
MODELING PERFORMANCE OF INTERNET-BASED
SERVICES USING CAUSAL REASONING

A Thesis
Presented to

The Academic Faculty

by

Muhammad Mukarram Bin Tariq

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Computer Science, College of Computing

Georgia Institute of Technology
May 2010

MODELING PERFORMANCE OF INTERNET-BASED
SERVICES USING CAUSAL REASONING

Approved by:

Professor Mostafa Ammar,
Professor Nicholas Feamster,
Committee Co-Chairs
School of Computer Science,
College of Computing
Georgia Institute of Technology

Dr. Walter Willinger
Information and Software Systems
Research Center
AT&T Labs Research

Professor Mostafa Ammar,
Professor Nicholas Feamster, Advisors
School of Computer Science,
College of Computing
Georgia Institute of Technology

Professor Ellen Zegura
School of Computer Science,
College of Computing
Georgia Institute of Technology

Professor Alexander Gray
Computational Science and
Engineering Division,
College of Computing
Georgia Institute of Technology

Date Approved: 11 February 2006

To my family.

iii

ACKNOWLEDGEMENTS

I am immensely indebited to my advisors, Nicholas Feamster and Mostafa Ammar

for completion of this thesis. They have guided me by bringing clarity to my ideas

and walking me around when I ran into walls. They inspire me to be their likeness

in smartness and dedication.

I am grateful to my thesis reading committee members, Dr. Alexandar Gray, Dr.

Walter Willinger, Dr. Ellen Zegura, and my advisors, who spared time to read my

disseration, conducted the thesis defense, and provided feedback that improved many

aspects of the dissertation.

I am also thankful to my coauthors, Kaushik Bhandankar, Jake Brutlag, Murtaza

Motiwala, Natalia Sutin, Vytautus Valancius, and Amgad Zeitoun. Their contribu-

tions made possible the papers that form the core of this thesis. Amgad Zeitoun and

Jake Brutlag hosted me as an intern at Google during summers of years 2007, 2008,

and 2009, and provided an exposure to large-scale practical problems that resulted

in ideas and projects for at least two of the chapters in this thesis.

I am also fortunate to have worked with my brilliant labmates, Bilal Anwer,

Amogh Dhamdhere, Ahmed Mansy, Yogesh Mundada, and Anirudh Ramachandaran.

Although the papers that we coauthored are not part of this dissertation, there are a

number of things that I learned in these projects that reflect in the papers that are

part of the thesis.

Finally, I’d like to thank Andre Broido at Google for serving as my sounding board

and mentor during the time that I spent at Google, and also meticulously reviewing

all the three papers that form the core of this thesis dissertation.

iv

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . viii

LIST OF FIGURES . ix

SUMMARY . xi

I INTRODUCTION . 1

II ANSWERING “WHAT-IF” DEPLOYMENT QUESTIONS WITH WISE 8

2.1 Introduction . 9

2.2 Problem Context and Scope . 13

2.3 A Case for Machine Learning . 15

2.4 WISE: High-Level Design . 16

2.5 WISE: System . 20

2.5.1 Feature Selection . 20

2.5.2 Learning the Causal Structure 21

2.5.3 Specifying the “What-If” Scenarios 24

2.5.4 Preparing the Input Distribution 26

2.5.5 Estimating Response Time Distribution 28

2.6 Additional Challenges . 29

2.6.1 Computational Scalability 29

2.6.2 Missing Variables and Causal Relationships 32

2.7 Implementation . 33

2.8 Evaluating WISE on a Deployed CDN 35

2.8.1 Web-search Service Architecture 36

2.8.2 Dataset . 38

2.8.3 Challenges in Estimating nrt and brt 38

2.8.4 Causal Structure in the Dataset 42

v

2.8.5 Estimation of Response Time 43

2.8.6 Accuracy of Response-time Function 43

2.8.7 Evaluating a Live What-if Scenario 48

2.9 Controlled Experiments . 49

2.10 Discussion . 51

III ANSWERING “HOW-TO” PERFORMANCE QUESTIONS WITH HIP 59

ABSTRACT . 60

3.1 Introduction . 60

3.2 Problem Context and Scope . 64

3.3 HIP Approach . 67

3.3.1 WISE Background . 67

3.3.2 HIP Overview . 69

3.4 HIP System . 71

3.4.1 Clustering High Latency Transactions 72

3.4.2 Identifying Responsible Causal Variables 76

3.4.3 Distinguishing Coincidental & Systemic Causes 77

3.4.4 Mapping Causes to Remedies 80

3.5 Implementation . 81

3.6 Evaluation Environment . 81

3.6.1 The Web Search Transaction 82

3.6.2 Dataset & Causal Dependencies 84

3.6.3 CDN and Access Network Environment 85

3.7 Evaluating HIP on a Real CDN . 85

3.7.1 Clustering High-latency Transactions 86

3.7.2 How to mitigate HLTs in Australia, India, and the USA? . . 88

3.7.3 How to make latency comparable to the USA? 92

3.7.4 Evaluating Answers to How-to Questions 93

3.8 Discussion . 94

vi

IV DETECTING NETWORK NEUTRALITY VIOLATIONS WITH NANO 101

4.1 Introduction . 101

4.2 Problem and Motivation . 105

4.3 Background . 107

4.3.1 Causal Effect and Confounders 107

4.3.2 Dealing with Confounders 109

4.4 NANO Approach . 111

4.4.1 Confounders for Network Performance 111

4.4.2 Establishing Causal Effect 113

4.5 Design and Implementation . 116

4.5.1 Agents . 116

4.5.2 Server . 120

4.6 Evaluation . 121

4.6.1 Experiment Setup . 121

4.6.2 Results . 124

4.7 Discussion . 134

V RELATED WORK . 138

VI CONCLUSION . 143

vii

LIST OF TABLES

1 Features in the dataset from Google’s CDN. 40

2 Comparison of accuracy of WISE and parametric approach. 46

3 Relative error for predicting BRT with WISE. 47

4 Variables in the dataset from Google’s CDN. 82

5 CDN and access network characteristics in USA, Australia and India. 85

6 Highlights of results in Section 3.7. 86

7 Summary of causes affecting performance. 99

8 Data collected by NANO. 112

9 Summary of NANO experiments. 124

10 Causal effect of ISPs for each service. 130

viii

LIST OF FIGURES

1 Main contributions and underlying techniques in this dissertation. . 3

2 A what-if scenario for network configuration of customers in India. . . 14

3 Example of a causal DAG. 18

4 WISE approach. 19

5 WISE Causal Discovery (WCD) algorithm. 22

6 Grammar for WISE Specification Language (WSL). 25

7 Map-Reduce patterns used in WISE implementation. 35

8 Service architecture for Google’s Web Search service. 38

9 Messages and events for network-level and browser-level response time. 39

10 Inferred causal structure. 42

11 Accuracy of network-level response time prediction. 55

12 Relative prediction error. 56

13 Predictions for India datacenter drain scenario. 57

14 Controlled what-if scenarios on Emulab testbed. 58

15 Example how-to questions. 64

16 Typical CDN Architecture. 66

17 HIP approach and relationship with WISE. 67

18 Timestamp behavior for systemic and coincidental causes. 78

19 Size of clusters and dissimilarity among transactions. 96

20 Messages and events during a Web search transaction with Google. . 97

21 Inferred causal DAG for dataset in Table 4 98

22 Predicted improvement in nrt. 100

23 NANO architecture. 104

24 Steps for computing causal effect. 114

25 Design of client-side agent for NANO. 116

26 NANO-Server design. 120

27 Setup for NANO experiments on Emulab. 123

ix

28 Throttling throughput for long TCP flows using Click modular router. 125

29 Performance distribution for all the ISPs. 126

30 Causal effect of ISPs for each service. 129

31 Relative error of prediction using confounding variables. 132

x

SUMMARY

The performance of Internet-based services depends on many server-side, client-

side, and network related factors. Often, the interaction among the factors or their

effect on service performance is not known or well-understood. The complexity of

these services makes it difficult to develop analytical models. Lack of models im-

pedes network management tasks, such as predicting performance while planning for

changes to service infrastructure, or diagnosing causes of poor performance.

We posit that we can use statistical causal methods to model performance for

Internet-based services and facilitate performance related network management tasks.

Internet-based services are well-suited for statistical learning because the inherent

variability in many factors that affect performance allows us to collect comprehensive

datasets that cover service performance under a wide variety of conditions. These

conditional distributions represent the functions that govern service performance and

dependencies that are inherent in the service infrastructure. These functions and

dependencies are accurate and can be used in lieu of analytical models to reason about

system performance, such as predicting performance of a service when changing some

factors, finding causes of poor performance, or isolating contribution of individual

factors in observed performance.

We present three systems, What-if Scenario Evaluator (WISE), How to Improve

Performance (HIP), and Network Access Neutrality Observatory (NANO), that use

statistical causal methods to facilitate network management tasks. WISE predicts

performance for what-if configurations and deployment questions for content distri-

bution networks. For this, WISE learns the causal dependency structure among the

xi

latency-causing factors, and when one or more factors is changed, WISE estimates

effect on other factors using the dependency structure. HIP extends WISE and uses

the causal dependency structure to invert the performance function, find causes of

poor performance, and help answers questions about how to improve performance

or achieve performance goals. NANO uses causal inference to quantify the impact

of discrimination policies of ISPs on service performance. NANO is the only tool to

date for detecting destination-based discrimination techniques that ISPs may use.

We have evaluated these tools by application to large-scale Internet-based ser-

vices and by experiments on wide-area Internet. WISE is actively used at Google for

predicting network-level and browser-level response time for Web search for new dat-

acenter deployments. We have used HIP to find causes of high-latency Web search

transactions in Google, and identified many cases where high-latency transactions

can be significantly mitigated with simple infrastructure changes. We have evalu-

ated NANO using experiments on wide-area Internet and also made the tool publicly

available to recruit users and deploy NANO at a global scale.

xii

CHAPTER I

INTRODUCTION

Performance of Internet-based systems and services depends on many components

and variables. For example, the time it takes for a user to make a request to a Web-

based service and the response loading and rendering in user’s browser application

depends on factors ranging from relative geographical location of the user and the

server, the properties the content distribution network, the front-end proxies, the

back-end servers, the properties of the content requested by the user, the time-of-the-

day and load on the servers or network, the network bandwidth and round-trip time,

packet loss rate, the capabilities of user’s host machine and applications that the user

used to access the service. In the case of a composite service, the overall service

performance depends may additionally depend on performance of many networked

services, each with its own dependencies. Many of these factors may interact with

each other in subtle ways that are often not well understood, and are difficult to

model. This makes Internet-based services complex and difficult to manage.

Many network management tasks require reasoning about performance of services

hosted on the network, such as predicting performance before investing in infrastruc-

ture improvements, or investigating causes of high-latency service responses when

trying to achieve service performance goals. Operators of a content distribution net-

work for Internet-based services may wish to evaluate what-if scenarios, such as, what

would be the impact on the service performance if they deploy a new datacenter, or

a front-end proxy server, or change the mapping of a subset of serving datacenter

for a subset of users. The network operators may wonder what is unique about

high-latency responses or generally poorer service performance in a particular region.

1

Operators would like to know how-to modify an existing deployment to achieve cer-

tain service performance goals. Similarly, the service providers and users of services

may wish to quantify the isolated effect various risk factors for service performance;

for example, the users may wish to determine whether their Internet service provider

(ISP) is discriminating against a service, and may wish to quantify the impact of such

discrimination on the service performance.

Answering these network management questions requires understanding the de-

pendencies among system components and factors that determine the performance

of the service. To evaluate the what-if scenarios, dependencies among the factor

determines whether and how changing one factor would impact other factors and

eventually the service performance. Similarly, answering how-to questions and find-

ing causes of poor performance requires knowing what factors affect the performance.

Unfortunately, because Internet-based services are complex, factors that affect service

performance, or the nature of dependencies among these factors is not known or well

understood.

It is difficult to develop analytical models for performance of networked services

because networked systems are complex, making models that are accurate yet simple

enough to understand a nearly intractable task. Developing sufficiently accurate an-

alytical models for even simple networked systems can take a long time; for example

TCP throughput prediction presents many challenges even after many years of re-

search [44, 11, 25, 4, 39]. Even if one invests time in developing analytical models for

Internet-based services, they may become obsolete very quickly as the services evolve

and new versions are rolled out.

This dissertation presents tools that address the problem of modeling and reason-

ing about performance of ever changing Web based services. Instead of using ana-

lytical models, we use statistical and machine learning based models to understand

the functional and structural dependencies among factors affecting performance for

2

Figure 1: Main contributions and underlying techniques in this dissertation.

Internet-based services. The following summarizes the central thesis and key contri-

butions in this dissertation.

Thesis. We posit that we can use statistical causal methods to facilitate complex net-

work performance management tasks for Internet-based systems. These systems are

well-suited for statistical learning because the inherent variability in factors that affect

performance, allows us to collect comprehensive datasets that cover system perfor-

mance under a wide variety of conditions. These conditional distributions represent

the functions that govern system performance and dependencies that are inherent

in the system. These functions and dependencies are accurate and can be used in

lieu of analytical models to reason about system performance and facilitate network

management tasks, such as predicting performance of a service when changing some

factors, finding causes of poor performance, or isolating contribution of factors in

3

performance.

Contributions. To support this thesis, we solve a number of complex network man-

agement problems using causal analysis of passively collected data from networked

systems. Figure 1 shows the main contributions in this dissertation and the causal

analysis techniques that they use. We present three systems: What-if Scenario Eval-

uator (WISE), How-to for Improving Performance (HIP) and Network Access Neu-

trality Observatory (NANO). WISE uses causal analysis to answer what-if questions

and predict performance for hypothetical configuration and deployment questions for

content distribution networks (CDN). HIP extends the causal analysis in WISE to

help CDN operators answer how-to questions. HIP finds causes of high latency using

the structure of dependencies among causal variable that WISE discovers. NANO

uses causal inference to quantify the impact of ISP discrimination policies on service

performance. For this, NANO adjusts for confounding variables that may confuse the

causal inference.

Figure 1 highlights the thematic topics that WISE, HIP, and NANO cover. They

extensively leverage existing literature in causal analysis and develop techniques to

solve problems in domain of networked systems. The central theme in all three tools

is causal analysis on passive and in-situ datasets collected from existing networked

systems. WISE and HIP both rely on structure of causal dependencies among vari-

ables in the system. WISE uses this causal structure to guide statistical intervention

evaluation, which quantifies the effect of changes in one or more of the variables for

answering what-if questions. HIP uses the causal structure to find a reverse mapping

from observed response time to potential causes. HIP also finds groups of Web re-

quests that have similar underlying causes for poor performance and isolates those

causes. HIP and NANO both quantify the effect of causes by comparing values under

multiple values (levels) of a factor. HIP uses this comparison to identify the causes

4

that are responsible for poor performance. NANO uses this comparison to determine

whether an ISP is discriminating against a service resulting in poorer performance

relative to other ISPs. NANO also quantifies the effect that the ISP has on service

performance.

We have evaluated these tools by application to large-scale Internet-based services

and through experiments on wide-area Internet. WISE is a active production level tool

at Google for evaluating what-if scenarios for new deployments. We have used HIP to

identify causes of poor response time for Web Search service at Google and obtained

encouraging results. NANO is the only tool to date for detecting destination based

discriminations that ISPs may use. We have evaluated NANO using experiments

on wide-area Internet and also made the tool publicly available to recruit users and

deploy NANO at a global scale. Following presents a brief overview of these tools.

Evaluating What-if Deployment and Configuration Questions and Appli-

cations with WISE. What-if Scenario Evaluator (WISE), automatically learns the

dependencies among the various factors that determine the service response time

using the datasets obtained from existing deployments. WISE shields the network

designers and operators from the intricate details of these dependencies by presenting

the network designers with an easy to use interface in form of WISE Specification

Language (WSL). Using WSL the operators can specify a typical what-if scenario in

two to three lines of code. WISE then evaluates the scenario, automatically taking

care of potentially several layers of the functional dependencies among the factors,

ultimately producing the distribution of the response time for the desired scenario.

We have used WISE to predict network-level and browser-level response time for

Google’s Web search service. We find that WISE produces highly accurate predic-

tions. WISE is an active production-level tool used for predicting performance for

5

new deployments.

Quantifying High-Latency Causes with HIP. How-to for Improving Perfor-

mance (HIP) is an extension to WISE. HIP answers the how-to questions about

performance of networked services. HIP uses the causal dependency structure that

WISE produces and clusters the high-latency responses based on the similarity of

causal variables. HIP then identifies the responsible causal variable for each cluster

that is produced. HIP separates systemic causes from transient ones and produces

hypothetical values for factors that can improve the performance for high-latency re-

quests. We have used HIP to identify causes for high-latency for Google’s Web search

service. We find that HIP can find the most important causes of high-latency for

each region. HIP can also determine the subset of users or servers that are affected

by systemic causes. Using a reference distribution as input, HIP can suggest values

for responsible causal variables that can potentially alleviate high-latency responses.

Detecting Network Neutrality Violations using NANO. Network Access Neu-

trality Observatory (NANO) detects and quantifies the effect of ISP discrimination on

service performance. NANO uses causal inference on passive monitoring data about

performance of network based services from participating users for this inference.

NANO adjusts for confounding variables, such as user location, application, operat-

ing system, time-of-the-day, and estimates the difference in performance of services

among ISPs. NANO can also provide clues about the criteria that the ISP might be

using for discrimination. NANO is only network neutrality detection tool to date that

can detect destination-based discrimination. Also because NANO uses passively col-

lected performance data for inference, it is robust to whitelisting of probing traffic by

ISP. Using experiments on PlanetLab and Emulab we demonstrate that NANO can

detect neutrality violations and quantify the effect of these policies on performance.

We have also made NANO-client implementation freely available to recruit real users

6

and deploy NANO on global scale.

Rest of this dissertation is organized as following. Chapter 2 presents WISE,

Chapter 3 presents HIP and Chapter 4 presents NANO. We discuss related work

for our thesis and individual tools in Chapter 5. We conclude the dissertation in

Chapter 6.

7

CHAPTER II

ANSWERING “WHAT-IF” DEPLOYMENT AND

CONFIGURATION QUESTIONS WITH WISE

Designers of content distribution networks often need to determine how changes to

infrastructure deployment and configuration affect service response times when they

deploy a new data center, change ISP peering, or change the mapping of clients to

servers. Today, the designers use coarse, back-of-the-envelope calculations, or costly

field deployments; they need better ways to evaluate the effects of such hypothetical

“what-if” questions before the actual deployments. This chapter presents What-If

Scenario Evaluator (WISE), a tool that predicts the effects of possible configuration

and deployment changes in content distribution networks. WISE makes three contri-

butions: (1) an algorithm that uses traces from existing deployments to learn causality

among factors that affect service response-time distributions; (2) an algorithm that

uses the learned causal structure to estimate a dataset that is representative of the

hypothetical scenario that a designer may wish to evaluate, and uses these datasets to

predict hypothetical response-time distributions; (3) a scenario specification language

that allows a network designer to easily express hypothetical deployment scenarios

without being cognizant of the dependencies between variables that affect service re-

sponse times. Our evaluation, both in a controlled setting and in a real-world field

deployment on a large, global CDN, shows that WISE can quickly and accurately

predict service response-time distributions for many practical what-if scenarios.

8

2.1 Introduction

Content distribution networks (CDNs) for Web-based services comprise hundreds to

thousands of distributed servers and data centers [2, 7, 21]. Operators of these net-

works continually strive to improve the response times for their services. To perform

this task, they must be able to predict how service response-time distribution changes

in various hypothetical what-if scenarios, such as changes to network conditions and

deployments of new infrastructure. In many cases, they must also be able to reason

about the detailed effects of these changes (e.g., what fraction of the users will see at

least a 10% improvement in performance because of this change?), as opposed to just

coarse-grained point estimates or averages.

Many factors affect a CDN’s service response time on both short and long time

scales. On short time scales, response time can be affected by routing instability or

changes in server load. Occasionally, the network operators may “drain” a data center

for maintenance and divert the client requests to an alternative location. Over longer

time scales, service providers may upgrade their existing facilities, move services to

different facilities or deploy new data centers to address demands and application

requirements, or change peering and customer relationships with neighboring ISPs.

These instances require significant planning and investment; some of these decisions

are hard to implement and even more difficult to reverse.

Unfortunately, reasoning about the effects of any of these changes is extremely

challenging in practice. Content distribution networks are complex systems, and the

response time perceived by a user can be affected by a variety of inter-dependent and

correlated factors. Such factors are difficult to accurately model or reason about and

back-of-the-envelope calculations are not precise.

This chapter presents the design, implementation, and evaluation of What-If Sce-

nario Evaluator (WISE), a tool that estimates the effects of possible changes to net-

work configuration and deployment scenarios on service response time. WISE uses

9

statistical learning techniques to provide a way of interpreting what-if questions as

statistical interventions. WISE uses packet traces from Web transactions to prepare a

graphical causal and functional model for the factors that affect the service response

time. Network designers can then use WISE to specify a what-if scenario that changes

one or more of the factors. Using the causal and functional model for the CDN, WISE

determines new statistical distributions for factors (including the response time) that

are directly or transitively affected by the changes specified by the designer. Because

WISE is aware of the causal functional model of the CDN, the new distributions of

the variables represent the what-if scenario and are consistent with the operational

CDN.

Although function estimation using passive datasets is a common application in

machine learning, using these techniques is not straightforward because they can

only accurately predict the response-time distribution for a what-if scenario if the

estimated function receives accurate joint distribution of all the factors that affect

response time as input. Providing this joint distribution of factors as input presents

several challenges:

First, WISE must allow the network designers to easily specify what-if

scenarios. To use a typical off-the-shelf function estimator for evaluating a what-if

scenario, a designer would have to provide an accurate joint distribution of all the

factors that affect the response time, such that this distribution is representative of

the scenario as well as consistent with dependencies that exist in the operational

CDN. For example, packet loss and retransmit rates depend on network round-trip

time and bandwidth. For consistency, if a what-if scenario changes network round-trip

time or bandwidth, the packet loss or retransmits should also change appropriately

during evaluation of the scenario. Achieving this goal is hard in practice, because the

designer to specify a what-if scenario as a change to one or a few factors relative to an

existing “baseline” CDN deployment but be unaware that how the change might also

10

affect other related factors. WISE’s interface shields the designers from these complex

details. WISE provides a scenario specification language that allows network designers

to succinctly specify hypothetical scenarios for arbitrary subsets of existing networks

and to specify what-if values for different features. WISE’s specification language is

simple: evaluating a hypothetical deployment of a new proxy server for a subset of

users can be specified in only 2 to 3 lines of code.

Second, because the designer can specify a what-if scenario without being aware

of dependencies among the factors affecting response time, WISE must automati-

cally produce an accurate joint distribution of all factors affecting the re-

sponse time that is both representative of the what-if scenario the designer specifies

and consistent with the causal and functional dependencies in the CDN. To enforce

this consistency, WISE uses a causal dependency discovery algorithm to discover the

dependencies among variables and a statistical intervention evaluation technique to

transform the observed dataset to a representative and consistent dataset representing

the joint distribution. Once this dataset is ready, WISE estimates the response-time

distribution for the what-if scenario.

We have used WISE to predict service response times in both controlled settings

on the Emulab testbed and for Google’s global CDN for its Web search service.

Our evaluation shows that WISE’s predictions of response-time distribution are very

accurate, yielding less than 5% error in estimating the mean response-time. Median

error for estimating response-time for individual requests is between 8% and 11%

for cross-validation with existing deployments and only 9% maximum cumulative

distribution difference compared to ground-truth response time distribution for what-

if scenarios on a real deployment as well as controlled experiments on Emulab.

Finally, WISE must be fast, so that it can be used for short-term and frequently

arising questions. To achieve this, WISE uses approximations that enable fast compu-

tations without sacrificing the accuracy significantly. Further, we have tailored WISE

11

for parallel computation and implemented it using the Map-Reduce [16] framework,

which allows us to process large datasets comprising hundreds of millions of records

quickly and produce accurate predictions for response-time distributions.

Since the original publication [54], WISE has been used at Google for evaluating

real what-if scenarios. Real world experience led to improvements to original work.

These include enhancements to the prediction techniques and using WISE to for

additional applications. With regards to prediction, we found that our initial function

estimation based on Kernel Regression (KR) is accurate, but sometimes it is difficult

to have training data that covers prediction for rare combinations of variables in the

system. To resolve this problem, we have extended WISE to use an approximated

nearest-neighbor based approach (Section 2.5.5). This approach requires less data,

is comparable in accuracy to KR for estimating distribution of variables, and is also

faster in terms of computation time. We also extend WISE to predict browser-level

response time (brt), in addition to the network-level response time (nrt) for Google’s

CDN. Browser-level response time is a better metric to estimate user experience, but

brt is also more volatile than nrt because brt depends on additional factors, such as

type of browser, DNS latency, cached content, and computational capability and load

on client. Some of these factors are not visible to the CDN operator. We describe our

extensions to WISE for estimating brt and show that WISE accurately predicts brt.

This chapter also presents results of applying WISE to predict network-level response

time for ten additional countries and for predicting browser-level response time for

seven different countries.

The chapter proceeds as follows. Section 2.2 describes the problem scope and

motivation. Section 2.3 makes the case for using statistical learning for what-if sce-

nario evaluation. Section 2.4 provides an overview of WISE, and Section 2.5 describes

WISE’s algorithms in detail. We discuss the implementation in Section 2.7. In Sec-

tion 2.8, we evaluate WISE for response-time estimation for existing deployments as

12

well as for a what-if scenario based on a real operational event. In particular, we

demonstrate that WISE can accurately predict response time for network level trans-

fer of data, as well as the latency for loading and rendering of a Web page when a user

makes a query to Google’s Web search service. In Section 2.9, we evaluate WISE for

what-if scenarios for a small-scale but controlled network environment built on the

Emulab testbed. In Section 2.10, we discuss various properties of the WISE system

and how it relates to other areas in networking.

2.2 Problem Context and Scope

This section describes common what-if questions that the network designers pose

when evaluating potential configuration or deployment changes to an existing content

distribution network deployment.

Content Distribution Networks. Most CDNs conform to a two-tier architecture.

The first tier comprises a set of globally distributed front-end (FE) servers that, de-

pending on the specific implementation, provide caching, content assembly, pipelining,

request redirection, and proxy functions. The second tier comprises back-end (BE)

servers that implement the application logic, and which might also be replicated and

globally distributed. The FE and BE servers may belong to a single administrative

entity (as is the case with Google [7]) or to different administrative entities, as with

commercial content distribution networking service providers, such as Akamai [2].

The network path between the FE and BE servers may be over a public network or

a private network, or a LAN when the two are colocated. CDNs typically use DNS

redirection or URL-rewriting [6] to direct the users to the appropriate FE and BE

servers; this redirection may be based on the user’s proximity, geography, availability,

and relative server load.

An Example “What-if” Scenario. The network designers may want to ask a

variety of what-if questions about the CDN configuration. For example, the network

13

(a) Before the Maintenance

(b) During the Maintenance

Figure 2: A what-if scenario for network configuration of customers in India.

designers may want to determine the effects of deploying new FE or BE servers,

changing the serving FE or BE servers for a subset of users, changing the size of

typical responses, increasing capacity, or changing network connectivity, on the service

response time. We now present an actual what-if scenario from Google’s CDN for the

Web-search service.

