

Investigation of VLF Test Parameters

<u>Joshua Perkel</u> Jorge Altamirano Nigel Hampton

Introduction - why

- IEEE400.2 is in use with recommendations of test times and test voltages
- At the start of the CDFI project there was considerable discussion concerning:
 - Appropriateness of test parameters how close are the parameters to the "cliff edge"
 - How likely are these parameters to cause subsequent failures in service
- Objective was to examine the effects of test voltage and duration of VLF withstand tests on cable performance.

Introduction – test program

- Field aged cable samples
- Cables from one area within one utility.
 - 15 kV XLPE unjacketed cable
 - 1970 vintage
 - triplex
 - Total length: 1,680 ft
- Test program combines aging at U₀ (1 year) and 2U₀ (1 year) with multiple applications of high voltage VLF or 60 Hz AC.

Performance Evaluation

Primary Metric

Survival during ageing and testing

Secondary Metrics

- Before and after each VLF application 60 Hz PD measurement at the ageing voltage (U₀ or 2 U₀)
- Between Phase A & B IRC, PD (AC 2.2 U_0 , DAC), Tan δ

Test Program Phases

	Phase A	Phase B
Samples	Service Aged XLPE	Phase A Survivors
Ageing Voltage	U ₀	2U ₀
Ageing Temperature	Ambient	45 °C
VLF Voltage Type	Sine 0.1Hz	Cosine-Rectangular 0.1Hz

Test Matrix – Voltages & Times

Laboratory Setup

VLF Units

Sinusoidal

Cosine-Rectangular

Phase A U₀ & Ambient Temp Aging Sinusoidal VLF

Failures on Test – When do they happen?

Voltage Effect on Times to Failure

What can we say about the cables

- After the tests in situ 60Hz breakdown test was conducted
- Because we know when failures occurred we can make some reasonable estimates of the range of 60Hz stresses for these
- Thus
 - Can measure strength after tests
 - Can infer strength before

Breakdown Performance

Breakdown Performance

VLF Test Program Summary

- Phase A (U₀ aging, 20°C Sinusoidal) and Phase B (2U₀ aging, 45°C Cosine-Rectangular) are complete.
- No VLF exposed samples have failed under 60 Hz aging
 @ U₀ & 2U₀.
- VLF failure occurrence did not increase with sequential application
- VLF failures on test:
 - Less than 15 mins: 12 % (2 failures)
 - 15 60 mins: 71 % (12 failures)
- Estimates of the breakdown performance with and without VLF show that the VLF tested samples improved.

What does this tell us?

- IEEE400.2 voltages are quite some way from the "cliff edge"
- Great care needs to be used if voltages higher than IEEE400.2 are used
- Test times of 15 mins or less leave many weak spots in place
- 30 mins seems a practical compromise
- Little benefit from going to 60 mins
- Repeated VLF exposure does not cause failure under subsequent AC

