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Feature Analysis of Phantom fMRI Data 

Feature analysis of voxel time courses is a recent advance in the study of fMRI data. 

Because this work explores a novel method for analyzing areas of activation in fMRI data, 

rigorous verification and validation of the techniques are necessary to prove their utility. To that 

end, in addition to examining real data from human subjects with nebulous epileptogenic zones, 

phantom data—simulated data modeled to closely resemble actual patient data—with known 

areas of activation are examined for statistical validation of the methodology. 

I. 	Phantom Data Generation 

The first step in the process of generating the synthetic fMRI data was the creation of the 

baseline series, i.e., a set of low noise images without activations or motion artifacts. The same 

baseline dataset was used for all generated phantoms. The baseline series was formed by 

computing the mean label and control images from a scanned subject's ASL perfusion dataset. 

The images were motion corrected and spiking artifacts were removed prior to calculating their 

means. These mean images were then replicated 400 times each and interleaved to create a 

baseline set consisting of 800 alternating label and control images. The perfusion series—a set 

of images produced by subtracting each label image from the subsequent control image—had 

constant values in all of its voxel time courses. The voxel time course, a signal corresponding to 

a voxel's intensity as a function of time, is obtained by extracting the voxel intensity from the 

images at each point in time as illustrated in Figure 1. The baseline image series with constant 

time courses formed the basis for the synthetic datasets. 



Figure 1 An illustration of the voxel time course extraction procedure. 

An accurate model of the hemodynamic response function (HRF), i.e., the fMRI signal 

change resulting from a single brief stimulus in the brain, is necessary to produce realistic 

phantom fMRI datasets. The nature of the hemodynamic response to neural activity has been 

widely explored by researchers, but no one HRF model that fits all human subjects has been 

found because HRFs vary greatly from person to person and also vary within a subject from one 

brain region to another [1]. Differences in the shapes of the HRFs, time-to-onset following 

stimulus, maximum signal change, time-to-peak, and the full width at half maximum (FWHM) 

of the response have been reported in both BOLD and perfusion fMRI studies [2, 3]. A post-

peak undershoot (a drop in the signal intensity below the baseline value) with variable degree 

and timing among subjects has also been observed in many empirical HRFs but is not always 



present. The presence of an 'initial dip' in the fMRI signal due to an increase in oxygen 

consumption following stimulus and prior to the signal peak has been observed as well in some 

BOLD studies, but its existence is not universally accepted [4]. 

In their work, Friston et al. found that the BOLD HRF can be modeled with a Poisson 

function [5], while Boynton et al. determined that a gamma function provided a more appropriate 

model [6]. The gamma function model has been shown to account for a much greater percentage 

of the fMRI evoked response to stimulus than the Poisson model and is therefore the more 

commonly employed model [1]. Although these studies focused on the hemodynamic response 

in BOLD signals, the same models can be applied to perfusion fMRI because the HRF shapes are 

similar for the two methodologies [2]. Because of the aforementioned reasons, a gamma 

function based model was exploited in this research to simulate the hemodynamic response to 

epileptic activity. Instead of applying the single gamma function model suggested by Boynton et 

al., the sum of two gamma functions model was chosen in order to incorporate a post-peak 

undershoot into the HRF [3]. The 'initial dip' is not included in this model. The sum of two 

gamma functions model is described by the following equation: 

y(t) = A 1 (t — 8 1 )h 	+ A 2  (t - 62 )1'2  e l2(1  82) 	 (1) 

where A l  and A2 control the peak and undershoot amplitudes, respectively, h 1  and h2  affect the 

widths and timings of the peak and undershoot, 1 1  and 12 also affect the peak and undershoot 

widths, and 6 1  and 62 determine the time-to-onset of the HRF. In this work, the values for the 

parameters in Equation 1 were chosen based on empirically determined ranges from real subject 

HRF analyses reported in literature [1-3]. The shape of the HRF, the timings and numbers of 

simulated epileptic events, and the size and location of the epileptic focus were varied for each 

phantom dataset. The maximum percentage signal change for the simulated activations ranged 
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from 10% to 20% above the baseline value. Signal changes within this range have been reported 

in other perfusion data studies [2, 7]. The chosen HRF model is shown in Figure 2, and Table 1 

summarizes the ranges of values used for some important HRF signal characteristics. 
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Figure 2 The sum of two gamma functions model of the HRF. 

Table 1 Ranges of values for the simulated HRF characteristics. 