Figure 2 shows an example of a change in network deployment that could affect

server response time. Google has an FE data center in India that serves users in India

and surrounding regions. This FE data center uses BE servers located elsewhere in

the world, including the ones located in Taiwan. On July 16, 2007, the FE data center

in India was temporarily “drained” for maintenance, and the traffic was diverted to a

FE data center that is colocated with a BE in Taiwan, resulting in a change in latency

for the users in India. This change in the network configuration can be described as a

what-if scenario in terms of change of the assigned FE, or more explicitly as changes

14

in delays between FE and clients that occur due to the new configuration. WISE

aims to predict the response-time distribution for reconfigurations before they are

deployed in practice.

2.3 A Case for Machine Learning

In this section, we present two aspects of what-if scenario evaluation that make the

problem well-suited for machine learning: (1) an underlying model that is difficult

to derive from first principles but provides a wealth of data; (2) a need to predict

outcomes based on data that may not directly represent the desired what-if scenario.

The system is complex, but observable variables are driven by fundamental

properties of the system. Unfortunately, in large complex distributed systems

such as CDNs, the parameters that govern the system performance, the relationships

between these variables, and the functions that govern the response-time distribution

of the system are often complex and characterized by randomness and variability that

are difficult to model as simple, readily evaluatable formulas.

Fortunately, the underlying fundamental properties and dependencies that deter-

mine a CDN’s response time can be observed as correlations and conditional probabil-

ity distributions of the variables that define the system, including the service response

time. By observing these conditional distributions (e.g., response times observed un-

der various conditions), machine learning algorithms can infer the underlying function

that affects the response time. Naturally occurring variability in the system parame-

ters allows observing distributions of variables under a variety of conditions. Because

most production CDNs collect comprehensive datasets for their services as part of ev-

eryday operational and monitoring needs, the requisite datasets are typically readily

available.

Obtaining datasets that directly represent the what-if scenario is challeng-

ing. Once the response-time function is learned, evaluating a what-if scenario requires

15

providing this function with input data that is representative of the joint distribution

of all the factors affecting the response time under the what-if scenario. Unfortu-

nately, joint distribution in dataset collected from an existing network deployment

only represents the current setup, and the system complexities make it difficult for a

designer to manually “transform” the data to represent the new scenario.

Fortunately, depending on the extent of the cp;;ected data and the nature of what-

if scenario, machine learning algorithms can reveal the dependencies among variables

and use the dependency structure to intelligently re-weigh and re-sample the different

parts of the existing dataset to perform this transformation. In particular, if the

what-if scenario is expressed in terms of the changes to values of the variables that

are observed in the dataset and the changed values or similar values of these variables

are observed in the dataset even with small densities in the original dataset, then we

can transform the original dataset to one that is representative of the what-if scenario

as well as the underlying principles of the system, while requiring minimal input from

the network designer.

2.4 WISE: High-Level Design

WISE entails four steps: (1) identifying features in the dataset that affect response

time; (2) constraining the inputs to “valid” scenarios based on existing dependencies;

(3) specifying the what-if scenario; (4) estimating the response-time function and

distribution. Each of these tasks raises a number of challenges, some of which are

general problems with applying statistical learning in practice, and others are spe-

cific to what-if scenario evaluation. This section provides an overview and necessary

background for these steps. Section 2.5 discuss the mechanisms in more detail.

1. Identifying Relevant Features. The main input to WISE is a comprehen-

sive dataset that covers many combinations of variables. Most CDNs have existing

network monitoring infrastructure that can typically provide such a dataset. This

16

dataset, however, may contain variables that are not relevant to the response-time

function. WISE extracts the set of relevant variables from the dataset and discards

the rest of the variables. WISE can also identify whether there are missing or latent

variables that may hamper scenario evaluation (Sections 2.5.1 and 2.5.2 provide more

details).

The nature of what-if scenarios that WISE can evaluate is limited by the input

dataset—careful choice of variables that the monitoring infrastructure collects from a

CDN can therefore enhance the utility of the dataset for evaluating what-if scenarios,

choosing such variables is outside the scope of WISE system.

2. Preparing Dataset to Represent the What-if Scenario. Evaluating a what-

if scenario requires values for input variables that “make sense.” Specifically, an

accurate prediction of the response-time distribution for a what-if scenario requires a

joint distribution of the input variables that is representative of the scenario and is also

consistent with the dependencies that are inherent to the system itself. For instance,

the distribution of the number of packets that are transmitted in the duration of

a service session depends on the distribution of the size of content that the server

returns in reply to a request; if the distribution of content size changes, then the

distribution for the number of packets that are transmitted must also change in a

way that is inherent to the system, e.g., the path-MTU might determine the number

of packets. Further, the change might cascade to other variables that in turn depend

on the number of packets. To enforce such consistency WISE learns the dependency

structure among the variables and represents these relationships as a Causal Bayesian

Network (CBN) [45]. We provide a brief background of CBN in this Section and

explain the algorithm for learning the CBN in Section 2.5.2.

A CBN represents the variables in the dataset as a Directed Acyclic Graph (DAG).

The nodes represent the variables and the edges indicate whether there are depen-

dencies among the variables. A variable has a “causal” relationship with another

17

x1

x2 x5

x4 x3

y

Figure 3: Example of a causal DAG.

variable, if a change in the value of the first variable causes a change in the values

of the later. When conditioned on its parent variables, a variable xi in a CBN is

independent of all other variables in the DAG except its descendents. An optimal

DAG for a dataset is one where we find the minimal parents for each node that satisfy

the above property.

As an example of how the causal structure may facilitate scenario specification

and evaluation, consider a dataset with five input variables (x1 . . . x5), and target

variable y.

Suppose that we discover a dependency structure among them as shown in Fig-

ure 3. If WISE is presented with a what-if scenario that requires changes in the value

of variable x2, then the distributions for variables x1 and x5 remains unchanged in

the input distribution, and WISE needs to update only the distribution of the de-

scendants of x2 to maintain consistency. WISE constrains the input distribution by

intelligently re-sampling and re-weighing the dataset using the causal structure as a

guideline (see Section 2.5.4).

18

Figure 4: WISE approach.

3. Facilitating Scenario Specification. WISE presents the network designers

with an easy-to-use interface in the form of a scenario specification language called

WISE-Scenario Language (WSL). The designers can typically specify the baseline

setup as well as the hypothetical values for the scenario in 3-4 lines of WSL.

WSL allows the designers to evaluate a scenario for an arbitrary subset of cus-

tomers. WSL also provides a useful set of built-in operators that facilitate scenario

specification as relative changes to the existing values of variables or as new values

from scratch. With WSL, the designers are completely shielded from the complex-

ity of dependencies among the variables, because WISE automatically updates the

dependent variables. We detail WSL and the process of scenario specification and

evaluation in Sections 2.5.3 and 2.5.4.

4. Scalable Estimation of New Distributions for Variables. Datasets for

typical CDN deployments and what-if scenarios span a large multi-dimensional space.

While non-parametric function estimation is a standard application in the machine

19

learning literature, the computational requirements for accurately estimating a func-

tion spanning such a large space can be astronomical. To address this, WISE es-

timates the function in a piece-wise manner, and also structures the processing so

that it is amenable to parallel processing. WISE also uses the dependency structure

to reduce the number of variables that form the input to the regression function.

Sections 2.5.5 and 2.6.1 provide more detail.

2.5 WISE: System

This section describes the algorithmic and design details for each of the steps in WISE

framework. Section 2.5.1 presents feature selection, Section 2.5.2 presents the WISE

Causal Discovery (WCD) Algorithm and Section 2.5.3 describes the WISE Scenario

Specification Language (WSL). Sections 2.5.4 and 2.5.5 present how WISE evaluates

a scenario to predict distributions for response time and other intermediate variables.

2.5.1 Feature Selection

Traditional machine-learning applications use various model selection criteria, such as

Akaike Information Criterion (AIC), Mallow’s Cp Test, or k-fold cross-validation [55],

to determine the appropriate subset of covariates for a learning problem. WISE

foregoes the traditional model selection techniques in favor of simple pair-wise inde-

pendence testing, because at times the conventional techniques can ignore variables

that might allow the designer to more easily interpret the results.

WISE uses simple pair-wise independence tests on all the variables in the dataset

with the response-time variable and discards all variables that it deems independent

of the response-time variable. For each categorical variable (variables that do not

have numeric meanings) in the dataset, such as country of origin of a request or AS

number, WISE obtains the conditional distributions of response time for each cate-

gorical value, and discards the variable if all the conditional distributions of response

20

time are statistically similar. To test similarity, we used Two-sample Kolmogorov-

Smirnov (KS) goodness-of-fit test with a significance level of 10%.

For real-valued variables, WISE first tests for correlation with the response-time

variable, and retains a variable if the correlation coefficient is greater than 10%. Un-

fortunately, for continuous variables, lack of correlation does not imply independence,

so we cannot outright discard a variable if we observe small correlation. A typical

example of such a variable in a dataset is the timestamp of the Web transaction,

where the correlation may cancel out over a diurnal cycle. For such cases, we divide

the range of the variable in question into small buckets and treat each bucket as a

category. We then apply the same techniques as we do for the categorical variables

to determine whether the variable is independent. There is still a possibility that we

may discard a variable that is relevant, but this outcome is less likely if sufficiently

small buckets are used. The bucket size depends on the variable in question; for

instance, we use one-hour buckets for the timestamp variable in the datasets.

2.5.2 Learning the Causal Structure

To learn the causal structure, WISE first learns the undirected graph and then uses

a set of rules to orient the edges.

Learning the Undirected Graph. Recall that in a Causal Bayesian Network

(CBN), a variable, when conditioned on its parents, is independent of all other vari-

ables, except its descendants. Further an optimal CBN requires finding the smallest

possible set of parents for each node that satisfy this condition. Thus by definition,

variables a and b in the CBN have an edge between them, if and only if, there is a

subset of separating variables, Sab, such that a is independent of b given Sab. This,

in the general case, requires searching all the possible O(2n) combinations of the n

variables in the dataset

WISE-Causal Discovery Algorithm (WCD) (Figure 5) uses a heuristic to guide the

21

1: WCD (V,W0,∆)
/*Notation
V: set of all variables
W0: set of no-cause variables
∆: maximum allowable cardinality for separators
a ⊥ b: Variable a is independent of variable b */

2: Make a complete Graph on V
3: Remove all edges (a, b) if a ⊥ b
4: W = W0

5: for c = 1 to ∆ /*prune in the order of increasing cardinality*/
6: LocalPrune (c)

1: LocalPrune (c)
/*Try to separate neighbors of frontier variables W*/

2: ∀w ∈W
3: ∀z ∈ N(w) /*neighbors of w*/
4: if ∃x ⊆ N(z)\w : |x| ≤ c, z ⊥ w|x
5: then /*found separator node(s)*/

Swz = x /*assign the separating nodes*/
6: Remove the edge (w, z)
7: Remove edges (w′, z), for all the nodes w′ ∈ W that are also on path from

w to nodes in W0

/*Update the new frontier variables*/
8: W = W ∪ x

Figure 5: WISE Causal Discovery (WCD) algorithm.

search of separating variables when we have prior knowledge of a subset of variables

that are “not caused” by any other variables in the dataset, or that are determined

by factors outside our system model (we refer to these variables as the no-cause

variables). Further, WCD does not perform exhaustive search for separating variables,

thus forgoing optimality for lower complexity.

WCD starts with a fully connected undirected graph on the variables and removes

the edges among variables that are independent. WCD then progressively finds sep-

arating nodes between a restricted set of variables (that we call frontier variables),

and the rest of the variables in the dataset, in the order of increasing cardinality

of allowable separating variables. Initially the frontier variables comprise only the

no-cause variables. As WCD discovers separating variables, it adds them to the set

22

of frontier variables.

The algorithm terminates when it has explored separation sets up to the maximum

allowed cardinality ∆ ≤ n, resulting in a worse case complexity of O(2∆). This ter-

mination condition means that certain variables that are separable are not separated:

this does not result in false dependencies but potentially transitive dependencies may

be considered direct dependencies. This sub-optimality does not affect the accuracy

of the scenario datasets that WISE prepares, but it reduces the efficiency because

it leaves the graph to be denser and the nodes having larger in-degree. Because the

WISE needs values of all the parent variables to determine the value of a child vari-

able, determining value of high in-degree child variables requires knowing value of

many variables. This, as we will discuss in section 2.6.1, increases the data require-

ment for accurate prediction. Fortunately, because WCD is part of the off-line steps

in WISE, we can afford a large maximum cardinality (∆) search for the separating

nodes; this will improve the efficiency for the online stage of scenario evaluation.

In the cases where the set of no-cause variables is unknown, WISE relies on the

PC-algorithm [52], which also performs search for separating nodes in the order of

increasing cardinality among all pair of variables, but not using the frontier variables.

Orienting the Edges. WISE orients the edges and attempts to detect latent vari-

ables using the following simple rules, well known in the literature. We reproduce

these rules, slightly adapted to accommodate heuristics in WCD, and refer the reader

to [45] for further details.

1. Add outgoing edges from the no-cause variables.

2. If node c has nonadjacent neighbors a and b, and c ∈ Sab, then orient edges

a→ c← b (unmarked edges).

3. For all nonadjacent nodes, a, b, with a common neighbor c, if there is an edge

from a to c, but not from b to c, then add a marked edge c
∗→ b.

23

4. If a and b are adjacent and there is directed path of only marked edges from a

to b, then add a→ b

In the resulting graph, any unmarked, bi-directed, or undirected edges signify

possible latent variables and ambiguity in causal structure. In particular, a → b

means either a really causes b or there is a common latent cause L causing both a

and b. a↔ b, signifies a definite common latent cause, and undirected edge between a

and b implies either a causes b, b causes a, or a common latent cause in the underlying

model.

We address issues related to missing variables or causal relationship that may arise

due to limitations of dataset in section 2.6.2. Section 2.5.4 discusses how WISE deals

with ambiguities in causal structure.

2.5.3 Specifying the “What-If” Scenarios

Figure 6 shows the grammar for WISE-Specification Language (WSL). A scenario

specification with WSL comprises a use-statement, followed by optional scenario

update-statements.

The use-statement specifies a condition that describes the subset of present net-

work for which the designer is interested in evaluating the scenario. This statement

provides a powerful interface to the designer for choosing the baseline scenario: de-

pending on the features available in the dataset, the designer can specify a subset of

network based on location of clients (such as country, network address, or AS num-

ber), the location of servers, properties of service sessions, or a combination of these

attributes.

The update-statements allow the designer to specify what-if values for various

variables for the service session properties. Each scenario statement begins with either

the INTERVENE, or the ASSUME keyword and allows conditional modification of

exactly one variable in the dataset.

24

scenario = use_stmt {update_stmt};

use_stmt = "USE" ("*" | condition_stmt)<EOL>;

update_stmt = ("ASSUME"|"INTERVENE") (set_directive | setdist_directive)

[condition_stmt]<EOL>;

set_directive = "SET" ["RADIAL"* | "FIXED"] var set_op value;

setdist_directive = "SETDIST" feature dist_name([param]) |

"FILE" filename);

condition_clause = "WHERE" condition;

condition = simple_cond | compound_cond;

simple_cond = compare_clause | (simple_cond);

compound_cond = (simple_cond ("AND"|"OR") (simple_cond|compound_cond));

compare_clause = (var rel_op value) | membership_test;

membership_test = feature "IN" (value {,value});

set_op = "+=" | "-=" | "*=" | "\=" | "=";

rel_op = "<=" | ">=" | "<>" | "==" | "<" | ">";

var = a variable from the dataset;

Figure 6: Grammar for WISE Specification Language (WSL).

When the statement begins with the INTERVENE keyword, WISE first updates

the value of the variable in question. WISE then uses the causal dependency structure

to make the dataset consistent with the underlying dependencies. For this WISE uses

a process called Statistical Intervention Effect Evaluation (Section 2.5.4).

Advanced designers can override the intelligent update behavior by using the AS-

SUME keyword in the update statement. In this case WISE updates the distribution

of the variable specified in the statement but does not attempt to ensure that the

distribution of the dependent variables are correspondingly updated. WISE allows

this functionality for cases where the designers believe that the scenario that they

wish to evaluate involves changes to the underlying invariant laws that govern the

system. If a variable’s only descendant is the target variable then the two types of

update statements behave identically. Examples of scenario specification with WSL

will follow in Section 2.8.

25

2.5.4 Preparing the Input Distribution

This section describes how WISE uses the dataset, the causal structure, and the

scenario specification from the designer to prepare a meaningful dataset for the what-

if scenario.

Filtering Dataset to obtain baseline scenario. WISE filters the global dataset

for the entries that match the conditions specified in the use-statement of the scenario

specification to create the baseline dataset.

Evaluating Scenario for Baseline Dataset as Statistical Intervention. WISE

executes the update-statements, one statement at a time, to change the baseline

dataset. To ensure consistency among variables after every INTERVENE update

statement, WISE employs a process called Statistical Intervention Effect Evaluation;

the process is described below.

Let us denote the action requested on a variable xi in the update-statement as

set(xi). We refer to xi in set(xi) as the intervened variable. Let us also denote

the set of variables that are children of xi in the CBN for the dataset as C(xi), and

the variables that are parents of xi in the CBN as P(xi). Lets also denote the joint

distribution of parent variables of child variables of variable xi that has variable xi

changed, but other parent variables not changed, as: {P(C(xi)), set(xi)}.

If the causal structure is correct then the new distribution of children of xi is given

as:

Pr{C(xi)|{P(C(xi)), set(xi)}}. The intuition is that because the parent node in a

CBN has a causal effect on its descendent nodes, we expect that a change in the value

of the parent variable must cause a change in the value of the children. Further, the

new distribution of children variables would be one that we would expect to observe

under the changed values of the parent variable that has been changed, and existing

values of the parent variable(s) that have not been changed.

26

Because the causal effect cascades to all the descendants of xi, WISE repeats

this process recursively, considering C(xi) as the intervened variables and updating

the distributions of C(C(xi)), and so on, until all the descendants of xi (except the

target variable) are updated. WISE cannot update the distribution of a descendant

of xi until the distribution of all of its ancestors that are descendant of xi has been

updated. WISE thus carefully orders the sequence of the updates by traversing the

CBN DAG in breadth-first order, beginning at node xi.

WISE sequentially repeats this process for each statement in the scenario spec-

ification. The updated dataset produced after each statement serves as the input

dataset for the next statement. Once all the statements are executed, the dataset is

the representative joint distribution variables for the entire what-if scenario.

Emulating Statistical Intervention as Approximate Nearest-Neighbors Search.

To apply statistical intervention, WISE conditions the global dataset on the new value

of the intervened variable, set(xi), and the existing values of the all the other parents

of the children of the intervened variable, P(C(xi)), in the baseline dataset to obtain

an empirical distribution Pr{C(xi)|{P(C(xi)), set(xi)}}. Value of child variables for

all the samples in this empirical distribution are equally likely correct value for the

child variables after intervention. WISE thus chooses one of these samples at random,

and assigns to the child variable.

In reality, the number of samples in global dataset whose values match exactly

with the condition

{P(C(xi)), set(xi)} may be very few. As a result, the aforementioned empirical dis-

tribution is hard to obtain. To overcome this problem, WISE also considers samples

whose value is approximately same as the condition. To find such samples, WISE uses

nearest-neighbors search centered around the point specified by the above condition.

Because nearest neighbor search is expensive on large datasets, WISE approximates

nearest-neighbor search by limiting the scope of search around the specified center.

27

For this, WISE uses a technique that we call tiling. Tiling is described in Section 2.6.1.

Dealing with Ambiguities in Causal Structure. When the causal structure has

ambiguities, WISE proceeds as follows.

(a) Bi-directed or Undirected Edges. When the edge between two variables is bi-

directed or undirected, WISE maintains the consistency by always updating the dis-

tribution of one if the distribution of the other is updated.

(b) Unmarked Directed Edges. Cases of unmarked directed edge, a → b are quite

common. Recall that this implies that either variable a causes b, or there is a latent

variable that causes both a and b. WISE updates the distribution of b assuming that

a causes b. The intuition is that if there is indeed a latent variable that causes a

and b, and if a scenario specification requires changing variable a, then the scenario

specification is implicitly stating a change in that latent variable, and thus changes

in a and b are in order. Further, the only way that we can know about the effect of

change of the latent variable on b is what we observe in the dataset as effect on b as

a result of changes in a.

2.5.5 Estimating Response Time Distribution

Finding the new distribution of response time is just another case of intervention effect

evaluation. WISE uses the techniques in Section 2.5.4 considering response time as

the affected child variable. Once the response-time distribution is computed, WISE

computes the expected response time by simply integrating over the distribution of

response time.

Random NN based prediction is very efficient and works great for predicting distri-

butions, but if the designers are interested in predicting response time for individual

requests, Random NN can have large error. For these cases, WISE supports using a

weighted average of all NN for prediction. In particular, we use a standard Kernel

28

Regression (KR) method, with a radial basis Kernel function [56] to estimate the re-

sponse time for each request in the dataset. To address the computational complexity,

WISE applies the KR in a piece-wise manner; the details follow in Section 2.6.1.

2.6 Additional Challenges

This section describes additional challenges. Section 2.6.1 presents how WISE ad-

dresses scalability challenges that arise due to the size of the required training data.

Section 2.6.2 discusses how WISE copes with missing variables or missing causal

dependencies that may arise due to insufficient data.

2.6.1 Computational Scalability

Because CDNs are complex systems, the response time may depend on a large num-

ber of variables, and the dataset might comprise hundreds of millions of requests.

To efficiently evaluate the what-if scenarios, WISE must address how to efficiently

organize and utilize the dataset. In this section, we discuss our approach to these

problems.

Curse of Dimensionality. As the number of dimensions (variables in the dataset)

grow, exponentially more data is needed for similar accuracy of estimation. WISE

uses the CBN to mitigate this problem. In a CBN, when conditioned on its parents, a

variable is independent of all variables except its descendants. As a result we can use

only the parents of the target variable for function estimation. Because the cardinality

of the parent set would typically be less than the total number of variables in the

dataset, the accuracy of the estimated function is significantly improved for a given

amount of data. Due to this, WISE can afford to use fewer training data points and

still get good accuracy.

Reducing dimensions also helps with computational complexity. For example,

time complexity for the KR method is O(kn3), with k variables and n points in the

29

training dataset. Using a CBN reduces k and results in significant computational

speedup.

Overfitting. The density of the dataset from a real deployment can be highly irreg-

ular; usually there are many points for combinations of variable values that represent

the normal network operation, while the density of dataset is sparser for combina-

tions that represent the fringe cases. Unfortunately, because the underlying principle

of most regression techniques is to find parameters that minimize the errors on the

training data, we can end up with parameters that minimize the error for high den-

sity regions of the dataset but give poor results in the fringes—this problem is called

overfitting. The usual solution to this problem is introducing a smoothness penalty in

the objective function of the regression method, but finding the right penalty function

requires cross-validation, which is usually very expensive to compute for very large

spaces.

WISE uses piece-wise regression to address this problem. WISE divides the

dataset space into small buckets, that we refer to as tiles, and performs regression

independently for each tile. Because regression parameters are learned separately for

each of small buckets, it avoids the over-fitting problem. More details of tiles follows

in context of approximate NN search.

Approximating Nearest-Neighbor Search. WISE uses nearest-neighbors (NN)

search for estimating the distribution of variables after intervention. Unfortunately,

NN search can be expensive: finding k nearest-neighbors for all the samples in a

dataset is O(n2). WISE overcomes this problem by limiting the scope of NN search.

WISE divides the dataset space into small buckets, that we refer to as tiles and all

the samples that lie in a bucket are considered equally likely nearest neighbors.

To create tiles, WISE uses fixed-size buckets for each dimension in the dataset.

30

Size of buckets presents a tradeoff: If the bucket sizes are sufficiently small, the sam-

ples in the bucket are good approximation of the NN, but the likelihood of having

many samples lying in a bucket reduces with the size of the bucket. If the bucket is

large, likelihood of finding samples in the bucket increases, but some of the points

might be far away from the center of the bucket and they will not be good repre-

sentation of NN. Fortunately, having more samples beyond a certain threshold does

not contribute appreciably to the accuracy of estimating the empirical distribution of

variables in question with either NN or KR techniques.

Keeping in view the tradeoff between bucket size and accuracy, and the need for

limited training data samples per bucket, WISE uses a multi layer tiling scheme.

For the lowest layer of tiles, WISE uses very small bucket sizes, and for subsequent

highest layers, WISE increases the size of buckets. WISE processes the training data

and maintains up to nmax sample points for each tile in each layer because more

samples add to storage and lookup complexity but do not contribute to accuracy.

When performing a NN search, WISE maps the test point to a tile in the lowest layer.

If the tile has more than nmin samples, all the samples in the tile are considered the

NN for the test sample. If there are fewer than nmin points in the tile, then WISE

maps the test sample to a tile in next higher layer and repeats the process. If all the

layers are exhausted but WISE is not able to find a suitable NN, the search aborts.

In practice, two or three layers of tiles suffice for reasonable accuracy.

Parameters nmin and nmax are tunable. Our current implementation of WISE uses

nmin = 1 for NN search and nmin = 10 for KR. nmax is set to 200.

Retrieval of Data. Because the datasets that WISE uses are very large, (often

comprising several hundred million samples), rapid retrieval of data for evaluating

the scenarios is critical. WISE expedites data retrieval by indexing the training

dataset offline, and indexing the test dataset as it is generated during the scenario

evaluation. Tiles are used here as well: Each tile is assigned a tile-id, which is simply

31

a string formed by concatenating the tile’s layer number and tile’s boundaries in each

dimension. Each data samples is assigned keys that are the tile-id of the tiles in which

data samples lie. WISE then uses these keys to index the data samples. Because the

WISE uses fixed size buckets, mapping a sample to its tile can be performed in

constant time using simple arithmetic operations. Also, because the approximated

NN search algorithm in WISE simply matches training and test data samples that

share a tile, pre-indexing the data allows WISE to easily collate training and test

data and perform NN search.

Parallelization and Batching. We have carefully designed various stages in WISE

to support parallelization and batching of jobs that use similar or same data. In

the training data preparation stage, each entry in the dataset can be independently

assigned its tile-id based key because WISE uses fixed-sized tiles.

For NN search, WISE can find NN for all the test data samples that share a tile

in one go because NN samples for one test sample are also NN for other test samples

that share the tile. Further, the NN search for test points in different tiles can proceed

in parallel, because NN search for each tile is independent.

For KR, WISE can learn the regression parameter for each tile independently

and in parallel. Similarly, during response time prediction stage, WISE can perform

prediction of test data belonging in separate tiles in parallel. Prediction for test data

samples that share a tile is also batched because they all need same training data.

2.6.2 Missing Variables and Causal Relationships

False or missing causal relationships can occur if the population in the dataset is not

independent of the outcome variables. Unfortunately, because WISE relies on passive

datasets, this is a fundamental limitation that cannot be avoided. Fortunately, we

expect that because the basic principles of computer networks are similar across

the Internet, and the service providers use essentially the same versions of software

32

throughout their networks, the bias in the dataset that would significantly affect the

causal interpretation is not common. If such biases exist, they will likely be among

datasets from different geographical deployment regions.

