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SUMMARY

This thesis presents methods and a system for video search over the internet

or the intranet. The objective is to design a real time and automated video clus-

tering and search system that provides users of the search engine the most relevant

videos available that are responsive to a query at a particular moment in time, and

supplementary information that may also be useful. The thesis highlights methods

to mitigate the effect of the semantic gap faced by current content based video search

approaches. A context-sensitive video ranking scheme is used, wherein the context is

generated in an automated manner.
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CHAPTER I

INTRODUCTION

Videos have become a regular part of our lives due the recent advances in video com-

pression technologies, availability of affordable digital cameras, high-capacity digital

storage media and systems, as well as growing accessibility to high speed communi-

cation networks and computers. Thousands of new videos are being uploaded over

the Internet every second. However, without a fast and reliable video search engine

it is difficult to retrieve videos.

The videos content available on the web ranges from news videos, video lectures

on various subjects, music videos, etc. Some types of video content, particularly

news video content is highly dynamic in nature, as different video news broadcasting

website constantly keep uploading news videos. The current commercial web search

engines are guided by textual content. These search engines crawl the web for new

content, and index keywords from the text to make the content searchable. However,

currently no commercially available search engine addresses the problem of searching

dynamic video content such as news videos. The life time of news videos is only a

few hours as new videos on the same news story are uploaded on the web every few

hours. The video search engines available currently rely on the metadata information

which is in textual form. This meta information is available in the form of video title,

captions, descriptions and the textual content surrounding the video on a webpage.

Although the metadata information is valuable for video search, however the amount

of metadata available maybe limited and subjective in nature. Therefore, there is a

need to extract more information related to the video. Current research efforts for
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video search have focused on augmenting the video meta-information with textual in-

formation from closed captions and automatic speech recognition. These approaches

are error prone and therefore relying completely on this augmented meta-information

may lead to incorrect search results.

1.1 Challenges in Video Search

Video search is much more complicated than text search, which has led to lot of

research efforts in this fied. The challenges involed in video search are as follows:

1.1.1 Video acquisition

The way text search engines acquire new content is that they use crawlers to find

content for indexing HTML pages. Links that are found in a crawled HTML page are

used to crawl and index more pages. Acquiring video content on the other hand is

more complicated as videos are not directly embedded in HTML pages. Most video

broadcasting websites provide video content through streaming. Therefore direct

links to a video may not be available by just parsing the HTML pages in which the

videos are streamed. Videos are available is a number of formats such as Flash, MP4,

etc. Therefore videos acquisition and indexing requires an additional step of video

transcoding to convert videos in different formats to one standard format. Parsing

videos to extract video metadata is another challenge. Unlike, HTML pages which

can easily be parsed to extract the text from webpages, parsing videos is difficult, as

the videos are available is a number of different formats, and have large number of

parameters and supplementary information as a part of the file headers. The video

metadata is often lost in transcoding, therefore the metadata extraction has to be

done before just after video acquisition.
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1.1.2 Video Indexing and Ranking

Ranking videos based on relevance to a query is more complicated than ranking text

documents. A lot of algorithms are available for ranking and indexing text documents,

and the relevance to a search query is done based on the number of matching keywords

between the query and the text document. The video metadata information available

is often incomplete and subjective. Therefore, keyword based ranking for videos may

lead to incorrect results.
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CHAPTER II

PREVIOUS WORK

There are many different approaches to video search, as discussed below:

2.1 Content Based Video Search

There are two categories of content based video search approaches which either use

the low-level visual content or high-level semantic content, as described below:

2.1.1 Low-level visual content based search

The low-level content based approach uses low-level visual content characterized by

visual features such as color, shapes, textures, motion, edges, etc for video search.

These low level features can be extracted automatically to represent the video con-

tent. There are several different classifications schemes for video content. For ex-

ample, MPEG-7 is a multimedia content description scheme, which has standardized

more than 140 classification schemes that describe properties of multimedia content.

MPEG-7 provides different descriptors for color, motion, shapes, textures, etc to store

the features extracted from video in a fully standards-based searchable representation.

Other multimedia description schemes used in the past are Thesaurus of Graphical

Material (TGM-I), TV-Anytime, SMPTE Metadata Registry from Society of Mo-

tion Picture and Television Engineers and P/Meta Metadata Scheme from European

Broadcasting Union. A limitation of low-level visual content based approach is the

semantic gap between users queries and the low-level features that can be automati-

cally extracted. Virage video engine [26], CueVideo [27] and VideoQ [28] are some of

the low-level content based video search engines.
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2.1.2 High-level semantic content-based search

The high-level semantic content based approach uses high-level semantic content char-

acterized by high-level concepts like objects and events for video search. Unlike, low-

level features which can be automatically extracted, the high-level semantic content

is difficult to characterize from raw video data. The reason being that at physical

level, a video is nothing but a temporal sequence of pixel regions without a direct

relation to its semantic content. There are two different types of high-level semantic

content based approaches:

2.2 Concept-based video search

The concept based video search approaches use concepts detectors (like building,

car, etc) to extract semantics from low level features [16]-[20]. These use shared

knowledge ontology such as WordNet or external information from Internet to bridge

the semantic gap between the user queries and raw video data. For example, LSCOM

(Large-Scale Concept Ontology for Multimedia) [21] includes 834 semantic concepts.

MediaMill [23] extended the LSCOM-lite set by adding more high level semantic

features (HLFs) amounting to a total of 101 features. Informedia [23] is another

well known system which uses HLFs for video search. Though semantic concepts are

useful in retrieving shots which cannot be retrieved by textual features alone, the

search accuracy is low. To overcome these limitations, event based approaches have

been used.

