
Christiaan J.J. Paredis and Pradeep K. Khosla,
“Fault Tolerant Task Execution Through Global Trajectory Planning”

to appear inReliability Engineering and System Safety, December 1996.

Fault Tolerant Task Execution through
Global Trajectory Planning

Christiaan J. J. Paredis Pradeep K. Khosla

Department of Electrical and Computer Engineering and

The Robotics Institute,

Carnegie Mellon University,

Pittsburgh, Pennsylvania 15213.

Abstract

Whether a task can be completed after a failure of one of the degrees-of-freedom of a redundant

manipulator depends on the joint angle at which the failure takes place. It is possible to achieve

fault tolerance by globally planning a trajectory that avoids unfavorable joint positions before a

failure occurs. In this article, we present a trajectory planning algorithm that guarantees fault

tolerance while simultaneously satisfying joint limit and obstacle avoidance requirements.

1 Introduction

Reliability is becoming an essential attribute of robot manipulators in a growing range of

applications, such as space missions, nuclear waste retrieval, and medical robotics. This trend

has spawned a research effort in fault tolerant robotics, covering topics ranging from fault

detection and identification [16] to design [11, 13], control [5, 15], and redundancy resolution [6]

of fault tolerant manipulators.

Fault tolerance is the ability of a system to continue normal operation despite the presence of

failures in subsystems. This can be achieved by adding redundancy at different levels of the

system. Sreevijayan [13] proposed a four-level subsumptive architecture for actuation

redundancy in fault tolerant robot manipulators:

Level 1: Dual actuators—extra actuators per joint,

Level 2: Parallel structures—extra joints per DOF,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarly Materials And Research @ Georgia Tech

https://core.ac.uk/display/4737929?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Christiaan J.J. Paredis and Pradeep K. Khosla,
“Fault Tolerant Task Execution Through Global Trajectory Planning”

to appear inReliability Engineering and System Safety, December 1996.

Level 3: Redundant manipulators—extra DOFs per manipulator arm,

Level 4: Multiple arms—extra arms per manipulator system.

A system designed with redundancies at all four levels can possibly sustain multiple

simultaneous faults.

An example of a fault tolerant design for the space shuttle manipulator is described in [17]. Fault

tolerance is here guaranteed by using a differential gear train with dual input actuators for every

DOF—an implementation of the first level of the four-level subsumptive architecture. In this

article, we propose a method to achieve fault tolerance using redundant DOFs (Level 3). We

define a manipulator to be 1-fault tolerant if it can complete its task even if one of its joints fails

and is immobilized [11]. This definition is based on the following scenario:

 A fault detection and identification algorithm monitors the proper functioning of each

degree-of-freedom (DOF) of a redundant manipulator. As soon as it detects a failure of

a subcomponent, an intelligent controller immobilizes the corresponding DOF by

activating its brake, and automatically adapting the joint trajectory to the new manipulator

structure. The task is then continued without interruption.

According to this scenario, a large variety of possible faults, ranging from sensor faults to

transmission and actuation faults, can be treated in exactly the same manner, namely, by

eliminating the whole DOF through immobilization.

Whether a task can be completed after a joint failure depends not only on the structure of the

manipulator [12], but also on the specific joint angle at which the failure occurs. In general,

failures at a fully extended or folded back position of a joint are most detrimental to the

remaining capabilities of the manipulator. The basic idea that we exploit in this article is to

achieve fault tolerance by avoiding unfavorable joint positionsbefore failure. This idea was first

proposed in [6] where the null-space component of a redundant manipulator was used to locally

minimize the kinematic fault tolerance measure (kfm)1. The authors showed that, for a particular

test path, a manipulator with kfm minimization is more likely to be fault tolerant than a

1. The kinematic fault tolerance measure, or kfm, is defined as the minimum dexterity after joint failure.

Christiaan J.J. Paredis and Pradeep K. Khosla,
“Fault Tolerant Task Execution Through Global Trajectory Planning”

to appear inReliability Engineering and System Safety, December 1996.

manipulator with traditional pseudoinverse control. However, due to the local nature of the kfm,

fault tolerance could not be guaranteed globally [7].

In this article, we present a trajectory planning algorithm that guarantees fault tolerance on a

global scale, while avoiding any violations of secondary kinematic requirements such as joint

limits and obstacles. To achieve this global result, we have to consider the topology of the self-

motion manifolds, as has been previously suggested in [7, 8].

The redundancy provisions needed for fault tolerance can be incorporated only at the price of

increased complexity. This drawback can be overcome by a modular and structured design

philosophy, as is advocated in [5, 10, 14]. Modularity in hardware and software has the

advantage of facilitating testing during the design phase and therefore reducing the chances for

unanticipated faults. Modules also constitute natural boundaries to which faults can be confined.

By including fault detection and recovery mechanisms in critical modules, the effect of local

faults remains internal to the modules, totally transparent to the higher levels of the manipulator

system. Such a modular design philosophy is embodied in the Reconfigurable Modular

Manipulator System (RMMS) developed in the Advanced Manipulators Laboratory at Carnegie

Mellon University [10]. The RMMS utilizes a stock of interchangeable link modules of different

lengths and shapes, and joint modules of various sizes and performance specifications. By

combining these general purpose modules, a wide range of manipulator configurations can be

assembled. In Section 6, a simulation of the RMMS is used to illustrate our global trajectory

planning algorithm.

2 Definitions

In this section, we introduce several concepts that are essential for the development of the

algorithm presented in the next section. We start by giving an exact definition of the problem.

