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Abstract 

In this article, we present the design of a team of heterogeneous, centimeter-scale robots that 
collaborate to map and explore unknown environments. The robots, called Millibots, are 
configured from modular components that include sonar and IR sensors, camera, communication, 
computation, and mobility modules. Robots with different configurations use their special 
capabilities collaboratively to accomplish a given task.  For mapping and exploration with multiple 
robots, it is critical to know the relative positions of each robot with respect to the others. We have 
developed a novel localization system that uses sonar-based distance measurements to determine 
the positions of all the robots in the group. With their positions known, we use an occupancy grid 
Bayesian mapping algorithm to combine the sensor data from multiple robots with different sensing 
modalities. Finally, we present the results of several mapping experiments conducted by a user-
guided team of five robots operating in a room containing multiple obstacles. 

1 Introduction 

A team of robots has distinct advantages over single robots with respect to sensing as well as 
actuation [1][19]. When manipulating or carrying large objects, a given load can be distributed over 
several robots so that each robot can be built much smaller, lighter, and less expensive [24][25]. As 
for sensing, a team of robots can perceive its environment from multiple disparate viewpoints. In 
such a system, a task is not completed by a single robot but instead by a team of collaborating 
robots. Team members may exchange sensor information, help each other to scale obstacles, or 
collaborate to manipulate heavy objects. A single robot, on the other hand, can only sense its 
environment from a single viewpoint, even when it is equipped with a large array of different 
sensing modalities. There are many tasks for which distributed viewpoints are advantageous such 
as, surveillance, monitoring, demining and plume detection. 

Distributed robotic systems require a new design philosophy.  Traditional robots are designed with 
a broad array of capabilities (sensing, actuation, communication, and computation). Often, the 
designers will even add redundant components to avoid system failure from a single fault. The 
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resulting systems are large, complex, and expensive. For robot teams, the design can be approached 
from a completely different angle, namely: "Build simple inexpensive robots with limited 
capabilities that can accomplish the task reliably through cooperation."  Each individual robot may 
not be very capable, but as a team they can still accomplish useful tasks. This results in less 
expensive robots that are easier to maintain and debug. Moreover, since each robot is expendable, 
reliability can be obtained in numbers; that is, if a single robot fails, little if any capabilities are lost, 
and the team can still continue the task with the remaining robots. 

Because the size of a robot determines to a large extent its capabilities, we are developing a 
hierarchical robot team at Carnegie Mellon University. As is shown in Figure 1, the team consists 
of large All Terrain Vehicles (ATVs) [6][9], medium-sized Tank robots (based on a remote control 
Tamiya tank model) [5], a set of Pioneer robots and centimeter scale Millibots (7×7×7cm). The 
ATVs have a range of up to 100 miles, are completely autonomous and carry extensive 
computational power. They are capable of transporting and deploying groups of smaller robots to 
distant areas of interest while providing higher-level computational support of the extended team. 
The Pioneer robots are platforms for the development of "Port-Based Adaptive Agents" [8] that 
will allow the team to dynamically exchange algorithms and state information while on-line. The 
Tank robots are medium-sized, autonomous robots complete with infrared and sonar arrays, a 
swivel-mounted camera and an on-board 486 computer. Each tank robot is capable of individual 
missions or can serve as the leader and coordinator for a team of smaller, centimeter-scale robots 
called Millibots. These small and lightweight robots can be easily carried by their larger 
counterparts higher-up in the robot hierarchy. They can maneuver through small openings and into 
tight corners to observe areas that are not accessible to the larger robots. Being small, they are also 
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Figure 1: A hierarchical team of robots consisting of  

Millibots (top), Tanks, Pioneers and ATVs 
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less noticeable allowing for more covert operations in hostile territory. Such a hierarchical 
organization allows us to combine the autonomy and computation power of the large ATVs, the 
maneuverability of the tanks and the distributed sensing capabilities of a large number of covertly 
operating Millibots. In this paper, we will focus primarily on the design and operation of the 
smallest units of our team: the Millibots. 