2.3 Event/Topic-based video search

The event/topic based approaches use event/topic structures from video for provid-

ing additional partial semantics for search. Text annotations, closed captions and

keywords are used to detect events and topics in a video. The concept of text-based

topic detection and tracking for news videos, in which the news clusters are generated
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based on lexical similarity of news texts was introduced in [14]. Semantics extracted

from news clusters for video story boundary detection and search were utilized in [15].

The importance of event text for video search was demonstrated in [24].

The approaches discussed so far belong to a broad category that we define as

content based video search, which either uses the low-level visual content or high-

level semantic content (or both). While the process of extraction of visual features is

usually automatic and domain independent, extracting the semantic content is more

complex, because it requires domain knowledge or user interaction or both. The high-

level content based approach does not have the limitation of semantic gap. It is based

mainly on the attribute information like text annotations and closed captions, which

are associated to video manually by human. The process of manual annotation is

not only time consuming but also subjective. Moreover, multiple semantic meanings

such as metaphorical, hidden or suppressed meanings can be associated with the same

video content which makes the process of content description even more complex. For

example, a HLF like fire in a video sequence could have different semantic meanings

like explosion, forest fire, etc. To overcome the limitations of both the low-level

and high-level content based approaches, hybrid video search approaches have been

proposed which provide an automatic mapping from low-level features to high-level

concepts [25].
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CHAPTER III

CONTEXT BASED VIDEO SEARCH

Context based video search approach uses contextual cues to improve search precision.

This approach differs from content based approach as it uses story-level contextual

cues, instead of (or supplementing) the shot-level visual or semantic content, for video

search. The contextual cues intuitively broaden query coverage and facilitate multi-

modal search.

Commercial video search engines like Google Video and YouTube use text annotations

and captions for video search. Repositories of large number of videos are searched

using the keywords extracted from captions and text annotations. However, neither

the keywords are effectively linked to the video content, nor are they sufficient for

to make an effective video search engine. Moreover, the process of building such

repositories is user dependant, and relies on the textual content provided by the user

while uploading the video. The search process in these search engines is offline as it

is dependant on user generated repositories. In the case of news videos, these search

engines result in a very disappointing performance as the news videos retrieved are

usually old and are presented in an unorganized manner. Moreover, for videos which

are uploaded with non-English captions and annotations, the search performance is

poor as it relies on translations of the non-English content which often changes the

context. All these limitations make these search engines unsuitable for real time and

automated video repository generation and search.

A recent product developed by EveryZing (www.everyzing.com) appears to allow the

ability to extract and index the full text from any video file, using speech recogni-

tion to find spoken words inside videos. Google appears to be experimenting indexing
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based on audio (www.labs.google.com/gaudi). However, relying completely on speech

recognition text may lead to incorrect results, as this technology is still not perfect.

An important aspect of any search engine is the ranking of the search results. Com-

mercial search engines like Google use a page ranking scheme that measures the

citation importance of a page. Pages with higher ranks are the ones to which a larger

number of other pages link with [31]. An outcome of this page ranking scheme is

that for a particular query, the same search results are produced, irrespective of the

users context of search. However, the context underlying the search for each user may

be entirely different. For example a graduate student working on a thesis related to

video processing is more likely to search for research papers and articles related to

this topic. A query term like video by such a user is more likely to be related to video

processing material. On the other hand, the same query for a user who watches a

lot of music videos is more likely to be related to music videos rather than research

papers on video processing. The context of the user query in the above two cases is

very different. The users context of search is also based on the users geographical

location. For example, a query term like fire from a user in California is more likely to

be related to forest fires in California rather than volcanic fires in Japan. The current

search engines provide search results which are same for all the users. Moreover, the

search results are fairly static and a query may return the same result for a number

of days, until the crawlers update the indexes and the pages are re-ranked. The users

objectives for video search on the other hand are dynamic. A system which does a

context sensitive ranking of search results can provide much more meaningful results

for a user.

We propose a novel context based video clustering and search approach which

attempts to make the generation of automated real time video repositories efficient,

and also tries to make the process of video browsing and search more meaningful. The

8



Figure 1: Semantic gap between the low level features and user queries is bridged
by the video context.

system is very effective particularly for news video search. Our system is different

from the existing context based video search systems for the following reasons:

(1) The news context is derived from a cluster of similar text articles and is used to

crawl and cluster videos from different video broadcast sources.

(2) A dynamic mapping from the generated context to the video content is done using

the automatic speech recognition (ASR) text, text annotations and closed captions.

(3) A context-sensitive ranking scheme called VideoRank, is used to assign ranks to

videos with respect to different contexts.

(4) A query expansion technique is used to enhance the search precision as the users

objective of the search may not be clear with the short and imprecise query terms

provided.

The above differences are significant in terms of generating good results for video

search as the video clustering, ranking and search processes are guided by compre-

hensive contexts generated from cluster of similar text articles.
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There are at least five factors that affect the quality of our search, particularly for

news videos:

(1) The context of a news item is dynamic in nature and needs to be updated regu-

larly.

(2) A context derived from multiple news sources is more meaningful, than the one

from just a single news source

(3) Clustering of news videos from multiple sources can be made more meaningful

based on a context derived from multiple textual news articles

(4) Searching news videos clustered automatically in this manner makes the search

process more accurate

(5) Similar news topics and events tend to yield similar videos and thus the cluster-

ing of videos can be guided by a comprehensive context generated from several news

sources.
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CHAPTER IV

FRAMEWORK

Our approach top video search differs from commercial web search engines such as

Google, Bing, etc, in that these search engines, crawl and index textual content

from HTML pages, PDF documents, etc. Our approach also differs from commercial

video search engines such Google Video, YouTube, etc, in that these video search

engines rely on the video metadata, which may not provide sufficient information for

an effective video search. These video search engines, use keywords from the video

descriptions or user tags for search. Moreover, these search engines are not effective

for dynamic video content such as news videos. Our approach on the other hand

is based on real-time video clustering and search, which is very effective for news

videos. The system is completely automated and provides the capability to search,

crawl, archive, index, and browse news videos. As a proof of concept, we have created

a system called Georgia Tech in the News, for news videos related to Georgia Tech.