Definition 1: Fault Tolerant Trajectory Planning Problem

Given: - a manipulator defined by its geometry, joint limits, and redundancy resolution

algorithm.

Christiaan J.J. Paredis and Pradeep K. Khosla,
“Fault Tolerant Task Execution Through Global Trajectory Planning”

to appear inReliability Engineering and System Safety, December 1996.

– a task description consisting of a Cartesian path, , and the geometry

of the obstacles.

Find: – a fault tolerant trajectory in joint space2: .

A fault tolerant trajectory is defined as follows:

Definition 2: Fault Tolerant Trajectory

A trajectory, , is 1-fault tolerant with respect to the task of following the Carte-

sian path , if for every DOF, , and for every instant, , there exists

an alternate trajectory, , for which:

1) maps onto under the forward kinematics

2)

3)

4) does not violate any secondary task requirements such as joint limits or

obstacles.

This definition corresponds to our scenario for fault tolerance as described in the introduction.

Before any failures occur, the manipulator follows the fault tolerant joint trajectory . After

a failure in joint at time , joint is immobilized and the joint trajectory is adapted to keep

tracking the path . The new trajectory, , is equal to at the instant of failure and

maintains a constant joint angle, , for the frozen joint after the failure.

There are an infinite number of alternate trajectories, , one for every possible

combination of a failing DOF and an instant of failure. This poses practical problems. While

one can explicitly store a discretized version of , explicit storage of all is

impossible. Therefore, we assume that the alternate trajectories are storedimplicitly in a

redundancy resolution algorithm that computes at run time once a failure has taken

place. We also assume that this redundancy resolution algorithm unambiguously determines

, given , , and ; that is, we only consider redundancy resolution algorithms that

2. We assume that the manipulator has only revolute joints. The joint space is therefore the -dimensional
torus .

p t() ℜm∈

θ t() Tn∈

n
Tn

θ t() Tn∈

p t() ℜm∈ j 1…n= t∗

θ t j t∗, ,()

θ t j t∗, ,() p t()

θ t∗() θ t∗ j t∗, ,()=

θ j t j t∗, ,() θ j t∗(), t∀ t∗>=

θ t j t∗, ,()

θ t()

j t∗ j

p t() θ t j t∗, ,() θ t()

θ j t∗() j

θ t j t∗, ,()

θ t() θ t j t∗, ,()

θ t j t∗, ,()

θ t j t∗, ,() t∗ θ t∗() j

Christiaan J.J. Paredis and Pradeep K. Khosla,
“Fault Tolerant Task Execution Through Global Trajectory Planning”

to appear inReliability Engineering and System Safety, December 1996.

determine the next joint vector based on the current joint vector, and not on past joint vectors.

This assumption is satisfied for commonly used Jacobian-based algorithms of the form:

. (1)

Readers unfamiliar with this kind of redundancy resolution algorithms are referred to [9] for a

detailed overview; an example is also given in Section 6 of this article.

Because the choice of the redundancy resolution algorithm fully determines the alternate

trajectories, it also influences the solution of the trajectory planning problem. In this article, we

assume the redundancy resolution algorithm to be a given of the problem, i.e., a part of the

manipulator definition. Consequently, for a failure of joint at posture , there exists a

unique alternate trajectory .

In the fourth point of the definition of a fault tolerant trajectory, we refer to “secondary task

requirements.” The primary requirement is to follow the path . In the problem definition,

we included joint limits and obstacles as secondary requirements, but one can include any other

kinematic requirement that only depends on the current posture. For instance, all the dexterity

measures enumerated in [4] depend only on the current joint position and could thus be included

as secondary requirements. We call the set of postures that satisfy all the secondary task

requirements the set .

At each instant, , the manipulator postures and map onto the path under the

forward kinematics of the manipulator, . Consequently, we say that these postures are

elements of the preimage of .

Definition 3: Preimage of a point p

The preimage of a point, , is the set , where is the for-

ward kinematic mapping of the manipulator.

This preimage is a set of -dimensional manifolds,3 where is the degree-of-

redundancy of the manipulator.

3. An exception is the preimage of a critical value, which is not a manifold but a bouquet of tori [1].

θ̇ J†ẋ I J†J–()Φ̇+=

j θ t∗()

θ t j t∗, ,()

p t()

S

t θ t() θ t j t∗, ,() p t()

p f θ()=

p

p Σ p() θ Tn∈ f θ() p={ }= f

r r n m–=

Christiaan J.J. Paredis and Pradeep K. Khosla,
“Fault Tolerant Task Execution Through Global Trajectory Planning”

to appear inReliability Engineering and System Safety, December 1996.

Assume now that joint fails. We call the resulting manipulator, with joint immobilized, a

reduced order derivative (ROD).

Definition 4: k-Reduced Order Derivative

A manipulator with DOFs, obtained by immobilizing of the joints of an -

DOF manipulator, is called a -reduced order derivative.

Whether this ROD is able to complete the task, as is required for fault tolerance, depends on the

posture at which the failure occurred. For certain , the path might

pass outside the workspace of the ROD, the redundancy resolution algorithm might get stuck at

a singularity, or the alternate trajectory might violate the joint limits or cause a

collision with an obstacle. In all of these cases, the task cannot be completed. We call the

corresponding posture intolerant to a failure of DOF .

Definition 5: Posture Tolerant to a Failure of DOF j

A posture is tolerant to a failure of DOF if and only if the alternate trajec-

tory , as determined by the redundancy resolution algorithm, satisfies all the task

requirements.

We call the set of postures that are tolerant to a failure of DOF the set

.

