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Abstract 
Most natural and artificial systems rely heavily on 

vision to recognize, manipulate, and navigate within 
a world of objects. Although shape is a key ele- 
ment in this process, its representation and analysis 
has proven to be a difficult, multi-faceted problem. 
We propose a framework based on conservation laws 
which gives rise to computational elements for shape: 
parts, protrusions, and bends. The computation takes 
place in the context of a reaction-diffusion space and 
is highly robust. This scheme is ideally suited to ob- 
ject recognition, and has applications in areas rang- 
ing from robotics to the psychology and physiology of 
form. 

Introduction 
How should the shape of objects be described to 

enable recognition? This is one of the key problems 
in perception, and two views have emerged. One view 
holds that composite objects are formed when distinct 
components interpenetrate each other [9], as when two 
lumps of clay are put together. We refer to this as 
the composition (parts)  view because it suggests that 
shapes are broken into “parts” at the junctions be- 
tween lumps. The other, deformation (protrusions 
and bends) view, holds that existing parts should be 
deformed, as when clay is drawn out (or pushed in) 
from a lump [17]. While each of these views has some 
intuitive appeal, taken in the pure form neither seems 
completely right nor completely wrong. For exam- 
ple, a key missing ingredient is that of “necks”, or the 
nature of the join between parts. Rather, this com- 
position vs. deformation distinction has emerged as 
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one of the frustrating dilemmas around shape; others 
are discussed in figure 1. 

We propose an approach to representing shape, 
based on a reaction-diffusion equation, which resolves 
these dilemmas. Observe that, for two-dimensional 
curves, slightly deformed shapes are visually similar. 
We therefore study the evolution of shapes under gen- 
eral deformations, and show that, they decompose into 
two types, a deformation that is constant (along the 
normal) and corresponds to a non-linear, hyperbolic 
(wave) type of process; and a deformation which varies 
with the curvature and corresponds to a quasi-linear 
diffusive one. The two types of processes interact, 
analagously to  the way forces in physics interact at 
interfaces, and related questions inyolving conserva- 
tion laws and entropy arise. Together the two pro- 
cesses give rise to shocks, the singularities of shape, 
which then provide a hierarchical decomposition of a 
shape into our proposed shape elements, parts, pro- 
trusions, and bends. Intuitively, necks then emerge 
as intersecting protrusions connecting coupled parts. 
Examples show that our proposed scheme is reliably 
computable. Moreover, the requirements of the algo- 
rithm are compatible with a ph~siologically-plausible 
model of curve detection [21] a n d  with psychophysical 
evidence [l]. 

Shape from an Evolut ionary Sequence 
Since slightly deformed shapes are visually similar, 

we begin by studying the evolution of a shape un- 
der various deformations. Our immediate goal is to 
demonstrate that deformations which depend on the 
local geometry of the objects can be regarded as the 
linear sum of two basis deformations: constant motion 
and motion proport,ional to  curvature. This will then 
lead us naturally into the study of a PDE and finally 
to its application to shape. 

Consider the most general deformation of a curve C, 
namely a deformation of some arbitrary amount along 
the t,angent T and some other arbitrary amount along 
the normal $ (Fig. 21, = o ( 7 1 ,  f ) f + h ( u * f ) l ? ,  where 
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Figure 1: a) The p t  vs. protrusion dilemma: Some objects 
are naturally described as the result of composition of parts [9], 
e.g. the overlapping discs (left), while others are more naturally 
described as deformations [17], or protrusions, on a basic com- 
ponent (right). These two views are taken as competitive, but, 
intuitively, each has a certain appeal. Our theory provides a 
framework in which they both participate, eliminating the need 
to arbitrarily trade one off against the other. b) The 
bm$aFy versus e o n  dilemma: There are two complementary 
ways to approach a figure, either as a collection of boundary 
points or as a collection of interior points, and representations 
of shape have been based on each of these approaches; for ex- 
ample, boundary representations have been based on the chain 
code [5]  and Fourier descriptors [20], while interior representa 
tions have been based on skeletons and medial-axis t.ransforma 
tions [2]. Although the two representations are equivalent, in 
that one may be derived from the other, they each make differ- 
ent information explicit. This leads to trade-offs in stability and 
efficiency of computations. For example, while the structure of 
a “neck” at points A and B is explicit in a region-based rep- 
resentation, it is implicit in a boundary-based representation. 
The computation of a neck is local in a region-based representa 
tion, but global (thereby unstable in presence of occlusion and 
noise) in a boundary-based one. Our scheme makes both kinds 
of information explicit simultaneously, thereby enjoying much 
greater stability properties. 