The framework of the system is described as follows:

4.1 News Clustering

Our system crawls various news sources and internet news clustering services (e.g.,

Google News or Samachar.com) and extracts all the news items, along with the links

to the news articles. A local cache of the news text and links extracted from different

news sources is made. The clustered news items are then classified into different con-

text classes (e.g., political, business, weather, sports, entertainment, technology, etc).

The idea is that the online news sources broadcasting videos may not have enough

text based information to derive a complete context of the news story. Similarly, the
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online text based news services may not be directly linked to the news video broad-

casting websites.

Our system tries to bridge the gap between these two categories of news services.

The ASR-text obtained from the video is not always accurate. McCarley and Franz

[13] showed that incorrectly recognized speech can often change the context of the

news. Therefore, approaches which rely only on extracting the video context from

the ASR-text are not accurate. Figure 2 shows the steps involved in news clustering

using Google News.

Figure 2: News clustering flow chart

4.2 Context Generation

Our system crawls to various news sources, whose links were extracted from internet

news clustering services like Google News and extracts the news text from the web

pages. For every news item, the news text from several sources is fetched and cached.

The summarization module analyzes the news text from different news sources and

creates news summaries. The idea here is to use the news summaries to generate

a comprehensive context, which will guide the video clustering and search process.
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Thus the news sources that are reporting at the time of video broadcast are used

to generate contexts and videos relevant to those contexts are then clustered. The

context is dynamic in nature and as newer news items are clustered, the context is

updated.

A news context can be divided into two categories, (1) News topic, (2) News event.

For example, Presidential elections in US may qualify as a news topic, which gives

a broad categorization of news. On the other hand, news like Obama elected as US

President, is a news event. The essential difference between these two categories is

the lifetime. While a news topic may have a lifetime as long as a year, a news event

on the other hand may have a lifetime of only a day. On a higher level, each news

context can be classified into a context class. For example, the above news context,

along with news topic and event qualify for the political news context class. Such

a hierarchical context classification scheme makes the search process more precise.

This hierarchical classification scheme is shown in Figure 3. At the highest level are

the context classes like political, business, weather, sports, etc, represented as the

parent nodes. The next level has news topic contexts, and the third level has the

news event contexts. Each news event context has a number of child nodes which are

basically the news items clustered in Step II. Every node at each of these four levels is

represented by a set of keywords. While the highest level may be represented by a few

hundred keywords like rain, temperature, storm, etc., for the weather context class,

the lowest level node may have only have a few keywords which are more specific,

e.g,. Florida, storm, etc. Thus in this hierarchical structure, a parent node has all

the characteristics of a child node.

To create summaries, the system first extracts all the keywords from the news text

extracted from different sources. Then a sentence ranking algorithm is used to assign

ranks to sentences in the text of different news articles. The following criteria are

used for sentence ranking:
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1) Location of the sentence in the news article: Generally, sentences which appear

in the beginning of the news article contain important content as compared to the

sentences toward the end of the article.

2) Number of title keywords in the sentence: This is obtained by the number of

matching keywords between the title and sentence.

3) Ratio of number of words in a sentence to the number of keywords: A high ratio

generally means that the sentence is important.

4) Sentence length: Shorter sentences having small number of keywords are generally

less important.

5) News source ranking: A sentence which comes from a news source with higher

rank is given more importance than sentences from lower ranked news sources. The

ranking of news sources is done based on criteria like the number of hits, popularity

of the news source and the geographical proximity of the news source to the place of

origin of a news story.

Two important measures are used for evaluation of the generated summaries. First

measure is the compression (C) ratio which is the ratio of the number of words in the

summary to the number of words in the original article.

C =
Number of words in summary (S)

Number of words in original article (O)

Second measure is the information retention ratio (IR) which is the ratio of the

amount of information in the summary to the amount of information in the orig-

inal article. The number of keywords in the summary and the original article are

representative of the amount of information, thus

C =
Number of keywords in summary (Ks)

Number of keywords in original article (Ko)

After ranking the sentences, the system finds the union and intersection sets of
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Figure 3: Hierarchical context classification scheme

sentences in news articles from different sources. To generate a short summary, the

intersection set is used. The intersection set is formed such that among two similar

sentences from different news sources, the one which provides more information (in

terms of keywords), and has a higher rank is chosen.

Figure 4: Context generation flow chart

4.3 Video Crawling

Our system crawls different news sources which broadcast news videos and extracts

videos. Using some initial seed links, the video crawlers, crawl web pages containing

videos. The crawling process is guided by the kind of videos the system indents to
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Table 1: Example of seed URLs for video crawler

Seed URL
http://search.espn.go.com/georgia-tech/video/
http://www.foxnews.com/search-results/search?q=Georgia+Tech&content=Video
http://abcnews.go.com/search?searchtext=georgia%20tech

index. For example, for the Georgia Tech in the News system, the video crawlers

crawl web pages containing videos related to Georgia Tech. Example of seed URLs

for crawling videos related to Georgia Tech is given in Table-1. These seed URLs are

crawled periodically to and the links to the web pages containing videos related to

Georgia Tech are extracted. Another alternative way of crawling videos is to send

queries to the commercial video search engines such as Google Video, YouTube, etc

and use the search results as the seed links. However, this approach is not suitable

for dynamic content such as news videos as these commercial video search engines

take long time to crawl and index new videos. The video crawling process involves

extracting the links of web pages in which the videos are embedded. The next step

is to extract the videos from these web pages.