Based on the definition of a fault tolerant trajectory, we conclude that a posture is an acceptable

posture for a fault tolerant trajectory if it is tolerant to failures of each of the DOFs. The set of

acceptable postures is given by the equation:

. (2)

3 Algorithm

The algorithm to determine a fault tolerant trajectory consists of two parts. In the first part, we

determine for each instant, , the set of acceptable postures, , as defined in the previous

j j

n k–() k n

k

θ t∗() Σ p t∗()()∈ θ t∗() p t()

θ t j t∗, ,()

θ t∗() j

θ Σ p t∗()()∈ j

θ t j t∗, ,()

θ Σ p t∗()()∈ j

F j
t∗ Σ p t∗()()⊂

θ Σ p t∗()()∈

A t∗ F j
t∗

j 1=

n

∩=

t∗ A t∗

Christiaan J.J. Paredis and Pradeep K. Khosla,
“Fault Tolerant Task Execution Through Global Trajectory Planning”

to appear inReliability Engineering and System Safety, December 1996.

section. In the second part, we create a connectivity graph for the acceptable postures and search

this graph to determine a fault tolerant trajectory.

A key observation for the development of our algorithm is that whether a posture, , is

acceptable depends only on the future course of the path ; it is independent of for .

For example, if a failure occurs at the last point, , of the path, the task can always be

completed, regardless of which course the path followed previously and regardless of the posture

in which the manipulator reaches this last point. We conclude that

. (3)

This conclusion forms the basis for the algorithm’s initialization.

The main iteration of our algorithm is based on a second important observation. Consider a

candidate fault tolerant trajectory, . At time , joint fails and the alternate trajectory

 is followed, as is illustrated in Figure 1. Consider also a second candidate fault

tolerant trajectory, , which intersects with at time , so that

. If a failure of joint were to occur at time , the alternate trajectory

 would be followed. Because the joint velocity, , in the redundancy resolution

algorithm, depends only on , , and the current joint vector, the two alternate trajectories

θ t∗()

p t() p t() t t∗<

plast

A
tlast F 1

tlast … F n
tlast Σ plast() S∩= = = =

θ1 t() t1 j

θ1 t j t1, ,()

Figure 1: Two possible failures resulting in the same alternate trajectory.

θ1 t()

θ

tt1 t2

θ2 t()

θ1 t j t1, ,() =
θ2 t j t2, ,()

θ2 t() θ t j t1, ,() t2

θ1 t2 j t1, ,() θ2 t2()= j t2

θ2 t j t2, ,() θ̇

j p t()

Christiaan J.J. Paredis and Pradeep K. Khosla,
“Fault Tolerant Task Execution Through Global Trajectory Planning”

to appear inReliability Engineering and System Safety, December 1996.

 and are equal to each other for . A Corollary of this observation is

that a posture is tolerant to a fault in joint if and only if all the postures along the corresponding

alternate trajectory are also tolerant to faults in joint :

(4)

which is equivalent to the expression:

(5)

Equation (5) means that we can determine whether a posture, , is tolerant to a fault of DOF

 by tracing the alternate trajectory up to rather than up to . This property is used

in the main iteration of the first part of our algorithm.

θ1 t j t1, ,() θ2 t j t2, ,() t t2>

j

j

θ t1() F j
t1∈ θ t∗ j t1, ,() F j

t∗,∈⇔
t∗ t1 and θ t1() S∈>∀

θ t1() F j
t1∈ ⇔ θ t∗ j t1, ,() F j

t∗,∈
t∗∀ t1(t1 ∆t+] and θ t1() S ∆t 0>,∈,∈

θ t1()

j t1 ∆t+ tlast

Part 1: determination of the acceptable postures

• discretize the path:

• compute the preimage of the last point:

• compute the acceptable postures for the last point:

• for k=last-1 to first do

• compute the preimage:

• for j=1 to n do

• for every posture do

• compute using the

 redundancy resolution algorithm

• if then

• next

• nextj

• compute the set of acceptable postures:

• nextk

pk p tk() p k∆t()= =

Σ plast()

A tlast F j
tlast Σ plast() S∩= =

Σ pk()

θ Σ pk()∈

θ tk 1+ j t k, ,()

θ S andθ tk 1+ j t k, ,() F j
tk 1+∈∈ θ F j

tk∈

θ

A tk F j
tk

j 1=

n

∩=

Christiaan J.J. Paredis and Pradeep K. Khosla,
“Fault Tolerant Task Execution Through Global Trajectory Planning”

to appear inReliability Engineering and System Safety, December 1996.

Once the sets of acceptable postures have been computed, a fault tolerant trajectory is chosen in

the second part of our algorithm. A fault tolerant trajectory consists of a sequence, of

acceptable postures—one posture for each instant . However, one cannot pick the

postures at random from . For a valid fault tolerant sequence, there should exist a

continuous trajectory of acceptable postures connecting each pair of postures and .

Moreover, the sequence should preferably vary smoothly and stay away from the

boundaries of . To simplify the search for such a sequence, we first group the postures of

 that are connected to each other.

In general, a set, , may consist of several disjoint regions, , of acceptable postures:

. (6)

The postures in each region are connected to each other in the sense that there exists a

continuous trajectory of acceptable postures, , connecting any two postures in . On

the other hand, by definition, there does not exist any combination of two postures, one from

and one from , for which such a continuous trajectory can be found. Similarly, we call two

regions and connected if there exists a continuous trajectory of acceptable postures,

, with , connecting any two postures and . As a result, a

fault tolerant trajectory exists if and only if there exists a sequence of connected regions,

. This result is used in the second part of our algorithm, in which we build a

connectivity graph representing the connections between the regions . The structure of this

graph is in general very simple due to the limited number of disjoint regions in each , and

due to the limited number of connections between regions at time and regions at time .