U denotes position along tlie curve and t is tlie evo- 
lutionary step (time). Without loss of generality, this 
deformation can be written as a deformation along 
the normal by some other magnitude [GI. In addi- 
tion, for a theory of shape the deformation should be 
restricted to a local function of the geometry of the 
curve, and should be time invariant. Now, since the 
local geometry of the curve is completely determined 
by its curvature function [ 3 ] ,  a time-invariant, local 
deformation is equivalent to a deformation along the 
normal as a function of curvature 

Qualitatively, the behaviour of this deformation is 
governed by the first t.wo t,erms in the Taylor expan- 
sion of p(.) Po + PI.. The first, t,erm describes 
constant motion outwards or inwards along the nor- 
mal (fig 2 4 ,  and the second term describes a motion 
along the normal that is proport,ional to t’he curvature 
(fig 2iii). Observe that,, for the curvature term, highly 
curved segments will move fader tlian sliglit,ly curved 
ones [12]. 

Conservation Laws 
We now show that a deformation composed of con- 

stant motion and curvature motion satisfies a vis- 
cous conservation law. In particular, constant motion 
along the normal satisfies a hyperbolic conservation 
law for the slope of the boundary ‘ut + 4 0 [ H ( u ) ] ,  = 0 
where U is the slope in an extrinsic Cartesian co- 
ordinate system (wit,li horizontal axis r ) >  H ( u )  = 
- d m  is the slope-flus [lo], and is tlie ex- 
tent of constant motion. IVlien curvat,iire mot,ion 
is introduced, “viscosity” is added to tlie syst’em 
u ~ + P ~ [ H ( u ) ] ,  = ~1 [$I,,.. wliere $1 is  the extent of 
curvature motion. 

This viscous conservat,ion 1 aw 
is a parabolic equation (PI # O), and cont,ains two 
terms [19]. The Po term, which is hyperbolic and cor- 
responds to the constant motion, is tlie wave part. 
The P1 term, which is parabolic and corresponds to 
the curvature motion, is tlie diflusion part. The diffu- 
sion term is quasi-linear, and tends to “dampen” and 
smooth U ,  while the wave t.erm is non-l inear and tends 
to produce large solutions, st,eep gradients, and dis- 
continuities. Alternat,ively, curvature sat,isfies the in- 
trinsic evolution equat,ion = 0,  
where s is the arclength parameter along the curve and 
K is curvature. This equation is a reaction-diffusion 
equation, a common model of chemical and biological 
phenomena. Observe that for 81 = 0, the only effect 
is that of reaction. However. when dl # 0 di,fusion is 
introduced to the system. 

A second conservation lam involves the prod- 
uct of the metric and t,lie cnrvat,ure of tlie evolv- 
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Figure 2: An arbitrary deformation of a curve is captured 
by two basis deformations: a constant motion (reaction) and a 
motion proportional to curvature (diffusion). Figures (ii) and 
(iii) illustrate the constant and curvature motions, respectively. 
Note that for constant motion all points move with the same 
speed, so that concave segments become more curved while con- 
vex ones become less so. However, under the curvature term, 
highly curved segments will move faster than slightly curved 
ones, so that all curved segments become smoother. 

ing curve. In [lo], based on the evolution equa- 
tions of the metric and the curvature [12] for 
the case = 0, we show that the product 
of curvature and metric is a conserved quantity. 

Entropy and Shocks 

In order to solve these equtions one must address 
the question of the space of solutions to these equa- 
tions. In order to  deal with formed singularities the 
space of measurable and bounded functions (gener- 
alized functions) is employed [16]. To restrict solu- 
t.ions to physically significant ones and further to con- 
st,rain t,hem to satisfy conservation across singulari- 
ties, notion of entropy and jump conditions were devel- 
oped [18, 14, 15, ?]. Singularities which satisfy both 
conditions are called shocks. Generalized functions 
whose only discontinuities are shocks enjoy existence 
and uniqueness properties as solutions to conserva- 
tion laws [16, 19, 18, 31. To relate the concepts of 
entropy, jump condition, and shocks to the problem 
of shape representation see [13, lo]. For example, the 
role of entropy, is one of handling discontinuities by ex- 
plicitly introducing region-based information into the 
boundary-based approach whereas shocks support the 
decomposition of shapes into parts, protrusions, and 
bends, figure 3. 