2 The Millibots 

The primary factor that determines what a robot can do and where it can go is size. The most 
obvious advantage of a smaller robot is that it can access spaces restricted to its larger counterparts. 
Small robots can crawl through pipes, inspect collapsed buildings, or hide in small inconspicuous 
spaces. For surveillance and exploration tasks, this increased accessibility dramatically impacts the 
overall functionality of the robot. However, with small size comes the disadvantages of limited 
mobility range, limited energy availability, and possibly reduced sensing, communication and 
computation ability due to size and power constraints.  

2.1 Small Robots 

Several efforts for building small mobile robots have been reported in the literature 
[13][20][21][29].  Although these robots are feats of technological ingenuity, they tend to lack the 
capabilities necessary for performing tasks going beyond the complexity of follow the leader, move 
towards the light source, etc. Often a small robot must sacrifice one feature to achieve another. 

One exception is the Khepera robots that have achieved both small size and computing complexity 
[21]. Khepera robots are 5cm in diameter and are capable of significant on-board processing. 
Khepera robots are modular and support the addition of sensor and processing modules. They are 
designed to work alone or communicate and act with other robots. However, the Khepera robot 
lacks a significant feature that would allow it to operate in an unknown environment, combine 
sensor information and act as a central, cohesive unit: self-localization. Khepera must either rely on 
a fixed position global sensor (overhead camera) or internal dead-reckoning. Both methods make 
them ineffective as a deployable set of robots. As we will discuss later, the Millibots have 
developed a set of sensor modules that allows a group of Millibots to self-localize and move as a 
coordinated entity while maintaining relative position information about the group.  

Another potential limitation of the Khepera robots is their choice of propulsion. Khepera robots 
achieve mobility from a pair of centimeter sized wheels housed in the center of the robot. This form 
of mobility is good for flat surfaces but restricts the robot’s clearance to about 3 mm—significantly 
limiting the environments in which the Khepera robots can operate. On the other hand, Millibots 
can be configured with various mobility platforms allowing them to operate in different 
environments. For example, when configured with a thick rubber tread design, Millibots have a 
clearance of about 15mm allowing them to climb inclines and small obstacles. The same Millibot 
can be equipped with a wheel and caster design when operating on a flat hard surface. 

A set of robots, called Ants [20], is also on the same scale as the Millibots. These robots are also 
designed to be used in groups or teams. However, since these small robots were developed 
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primarily to explore reactive social behaviors they are very limited in sensing. They do not support 
a real-time communication link nor are they equipped to exchange sensor information necessary to 
produce maps or models of the environment. Rather they are designed to convey simple messages 
such as “have food” or “it” via a short-range infrared transmitter, sense objects with a simple touch 
switch and sense orientation with a simple light detector. Millibots, on the other hand, are equipped 
with various sensor arrays such as a multi-element sonar and on-board video that provide more 
detailed information. These sensors are capable of identifying objects and building maps of the 
environment.  

To achieve their scale, the Ants were built with a fixed architecture. Propulsion, sensing and 
processing are combined to optimize size constraints such that the addition of any new functionality 
would require a complete redesign. The Ants suffer from the inability to localize as well. They rely 
on the presence of a strong light source for orientation and encoders for dead-reckoning. Even if 
they were able to communicate more detailed information between them, without a means for 
determining position, they would have little context in which to evaluate the data. 

Examples of small-scale cooperating robots are the FIRA and RobotCup competitions (Federation 
of International Robot-soccer Association) [29]. Each team of soccer robots consists of a group of 
five robots that are limited in size to 7.5×7.5×7.5 cm. These robots coordinate to perform complex 
actions like passing a ball and defending a goal against a coordinated attack. Like Millibots, the 
team of soccer robots acts as a set of distributed mobility platforms tasked by a central controller. 
However, most soccer robot teams are extremely limited in their sensing capabilities. Position 
sensing for the soccer robots is accomplished via a global camera positioned above the playing 
field. Most teams have little or no sensors on the robots themselves. Without the external camera, 
the robots are blind and unable to respond to real-world events.  

The examples discussed above illustrate some of the limitations imposed by small scale. Small 
robots must sacrifice mobility, sensing and power to achieve their desired scale. To remain 
effective, they must adopt new techniques to overcome these limitations. 