4.4 Video Extraction

Once the video crawlers, crawl and extract the links of web pages containing videos,

the video extraction engine, extracts and downloads the videos to a local disk. Most

video broadcasting websites use provide videos through streaming. The videos are

embedded in web pages using different video players which use different formats. The

commonly used formats are Flash and MP4. The links extracted by video crawlers

are not the direct links to the videos, since the videos are embedded in the web

pages. Therefore to get the direct link to the videos, our system uses streamsiff,

which is a utility that sniffs network traffic for stream URLs. This utility detects
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RTSP, and other video streaming protocols, and performs a back-trace on HTTP

traffic to detect the video URLs and Flash video files. The direct links to the video

files obtained from stream sniffing are then used to extract and download the videos.

For this, a command line base downloader utility is used, which downloads the videos

to a local disk. Since the videos files are large in size, typically few 100 Megabytes

on average, downloading videos sequentially takes a significant amount of time. To

minimize the download time the system opens parallel downloads streams.

4.5 Video Metadata Extraction

The websites publishing videos provide some metadata related to videos. The amount

of metadata varies from one site to other as no particular standard is followed. For

example, YouTube provides meta information such as the video title, description,

user tags, author, submission time, video length, recording date, user comments, etc.

Such meta information extracted from the web pages containing videos is valuable

for video search.

4.6 Video Transcription

The video transcription engine uses speech recognition technology to transcribe the

videos. The videos extracted by the video extraction engine are in different formats

such as FLV, MP4, etc. For transcription, the audio channel of the video is extracted

and then speech recognition tools are used to convert the audio to text. To extract

the audio channel from the video, we use an open source library called ffmpeg, which

has implementation supporting most codec. Using ffmpeg, the audio files in WAV

format are obtained from the videos. These WAV audio files are then used as input

to standard speech recognition tools for transcription. We use a speech recognition

tool from Dragon for this purpose.
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4.7 Video Clustering

The video clustering process is guided by the news contexts generated in the previous

step. The video clustering is done in two steps. In the first step, the textual content

surrounding these videos, including the captions and annotations is mapped to the

contexts generated in the previous step. Based on this mapping the system classifies

the extracted news videos into the news contexts. In the second step automatic speech

recognition (ASR) is performed on the clustered videos and a more precise mapping is

done to the news contexts. The two step approach makes the system efficient for real

time video clustering, as time consuming process of speech recognition is not involved

in the initial clustering of the videos. The system does not rely completely on the

ASR-text, as it is not always accurate. However, the ASR-text is useful to extract

some keywords from the video speech, which are used for a more precise mapping to

the news contexts. This precise mapping is used to perform a re-clustering of videos

to different contexts, in case there is an error in the initial clustering which relies only

on the text annotations and captions. Here an MPEG-7 based framework is used for

video description. MPEG-7 descriptors like AudioVisualSegment, MediaTime, Medi-

aUri, MediaLocator, TextAnnotation, KeywordAnnotation, etc are used to capture

the metadata in an XML based format.

For classifying the videos into different news contexts a probabilistic support vec-

tor machine (PSVM) with pairwise coupling (PWC) is used. Let V be a set of n

videos V = {v1, v2, v3, ..., vn} and C be a set of k contexts C = {c1, c2, c3, ..., ck}.

A probabilistic model for classification of videos into contexts will select a context

ci ∈ C for video v ∈ V with probability p(ci|v). The conditional probability p(ci|v) is

estimated using probabilistic support vector machine (PSVM) with pairwise coupling

(PWC). The classification procedure is described below.

Suppose that we are given l training vectors (videos) xi(1 < i < l), where xi is a
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feature vector in n dimensional feature space and yi is the class label of xi such that

yi =

 1 if xi in class 1

−1 if xi in class 2

A standard SVM finds a hyperplane wTx + b = 0 which correctly, separates the

training vectors and has a maximum margin which is the distance between two,

hyperplanes wTx + b = 1 and −1. The optimal hyperplane with maximum margin

can be obtained by solving the following quadratic programming problem,

min
w,b

1

2
||w||2 + C

l∑
i=1

ξi , subject to yi(w.xi + b) > 1− ξi, ξi > 0, (1 < i < l)

where C is the constant and ξi is a slack variable for the non-separable case.

The optimal hyperplane is given as,

f(x) = sign

(
C

l∑
i=1

αiyiK(xi, x) + b

)
where αi is the Lagrange multiple, and K(xi, x) is a kernel function. The SVM

calculates similarity between two arguments xi and x. A standard SVM is a two-class

classifier where the outcome y is 1 or 1. The classifier predicts class 1 if wTx+b > 0 and

class 2 otherwise. An extension to SVM called the probabilistic SVM can produce

a posteriori class probabilities P (class|input). A sigmoid model maps the binary

SVM scores to posterior probabilities, where the probability of membership in class

y, y ∈ {+1, 1} is given by

p(y|x) =
1

1 + exp(Af(x) +B)

where f(x) is the output of the SVM decision function and A and B are the pa-

rameters of the sigmoid function. A and B are found by minimizing the class entropy
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of the training data. First the SVM is trained and then the parameters of the sigmoid

function are trained to map the SVM outputs into probabilities [32].

To classify the video in the set V = {v1, v2, v3, ..., vn} into contexts in the set

C = {c1, c2, c3, ..., ck} a pairwise coupling procedure is used [33]. Using the proba-

bilistic SVM, we write the posterior probability of video v belonging to context ci,

given that v belongs to either ci or cj as the pairwise probability rij = p(ci|r ∈ rci∪cj)

. For classification into k contexts the pairwise coupling method trains k(k − 1)/2

SVM classifiers. Going through k(k − 1)/2 SVM classifiers a pairwise probabilities

matrix(PPM) is obtained. To couple the PPM into a common set of posterior prob-

abilities p(ci|v), [33] used the auxiliary variables

uij =
pi

pi + pj

and found pi’s such that uij’s are close to the rij’s. Hastie and Tibshirani [33]

proposed to minimize the KullbackLeibler distance between the uij and rij as the

closeness criterion.

l(p) =
∑
i<j

nij

[
log

rij

uij

+ (1− rij)log
(1− rij)

(1 + uij)

]
where nij are the number of observations in the training set and pi’s are found to

minimize the function l(p).