It is possible that there exists no fault tolerant sequence of connected regions. To achieve fault

tolerance in this case, the manipulator itself needs to be adapted by changing its structure, joint

limits, or redundancy resolution algorithm.

In the final step of the algorithm, a fault tolerant trajectory is determined from the sequence of

connected regions. In general, there are an infinite number of possible fault tolerant trajectories.

However, a good trajectory should vary smoothly and stay away from the boundaries of the

θ tk(){ }

θ tk() A tk∈ tk

θ tk() A tk

θ tk() θ tk 1+()

θ tk(){ }

A tk

A tk

A tk R i
tk

A tk R i
tk∪= and R i

tk R j
tk∩ ∅, i j≠∀=

R i
tk

θ A tk∈ R i
tk

R i
tk

R j
tk

R i
tk R j

tk 1+

θ t() t tk tk 1+,[]∈ θi R i
tk∈ θ j R j

tk 1+∈

R i
t1 … R j

tlast, ,
 
 
 

R i
tk

A tk

tk tk 1+

Christiaan J.J. Paredis and Pradeep K. Khosla,
“Fault Tolerant Task Execution Through Global Trajectory Planning”

to appear inReliability Engineering and System Safety, December 1996.

regions . The choice of one specific fault tolerant trajectory can be further limited by

imposing additional task requirements or objectives.

4 Implementational issues

Although most of the steps of the algorithm, presented in the previous section, can be easily

implemented, the computation of the preimage, , requires some further explanation. As

mentioned before, for an -DOF manipulator, the preimage of a point, , is a set of -

dimensional manifolds in the -dimensional torus , where is the degree-of-

redundancy of the manipulator. The preimage is defined implicitly by the forward kinematics

function . The computation of the preimage involves translating this implicit

representation into an explicit one, for example, a random sampling of the preimage stored as a

finite set of postures . However, this particular representation is insufficient for our

algorithm because it does not capture the topology of the preimage. Topological information is

needed in three steps of the algorithm: first, where the sets are computed; second, where the

intersection of these sets is taken to obtain ; and third, where the acceptable postures are

grouped into disjoint regions . It is important to notice that in all three instances only the

local topology matters. Locally, an -dimensional manifold is diffeomorphic to , and can

thus be approximated by an -dimensional hyperplane. Therefore, we have chosen to represent

the preimage by a polygonal approximation consisting of line segments when , or

R j
tk

Part 2: search for a fault tolerant trajectory

• for k=last to first do

• group the acceptable postures, , in disjoint regions

• for each region , determine the connections with the regions fork+1

• store in connectivity graph

• nextk

• search the connectivity graph to determine a fault tolerant sequence of the regions

• select a fault tolerant trajectory

A
tk R i

tk

R i
tk

R i
tk

Σ p()

n p ℜm∈ r

n Tn r n m–=

f θ() p=

θ Tn∈

F j
tk

A tk

R j
tk

r ℜr

r

Σ p() r 1=

Christiaan J.J. Paredis and Pradeep K. Khosla,
“Fault Tolerant Task Execution Through Global Trajectory Planning”

to appear inReliability Engineering and System Safety, December 1996.

triangular patches when , as is illustrated in Figure 2. Let be the number of postures

 used to approximate , then increases as the accuracy of the approximation

increases. also depends on the dimensionality, , of the preimage; this dependency is

exponential.

The algorithm also requires the Cartesian path to be approximated by a sequence

with . Let be the number of points in the sequence . Just like ,

depends on the accuracy of the approximation. In this case, the dependency is always linear

because the Cartesian path is 1-dimensional.

The complexity of the algorithm is mainly determined by the nested loop of the first part of the

algorithm. Assuming that the complexity of the redundancy resolution algorithm is linear in ,

the complexity of our trajectory planning algorithm can be expressed as:

 or . (7)

r 2=

−π
−π/2

0
π/2

π

−π

−π/2

0

π/2

π
−π

−π/2

0

π/2

π

θ3θ4

θ5

Figure 2: The projection onto the -space of a polygonal
approximation of a 2-dimensional preimage for a 5-DOF manipulator.

θ3 θ4 θ5, ,()

S

θ Tn∈ Σ p() S

S r

p t() pk{ }

pk p k∆t()= P pk{ } S P

n

P n S O n()⋅ ⋅ ⋅ P er O n2()⋅ ⋅

Christiaan J.J. Paredis and Pradeep K. Khosla,
“Fault Tolerant Task Execution Through Global Trajectory Planning”

to appear inReliability Engineering and System Safety, December 1996.

Because of the exponential dependency on , the algorithm is only practical for or

. Fortunately, two degrees-of-redundancy are sufficient to achieve fault tolerance in most

practical applications [11].

5 Illustrative example

In this section, we illustrate the use of the fault tolerant trajectory planning algorithm with an

example of a 3-DOF planar manipulator. This simple example enables us to describe graphically

how a fault tolerant trajectory is selected.

The 3-DOF manipulator has 3 links of length 1; the joint limits are for and

for and ; no redundancy resolution algorithm is specified because the 2-DOF reduced

order derivatives are non-redundant. The task is to follow the trajectory shown in Figure 3 at

constant speed in a total time of 10 seconds; a circular obstacle is centered at and has

a radius of .

