Ex-
ecution for Model Checking and Testing,” in Proceedings of the International
Conference on Tools and Algorithms for the Constructions and Analysis of Sys-
tems, pp. 553–568, 2003.

[46] Kiezun, A., Ganesh, V., Guo, P. J., Hooimeijer, P., and Ernst, M. D.,
“HAMPI: A Solver For String Constraints,” in Proceedings of the International
Symposium on Software Testing and Analysis, (Chicago, Illinois, USA), Jul. 2009.

[47] Kiezun, A., Guo, P. J., Jayaraman, K., and Ernst, M. D., “Automatic
Creation of SQL Injection and Cross-site Scripting Attacks,” in Proceedings of the
International Conference on Software Engineering, pp. 199–209, IEEE Computer
Society, May 2009.

[48] Kildall, G., “A Unified Approach to Global Program Optimization,” in Pro-
ceedings of the Symposium on Principles of Programming Languages, 1973.

[49] King, J. C., “Symbolic Execution and Program Testing,” Communications
ACM, vol. 19, no. 7, pp. 385–394, 1976.

156

[50] Licata, D. and Krishnamurthi, S., “Verifying Interactive Web Programs,” in
Proceedings of the International Conference on Automated Software Engineering,
pp. 164–173, September 2004.

[51] Livshits, B., “Defining a Set of Common Benchmarks for Web Application
Security,” in Workshop on Defining the State of the Art in Software Security
Tools, Aug. 2005.

[52] Livshits, V. B. and Lam, M. S., “Finding Security Vulnerabilities in Java
Applications with Static Analysis,” in Usenix Security Symposium, Aug. 2005.

[53] Martin, M., Livshits, B., and Lam, M. S., “Finding application errors and
security flaws using PQL: a program query language,” in Proceeding of the Con-
ference on Object Oriented Programming Systems Languages and Applications,
pp. 365–383, Oct. 2005.

[54] McAllister, S., Kirda, E., and Kruegel, C., “Leveraging User Interactions
for In-Depth Testing of Web Applications,” in Proceedings of the International
Symposium on Recent Advances in Intrusion Detection, (Berlin, Heidelberg),
pp. 191–210, Springer-Verlag, 2008.

[55] Mesbah, A., Bozdag, E., and van Deursen, A., “Crawling Ajax by Inferring
User Interface State Changes,” in Proceedings of the International Conference
on Web Engineering (Schwabe, D., Curbera, F., and Dantzig, P., eds.),
pp. 122–134, IEEE Computer Society, July 2008.

[56] Miller, B. P., Fredriksen, L., and So, B., “An Empirical Study of the
Reliability of UNIX Utilities,” Communications of the ACM, vol. 33, pp. 32–44,
Dec. 1990.

[57] Milner, R., “A Theory of Type Polymorphism in Programming,” Journal of
Computer and System Sciences, vol. 17, pp. 348–375, 1978.

[58] Minamide, Y., “Static Approximation of Dynamically Generated Web Pages,”
in Proceedings of the International World Wide Web Conference, pp. 432–441,
May 2005.

[59] Mitchell, J. C., “Type Inference with Simple Subtypes,” Journal of Func-
tional Programming, vol. 1, no. 03, pp. 245–285, 1991.

[60] MITRE Corporation, “Common Vulnerabilities and Exposures,” 2009.

[61] Offutt, J., Wu, Y., Du, X., and Huang, H., “Bypass Testing of Web Ap-
plications,” Proceedings of the International Symposium on Software Reliability
Engineering, vol. 0, pp. 187–197, 2004.

[62] Paola, C. A., Anderson, C., Giannini, P., and Drossopoulou, S., “To-
wards Type Inference for JavaScript,” in Proceeding of the European Conference
on Object-Oriented Programming, pp. 429–452, Springer, 2005.

157

[63] Pew Research Center, “Pew Internet & American Life Project Tracking,”
April 2009.

[64] PGP Corporation and Vontu, Inc., “2006 Annual Study: Cost of a Data
Breach,” tech. rep., Ponemon Institute, LLC, October 2006.

[65] Pietraszek, T. and Berghe, C. V., “Defending Against Injection Attacks
through Context-Sensitive String Evaluation,” in Proceedings of Recent Advances
in Intrusion Detection), Sep. 2005.

[66] Ricca, F. and Tonella, P., “Web Site Analysis: Structure and Evolution,”
Proceedings of the International Conference on Software Maintenance, vol. 0,
p. 76, 2000.

[67] Ricca, F. and Tonella, P., “Analysis and Testing of Web Applications,” in
Proceedings of the International Conference on Software Engineering, pp. 25–34,
May 2001.

[68] Ricca, F. and Tonella, P., “Building a Tool for the Analysis and Testing
of Web Applications: Problems and Solutions,” in Proceedings of the Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of
Systems, (London, UK), pp. 373–388, Springer-Verlag, 2001.

[69] Ricca, F. and Tonella, P., “Web Application Slicing,” Proceedings of the
International Conference on Software Maintenance, vol. 0, p. 148, 2001.

[70] Ricca, F. and Tonella, P., “Construction of the System Dependence Graph
for Web Application Slicing,” in Proceedings of the International Workshop on
Source Code Analysis and Manipulation, (Washington, DC, USA), p. 123, IEEE
Computer Society, 2002.

[71] Royal Bank of Scotland WorldPay, “RBS WorldPay Announces Com-
promise of Data Security and Outlines Steps to Mitigate Risk.” RBS WorldPay
Press Releases, December 23, 2008.

[72] Ryder, B. G., “Constructing the Call Graph of a Program,” Transactions on
Software Engineering, vol. 5, no. 3, pp. 216–226, 1979.