To catch such biases, we recommend using a training dataset with WISE that is

obtained from different geographical locations. If we use this geographically diverse

dataset to infer a causal structure, then if a variable that signifies the difference of

datasets of two regions is missing in the dataset, then the variable representing the

“region” will not be separable from the outcome variables. As a result, if we observe

that there are variables in the DAG that are children of the “regional” variables,

but there is no good explanation for this dependency based on understanding of the

working of the system, then we have to investigate what the missing variables may

be. Unfortunately, there is no automated way of determining what variables may be

missing.

Lastly, it is difficult to compile a dataset that covers CDN system dynamics under

all possible values of the variables in the system and from all the regions. As a

result, if WISE learns the causal structure from a non-comprehensive dataset, then

we cannot be certain that the causal structure captures all the variables and causal

relationships. Such limitations can be detected by using dataset from one subset of

geographical regions and use the dataset and causal structure to predict response time

for another region and compare that with the ground truth. We present evaluation

for completeness of causal structure and variables in Section 2.8.6. We also discuss a

case where a missing variable in the dataset results in larger prediction error.

2.7 Implementation

We have implemented WISE with the Map-Reduce framework [16] using the Sawzall

logs processing language [46] and Python Map-Reduce libraries. We chose this frame-

work to best exploit the parallelization and batching opportunities offered by the

33

WISE design1. We have also implemented a fully-functional prototype for WISE

using a Python front-end and a MySQL backend that can be used for small scale

datasets. We provide a brief overview of the Map-Reduce based implementation

here.

WISE steps are implemented using a combination of one or more of the four

Map-Reduce patterns shown in Figure 2.7. These patterns are described below.

Filter pattern selects samples from the dataset that satisfy a certain criteria. In

the input data preparation phase, the use-statement is implemented using the filter

pattern.

Update pattern changes one or more fields in a subset of records in a dataset that

satisfy a given criteria. update-statements use update pattern for applying the new

values to the variable in the statement.

Training and Test Data Collation pattern aggregates training and test data that

share a tile. If the update-statement uses the INTERVENE keyword then WISE uses

the Training & Test Data Collation pattern to bring together the relevant test and

training data and update the distribution of the test data in a batched manner and

perform KR or NN search.

Tile-id Assignment pattern indexes the training and test data samples. This pattern

is used on the initial training and test dataset as well on the test dataset after each

update- statement because the changes in the value of the data may necessitate re-

assignment of the tile-id.

Our Map-Reduce based implementation can evaluate typical scenarios in about

10 minutes on a cluster of 50 PCs while using nearly 1 TB of training data.

1Hadoop[1] provides an open-source Map-Reduce library. Modern data-warehousing appliances,
such the ones by Netezza [43], can also exploit the parallelization in WISE design.

34

Figure 7: Map-Reduce patterns used in WISE implementation.

2.8 Evaluating WISE on a Deployed CDN

We have implemented WISE with the Map-Reduce framework [16] using the Sawzall

logs processing language [46] and Python Map-Reduce libraries. We chose this frame-

work to best exploit the parallelization and batching opportunities offered by the

WISE design2. We have also implemented a fully-functional prototype for WISE

using a Python front-end and a MySQL backend that can be used for small scale

datasets. We provide a brief overview of the Map-Reduce based implementation

here.

In this section, we describe our experience applying WISE to a large dataset

2Hadoop[1] provides an open-source Map-Reduce library. Modern data-warehousing appliances,
such the ones by Netezza [43], can also exploit the parallelization in WISE design.

35

obtained from Google’s global CDN for Web-search service. We use WISE to predict

two metrics for this service:

• Network-level server response time (nrt) is the time duration between client’s

host sending a HTTP request with Web-search query and the client receiving

the last byte of the response from the CDN for Web search.

• Browser-level response time (brt) is the time duration between the user clicking

the “Search” button on the Web page and when the browser completes loading

the results pages returned by the CDN for Web search.

We start by briefly describing the CDN and the service architecture in Sec-

tion 2.8.1. In Section 2.8.2 we describe the dataset from the CDN. In Section 2.8.3

we describe the factors that make it challenging to estimate nrt and brt using this

dataset. In Section 2.8.4 the causal structure discovered from this dataset using

WCD. In Sections 2.8.5—2.8.7 we evaluate WISE’s ability to predict response-time

distribution for the what-if scenarios.

2.8.1 Web-search Service Architecture

Figure 2.8.1(a) shows Google’s Web-search service architecture. The service comprises

a system of globally distributed HTTP reverse proxies, referred to as front-end (FE),

and a system of globally distributed clusters that house the Web servers and other

core services, referred to as the back-end (BE). A DNS based request redirection

system redirects the user’s queries to one of the FE in the CDN. The FE process

forwards the queries to the BE servers, which generate dynamic content based on the

query. The FE caches static portions of typical reply, and starts transmitting that

part to the requesting user as it waits for reply from the BE. Once the BE replies,

the dynamic content is also transmitted to the user. The FE servers may or may not

be colocated in the same data center with the BE servers. If they are colocated, they

36

can be considered to be on the same local area network and the round-trip latency

between them is only a few milliseconds. Otherwise, the connectivity between the FE

and the BE is typically on a well-provisioned connection on the public Internet. In

this case the latency between the FE and BE can be several hundred milliseconds.

Network-level server response time (nrt) for a request is the time between the

instance when the user issues the HTTP request and the instance when the last byte

of the response is received by the users. We estimate nrt as the sum of the round-trip

time estimate obtained from the TCP three-way handshake, and the time between

the instance when the request is received at the FE and when the last byte of the

response is sent by the FE to user. Key contributors to nrt are: (i) the transfer

latency of the request from the user to the FE, (ii) the transfer latency of request

to the BE and the transfer latency of sending the response from the BE to the FE,

(iii) processing time at the BE, (iv) TCP transfer latency of the response from the

FE to the client; and (v) any latency induced by loss and retransmission of TCP

segments.

Browser-level service response time (brt) for a request is the time between the

instance when the user presses the “Search” button on the Web page and when the

browser completes rendering the Web page with search results that the server sends.

We estimate brt using a browser plug-in and javascript embedded in the Web page

returned by the server. Following are the factors contributing latency to brt. (i) User’s

host may issue a DNS lookup before it can establish a connection with the Web server.

When this happens, DNS lookup delay contributes to brt. (ii) Network-level server

response captures the latency in host contacting the servers, servers preparing a search

response and sending the response to the client. (iii) Time it takes the browser to

render the results Web page and execute javascripts embedded in the page.

37

Figure 8: Service architecture for Google’s Web Search service.

2.8.2 Dataset

We use data from an existing network monitoring infrastructure in Google’s network.

FE and BE servers export reports with values for many performance related variables.

A browser plug-in tracks browser-level events and reports these statistics for users that

opt to participate in monitoring. The browser plug-in and FE add unique identifiers

to each request. This identifier allows us to collate the records in dataset obtained

from FE, BE, and the browser plug-ins.

WISE applies the feature selection tests (ref. Section. 2.5.1) on the variables in the

dataset. Table 1 describes the variables that WISE found to be relevant to network

and browser response-time variables.

2.8.3 Challenges in Estimating nrt and brt

Figure 2.8.1 shows the process by which a user’s Web search query is serviced. The

message exchange and events has many factors that affect nrt and brt in subtle ways,

making it hard to make accurate “back-of-the-envelop” calculations in the general

case.

Challenges for Network Response Time (nrt). Following factors make it diffi-

cult to estimate nrt.

Asynchronous transfer of content to the user. Once the TCP handshake is complete,

38

Figure 9: Messages and events for network-level and browser-level response time.

user’s browser sends an HTTP request containing the query to the FE. While the FE

waits on a reply from the BE, it sends some static content to the user; this content—

essentially a “head start” on the transfer—is typically brief and constitutes only a

couple of IP packets. Once the FE receives the response from the BE, it sends the

response to the client and completes the request. A client may use the same TCP

connection for subsequent HTTP requests.

Spliced TCP connections. FE processes maintain several TCP connections with the

BE servers and reuse these connections for forwarding user requests to the BE. FE

also supports HTTP pipelining, allowing the user to have multiple pending HTTP

requests on the same TCP connection.

Spurious retransmissions and timeouts. Because most Web requests are short TCP

transfers, the duration of the connection is not sufficient to estimate a good value for

39

Table 1: Features in the dataset from Google’s CDN.

Feature Description

ts, tod A timestamp of instance of arrival of the request at the FE. Hourly time-of-
day (tod) is derived from the timestamp.

sP Number of packets sent by the server to the client excluding retransmissions.
srP Number of packets retransmitted by the server to the client, either due to

loss, reordering, or timeouts at the server.
sB Size in bytes of the encoded response sent by the FE server.
encoding Encoding type used by FE server.
region User’s IP address, /16, /24 network prefixes, AS number, and geographical

mapping to state and country, are collectively referred to as region.
fe, be Identifiers for the FE data center at which the request was received and the

BE data center that served the request.
rtt Round-trip time between the user and FE estimated from the initial TCP

three-way handshake.
bw An estimate of access network bandwidth for the /24 IP address block for the

user’s IP address. It is estimated as the 90% TCP throughput for unthrottled
responses greater than 4KB sent from FE to the IP addresses in /24 prefix.

febe rtt The network level round-trip time between the front end and the back-end
clusters.

be time Time taken by BE to process the request forwarded by FE.
firstReq Binary variable indicating whether the HTTP request is first on a TCP

connection.
browser Browser name and version obtained from HTTP User-Agent string.
nrt Network-level response time for the request as seen by the FE (see Section

2.8.1). nrt is a target variable.
brt Browser-level response time for the request as seen by the FE (see Section

2.8.1). brt is a target variable.

the TCP retransmit timer and many Web servers use default values for retransmits,

or estimate the timeout value from the initial TCP handshake round-trip time. This

causes spurious retransmits for users with slow access links and high serialization

delays for MTU sized packets.

Challenges for Browser Response Time (brt). Following factors make it difficult

to estimate brt.

DNS lookup not visible to network or browser. User’s host needs to resolve the domain

name for the search engine site before it can contact the servers. If the DNS reply

40

is cached at the client, latency for DNS resolution is minimal, however, if DNS reply

is not cached or has expired, then DNS latency can be significant. Therefore, not all

search requests include DNS resolution latency. Because DNS lookup is transparent

to the browser, we have no data to indicate the latency for DNS for a particular

request request at browser level. Further, because clients typically use local DNS

resolvers, the DNS request is not seen by the DNS servers of the CDN either. As a

result, our data has no direct indication of latency contributed by DNS.

Browser may fetch additional resources. Web page rendering in the browser is only

complete after the browser has rendered the HTML and other embedded content, such

as, images or scripts, referred in the HTML page. This content is often cacheable, but

if it not cached at the host or has expired, then the browser may need to fetch this

content before it can complete rendering. Unfortunately, to encourage caching, the

URLs for this content are generic and non-collatable with the main HTTP request

for Web search. As a result, our data has no direct indication of latency contributed

by fetching of embedded content.

Browser type and user host’s computation capability. Web page rendering time varies

with the type of browser. We can infer the browser type from the HTTP User-Agent

string, but relationship of rendering speed and browser type is not straightforward.

Rendering time also depends on type of content (HTML, javascript, images), type

of compression or encoding used in HTTP, the order of download of content, the

computation capability of the host and the load on the host at the time of search

query. Not only is host’s computation capability and load not observed in the dataset,

the relationship of these factors is not well understood to allow simple back-of-the-

envelop calculations.

41

brt

nrt

region

rtt sP

sB

bw browser

encoding

firstReq

fe

be

srPfebe_rtt

ts

tod

be_time

Figure 10: Inferred causal structure in the dataset. A → B means A causes B.
Target variables are shown in shaded nodes.

2.8.4 Causal Structure in the Dataset

To obtain the causal structure, we use a small sampled data subset collected in July,

2009, from several data center locations. This dataset has roughly 50 million requests,

from clients in more than 10000 unique ASes.

We seed the WCD algorithm with the region and ts variables as the no-cause

variables. Figure 2.8.4 shows the causal structure that WCD produces. Most of the

causal relationships in Figure 2.8.4 are straightforward and make intuitive sense in

the context of networking, but a few relationships are quite surprising. WCD detects

a relationship between the region and sB attribute (the size of the response from

the server); we found that this relationship exists due to the differences in the sizes

of search response pages in different languages and regions as well as the encoding

and compression schemes used by the servers. Another unexpected relationship is

between region and sP attributes; We suspect that this relationship exists due to

42

different MTU sizes in different parts of the world. Unfortunately, our dataset did not

have load, utilization, or data center capacity variables that could have allowed us to

model the be time variable. All we observed was that the be time distribution varied

somewhat among the data centers. Overall, we find that WCD algorithm not only

discovers relationships that are faithful to how networks operate but also discovers

relationships that might escape trained network engineers.

Crucially, note that many variables, including the target variables (nrt, brt) are

not direct children of the region, ts, fe, or be variables. This means that when

conditioned on their respective parents, these variables are independent of the region,

time, choice of FE and BE, and we can use training data from past, different regions,

and different FE and BE data centers to estimate the distributions for these features!

Further, while most of the variables in the dataset are correlated, the in-degree for

each variable is smaller than the total number of variables. This reduces the number of

dimensions that WISE must consider for estimating the value of the variables during

scenario evaluation, allowing WISE to produce accurate estimates, more quickly and

with less data.

2.8.5 Estimation of Response Time

Our primary metric for evaluation is prediction accuracy. There are two sources of

error in response-time prediction: (i) error in response-time estimation function (Sec-

tion 2.5.5) and (ii) inaccurate input, or error in estimating a valid input distribution

that is representative of the scenario (Section 2.5.4). To isolate these errors, we first

evaluate the estimation function accuracy alone in Section 2.8.6 and later consider

the overall accuracy for a complete scenario in Section 2.8.7.

2.8.6 Accuracy of Response-time Function

Accuracy of the response-time function estimator depends on following: (a) whether

the WISE model captures all the variables, (b) whether the causal structure that

43

WISE infers is accurate, and (c) whether there is sufficient training data available to

make the prediction. In this section, we evaluate whether these factors are reasonably

addressed by WISE by estimating the accuracy of predictions of (nrt, brt) for existing

deployments.

To evaluate prediction for existing deployments we can try to evaluate a scenario:

“What-if I make no changes to the network?” This scenario is easy to specify with

WSL by not including any optional scenario update statements. For example, a

scenario specification with the following line: USE WHERE country==deu

would produce an input distribution for the response-time estimation function that is

representative of users in Germany without any error and any inaccuracies that arise

would be due to inaccurate input from scenario specification.

Recall from Sections 2.5.4 and 2.5.5 that WISE uses the parents of nrt and brt to

find the nearest-neighbor samples from the training dataset and predict the response

time. Region, FE, BE, or ts are not parents of CBN in Figure 2.8.4. As a result,

when WISE performs NN search, it does so without regard for the region, servers,

or timestamp of the samples. Still, to ensure that the nearest-neighbor samples that

WISE uses for prediction do not come from same data center or country for which

we wish to evaluate a what-if scenario, we exclude the data from those data centers

and countries from the training dataset for all of the evaluations that follow.

Network-level Response Time (nrt) Prediction. We start with demonstrating

that WISE predicts entire response time distribution accurately. We then compare

WISE predictions for nrt with simpler parametric models.

Predicting Distribution of nrt. We examine accuracy of nrt prediction for three sce-

narios. First two scenarios specify estimating the response-time distribution for the

users in Germany, and South Africa and the third scenario tries to estimate the

response-time distribution for users that are served from FE in Japan. This FE data

44

center primarily serves users in South and East Asia. We used the dataset from the

third week of June 2007 as our training dataset and predicted the network response

time distribution for these scenarios for the fourth week of June 2007.

Figures 11(a), (b), and (c), show the results for the three scenarios, respectively.

The ground-truth distribution for response time is based on the response-time values

observed by the monitoring infrastructure for fourth week of June 2007, and is shown

in solid line. The response time for the same period that WISE predicts is shown in

a dotted line. The ground-truth and predicted distributions are identical.

WISE also predicts response time for individual requests accurately. Figure 12

we present the relative prediction error for individual requests in these experiments.

The error is defined as |rt − r̂t|/rt, where rt is the ground-truth value and r̂t is the

value that WISE predicts. The median error lies between 8-11%.

Comparing WISE with Parametric Models. Because Google uses TCP to transfer the

data to clients, It is reasonable to ask how well we could do using one of simpler

parametric models used for estimating TCP-transfer latency? We have adapted work

of Arlitt et al. [4] to account for additional latency that occurs due to round-trip

between FE and BE (febe rtt) and the back-end processing time (be time). We

refer to this model as AKM.

Table 2 presents a comparison of relative error in mean network response time

estimates for ten regions using WISE and AKM. Table 2-a presents errors for cases

where the serving FE and BE are colocated in the same data center. Table 2-b presents

errors for cases where serving FE not in the same data center as the BE. These are

also cases where access network is constrained, and there are significant packet losses

and retransmissions. The relative error for mean response time for colocated cases

is comparable between WISE and AKM. For non-colocated cases, error for AKM is

between 3.5% and 9% more than WISE.

AKM uses a compensation multiplier called ‘CompWeight’ to minimize the error

45

Table 2: Comparison of WISE and parametric approach based on relative prediction
error.

(a) Co-located FE & BE (b) Non-colocated FE & BE
Region WISE AKM Region WISE AKM
Belgium 2.0% 1.1% Argentina -2.2% -11%
Germany 0.3% 1.0% Australia -0.9% -10%
Hungary 0.3% -6.7% Brazil 0.2% -8.9%
Netherlands 0.0% 4.4% Hong Kong -3.0% -7.7%
USA 1.4% 1.1% Singapore 2.2% 5.9%

for each trace. This factor minimizes the error on the mean at cost of higher error

in the tails of the distribution. WISE, on the other hand, can predict the entire

distribution accurately and also predicts the mean response time more accurately than

AKM. Further WISE has advantage of generality. As we show in next subsection,

WISE is easily extended to predict browser-level response time.

Browser-level Response Time (brt) Prediction. Browser-level response time

is a high variance metric because of nature of Web page rendering process. For a

typical region, both mean and standard deviation of brt is between 2 to 3 times more

than mean and standard deviation for nrt. Further, as discussed in Section 2.8.3, our

dataset does not contain variables that capture important contributing factors such

as, DNS latency, how many embedded pieces of contents are required to render the

page, whether the browser downloaded the embedded content or obtained these from

cache, the computation capability of the user’s host and the load on that host at the

time of request. This makes estimating browser-level response time significantly more

difficult.

We use WISE to estimate the browser level response time distribution for seven

regions, served from a mix of colocated and non-colocated FE and BE locations. We

use datasets from first two weeks in September 2009. Table 3 presents the relative

error on key percentiles of the distribution of brt as well as mean brt for these regions.

46

Table 3: Relative error of mean browser-level response time estimate with WISE.

Region
Error on Percentiles Error on

25th 50th 75th Mean
B 12.0% 3.6% 4.1% 4.8%
C 1.7% -3.9% -10.1% 4.1%
D 0.4% -1.6% -4.2% -10.9%
E -1.2% -3.6% -5.2% 4.7%
F 0.3% -1.5% -2.5% 4.1%
G 9.2% 9.9% 10.7% 11.6%
I 4.0% 4.8% 5.8% 7.7%
D* -3.1% -2.6% -3.4% -7.8%
G* 1.4% 1.9% 4.4% 5.5%

Prediction error on all key percentiles as well on mean for most regions is less than

10%. This is remarkable considering that brt is a very volatile metric and the dataset

is missing indicators for a number of contributors of brt latency.

For two regions, D and G, the relative error for mean brt is greater than 10%. By

examining javascript execution script in a limited scope experiment, we found that

the reason for larger error is that the browser and computation capability combination

in these countries is pretty unique, but because there is no feature in the dataset to

indicate computation capability of hosts, the nearest-neighbor search algorithm in

WISE ends up using samples that are similar in other dimensions but differing in

computation capability, resulting in higher prediction error. We further ascertained

this observation by using data from the same regions as training data. The results

are shown at the bottom of Table 3 as D* and G*. When we use the local datasets,

prediction error drops significantly.

We are working to extend our datasets to include features that are indicative or

computation capability of the hosts. Once these variables are available, we believe

we will be able to improve prediction accuracy without using local datasets.

47

2.8.7 Evaluating a Live What-if Scenario

We evaluate how WISE predicts the response-time distribution for the affected set

of customers during the scenario that we presented in Section 2.2 as a motivating

example. In particular, we will focus on the effect of this event on customers of

AS 9498, which is a large consumer ISP in India.

To appreciate the complexity of this scenario, consider what happens on the

ground during this reconfiguration. First, because the FE in Taiwan is colocated

with the BE, febe rtt reduces to a typical intra-data center round-trip latency of 3ms.

Also we observed that the average latency to the FE for the customers of AS 9498

increased by about 135ms as they were served from FE in Taiwan (tw) instead of the

FE in India (im).

If the training dataset already contains the rtt estimates for customers in AS 9498

to the fe in Taiwan then we can write the scenario in two lines as following:

USE WHERE as num==9498 AND fe==im AND be==tw

INTERVENE SET fe=tw

WISE uses the CBN to automatically update the scenario distribution. Because, fe

variable is changed, WISE updates the distribution of children of fe variable, which

in this case include febe rtt and rtt variables. This in-turn causes a change in children

of rtt variable, and similarly, the change cascades down to the rt variable in the DAG.

In the case when such rtt is not included in the training dataset, the value can be

explicitly provided as following:

USE WHERE as num==9498 AND fe==im AND be==tw

INTERVENE SET febe rtt=3

INTERVENE SET rtt+=135

We evaluated the scenario using the former specification. Figure 13 shows ground

truth of response-time distribution as well as distributions for intermediary variables

48

(Figure 2.8.4) for users in AS 9498 between hours of 12 a.m. and 8 p.m. on July 16th

and the same hours on July 17th, as well as the distribution estimated with WISE

for July 17th for these variables. We observe only slight under-estimation of the

distributions with WISE—this underestimation primarily arises due to insufficient

training data to evaluate the variable distribution for the peripheries of the input

distribution; WISE was not able to predict the response time for roughly 2% of

the requests in the input distribution. Overall, maximum cumulative distribution

differences3 for the distributions of the three variables were between 7-9%.

2.9 Controlled Experiments

Because evaluating WISE on a live production network is limited by the nature of

available datasets and variety of events with which we can corroborate, we have

created a small-scale Web service environment using the Emulab testbed [19]. The

environment comprises a host running the Apache Web server as the back-end or

BE, a host running the Squid Web proxy server as the front-end or FE, and a host

running a multi-threaded wget HTTP client that issues request at an exponentially

distributed inter-arrival time of 50 ms. The setup also includes delay nodes that use

dummynet to control latency.

To emulate realistic conditions, we use a one-day trace from several data centers

in Google’s CDN that serve users in the USA. We configured the resource size distri-

bution on the BE, as well as to emulate the wide area round-trip time on the delay

node based on this trace.

For each experiment we collect tcpdump data and process it to extract a feature

set similar to one described in Table 1. We do not specifically emulate losses or

retransmits because these occurred for fewer than 1% of requests in the USA trace.

3We could not use the relative error metric here because the requests in the input distribution
prepared with WISE for what-if scenario cannot be pair-wise matched with ones in the ground-truth
distribution; maximum distribution difference is a common metric used in statistical tests, such as
Kolmogorov-Smirnov Goodness-of-Fit Test.

49

We have conducted two what-if scenario experiments in this environment; these are

described below.

Experiment 1: Changing the Resource Size. For this experiment, we used only

the back-end server and the client machine, and used the delay node to emulate wide

area network delays. We initially collected data using the resource size distribution

based on the real trace for about two hours, and used this dataset as the training

dataset. For the what-if scenario, we replaced all the resources on the server with

resources that are half the size, and collected the test dataset for another two hours.

We evaluated the test case with WISE using the following specification:

USE *

INTERVENE SET FIXED sB/=2

Figure 14(b) presents the response-time distribution for the original page size

(dashed), the observed response-time distribution with halved page sizes (dotted),

and the response-time distribution for the what-if scenario predicted with WISE using

the original page size based dataset as input (solid). The maximum CDF distance in

this case is only 4.7%, which occurs around the 40th percentile.

Experiment 2: Changing the Cache Hit Ratio. For this experiment, we intro-

duced a host running a Squid proxy server to the network and configured the proxy to

cache 10% of the resources uniformly at random. There is a delay node between the

client and the proxy as well as the proxy and the back-end server, each emulates trace

driven latency as in the previous experiment. For the what-if scenario, we configured

the Squid proxy to cache 50% of the resources uniformly at random. To evaluate

this scenario, we include binary variable b cached for each entry in the dataset that

indicates whether the request was served by the caching proxy server or not. We

use about 3 hours of trace with 10% caching as the training dataset, and use WISE

to predict the response-time distribution for the case with 50% caching by using the

50

following specification:

USE *

INTERVENE SETDIST b cached FILE 50pcdist.txt

The SETDIST directive tells WISE to update the b cached variable by randomly

drawing from the empirical distribution specified in the file, which in this case contains

50% 1s and 50% 0s. Consequently, we intervene 50% of the requests to have a cached

response.

Figure 14(c) shows the response-time distribution for the 10% cache-hit ratio

(dashed), the response-time distribution with 50% cache-hit ratio (dotted), and the

response-time distribution for the 50% caching predicted with WISE using the original

10% cache-hit ratio based dataset as input (solid). WISE predicts the response time

quite well for up to the 80th percentile, but there is some deviation for the higher

percentiles. This occurred because the training dataset did not contain sufficient

data for some of the very large resources or large network delays. The maximum

CDF distance in this case is 4.9%, which occurs around 79th percentile.

2.10 Discussion

In this section, we discuss the limitations and extensions for WISE. First we discuss

the limitations in terms of scenarios that WISE can predict. Then we present the

difficulties that arise for specifying hypothetical values for network round-trip times

for evaluating server placement or peering scenarios, and our on-going work to address

these. We discuss merit of using non-parametric modeling in WISE, and finally, how

the WISE framework can be extended to other realms in networking.

What Can and Cannot Be Predicted? The class of what-if scenarios that can be

evaluated with WISE depends entirely on the dataset that is available; in particular,

WISE has two requirements:

51

First, WISE requires expressing the what-if scenario in terms of (1) variables in the

dataset and (2) manipulation of those variables. At times, it is possible for dataset

to capture the effect of the variable without capturing the variable itself. In such

cases, WISE cannot evaluate any scenarios that require manipulation of that hidden

variable. For example, the dataset from Google, presented earlier, does not include

the TCP timeout variable even though this variable has an effect on response time.

Consequently, WISE cannot evaluate a scenario that manipulates the TCP timeout.

Second, WISE also requires that the dataset contains values of variables that are

similar to the values that represent the what-if scenario. If the global dataset does

not have sufficient points in the space where the manipulated values of the variables

lie, the prediction accuracy is affected, and WISE raises warnings during scenario

evaluation.

WISE also makes stability assumptions, i.e., the causal dependencies remain un-

changed under any values of intervention, and the underlying behavior of the system

that determines the response times does not change. We believe that this assumption

is reasonable as long as the fundamental protocols and methods that are used in the

network do not change.