3 Specialization and Collaboration 

Our approach to overcoming the disadvantages imposed by small robots is based on specialization 
and collaboration (section 4). Specialization is achieved by exploiting the nature of a 
heterogeneous team. Instead of equipping every robot with every sensor, computation, and 
communication capability, we are building robots that are each specialized for a particular aspect of 
the task. In one type of scenario, the robot team may be composed of robots with various range and 
position sensors but only limited computation capabilities. In this case, the robots act as distributed 
sensor platforms remotely controlled by a team leader who performs the high-level planning. In 
another task, the same group of Millibots may be equipped with more computation. Data can be 
collected and stored locally until it is ready to be retrieved. Some missions may dictate a collection 
of robots of differing strengths. The choice of platforms and how the platforms are used depends 
only on the task.  

By omitting the capabilities that are unnecessary for a particular scenario, power, volume, and 
weight of the robot can significantly be reduced. However, specialization has the disadvantage that 
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many different robots need to be available to address the specific requirements of a given task. 

3.1 Modular Architecture 

To achieve this level of specialization without the need for a large repository of robots, we have 
chosen to develop the Millibots in a modular fashion. A Millibot is constructed by assembling a set 
of sub-systems ranging from computation to communications to sensors. Even the mobility 
platform is modular and can be selected based on the terrain of the mission. To support modularity, 
each of the subsystems has been implemented as a self-contained module complete with processor 
and interface circuitry.  

Specialization through modularity also allows the Millibots to optimize resources. By constructing 
a robot with only mission specific modules, the size and cost of the robot can be kept to a 
minimum. Reduction of unnecessary payload means the robot will have less weight and consume 
less power. Furthermore, some robots require less computational complexity allowing them to be 
equipped with smaller processors that in turn consume less power. Smaller and cheaper means that 
robots can be built and deployed in large numbers to achieve dense sensing coverage, team level 
adaptability, and fault tolerance. 

As shown in Figure 2, each Millibot is composed of a main processor with optional communication 
and sensor modules housed on a mobility platform. The modules interface with each other through 
a standardized bus for power and inter-module communication. Each module contains its own 
microprocessor that implements the inter-module communication protocol and performs low-level 
signal processing functions for sensor and actuator control. 

Coordination between modules is accomplished in two ways. Data and timing signals can be shared 
either through a set of dedicated slots or via a common I2C bus. The dedicated slots are fixed 
connections that can support up to six sensor or actuator modules. The choice of module and slot is 
determined by the operator and fixed in software. Information is passed back and forth via these 
slots in the form of serial communications. Dedicated slots are reserved for modules that may need 
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Figure 2: The Millibot’s architecture and subs ystems. 
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additional data lines or cannot handle the computational complexity of I2C.  

An I2C bus [17] provides a second option for connection of modules. I2C is a bus design and 
communications protocol that allows multiple modules to be connected to a common two-wire bus. 
One wire provides a high speed, synchronous clock while the other provides a two-way data 
communication line. Target modules are distinguished from one another by pre-appending each 
message on the data line with an address header. Only the module that matches the address acts on 
that message This interface is less restrictive than the dedicated slot method because it allows many 
modules to be connected to the same processor without having to designate on which pins the 
modules reside. The choice of which type of connection is determined by the operator and easily 
configured in software. 

Any module that does not violate the size and power constraints of the Millibots and provides a 
serial interface for data exchange can utilized by the Millibot. Sensor modules of this type include 
ranging sensors, proximity detectors, chemical sensors, magnetic field detectors, and radiation 
monitors. 

3.2 The Millibot subsystems 

Currently the Millibots can be composed from a suite of seven subsystems: the main processor 
module, a communication module, an IR obstacle detection module, two types of sonar modules, a 
motor control module, and a localization module.  

Communications is essential in a coordinated team. Without explicit communications, a robot can 
only interact with team members using its sensors (e.g. vision-based “follow the leader” behavior) 
[4] [19]. However, collaborative mapping and exploration requires the exchange of detailed and 
abstract information that cannot be easily conveyed implicitly. To provide two-way 
communications within the group, each Millibot is equipped with a radio frequency transmitter and 
receiver. These units can exchange data at 4800 bps at a distance of up to 100 meters. The choice of 
units is based primarily on size and power considerations Units with higher data transfer rates exist 
but at the prohibitive cost of size. This tradeoff between size and functionality is a common theme 
in constructing small robots. We expect that smaller more powerful transmission units will become 
commercially available in the future as miniaturization in solid state progresses. 