Characteristic Values 
Percent maximum signal change 10%-20% 
Time-to-peak response 4-5 seconds 
Time-to-undershoot 9-10 seconds 
FWHM 5-6 seconds 
Ratio of peak response to undershoot 4-5 



After adding simulated activations to the baseline dataset, motion deformations were 

applied to the images to model the effects of subject motion during scanning. Movement related 

fMRI signal changes can account for a majority of the signal variance in extreme cases and can 

result in false positive activations if not accounted for prior to data analysis [8]. Random head 

movements were simulated in this work to create phantoms with realistic motion characteristics. 

Task correlated-motion, which arises as a result of a subject's actions during a task activation 

study (e.g., a finger tapping exercise), is not present in resting functional data, so this type of 

motion was not added to the phantoms. 

Motion in fMRI data is typically modeled as a six-parameter rigid body transformation 

that describes translations along the Cartesian coordinate system axes and rotations about these 

axes [9, 10]. Using this model, the n th  volume in the series, fn(x), can be related to the first 

volume by the following equation: 

fn  (x) = anf, (R nx + tn ) + e n  (x) 	 (2) 

where x is the spatial position of the voxel, R n  is a 3 x 3 orthonormal matrix characterized by the 

three rotation parameters, t o  is a 3 x 1 vector comprised of the three translation parameters, a n  is 

a scaling factor to account for intensity differences between volumes, and e n(x) is noise [8]. The 

motion parameters for each of the eight real subject datasets were estimated using the statistical 

parametric mapping software package SPM2 [9, 11, 12] and used as the basis for the motion time 

courses in the phantom data. The motion parameter time courses for a control subject are shown 

in Figure 3. 
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Figure 3 The translational (top) and rotational (bottom) motion parameters for a subject without 
epilepsy. Pitch, roll, and yaw represent the rotation about the x, y, and z axes, respectively. 

The final consideration in the creation of the phantom datasets was the choice of noise 

models. The noise in fMRI is often assumed to be Gaussian, but studies have shown that the 

magnitudes in MR images actually assume a Rician distribution [13, 14]. At high SNRs, the 

Rician distribution approaches the Gaussian distribution, but the former model provides a closer 

approximation to the image noise at low SNRs. The Rician nature of the image noise is 

illustrated in Figure 4, which shows the histogram of the background voxel intensities for an 

ASL image from a control subject. To generate this histogram, the non-brain regions 

(background voxels) were manually segmented, and their intensity values were extracted. The 

Rician probability density function (PDF) provides a better overall fit to the data than the 

Gaussian PDF. The Rician PDF is a close match to the background noise histogram except at the 

point in the histogram where there is a brief excursion from the trend. Figure 5 shows the 
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histogram of image voxels corresponding to brain tissue regions. This higher SNR region has an 

intensity distribution that is almost Gaussian, as expected. 
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Figure 4 This figure demonstrates the close fit between the Rician PDF and the histogram of the 
background noise in an fMR image. The Rician PDF clearly provides a better fit than the 
Gaussian PDF over the entire intensity range. 

The PDF of the noisy images is defined by the following equation: 

4.02 + ,2) 
r 	2 	ro • 1" 

Mr)=e 2°  / 0 
a 	(72 (3) 

where ro  is the intensity of the underlying noise-free image, a controls the scale of the noise, r o/a 

is the image SNR, and 10  is the modified zeroth order Bessel function of the first kind. As 



Equation 3 indicates, the Rician noise in these images depends on the noise-free image intensity. 

Because of this, Rician noise cannot be simply added to the images. The image intensities are 

made Rician distributed by adding complex Gaussian white noise to the images and taking the 

magnitude of the complex data to form real-valued, noisy images [14, 15]. 
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Figure 5 Histogram of the brain voxel intensity values with a Rician PDF overlaid. For this 
high SNR region of the image, the Rician distribution strongly resembles a Gaussian distribution. 



Figure 6 The regions of interest (ROIs) selected for estimating the image SNR as defined in 
Equation 4. The same ROIs were used for all subjects. 

To generate the noisy images, first an appropriate SNR was chosen. The SNR values 

from the subject ASL scans were estimated to determine reasonable choices for phantom data 

SNRs. Applying the technique outlined by Pickens et al. in [16], the value of the SNR was 

computed for each acquired image, and a realistic range of SNR values was obtained. This 

procedure involved choosing a region of interest (ROI) inside the brain (ROI A) and a background 

ROI without visible artifacts (ROI B ) as depicted in Figure 6. An estimate of the image SNR was 

then calculated using Equation 4. The computed SNR values for the data collected in this study 

ranged from approximately 29 dB to 49 dB with an average of 40 dB. After selecting an SNR, 

the value of the standard deviation of the background voxels necessary to yield the chosen SNR 

was computed using Equation 4, and the Rician distribution parameter a was then found using 

Equation 5. The correction factor in the denominator of Equation 5 is needed due to the fact that 

the variance of the Rician distribution is a', = Va 2 (2 — it/2) when the image intensity is zero (as 



it would be in the noise-free background voxels). a is the standard deviation of the Gaussian 

noise used to generate the Rician distribution, not the distribution itself. The final step of the 

procedure was to generate the noisy images using Equation 6, where x is the voxel spatial 

location and n 1  and n2  are the real and imaginary components, respectively, of complex Gaussian 

white noise with zero mean and variance 6 2 . 