The probability p(ci|v) can be used to score context c among possible contexts

for video v. The videos are also classified into context classes, like political, business,

weather, sports, entertainment, technology, etc. This classification process is guided

by context class lexicons. For each context class there is a separate lexicon which con-

tains the frequently used keywords. For example, in a weather news, keywords like

rain, storm, temperature are common. Other information like the video broadcast
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time, source and news event date is also tagged with the video, to help in the search

process. The system makes a news video repository, which allows users to search news

videos. The popularity of video formats like FLV and MP4 have made embedding

and extraction of videos from the original sources easier. Our system differs from

video sharing websites like YouTube, in the sense that such websites rely on the users

to upload videos manually and attach captions and annotation for efficient search.

Our system is completely automated and the videos are clustered and tagged without

any user intervention.

4.8 Video Indexing and Ranking

Video indexing and ranking is an important step for efficient browsing and search of

videos. After clustering the videos our system assigns relevance weights to the videos

with respect to a context and calculates the VideoRank. VideoRank indicates the

likelihood of the presence of a context in a video. This ranking scheme is different

from the page ranking schemes used by search engines like Google, where pages with

more citations are ranked higher. Such a ranking scheme does not work well for video

search in a particular context as a page may have a number of embedded videos,

which need to be ranked individually according to their relevance to a context. Our

approach to video ranking is based on the context. A number of criteria are used for

calculating the VideoRank, like the number of matching keywords between the news

context and the video metadata information. The news source ranking is also taken

into account for the process of video ranking. The news source ranking is based on

criteria like the number of hits, popularity of the news source and the geographical

proximity of the news source to the place of origin of a news story. As in the case

of context generation, the video ranking process is also dynamic in nature. As the

system constantly clusters videos, the rankings also keep changing. Other criteria like
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Figure 5: Video clustering flow chart

the time of broadcast of video and news event date can also be taken into account.

Thus newer videos matching a particular context may be ranked higher than the older

videos.

The VideoRank of a video v is defined as,

V R(v) = R(c) +R(n)

where R(c) is the relevance rank of the video with respect to a context c and R(n)

22



is the rank of news source n. Let C be a set of N contexts C = {c1, c2, c3, ..., cN},

where context ci is charactered by a set of M keywords K = {k1, k2, k3, ..., kM}. Every

context may have a number of keywords which may be common with other contexts.

A keyword which occurs in many contexts is not a good discriminator, and should be

given less weight than one which occurs in few contexts. To find the discriminating

power of a keyword for a context, we calculate the inverse document frequency,

IDF (ki) = log(N)/ni

where N is the total number of contexts and ni is the number of contexts in which

the keyword ki occurs. The relevance rank of the video with respect to a context c is

found as defined as follows,

R(c) = ΣIDF (yi)TF (yi)

where yi are the matching keywords between the context c and the video metadata

information (which includes the ASR text, captions and annotations). TF (yi) is the

term frequency of the keyword yi i.e., the number of times the keyword occurs in the

video metadata information. A user query may have different contexts with respect

to different domains. For example, if the user has sports in mind while searching

for a term like ”videos”, then he is clearly interested in sports videos and not music

videos. Our system not only ranks the results based on the context but also provides

a clear separation of different domains of search like sports, politics, weather, etc. A

domain classification module classifies different search results into different domains.

A domain relevance rank is computed for each search result and based on this rank

the search result is classified to a particular domain. There may be a case where the

relevance rank for a search result is almost the same for two or more domains. In this

case the result is classified to all the domains for which the relevance rank is greater

than a threshold. Ranking of the search result is then done separately in each domain
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as compared to the other results.

4.9 Video Search

Queries for video search that are short may not contain enough information to map

it to one of the contexts generated in Step III. Our system uses a query expansion

technique to enhance contextual information of the query which can then be mapped

more efficiently to the contexts generated in Step III, thus enhancing the recall and

improving the search precision. [11],[12] have shown the usefulness of this query ex-

pansion technique.

Given an input query, first the query terms are stemmed using the Porter Stemming

Algorithm to reduce the query terms to their base or root form. Then the stop words

such as a, an, the, etc from are removed from the query. The normalized query is then

expanded using a query expansion algorithm. In query expansion the seed query is re-

formulated in order to increase the precision of recall. The idea is to analyze the query

terms and find other similar terms or keywords which have a high correlation with

the query terms. The steps involved in query processing and expansion are as follows:

1) Query terms are reduced to their root form using Porter Stemming Algorithm.

2) Stop words are removed from the query.

3) Query is expanded to include synonyms of the query terms.

4) Current news contexts are searched for matching terms as in the query and key-

words from the context are used for further expanding the query.

For example, consider a query which has only one term elections. This single term

cannot give any contextual information. However based on the current news clusters

and the generated contexts, the query can be expanded such that keywords among all

the generated contexts which have a high correlation with the query term are added
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to the query. So if there is a current news cluster on Presidential elections in US, then

the system will attach keywords like President, US, etc to the original query. Our

approach to query expansion in novel in the sense that it takes into consideration

the contexts generated from the current news clusters. As queries are sensitive to

time, the query expansion process is dynamic in nature and depends on the current

contexts.

To retrieve the most relevant videos for a given query, the system uses the expanded

query and the video contexts. Using these two techniques, the total recall as well as

the precision of recall is greatly enhanced. To illustrate this by an example, consider

a query such as football to the Georgia Tech in the News system. Although the sys-

tem crawls and clusters videos related to football daily from many video broadcasting

websites, there may be many videos for which the metadata does not have the word

football. However, there might be terms such as Georgia Tech Yellow Jackets, asso-

ciated with some videos, which is the name used by the Georgia Tech football team.

