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Abstract 

An experimental study of base flows for a 2.25 inch diameter projec-

tile at Mach 3 with cold air injection is reported. Upstream radial jet 

injection and base injection are used. The work is a continuation of a 

systematic study of many of the flow field features of external burning. 

It is shown that radial jet injection alters the wake structure, shortens 

the wake, and reduces the base pressure. In addition, the advantage of 

base injection using porous base bleed diminish with injection rate and 

external compression. 
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I. INTRODUCTION 

In prior work (1)-(3)with the present facility, tests with axisym-

metric and discrete compression surfaces, tests with upstream pegs simu-

lating frontal-area blockage of fuel introduced by lateral injection, and 

analysis of the adiabatic near wake have been reported. At the conclusion 

of this work, the following facts had been established: a) the base 

pressure can be raised, by focusing compression waves on the near wake, to 

levels that provide net thrust on a well designed projectile, b) the 

length scales of the compression surfaces are imposed on the near wake - a 

weak optimum is obtained with the compression beginning immediately 

downstream of the base plane, c) base pressure elevation is significantly 

reduced with discrete surfaces as opposed to an equivalent axisymmetric 

surface, d) upstream-radial pegs cause a slight reduction in base pres-

sure and a relatively large shortening of the wake structure, and e) an 

integral analysis (4) 
 agrees reasonably well with experiments for no 

compression and axisymmetric compression. 

Continuing tests have studied cold air injection with radial jets 

just upstream of the base plane and porous base bleed. This present 

report describes this continuing work built upon the above foundation. 
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II. RESULTS 

All tests were conducted at a free stream Mach number, upstream of 

the base plane, of M 1  = 2.98. The base diameter was 2.25 inches and the 

nominal test Reynolds based on the base diameter was 2.7 x 10
6
. The 

boundary layer momentum thickness at the base plane was computed to be 1.2 

percent of the base radius. Details of the test facility are reported in 

Ref. (1), (2), and (3). 

Radial Jet Injection 

Cold air was injected through six orifices drilled into the hollow 

forebody at 60 °  intervals around the periphery 0.22 base radii upstream of 

the base plane. The sonic exit flow discharged normal to the freestream. 

Two orifice diameters were tested to independently vary injection rate and 

pressure ratio. Jet penetration height at the Mach disk, computed by the 

theory of Ref. (5), increased with injection rate from about 0.2 to 0.3 

base radii. 

The base to free stream static pressure ratio (P
b/P 1 ) and the jet to 

free stream stagnation pressure ratio (P /P ) are plotted against the 
oj 	1  

injection parameter (the ratio of the jet flow rate to the free stream 

flow rate through an area equal to the base area) in Figure 1. Results 

are shown for no compression and for axisymmetric compression with 

compression section II (2) 
which produces a net base thrust. The important 

point is that the base pressure decreases with cold air injection as a 

2 

result of the competing effects of vortex generation, flow displacement, 
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elevation of the upstream body pressure by the shock system, and a 

degradation in total pressure by the shock system. This decrease is 

essentially independent of orifice diameter and reaches a maximum of over 

10 percent of the free stream static pressure for both no compression and 

axisymmetric compression. 

The static pressures immediately ahead and behind a radial jet, as 

important for penetration analysis (5)  , are presented in Figure 2. For 

comparison, the static pressure ahead of a radial peg, designed to 

simulate the frontal area blockage of the radial jet
(2)

, is also shown. 

(The pressure downstream of the radial peg was not measured.) 	The 

upstream pressure for the radial peg is essentially that for two-dimen-

sional, shock-induced boundary layer separation. The additional effect 

of mass entrainment significantly lowers the upstream pressure for the 

radial jet. The additive effects of blockage and mass entrainment result 

in a reducing downstream pressure with increasing injection rate. 

Typical pressure and Mach number distributions along the centerline 

of the near wake with radial injection are compared with those for the 

clean base in Figure 3. Injection significantly alters the wake structure 

and causes a large reduction in the wake length scales. The wake changes 

indicate increased mixing with injection. Figure 4 shows a comparison of 

wake centerline results with radial injection and with radial pegs 

designed to simulate the frontal area blockage of the radial jets.
(2) 

The wake length scales and the base pressures with the radial peg model 

are reduced relative to those for the clean base (2)
. The radial jets 

cause an additional reduction in the base pressure and, as seen in 
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Figure 4, they further shorten the wake even though the injected flow 

displaces the free stream downstream of the injection point. It is felt 

that slight flow asymmetries can account for some of the differences in 

Figure 4 in the low velocity region. However, the important point is that 

the effects of discrete jet injection is needed in the modelling of the 

near wake for a real external combustion system. 