Because the manipulator in this example has one degree-of-redundancy, , the preimage of

every point, , is a one dimensional subset of and can be parametrized as

 with . The function describes a 2-dimensional surface in , as

illustrated in Figure 4. The surface can be parametrized by two parameters: the Cartesian

r r 1=

r 2=

100°± θ1 150°±

θ2 θ3

-0.5 0 0.5 1 1.5 2 2.5
-1

-0.5

0

0.5

1

15 deg

obstacle

p(0)=p(10)

p(2.68)

p(7.68)

p(5)

x

y

Figure 3: The Cartesian path and obstacle position.

0.7 0,()

0.2

r 1=

p t() T3

Σ p t()() g p t() α,()= α T1∈ g T3

Christiaan J.J. Paredis and Pradeep K. Khosla,
“Fault Tolerant Task Execution Through Global Trajectory Planning”

to appear inReliability Engineering and System Safety, December 1996.

-100

-50

0

50

100

-150-100-50050100150

-150

-100

-50

0

50

100

150

θ1
θ2

θ3

f

ba

c
e

d

Figure 4: The preimage of the trajectory.

posture [deg] [deg] [deg] t [sec] [rad]

a 45.00 -60.00 -60.00 0 and 10 0 or

b 75.00 -60.00 -60.00 2.68 0 or

c 61.52 -75.52 -75.52 7.68 0 or

d 13.95 -104.48 104.48 0 and 10

e -75.00 60.00 60.00 0 and 10

f -43.95 104.48 -104.48 0 and 10

θ1 θ2 θ3 α

2π

2π

2π

π/2

π

3π/2

Table 1: The coordinates for each of the postures labeled a–f in Figure 4:
Joint angles , , and : the coordinates for the 3D representation of the
 preimage (Figure 4)
time t and preimage parameter : the coordinates for the 2D representation
 of the preimage (Figures 5–8)

θ1 θ2 θ3

α

Christiaan J.J. Paredis and Pradeep K. Khosla,
“Fault Tolerant Task Execution Through Global Trajectory Planning”

to appear inReliability Engineering and System Safety, December 1996.

position (or time), and the preimage parameter . The postures labeleda, d, e, andf, are

all part of the preimage of the same point, (or). The postures labeleda, b, andc, on

the other hand, have the same value for the preimage parameter, (or), but map

onto different points, , along the path. One can also unwrap this surface and represent it in a

planar coordinate system with the time in abscissa and the preimage parameter in ordinate4;

this representation is used in Figures 5 through 8. Table 1 gives the coordinates of the six

postures,a throughf, for both the three-dimensional and the two-dimensional representations of

Figures 4 and 5, respectively.

In the first part of the algorithm, the sets are determined. They are depicted in Figures 5

through 7 as the white areas. The dark gray areas are postures that do not satisfy the secondary

task requirements; i.e., they are the sets . These postures would be unacceptable for

a joint trajectory even if fault tolerance were not required. The light gray area is the set of

postures for which the alternate trajectories do not meet the task requirements. The alternate

trajectories for this example are totally determined by keeping the joint angle

constant, and are represented by the black curves. Notice that, for the postures in the light gray

area, the alternate trajectories either pass through a posture that violates a secondary task

requirement, or get stuck at a singularity and do not reach the end of the path. In either case,

the requirement for fault tolerance is violated. The sets of acceptable postures are indicated

in white in Figure 8. This white area is the intersection of the white areas in Figures 5, 6 and 7,

in accordance with Equation (2).

In the second part of our algorithm, the acceptable postures are first grouped into disjoint

regions. Such a region, , corresponds to a vertical white line segment with abscissa in

Figure 8. The number of disjoint regions is usually small—a maximum of six for this example.

Once the regions have been determined, the connections with the disjoint regions at time

 are stored in a connectivity graph, which is shown in Figure 9. As mentioned before, the

graph is very simple in general. For this example, there exists only one fault tolerant sequence

of connected regions. A possible fault tolerant trajectory for this sequence is shown as a dashed

4. Keep in mind that the planar representation does not capture the exact topology of the 2-dimensional surface,
because the preimage parameter is an element of and the path is closed, .

p t α

p 0() p 10()

α 0= α 2π=

p

α

α T1 p t() p 0() p 10()=

F j
tk

Σ p t()() S–

θ t j t k, ,() θ j

A tk

R i
tk tk

R i
tk

tk 1+

Christiaan J.J. Paredis and Pradeep K. Khosla,
“Fault Tolerant Task Execution Through Global Trajectory Planning”

to appear inReliability Engineering and System Safety, December 1996.

0 2 4 6 8 10
 0

 π/2

 π

3π/2

 2π

time

pr
ei

m
ag

e
pa

ra
m

et
er

α

0 2 4 6 8 10
 0

 π/2

 π

3π/2

 2π

time

pr
ei

m
ag

e
pa

ra
m

et
er

α

0 2 4 6 8 10
 0

 π/2

 π

3π/2

 2π

time

pr
ei

m
ag

e
pa

ra
m

et
er

α

0 2 4 6 8 10
 0

 π/2

 π

3π/2

 2π

time

pr
ei

m
ag

e
pa

ra
m

et
er

α

Figure 8: A possible fault tolerant
trajectory (dashed line). The white areas

are the sets of acceptable postures.

Figure 5: The set of postures tolerant to
a fault in joint 1 (in white).

Figure 6: The set of postures tolerant to
a fault in joint 2 (in white).

Figure 7: The set of postures tolerant to
a fault in joint 3 (in white).

The dark gray areas are postures that violate the secondary task requirements (joint limits
and obstacles). The light gray areas are postures for which the alternate trajectory vio-
lates the task requirements. The black curves are alternate trajectories, determined by
keeping the angle of the failing joint constant.