Since the video clustering and search process is guided by the context generated from

clusters of news articles, as described in section 4.2, the terms such as football will

be associated with the videos which do not have that term in the metadata but have

other terms which are highly correlated to the search term. This increases the total

recall for queries, and the videos that could not be retrieved merely by keyword-based

search, can be retrieved using the video contexts. Therefore for each term in the ex-

panded query, the system will return the news clusters and the related videos which

have that term as a part of the context. Figure 6 shows the results for the query -

football.
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Figure 6: Results of video search for the query - football

4.10 Query Lifecycle

Figure 7 shows the lifecycle of a user query. The user query is first sent to web server

which sends it to the query expansion agent. The expanded query is then sent to

the index servers. Index servers have indexes of video meta-data including the video

ASR text and the video context. The query is then sent to the context servicing

and VideoRank agent which ranks the videos based on the context as described in

section V. The content delivery servers retrieve the videos and generate the content

describing the video search result. The video search results are then returned to the

user.

4.11 System Architecture

Figure 8 shows the system architecture. The news crawler crawls various news sources

and internet news clustering services and extracts all the news items, along with the

links to the news articles. The news text extraction module then crawls to the original
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Figure 7: Video query lifecycle

news articles and extracts the news text. The news classification module classifies

the news into different context classes like political, business, weather, sports, etc.

The news summarization and context generation module analyses the news text from

different news sources and generates news summaries and contexts. Guided by the

generated contexts the video crawler crawls different news video broadcast websites

and extracts videos.

The video clustering module then clusters videos in two steps. In the first step,

the textual content surrounding the videos, including the captions and annotations

is mapped to the news contexts. Based on this mapping the module classifies the

extracted news videos into the news contexts. In the second step automatic speech

recognition (ASR) is performed on the clustered videos and a more precise mapping

is done to the news contexts. The indexing module indexes video meta-data including

the video ASR text and the video context.
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Figure 8: System Architecture

28



CHAPTER V

USER INTERFACE

Commercial news services like Google News provide links to the news stories clustered

from several sources. Links to the original news sources are presented and the user

has to visit different news articles to get a comprehensive view of the news story.

Such an interface may present links to hundreds of news articles for a particular

news story which is generally overwhelming for most users. Video search engines like

YouTube, on the other hand provide lists of videos arranged in order of relevance.

This interface again overwhelms the users with hundreds of videos, most of which

may not be relevant to the user in a particular context. Our system overcomes the

limitations of both the commercial news services like Google News and video search

engines like YouTube.

Figure 9: Screen shot of home page, showing the news clusters

A novel user interface is provided which not only gives the links to the original

news articles but also provides the news summaries, related news videos and images
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Figure 10: News summary page with related videos and images

Figure 11: Screenshot of news videos page showing the videos along with the related
metadata

all at one place. This makes the process of news search more interesting as a user

can read a brief summary of the news and watch related news videos at the same

time. Due to the dynamic nature of the content on the web, a user may be interested

in getting automated updates for a query. For example, a user who is interested in

videos of a sports tournament or weather related videos may be interested in getting
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Figure 12: Video search results for a query basketball

Figure 13: Video summaries using keyframes

automated updates whenever new videos are available. Our system provides this

feature by the creation of custom feeds for a particular query. As new videos are

crawled, the system can send updates to an interested user.
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Figure 14: Example of video transcoding

Figure 15: Example of research news clusters related to Georgia Tech

5.1 Feature Comparison

Tables 2 and 3 show feature comparison charts of our proposed system with YouTube

and Google News.
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Figure 16: Example of campus news clusters related to Georgia Tech

Figure 17: Example of custom RSS feeds

Table 2: Feature Comparison with YouTube

Feature YouTube Our System
Video search Yes Yes
Automated video clustering Yes Yes
Dynamic updates for videos Yes Yes
Video context information Yes Yes
RSS feeds Yes Yes
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Table 3: Feature Comparison with Google News

Feature Google News Our System
News clustering by topic Yes Yes
News clustering by category Yes Yes
News summaries No Yes
Related news images Yes Yes
Related videos No Yes
News text search Yes Yes
News videos search No Yes
RSS feeds Yes Yes
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CHAPTER VI

APPLICATIONS OF VIDEO CONTEXT

Video search engines are more complex than text search engines due to the challenges

in searching videos based on metadata which may not provide comprehensive infor-

mation about the videos. A lot of research has gone into the text search engines and

they have been perfected over the years. Text search is useful when the user is looking

for direct answers to some questions which are available in textual form in webpages

or searching for some specific textual content such as research papers, blogs, news

articles, etc. However, for some applications video search engines are more suitable

as compared to the text search engines. Users find it easier to assimilate short videos

which provide relevant information than browsing a number of text articles. Videos

are useful to answer user queries which are not directed for some specific informa-

tion, but intended to get some broad overview on some topic. For example, a query

to find: by how many runs did India win a cricket match, can be answered better

by text search engines, as they search for specific keywords from the user query in

the webpages and provide the search results. However, a query: highlights of cricket

match, which is more generic in nature and not intended for some specific information

or answers to some specific questions can be better answered by video search engines.

The video search engines can return as the search results some short clips showing

the highlights of the cricket match.

The technologies for context based video search described in Chapter IV have a num-

ber of applications as described below.

35



6.1 News Video Search

As described in Chapter IV, the context based video search technologies are very

useful for searching for dynamic content such as news videos. Thousands of news

videos are uploaded on the news video broadcasting websites; however, due to the

lack of the metadata and the tags associated with videos, searching for such videos

becomes difficult. There is no such search engine available currently that clusters

dynamic content such as news videos from a number of sources and makes it search-

able. Moreover, searching videos based on keywords from the metadata and user

tags may not provide relevant search results, as the keywords may not of effectively

linked to the video content. Searching news videos based on the low-level visual

features extracted from the key-frames of the videos is also not effective, as many

news videos may have similar visuals. For example, news videos on a cricket series

from a particular news channel will have similar visual content for the entire cricket

series, due to similar setup of the news studio and similar cricket grounds. Context

based video search technologies presented in this thesis provide the most effective and

efficient solutions for news video search for the following reasons.