Values of Variables for Scenario Specification. To predict response-time dis-

tribution, WISE requires the designers to specify the what-if value of one or more

variables. While this considerably facilitates scenario specification and evaluation, it

is still a big problem in some cases. Specifically, specifying a scenario with correct

value of network round-trip time (RTT) distribution to evaluate a new peering, or

data center deployment has proven to be difficult.

Predicting the RTT distribution for a change in the network is difficult for a many

reasons: A new peering or transit relationship can affect BGP level routing for many

AS. WISE in its current form, does not try to predict the AS whose traffic would be

affected by the change. Further, even when the subset of traffic that would be affected

52

is identified, the change in RTT is usually not a simple step-function: the changes

in RTT value different at different percentiles of distributions, higher percentiles are

usually affected less by a shorter network path than lower percentiles.

WSL allows the designers to specify full distribution of a RTT using the SETDIST

directive, if the distribution is known. We are separately investigating on two aspects

that would facilitated this process further. (1) We are working modeling of RTT dis-

tribution by separately modeling the propagation and queuing delay factors in RTT

and their interaction. This separation will allow the designers to specify the changes

in the propagation delay and WISE would automatically estimate the likely queuing

delay component and estimate the RTT distribution more accurately. (2) By ana-

lyzing the the Internet connectivity graph, we are trying to estimate the propagation

delays between AS and target CDN node locations. This would allow the designers

to simply specify a hypothetical location for CDN node and WISE will be able to

determine the propagation delays, queuing delays and the RTT distribution automat-

ically. This RTT distribution can then be used to estimate overall response-time for

the service.

Parametric vs. Non-Parametric. WISE uses the assumption of functional de-

pendency among variables to update the values for the variables during the statistical

intervention evaluation process. In the present implementation, WISE only relies on

non-parametric, nearest-neighbor search based technique for estimating this function.

This makes it difficult to use WISE for cases where dataset may not have suitable

nearest-neighbor samples. Nearest-neighbor based prediction is also data intensive.

Fortunately, nothing in the WISE framework prevents using parametric functions. If

the dependencies among some or all of the variables are parametric or deterministic,

then we can improve WISE’s utility. Such a situation can in some cases allow extrap-

olation to predict variable values outside of what has been observed in the training

53

dataset.

What-if Scenarios in other Realms of Networking. We believe that our work

on evaluating what-if scenarios can be extended to incorporate other realms, such

as routing, policy decisions, and security configurations by augmenting the reasoning

systems with a decision evaluation system, such as WISE.

Our ultimate goal is to evaluate what-if scenarios for high-level goals, such as,

“What if I deploy a new server at location X?”, or better yet, “How should I configure

my network to achieve certain goal?”; we believe that WISE is an important step in

this direction.

54

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Response Time (Normalized)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
D

F

USA Original

USA Predicted

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Response Time (Normalized)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
D

F

Germany Original

Germany Predicted

(a) USA (b) Germany

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Response Time (Normalized)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
D

F

South-Africa Original

South-Africa Predicted

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Response Time (Normalized)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
D

F

Japan Original

Japan Predicted

(c) South Africa (d) FE in Japan

Figure 11: Prediction accuracy: comparison of normalized network-level response
time distributions for the scenarios in Section 2.8.6.

55

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Relative Error

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
D

F

Country == Germany

Country == South Africa

FE == JP

Figure 12: Relative prediction error for the scenarios in Figure 11.

56

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Round Trip Time to FE (Normalized)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
D

F

Ground Truth on July 16th

Ground Truth on July 17th

Predicted with WISE for July 17th

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Server Side Retransmissions Per Session (srP)

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

C
D

F

Ground Truth on July 16th

Ground Truth on July 17th

Predicted with WISE for July 17th

(a) Client-FE RTT (b) Server Side Retransmits

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Response Time (Normalized)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
D

F

Ground Truth on July 16th

Ground Truth on July 17th

Predicted with WISE for July 17th

(c) Response Time Distribution

Figure 13: Predicted distribution for response time and intermediary variables for
the India data center drain scenario.

57

(a) Controlled Experiment Setup

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Response Time(ms)

C
D

F

Halved Page Size

Original Page Size

Predicted with WISE

0 1000 2000 3000 4000 5000 6000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Response Time (ms)

C
D

F

10% Cache Hit Ratio

50% Cache Hit Ratio

Predicted with WISE for 50%

(b) Changing the Page Size (c) Changing the Cache Hit Ratio

Figure 14: Controlled what-if scenarios on Emulab testbed: Experiment setup and
results.

58

CHAPTER III

ANSWERING “HOW-TO” QUESTIONS FOR

MITIGATING HIGH-LATENCY WEB TRANSACTIONS

WITH HIP

59

ABSTRACT

This paper presents How to Improve Performance (HIP), a tool that facilitates an-

swering how-to questions for mitigating high-latency Web transactions in content dis-

tribution networks (CDNs). Answering these questions is challenging because many

factors affect service response time but their effect is difficult to quantify. Although

recent tools such as What-if Scenario Evaluator (WISE) help designers predict the

response times that result from a configuration, the number of possible configuration

or deployment changes to a CDN is still so large that it is infeasible to use these tools

“off the shelf” to search for a configuration that achieves the desired performance.

To manage this search, HIP analyzes dependency among latency-causing factors to

identify both the immediate and indirect causes of high latency transactions, segre-

gates transient from persistent causes, and groups transactions that experience high

latency due to the same underlying cause. Based on causes and affected groups of

transactions, HIP suggests configuration changes that improve performance. We ap-

ply HIP to the Web search service from a large content provider. HIP finds that in

most regions, 90% of high-latency incidents experienced by users can be explained

by no more than three causes, which narrows the search for good configurations. We

evaluate HIP’s suggested configuration changes using WISE and find that they are

effective in mitigating high-latency transactions.

3.1 Introduction

The performance that users experience for Web-based services depends on many inter-

related factors. The time it takes between a user first making a request to a Web-based

service and the response loading and rendering in user’s browser application depends

60

on the geographical location of the user and the server, proxy servers, the backend

servers, properties of the content requested by the user, the time of day and load

on the servers or network, the network bandwidth and round-trip time, packet loss

rate, the capabilities of user’s host machine, and applications that the user used to

access the service. Web-based services are typically hosted on content distribution

networks (CDNs) that have hundreds to thousands of distributed servers in tens of

data centers [2, 7, 21].

Operators of these networks continually strive to improve the response times for

Web-based services, which requires tackling questions such as, How to improve overall

performance by reconfiguring or re-provisioning the network?, or How to improve some

subset of transactions that has higher latency. We refer to these questions as “how-to”

questions.

Answering how-to questions is difficult for several reasons. First, the factors that

affect performance, and the interaction among these factors—and, in particular, how

they affect response time—is not understood. Recent systems such as WISE [54] solve

part of this problem by allowing CDN operators to evaluate the effect of configuration

or deployment changes on response time. Thus, a strawman approach to answering

how-to questions is to explore candidate what-if scenarios that may improve the per-

formance or subset of users. Unfortunately, because the relationships between factors

that affect the response time are poorly understood, finding good candidate scenarios

in the first place is challenging. The operator may use brute-force search on many

candidate scenarios, but the large search space may make this approach infeasible.

This chapter presents the design, implementation, and evaluation of How to Im-

prove Performance (HIP), a tool that helps operators find configuration scenarios that

answer the how-to questions. Instead of using brute force to find scenarios that can

achieve desired performance, HIP first searches for common factors that cause high

latency and poor performance for groups of users. HIP aggregates transactions that

61

have high latency due to same causes, and suggests values for causal variables that

will alleviate the poor performance. HIP finds both immediate and indirect causes

of high latency. Realizing HIP requires solving four challenges, which we describe

below.

First, the search for alternate configurations must be fast and scalable. Because

many factors affect latency, and these factors can take many values, a brute force

or unintelligent search for alternate configuration will not scale. HIP addresses this

problem by investigating what is causing high latency events in the CDN in the first

place. In many cases, a few causes affect a large number of transactions, making it

feasible to fix the problems with few changes.

Second, finding the underlying causes of high-latency transactions is difficult, for

two reasons. (1) Many factors contribute to latency and a high-latency event can

occur because of combination of one or more of these factors. For a given high-

latency transaction, it is difficult to estimate which factor caused it. (2) Even when

a model for predicting system response time based on causes is available, (e.g., us-

ing WISE [54]), it is difficult to map an observed response time to causes because

the response-time function is typically not injective; that is, many transactions with

similar response times may have different contributing causes. To solve this problem,

HIP uses WISE to determine the causal factors and their interdependences. HIP then

identifies factors that may be responsible for the high latency transactions by com-

paring values of causal variables for transactions with poor latency with transactions

with good latency. HIP also groups transactions that have the same cause for high

latency, allowing operators to focus on subsets of clients at a time.

Third, the appropriate corrective action may differ depending on what is causing

the high-latency transactions. Many factors that contribute to latency are stochastic,

which means that high-latency response time for a transaction could be because of a

systemic problem in a contributing factor; on the other hand, the factor may simply

62

be an outlier that coincides with the particular transaction. Whether the cause is

systemic or coincidental can affect what corrective action an operator might take.

For example, if a systemically large network round-trip time is causing low response

times for clients, then the solution might be to fix routing or to deploy a server nearer

to the clients. If, on the other hand, high latency is due to spikes in round-trip time,

a possible solution might be to increase capacity. To distinguish coincidental causes

from systemic ones, HIP analyzes the temporal behavior of the factor.

Finally, mitigating high-latency transactions requires not only identifying the re-

sponsible factors, but also proposing actions that can mitigate high latency. HIP

produces scenarios with proposed changes to values of factors that will mitigate high-

latency causes. CDN operators can evaluate these scenarios using WISE.

We have implemented HIP using a combination of Sawzall logs processing lan-

guage [46] and R programming language [47]. We have used HIP to determine ways

to improve network-level and browser-level latency for Web search service of a large

provider (that we refer to as “Google” for anonymity). HIP determines that the fac-

tors causing high latency vary by region, but in most regions, fewer than three causes

cover nearly 90% of the high-latency cases. In the USA, 84% of high-latency cases oc-

cur due to server-side contribution, but they are mostly of coincidental nature. Large

network round trip time causes around 37% of high-latency cases: 2/3rd of these

are coincidental, but other 1/3rd is systemic, happening under high load conditions.

Around 19% of high-latency transactions are due to non-optimal frontend-backend

pairings due to misconfiguration or overload. In Australia and India, client band-

width and location of servers causes of more than 50% of high-latency cases. We find

many cases of systemic causes where clients in certain ASes consistently experience

poor performance1.

1Percentages of HLTs affected by each factors add up to more than 100% because an HLT may
occur due to one or more factors.

63

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Response Time (Normalized by 99th percentile of USA)

C
D

F
High Latency Threshold
For Australia

High Latency Threshold
For USA

Australia
USA

Figure 15: Example how-to questions. How to improve the response time for re-
quests above the 80th percentile for Australia or USA? How to make response time
for users in Australia similar to that for users in USA?

This chapter is organized as follows. Section 3.2 describes problem scope and

motivation. Section 3.3 presents an overview of HIP. It provides background onWISE,

shows how it relates to HIP, and states intuition for various steps in HIP. Section 3.4

presents algorithmic details of HIP and Section 3.5 presents the implementation of

HIP. Section 3.6 describes the CDN on which we evaluate HIP; we present the results

of this evaluation in Section 3.7 by applying the technique to Web requests from a

Web search service of a large provider. Section 3.8 discusses limitations and on going

work for HIP.

3.2 Problem Context and Scope

In this section, we use the performance distribution of Google’s Web search service for

clients in Australia and USA to illustrate example how-to questions that may arise.

64

We explain a typical CDN setup and the potential actions in this CDN that HIP can

suggest as part of answer to the how-to questions.

Example “How-to” Questions. Performance rankings amongWeb service providers

is often based on mean response time or response time for high percentiles. Orga-

nizations also use these metrics as basis for their performance goals. Unfortunately,

these metrics are sensitive to tail of the performance distribution. Figure 15 presents

the CDF of network response time (nrt) measure for Web Search requests from Aus-

tralia and USA for Google. We choose the 80% latency point as a cut-off for defining

high-latency events. To perform well on the performance metric for Australia, service

Google needs to address the following questions:

• Question# 1. How to reduce the cases of high-latency response time in Australia?

• Question# 2. How to make the response time for users in Australia comparable

to response time for users in the USA?

HIP’s goal is to answer questions of this nature. As we shall see shortly, HIP answers

how-to questions of this nature by first finding the factors that are unique about the

high-latency transactions. Specifically, HIP tries to find factors that can be mapped

to actions that a CDN operator can take to achieve the service performance goals. In

Figure 15, we define transactions with response time larger than the 80th percentile

as high-latency transactions. This threshold is in line with practice of using high

percentiles to classify undesirable cases of latency.

Content Distribution Networks. Most CDNs use a two-tier architecture, like in

Figure 16. The first tier is globally distributed front-end (FE) proxy servers that

provide caching, content assembly, request pipelining, backend load balancing. The

second tier comprises backend (BE) servers that implement the application logic, and

which might also be replicated and globally distributed. The FE and BE servers may

belong to a single administrative entity (e.g., Google [7]), or to different administrative

65

Figure 16: Typical CDN Architecture.

entities in case of commercial content providers, such as Akamai [2]. The network

path between the FE and BE servers may be over a public network or a private

(leased) network, or a LAN when the two are colocated in same data center.

CDNs typically use DNS redirection or URL-rewriting [6] to direct the users to

the appropriate FE and BE servers. This redirection may be based on the user’s prox-

imity, geography, availability, and relative server load. To improve the network path

between the users and FE servers, operators typically place FE servers in managed

hosting locations, or ISP points of presence, that are closer to the eventual users. In

some cases, FE is logically inside the CDN’s IP network and the CDN buys transit

or peers directly with ISPs to reach its users.

When a service provider or CDN operator wishes to improve service performance,

it can take several types of actions depending on the cause of the poor performance.

On the network side, it can deploy new frontends, new backends or parts of backend

services closer to the user, it can decide to peer or buy transit from ISPs. On the

content side, it can reduce content size or use different content encoding, or try to serve

more content from the caches. It can try to increase backend or network capacity.

The goal of HIP is to help operators decide which of these actions are more relevant

for specific populations of users.

66

Figure 17: HIP approach and relationship with WISE.

3.3 HIP Approach

To answer how-to questions for performance improvement, HIP first finds the factors

that are responsible for poor performance. HIP proposes fixing the values for these

factors as answer to how-to questions. Figure 17 presents an overview of the HIPap-

proach. To identify the causes HIP uses the causal dependency structure among

latency causing factors in the CDN, which is generated using WISE [54]. Once HIP

has identified the responsible factors, it recommends actions and produces what-if

scenarios that an operator can evaluate using WISE. In Section 3.3.1, we provide a

brief background on WISE. Section 3.3.2 summarizes the key steps in HIP approach

and where applicable, describes how they relate to WISE. Section 3.4 will describe

the specific algorithms in more detail.

3.3.1 WISE Background

WISE allows operators to specify scenarios with hypothetical or “what-if” values for

one or more factors for a subset of clients in the CDN. WISE then uses the causal

67

structure and conditional distributions expressed in the dataset to find the distribu-

tion of response time under the what-if values specified in the scenario. Figure 17(a)

summarizes the high-level steps in WISE: (1) identifying variables in the dataset that

affect response time; (2) learning the dependencies among the variables; and (3) es-

timating the response-time for the specified what-if scenario. WISE also includes a

scenario specification language to facilitate the network designers. In the following we

briefly describe these steps and refer the reader to WISE publication [54] for details.

Identifying Relevant Variables. The main input to WISE is a large dataset that

represents the distribution of variables under a variety of conditions. As all causal

variables raise probabilities of outcome [15, pp. 403-418] WISE retains the variables

in this dataset that are correlated with service response time.

The set of factors in the dataset limits the nature of what-if or how-to questions

that can be answered using that dataset. Therefore, choice of appropriate dataset as

input is crucial to both HIP and WISE. We rely on a domain expert to provide this

dataset.

Facilitating Scenario Specification. WISE includes an easy-to-use interface

based on WISE-Scenario Language (WSL). WSL provides a set of built-in operators

using which network designers can specify what-if scenario as relative changes to

the values of variables in existing deployment or as new values from scratch for an

arbitrary subset of clients.

To allow integration with WISE, HIP also uses WSL as interface with network

designers. The designer specifies the subset of transactions or users that she wishes to

analyze with HIP using WSL, and HIP produces the answers to the how-to questions

in form of configuration changes expressed in WSL, which can be evaluated using

WISE to estimate their effect.

Learning the Causal Structure in the Dataset. WISE learns the dependency

68

structure among the variables and represents it as a Causal Bayesian Network (CBN) [45].

A CBN is a Bayes’ Network—compact representation of conditional dependencies

among variables—but the edges in the network have causal interpretation. It is rep-

resented as a Directed Acyclic Graph (DAG) in which nodes represent the variables

and an edge from node xi to xj mean that change in xi “causes” a change in xj . CBN

DAG satisfies the Markov Property: each variable, when conditioned on its parents,

is independent of all other variables except its descendants. In an optimal DAG, no

smaller set of parents satisfies the Markov property for any node.

As an example, consider a dataset with five input variables (x1 . . . x5), target

variable y, and a CBN DAG in the Figure 3. If we change the value of variable x2,

then the distributions for variables x1 and x5 remains unchanged, but the distribution

of the descendants of x2 must change to maintain consistency with dependencies in

the system.

Evaluating what-if Scenario. WISE uses the DAG to evaluate what-if scenarios.

When the designer specifies a scenario with changes to a variable, WISE updates the

value of all the descendants of the variable that is changed in the scenario. Because

of Markov property, new value of the descendants depends only on the parents and

not other variables. WISE uses a nearest-neighbor search to estimate the new values

of affected variables.

3.3.2 HIP Overview

Figure 17(b) summarizes the HIP approach. Network designers use WSL to specify

the subset of clients for which they wish to answer how-to questions with HIP. HIP

then investigates causes of high-latency to determine actions that an help mitigate

high latency. For this, HIP (1) Clusters high-latency transactions based on similarity

of values of latency causing factors; (2) Finds variables responsible for high-latency in

each cluster; (3) Distinguishes systemic causes from coincidental ones and (4) Maps

69

causes to actions that can mitigate high-latency. In the following we provide a brief

overview and intuition for these steps. Section 3.4 discusses the algorithmic details

for these steps.

Using Causal DAG and Clustering on Causal Variables. The causal DAG

that WISE produces is useful for answering how-to questions. In Figure 3, if the

outcome variable (y) has an abnormal or undesirable value, then it must have been

caused by abnormal value one or more of the variables that are immediate parents

of target variable y in the DAG: i.e., variables x3, x4 or x5. We refer the immediate

parent variables of the response time variable as proximate causes, and any ancestors

of the proximate cause as high-level causes.

If the network designer can identify the variable(s) that caused high latency for

specific transactions then performance can be improved by fixing this causal variable.

Based on this intuition, HIP uses WISE to generate causal DAG for response time in

the CDN. Then for high-latency transactions, HIP analyzes the values of proximate

and high-level causes for abnormal values. Instead of finding the responsible cause one

transaction at a time, HIP performs this operation in batches for similar transactions.

This is discussed below.

Transactions that have high latency due to similar underlying causes should have

similar value of the causal variables, and require similar solutions for fixing the latency

issues. Identifying such groups can greatly facilitate the network designers because

they can address a group of transactions with one or few actions. HIP finds such group

by using clustering algorithms on similarity of causal variables among transactions.

Section 3.4.1 describes the algorithmic details for clustering.

Identifying Responsible Variable for Each Cluster. To isolate the variable

that is responsible for high latency, HIP compares the values of variables in each

cluster values for transactions with normal latency. If the values are significantly

70

different, then HIP considers this variable as the responsible variable. HIP relies on

the operator to specify subset of transactions which have normal latency and are

used as a reference for identifying responsible variables. Section 3.4.2 discusses this

in more details.

Distinguish Coincidental and Systemic Causes. An inadvertent side effect of

clustering transactions based on similarity of causes is that some clusters may be

formed by grouping of coincidental outlying values of variables. Such coincidental

outlying values are common in networks because of stochastic nature of queuing or

processing times. From diagnosis and planning perspective, the solutions for fixing

coincidental causes may be very different from solutions for fixing systemic ones.

HIP uses temporal properties of variable values to separate coincidental and systemic

causes. Section 3.4.3 presents details.

Mapping Responsible Variables to a what-if Scenario. HIP uses simple heuris-

tics to map the responsible variables to a what-if scenarios that propose fixed values

of causal variables as what-if values. HIP uses WSL to codify the what-if scenarios,

which operators can readily evaluate using WISE. Section 3.4.4 provides more details

of this mapping.

3.4 HIP System

This section describes the details of HIP system. Section 3.4.1 describes the rationale,

challenges and HIP’s algorithms for clustering high-latency transactions (HLTs). Sec-

tion 3.4.2 describes the techniques for finding causal factors that are responsible for

high-latency in each cluster of transactions. Section 3.4.3 describes the problem of

coincidental causes and the method that HIP uses to distinguish coincidental causes

from systemic causes. Section 3.4.4 describes how HIP maps the causes of high-

latency to configuration change recommendations that network designers can make

to mitigate HLTs.

71

3.4.1 Clustering High Latency Transactions

HIP uses clustering to find groups of HLTs that have similar causes. We first describe

the rationale for clustering (§ 3.4.1.1) and then the algorithmic details of clustering

algorithms that HIP uses (§ 3.4.1.2).

3.4.1.1 Rationale for Clustering

Clustering serves three purposes: (1) Facilitating operators by finding aggregation of

transactions whose latency can be mitigated with similar actions; (2) Finding high-

level causes, e.g., whether the causal factors are affecting transactions from particular

regions, or particular servers. This insight can be useful for the network operators;

(3) Efficiency in finding responsible causal factors. We elaborate on these in the

following.

Aggregation of transaction requiring similar actions. Clustering HLTs based

on similarity of values of causal variables produces groups of HLTs that have high

response time value due to similar reasons. As a result, it is likely that the latency of

these transactions can be fixed by similar actions. Further, partitioning HLTs in clus-

ters such that HLTs have high intra-cluster similarity and low inter-cluster similarity,

then we can minimize the number of groups, each with a potentially different cause,

and latency-mitigating solution. This is helpful for CDN operators because they wish

to be able to fix large number of high-latency cases with few changes to the network.

In Section 3.7.1 we show that HIP successfully produces clusters of transactions with

high intra-cluster and low inter-cluster similarity.

Finding High-Level Causes using Recursive Clustering In the causal DAG

(§ 3.3.2) the immediate parents of the response time variable are called proximate

causes and the ancestors of proximate causes represent the high-level causes, or the

factors that cause the values of proximate causes. For example, while network round-

trip time (rtt), size of response (sB), frontend-backend network round-trip (febe rtt),

72

backend server processing time, may be proximate causes that contribute directly to

transaction’s response time latency, these proximate causes are themselves caused by

higher-level factors such as location of users and servers, or frontend-backend pairings,

or type of content that the user requests during a Web transaction.

While knowing the proximate cause of HLTs is useful, the causal explanation is

attenuated and limited to proximate causes only. To make the inference more useful,

we wish to map the proximate causes to higher-level causes which can further identify

the specific subsets of transactions, geographical regions, servers, or other control

factors that need to be modified to reconfigure the network and mitigate HLTs. As

an example, if network rtt is primarily responsible for high-latency for a group of

transactions, then the CDN operator would be interested in finding out whether the

rtt is high for a particular subset of clients, such as from an AS, or /24 block, or those

going to a particular server.

To find high-level causes, HIP clusters the HLTs that are already clustered based

on proximate causes, using similarity on parents of proximate causes, and repeats

the process recursively until it reaches variables that easily identify action. Together

with information about proximate causes and the extent to which they have abnormal

values, HIP is able to produce narrowed down and specific configuration scenarios that

can mitigate HLTs.

Note also that if we cluster only on high-level causes, e.g., AS number of the

clients, then we can only infer an incomplete causal explanation: we might be able

to say that a particular AS has many HLTs. Using hierarchical clustering produces

more descriptive explanations, e.g., an AS has high rtt which results in HLTs.

Efficiency in finding responsible causal factors. HIP isolates the factors re-

sponsible for high-latency by comparing the values of causal variables for HLTs with

values of causal variables for normal latency transactions (§ 3.4.2). Because HIP

clusters HLTs with similar values of causal variables, all the transactions in a cluster

73

must have same responsible cause(s). Therefore, instead of finding responsible causal

factors for individual HLTs, HIP can perform the comparisons with normal transac-

tions at a group level, and find responsible causal factors for the whole group of HLTs

with one comparison; this makes identifying responsible causal factors very efficient.

3.4.1.2 Clustering Algorithms

In this section we describe clustering algorithms that HIP uses to group HLTs with

similar causes. We first describe the function for determining similarity; this is chal-

lenging because the factors are of mixed type and their distributions sometimes may

have long tails, making them difficult to cluster. We then describe the clustering

algorithm and how HIP finds the appropriate number of partitions that HLTs should

be divided in to. Finally, because HIP uses recursive clustering to find out high-level

causes, but recursive partitioning of data can produce partitions that have too few

samples to make a statistically valid inference, we discuss how HIP ensures that there

is enough data points (transactions) in each partition for at each stage of clustering.

Similarity Function. Latency-causing variables have mixed types (binary, continu-

ous, ordinal, etc), different units and varied, and some times long-tailed distributions.

This makes it challenging to combine these variables in a single similarity function.

Following describes how HIP overcomes these challenges.

Long-tailed distributions and different units. Some latency-causing variables, e.g.,

network round-trip time (rtt), may have long-tailed distributions. Samples in tail

of the distribution can have large dissimilarity if computed on linear scale, making

them hard to cluster. Additionally, variables may have different units and scale, for

example, rtt is in units of time, but size of response from the server is in Bytes.

Without careful choice of similarity function, values of one variable may overshadow

other variables, making it difficult to assess similarity.

To overcome long-tailed distributions problem, HIP standardizes the logarithmic

74

values of continuous or ordinal variables with long tails. ith feature of jth sample, xij

in the dataset becomes:

x̂ij =
log(xij)−mean(log(x∗j))

sd(log(x∗j))
(1)

HIP standardizes continuous and ordinal variables that do not have long tails using

a linear scale instead of logarithmic scale. Standardization also helps with problems

of varying units and scales as similarity in on standardized values is somewhat scale-

invariant.

Mixed data types. Some of the variables that affect response time do not have numeric

values, for example the identifiers for servers may have nominal values. Variables

such as the number of retransmits during a transaction, may have ordinal values.

HIP uses Gower Similarity Coefficient [29] as similarity between samples of mixed

data types. Gower Coefficient defines similarity of continuous or ordinal variables

as: sijk = 1 − |xik−xjk |

rk
, where rk is the range (max - min) of the kth variable. For

binary and nominal variables, sijk is 1 if the values of xik and xjk match, and 0

otherwise. Thus similarity on all dimensions is in interval [0, 1]. Similarity between

two transactions i and j, sij , is sum similarity on all the factors. We can convert

similarity coefficient into dissimilarity as N − sij , where N is the number of factors

on which clustering is performed.