SNR = 20 log o  .gio 	 
std(RO/B ) 

std(ROIB )  
a 

1/2 — 2 

r(x) = 11(ro (x) + n,(x)) 2  + n22 (x), ni ,n2  — N(0, G2 ), 	 (6) 

The following is a summary of the procedure implemented for generating realistic fMRI 

phantom data: 

1. The baseline data were created from a control subject dataset after the images were 

motion corrected and spike artifacts were removed. 

2. The HRF model given in Equation 1 was added to a subset of the voxels to simulate 

epileptic activity in the brain. 

3. Motion artifacts were added to the data using the relationship in Equation 2 in order to 

simulate the effects of patient movement during scanning. 

4. Finally, the image intensities were modified using Equation 6 to model fMRI data with 

Rician noise characteristics. 

(4) 

(5) 



IL 	Feature Extraction 

Features are measures of signal attributes that are used to compress raw data into smaller, 

more informative sets of data for classification, pattern recognition, and machine learning 

applications. For large datasets, analyzing the raw signals themselves can be computationally 

expensive and even impractical. By examining features of signals, the most important 

characteristics of these signals can be gleaned and some of the irrelevant information can be 

discarded. Feature extraction is therefore a key step in any classification problem. In fact, when 

a highly representative set of features is selected, the choice of a classifier becomes almost 

immaterial [17]. 

The features described below were chosen based on their proven usefulness in the study 

of other physiologic signals and in signal processing in general [18-22]. Features were selected 

from the time, statistics, information theory, and frequency domains to reveal some of the most 

important signal characteristics. In the following equations, x represents the signal samples, N is 

the length of the signal, p is the signal histogram, P is the power spectral density (PSD) of x, 

and X(f) is the Fourier transform of x. 

• Energy: measures the average instantaneous energy in the signal. 

1 

N 

• Curve Length: sum of the lengths of the vertical line segments between samples. It 

provides measures of both time and frequency characteristics. 

Xi  - X i _ 1 1 

• Nonlinear Energy: provides information about amplitude and frequency content of a 

signal. It is also known as Teager's energy [20]. 
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• Katz Fractal Dimension: measures the number of elemental units comprising a curve. It 

is useful for detecting transients in a signal [22, 23]. 
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• Mean: average (arithmetic mean) of the signal amplitudes. 

= N 
Exi 

• Variance: measure of the dispersion of the amplitude values. 
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N 
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• Skewness: measure of the asymmetry of the data distribution. 

\ 3  1 	Xi  - 

• Kurtosis: measure of how prone to outliers the signal distribution is. 

1 	, X i  - 	
4 

3 
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• Interquartile Range: measures statistical dispersion in the signal amplitudes. It is 

difference between the 75 th  and 25th  percentile samples in x. 

• Spectral Entropy: measure of the randomness in the frequency spectrum of a signal. 

— 	x log2  (f) 

• Shannon Entropy: measure of the randomness in the time signal. 
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• Renyi Entropy: measure of the randomness in the time signal. 

1 
log2  E 

• Complexity: measures disorder in a sequence using the procedure described in [24]. 

• Median Frequency: frequency at which equal amounts of the spectral power lie and 

below. 

fined 	
2 

fined 3 	x(f)I = 2 EX(f)12 
f =0 	 f=fmed 

• Mean Frequency: frequency that is the centroid of the PSD. 

X(f )I 2 
 

f  

EIX (f)1 2  
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• Peak Frequency: frequency at which the PSD reaches its maximum value. 

f. = arg mr1X (f 

III. 	Feature Selection 

Seemingly, having more information about the samples from the two distributions to be 

classified would improve the overall classification accuracy; however, this is not always true. 

Correlations in the features used in classifying data and noise in these features can increase the 

probability of misclassifications. For this reason, feature selection techniques were exploited in 

order to determine the best combinations of features for accurately distinguishing epileptogenic 

and non-epileptogenic voxels. 

1 — q 



The features presented in Section II formed the basis for the library of signal attributes 

investigated for discernment of epileptogenic and non-epileptogenic brain regions. The aim of 

feature selection was to find a feature subset of size d < D (where D is total number of features in 

the library) that had the greatest ability to distinguish between the two classes of voxels. 