To perceive the world, a robot must have sensors. There are currently three sensor modules 
available to each Millibot. The first two are a set of ultrasonic sonar modules that provide focused 
range information about obstacles. One sonar module type provides short-range distance 
information for obstacles between 0 and 0.5m. The module consists of eight sonars arranged in a 
ring around the center of the robot. Though limited in range, this module provides detailed 
information about the area directly surrounding the robot. A short-range sensor module such as this 
is ideal for Millibots that have to work in tight or cluttered areas. For robots at this scale, the ability 
to measure extremely short range is essential.  

The second sonar module type provides long-range information for obstacles between 0.15m and 
1.8m. Long-range sensors are more effective in environments that are more open such as hallways 
or open office spaces. Because of the construction of this type of detector, a Millibot can currently  



 7 

support only one sonar pair per robot. This unit can return long-range distance information but in a 
tightly focused cone of only 40 degrees. To obtain more complete information about the 
environment, this type of detector would have to rely on movement of the robot to increase 
coverage. For some tasks, it may be desirable to have both short and long-range sonar sensing 
available. This can still be achieved by equipping some Millibots on the team with short-range 
modules and some with long-range sonar modules. 

A potential complication with any ultrasonic based sensor is the probability of interference with 
similar modules on other robots. Most sonar elements operate at a fixed frequency determined by 
their mechanical construction. Therefore, two robots using ultrasonic sensors in the same area will 
most likely cause interference for the other. To overcome this problem while still providing 
continuous rudimentary obstacle detection, a Millibot may opt to carry an infrared proximity 
module. The proximity module provides an array of five tunable, infrared emitter-detector pairs 
that trigger when an obstacle intrudes within its cone of emission. The proximity elements can be 
calibrated to provide readings of up to 0.25m. Although the proximity detectors cannot be reliably 
used for range determination of objects, they can be used very effectively in conjunction with a 
sonar detector module. The proximity module can be continuously sensing an area around the 
robot. Upon detection of an object by the proximity detector, the robot can coordinate with the team 
to acquire better range information through its sonars. 

Except under the most controlled conditions, the sensors discussed so far cannot provide enough 
detail to resolve many of the problems facing a real robot. Real situations are fraught with 
anomalies. A method is needed to provide high bandwidth information during a mission for 
analysis by a higher level process or operator.  To provide this service, Millibots can be equipped 
with a camera module. The camera module provides an external mini camera, video transmitter and 
power circuitry.  Currently because of the limited processing capabilities of the Millibot, video 
signals cannot be processed on-board. A small video transmitter is included with the module to 
transmit the raw video signal to an external processor or remote viewing station. The camera 
module includes circuitry that allows the camera and its transmitter to be switched on and off via 
control signals from the Millibot. Control of the camera aids in effective power management. The 
camera need only be powered when an image is desired. The ability to remotely power down an 
individual transmitter also allows multiple robots to carry similar camera modules while using the 
same transmitter frequency. Interference is prevented by powering only one transmitter at a time. 
Additionally resources are minimized since only one receiving station and associated monitoring 
device is needed per Millibot group. However, though the camera module provides valuable visual 
information, it operates on the threshold of the Millibot’s power budget. The current camera 
dissipates about 1.5 Watts of power during operation. Due to the limited size of the battery, this 
type of sensor cannot be used continuously like other sensor packages.   

Not all scenarios will support robots designed with the same modes of propulsion.  For example, a 
small robot equipped with a set of thin rubber tracks will perform well on a flat, slippery surface, 
such as a floor or table but performs poorly on a shag rug. Conversely, the same robot may 
outperform a robot equipped with wheels in another scenario. In the Millibot group, modularity has 
been extended to the mobility platforms as well. A mobility platform is selected for a particular 
Millibot and the main processor and its set of support sensors is added to make it a robot. In most 
cases, the mobility platforms will utilize a similar set of dc motors. Therefore, the same motor 
control module can be selected and only the software needs to be changed. For platforms that 
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differ, they need only to include their own motor control module and conform to the software 
interface. Currently the Millibots have implemented three sets of platforms each utilizing skid 
steering. Some Millibots are equipped with a plastic chain design which is ideal for rough surfaces 
like rugs while others are equipped with rubber tread designs of differing widths which allows them 
to crawl on smooth inclined surfaces. 