Clustering Algorithm. HIP uses Partitioning Around Medoids (pam), a common

implementation of k-medoid clustering. pam is more robust to noise than k-means,

although pam’s computational complexity is somewhat higher. Spectral clustering

algorithms, such as, Eigen Cluster [13], are more robust than pam, but they are com-

putationally much more expensive, making them unsuitable for HIP which clusters

repeatedly for each scenario it analyzes.

pam is sensitive to choice of k, the number of clusters. HIP uses Gap statistic [24,

75

pp. 519] to determine optimal k. This heuristic estimates Gap statistic for increasing

values of k, until the within cluster dispersal flattens. HIP finds optimal numbers of

clusters separately for each dataset that it clusters.

Scoring To Increase Samples in Clusters. To manage the computational over-

head of clustering, HIP uses a small-sized samples (typically comprising few thousand

transactions) to perform first stage clustering. The number of transaction samples

in each cluster after partitioning is typically only 5-10% of the size of the original

sample, comprising only few hundred transactions. Performing recursive clustering

on such small datasets can lead to erroneous and noisy inference. HIP uses scoring

to increase the size of samples in a cluster. HIP assigns a transaction i in the dataset

to a cluster Ck, whose medoid is mk is most similar to transaction xi, while ensuring

that similarity of xi with medoid of cluster k is greater than the average similarity

(Sk) of the transactions in the cluster with the its medoid.

Ci = argmax
k=1...K

Gower(xi,mk)>Sk

Gower(xi, mk) (2)

HIP assigns transactions to clusters until each of the K clusters have a certain min-

imum number of samples. We use min(2000, 100 x k) as the minimum threshold for

number of transactions that we need in a dataset before we proceed with partitioning

it in k clusters. These thresholds are driven by limitations of our implementation

(§ 3.5). HIP uses scoring for second and higher stage clustering, as well as for distin-

guishing coincidental and systemic causes (§ 3.4.3).

3.4.2 Identifying Responsible Causal Variables

Clustering produces groups of transactions that have similar values of causal factors

for latency, but does not provide information about which of the factors are causing

higher latency. To address this, HIP compares the average value of each of the fac-

tors in a cluster with the value of causal variables for transactions that have normal

76

latency. HIP uses reference distribution to obtain transactions that have normal la-

tency. For example in cases presented in Figure 15, head of the latency distribution

for Australia, or a latency distribution of another region, USA can serve as the ref-

erence distribution. The causal variables for transactions in a cluster whose value is

abnormal compared to values in the reference distribution, are considered responsible

for high latency. The intuition is based on exclusion of other potential factors as

causes of high latency. If the values of all the other variables is approximately same

as normal value, those variables could not be responsible for higher latency.

HIP uses a simple thresholding based-heuristic to determine whether a variable

has abnormal value in a cluster: variable xi is responsible factor in cluster k if

mean(xk
i) ≥ D−1

i (uupper). Here mean(xk
i) is the average value of variable xi for

transactions in cluster k, and D−1
i (u) denote the uth percentile of variable i from

the reference distribution. If xi is negatively correlated with response time (e.g.,

client bandwidth is often negatively correlated with response time) then we test for

mean(xk
i) ≤ D−1

i (ulower). uupper and ulower are tunable percentile thresholds for de-

ciding positively and negatively correlated abnormal variables, respectively. We use

80% and 20% as values for these thresholds respectively in our implementation to

align them roughly with the high-latency threshold.

3.4.3 Distinguishing Coincidental & Systemic Causes

Many factors that contribute to latency are stochastic, which means that high-latency

response time for a transaction could be because of systemic problem in a contributing

factor or simply an outlier value of one of the contributing factor that coincides with

the particular transaction.

Distinguishing the two types of causes is important because the actions needed to

mitigate the causes might be different depending on the type. If a responsible causal

variable is coincidental, then CDN operator might need to focus on reducing the

77

0 20 40 60 80 100 120

2
0

4
0

6
0

8
0

1
0

0
1

2
0

1
4

0

Timestamp (index)

N
e

tw
o

rk
 R

o
u

n
d

 T
ri

p
 T

im
e

 (
m

s
)

High Latency
Threshold

mean(C)

mean(B)

mean(B*)

mean(C*)

A. Systemic − low ts variance
B. Systemic − high ts variance
C. Coincidental − high ts variance

Figure 18: Timestamp behavior for systemic and coincidental causes. Network RTT
is simulated.

common-case variance of the variable. For example, if backend server time be time is

deemed a coincidental cause, then CDN operator might consider increasing capacity,

or making algorithmic changes in the server logic that limits the maximum delays

in responses from the servers. If responsible variable is systemic, such as in case of

clients for whom rtt is consistently high, then depending on the nature of the cause,

the CDN operator may need to make configuration changes, such as mapping users to

different server, or adding a new peering connection, or deploying a new datacenter.

Distinguishing Coincidental and Systemic Causes. Unfortunately, clustering

merely on similarity of values of causal factors may groups transactions with coinci-

dental and systemic causes together. To distinguish the two types, when HIP detects

a variable as responsible, it considers three cases.

A. Variable is a systemic cause but it occurs in only at certain periods of time,

78

such as, under high load.

B. Variable is a systemic cause that occurs all the time.

C. Variable is a coincidental cause that occurs occasionally due to inherent vari-

ability of stochastic process.

Figure 18 illustrates these cases with a simplified example. Each point on the figure

represents rtt variable for a transaction. The transactions above the high-latency

threshold (HLT) are above the marked line and are grouped in a cluster, though they

may belong to different cases. Type A HLTs have high latency because rtt is high for

certain periods (timestamp intervals 20–40 and 70–90). Type B transactions have a

consistently large value of rtt. Type C transactions have an occasional large value of

rtt. The horizontal lines labeled mean(X) mark the mean rtt for all transactions of

type X, and lines labeled mean(B*) and mean(C*) mark the mean rtt for HLTs of

type B and C respectively. We do not show mean(A) or mean(A*) to avoid clutter

and because HIP does not rely on these for identifying type-A HLTs.

The three cases of transactions have a unique combination of variance of their

timestamp and differences of mean values of rtt for HLTs and normal latency trans-

actions. Timestamps for HLTs in case A are confined to certain periods, resulting in

low variance on timestamp for high-transaction cases. Timestamps for cases B and

C, both have high variance on timestamp. However, mean(B*)-mean(B) is small, but

mean(C*)-mean(C) is large. The intuition behind for this is that if an variable is a

coincidental cause, only abnormal values of that variable will occur in the cluster,

and bulk of the distribution will be outside the cluster, causing the overall mean

to be significantly different than the mean in the clusters. HIP uses these observa-

tions to distinguish between the three cases. HIP distinguishes between systemic and

coincidental causes based on these observations.

The mean of responsible variable in clustered transactions only represents mean(X*).

To find mean(X), HIP has to find other transactions that are similar to the ones in

79

the cluster, but for whom the responsible causal variable may have normal value. For

this, HIP uses scoring to find transactions from the dataset of the head of the distri-

bution that are similar to the medoid of the current cluster on the value of all the

variables, ignoring the value of the responsible variable. These transactions represent

the transactions that are similar to the HLTs in the cluster except for the value of the

responsible cause, but not necessarily have high latency: referring to Figure 18, these

transactions may be both above or below the high-latency threshold. Once sufficient

number of such transactions are found, HIP computes mean(X) as the mean of value

of responsible variable for the newly found transactions, and then compares it with

the mean(X*) to distinguish cases B and C.

3.4.4 Mapping Causes to Remedies

HIP uses a simple heuristics to map identified causes to a what-if scenario representing

actions that may remedy HLTs. After performing recursive clustering and grouping

HLTs based on both proximate and high-level causes, HIP produces a what-if sce-

nario with new values of responsible causal variables for the group of HLTs. HIP

simply proposes the average values of the responsible proximate cause in the refer-

ence distribution as the new values. HIP scenario using WSL so that it can be readily

evaluated using WISE. Presently, HIP only produces scenarios for systemic causes.

For coincidental causes, it generates a report explaining the factor.

The intuition behind the heuristic for mapping causes to remedies is simple: if a

factor caused HLTs, then setting its value to a value for normal latency transactions

should reduce the latency for the HLTs in question, bringing it in line with the latency

for normal transactions. However, this approach is naive in many ways, such as, it

does not consider whether an action is feasible, or whether changing one causal factor

may inadvertently change other factors, or that there may be other ways besides fixing

the identified cause for mitigating latency. We discuss these limitations in Section 3.8.

80

We are working on alleviate these limitations in HIP.

3.5 Implementation

We have implemented HIP using a combination of Sawzall logs processing language [46]

and R programming language [47]. We use Sawzall to collate datasets that we obtain

from FE and BE servers in the CDN, and also use Sawzall to obtain datasets that

represent high-latency transactions and the reference distributions that HIP user is

interested in analyzing. In our current implementation, all the remaining processing

is done using R. We have chosen R because it has a wealth of libraries for statistical

inference and allows rapid prototyping. We have also implemented a prototype for

WISE using R that we use to evaluate the configuration changes that HIP suggests as

part of answering how-to questions (§ 3.7.4). We have also implemented an simplified

version of WISE [54] using R to estimate the effect of actions that HIP produces.

While R allows rapid prototyping, the implementation is not scalable, and puts

severe restrictions on the size of datasets that HIP can cluster: clustering 10,000

transactions exhausted 2GB memory on our desktops. Our current implementation

uses scoring (cf. § 3.4.1.2 to work around this problem. We are working on porting

our R-based implementation to Map Reduce [16] framework.

3.6 Evaluation Environment

We have used HIP to evaluate causes of high-latency transactions (HLTs) for Google’s

Web search service. Google’s Web search service CDN architecture is similar to CDN

in figure 16, comprising globally distributed frontend(FE) servers that receive user’s

query and forward it to search backend (BE) clusters. In the following we describe the

Web search transaction and how we measure its response time (§ 3.6.1). We describe

the dataset from Google’s CDN and causal DAG obtained from this dataset using

WISE (§ 3.6.2). We have used HIP to answer how-to questions for mitigating HLTs

of Web search service in three countries: USA, Australia and India. In Section 3.6.3

81

Table 4: Variables related to nrt in the dataset from Google’s CDN. Variable Types:
Binary (B), Continuous (C), Nominal (N), Ordinal (O).

Variable Type Description

ts, tod C A timestamp of instance of arrival of the request at the FE. All FE
use same time zone. Hourly and second-level time-of-day (tod) is
derived from the timestamp.

srP O Number of packets retransmitted by the server to the client, either
due to loss, reordering, or timeouts at the server.

sB C Size in bytes of the encoded response sent by the FE server.
region N One of following: user’s IP address, /16, /24 network prefixes, AS

number, or geographical mapping to state and country.
fe, be N Identifiers for the FE data center at which the request was received

and the BE data center that served the request.
rtt C Round-trip time between the user and FE estimated from the initial

TCP three-way handshake.
bw C An estimate of access network bandwidth for the /24 IP address

block for the user’s IP address. It is estimated as the 90% TCP
throughput for unthrottled responses greater than 4KB sent from
FE to the IP addresses in /24 prefix.

febe rtt C The network level round-trip time between the frontend and the
backend clusters.

be time C Time taken by BE to process the request forwarded by FE.
nrt C Network-level response time for the transaction as seen by the FE

(see § 3.6.1).

we describe the CDN and user’s access network properties in these countries, and

demonstrate that they present a suitable environment to evaluate HIP. In Section 3.7

we present the results for applying HIP to answer how-to questions for these countries.

3.6.1 The Web Search Transaction

In this section we first describe the messages and events during a Web search trans-

action. We then describe the latency metrics and factors that contribute to latency.

Messages and events in the transaction. A Web search transaction comprises

a user sending an HTTP request containing a query to Google, and Google’s servers

responding with results using an HTTP response. Figure 20 shows the messages

exchanged during a Web search transaction with Google. When a user issues a Web

search request to Google, Google’s DNS-based request redirection system redirects

82

the user’s queries to one of the FE in the CDN. The FE process forwards the queries

to the BE servers, which generate dynamic content based on the query. The FE caches

static portions of typical reply, and starts transmitting that part to the requesting

user as it waits for reply from the BE. Once the BE replies, the dynamic content is also

transmitted to the user. The FE servers may or may not be collocated in the same

data center with the BE servers. If they are collocated, they can be considered to be

on the same local area network and the round-trip latency between them (febe rtt)

is only a few milliseconds. Otherwise, the connectivity between the FE and the BE

is typically on a well-provisioned connection on the public Internet. In this case the

latency between the FE and BE can be several hundred milliseconds.

Transaction latency. Wemeasure the latency of Web search transaction as network-

level response time (nrt) and browser-level response time (brt). In this paper we focus

on answering how-to questions based on nrt alone. a transaction is the time between

the instance when the user issues the HTTP request and the instance when the last

byte of the response is received by the users. We estimate nrt from the server end

as the sum of the round-trip time (rtt) estimate obtained from the TCP three-way

handshake, and the time between the instance when the request is received at the FE

and when the last byte of the response is sent by the FE to user. Key contributors

to nrt are: (i) the transfer latency of the request from the user to the FE, (ii) the

transfer latency of request to the BE and the transfer latency of sending the response

from the BE to the FE, (iii) processing time at the BE, (iv) TCP transfer latency

of the response from the FE to the client; and (v) any latency induced by loss and

retransmission of TCP segments. A high-latency Web search transaction can occur

due to unusual contribution from one or more of these factors.

83

3.6.2 Dataset & Causal Dependencies

We use data from an existing network monitoring infrastructure in Google’s CDN. FE

and BE servers export reports with values for many performance-related variables.

FE and BE servers add unique identifiers to data exported for each transaction. We

use this identifier to collate the records in dataset obtained from FE and BE servers.

Table 4 describes the features in the dataset that had positive or negative correlation,

and thus potential causal relationship with network-level response time.

Causal dependencies among latency-causing factorsWe use a dataset collected

in July 2009, comprising 50 million transactions from about 10,000 ASes, and esti-

mate the causal structure in this dataset using WISE. Figure 21 presents this causal

structure using a DAG.

This causal dependency structure has several features that can aid answering how-

to questions with HIP. First, Tariq et al. [54, 53] have used a similar dataset and DAG

to predict response time for Web transactions with high accuracy. Therefore, we be-

lieve that this DAG is complete and accurate: it captures the necessary dependencies

so that for every high-latency transaction, the latency should be explainable by values

of one of the proximate causes of nrt in the DAG.

Second, the causes are easily mappable to actions. Poor rtt may point to need

for a new FE closer to the clients, or a new peering connection if there is already a

datacenter that is near the affected clients. Too many retransmitted packets (srP)

may point to need for tuning server parameters or increasing network capacity to the

clients. Large be time may indicate need to reduce server response time or increasing

capacity. Large content size (sB) may point to need for limiting the size of response,

such as by using compression or composing smaller Web pages.

Third, the proximate causes or high-level causes of brt (parents of proximate

causes) hint at the place in network where the configuration change needs to happen to

84

Table 5: Average CDN and user’s access network characteristics in USA, Australia
and India. For confidentiality, values of rtt and febe rtt and nrt are normalized by
means of corresponding factors in USA.
Country Local FE Local BE bw (kb/s) rtt febe rtt be time nrt

USA 3 3 5900 1.0 1.0 1.0 1.0
Australia 3 5 4300 2.2 7.8 0.91 1.56
India 3 5 700 3.4 6.5 0.94 1.73

mitigate high-latency transactions: These features identify infrastructure components

such as frontend (fe) and backend (be) servers, locations of clients (region), as well as

the properties of content, e.g., size of the content (sB).

3.6.3 CDN and Access Network Environment

We use HIP to determine causes for HLTs from three countries: USA, Australia, and

India. We choose these countries because each is different from the other in terms of

extent of CDN infrastructure that Google has in that country, as well as in terms of

the access network conditions for users. This allows us to evaluate HIP under a wide

variety of real network conditions. Table 5 summarizes the characteristics of CDN

and user’s access network in these countries. USA is very well provisioned and has

many FE that are close to the users, resulting in smaller rtt. Many FE servers are

collocated with BE servers, resulting in smaller febe rtt. Access networks for users are

also well provisioned and client’s network bandwidth is high. Australia does not have

a BE in the country, but users have good access network conditions. India also does

not have BE servers locally and the access network conditions are generally worse of

all three countries. Average nrt for transactions in Australia and India is 1.5 times

and 1.7 times the average nrt in the USA, respectively.

3.7 Evaluating HIP on a Real CDN

In this section, we use HIP to answer how-to questions about mitigating HLTs that

we posed in Section 3.2. In Section 3.7.1 we present the clustering of HLTs and show

85

Table 6: Highlights of results in Section 3.7.

.

Summary of causes (§ 3.7.3, § 3.7.2, Table 7)
be time is dominant cause of HLTs in USA and Australia.
rtt and bw are dominant causes of HLTs for India and Australia.
Non-optimal FE-BE pairings cause 19% of HLTs in USA.
Large response size is causes 13% of HLTs.
In Australia and India, large rtt and febe rtt inhibit response time

latency comparable to USA.
Examples of systemic causes (§ 3.7.2.2)
AS-AUS2 is a mobile wireless network.
An FE on USA east coast using a BE on the west coast.

Examples of coincidental causes (§ 3.7.2.2)
High be time is alway coincidental.
Many ASes in USA have HLT due to coincidental large rtt.

Example of mitigated high-latency transactions (§ 3.7.4)
Network response time for clients decreased by 11% after fixing the FE-BE pairing.

that HIP produces clusters of transactions with high similarity. In Section 3.7.2 we

address how to mitigate HLTs in Australia, India and the USA. In Section 3.7.3, we

explore what causes need addressing to make response time in Australia and India

comparable to the response time in the USA. Finally, in Section 3.7.4, we demonstrate

that the actions that HIP proposes can mitigate HLTs. Table 6 presents highlights

of results in this section

3.7.1 Clustering High-latency Transactions

Figure 19 shows results for clustering HLTs from the three countries based on sim-

ilarity of proximate causes of nrt variable, shown Figure 21. In each case, we use

the 80th percentile of nrt to classify a transaction as a HLT. The optimal number of

clusters for USA, Australia, and India are 28, 24 and, 35, respectively. Each panel

represents a sample of HLTs. These transactions are ordered based on their cluster

affiliation, and clusters are ordered by their size. Point (i, j) on the graph presents a

color encoding of dissimilarity between transaction i and j. Darker shades represent

low dissimilarity and lighter shades represent high dissimilarity.

86

HIP clusters the transactions so that intra-cluster HLT dissimilarity is minimized

and inter-cluster HLT dissimilarity is maximized. This is shown with strings of dark

blue clusters along the diagonal in each panel in Figure 19. Recall that each factor

used in the similarity function contributes a maximum dissimilarity of 1 unit (§ 3.4.1).

Because nrt has six parents (Figure 21), the worse case dissimilarity between a pair

of transactions can be 6. Average intra-cluster HLT dissimilarity less than 0.2 units

in nearly all the clusters for all three countries. Average dissimilarity between HLTs

in different clusters is about 3 units.

To further confirm the similarity, we separately test the variance of values of

causal variables for HLTs within each cluster, and find that variance is almost always

small for all the factors. Producing clusters with highly similar HLTs is important for

identifying groups of transactions whose latency can be mitigated by similar actions.

HIP succeeds in this goal.

A secondary goal in HIP is to minimize the number of groups of transactions which

require separate actions. For this, HIP must produce clusters that are well-separated:

i.e., inter-cluster dissimilarity is high. In Figure 19 some boxes of darker shade that

are not along the diagonal imply that transactions in two separate clusters also have

low dissimilarity. This occurs because in some cases clustering fails to maximize inter-

cluster dissimilarity, however few such cases do no not pose a problem in HIP because

minimizing the number of clusters is only a secondary goal.

HIP also produces clusters with low intra-cluster and high inter-cluster dissimi-

larity for higher-stage clustering. The problem of occasional low inter-cluster dissim-

ilarity that we observe in first stage clustering virtually disappears for higher stage

clustering because there are fewer features that are parents of responsible causal vari-

ables, and in many cases, the features have nominal values with limited range, making

it easier to produce well-separated clusters.

87

3.7.2 How to mitigate HLTs in Australia, India, and the USA?

In this section, we use HIP find causes of HLTs in Australia, India and the USA.

We cluster the HLTs from each country as described in § 3.7.1. To identify the

causal variables responsible for high latency, we use entire distribution of nrt for each

country as reference distribution. We present summary of most important latency-

causing factors (§ 3.7.2.1). We then provide a breakdown of HLTs by cause, and

distinguish systemic causes from coincidental ones, and provide high-level groups of

HLTs (§ 3.7.2.2).

3.7.2.1 Summary of HLT causes

HIP identifies responsible causal factors for each HLT cluster and produces remedies

that can mitigate latency. Due to limited space, instead of presenting cause for

each cluster, we summarize variables responsible for HLTs in each country: For each

variable, we aggregate HLTs from all clusters in a country in which that variable

is responsible for contributing to high latency, and present aggregate statistic in

Table 7(a). We present the percentage of HLTs affected by the causal variable, as well

as the mean and inter-quartile range of the causal variable for the HLTs in the clusters

as well as for the reference distribution. This shows that value of causal variable for

the HLTs was indeed undesirable compared to its value for normal transactions. For

each country, we present the causal variable in order of the percentage of HLTs

that the variable contributes to in the country. A transaction may be affected by

multiple therefore the percentage of affected HLTs may not add up to 100%. We now

summarize the most important causes.

Backend server processing time (be time) is the dominant cause for high latency

in the USA: 84% of all HLTs are caused by large be time, almost twice (1.90) as

much as the be time for transactions with normal latency in the USA. be time also

contributes to 70% and 36% of HLTs and in Australia and India. The distribution

88

of be time is nearly identical in the three countries (cf. Table 5). The difference in

the contribution is because the threshold for HLT is different in the three countries.

In the USA, other factors already have acceptable values, so be time stands out as a

cause. In Australia and India, network-side problems overshadow the role of be time.

Network round-trip time (rtt) is the dominant contributor for high latency in

India, affecting 73% of HLTs there. rtt affects 37% and 47% of HLTs in the USA

and Australia. In the USA, average rtt less than half of that in Australia or India

(cf. Table 5), however there is significant temporal and regional variation within the

country which contributes HLTs. India and Australia are also large countries, but

Google does not have as many FE servers in those countries as it has in the USA,

which causes generally higher rtt.

In Australia, HIP finds that the HLTs caused by large rtt are dominated by only

4 ASes; they account for 71% of such HLTs. One of the AS is served from FE in

Australia, but is a mobile 3G service provider. Two of the ASes have persistently

high rtt because they are served from FE in the USA. The fourth AS is served from

FE in Australia, but some transactions coincide with high rtt.

In India, poor network conditions and low access network bandwidth results in

large variance in rtt that then contributes to HLTs. We also found some cases of non-

optimal mapping of clients to FE in India, which caused systemic problems. Poor rtt

combined with low bandwidth also causes packet loss, as well as spurious and loss

recovery retransmits of packets, which further aggravates nrt. HIP identifies srP as

one of the significant contributing factors in Australia and India.

Frontend-backend round-trip time (febe rtt) is generally low in the USA, but

HIP identifies cases of misconfiguration or overload that result in FE pairing with

far away BE for some transactions. febe rtt affects 19% of HLTs in USA. It is not a

HLT-causing factor in India or Australia because febe rtt is also for normal latency

89

transactions in those countries.

Size of the server response HIP identifies (sB) as a contributing cause for 13%–

18% of HLTs in all three countries. We believe that it is driven by the user’s choice of

requesting many results for a search query. Such cases could be mitigated by limiting

the size of the response or compressing the response before sending it to the user.

3.7.2.2 Distinguishing systemic and coincidental causes

In this section, we present a breakdown of causes of HLTs by high-level causes and

analyze whether the causes are systemic or coincidental.

Backend server processing time (be time). HIP found no systemic pattern

for be time: transactions from all the backend servers are almost equally likely to

experience high latency, and we also did not find significant time-of-day effects either.

We believe it is coincidental: the variance in the backend processing time is large and

transactions coinciding with large processing times end up as HLTs.

Network round-trip time (rtt). In Australia, 70% of rtt-caused HLTs come from

only four ASes; we refer to these as AS-AUS1, AS-AUS2, AS-AUS3 and AS-AUS4

for confidentiality reasons. These ASes contribute 26%, 23%, 13%, and 9% of HLTs,

respectively. HIP found that almost 90% of transactions from AS-AUS1 and AS-

AUS3 are being served from an FE on the west coast of the USA, resulting in very

large rtt. rtt is a systemic cause for these ASes.

HIP found that although transactions from AS-AUS2 are served from a FE in

Australia, almost all its transactions are HLTs, and they have a systemically high rtt;

whois reveals that AS-AUS2 is for Hutchison Australia’s 3G service. Cellular 3G is

known to have high latency on the wireless hop, which may explain the high latency

as a systemic cause.

AS-AUS4 uses the FE in Australia, but 14% of its transactions as HLT. The

variance of hour-of-day variable for both normal transactions and HLTs is identical

90

and high. HIP also did not find any subgroups of low-bandwidth clients among the

HLTs. As a result, rtt is a coincidental cause for HLTs from AS-AUS4.

Clusters of HLTs in USA for which HIP determined rtt as responsible cause include

transactions from 252 ASes. We describe results for most popular two. Lets refer to

these as AS-USA1, AS-USA2. These ASes contributed 13% and 10% of the HLTs,

respectively. For AS-USA1, 65% of HLTs are served at the primary FE, and all have

high latency due to coincidental rtt. For the two secondary FEs, which served 21%

of the HLTs from AS-USA1, rtt is Type A Systemic (ref § 3.4.3): HIP observed very

low variance on hour-of-day variable. rtt between AS-USA1 and these FE is normal

outside of hours when we observed high latency. For AS-USA2, all HLTs caused by

rtt are coincidental.

Nearly two-thirds of HLTs in India for which rtt is responsible originate in one

AS (AS-IND1). AS-IND1 is primarily served from an FE in India, but about 2%

of AS-IND1 transactions are served from FE in Europe and Asia Pacific. For these

transactions, rtt is a systemic and persistent cause, and they account for roughly 7%

of HLTs from AS-IND1 that are caused by rtt. Unfortunately, we were not able to

find a cause for why some these transactions are not served from FE in India. In

the HLTs served in India, the average HIP shows that rtt is nearly three-folds the

overall average for transactions from AS-IND1 served in India. There is only a slight

dependency of rtt on hour-of-day, implying that these are either coincidental or there

is a hidden systemic cause inside AS-IND1. HIP found that these HLTs cluster based

on client access bandwidth bw, but found no explanation based on geographical or

routed-prefix affiliation of clients who originated the transactions. Another 15% of

rtt-caused HLTs originate in an AS that we refer to as AS-IND2. This AS is primarily

served from a FE in Asia Pacific. Average rtt for HLTs from AS-IND2 is nearly twice

the average for normal transactions. Like in the case of AS-IND1, although HIP is

not able to find a further grouping based on region or server association that would

91

explain large rtt, it finds that HLTs cluster based on access network bandwidth (bw).

HIP declares rtt as systemic but high variance (Type B - cf. § 3.4.3) cause in both

cases.