6.1.1 News Video Repository Generation

The framework described in chapter IV can be used to generate news video reposi-

tories in an automated manner by companies, institutes and organizations for news

videos relevant to them. In addition to that the framework can also be useful for gen-

erating repositories for news videos related to some specific area such as football news

videos, etc. The generation of news repositories is guided by some specific contexts

which are generated from clusters of news text articles. This approach overcomes the

problem of searching videos based on metadata and user tags which do not provide

much details about the video.
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6.1.2 Context Based Search

Searching videos based on the context of the news story provides more relevant results

as compared to search based on the low-level features extracted from the videos or

video content in the form of automatic speech recognition text.

6.1.3 Dynamic Ranking for Videos

The ranking of the search results is dynamic in nature. The VideoRank described in

chapter IV, used for ranking the video search results depends on the relevance of the

videos to some context. As newer and more relevant news videos become available,

the VideoRank of a video for some context keeps changing, reflecting the relevance

of the video to the news story.

6.1.4 Linking Videos to Relevant News Articles

The framework described in chapter IV not just allows building video repositories and

searching videos based on context, but also links the news videos to the relevant news

articles and news clusters. This novel approach is useful to generate webpages which

have both the news stories and the relevant videos at the same place. Moreover,

searching for a specific news story returns both the news articles and the related

videos in the search results.

6.2 Search for Video Lectures

Many institutes and universities provide their video lectures online along with the

lecture slides. Using the technologies for context based video search, effective search

engines for video lectures can be built. These technologies are useful for video lecture

search for the following reasons:
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6.2.1 Clustering Video Lectures

The online video lecture websites have lectures on many subjects and courses which

are offered over the years. These videos can be clustered based on the subject. For

example, all video lectures on image processing courses, talks and workshops can

be clustered which can make it easier for the users to find all relevant content on

image processing at one place. The clustering process can be guided by the contexts

generated from textual content of the lecture slides and notes.

6.2.2 Linking Video Lectures to Relevant Documents

The framework described in chapter IV can be used to link the video lectures to

the relevant documents, lecture slides, notes, etc. For example, a department of

some university can use the framework to cluster all the videos and documents on

their website and generate webpages in an automated manner which have the video

lectures clustered by subject and the related documents in one place. This can be an

effective resource for students who, instead of browsing many webpages and searching

of content on some specific subject, can find all the relevant material clustered in one

webpage.

6.3 Video Advertisements

The technologies for context based video search can also be used for video advertise-

ments. For example, to design an automated system that selects the most relevant

video advertisements that are responsive to a query at a particular moment in time,

and embeds them inside videos. Chapter VI describes a detailed approach and frame-

work for using the video contexts for advertisements.
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CHAPTER VII

FUTURE WORK

The technologies described in Chapter IV are not just useful for video search, but they

can also be applied to a number of other applications. In this chapter we describe

one such application of video context that is used to generate video advertisements.

The objective of this application is to design an automated system that selects the

most relevant video advertisements that are responsive to a query at a particular

moment in time, and embeds them inside videos. A context-sensitive video search

and advertisement selection scheme is used, wherein the context is generated in an

automated manner.

7.1 Introduction

Internet advertising has seen tremendous growth in the past few years with online

advertising spending estimated to be over $25 billion in US alone and $45 billion

globally in 2008. The major share of the web advertising market today consists of

textual ads which are placed either in the web pages or on the search result pages

from the web search engines. The current approaches to text based online advertising

are described below:

7.1.1 Contextual Advertising

This is a form of targeted advertising where the textual ads are placed on websites or

email messages that have similar content. The advertisements are selected and served

by the advertising networks (Google, Yahoo, MSN, AOL) which have automated

systems of selecting the advertisements displayed to the user based on the content.

These ads are believed to have a greater chance of attracting a user, because they tend
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to have similar content as the websites on which they are placed. The effectiveness

of contextual advertisements depends on ad-selection techniques adopted by the ad-

networks.

7.1.2 Search advertising

This is a method of placing advertisements on search result pages of web search

engines based on the keywords from the user query. Search advertising is provided

by search engines like Google and Yahoo that deliver ads on the basis of search

keywords. Search engines conduct running auctions to sell ads according to bids

received for keywords.

7.1.3 Inline advertising

This is another form of targeted advertising where the ads are delivered inside the

webpage content. Unlike contextual advertisements where ads are placed at pre-

defined portions of a webpage, the inline advertisements are embedded in the text of

a webpage. The advertising networks associate relevant ads with certain keywords of

the webpage text and highlight those keywords. The inline advertisements are shown

when a user moves the mouse over these highlighted keywords.

7.2 Using Video Context for Advertisements

Since forms of online advertising are driven by keywords, textual ads comprise the

major share of online advertisements. Video is another medium of advertising which

is becoming poplar for online advertisements, as it is much more attractive and can

grab users’ attention instantly. Unlike textual ads where the keywords from the search

query or the content of a webpage are used to select the advertisements, for in-video

advertising, selecting the most relevant video advertisements that match the context

of the video remains a challenging task. Commercial video search engines use text
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annotations and captions for video search and advertisement selection. However key-

words are not sufficient for effectively selecting the most relevant advertisements for

videos.