Christiaan J.J. Paredis and Pradeep K. Khosla,
“Fault Tolerant Task Execution Through Global Trajectory Planning”

to appear inReliability Engineering and System Safety, December 1996.

line in Figure 8. The corresponding individual joint trajectories are depicted in Figure 10.

6 Comprehensive example

In this section, we describe an example of fault tolerant task execution by the 4-DOF spatial

manipulator shown in Figure 11. The manipulator is a configuration of the Reconfigurable

Modular Manipulator System (RMMS), and consists of the manipulator base, three pivot joint

modules, one rotate joint module, and a link module. The modules are assembled such that the

resulting manipulator has the Denavit-Hartenberg parameters listed in Table 2. The joint limits

for each of the joint modules are . The task is to follow a circular path on a table while

avoiding collisions with the table—even after one of the joint modules has failed and is

immobilized.

The simulation uses the same control software running on the same hardware as would be used

to control the actual manipulator system. The only difference is that the robot interface is

replaced by an interface to the TeleGrip simulation software package (by Deneb Inc.). TeleGrip

runs on a SGI Crimson which is connected to the VME-based control hardware through a VME-

0 2 4 6 8 10

1

2

3

4

5

6

time

di
sj

oi
nt

 r
eg

io
n

nu
m

be
r

Figure 9: Connectivity graph for the
disjoint regions of acceptable postures.

0 2 4 6 8 10
-80

-60

-40

-20

0

20

40

60

80

100

120

time
in

 d
eg

re
es

θ1
, θ

2,
 θ

3

θ1

θ2

θ3

Figure 10: Fault tolerant trajectories for the
individual joints.

165°±

Christiaan J.J. Paredis and Pradeep K. Khosla,
“Fault Tolerant Task Execution Through Global Trajectory Planning”

to appear inReliability Engineering and System Safety, December 1996.

to-VME-adaptor. We use a damped least-squares kinematic controller with null-space

optimization:

, (8)

where is the singularity robust Jacobian inverse [3], is the desired Cartesian path, and

 is the fault tolerant trajectory. The null-space optimization component of the controller

ensures that the manipulator follows the desired fault tolerant joint space trajectory closely

before a failure occurs, as is shown in Figure 12. After failure, the same controller is used with

the column of the Jacobian, which corresponds to the frozen joint, set to zero. The trajectories

for the remaining joints deviate from the fault tolerant trajectory to ensure that the end effector

continues to track the desired path.

Instead of using the kinematic controller given by Equation (8), one could linearly interpolate the

fault tolerant trajectory before failure and only switch to Cartesian control after failure. Besides

having to switch controllers at the instant of failure, this has the disadvantages that a dense

Figure 11: A simulation of the Reconfigurable
Modular Manipulator System executing a fault

tolerant trajectory.

dof link offset link length twist angle

Table 2: Denavit-Hartenberg parameters.
(in meters and radians)

1 -0.1373 0.0 π/2

2 0.7344 0.0 π/2

3 -0.1373 0.3270 -π/2

4 -0.1373 0.4705 0.0

θ̇ J∗ ṗ α p x–()+() β I J∗J–() θ ft θ–()+=

J∗ p t()

θ ft t()

Christiaan J.J. Paredis and Pradeep K. Khosla,
“Fault Tolerant Task Execution Through Global Trajectory Planning”

to appear inReliability Engineering and System Safety, December 1996.

sampling of the fault tolerant trajectory is required to achieve good end effector position

accuracy. Furthermore, Equation (8) allows us to move back smoothly to the fault tolerant

trajectory if the failure was temporary.

Figure 13 shows the position error of the end effector. The error does not increase after failure

and remains an order of magnitude smaller than the distance traveled by the end effector during

0 5 10 15 20

-5

0

5

10

time [sec]

th
et

a
1

[d
eg

]

fault instant

0 5 10 15 20

60

70

80

90

time [sec]

th
et

a
2

[d
eg

]

fault instant

0 5 10 15 20
10

20

30

40

50

60

time [sec]

th
et

a
3

[d
eg

]

fault instant

0 5 10 15 20

70

80

90

100

time [sec]

th
et

a
4

[d
eg

]

fault instant

Figure 12: Joint trajectories theta 1 through theta 4. Before failure (0–10sec),
the manipulator follows the fault tolerant trajectory. At the tenth second,
joint 4 fails and is immobilized. The manipulator then deviates from the fault
tolerant trajectory (dotted line) and follows the alternate trajectory (solid
line) as determined by the redundancy resolution algorithm.

0 5 10 15 20

6

7

8

9

10
x 10

-5

time [sec]

po
si

tio
n

er
ro

r
[m

]

fault instant

Figure 13: The end effector position error does not increase after failure.

Christiaan J.J. Paredis and Pradeep K. Khosla,
“Fault Tolerant Task Execution Through Global Trajectory Planning”

to appear inReliability Engineering and System Safety, December 1996.

one sample period:

(9)

The error could be further reduced by increasing the cycle frequency of the damped least-squares

controller.

Many simulations with a wide variety of failure times and failing joints resulted in a maximum

positional error of . This confirms the fact that the trajectory determined by our

algorithm is indeed fault tolerant with respect to this task. Unfortunately, we cannot demonstrate

this graphically as we did for the previous example. Because the topology of the preimage

changes at the points where the path crosses the critical value manifolds of the manipulator [1],

the preimage of the path cannot be unfolded into a 2-dimensional graph such as Figure 8.

7 Comparison

In this section, we compare our algorithm for global fault tolerant trajectory planning with the

approaches for fault tolerant task execution described in [6], [7], and [11].