Frontend-backend round-trip time (febe rtt). High-latency transactions caused

by febe rtt in USA are served from 8 different FE servers. We present details for top

2, which account for 72% of the HLTs caused by febe rtt in the USA. About 40% of

the USA traffic that the first of these FE served, went to its secondary backend for

which the febe rtt is twice that for its primary backend. All the transactions served

from the secondary backend are HLTs which HIP detects successfully. Variance of the

hour-of-day variable for the HLTs affected by this FE is low, (only 6.47), suggesting

that Google uses the backend at only certain periods of time, perhaps for load reasons.

The second most popular FE also uses the same BE using a similar pattern. febe rtt

is thus another Type A systemic cause.

We find that the causes that HIP identifies generally agree with intuition, given

the CDN and access network characteristics in the three countries (cf. Table 5). HIP

quantifies the causes and aggregates HLTs so that they can be fixed using few actions.

HIP also identifies additional causes that are not immediately clear from high-level

summarization of characteristics in those countries.

3.7.3 How to make latency comparable to the USA?

We use HIP to find the causal factors that make the response-time latency for trans-

actions in Australia and India different from latency in the USA. To do so, we set the

mean nrt in the USA as the high-latency threshold for transactions in Australia and

India. This corresponds to the 30th percentile and 39th percentile of latency for Aus-

tralia and India respectively. We then cluster the transactions with response time

above this threshold (HLTs) using HIP. The optimal number of clusters for these

HLTs is 32 and 41 respectively. We then use the latency distribution in the USA as

92

the reference distribution and identify causes for each cluster of HLTs. Table 7(b)

presents the mean and inter-quartile range for the factors that contribute to most

HLT clusters. Third column in the table lists the total percentage of HLTs that are

affected by the causal factor.

HIP identifies that febe rtt and rtt are primarily responsible for inhibiting perfor-

mance in Australia and India. Almost all the transactions in India and Australia

with response time greater than the average in the USA have febe rtt and rtt that is

larger than the 80% in the USA. This is somewhat expected because neither country

has a backend datacenter and the density of FE deployments in both countries is far

less than USA as evidenced by higher average rtt (cf. Table 5). Not only does HIP

identify the factors that capture this (somewhat obvious) reality, it also quantifies

the differences compared to average transaction in the USA. In case of India, HIP

also identifies that bw is an inhibiting factor, implying that even with improvement

of CDN infrastructure may not achieve USA-like performance.

Also note that be time does not appear as an inhibiting cause for making latency

similar to that in the USA, although it is an important contributor for HLTs in the

respective countries (see Table 7(a) and § 3.7.2.1). This is because the goal here is

to make latency similar to that in the USA. HIP identifies that be time is not an

inhibiting factor because its distribution is nearly identical in the USA, India and

Australia.

3.7.4 Evaluating Answers to How-to Questions

In Section 3.7.2.1 we showed that HIP finds two cases where an FE in USA is using

a BE server which is situated far away for about 15% of its traffic, although a local,

close-by BE is available. HIP identifies febe rtt as a cause and proposes an action

with new mapping of culprit FE to a nearby BE. We evaluate this configuration

using our implementation of WISE. Figure 22 presents the current and estimated

93

new distribution of nrt for all the clients of this FE, including those that are already

served from optimal BE servers.. Mean latency for clients is reduced by and mean

latency for Australia is reduced by 11% by just one action.

3.8 Discussion

In this section we discuss various limitations of HIP. Most of these relate to mapping

causes to remedies.

Suggesting alternate causes and explicit remedies. Currently HIP does not

provide explicit remedies. For example, HIP may suggest that the operator improve

performance by reducing RTT for a subset of clients, but it does not make explicit,

specific suggestions about how to reduce the RTT for those clients. Ideally, HIP

might provide additional information about how to reduce RTT, such as increasing

peering at various geographic locations. A new peering or transit relationship can

affect BGP-level routing for many ASes, and could provide valuable information to the

operator about how additional peering could affect overall response-time distributions.

Unfortunately, specifying a scenario with correct value of network round-trip time

(RTT) distribution for evaluating a potential peering or data center deployment has

proven to be difficult, but existing tools such as WhyHigh [32] could complement HIP

by providing such values to HIP’s scenario evaluator.

Sometimes causes are not fixable. HIP assumes whatever is causing high latency

for clients is fixable; unfortunately, however, this might not always be the case. For

example, if transaction times are high due to high round-trip times, this underlying

cause may be inherently fixable by adding additional peering, deploying new front-

ends in data centers, etc. On the other hand, if a group of clients is seeing slow

response times as a result of limited access bandwidth at the client, the CDN operator

has very little control over direct fixes; in this case—and in general—the operator

might to evaluate multiple possible remedy to a particular cause of high latency, in

94

case the first remedy is either not possible or otherwise undesirable. For example, for

cases where high latency is caused by low bandwidth or large rtt, it may be possible

to mitigate HLTs by sending smaller responses. Currently, HIP does not suggest such

alternate fixes, but we are working on extending HIP to provide this function.

Fixing one cause may inadvertently affect another cause. It is possible that

a cause is fixable, but fixing this cause inadvertently changes the value of another

latency-cause factor. Presently, HIP does not recognize such dependencies. Unfor-

tunately, sometimes, these dependencies can undo the improvement in latency that

may be achieved by fixing the cause that HIP had identified. As an example, consider

the case of AS-AUS1 in Australia. It is being served from an FE in USA although

there is an FE in Australia. However, the FE in USA is collocated with a BE to the

febe rtt is very small. There is no BE in Australia, therefore the febe rtt for the FE

in Australia is large. It is possible to fix the rtt for AS-AUS1 by serving it from FE

in Australia, but possible improvement in response time due to reduced rtt may be

somewhat offset by the increased febe rtt. In Section 3.7.2.2, we show that HIP iden-

tifies rtt as a systemic cause because rtt is consistently large for AS-AUS1. However,

fixing this cause may not fix latency.

95

(a) USA (b) Australia

(c) India

Figure 19: Size of clusters and dissimilarity among transactions after clustering for
proximate causes of nrt.

96

Figure 20: Messages and events during Web search transaction with Google. La-
tency of this transaction is measured as network-level response time (nrt) and browser-
level response time (brt).

97

nrt

region

rttsB

bw fe be

srP

febe_rtt

ts

tod

be_time

Figure 21: Inferred causal DAG for the dataset in Table 4. A→ B means A causes
B. nrt is target variable.

98

Table 7: Summary of causes to be addressed for achieving performance goals. For
confidentiality, values of be time, rtt and febe rtt factors are presented relative to mean
in the reference distribution.

Responsible Percentage of Value of responsible variable
variable high-latency in high-latency in reference

transactions clusters distribution
var. name units affected mean IQR mean IQR

(a) Causes to address to mitigate high-latency in a country.

Transactions in the USA with latency over 80th percentile nrt in the USA.

be time - 84 1.90 1.49–1.97 1.00 0.57–1.29
rtt - 37 4.95 1.25–4.61 1.00 0.42–1.04
febe rtt - 19 2.22 1.19–2.38 1.00 0.24–1.19
sB kB 13 28.6 22.2–30.4 9.0 6.8–9.0

Transactions in Australia with latency over 80th percentile nrt in Australia.

be time - 70 1.91 1.42–2.18 1.00 0.49–1.39
rtt - 47 3.86 2.03–3.74 1.00 0.21–1.53
srP count 18 3.9 3.0–4.0 0.2 0.0–0.0
sB kB 18 18.8 9.2–26.0 8.2 6.5–8.5
bw kb/s 10 640 460–744 4277 978–6595

Transactions in India with latency over 80th percentile nrt in India.

rtt - 73 4.07 1.77–4.21 1.00 0.29–0.83
bw kb/s 42 234 105–328 745 492–908
be time - 36 2.25 1.82–2.55 1.00 0.46–1.36
srP count 17 4.0 2.0–4.0 0.4 0.0–0.0
sB kB 13 23.9 8.7–27.0 8.6 6.9–8.4

(b) Causes inhibiting transaction latency comparable to USA.

Transactions in Australia with latency over mean nrt in USA.

febe rtt - 82 8.99 9.11–9.23 1.00 0.24–1.19
rtt - 52 5.46 2.33–5.86 1.00 0.42–1.04
bw kb/s 43 1131 730–1288 5938 2277–9069

Transactions in India with latency over mean nrt in USA.

febe rtt - 96 6.30 6.79–6.97 1.00 0.24–1.19
rtt - 91 5.59 1.48–6.23 1.00 0.42–1.04
bw kb/s 87 662 447–864 5938 2277–9069
srP count 14 3.5 2.0–4.0 0.1 0.0–0.0

99

0.2 0.4 0.6 0.8

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Response Time (Normalized)

C
D

F

After Fixing FE−BE Pairing
Original

Figure 22: Predicted improvement in nrt for clients served from a FE that previously
had bad FE-BE pairing.

100

CHAPTER IV

DETECTING NETWORK NEUTRALITY VIOLATIONS

USING CAUSAL INFERENCE WITH NANO

This chapter presents NANO, a system that detects when ISPs apply policies that

discriminate against specific classes of applications, users, or destinations. Existing

systems for detecting discrimination are typically specific to an application or to a

particular discrimination mechanism and rely on active measurement tests. Unfortu-

nately, ISPs can change discrimination policies and mechanisms, and they can evade

these tests by giving probe traffic higher priority. NANO detects ISP discrimination

by passively collecting performance data from clients. To distinguish discrimination

from other causes of degradation (e.g., overload, misconfiguration, failure), NANO

establishes a causal relationship between an ISP and observed performance by ad-

justing for confounding factors. NANO agents deployed at participating clients across

the Internet collect performance data for selected services and report this information

to centralized servers, which analyze the measurements to establish causal relation-

ship between an ISP and performance degradations. We have implemented NANO

and deployed clients in a controlled environment on Emulab. We run a combination

of controlled experiments on Emulab and wide-area experiments on PlanetLab that

show that NANO can determine the extent and criteria for discrimination for a variety

of discrimination policies and applications.

4.1 Introduction

Network neutrality states that ISPs remain neutral to how they forward user traffic,

irrespective of content, application, or sender [20]; ISPs may discriminate against

101

certain subsets of users or services. Rather than taking a stance in this debate, we

aim to make the policies of Internet service providers more transparent to end users,

so that they can detect when ISPs degrade performance or connectivity for some

subset of users or applications.

Because discrimination can take many forms, detecting it is difficult. ISPs have

been interfering with TCP connections for BitTorrent and other peer-to-peer appli-

cations [18]; recently, British Telecom throttled video content [10] after previously

demanding compensation from content providers such as BBC for increased traffic

due to their content [9]; Cox Communications also said that it planned to begin

throttling peer-to-peer traffic [3]. Other types of discrimination may include blocking

specific ports, shaping traffic for specific services, or enforcing traffic quotas.

Existing mechanisms for detecting ISP discrimination actively probe ISPs to test

for specific cases: Glasnost detects spurious TCP reset packets of BitTorrent connec-

tions [18], Beverly et al. study port-blocking [50], and NVLens detects prioritization

by observing the type-of-service field in ICMP time-exceeded messages [57]. These

tools detect specific classes of discrimination, but they have several drawbacks. First,

they are specific to either the application (e.g., BitTorrent) or the mechanism that the

ISP is using to discriminate (e.g., resetting TCP connections, or setting TOS bits).

Second, they rely primarily on active probes, which are typically detectable, making

it possible for an ISP to either block or prioritize them. Because discrimination may

vary depending on the application or the mechanism, and ISPs can evade detection

mechanisms that rely on active probes, users need detection tools that rely primarily

on observations of in situ network traffic.

We present the design, implementation, and controlled evaluation of Network

Access Neutrality Observatory (NANO), a system that infers the extent to which

an ISP’s policy causes performance degradations for a particular service. Instead of

trying to determine whether an ISP is discriminating using a particular mechanism,

102

NANO tries to infer whether there are differences in performance achieved through

a particular ISP when compared to other ISP(s) for a given service. NANO tries to

establish a causal relationship between an ISP’s policy and the observed degradation

of performance for a service using only passively collected data. Because NANO

directly uses the observed performance of the service, it is difficult for ISPs to evade

NANO inference, while at the same time discriminate against a service to degrade

its performance. NANO’s techniques apply to general performance metrics and can

thus apply to many services and applications. For example, throughput can be used

to characterize the performance for both Web traffic (including pages, embedded

content, video, etc.) and non-Web traffic (e.g., FTP, BitTorrent). Similarly, jitter

and loss rate can characterize the performance of many real-time services, such as

interactive voice, video, or gaming traffic.

NANO’s design draws inspiration from statistical epidemiology: Just as epidemi-

ologists seek to determine whether a particular drug might be responsible for the

improved health of a patient, we seek to determine whether a particular ISP af-

fects performance degradation. The challenge in establishing causality is that many

confounding factors may be the underlying cause for the observed outcome. Many

factors other than the ISP may affect the performance of a particular service or ap-

plication. For example, a service may be slow (e.g., due to overload at a particular

time of day). A service might be poorly located relative to the customers of the

ISP. Similarly, a service may be fundamentally unsuitable for a particular network

(e.g., Internet connectivity is not suitable for VoIP applications in many parts of the

world). Similarly, the performance might depend on software or hardware, or other

network peculiarities.

NANO identifies when service performance differs across ISPs but confounding

factors are equal. A big challenge in designing NANO is to identify the confound-

ing factors and create an environment where all confounding factors are equal or

103

Figure 23: NANO architecture.

independent of the ISP or service performance. Although these goals are difficult

to achieve, NANO can infer causal relationships by adjusting for confounding vari-

ables on passively observed data. Applying this approach has two main requirements:

(1) enumerating the confounding factors and collecting data for the possible values

of these variables, and (2) establishing a “baseline” level of service performance for a

given set of values for the confounding variables that serves as a point of comparison.

NANO’s client-side software, NANO-Agent, collects and reports performance data to

NANO-Servers regarding their traffic, as well as various meta-data (e.g., the CPU

load on the machine at the time, the operating system, the type of connection, etc.)

as shown in Figure 23. NANO then analyzes this performance data to quantify the

causal relationship between an ISP’s policy and the observed service degradation.

We have implemented the NANO-Agent and Server and made the NANO-Agent

available for download [41]. We have evaluated NANO in a controlled environment;

we emulate access network ISPs on Emulab, where clients perform HTTP and BitTor-

rent downloads from hundreds of PlanetLab nodes across the Internet; some ISPs in

our setup discriminate while others remain neutral. We demonstrate that, even when

the distribution of performance from the discriminating ISPs may look similar to the

104

distribution of performance from the neutral ISPs, NANO detects discrimination, es-

timates the total causal effect on the performance of the services, and determines the

discrimination criteria. Our goal in this chapter is to describe the NANO techniques

and describe the implementation and controlled evaluation as a proof-of-concept. We

do not yet have a sufficient deployment to infer ISP discrimination in real networks,

but the NANO project Web site [41] provides the participating clients with other use-

ful performance statistics. With a more extensive deployment, we hope to ultimately

report on general discrimination practices across ISPs.

This chapter is organized as follows. Section 4.2 defines and motivates the prob-

lem, provides definitions, and articulates the challenges. Section 4.3 provides back-

ground on causal inference and formulates ISP discrimination detection as a statistical

causal inference problem. Section 4.4 describes the design of NANO and Section 4.5

describes the implementation. Section 4.6 evaluates the accuracy, sensitivity, and

scalability of NANO. Section 4.7 lists various open issues with NANO.

4.2 Problem and Motivation

Problem statement We aim to detect whether an ISP causes performance degrada-

tion for a service when compared to performance for the same service through other

ISPs.

Definitions A service is an “atomic unit” of discrimination (e.g., a group of users

or a network based application). Discrimination is an ISP policy to treat traffic for

some subset of services differently such that it causes degradation in performance for

the service. Metrics for performance may be service-specific. We say that an ISP

causes degradation in performance for some service (i.e., that it discriminates against

some service) if we can establish a causal relation between the ISP and the observed

degradation. For example, an ISP may discriminate traffic for a particular application

(e.g., Web search), traffic for a particular domain, or traffic carrying particular type

105

of media, such as video or audio, such that performance for these services degrades.

Challenges Detecting discrimination is challenging for the following reasons.

A. The mechanism for discrimination may not be known. Although existing tools

for detecting network neutrality all assume that either the mechanism for dis-

criminating against traffic or the application being discriminated against is

known, this is generally not the case. Users often do not even know whether

an ISP might be discriminating certain subsets of traffic. These users need

methods for detecting discrimination that do not rely on testing for specific

discrimination types.

B. The baseline performance for a service in an ISP is not known. Users do not

know what the “baseline” performance is for a given service through their ISP, so

detecting when the performance is degraded, potentially as a result of discrim-

ination is difficult. We propose one approach to establish baseline performance

in Section 4.4.2.

C. Many factors can cause performance degradation. Any tool that detects dis-

crimination must identify the ISP—as opposed to any other possible factor—as

the underlying cause of discrimination. An industry source recently expressed

skepticism about the effectiveness of existing tools: “However, one ISP indus-

try source, who asked not to be identified, questioned whether the tools would

accurately point to the cause of broadband problems. ‘Spyware or malware on

computers can affect browser performance, and problems with the wider Inter-

net can cause slowdowns, the source said.”’ [23]. It is precisely this problem—

adjusting for such external causes—that we tackle.

We believe that NANO is the first technique that can isolate such discrimination

from other confounding factors, without a priori knowledge of an ISP’s discrimination

policy. NANO relies on knowledge of confounding variables, but these are not difficult

106

to enumerate using domain knowledge. NANO uses monitoring agents to collect

values for the confounding variables.

4.3 Background

In this section, we give a brief overview of causal inference and how it can be used to

quantify causal effect.

4.3.1 Causal Effect and Confounders

Statistical causal inference is applied in many observational and experimental stud-

ies [26, 45]. We review causal inference and describe how it relates to inferring ISP

discrimination.

Causal effect “X causes Y” means that a change in the value of X (the “treatment

variable”) should cause a change in value of Y (the “outcome variable”). Accessing

a particular service through an ISP is our treatment variable (X), and the observed

performance of a service (Y) is our outcome variable: X = 1 when a user accesses a

service through some ISP, and X = 0 when the user does not access the same service

through that same ISP (e.g., it accesses it through an alternate ISP). The value of the

outcome variable Y depends on the service; it might be a direct measure of quality,

such as Mean Opinion Score (MOS) for VoIP applications, or another variable that

is highly indicative of the application performance, such as, throughput, loss-rate, or

jitter.

Causal inference estimates the effect of the treatment variable (the ISP) on the

outcome variable (the service performance). Let’s define a ground-truth value for the

outcome random variable as GX , so that G1 is the outcome value for a client when

X = 1, and G0 is the outcome value when X = 0. We refer to the outcome when not

using the ISP (X = 0) as the baseline.

We can quantify the average causal effect of using an ISP as the expected difference

107

of the ground truth of service performance between using the ISP and the baseline.

θ = E(G1)− E(G0) (3)

To compute the causal effect, θ, we must observe the outcome both under the treat-

ment and without the treatment.

Association vs. causal effect In a typical in situ dataset, such as network traffic,

each sample presents only the value of the outcome variable either under the treat-

ment, lacking the treatment, but not both. Because the ground-truth values (G0, G1)

are not simultaneously observable, we cannot estimate the true causal effect from

an in situ dataset alone (Eq. 3). Instead, we can compute association. Let’s define

association as the difference of performance with or without the ISP:

α = E(Y |X = 1)− E(Y |X = 0) (4)

Of course, association is not a sufficient metric for causal effect, and in general α 6= θ,

mainly due to the effects of confounding variables.

Confounding variables A confounding variable (or simply “confounder”) is one

that correlates both with the treatment variable in question (i.e., the ISP) and the

outcome variable (i.e., the performance). Confounding variables make it difficult

to assess the true extent of causal relationship between the treatment and outcome

variable because if we observe a correlation between treatment and the outcome vari-

ables, we cannot be certain whether that correlation is because of a causal relationship

between the treatment and outcome, or whether it is because of the confounding vari-

able. For example, if the location of the client correlates with the ISP and the service,

then we cannot blindly attribute any observed association between ISP and the ser-

vice performance to the causal relationship between the two, because the difference

in performance might be due to the differences in location of the ISP or services.

The next section describes techniques for computing causal effect in the presence of

confounding variables.

108

4.3.2 Dealing with Confounders

This section presents two techniques for estimating causal effect: random treatment

and stratification. Stratification essentially emulates random treatment, albeit pas-

sively; we explain why stratification is more appropriate for network data.

Strawman: Random treatment If we assign clients to the treatment randomly,

then under certain conditions, association is an unbiased estimator of causal effect.1

All other variables that have an association with the outcome variable must remain

fixed when the treatment changes. With in situ network traffic data, we must find

a way to change the treatment variable—the user’s ISP—while keeping other factors

fixed. While random treatment is ideal for lab experiments, it is difficult to emulate

on the Internet because it is difficult to make a user switch to an arbitrary ISP.

NANO approach: Stratification NANO uses a technique called stratification to

adjust for confounding variables [26]; stratification places measurements into strata so

that all samples in each stratum have “similar” values for the confounding variables,

creating conditions that resemble random treatment: treatment and outcome vari-

ables become independent of confounding variables. Informally, one might think of

this as placing all measurements where everything that could possibly be attributed

to performance is equal, except for the ISP.

Stratification requires enumerating the confounding variables. Unfortunately,

there is no automated way to enumerate all the variables that might affect an out-

come variable; the problem is similar to any machine learning problem where accurate

prediction depends on enumerating all of the features. Instead, we must rely on do-

main knowledge to enumerate the confounding variables and heuristics to identify

1This property holds because when X is independent of GX , then E(GX) = E(GX |X) = E(Y |X);
see [55, pp. 254–255] for a proof.

109

when some confounding variables may be missing. Although our evaluation (Sec-

tion 4.6.2.3) shows that we have enumerated these confounders in our controlled

environment, as clients become more diverse in a wide-area deployment, we may need

to revisit and expand this list.

Formalization Let the causal effect, θij , quantify how the performance of a service

j, denoted by Yj, changes when it is accessed through ISP i, versus when it is not

accessed through ISP i. Let Z denote the set of confounding variables, and let s be

a stratum. Then causal effect within a stratum, θij(s) is:

θij(s; x) = E(Yj |Xi = x, Z ∈ B(s)) (5)

θij(s) = θij(s; 1)− θij(s; 0) (6)

where B(s) is the range of values of confounding variables in the stratum s. The

variable θij(s; 0) in Equation 6 represents the baseline service performance. We can

estimate the variance of θij(s) (estimated as the variance of mean differences), as:

σ2(θij(s)) =
(ns1 − 1)σ2

ijs1 + (ns0 − 1)σ2
ijs0

ns0 + ns1 − 2
(
1

ns0

+
1

ns1

) (7)

where σ2
ijsx is shorthand for σ2(θij(s; x)) and ns1 and ns0 are the number of perfor-

mance measurements that we observe with and without the ISP, respectively. As-

suming that θij(s) follows a Normal distribution, the (1-α) confidence interval is:

θ̂ij(s)± zασ(θij(s)) (8)

Equations 6 and 8 estimate the causal effect for each stratum s. We would like

to summarize the overall causal relationship between ISP i and a service j across

all the strata. Unfortunately, all strata may not be equally likely and causal effect

might vary across strata. The techniques used in epidemiology for this purpose (e.g.,

the Mantel-Haenszel statistic [26]) only work for binary outcome variables and also

require estimates of the prevalence of each outcome, so they are not appropriate in

110

this context. Instead, we simply average across the strata as:

θ̂ij = |s|−1
∑

s

θij(s) (9)

If we assume that causal effect is independent across strata, we can estimate the

variance and the corresponding (1-α) confidence intervals as:

σ2(θij) = |s|−2
∑

s σ
2(θij(s)) (10)

(1− α) CI for θij = θ̂ij ± zασ(θij) (11)

The units for causal effect are same as for service performance, so the values are

straightforward to interpret: essentially, for metrics such as, throughput, a negative

value indicates performance degradation, and for metrics such as loss or jitter, a

positive value indicates performance degradation.

4.4 NANO Approach

This section enumerates the confounding variables required for this inference and

explains how NANO performs causal inference.

4.4.1 Confounders for Network Performance

In this section, we enumerate three categories of confounding variables and explain

why they might correlate with both the treatment variable (the ISP) and the outcome

(the performance). NANO-Agents collect statistics for variables that help determine

the level of various confounding factors. Table 8 shows these variables.

Client-based confounders The application that a client uses for a service can

affect service performance. Certain Web sites may be optimized for a particular

Web browser, or differences in Web browsers may affect performance; for example,

Opera, Firefox, and Internet Explorer use a different number of simultaneous TCP

connections, and only Opera uses HTTP pipelining by default. Other features that

may affect performance include the operating system and the configuration of the

111

Table 8: Data collected by NANO.

Client-Based Features
IP address
Process for each flow
CPU usage
Memory usage
Operating System
Uptime
Network devices and counters

Network-Based Features
From network traffic
IP address, port number, and protocol
Timestamps for first, last packet for each
flow
Cumulative, periodic bytes, packets per flow
SYN/SYN-ACK SYN-ACK/ACK RTTs
TCP state for active connections
TCP retransmits
TCP duplicate ACKs

Provided by user
ISP contract level/SLA
Geographic Location
User Location (home/work/etc.)
Type of link (wireless/Ethernet)
Whether using a home router
Type of router

client’s computer and local network, as well as a client’s service contract. These

variables clearly affect performance, but they may also correlate with the ISP. For

example, we expect that Microsoft Windows may be more popular among home

users that other operating systems, while Unix variants may be more common in

academic environments. Similarly, certain browsers may be more popular among

certain demographics and localities. If the ISPs cater different demographic groups,

112

then these variables may correlate with the ISP brand.

Network-based confounders Various properties of the Internet path, such as the

location of the client or ISP relative to the location of the servers, can degrade service.

A path segment to a particular service provider might not be sufficiently provisioned.

If we wish to disregard these effects, we must adjust for the path properties. We

do not treat congestion as a confounder because we believe that there is value in

determining whether the performance degradation related to congestion are specific

to an ISP. NANO cannot differentiate between network-wide congestion that affects

all the services and a congestion that is targeted at a particular service because NANO

does not compare performance across services.

Time-based confounders Service performance varies widely with time of day, due

to changes in utilization, and ISPs may also experience different performance at

different times of day.

4.4.2 Establishing Causal Effect

NANO uses the five steps in Figure 24 to estimate causal effect of an ISP for service

degradation. First, NANO stratifies the service performance data reported from the

NANO-Agents. Next, NANO estimates the extent of possible causal effect of ISP on

performance within each stratum by comparing the performance within the stratum

with the baseline performance from other ISPs. Then NANO summarizes the causal

effect by aggregating on all the strata and finally tests whether the aggregate causal

effect is statistically significant. Optionally, NANO can also infer the criteria that

the ISP is using for discrimination.

Step 1: Stratifying the data To stratify the data, NANO creates “bins” (i.e.,

ranges of values) for each of the confounding variables. The main criteria for stratifi-

cation is to create bins on the value of the confounding variable such that the value of

113

Figure 24: Steps for computing causal effect.

the treatment and outcome variables can be considered independent of the confound-

ing variable for the span of the bin. As a result, the bin size depends on the nature

of the confounding variable.

