
on Dbclslon and Control 
Proceedings 01 Ihe Z61h Conlerencr 

Lor Angelas, CA December 1987 
TP13 4 ~ 1 5  

SPECTRAL  NEVANLINNA-PICK  INTERPOLATION  THEORY A h 3  ROBUST  STABILIZATION 

ALLEN TANhZNBAUM 

Department of Electrical Engineering 
University of Minnesota 
Minneapolis, Minnesota 55455 

Department of Mathematics 
Ben-Gurion University of the Negev 
Beer  Sheva, Israel 

2. Internal Stability as Interpolation 
In this section we would like to briefly show how the prob- 

lem  of internal stabilization for LTI, finite dimensional plants 
reduces to one of interpolation. The facts here are rather well- 
known. See [121, [l],  [61, [71,  [91. 

More precisely, let P ( 5 )  deonote an p x m  LTI finite 
dimensional plant and C(s) an mxp internally stabilizing com- 
pensator. In the usual way  we define the sensitivify  function to 
be S ( 5 )  := (I + P (5)C(s))- ' .  Then invoking the standard 
coprime factorizations we get that 

S ( 5 )  = L  - UZ 

where L and U are completely determined by P (s) and the 
"free parameter" ZERH,",, (= the space of m x p  matrices with 
entries which are real rational functions bounded in the right half 
plane H ) .  For simplicity we assume that the transmission zeros 
of U are simple. If  we denote these zeros by zl, ' ' , z ,  then 
there exist nonzero vectors v l ,  . ' , v, such that 

V , * U ( Z , )  = 0 

for j = 1, . , n ,  If we now set w,* := v,*L(z,), we get that the 
requirement of internal stabiltiy translates into the following 
interpolation conditions on S : 

v;s ( 2 , )  = w,' (1) 

for j = 1, ' . , n ,  In other words finding an internally stabiliz- 
ing compensator for the plant P (s) is equivalent to constructing 
a matrix-valued function S ( s )  with entries rational functions 
which are analytic and bounded in the right half plane and which 

Abstract 
In this note we will discuss a new kind of interpolation 

theory in which one bounds the spectral radius of the matrix- 
valued interpolating functions instead of the norm as is the case 
with ordinary Nevanlinna-Pick interpolation. We show how this 
is related to certain kinds of multivariate stability margin prob- 
lems of the kind considered by Doyle [2] and Safonov [8]. 

1. Introduction 
In the past few years there has appeared a large number of 

papers concerned with the application of Nevanlinna-Pick inter- 
polation theory to  various problems in control, most notably the 
area of H=-optimization  theory. We refer the reader to the 
excellent new monograph of Francis  [4] for a survey of these 
results. 

Now the connection of interpolation theory to problems 
involving  LTI, finite dimensional plants is very simple. Namely 
one may easily show that the question of internal stabilization 
amounts to a  Lagrange-type interpolation problem for such 
plants. For  SISO systems this was probably first observed in the 
paper of Youla,  Bongiorno, and Lu [ E ] ,  and in the MIMO case 
by a  number of people (see  e.g. [ l ] ,  [ 6 ] ,  171). The way then that 
sensitivity Hm- optimization reduces to a Nevanlinna-Pick inter- 
polation problem is that one imposes a bound on the norm of the 
corresponding interpolating functions. 

For SISO systems gain margin optimization works in the 
same way in that via a conformal equivalence, we can transform 
the question of finding an interpolating function whose range is a 
simply-connected subset of the complex plane to one whose 
range is the unit disc and hence once more derive an interpola- 
tion problem of the Nevanlinna-Pick kind. For  MIMO  systems, 
we will show below that if one wants to play the same game 
with multivariate generalizations of gain margin ([2], [8], [ l l ] )  
one derives interpolation not with a norm constraint but with a 
spectral radius constraint. (Helton [ 5 ]  in his discussion of 
Doyle's work exactly characterizes p as  a generalized spectral 
radius.) 

The  purpose of this preliminary note is simply to reduce 
precisely a very special case of multivariate gain margin optimi- 
zation to this new and highly difficult interpolation problem,  A 
mathematical discussion of its solution will appear in some joint 
work of the author with the operator theorists Hari Bercovici and 
Ciprian Foias.  The reader will see even  in this case how difficult 
such problems are, and why in the SISO setting sensitivity 
minimization is equivalent to gain margin optimization. The 
author would like  to thank Professor Tryphon Georgiou for valu- 
able discussion of the material here and especially for the neat 
formulation of (3.1). 

obeys the interpolating conditions (1). We should finally note 
that sensitivity minimization (in the H -  sense) from this point of 
view simply amounts to interpolating by matrix- valued functions 
satisfying the interpolating conditions (1).  The mathematical 
solution for this problem (including the parametrization of the 
optimal solutions) appears in several places. This particular ver- 
sion of the Nevanlinna-Pick problem is called tangential 
Nevanlinna-Pick for obvious reasons. See  e.g. 131 and 171 and 
the references therein. 

3. Spectral Formulation of Nevanlinna-Pick Theory 

In this section we formulate a control problem which 
reduces to  a new kind of interpolation problem in which one 
bounds the spectral radius of the interpolant instead of the norm. 
In order to do this we will first need some remarks on the effect 
of linear fractional transformations on interpolation problems. 