In [6], the authors propose a local redundancy resolution algorithm which maximizes the

kinematic fault tolerance measure,kfm5. Thekfm is defined as the minimum remaining dexterity

of the manipulator after joint failure:

, (10)

where is the smallest singular value of the Jacobian of the original manipulator with the

-th column removed. One can think of the dexterity, , as the ease with which the end-

effector of the manipulator can be moved in the least suitable direction. To achieve fault

tolerance, it is important that, after a joint fails and is immobilized, all end-effector movements

remain feasible, that is, remains non-zero. This idea is realized practically by using a

redundancy resolution algorithm with null-space maximization of thekfm. Due to the local

5. The authors also define a dynamic fault tolerance measure,dfm, which we do not consider in this article.

s
2π 0.1m⋅

5sec 150Hz⋅
------------------------------- 8.38

4–×10 m= = error»

8.67
5–×10 m

kfm min
f 1..n=

σm J
f

()=

σm J
f

()

f σm

σm

Christiaan J.J. Paredis and Pradeep K. Khosla,
“Fault Tolerant Task Execution Through Global Trajectory Planning”

to appear inReliability Engineering and System Safety, December 1996.

nature of the kinematic fault tolerance measure, however, this method cannot guarantee fault

tolerance on a global sale. Moreover, it does not take secondary requirements such as joint limits

and obstacles into consideration. Nevertheless, the method is important in case the desired end-

effector path is unknown a priori; global off-line path planning is impossible in this case, so that

local optimization of thekfm combined with joint limit and obstacle avoidance, is probably the

best one can do. A drawback of the method is that it requires the computation of the gradient

of the kfm, which in turn requires the computation of the full singular value decomposition of

; the computational complexity for the singular value decomposition of an matrix is

approximately [2]

. (11)

Although this is quite computationally intensive for an on-line algorithm, it does not suffer from

exponential complexity in the degree-of-redundancy, , so that this method could be used to

achieve local fault tolerance even in highly redundant manipulators.

In [7], Lewis and Maciejewski acknowledge the local nature of thekfm approach and propose a

global method for fault tolerant task execution. For every “critical task point” (a point that needs

to be reachable after joint failure), a bounding box of the preimage manifold is computed. Every

critical task point is reachable after joint failure, if the failure occurs at a posture inside the

intersection of the bounding boxes of the preimage manifolds. Global fault tolerance is achieved

by using a redundancy resolution algorithm that ensures that the joint space trajectory remains

inside the intersection of the bounding boxes. This method is similar to our global fault tolerant

trajectory planning algorithm to the extent that it uses the pre-computation of the preimage

manifolds to achieve global fault tolerance. However, since it only uses thebounding boxes of

the preimage manifolds, it cannot guarantee path following. This drawback is illustrated with

the comprehensive example of Section 6. The desired Cartesian path passes through the two

points, and . Assume that the point

 is reached in the posture , which is inside the bounding boxes of the preimages of and

, as is shown in Figure 14. A failure occurs in joint 1, locking it at . To reach

the point , the manipulator would have to move to either or , both of which would

J
f

m n×

4m2n 8mn2 9n3+ +

r

p1 0.763 0.393 0.783, ,()= p2 0.895 0.331 0.783, ,()=

p1 θ1 p1

p2 θ1 45– °=

p2 θ2 θ3

Christiaan J.J. Paredis and Pradeep K. Khosla,
“Fault Tolerant Task Execution Through Global Trajectory Planning”

to appear inReliability Engineering and System Safety, December 1996.

require a deviation from the desired path. On the contrary, in our global trajectory planning

algorithm, is not an acceptable posture because a failure of joint one would result in the

redundancy resolution algorithm getting stuck at a singularity. Another disadvantage of the

method described in [7] is that, just like in [6], secondary requirements are not taken into

account. Also, the algorithm requires the computation of the preimage manifolds which is, as

we have shown before, exponential in the degree-of-redundancy, ; this limits the usefulness of

the algorithm to manipulators with or .

A third approach to fault tolerant task execution is described in [11]. This approach is different

because it does not make any assumptions about the redundancy resolution algorithm used at

run-time. Instead, fault tolerance is achieved at the design stage. A manipulator is designed

which is able to reach every task point even when an arbitrary joint fails at an arbitrary angle.

As a result of the assumption that a joint can fail at anarbitrary angle, at least two degrees-of-

redundancy, instead of one, are necessary for 1-fault tolerance. An additional drawback is that

the design algorithm does not consider obstacles—it does take joint limits into account.

-180 -135 -90 -45 0 45 90 135 180
-180

-135

-90

-45

0

45

90

135

180

θ1

θ2

preimage of p2

preimage of p1

θ1

θ2

θ3

Figure 14: A case in which the method described in [7] cannot
guarantee fault tolerant path following.

θ1

r

r 1= 2

Christiaan J.J. Paredis and Pradeep K. Khosla,
“Fault Tolerant Task Execution Through Global Trajectory Planning”

to appear inReliability Engineering and System Safety, December 1996.

Moreover, it only guarantees reachability of task points, not path following.

In conclusion, the two main qualities that distinguish our fault tolerant trajectory planning

algorithm from the other approaches to fault tolerant task execution are its ability to guarantee

fault tolerance for path following, and its consideration of secondary requirements.

8 Summary

We have presented a trajectory planning algorithm for fault tolerant task execution. This

algorithm guarantees fault tolerance on a global scale, while also satisfying secondary kinematic

task requirements such as joint limits and obstacles. The algorithm consists of two main parts.