[73] Sampath, S., Sprenkle, S., Gibson, E., and Pollock, L., “Integrating
Customized Test Requirements with Traditional Requirements in Web Applica-
tion Testing,” in Proceedings of the Workshop on Testing, Analysis, and Ver-
ification of Web Services and Applications, (New York, NY, USA), pp. 23–32,
ACM, 2006.

[74] Sampath, S., Sprenkle, S., Gibson, E., and Pollock, L., “Web Applica-
tion Testing with Customized Test Requirements - An Experimental Comparison
Study,” in Proceedings of the International Symposium on Software Reliability
Engineering, (Washington, DC, USA), pp. 266–278, IEEE Computer Society,
2006.

158

[75] Sant, J., Souter, A., and Greenwald, L., “An Exploration of Statistical
Models for Automated Test Case Generation,” in Proceedings of the International
Workshop on Dynamic Analysis, pp. 1–7, May 2005.

[76] Sprenkle, S., Gibson, E., Sampath, S., and Pollock, L., “Automated Re-
play and Failure Detection for Web Applications,” in Proceedings of the Interna-
tional Conference on Automated Software Engineering, pp. 253 – 262, November
2005.

[77] Sprenkle, S., Gibson, E., Sampath, S., and Pollock, L., “A Case Study
of Automatically Creating Test Suites from Web Application Field Data,” in
Workshop on Testing, Analysis, and Verification of Web Services and Applica-
tions, pp. 1–9, July 2006.

[78] Su, Z. and Wassermann, G., “The Essence of Command Injection Attacks in
Web Applications.,” in Proceedings of the Symposium on Principles of Program-
ming Languages, pp. 372–382, Jan. 2006.

[79] Sullo, C., “Nikto, Web Vulnerbaility Scanner.”
http://www.cirt.net/code/nikto.shtml, 2001.

[80] Sutton, M., Greene, A., and Amini, P., Fuzzing: Brute Force Vulnerability
Discovery. Addison-Wesley, 2007.

[81] Tateishi, T., Miyashita, H., Ono, K., and Saito, S., “Automated Veri-
fication Tool for DHTML,” in Proceedings of the International Conference on
Automated Software Engineering, (Washington, DC, USA), pp. 363–364, IEEE
Computer Society, 2006.

[82] Tenable Network Security, “Nessus Open Source Vulnerability Scanner
Project.” http://www.nessus.org/, 2008.

[83] Thiemann, P., “Towards a Type System for Analyzing JavaScript Programs,”
in Proceeding of the European Symposium On Programming, 2005.

[84] Thompson, H. H., “Application Penetration Testing,” Symposium Security &
Privacy, vol. 3, no. 1, pp. 66 – 69, 2005.

[85] Tilley, S. and Huang, S., “Evaluating the Reverse Engineering Capabilities
of Web Tools for Understanding Site Content and Structure: A Case Study,” in
Proceedings of the International Conference on Software Engineering, (Washing-
ton, DC, USA), pp. 514–523, IEEE Computer Society, 2001.

[86] Tonella, P. and Ricca, F., “Dynamic Model Extraction and Statistical Anal-
ysis of Web Applications,” in Proceedings of the Fourth International Workshop
on Web Site Evolution, pp. 43–52, October 2002.

159

[87] Tonella, P. and Ricca, F., “A 2-Layer Model for the White-Box Testing
of Web Applications,” in Proceedings of the International Workshop Web Site
Evolution, (Washington, DC, USA), pp. 11–19, IEEE Computer Society, 2004.

[88] Tonella, P. and Ricca, F., “Web Application Slicing in Presence of Dynamic
Code Generation,” Automated Software Engineering, vol. 12, no. 2, pp. 259–288,
2005.

[89] U.S. Census Bureau, “Measuring the Electronic Economy,” 2009.

[90] U.S. Census Bureau, “Quarterly U.S. Retail E-Commerce Sales Report,”
2009.

[91] Visser, W., Havelund, K., Brat, G., Park, S. J., and Lerda, F., “Model
Checking Programs,” Automated Software Engineering Journal, vol. 10, pp. 203–
232, April 2003.

[92] Wassermann, G. and Su, Z., “Sound and Precise Analysis of Web Applica-
tions for Injection Vulnerabilities,” in Proceedings of the Conference on Program-
ming Language Design and Implementation, pp. 32–41, ACM, 2007.

[93] Wassermann, G. and Su, Z., “Static Detection of Cross-Site Scripting Vulner-
abilities,” in Proceedings of the International Conference on Software Ingineering,
(New York, NY, USA), pp. 171–180, ACM, 2008.

[94] Wassermann, G., Yu, D., Chander, A., Dhurjati, D., Inamura, H., and
Su, Z., “Dynamic Test Input Generation for Web Applications.,” in Proceedings
of the International Symposium on Software Testing and Analysis, July 2008.

[95] Weiser, M., “Program Slicing,” in Proceedings of the International Conference
on Software Engineering, (Piscataway, NJ, USA), pp. 439–449, IEEE Press, 1981.

[96] World Wide Web Consortium (W3C), “Markup Validation Service.”
http://validator.w3.org/, 1994.

160

VITA

William Guillermo José (GJ) Halfond was born November 13, 1979 in San Juan,

Puerto Rico. He attended Thomas Jefferson High School for Science and Technology

in Alexandria, Virginia and graduated in 1998. He attended the University of Vir-

ginia, where he graduated with High Distinction in 2002 with a Bachelor of Science

in Computer Science from the School of Engineering and Applied Sciences. In 2004,

he received a Masters of Science in Computer Science from the Georgia Institute of

Technology and entered its doctoral program. In January 2010, William will join the

faculty of the University of Southern California as an Assistant Professor.

161