Let F ( 5 )  and G ( s )  E RHp".,. Moreover let 
F = ND-' = DL'N, ,  and G = AB-' = BL'A, be the correspond- 
ing  coprime factorizations. Suppose 

F = (a + pG )(y + 6G )-' 

G = (Y/ + Gy,)-'(a/ + G h )  
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where 

det !] $ 0  

and 

With this notation we can now state the following simple lemma 
whose proof is obvious: 

LEMMA (3.1): Let Z, E H (the right half plane)  for 

(i) V ' F  ( z , )  = w' if and only if y'G (2 , )  = X *  where 
j = 1 ; . .  , n .Then 

* *  
[-x y ] := [-w' v'] a , [Y " I .  

(ii) F(z,)v = w if and only if G (z j )y  = x with 

We are now ready to formulate our control problem. Let 
P ( s )  be a p x m  MIMO plant as above. Consider the following 
family of plants (see also [9-111): 

P ~ ( s )  := ( W ( S ) :  k E K ]  

K := (k E C: k = (1 + s), Is I I r ) ,  

Then using the same arguments as in [9-111, we may show that 
C(s) internally stabilizes the closed loop  for the family P k ( s ) ,  
k E K if  and only if there exists a rational matrix-valued func- 
tion S(s) which is analytic and bounded in the right half plane 
such that S : A + G and which moreover satisfies the interpo- 
lation conditions (l) ,  where denotes the closed right half 
plane u -, and 

G := (M mxm matrix : det ( I  + k M )  # 0, k E K )  

But now it is easy to construct a conformal equivalence 
(which is  a  linear fractional transformation) 4 : G + R where R 
denotes the space of mxm matrices with spectral radius less 
than one. 

From (3.1), the interpolation constraints (1) on S may be 
translated into equivalent contraints on : fl + R. In other 
words, we have  a tangential Nevannlinna-Pick type problem in 
which instead of bounding the norm of the interpolant we bound 
its  spectral radius. 

Notice that for m = p  = 1 (i.e. the SISO case) we have 
that R = D (the unit disc), and hence the kind of robust stabili- 
zation problem we have been considering becomes equivalent to 
ordinary scalar Nevanlinna-Pick interpolation. 

We  should also add that a similar trick works for real 
parameter variations (k E [ a ,   b ]  a real interval with 
0 < a < 1 < b ) ,  and we can even take parameter variation sets 
of the form 

K := ( diag ( k l ,  ' . , k p ) ]  

REFERENCES 
[ l ]  J. A. Ball and  D. W. Luse, "Sensitivity minimization as  a 
Nevanlinna-Pick interpolation problem", Proc. NATO  Advanced 
Research  Workshop, Groningen,  Holland, December 1986. 
[2] J. C. Doyle, "Lecture notes in advances in multivariable con- 
trol", ONRI Honeywell  Workshop, Minneapolis, Minnesota, 
1984. 
[3]  I. P. Fedcina, "A description of the solutions of the 
Nevanlinna-Pick tangent problem", Akad. Nauk Armjan. SSR 
D o k l . ,  vol.  60, pp. 37-42,  1975. I.E.E.E. Tram. autom. Control, 
[4] B.  A. Francis, A Course in H" Control Theory, Lecture 
Notes  in Control and Information Science  No. 88, Springer- Ver- 
lag, New York, 1986. 
[5] J. W.  Helton,  "Optimization in operator theory, analytic func- 
tion theory and electrical engineering", Lecture Notes from NSF 
Conperence at Univ. of Nebraska,  Lincoln, Nebraska, 1985. 
[6]  H.  Kimura, "Directional interpolation approach to H"- 
optimization and robust stabilization", Technical  Report, Depart- 
ment of Control Engineering, Osaka University, 1986. 
[7] D. Limebeer and B. D. 0. Anderson, "An interpolation 
theory approach to H" controller  degree bounds", Technical 
Report, Deparbnent of Elect. Eng., Imperial College, London, 
England,  1986. 
[8] M. G .  Safonov, Stability  Robustness of Multivariable  Feed- 
back Systems, MIT  Press,  Cambridge, Mass., 1980. 
[9] A. Tannenbaum, "On the blending problem and parameter 
uncertainty in control theory", Technical  Report, Department of 
Mathematics, Weizmann Institute of Science, Rehovot, Israel, 
1977. 
[IO] A. Tannenbaum, "Feedback stabilization of linear dynamical 
plants with uncertainty in the gain factor", Int. J .  Control, vol. 

[ l l ]  A. Tannenbaum, "On the multivariable gain margin 

problem", Automutica, vol. 22, pp. 381-384,  1986. 
[121 D. C. Youla, J. J. Bongiomo, and C. N. Lu, "Single-loop 
feedback stabilization of linear multivariable plants", Automutica, 

Acknowledgement: This work was supported in part by grants 
from the NSF  (ECS-8704047) and the AFOSR. 

32, pp. 1-16,  1980. 

VOl. 10, pp. 159-173,  1974. 

where the k j ' s  may be either real or complex (p in the 1x1 
block case). See [ l l ]  for details about the conformal mapping 
theory associated to this set. 
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