In the first part, the postures acceptable for a fault tolerant trajectory are determined. The

computations are based on the topology of the preimages of the Cartesian path, and on the char-

acteristics of the redundancy resolution algorithm which is used after a failure has occurred. In

the second part of the algorithm, a connectivity graph is constructed, representing the topological

structure of the set of acceptable postures. By searching this graph, a global fault tolerant

trajectory is found. A simple example for a 3-DOF planar manipulator is used to explain the

development of the algorithm graphically. A second more comprehensive example further

illustrates some of the kinematic control issues of fault tolerant task execution. Compared to

other approaches for fault tolerant task execution, our method has the advantage that it

guarantees fault tolerance for path following, and that it takes secondary requirements such as

joint limits and obstacles into consideration.

Acknowledgment

This research was funded in part by the Department of Energy under grant DOE-F902-

89ER14042, by Sandia under contract AL–3020, by the Department of Electrical and Computer

Engineering, and by The Robotics Institute, Carnegie Mellon University.

Christiaan J.J. Paredis and Pradeep K. Khosla,
“Fault Tolerant Task Execution Through Global Trajectory Planning”

to appear inReliability Engineering and System Safety, December 1996.

References

[1] J. W. Burdick, “Kinematic Analysis and Design of Redundant Robot Manipulators,”

Stanford Computer Science Report no. STAN-CS-88-1207, 1988.

[2] G. H. Golub and C. F. Van Loan,Matrix Computations (second edition), Baltimore: The

Johns Hopkins University Press, 1989.

[3] L. Kelmar and P. K. Khosla, “Automatic Generation of Forward and Inverse Kinematics for

a Reconfigurable Modular Manipulator System,”Journal of Robotic Systems, Vol. 7, No. 4,

pp. 599–619, 1990.

[4] J.-O. Kim and P. K. Khosla, “Dexterity Measures for Design and Control of Manipulators,”

in Proceedings of the IEEE/RSJ International Workshop on Intelligent Robots and Systems

(IROS’91), pp. 758–763, Osaka, Japan, November 1991.

[5] S. Kotosaka et al., “Fault Tolerance of a Functionally Adaptive and Robust Manipulator,” in

Proceedings of the 1993 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS’93), pp. 294–300, Yokohama, Japan, July 26–30, 1993.

[6] C. L. Lewis and A. A. Maciejewski, “Dexterity Optimization of Kinematically Redundant

Manipulators in the Presence of Joint Failures,”Computers and Electrical Engineering, Vol.

20, No. 3, pp. 273–288, 1994.

[7] C. L. Lewis and A. A. Maciejewski, “An Example of Failure Tolerant Operation of a

Kinematically Redundant Manipulator,” inProceedings of the 1994 IEEE International

Conference on Robotics and Automation, pp 1380–1387, San Diego, California, May 1994.

[8] C. L. Lück and S. Lee, “Global Path Planning of Redundant Manipulators Based on Self-

Christiaan J.J. Paredis and Pradeep K. Khosla,
“Fault Tolerant Task Execution Through Global Trajectory Planning”

to appear inReliability Engineering and System Safety, December 1996.

Motion Topology,” inProceedings of the 1994 IEEE International Conference on Robotics

and Automation, pp. 372–377, San Diego, California, May 1994.

[9] D. N. Nenchev, “Redundancy Resolution through Local Optimization: A Review,”Journal

of Robotic Systems, Vol. 6, No. 6, pp. 769–798, 1989.

[10]C. J. J. Paredis et al., “A Rapidly Deployable Fault Tolerant Manipulator System,” in

Proceedings of the Workshop on Some Critical Issues in Robotics, Singapore, 2–3 October,

1995.

[11]C. J. J. Paredis and P. K. Khosla, “Mapping Tasks into Fault Tolerant Manipulators,” in

Proceedings of the 1994 IEEE International Conference on Robotics and Automation, pp.

696–703, San Diego, California, May 1994.

[12]C. J. J. Paredis and P. K. Khosla, “Design of Modular Fault Tolerant Manipulators,” to

appear inThe Algorithmic Foundations of Robotics, eds. K. Goldberg et al., Boston,

Massachusetts: A.K. Peters, 1995.

[13]D. Sreevijayan,On the Design of Fault-Tolerant Robotic Manipulator Systems, M.S. Thesis,

Mechanical Engineering Department, The University of Texas at Austin, June 1992.

[14]D. Tesar and M. S. Butler, “A Generalized Modular Architecture for Robot Structures,”

Manufacturing Review, Vol 2, No. 2, pp. 91–118, 1989.

[15]Y. Ting, S. Tosunoglu, and D. Tesar, “Control Algorithms for Fault-Tolerant Robots,” in

Proceedings of the 1994 IEEE International Conference on Robotics and Automation, pp.

910–915, San Diego, California, May 1994.

[16]M. L. Visinsky, I. D. Walker, and J. R. Cavallaro, “New Dynamic Model-Based Fault

Christiaan J.J. Paredis and Pradeep K. Khosla,
“Fault Tolerant Task Execution Through Global Trajectory Planning”

to appear inReliability Engineering and System Safety, December 1996.

Detection Thresholds for Robot Manipulators,” inProceedings of the 1994 IEEE

International Conference on Robotics and Automation, San Diego, California, pp. 1388-

1395, May 1994.

[17]E. C. Wu, J. C. Hwang, and J. T. Chladek, “Fault-Tolerant Joint Development for the Space

Shuttle Remote Manipulator System: Analysis and Experiment,”IEEE Transactions on

Robotics and Automation, Vol. 9, No. 5, pp. 675–684, 1995.