Because the goal was to maximize the classification performance, the classification accuracy was 

selected as an appropriate objective function for evaluating the feature subsets. The four feature 

selection approaches employed in this work include: 

• Sequential forward selection (SFS) 

SFS is a greedy search algorithm that determines the best set of features for extraction by 

starting from an empty set and sequentially adding a single feature to the subset if it 

increases the value of the chosen objective function. 

• Sequential backward selection (SBS) 

SBS is similar to SFS but works in the opposite direction. The search initializes with the 

full set of features and removes a single feature that improves or minimally worsens the 

objective function to obtain the best subset of features. 

• Sequential floating forward selection (SFFS) 

SFFS addresses the tendency of SFS and SBS to gravitate toward local minima due to the 

inability to re-evaluate the usefulness of features that were previously added or discarded. 

SFFS performs a dynamically chosen number of forward selection steps followed by 

backward selection as long the objective function increases. The process then repeats 

until the desired number of features has been selected. 

• Branch and bound (B&B) 



B&B is an exponential search algorithm with the ability to find "optimal" solutions under 

certain assumptions and conditions [25]. The algorithm creates a tree structure such as 

the one shown in Figure 7. Then, based on the assumption that the superset always has a 

higher objective function value than its subsets—which is not always true—the algorithm 

is able to eliminate certain branches of the tree as possible best solutions without 

evaluating them. In this way, the optimal solution can be found without an exhaustive 

search of the feature space. 
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Figure 7 Example of a branch and bound search tree for D = 5 and d = 2. The dashed black lines 
represent the points at which branches can be pruned in order to reduce the computational burden 
without loss of optimality, and the arrows represent the order of tree traversal starting from the 
right. 

IV. 	Results and Discussion 

Each feature selection algorithm in Section III was executed for varying feature subset 

sizes with the objective function, feature vectors, and classification vectors as the algorithm 

inputs. Since the features were to ultimately be used in a pattern detection system, the 

classification accuracy defined by Equation 7 was taken as the objective function for each feature 

selection method. A k-nearest-neighbor (k-NN) rule was used as the classifier in the system 



where five neighbors (k = 5) was chosen. In the following expression for the classification 

accuracy, which is the number of correctly classified events normalized by the total number of 

events, 

Accuracy = 
TP +TN 

(7) 
TP +TN + FP + FN 

where the values TP, TN, FP, and FN are numbers of true positives, true negatives, false 

positives, and false negatives, respectively. Positives indicate epileptic activity, and negatives 

denote non-epileptic activity. For each set of data, using the classification accuracy as an 

objective function necessitates separating the feature vectors and classification vector into 

training and testing sets for the k-NN. The counts for TP, TN, FP, and FN were determined after 

a testing set was classified and compared to the corresponding a priori classification vector of the 

testing set. 

In the training set, a balanced proportion of values from the epileptic (1) and non-

epileptic (0) classes was used because training a classifier with a balanced set provides a 

"guaranteed" measure of future classification accuracy, whereas training an unbalanced classifier 

may prove much better or much worse if the testing set were unbalanced. A 95% confidence 

interval for the accuracy was approximated using Equation 8 after thirty Monte Carlo 

simulations were run. Each simulation randomly drew a different training and testing data set, 

which was used for each selection method, before the accuracy was calculated and recorded. In 

Equation 8, .7 , s, and n are the mean, standard deviation, and number of the recorded accuracies, 

respectively. 

C/95%  = ± 2 
-NJ n (8) 



After running the Monte Carlo simulations, the best feature set of any size was 

determined and then used on a second testing set for classifying epileptic and non-epileptic 

voxels in each phantom dataset. The testing set was generated by randomly selecting voxels 

from each of the know classes, i.e. epileptic and non-epileptic. An ANOVA analysis was then 

performed to determine whether or not the choice of feature selection algorithm significantly 

affected the performance of the selected feature set and the ability of the chosen features to 

accurately classify the voxels. Figures 8 shows box plots of the classification accuracy versus 

the feature selection method for each of the fifteen phantom datasets. It is clear from these plots 

that no one method outperforms the others in all cases, but there are certain methods that 

substantially outperform others in certain cases. For instance, SBS provides greater accuracy 

than the other methods in subject P1, but for subject P11, all methods have relatively even 

performance. No matter which technique is chosen, all methods provide high accuracy in 

classifying epileptic and non-epileptic voxels. 
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on the feature selection method. In all cases ind = individual feature selection, sfs = sequential 
forward selection, sbs = sequential backward selection, sffs = sequential floating forward 
selection, and bnb = branch & bound. 
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