The Reaction-Diffusion Space 
Thus far, we have modelled the deformation of a 

curve as a viscous conservation law and a reaction- 
diffusion equation. We now view reaction and dif- 
fusion as two complementary forces acting on shape, 

Figure 3: The formation of shocks and the role of entropy. 
Nonlinear processes can transform initially smooth functions to 
functions with singularities. (a) shows a curve with a negative 
curvature extremum which, when evolved by constant motion 
along the normal, leads to a singularity. This evolution can 
be based entirely on boundary information until the singularity 
arises. However, at this point the entropy condition is required 
to further control evolution, so that the curve does not cross 
over itself and the swallowtail configuration can be properly 
handled (b). The entropy condition is region-based, and con- 
trols how interior information interacts with the boundary. It 
plays another key role in controlling topological evolution, by 
globally managing the splitting of a single boundary into two 
closed boundaries (c). 

where the relative strength of the hyperbolic wave pro- 
cess to the parabolic diffusive one determines the na- 
ture of deformation. Together with the time of evo- 
lution, they give rise to a two-dimensional space, the 
reaction-diffusion space, spanned by t~he rat,io /?I /PO 
and time t .  

A pure diffusion process (no wave PO = 0) is a quasi- 
linear heat process. It is formally equivalent, to the 
coordinates of the parametrized equation of t,lie curve 
satisfying the heat equation [’i]. Thus evolution in 
time under pure diffusion is tantamount to filtering 
the coordinates by a Gaussian kernel. Its role there- 
fore is one of smo0thin.g the boundary of t8he shape. 
In fact, the boundary converges to  a circle [8]. Since 
the heat equation spreads information globally with 
infinite speed, diffusion is a. global process. Finally, 
since diffusion operates soley on the boundary curva- 
ture information it is a boundary process. 

On the other hand, a pure reaction process (no dif- 
fusion = 0) Is a non.-linear hyperbolic process. It 
can be shown to create sin.gu/arilies from tthe nega- 
tive minima in curvature [IO]. It is a local process in 
that only a limited portion of the shape affects the 
evolution of any single point. Finally, it requires no 
boundary information and is a region process. 

The pure reaction and pure diffusion processes 
are extremes along one a.xis of t,he reaction-diffusion 
space; interinediat,e combinat,ions of react.ion and dif- 
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fusion are compromises on their various features. 
Traversing along the other axis in the reaction- 
diffusion space, namely time, the process has the effect 
of simplifying the shape: diffusion spreads informa- 
tion instantaneously and globally along the boundary, 
while the reaction process removes information non- 
linearly and locally through the region. This provides 
the basic structure for a scale-space for shape, as we 
show in the next section. 

In summary, then, reaction and diffusion contrast 
and complement each other on issues of linearity vs. 
nonlinearity, smoothness vs. singularity, global vs. lo- 
cal, and boundary vs. region. 

Parts, Protrusions, and Bends 
The reaction-diffusion space’s significance is in the 

segmentation of a shape into pieces. More precisely, a 
shape is hierarchically analysed into a composition of 
parts, protrusions, and bends, our proposed computa- 
t,ional elements of shape. Examples show how certain 
parts protrude into one anot,her, thus naturally giving 
rise to necks, the neglected aspect of shape. 

But these notions are formal ones within our frame- 
work, and differ somewhat from standard usage. To 
clarify, recall that some traditional approaches to 
shape represent,ation argue for a decomposition into 
“parts” or components by segmentation at  the nega- 
tive minima of curvature of the boundary [9, 11. This 
appears reasonable because, when two distinct ob- 
jects interpenetrate, the intersections are almost al- 
ways transversal, projecting to negative minima in 
curvature. However, figure 4 shows that boundary 
curvature is not sufficient to determine “parts”; region 
information must also be taken into account. More- 
over, although the statement “parts are bounded by 
negative curvature minima” is true, the converse does 
not necessarily hold. In fact, deformations of objects 
can give rise to negative curvature extrema, as is illus- 
trated in figure 4. Observe that, when strictly applied 
the decomposition at  negative curvature minima leads 
to counterintuitive results. 

Therefore, in addition to the negative curvature 
minima criterion, a further condit,ion is needed to re- 
cover parts. The intuition must be captured that parts 
are bounded by pairs of negative curvature minima 
that are close in the distance through the region (and 
not necessarily along the boundary) forming a “neck”. 
Such a partitioning of objects along necks makes sense 
because it is easiest, physically, to break objects at  
their narrowest regions, namely the necks. Further- 
more, for objects with moving parts, the joints are 
often narrower than the components, and joints map 
onto necks. For further support of this argument see 

How does one then interpret the unpaired curvature 
[lo]. 