For discrete variables, creating bins is simple: we create strata such that there

is a bin for every unique value of the variable. For example, all the clients using a

particular version of the browser are in one stratum. For continuous variables, the

bins must be sufficiently small such that the variable has essentially a constant value

within the stratum. For example, many network performance metrics are correlated

with the time-of-day variable due to diurnal cycles, but these metrics are typically

independent of the time-of-day across days for a given hour [54], or time-of-day and

day-of-the-week combined [33]. This characteristic makes one-hour bin a reasonable

choice for time-of-day variable. If the performance cycles repeat only on weekly basis,

then we may additionally stratify on a variable representing the day-of-the-week.

We apply standard correlation tests to determine whether the treatment variable

and the outcome variable are independent of the confounding variable within a stra-

tum. To reduce the number of strata and the overall number of samples needed to

establish confidence intervals, we combine adjacent strata if the distribution of the

outcome variable conditioned on the treatment variable is identical in each stratum.

Step 2: Computing causal effect We compute causal effect by plugging in the

performance estimates for each stratum in Eq. 6. One challenge with using Eq. 6 is

establishing the baseline performance (term θi,j(s; 0) in Eq. 6). Intuitively, this value

114

reflects the performance a user would see without treatment (i.e., not using an ISP

i for some service). Simply using a different ISP is insufficient if that ISP is also

discriminating against service j.

To address this problem, NANO computes the baseline, θi,j(s; 0), as the average

service performance when not using ISP i; i.e., the average over all other ISPs that

have users in that stratum:

θi,j(s; 0) =

np∑

k 6=i

θk,j(s; 1)/(np − 1)

where np > 2 is the number of ISPs for which we have clients in stratum s. One

limitation of this definition is that if many ISPs are discriminating against a service,

the baseline performance will reflect discrimination (i.e., discrimination becomes the

norm). In such cases, we could derive the baseline in other ways, such as by comparing

against the best performance instead of the average, or by using a performance model

of the service from laboratory experiments or mathematical analysis.

Step 3: Inferring the discrimination criteria Although NANO’s causal infer-

ence makes no assumptions about discrimination criteria used by the ISP, NANO can

determine discrimination criteria as a side effect of stratification. NANO infers the

discrimination criteria that an ISP uses by using simple decision-tree based classifi-

cation methods. For each stratum and service where NANO detects discrimination,

NANO assigns a negative label, and for each stratum and service where it does not

detect discrimination, it assigns a positive label. NANO then uses the values of the

confounding variables and the service identifier as the feature set and the discrimina-

tion label as the target variable, and a decision-tree algorithm to train the classifier.

The rules that the decision tree generates indicate the discrimination criteria that the

ISP uses because the rules indicate the boundaries of maximum information distance

between discrimination and normal behavior.

115

Figure 25: Design of client-side agent for NANO.

4.5 Design and Implementation

This section describes the implementation of NANO, which has two parts: NANO-

Agents and a NANO-Server. NANO-Agents reside on participating clients and con-

tinuously monitor and collect data for traffic from that client host to various desti-

nations, and send aggregate traffic statistics to the centralized NANO-Server. The

NANO-Server collects these statistics and performs the inference described in Sec-

tion 4.3 to quantify the ISP’s effect on performance. The primary source of data

for NANO are client-side agents installed on computers of voluntarily participating

clients (NANO-Agents). We describe these components in detail below.

4.5.1 Agents

We have developed NANO-Agent as a packet-level sniffer, running at clients, that can

access fine-grained information from the client machines including the various system

resource utilization and client machine setup information.

116

Figure 25 shows the architecture for the NANO-Agent. After a packet is cap-

tured from the network interface (via pcap), the modules shown in Figure 25 strip

the protocol headers and compute performance summaries for the traffic. The agent

only computes performance summaries for traffic that is allowed by a user-specified

privacy policy. The agent periodically dispatches the summaries to NANO-Server.

The NANO-Agent collects three types of features for the confounding factors, corre-

sponding to the three classes of confounding variables described in Section 4.4.1 and

Table 8.

Data collection The NANO-Agent analyzes the network and transport protocol

headers to identify the service and assess performance. For the experiments that

we describe in Section 4.6, we focus on features from the TCP/IP headers of the

packets and associated timing information. We try to estimate the throughput and

latency that the packets experience for a TCP flow. To estimate the throughput,

the agent continuously measures the bytes uploaded and downloaded in a specified

(configurable) interval. To estimate the latency on a TCP flow, the agent measures

the latency between the SYN and SYN-ACK packets for the flows that originate at

the client, and the latency between the SYN-ACK and the subsequent ACK, for the

incoming connections that the client receives. The agent keeps track of connection

duration and events such as losses, timeouts (by tracking the TCP duplicate acknowl-

edgments) or unexpected connection terminations, such as, with a TCP reset flag.

Our implementation also infers the application associated with the active flows from

the proc file system. In addition, the agent also continuously monitors the average

CPU and memory utilization on the client host.

In addition to runtime statistics, the agent also collects information about the

client setup which includes the client host specification, including the platform, CPU

and memory specification, and the active operating system on the host. NANO

relies on the user to provide the agent with information that it cannot infer. This

117

information includes the type of network interface (wired or wireless), the type of

contract the client has with the ISP, and the user’s location (city and country). In

the future, we plan to use an IP-to-geographic location database in lieu of client-

provided information. Table 8 describes the variables that the NANO-Agent collects.

Protecting user privacy Information that NANO-Agents collect may contain sen-

sitive information (e.g., destinations a client has visited or the amount of content

it has downloaded). Protecting user privacy is paramount. Unfortunately, stan-

dard anonymization techniques, such as anonymizing IP addresses and various other

features (e.g., browser type, operating system) obfuscate the very features used to

stratify the data, thus preventing causal inference. We must apply techniques that

mask client identities but preserve the features that NANO uses to stratify the data.

NANO employs three measures that protect user’s private data from eavesdropping,

allows user’s some control over the type of traffic that NANO-Agents monitor, and

reduce the granularity of information that is sent to the NANO-Server. These mea-

sures mitigate privacy concerns that arise due to passive monitoring, although these

concerns are not completely alleviated.

1. Local stratification. The NANO-Agent performs local stratification to reduce the

granularity of information that the client sends to the server. The NANO-Agent

can optionally report only the /24 prefix of the source and destination IP addresses,

allowing some obfuscation of client identity, and similarly round off the round-trip

time measurements to (configurable) nearby values.

2. User-specified filters. The NANO-Agent allows the users to specify a set of fully

qualified or wild-card domain names, IP addresses, or port numbers (or ranges) that

they wish to have excluded from the monitoring. NANO-Agent does not collect

information about the flows matching the filters. We are working on allowing users

to specify filters based on application names as well, so that the user can, for example,

118

specify whether to prevent BitTorrent traffic from being monitored. Users can also

temporarily disable NANO-Agent; during this period, NANO-Agent does not monitor

any traffic but continues to send beacon packets to the server indicating that it is

alive but not monitoring.

3. Secure communication. NANO-Agents transmit data to the servers over SSL. The

SSL certificate is included with the NANO-Agent distribution.

Implementation We have implemented the NANO-Agent using C++ for Linux-

based systems. The agent promiscuously captures the packets that flow from the

client host’s network interface using the pcap library.

The NANO-Agent implements user privacy filters as follows. If the user specifies

a source or destination IP address or port ranges, the filtering is straightforward:

NANO ignores packets for corresponding flows. For the filters using domain names,

the NANO-Agent inspects the DNS traffic at the client and learns the IP addresses

for the domain names that match the filters. The NANO-Agent then ignores the

traffic with the matching IP addresses for the duration of TTL specified in the DNS.

The NANO-Agent keeps track of CNAME records and ignores traffic for IP addresses

mapped to canonical names of the domain names in the filters. For example, if the

user specifies mail.google.com as one of the filters, then the NANO-Agent would also

ignore packets with IP addresses for googlemail.l.google.com, as it is (sometimes)

returned as canonical name for mail.google.com.

The NANO-Agent uses protocol buffers [22] to maintain the information that it

collects. Protocol buffers offer high speed and compact serialization that allows us to

minimize the computational and communication overhead for running the agent at

the client. The agent periodically serializes the data that it has collected and sends it

to a NANO data collection server. The NANO-Agent implementation is open-source

and freely available [41].

119

Figure 26: NANO-Server design.

4.5.2 Server

The NANO-Server periodically receives information from NANO-Agents running on

the clients and performs the causal analysis. Although some of the causal inference

logic is currently offline, the NANO-Server provides a Web-based interface [41] where

participating users can observe live statistics only about the traffic summaries that

their NANO-Agents send to the NANO-Server. We are working on making these

statistics more useful, including providing real-time diagnostics information, and net-

work “health” monitoring that can be inferred from the data that the NANO-Agent

collects. Additionally, we allow users to selectively delete their data from NANO-

Servers.

Implementation We have implemented the server using a combination of C++ to

implement the data collection and demarshalling and using a Python and MySQL

back-end for analysis and causal inference. Our implementation can compute causal

effect over 20,000 strata in about one minute using two threads on a dual 3.2 GHz

processor Intel Pentium 4 machine with 4 GB of memory. In a real-world deployment,

the number of strata can easily approach in millions; for this, we plan to port the

NANO-Server to a Map-Reduce-based implementation [16].

120

4.6 Evaluation

This section presents the results of our evaluation. The experimental setup is as

shown in Figure 27 and a summary of experiments that we conduct is presented in

Table 9. We study the following four questions in our evaluation:

• Can NANO detect different types of discrimination? (Section 4.6.2.1) To an-

swer this question, we tested NANO’s detection algorithms with three different

types of discrimination and in the presence of various network and client-side

confounding variables.

• Can NANO determine discrimination criteria? (Section 4.6.2.2) Our evaluation

shows that NANO can determine the discrimination criteria used by the ISP

using a decision-tree based classifier.

• Can NANO determine when confounders are missing? (Section 4.6.2.3) Our

experiments show that NANO’s heuristic for testing sufficiency of confounders

is a reasonable one, although this problem in general is an open question.

• How does NANO scale with the size of the input data? (Section 4.6.2.4) We

study how NANO’s accuracy is affected by the amount of input data, and how

memory and CPU requirements scale with the size of the input.

4.6.1 Experiment Setup

Tested: PlanetLab and Emulab We use PlanetLab [8] nodes as servers. Specif-

ically, we configured a set of geographically distributed PlanetLab nodes with two

types of services. First, we configure two Web servers on each of these PlanetLab

nodes to represent two different Web services. Second, we have configured the Plan-

etLab nodes to act as BitTorrent clients.

We use Emulab to create a set of ISPs, each with its set of clients that connect

to the ISP using links of configurable characteristics. The ISP provides connectivity

121

to the Internet to its clients. Figure 27 shows this arrangement. The clients in

the Emulab environment access these services through emulated ISPs where we can

introduce discrimination using Click routers. The clients can be configured with

different physical configurations and run different operating systems on them. This

setup allows us to control some of the confounding variables on the client side and use

various discrimination criteria that might be implemented by an ISP. Each client also

runs an instance of NANO-Agent which periodically reports the performance data to

a NANO-Server running at Georgia Tech. We did not gather samples from all ISPs

for all strata, so we only consider the strata where at least three of the five ISPs in

our experiment had 20 samples or more. As a result, the baseline performance for

some of the strata might comprise fewer than four ISPs. For the experiment involving

discrimination against long flows, 96% of strata met the other criteria; this figure was

even higher for the other experiments.

A potential problem with this setup is that if an ISP in the wide-area (outside

our Emulab environment) is discriminating against traffic between the Emulab clients

and the PlanetLab nodes, then NANO would not be able to detect that, since NANO

only has data from the NANO-Agents which all use the ISP outside of Emulab.

Indeed, we encountered paths to PlanetLab nodes that were very lossy to begin with.

However, because we have no reason to believe that the losses on these paths correlate

with the ISPs that we emulate on Emulab, these paths are not a confounder for our

experiments, and we can afford to ignore these even if the ISPs on those paths are

potentially discriminating.

Emulating discrimination We emulated ISP discrimination by running Click on

the Emulab node that acts as the ISP router to connect the ISP clients to the Internet

(see Figure 27). We pass the client traffic through the Click router running as a kernel

module on the router node. We used a combination of Click elements to perform var-

ious forms of discrimination including probabilistically dropping packets on all flows,

122

clients run

NANO-agents

EMULAB

D1

N2

 D2

N1

N3

Internet

PlanetLab nodes

acting as

content providers

} Discriminating ISPs

Run Click routers

to introduce traff ic

 discrimination

Figure 27: Experimental setup on Emulab. Each ISP is an Emulab node with a Click
router that performs different types of discrimination, depending on the experiment.
Clients run NANO-Agents and report information to a NANO-Server.

or flows which exceed a certain length, dropping of TCP acknowledgments, dropping

packets for a particular service or destination, and sending TCP RST packets back

to the client (similar to the practice by Comcast).

We used available Click router elements such as IPClassifier to classify packets

based on the various IP and TCP fields, RandomSample for dropping packets and,

AggregateIPFlows and a modified version of AveragePktCounter to classify flows

that exceed a certain length. Running Click router as a kernel module was sufficient

to ensure that the Emulab ISP node could sustain a reasonable amount of traffic

(maximum of 20 Mbps).

Figure 28 shows an example of discrimination against long flows that we imple-

mented using a Click router. In this case, we configured the router to probabilistically

123

Table 9: Summary of NANO experiments.

Internet Service Providers (ISPs): ISPs N1, N2, and N3 are neutral. ISPs D1

and D2 discriminate.

Experiment 1. Simple Discrimination. ISPs D1 and D2 discriminate against
HTTP traffic for all clients. ISPs D1 and D2 drop 0.1% and 0.3% of the packets
respectively. Location of the HTTP server is a confounding variable. ISPs N1, N2,
N3, D1, and D2 access the content from the near PlanetLab servers with probabilities,
0.4, 0.1, 0.7, 0.6, and 0.9, respectively, and access the far PlanetLab servers with the
remaining probability.

Experiment 2. Long Flow Discrimination. ISPs D1 discriminates against S1,
and D2 discriminates the HTTP traffic for S2 for all their clients if the flows from S1

or S2 exceeds certain limits. ISPs D1 and D2 drop 0.1% and 0.3% of the packets for
flows exceeding 10,000 and 13,000 packets respectively.
Server location is a confounder, as in Experiment 1, with same probabilities for the
near HTTP servers. All HTTP servers provide both S1 and S2, albeit on different
ports.

Experiment 3. BitTorrent Discrimination. ISP D2 discriminates the BitTorrent
traffic for all its clients if the BitTorrent peer is not in certain subset of PlanetLab
nodes. dropping 0.3% of the packets of the flows that are established with the non-
preferred peers.

drop TCP packets of flows that exceeded 13,000 packets. For the flow shown in Fig-

ure 28, this event occurs at around 10 seconds after the start of the flow, at which

point a drop in both throughput (calculated as bytes transferred per ten seconds) and

the rate of cumulative packets for the flow occurs.

4.6.2 Results

This section presents our experimental results; we answer the questions that we posed

at the beginning of Section 4.6.

4.6.2.1 Can NANO detect discrimination?

We performed three experiments to evaluate whether NANO could detect discrimina-

tion. We create five ISPs: two of these discriminate, and we call them discriminating

124

0 10 20 30 40 50
0

500

1000

1500

T
h
ro

u
g
h
p
u
t

(k
B

/s
)

0 10 20 30 40 50
0

x 10
4

Seconds since the start of the flow

C
u
m

u
la

ti
v
e

P
ac

k
et

s

Figure 28: Throttling throughput for long TCP flows using Click modular router.

ISPs, ISP D1 and ISP D2. The remaining three ISPs use best-effort service for all the

packets on their routers; we refer to these as the neutral ISPs and ISP N1, ISP N2, and

ISP N3. Table 9 summarizes these experiments. The first is a simple discrimination

against HTTP traffic; the second is a discrimination against long-running flows (in

practice, this might be bulk transfers like movies); the third involves discrimination

against BitTorrent traffic.

It is not possible to detect discrimination from distributions alone Figure 29

shows the distribution of performance for the clients of each ISP in all three exper-

iments. For the first two experiments, we compute the average throughput over the

life of the flow and use that as a metric. Note that it is difficult to detect which ISP is

discriminating solely based on the performance distribution. For example, in the first

two experiments (Figures 29 (a) and (b)), the overall performance distribution for

the discriminating ISPs is similar or better than the distribution of performance in

the neutral ISPs because the clients in the discriminating ISPs access the near servers

with higher probability. Because geographically closer servers are more likely to pro-

vide higher throughput, the discriminating ISPs still have a larger fraction of sessions

with higher throughput. Similarly, the throughput for most BitTorrent clients in D2

125

0 200 400 600 800 1000 1200 1400 1600
0

0.2

0.4

0.6

0.8

1

Throughput (kbps)

C
D

F

ISP N
1

ISP N
2

ISP N
3

ISP D
1

ISP D
2

0 200 400 600 800 1000 1200 1400 1600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Throughput (kbps)

C
D

F

ISP N
1

ISP N
2

ISP N
3

ISP D
1

ISP D
2

(a) Simple Discrimination. (b) Long Flow Discrimination.

0 200 400 600 800 1000 1200 1400 1600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Throughput (kbps)

C
D

F

ISP N
1

ISP N
2

ISP N
3

ISP D
2

(c) BitTorrent Discrimination.

Figure 29: Performance distribution for the clients in all the ISPs. Although ISP
D1 and ISP D2 are discriminating in each of the three scenarios, it is not possible to
correctly identify the ISPs that are discriminating or the extent of discrimination by
observing the over the performance distributions.

126

is similar to the throughput in the other ISPs when the ISP is discriminating against

a subset of destinations.

NANO detects discriminating ISPs and quantifies the extent of discrim-

ination We present the average causal effect on throughput in kbps with a 90%

confidence interval (cf. Equation 11) for each ISP, service, and experiment in Ta-

ble 30. (Due to the number of strata, we do not have enoug space space to list the

causal effect of each ISP for each strata.)

For the neutral ISPs, N1, N2, and N3, we find that the adjusted difference in

performance compared to average is slightly positive in all experiments; i.e., the

performance of the service is somewhat better than average for these ISPs. If we had

a large number of ISPs, we would have expected the average causal effect to be exactly

zero (i.e., the performance using these neutral ISPs should be equal to the baseline).

Because the experiment has only five ISPs (three neutral and two discriminating),

the performance from the discriminatory ISPs decreases the baseline performance,

which in turn causes the performance of the neutral ISPs to appear slightly above

baseline. The 90% confidence interval for each of the neutral ISPs spans both sides

of zero (neutral).

For the discriminating ISPs, D1 and D2, NANO finds negative causal effect on

throughput in each of the experimental scenarios where these ISPs discriminated.

For example, the confounding adjusted causal effect for ISP D1 is -108 kbps for the

Simple Discrimination experiment, indicating that the throughput is 108 kbps less

than the baseline throughput; the entire confidence interval is in the negative range.

Table 30 also shows that NANO also avoids mischaracterizing an ISP when it is

not discriminating. In the Long Flow Discrimination experiment, ISP D1 does not

discriminate against service S2; similarly, ISP D2 does not discriminate the flows for

service S1: NANO correctly estimates close to neutral performance for these ISPs in

these cases. On the other hand, in the cases where these ISPs discriminate, NANO

127

correctly detects a negative effect on throughput. In the third experiment involving

BitTorrent, NANO computes a negative causal effect for ISP D2, which degrades

performance for BitTorrent flows that are not in a preferred set of subnets. The

causal effect on the throughput is about 300 kbps below the baseline throughput

performance.

The confidence intervals for discriminating ISPs are wider than the confidence

intervals for the neutral ISPs because when the discriminating ISPs drop packets for

TCP flows, the throughput for these flows becomes more variable. The confidence

intervals for the experiment involving BitTorrent are also larger than other exper-

iments involving discrimination, which probably results from three causes. First,

BitTorrent downloads smaller chunks at a time, and such transfers can be bursty and

have high variance in throughput. Second, BitTorrent uses more simultaneous con-

nections, which interfere with each other and increase variance. Finally, BitTorrent’s

peer selection criteria means that there may not be a steady transfer between a pair

of peers. We also observe that in general the causal effect of ISP D2 is more negative

than ISP D1, which occurs because ISP D2 uses a higher packet drop rate (0.3%)

than ISP D1 (0.1%). As a result, more degradation occurs in ISP D2 than in D1.

4.6.2.2 Can NANO determine discrimination criteria?

We evaluate the extent to which NANO can determine the discrimination criteria for

each of the three experiments.

To infer the criteria that ISP D1 is using to discriminate against long flows, we la-

beled the stratum for service S1 where we detected more than 100 kbps of causal effect

as the discriminated strata and the remaining strata as undiscriminated. We then ran

the J.48 decision tree on this labeled dataset, where the data columns included the /24

subnet (location) of servers and average number of cumulative packets (cum pkts)

for a session. The decision tree produces the following rules:

128

N1 N2 N3 D1 D2

−500

−400

−300

−200

−100

Neutral

100

C
au

sa
l

E
ff

ec
t

o
n

 T
h

ro
u

g
h

p
u

t
(k

b
/s

)

Exp. 1

N1 N2 N3 D1 D2

Exp. 2: Service 1

N1 N2 N3 D1 D2

Exp. 2: Service 2

N1 N2 N3 − D2

Exp. 3: BitTorrent

Figure 30: Causal effect (in kbps) for each ISP using Eq. 11, with 90% confi-
dence intervals. Each point indicates the confounding-adjusted average difference in
throughput for each service and ISP in various experiments; the lines extend to 90%
confidence intervals. Near-zero values imply that the performance is close to base-
line and there is no observed causal relationship between the ISP and the service.
Large negative values indicate a significant causal relationship between the ISP and
performance degradation. Table 10 presents numeric values for the causal effect and
confidence intervals.

cum pkts <= 10103 --> not discriminated

cum pkts > 10103 --> discriminated

and yields 89% accuracy with a 7% false positive rate. The decision tree ignored

the location variable, correctly inferring that ISP D1 is not discriminating based on

destination but rather when the flow’s duration exceeds 10,103 packets. Recall from

Table 9 that D1 drops packets for flows exceeding 10,000 packets.

For the BitTorrent experiment, we labeled the strata similarly, and used the J.48

algorithm. The resulting decision tree correctly identifies most of the identifiers for

129

Table 10: Causal effect (in kbps) for each ISP using Eq. 11, with 90% confidence
intervals. Figure 30 presents values for the causal effect and confidence intervals
graphically.

ISP Causal Effect on Service Performance (kbps)
Experiment 1. Simple Discrimination

HTTP Service
N1 2.10±15.1
N2 8.39±19.8
N3 14.65±17.3
D1 -108.6±39.1
D2 -424.91±72.1
Experiment 2. Long Flow Discrimination

HTTP S1 HTTP S2

N1 5.17±12.2 2.20±13.4
N2 4.80±17.3 6.1±24.6
N3 18.9±18.1 4.65±16.5
D1 -61.20±21.0 3.82±18.1
D2 5.36±16.2 -400.91±67.2
Experiment 3. BitTorrent Discrimination

BitTorrent
N1 11.71±46.1
N2 17.2±65.8
N3 20.56±40.1
D2 -306.13±120.8

the /24 networks that the ISP D2 discriminates. The accuracy and false positive rates

are 76% and 14% respectively.

We used the same technique for ISP D1 in the Simple Discrimination experiment,

but the decision tree fails to produce a conclusive tree, which is expected because D1

discriminates against all sessions without any criteria.

4.6.2.3 Can NANO identify sufficiency of confounders?

There is no automated way to enumerate all the confounding variables or determine

that a passive dataset has all the confounding variables. We apply a heuristic that

helps determine whether we are missing any major confounding variables.

If we are capturing all the confounding factors, then a regression function f(X ;Z),

trained on the ISP, X , and the confounding factors Z, should accurately predict the

130

response time y, and the predicted value ŷ, should be unbiased. We can test for

bias by verifying that the distribution of error, (y − ŷ)/y, is centered at zero, with

high confidence, and that there is no correlation between the error and the outcome

variable. Additionally, if the confounders are proximate or direct (other) causes for

service performance, f(), should be able to predict the outcome variable. There

may be other causal variables besides the ISP and the confounders that influence

performance and are needed for high-accuracy prediction. However, as long as these

variables are not correlated with the ISP, we do not need to account for them. As

a result, the predictor f() does not have to be high accuracy to rule out missing

confounders, it only needs to be unbiased.

We analyze this heuristic for determining the performance for service S1. We used

the ISP with the network round-trip time, the relative location of clients and servers,

and the cumulative bytes as the input variables for the predictor, f(). We use one

random 2/3 of the data for this experiment as training and other 1/3 as test, and

predict the performance for the test data. We found that the error was centered at

zero and showed small correlation with the outcome value. The correlation values

between the error and outcome variable are 0.01, 0.08, 0.05, 0.01, and 0.05 for ISPs

N1, N2, N3, D1 and D2, respectively, thus indicating that it is unlikely that there is

a major confounding variable missing.

Figure 31 shows the modulo prediction error, |(y − ŷ)/y|. The median error is less

than 30% for all the ISPs. Between 10% and 30% of the measurements have 60% or

more error for various ISPs, indicating that there may be other causes for performance

degradation besides what we capture. Because the error does not seem to correlate

with either the ISP or the performance, we believe that those causes do not correlate

with ISP and performance at the same time, and are thus not confounding.

131

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Relative Error

C
D

F

ISP N
1

ISP N
2

ISP N
3

ISP D
1

ISP D
2

Figure 31: Distribution of relative error in predicting the throughput for the Long
Flow Discrimination experiment with the variables that NANO collects.

4.6.2.4 Does NANO scale with the size of the input data?

We discuss the effect of data volumes on accuracy and the effect of number of clients

on NANO server load.

Data vs. accuracy As shown in Equation 6 and Equation 11, the confidence level

on the number of session measurements from the discriminating and the neutral ISPs,

as well as the number of strata in which we observe data.

The results in Table 30 for Experiment 2 are obtained using about 1,900 strata

(121 for location, and 15 for cumulative packets in a flow—other confounding factors

did not have variability for this experiment) and about 100,000 periodic measure-

ments obtained from the NANO-Agents. To assess the effect of fewer measurements,

we performed two random sub-samples of 50,000 and 20,000 measurements each. We

re-calculated the causal effect, and found that the mean causal effect did not change

appreciably for any of the ISPs, but the confidence interval widened by 1.2–1.9 times

for various ISPs using 50,000 measurements, and by 1.8–2.7 times for various ISPs

132

using only 20,000 measurements; this conforms to our expectations of having confi-

dence intervals expand by a factor of
√
5 and

√
2, respectively. After a participating

client installs the NANO-Agent, NANO servers receive data continually, which makes

it easy to collect several hundred thousand measurements for every client in a matter

of few days (We collected the measurements for the experiments in roughly 2 hours).

Thus, in a real deployment, NANO should be able to gather enough measurements

to be highly accurate.

The other aspect of accuracy is coverage; the more strata that NANO-Agents

cover, the better the information it can provide information about discrimination

based on certain features. Certain confounders, such as time-of-day variation, are

easy to cover because they simply require gathering estimates over a long time interval

without requiring additional clients to participate. Increasing coverage across other

confounders, such as location or application type, the type of network interface, or

operating system, require participation from additional clients. The required number

of clients grows roughly as the size of the cross-product of the range of the confounding

variables that require separate clients for measurements. We note that NANO-Agents

running on laptops may be quite valuable for helping to increase coverage, because

they can cover multiple locations, ISPs, and network-interface types as the user roams.