4 Collaboration 

In addition to specialization, Millibots use collaboration to overcome the limitations imposed by 
small scale. By nature, Millibots are small, mobile robots with limited capabilities. Yet, by 
collaborating with each other as a team, they are able to overcome their individual limitations and 
accomplish important tasks ranging from localization to surveillance, mapping, and exploration.  

When distributed robotic applications require robots to share sensor information (e.g. mapping, 
surveillance, etc.) it is critical to know the position and orientation of the robots with respect to 
each other. Without this knowledge, it becomes impossible to interpret the sensor data in a global 
frame of reference and integrate it with data obtained by other robots. Millibots exploit 
collaboration to obtain relative position and orientation of the team with respect to each other, even 
as the team moves. Without an external means of localization, this knowledge is essential for the 
team to move to predetermined locations, avoid known obstacles, or reposition themselves for 
maximum sensor efficiency.  

Conventional localization systems do not offer a viable solution for Millibots. Dead reckoning, a 
common localization method, generally suffers from accuracy problems due to integration errors 
and wheel slippage [3]. This is even more pronounced for systems that rely on skid steering for 
which track slippage is inherent to the steering mechanism. Camera-based localization, such as 

 

Figure 3 : Ultrasonic distance measurement. 
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those used by the soccer robots, is not feasible in many of the environments in which small robots 
can be exploited. On the other hand, larger robotic systems often rely on Global Positioning 
Systems (GPS) and compass for determining their position and orientation in a global frame of 
reference [12]. However, due to its size, limited accuracy, and satellite visibility requirements, GPS 
is not appropriate for use in small robots that operate mostly indoors. Conversely, systems that are 
based on landmark recognition [2][15] or map-based positioning [27] require excessive local 
computational power and sensing accuracy to be implemented on Millibots.  

To overcome the problems encountered in the implementation of existing localization methods for 
a team of Millibots, we have developed a novel method that combines aspects of GPS, land-mark 
based localization, and dead reckoning [23]. This method uses synchronized, ultrasound pulses to 
measure the distances between each robot on a team and then determines the relative positions of 
the robots through trilateration. Similar systems have been developed [14]. However, they are both 
too large and too expensive for operation on Millibots. Moreover, the system described in this 
article is more flexible because it does not require any fixed beacons with known positions, which 
is an important relaxation of the requirements when mapping and exploring unknown 
environments. 

4.1 Collaborative Localization 

The Millibot localization system is based on the trilateration [3], i.e., determination of the position 
based on distance measurements to known landmarks or beacons  [16] [18]. GPS is an example of a 
trilateration system; the position of a GPS unit on earth is calculated from distance measurements 
to satellites in space. Similarly, the Millibot localization system determines the position of each 
robot based on distance measurements to stationary robots with known positions. 

To derive team positions, each Millibot is equipped with a localization module that utilizes 
ultrasound and radio pulses to measure the distances between it and other robots. Each localization 
module is designed to act as both emitter and receiver. Periodically, each module emits a series of 
localization pulses that emit radially away from the robot. To synchronize the timing between 
robots without having to use accurate timers, each module actually emits both a radio frequency 
(RF) pulse and a series of ultrasonic pulses. As is illustrated in Figure 3, The RF pulse, traveling at 
the speed of light (3×108 m/s), arrives at each receiver almost instantaneously. The ultrasonic 
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pulses, traveling only at 343 m/s (assuming 20°C air temperature), arrive at each receiver delayed 
by a time proportional to its distance to the emitter. The timing between each robot pair is stored 
locally by the module until it can be reported to the team leader.  

Following each sequence, the team leader collects the timing information between each pair. This 
information is used to determine the actual position of every Millibot using a maximum likelihood 
estimator. In the future, we plan to calculate the Millibot positions on the local processor of each 
Millibot. However, the current processor does not have the necessary computation power to 
perform these floating-point computations. 