Near wake Mach number profiles behind a jet and midway between two 

jets are compared in Figure 5. This comparison demonstrates that the core 

of the jet does penetrate the near-wake shear layer. The line of maximum 

velocity difference is indicated on the figure. It seems doubtful, 

however, that the penetration with this shortened wake is deep enough to 

significantly alter the temperatures in the regions of flow reversal, and, 

hence, alter the base pressure by decreased stagnation pressures, if the 

injected flow is combustible. 

Porous Base  Bleed  

The base injection tests were made with cold air bleed through porous 

sintered metal. The bore of the cylindrical base model was plugged at the 

base plane with a 1/16 inch thick sintered metal disk (see the sketch in 

Figure 6). The base pressures were measured with five flush static 

pressure taps located in the disk (one at the center and four equally 

spaced around the periphery at a radius of 0.5 inches). Since these 

pressure taps were immersed in the injected flow discharging from the 

porous plug, calibration tests were first made to relate the measured base 

pressure to an "effective" base pressure
, 

P
be

. For these calibration 

tests the sintered metal disc was mounted in a constant diameter tube. 
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Flow through the tube was metered and the base pressures on the porous 

plug and the mixed-flow static pressure or effective base pressure was 

measured downstream. This effective base pressure was then correlated 

with the measured base pressure and flow rate. 

Figure 6 presents the results of the base force data with base bleed. 

The upper part of this figure shows the effect of the mass injection rate 

on both the effective base pressure and the net base force per unit area 

(i.e., the impulse function per unit area or the sum of the effective base 

pressure and momentum flow rate). Results are shown for no compression 

and for compression with compression section II which produces base 

thrust without base injection. At the higher flow rates the bleed flow 

momentum is significant. In addition, at the highest flow rate, base drag 

is essentially eliminated for the case of no compression while for the 

case of compression the elevation in base force is sufficient to complete-

ly neutralize drag of a well designed projectile. The rate of increase in 

the net base force with injection rate decreases with increasing injection 

rate. Furthermore, compression reduces the rate of increase in the net 

force with injection rate. These trends are emphasized in the lower part 

of Figure 6 which shows the specific impulse, I sp , based on the increase 

in net base force due to injection. P
bo 

is the base pressure for the 

clean base configuration. 	The specific impulse decreases with the 

injection parameter and with compression. 	The initial rise in base 

pressure with injection parameter for no compression agrees well with the 

results of Bowman and Clayden for M
1 

= 2.99.
(6) 

However, their results, 

using base nozzle injection, showed a peak base pressure at IAz().005. 



12 

Static pressure and Mach number distributions along the centerline 

of the near wake with no compression are shown in Figure 7 for no 

injection and two values of the injection rate. For the lower injection 

rate, I = 0.01, the recirculation bubble extends from one to four base 

radii downstream of the base plane. 	For the higher injection rate, 

I = 0.037, the recirculation bubble has been blown off. 	The primary 

effect of injection noted here other than the increase in base pressure, 

is to increase the near-wake length and, correspondingly, reduce the 

adverse pressure gradients. The simultaneous increase in length and 

decrease in pressure gradient indicate relatively large reductions in 

shear stresses acting on the flow along the axis. 

The effect of compression on the near-wake centerline pressure and 

Mach number distributions is illustrated in Figure 8. The control 

enforced by the compression waves shortens the near wake. Mass addition 

with compression results in a slight lengthening of the wake and a 

substantial reduction in the peak over-pressure. Downstream of this peak 

the flow accelerates rapidly under the favorable pressure gradient due to 

expansion waves focused on the wake. 

Near-wake static pressure and Mach number profiles are shown in 

Figure 9 for no compression and I = 0.010. A uniform central core of 

bleed flow fills the base area upstream of the recirculation bubble. The 

corner expansion is evident in the outer portion of the shear layer. 

Downstream of the recirculation bubble a developed shear flow is estab-

lished and the radial pressure gradients are indicative of the recompres-

sion curvature. In the plane near the center of the recirculation bubble 

the radial pressure gradients are small. 
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III. CONCLUSIONS 

Cold air, radial injection tests have shown that discrete jet 

injection immediately ahead of the base plane significantly alters the 

wake structure, reduces the wake length scales, and lowers the base 

pressure. The effects of discrete jet injection must, therefore, be 

incorporated in a realistic analytical model of the near wake for a real 

external combustion system. This is exclusive of the degradations due to 

asymmetric compression as encountered in earlier tests. 

Cold air, base injection tests have shown that for porous base bleed 

and no compression the base force per unit area increases continuously 

with injection rate to approximately the free stream pressure when the 

recirculation bubble has been blown off. However, the gain in base force 

due to base injection decreases with increasing injection rate. 

Furthermore for a given base injection rate, compression lowers the base 

force elevation due to injection. Base injection causes large increases 

in the wake length scales with no compression and slight increases with 

compression. 
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