NANO tracks the changes. Unfortunately, as the user roams, some of the information

that the user provides to NANO-Agent at installation time becomes invalid. We are

improving NANO so that it can automatically infer these variables instead of relying

on users to provide the correct values.

CPU and storage overhead We present some back-of-the-envelope numbers on

the scalability of NANO. Based on the data that NANO-Server is receiving from

the early adopters, uncompressed reports require about 3.2 kB every ten seconds on

average per user. Using an estimate of 2.5 kbps per user, to support 10,000 users,

the NANO-Servers need roughly 25 Mbps bandwidth and about 12 GB of storage per

133

day to archive the user reports. On a server with 3.2GHz CPU and 4 GB of RAM,

NANO takes about 22 ms on average to demarshall a client report, stratify the data,

and insert it into a database. At this rate, NANO can support about 5,500 clients

in real-time. Our current implementation spawns a new process for batch processing

of all the reports that the server receives every minute. Optimizing this process can

improve scalability further. Since NANO-Agents perform a DNS lookup to establish

a connection to the NANO-Server, we could ultimately use DNS load balancing to

distribute load and storage across multiple servers.

4.7 Discussion

In this section, we address limitations with NANO and our ongoing work to address

these limitations.

Sufficiency of confounding variables for real world application If NANO fails

to adjust for certain confounding variables, it may miscalculate the causal effect: both

over and underestimation are possible. Unfortunately, there is no automated way to

enumerate all confounding variables for a problem, or to conclusively test that a given

set of confounding variables is sufficient. As in biostatistics and epidemiology where

passive datasets are used for causal inference, enumerating confounding variables

relies on domain knowledge. Fortunately, network performance is well understood

among researchers, and it is relatively easy to enumerate the variables that correlate

with ISPs and can also significantly affect service performance. We believe that the

variables that we listed is comprehensive, and any remaining confounding variables

will have only minimal effect on accuracy of causal inference. Still, if we find that

there are additional confounding variables, we can collect data for them in updated

releases for NANO-agents and correct the inference at the server end.

Better privacy for users In addition to the techniques already implemented in

NANO-Agents, NANO-Agents could further protect user privacy in three ways. First,

134

NANO-Agents could collect data from only the top ‘k’ Web sites (e.g., according to

Alexa) and strip personally-identifiable information from the payloads of this traffic.

The data collected from clients would only reveal whether they had visited popular

sites (not overly sensitive, since many users visit these sites) and the performance

they were experiencing to those sites. Second, NANO could use a combination of

passive and active measurements to produce the corpus of data used for inference;

in such cases, the NANO-Server would receive all measurements, but would not be

able to distinguish which traffic was generated solely to probe the network and which

traffic was actually initiated by the client. Finally, clients using NANO might send

their reports through an anonymizing network (e.g., Freenet [14]) that obfuscates the

source of the original report. Of course, the IP addresses of the clients would still be

contained in the traffic traces, but in the process of mixing, IP addresses on various

traces could possibly be swapped without affecting the stratification.

Integrity of reports from agents NANO-Agents could lie about the data they

collected, by producing false traces or modifying the statistics about the traffic at the

client. In these cases, it may be difficult to detect when a client reports false statistics

about its observed network performance. We suggest two possible techniques that

could help mitigate this possibility. First, NANO could collect data from NANO-

Agents that have similar values for various confounding factors (e.g., same upstream

ISP, same portion of the network topology). In these cases, reported performance

measurements yield continuous discrepancies, NANO could determine that a NANO-

Agent was reporting inaccurate results.

Defense against evasion NANO establishes causality by measuring the difference in

expected values for response times given the use of a specific ISP and its deviation from

baseline measurements. An ISP might try to conceal discrimination by treating traffic

such that mean value of performance remains unaffected. For example, ISP may give

135

exceptionally good performance to some clients and degrade performance for others.

To defend against this type of attack, we imagine that NANO might be extended

in two ways. First, we could modify NANO’s causal inference algorithms to operate

on multiple points in the response-time distribution, as opposed to simply inferring

causality based on mean values. Second, presuming that an ISP’s attempt to game

the detection may vary over a range of time, we could run NANO’s inference algorithm

over different time granularity to attempt to catch more fine-grained variations in an

ISP’s policies across users, services, or applications.

Augmenting with active measurements NANO’s reliance on passive measure-

ments is limiting because NANO can obtain measurements for specific services only

when the user of the client accesses those services. On demand or active measure-

ments from the client can be beneficial in a number of ways; (a) measurements to

known good services can help mitigate chances of false inference; (b) if there are not

enough samples for comparison between ISPs for certain stratum or services, these

samples can be obtained actively. NANO-Agent has an active probing client that peri-

odically contacts NANO-Server to obtain information about servers for which active

measurements are desired. Currently, NANO-Agent can perform HTTP GET and

POST to servers that the NANO-Server directs the client to using HTTP redirects.

Motivating users to install NANO-Agents NANO users can only draw mean-

ingful conclusions if they compare their measurements to those of other users. Thus,

encouraging users to deploy NANO is critical to its success. To provide users an

immediate incentive to install NANO-Agents, independently of whether other users

have deployed agents, we have developed a Web interface where users can view their

own performance statistics in isolation, as well as compare their performance statis-

tics to other users. We hope that allowing users to analyze their own data through

an interactive interface will give users the incentive to deploy the tool and help build

136

a critical mass of users running NANO-agents.

137

CHAPTER V

RELATED WORK

In this section we provide an overview of prior work related to this dissertation.

A key component in response time for Web requests is TCP transfer latency. There

has been significant work on TCP throughput and latency prediction using TCP mod-

eling [4, 44, 11]. Due to inherent complexity of TCP these models make simplifying

assumptions to keep the analysis tractable; these assumptions may produce inaccu-

rate results. Recently, there has been effort to embrace the complexity and using

past behavior to predict TCP throughput. He et al. [25] evaluate predictability using

short-term history, and Mirza et al. [39] use machine-learning techniques to estimate

TCP throughput. We also use machine-learning and statistical inference in our work,

but techniques of [39] are not directly applicable because they rely on estimating path

properties immediately before making a prediction. Further, they do not provide a

framework for evaluating what-if scenarios. The parametric techniques, as we show

in Section 2.8.5, unfortunately are not very accurate for predicting network-level

response time. Further, TCP transfer is not sufficient for predicting browser-level

response time.

Like WISE, WebProphet [34] also uses a dependency structure to estimate im-

pact of changes on page-load time. Unlike WISE, which uses network measurements

as nodes in the causal dependency graph, WebProphet uses Web-page objects as

nodes. Further, WebProphet only models simple, linear dependencies in latency,

whereas WISE uses a full-blown non-parametric model that can estimate arbitrary

functions. We believe this technique is promising, but requires collecting client-side

measurements, which may not always be available to a CDN operator. As we show

138

in Section 2.8.5 WISE can accurately predict browser-level response time using only

server-side logs.

Recent work has used Bayesian inference for fault and root-cause diagnosis. SCORE

[31] uses spatial correlation and shared risk group techniques to find the best expla-

nation for observed faults in the network. Shrink [27] extends this model to a proba-

bilistic setting, because the dependencies among the nodes may not be deterministic

due to incomplete information or noisy measurements. Sherlock [5] additionally finds

causes for poor performance and also models fail-over and load-balancing depen-

dencies. Rish et al. [49] combine dependency graphs with active probing for fault

diagnosis. These projects focus on diagnosis but do not evaluate what-if scenarios.

Perhaps the most closely related work to HIP is WhyHigh [32], which focuses

on helping network operators identify groups of prefixes that are experiencing high

latency for Google’s Web service. WhyHigh seeks to explain the underlying causes of

high round-trip time for groups of clients. This information is useful, but operators

also need to know the causes for high latencies in service transaction times. As

Figure 21 shows, high round-trip time is only one possible cause for high latencies

in service response times. Our results in Table 7 shows that other factors, such as

backend processing time, client access network bandwidth, loss and retransmits cause

a significant number of high-latency transactions.

HIP relies on causal discovery to identify potential causes of high latency trans-

actions; there is a large body of related work on finding root causes of performance

and reachability problems in networks. Several recently developed tools use tech-

niques based on Bayesian belief propagation or minimum set to find root causes for

network-related problems. SCORE [31] uses spatial correlation and shared risk group

techniques to find the best explanation for observed faults in the network. Shrink [27]

extends this model to a probabilistic setting, because the dependencies among the

139

nodes may not be deterministic due to incomplete information or noisy measure-

ments. Sherlock [5] finds causes for poor performance and also models fail-over and

load-balancing dependencies. NetDiagnoser [17] and EtherTrace [37] use minimum

set cover based approaches to isolate root causes for reachability problems in ISP net-

works; these tools focus on locating failures within a network, not on isolating groups

of users with performance problems. Rish et al. [49] combine dependency graphs with

active probing to improve fault diagnosis.

The challenges in HIP are more difficult that those that any of these systems

address. With the exception of Sherlock, existing techniques diagnose problems for

binary failures. Sherlock considers considers a third “troubled” state for causes,

but does not analyze performance for clients in terms of a continuous response-time

distribution like HIP. On the other hand, HIP analyzes causes of high latency; thus,

both the contributing factors for Web transaction latency and the output variable

itself are continuous; both of these characteristics make the problem more challenging

than existing approaches.

WebProphet [34] uses dependencies between Web-page objects to predict a client’s

browser-level response time. WebProphet requires collecting client-side measure-

ments, which may not always be available to a CDN operator. Still, if this data

is available, we believe that HIP’s techniques might also apply to WebProphet to

help operators identify how to improve client download times for specific Web pages.

Glasnost [18] detects TCP connection resets of peer-to-peer applications. It simu-

lates the BitTorrent protocol and detects spurious TCP RST packets which might be

generated by the ISP to throttle BitTorrent. Glasnost is effective at detecting current

discrimination technique against BitTorrent traffic, but if ISPs change the discrim-

ination mechanism, then Glasnost will need to incorporate new tests. NVLens [57]

focuses on detecting performance degradation among backbone ISPs via setting of

TOS bits in the IP headers of the ICMP packets, so its analysis is specific to this

140

mechanism.

Both Network Diagnostic Tool (NDT) [12] and Network Path and Application

Diagnostics (NPAD) [38] rely on active client probing to detect network performance

issues. Netalyzr [42] performs a series of tests using the client’s browser to check the

status of commonly used protocols, such as, POP, Bittorrent, and SSH. Diffprobe [28]

performs active measurements from client machines to M-Lab [40] nodes to detect any

ISP traffic discrimination based on traffic shaping mechanisms. These tools perform

active measurements, which are detailed, but also evadable.

Tripwire uses a fingerprint-based technique to detect modification of in-flight pack-

ets [48]. We focus on violations that result in performance degradation, rather than

modification of content. These techniques rely on active measurements and focus on

specific discrimination mechanisms as opposed to in situ measurements.

NetDiff [36] detects performance differences between backbone ISPs. NetDiff uses

the geographic location as a normalizing factor for fair comparison between ISPs,

and in a sense adjusts for a confounding factor in the assertion that one ISP is

better than another. NetDiff uses ICMP packets to probe the paths, but an ISP can

evade detection by detecting such probe packets. NANO overcomes these difficulties

by passively monitoring the performance of the various services. NANO builds on

previous work on characterizing ISP networks [35] and monitoring ISP SLAs [51]

to adjust for ISP topology differences. Keynote [30] compares performance across

backbone ISPs; in addition to the above drawbacks, it also requires ISP cooperation

for placement of measurement nodes, which may not be possible.

Another interesting point in the design space is comparison performance of sim-

ilar services within an ISP and then determining whether there is a difference in

performance among these services; NVLens [57], for instance, compares the latency

for BitTorrent packets with the performance for HTTP packets. We believe that

while interesting, this choice of comparison presents additional challenges that can

141

be difficult to overcome. The services may differ in ways that naturally affect their

performance: for example, a service that sends packets at a higher burst-rate may ex-

perience higher loss and latency for similar average transfer rate. Even if two services

have similar traffic patterns, (e.g., due to both using TCP), the completion time for a

request may depend on additional server side variables, such as the back-end delays,

caching rate, or rate-limiting at the server end. A fair direct comparison between

performance would require comparing the performance of services that are similar in

all aspects that can affect a service’s performance; this can be difficult to achieve in

general.

142

CHAPTER VI

CONCLUSION

This dissertation presented tools and techniques for modeling performance of Internet-

based services using probabilistic causal modeling. We presented three tools, WISE,

HIP and NANO that use causal models to facilitate performance related network

management tasks using causal reasoning on passively collected data. While these

models are not a replacement a domain expert, they are extremely useful for au-

tomating complex tasks that arise routinely for network management. In particular,

we presented tools for three important network management problems.

Answering What-if Questions. Network designers must routinely answer ques-

tions about how changes to configuration and deployment will affect service response

times. Without a rigorous method for evaluating these scenarios, the network de-

signers must rely on ad hoc methods or resort to costly field deployments. Chapter 2

presented WISE, a tool for evaluating what-if deployment scenarios for content dis-

tribution networks. To our knowledge, WISE is the first tool to automatically derive

causal relationships from Web traces and apply statistical intervention to predict

networked service performance. Our evaluation demonstrates that WISE is both fast

and accurate: it can predict response-time distributions in “what if” scenarios with

high accuracy. WISE is easy to use; its scenario specification language makes it easy

to specify complex configurations in just a few lines of code. WISE is also deployed:

Googlehas used WISE to evaluate what-if scenarios in practice.

Answering How-to Questions. One of the most vexing problems that content

distribution network operators face is how to improve performance for their clients.

Much recent work has focused on helping operators answer hypothetical “what if”

143

configurations; these tools help operators determine how a particular configuration

would affect client response time or performance, but they presume that an operator

knows an appropriate hypothetical configuration to test in the first place. Thus,

figuring out how to help operators answer these complementary “how to” questions

has remained an important practical problem.

Chapter 3 presented HIP, the first tool to help CDN operators improve the per-

formance of CDNs for clients. HIP performs clustering to help operators focus on

groups of clients that are experiencing poor performance due to the same underlying

case. It also performs temporal analysis to distinguish different types of causes that

can help narrow the search for the appropriate corrective actions. Finally, it per-

forms statistical intervention using an existing “what if” scenario evaluator, WISE,

to evaluate the effectiveness of potential solutions.

Many of the techniques from HIP may apply to other networking problems where

operators commonly encounter “how to” problems, such as traffic engineering and

network troubleshooting. They may also ultimately help users of other existing “what

if” tools improve client performance in those respective settings.

Quantifying ISP Discrimination. Network neutrality is an important problem

for Internet-based services. The service providers and users want to know whether

their ISP is degrading the performance in some way. Chapter 4 presented NANO, a

tool that applies causal inference to passively collected data from end-hosts to detect

service degradation caused by ISP discrimination. In contrast to existing approaches,

which apply rules to detect specific types of discrimination and actively probe ISPs to

detect discrimination, NANO observes in situ traffic and performs causal inference to

determine whether the characteristics of the actual application traffic itself shows any

variations that can be attributed to the ISP. NANO’s approach enables it to detect

more types of discrimination than existing approaches and makes it more difficult for

ISPs to evade by treating test probes differently than data traffic.

144

Our evaluation showed that NANO can detect discrimination for different policies

and application types, thus demonstrating that NANO’s detection is general and

can detect discrimination even when the ISP’s discrimination policies are not known

a priori, as long as the variables that may significantly confound the relationship

between ISP policy and service performance are known. NANO can also quantify the

extent of discrimination and identify the discrimination criteria. Our experiments

also showed that NANO scales well with the number of clients. We have released

NANO and intend to collect data from a wide range of heterogeneous NANO-Agents

across the Internet. We are working with a large content provider to deploy NANO

on a large, geographically distributed measurement platform.

145

REFERENCES

[1] “Hadoop.” http://hadoop.apache.org/core/, 2008. (Date accessed: Jan.

2008).

[2] Akamai, “http://www.akamai.com,” 1999. (Date accessed: Jan. 2008).

[3] Andersen, N., “Cox ready to throttle P2P, non ”time sensitive” traffic.” http:

//tinyurl.com/bcexla, Jan. 2009. (Date accessed: Jan. 2009).

[4] Arlitt, M.,Krishnamurthy, B., andMogul, J., “Predicting Short-transfer

Latency from TCP arcana: a Trace-based Validation.,” in Proc. ACM SIG-

COMM Internet Measurement Conference, (New Orleans, LA), Oct. 2005.

[5] Bahl, P., Chandra, R.,Greenberg, A., Kandula, S., Maltz, D. A., and

Zhang, M., “Towards highly reliable enterprise network services via inference

of multi-level dependencies,” in Proc. ACM SIGCOMM, (Kyoto, Japan), Aug.

2007.

[6] Barbir, A., Cain, B., Nair, R., and Spatscheck, O., Known Content

Network (CN) Request-Routing Mechanisms. Internet Engineering Task Force,

July 2003. RFC 3568.

[7] Barroso, L. A., Dean, J., and Holzle, U., “Web Search for a Planet: The

Google Cluster Architecture,” No. 2, pp. 22–28, 2003.

[8] Bavier, A., Bowman, M., Culler, D., Chun, B., Karlin, S., Muir, S.,

Peterson, L., Roscoe, T., Spalink, T., andWawrzoniak, M., “Operating

System Support for Planetary-Scale Network Services,” in Proc. First Symposium

146

on Networked Systems Design and Implementation (NSDI), (San Francisco, CA),

Mar. 2004.

[9] “Its back to ’Pipes’ and ’Free rides’: Internet neutrality under attack (again).”

http://tinyurl.com/lyjo98, June 2009. (Date accessed: June 2009).

[10] “BT Heavily Throttling BBC, All Video.” http://tinyurl.com/m2v7f5, May

2009. (Date accessed: May 2009).

[11] Cardwell, N., Savage, S., and Anderson, T., “Modeling tcp latency,” in

Proc. IEEE INFOCOM, (Tel-Aviv, Israel), Mar. 2000.

[12] Carlson, R., “Network Diagnostic Tool.” http://e2epi.internet2.edu/

ndt/. (Date accessed: July 2008).

[13] Cheng, D.,Kannan, R.,Vempala, S., andWang, G., “A Divide-and-Merge

Methodology for Clustering,” ACM Transactions on Database Systems, vol. 31,

no. 4, pp. 1499–1525, 2006.

[14] Clarke, I., “A distributed decentralised information storage and retrieval sys-

tem,” Master’s thesis, University of Edinburgh, 1999.

[15] Collins, J., Hall, N., and Paul, L., “Do all and only causes raise the prob-

abilities of effects?,” 2002.

[16] Dean, J. and Ghemawat, S., “MapReduce: Simplified data processing on

large clusters,” in Proc. 6th USENIX OSDI, (San Francisco, CA), Dec. 2004.

[17] Dhamdhere, A., Teixeira, R.,Dovrolis, C., andDiot, C., “Netdiagnoser:

Troubleshooting network unreachabilities using end-to-end probes and routing

data,” in Proc. CoNEXT, Dec. 2007.

147

[18] Dischinger, M., Mislove, A., Haeberlen, A., andGummadi, K. P., “De-

tecting bittorrent blocking,” in Proc. Internet Measurement Conference, (Vou-

liagmeni, Greece), Oct. 2008.

[19] “Emulab.” http://www.emulab.net/. (Date accessed: Jan. 2008).

[20] Felten, E., “Three Flavors of Net Neutrality.” http://www.

freedom-to-tinker.com/blog/felten/three-flavors-net-neutrality,

Dec. 2008. Date accessed (Dec. 2008).

[21] Freedman, M. J., Freudenthal, E., and Mazières, D., “Democratizing

content publication with Coral,” in Proc. First Symposium on Networked Systems

Design and Implementation (NSDI), (San Francisco, CA), Mar. 2004.

[22] “Protocol Buffers.” http://code.google.com/apis/protocolbuffers. (Date

accessed: Dec. 2008).

[23] Gross, G., “Google, partners release net neutral-

ity tools.” http://www.thestandard.com/news/2009/01/28/

google-partners-release-net-neutrality-tools, Jan. 2009. (Date ac-

cessed: Jan. 2009).

[24] Hastie, T., Tibshirani, R., and Friedman, J., The Elements of Statistical

Learning: Data Mining, Inference, and Prediction. Second Ed. Springer, 2009.

[25] He, Q., Dovrolis, C., and Ammar, M., “On the predictability of large trans-

fer tcp throughput,” in Proc. ACM SIGCOMM, (Philadelphia, PA), Aug. 2005.

[26] Jewell, N., Statistics for Epidemiology. Chapman & Hall/CRC, 2004.

[27] Kandula, S., Katabi, D., and Vasseur, J.-P., “Shrink: a tool for failure

diagnosis in ip networks,” in ACM SIGCOMM workshop on Mining network data

(MineNet’05), (New York, NY, USA), pp. 173–178, ACM, 2005.

148

[28] Kanuparthy, P., “Diffprobe: Detecting ISP Traffic Discrimination.” http:

//www.cc.gatech.edu/~partha/diffprobe/. (Date accessed: Nov. 2009).

[29] Kaufman, L. and Rousseeuw, P. J., Finding Groups in Data: An Introduc-

tion to Cluster Analysis. Wiley-Interscience, 1990.

[30] “Keynote Home Page.” http://www.keynote.com/, 1999. (Date accessed: Jan.

2009).

[31] Kompella, R. R., Yates, J., Greenberg, A., and Snoeren, A. C., “Ip

fault localization via risk modeling,” in Proc. 2nd USENIX NSDI, (Boston, MA),

May 2005.

[32] Krishnan, R., Madhyastha, H. V., Jain, S., Srinivasan, S., Krishna-

murthy, A., Anderson, T., and Gao, J., “Moving beyond end-to-end path

information to optimize CDN performance,” in Proc. Internet Measurement Con-

ference, 2009.

[33] Lambert, D. and Liu, C., “Adaptive thresholds: Monitoring streams of net-

work counts,” in Journal of the American Statistical Association, vol. 101, No.

473. Applications and Case Studies, Mar. 2006.

[34] Li, Z., Zhang, M., Zhu, Z., Chen, Y., Greenberg, A., and Wang, Y.-M.,

“Webprophet: Automating performance prediction for web services,” in Proc. 7th

USENIX NSDI, (San Jose, CA), Apr. 2010.

[35] Madhyastha, H. V., Isdal, T., Piatek, M., Dixon, C., Anderson, T. E.,

Krishnamurthy, A., and Venkataramani, A., “iPlane: An information

plane for distributed services,” in Proc. 7th USENIX OSDI, (Seattle, WA), Nov.

2006.

149

[36] Mahajan, R., Zhang, M., Poole, L., and Pai, V., “Uncovering Performance

Differences among Backbone ISPs with Netdiff,” in Proc. 5th USENIX NSDI,

(San Francisco, CA), Apr. 2008.

[37] Mansy, A., bin Tariq, M., Feamster, N., and Ammar, M., “Characteriz-

ing VLAN-Induced Sharing in a Campus Network,” in Proc. Internet Measure-

ment Conference, (Chicago, Illinois), Oct. 2009.

[38] Mathis, M., Heffner, J., and Reddy, R., “Network Path and Ap-

plication Diagnosis.” http://www.psc.edu/networking/projects/pathdiag/.

(Date accessed: Jan. 2009).

[39] Mirza, M., Sommers, J., Barford, P., and Zhu, X., “A machine learning

approach to tcp throughput prediction,” in Proc. ACM SIGMETRICS, (San

Diego, CA), June 2007.

[40] “Measurement Lab.” http://measurementlab.net, Jan. 2009. (Date accessed:

Jan. 2009).

[41] “NANOWebsite..” http://www.gtnoise.net/nano. (Date accessed: Dec. 2008)

[42] “Netalyzr.” http://netalyzr.icsi.berkeley.edu/. (Date accessed: Jan.

2009).

[43] Netezza, “Business intelligence data warehouse appliance.” http://www.

netezza.com/, 2006. (Date accessed: Jan. 2008).

[44] Padhye, J., Firoiu, V., Towsley, D., and Kurose, J., “Modeling TCP

Throughput: A Simple Model and its Empirical Validation,” in Proc. ACM

SIGCOMM, (Vancouver, British Columbia, Canada), pp. 303–323, Sept. 1998.

[45] Pearl, J., Causality: Models, Reasoning, and Inference. Cambridge University

Press, 2000.

150

[46] Pike, R., Dorward, S., Griesemer, R., and Quinlan, S., “Interpreting the

data: Parallel analysis with sawzall,” Scientific Programming Journal: Special

Issue on Worldwide Computig Programming Models and Infrastructure, vol. 13,

pp. 227–298, Dec. 2005.

[47] R Development Core Team, R: A Language and Environment for Statistical

Computing. R Foundation for Statistical Computing, Vienna, Austria, 2009.

ISBN 3-900051-07-0.

[48] Reis, C., Gribble, S. D., Kohno, T., and Weaver, N. C., “Detecting

in-flight page changes with web tripwires,” in Proc. 5th USENIX NSDI, (San

Francisco, CA), Apr. 2008.

[49] Rish, I., Brodie, M., and Ma, S., “Efficient fault diagnosis using probing,” in

AAAI Spring Symposium on Information Refinement and Revision for Decision

Making: Modeling for Diagnostics, Prognostics, and Prediction, 2002.

[50] Robert Beverly, S. B. and Berger, A., “The internet’s not a big truck: To-

ward quantifying network neutrality,” in Passive & Active Measurement (PAM),

(Louvain-la-neuve, Belgium), Apr. 2007.

[51] Sommers, J., Barford, P., Duffield, N., andRon, A., “Efficient Network-

wide SLA Compliance Monitoring,” in Proc. ACM SIGCOMM, (Kyoto, Japan),

Aug. 2007.

[52] Sprites, P. andGlymour, C., “An algorithm for fast recovery of sparse causal

graphs,” in Social Science Computer Review., vol. 9, pp. 62–72, 1991.

[53] Tariq, M. B., Bhandakar, K., Valancius, V., Feamster, N., and Am-

mar, M., “Answering “what-if” deployment and configuration questions with

wise: Techniques and deployment experience,” tech. rep., Georgia Tech School

151

of Computer Science, Jan. 2010. http://www.cc.gatech.edu/~mtariq/pub/

wise-tr.pdf (Date accessed: Jan. 2010).

[54] Tariq, M. B., Zeitoun, A., Valancius, V., Feamster, N., and Am-

mar, M., “Answering “What-if” Deployment and Configuration Questions with

WISE,” in Proc. ACM SIGCOMM, (Seattle, WA), Aug. 2008.

[55] Wasserman, L., All of Statistics: A Concise Course in Statistical Inference.

Springer, 2003.

[56] Wolberg, J. R., Data Analysis Using The Method Of Least Squares: Extracting

The Most Information From Experiments. Springer, 2005.

[57] Zhang, Y., Mao, Z. M., and Zhang, M., “Ascertaining the Reality of Net-

work Neutrality Violation in Backbone ISPs,” in Proc. 7th ACM Workshop on

Hot Topics in Networks (Hotnets-VII), (Calgary, Alberta. Canada.), Oct. 2008.

152