An outcome of this approach is that for a particular query, the same search results are

produced, irrespective of the users context of search. However, the context underlying

the search for each user may be entirely different. For example, a user in California

who searches a term like pizza is more interested in pizza advertisements from Cal-

ifornia rather than other places. The current search engines provide search results

which are same for all the users, hence the same advertisements are displaced for ev-

ery user irrespective of the context of the users query. A system which does a context

sensitive ranking of search results can provide much more meaningful search results

and related advertisements to a user. The effectiveness of an online advertisement is

usually defined from the advertisers’ perspective, and measured by the performance

of a given advertisement (e.g. the number of clicks). Thus advertisements that are

contextually relevant to a user’s query are more likely to attract attention and prove

to be more effective from the advertisers perspective.

Current contextual advertising approaches work well for inserting textual ads into

static web pages where the webpage content is analyzed in advance and keywords are

extracted from the content to associate advertisements with the webpage. However

for web pages having dynamic content like news and videos, analyzing the content on

the fly is computationally intensive and introduces significant latencies.

We propose a novel context based video clustering, search and advertising approach

that attempts to make the generation of automated real time video repositories effi-

cient, and also tries to make the process of video search and advertisement selection

more meaningful. The system can be deployed as a software as a solution by orga-

nizations and institutes to build online video repositories and provide effective video

search and in-video advertising capabilities. For example, a sports news agency that
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produces both text and video news can use this system to organize their videos by

linking them to the most relevant text articles and provide contextually relevant ad-

vertisements embedded inside the videos.

7.3 Framework

7.3.1 Video Clustering

To build video repositories from the videos available on the internet or the intranet in

an automated manner our system first clusters text articles based on topic or category

and uses the contexts generated from similar text articles to cluster related videos.

The idea is that the video archives available on the internet or the intranet may be

unorganized and may not have enough textual information attached to them to derive

a complete context of the video. Similarly, the text based articles may not be directly

linked to the video archives. For example a sports agency that produces both text

and video news may have huge text and video news archives which are unorganized

and there is no way to link the text articles to the relevant videos. Our system tries

to bridge the gap by providing a mapping of the text articles to the related videos.

7.3.2 Context generation

Our system uses a query expansion technique to enhance contextual information of

the query which can then be used to retrieve the most relevant videos and also map

the contextually relevant advertisements to the videos. The idea is to analyze the

query terms and find other similar terms or keywords which have a high correlation

with the query terms. The context generation module generates a word cloud from

the query which has words that are highly correlated to the query. For example, a

user query like “ACC” provides very little information about the user’s context of

search. Assuming that the system is deployed for a sports news agency, the context

generation module will generated a word cloud from the query having words like

Atlantic Coast Conference, ACC basketball, sports, tournament, championship, etc.
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To generate the context the system analyses the text articles and word clouds of

videos in the database and chooses the words which are highly correlated to the

search query. So in the above example, its possible that the system had some text

article which had words like ACC, basketball, etc. therefore the system was able to

attach such correlated words to the query to form a word cloud.

The system wraps each video with a rich layer of metadata information that includes

the ASR text and a word cloud generated using the keywords from the ASR text.

Figure 18 shows an example of the video metadata information generated for a video

in XML format.

Figure 18: An example of the rich meta-data information generated for a video

7.3.3 Video Advertisement Insertion

The word cloud from the expanded user query is used to search for videos and also

find the relevant advertisements for embedding into the videos. Our system assigns

relevance weights to the videos with respect to the query context and calculates the
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VideoRankTM, which indicates the likelihood of the presence of a context in a video.

The advertisement insertion module generates a set of candidate advertisements that

are relevant to the query context and embeds them into the retrieved videos.

7.4 System Architecture

Figure 19 illustrates the system overview. The user query first goes to the context

generation module. The context generation module creates a word cloud around the

query which is then sent to the index servers. Index servers have indexes of video

metadata including the video ASR text and the video context. The query is then

sent to the context servicing and VideoRank agent which ranks the videos based on

the query context. The content delivery servers retrieve the videos and generate the

content describing the video search result. Also the generated context of the query

is sent to the advertisements keyword index server, which selects the most relevant

video advertisements based on the context. The keywords of advertisements are

extracted from the advertisement titles, text and categories provided by advertisers.

The selected advertisements are then embedded into the videos by the video ads

insertion module. The video search results with embedded video advertisements are

then returned to the user.

7.5 Sample Results

Figure 20 illustrates the video search and advertisement selection and insertion pro-

cess for the query ACM.

The user query is expanded to derive the context and a word cloud from the query

is generated. To retrieve the videos the system finds intersections between the word

cloud of the query and the video word clouds which are in the form of an XML based

metadata layer over the video as shown in figure 18.The advertisements are then

selected based on the query word cloud and embedded into the videos.
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Figure 19: Context based video advertisement system architecture

45



Figure 20: An example of video search and ad selection based on the query ACM
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CHAPTER VIII

CONCLUSION

This thesis proposes technologies for context based video search. A framework for

building video repositories in an automated manner guided by contexts that are ob-

tained from clusters of text articles is described. A context sensitive video ranking

is proposed which is used to rank the video search results. The context based video

search approach has applications in searching dynamic content such as news videos,

video lectures, and video advertisements. Context-based video search also has ap-

plications in areas such as digital video broadcasts, video on demand, and video

surveillance. Most applications require the ability to search videos based on the se-

mantic and contextual information available. A limitation of content based video

search approaches is that it is difficult to relate the low level features with semantics.

The commercial video search engines available today depend on the users to upload

videos manually and the search is again dependent on the captions and annotations

provided by the user. Thus they are not able to keep up with the rapid rate at with

which new videos are being uploaded by various video broadcasts websites as there

is a complete lack of automation. There is an increasing demand for online video

broadcast services, driven primarily by the ease with which users can access videos

through mobile phones, PDAs and other hand held devices. Thus, a real time and

automated video clustering and search system which not only provides the users the

most relevant videos available at a particular moment but also the related contexts of

the videos, summarized from a number of different sources, will become indispensable

for users in future.
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