Original S h a p e  

2 6 
4 0 

Segmentation n 
Curvature ninira li at Negatjve 1 c 3 3  ’C 3 9  

4 

f i )  f i i )  

Parts Require Region Inforaation 

Original S h a p e  - 
Segrentetion 
at Negative 

Curvature ninime 

L,b’ , 
9 8  

Reaction-Diffusion 

- +  

S p a c e  0 

1 2 

Boundary-based nethods Hiss the 
Part-Protrusion Distinction 

Figure 4: a) Indentification of parts requires region infor- 
mation. Although the objects in’this figure clearly have dif- 
ferent parts, each is segmented into four pieces based only on 
the boundary information and segmented at negative curva- 
ture minima. The react.ion-diffusion space captures the natural 
difference between them, and also illustrates the non-linear na- 
ture of shape descriptions by the transition from “two petals 
stuck onto a blob” to “four petals composed around a com- 
mon center”. Such families of shapes can also serve as stim- 
uli for psychological and physiological experimentation, and 
our theory makes both quant.itative and qualitative predic- 
tions about when transitions like that between i) and ii will 
occur. b) Pure boundary-based methods miss the 
composition-deformation distinction. The segmentation of the 
snake at negative curvature minimma leads to inappropriate 
parts. The reaction-diffusion space, however, correctly distin- 
guishes the body of of the snake as one deformed part.. 
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Figure 5: The Reaction-Diffusion space. The deformed disc 
forms a first order singularity, while the peanut-shaped ob- 
ject splits into two parts by forming a second order singular- 
ity. Thus, the order of the singularity differentiates between 
parts and protrusions. Observe the neck that develops between 
the two parts; this is what distinguishes the peanut shape from 
overlapping circles of figure 1. 

extrema? Consider a circular ring of flexible mate- 
rial which is deformed as if someone had attempted 
t,o push a finger through it, figure 5 (left). This de- 
formation creates a single curvature extremum. It is 
plausible, then, $0 associat,e the unpaired curvature 
extrema wit.h deformations. 

The reaction-diffusion space provides the frame- 
work for making these arguments precise. The key 
is in the formation of singularities (shocks) under 
the simulataneous influence of reaction and diffusion. 
Note that, for the deformed circle (Fig. 5), a sin- 
gle shock of t,he first order develops. For the peanut, 
figure 5 (right), however, a topological split occurs, 
and second order shocks are formed. For the snake 
example, a collection of singularities form simulata- 
neously from the body of the snake (the symmetry 
axis). Therefore, the distinction. between parts, pro- 
trusions, and bends is.captured b y  the singularities in 
the reaction-diffusion space: first-order singularities 
sign,al protrusions while isolated second-order singu- 
lnrities signal parts. Bends are signaled b y  a dense 
collection of sigularities. To completely recover the 
history of the shape as a coalit,ion of park,  protru- 
sions, and bends, the evolved shape is run backwards 
through the reaction-diffusion space so it may be com- 
pared with t,he original shape, Fig 6. For a rigorous 
treatment see [IO]. 

Discussion 
In summary, we have presented a framework for 

a theory of shape based on the geometry of curves 
and t.heir int,eriors. This framework resolves some of 
the classical dilemmas of shape perception, and re- 
sults from viewing shape as a t,ension between reac- 

Least 

Most 
Significant 

Figure 6: a) The evolution of shocks leads to parts and pro- 
trusions. This figure shows the development of an image of a 
doll (National Research Council of Canada 1,aser Range Im- 
age Library CNRC9077 Cat No 422; 128.Y128). The contour 
shown in box N corresponds to some time step. Observe that 
the “feet” partition from the ‘‘legs’’ (via second-order shocks) 
between frames 3 and 4, and the “hands” from the “arms” 
between frames 2 and 3. Following these second-order shocks, 
first-order shocks develop as the “arms” are “absorhed” into the 
chest. Running this process in the other direction would illus- 
trate how the arms “protrude” from the chest. b) The 
Hierarchical decomposition of a doll into parts. Selected frames 
were organized into a hierarchy acoording to the principle that 
significance of part is directly proportional to  its survival dura- 
tion. 
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tion and diffusion in the context of a conservation law. 
It defines a hierarchy of parts, protrusions, and bends 
based on singularities (shocks) in a reaction-diffusion 
space, and elucidates a mechanism for decomposing 
shapes into them reliably and consistently. Further- 
more, a notion of scale naturally arises within this 
mechanism [ll]. Finally, a whole family of qualitative 
predictions are opened up by the reaction-diffusion 
approach to shape, e.g. regarding the similarity be- 
tween shapes expressed as a met,ric over the reaction- 
diffusion space [ 101. 
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