To produce and detect beacon signals, each Millibot is equipped with a modified, low-cost 
ultrasonic transducer. This transducer can function either as a receiver or as an emitter. For 
localization to be effective, it is important that the sensor is able to detect signals coming from any 
direction around the Millibot. As illustrated in Figure 4, an ultrasonic transducer is positioned to 
face straight up and all incoming and outgoing sound waves are reflected by the aluminum cone. 
The result is a detector with a coverage of 360 degrees in the horizontal plane. The ultrasonic 
transducer with reflector is about 2.5cm tall. It can measure distances up to 3m with a resolution of 
8mm while consuming only 25mW.  The construction and design of this detector was paramount in 
achieving a localization system at this scale. 

4.2 The Localization Algorithm 

To determine the position and orientation of the robots relative to each other, we use a maximum 
likelihood estimator. If all the distance measurements were perfectly accurate, we could use a 
simple geometric trilateration algorithm to determine the position of the robots relative to each 
other.  However, measurements are noisy and sometimes missing. As a result, the set of equations 
resulting from a purely geometric approach is over-constrained and does not always yield a 
solution. Instead, we use a maximum likelihood estimator that determines the most likely position 
and orientation of all the robots, given their previous positions and orientations, their movements, 
and the sonar-based distance measurements. 

Assume that we know the position an orientation,  ),,( 000 ϕyx , of all the robots at time 0t .  The 

question is: how do we determine the position, ),,( 111 ϕyx , of the robots at time 1t , after they have 
moved?  We can estimate the new positions based on the following information: 

• Dead reckoning: Since all the Millibots are equipped with encoders, their position at time 

1t  can be estimated by integrating the encoder signals.  This can be further simplified  in our 
case, because the Millibots always move according to “vector commands” (i.e., rotation in 
place over an angle α , followed by a forward straight-line motion over a distance, d ). A 
stiff controller guarantees that the commanded motion, ),( dα , is realized, eliminating the 
need to query the robot after the motion is completed.  In addition to the parameters α  and 
d , we assume that the vector command is characterized by the angle β .  As is illustrated in 
Figure 5, β is the angle over which the robot rotates while moving forward. This unplanned 
rotation is due to wheel slippage and calibration errors in the controller.  There is a one-to-
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one mapping between the incremental motion of the robot, from ),,( 000 ϕyx  to ),,( 111 ϕyx , 
and the parameters ),,( dβα : 
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• Distance measurements: After all the robots have come to a halt, each robot that moved 
pings its localization beacon to determine its distance to all the other robots.  The resulting 
distance measurements provide accurate data that allow us to overcome the drift typically 
encountered in localization algorithms based on dead reckoning alone. 

We have carefully calibrated the motion controller and localization beacon so that, in addition to 
the nominal measurement, we have an estimate of the corresponding standard deviation.  As 
illustrated in [23], the distribution of the localization data closely resembles a Normal distribution.  
Assuming that both the dead reckoning data and the distance measurements are normally 
distributed, we can compute the likelihood of a particular set of measurements occurring for a given 
robot position: 

• Dead reckoning: The likelihood that a robot moved over an angle, ασα ± , and a distance, 

dd σ± , given its initial position ),,( 000 ϕyx  and final position ),,( 111 ϕyx  is: 
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Figure 5: Vector command, ),( dα , with the deviation from straight-line motion. 
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• Distance measurements: The likelihood that the measured distance between two robots, i  
and j ,  is equal to ijD  is: 
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The total conditional likelihood function 
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conditional likelihoods introduced above. The most likely robot positions are found by maximizing 
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The maximum likelihood estimator requires that the initial positions of the robots are known with 
respect to one another. This requires a slightly modified approach at start up. After collecting 
distance measurements between all possible robot pairs, a conditional probability density function 
is defined which only consists of distance measurement terms. In addition, one arbitrary robot is 
assigned the position (0,0) and a second robot is assigned a position on the X-axis. This defines a 
frame of reference in which the position of all other robots is determined by maximizing the 
conditional probability density function.  However, based on distance measurements alone, there 
remains an ambiguity about the sign of the Y-coordinates of each robot.  To resolve this ambiguity, 
the team leader commands one robot to follow a short L-shaped trajectory and recomputes its 
position.  If the robot turned to the left, but the assigned coordinate system indicates a right turn, 
the signs of the Y-coordinates of all robots are reversed.  

4.3 Implementation Issues 

The optimization of the conditional probability density function can be formulated as a weighted 
nonlinear least-squares problem, which we solve using the BFGS nonlinear optimization algorithm 
[11]. The dead reckoning data provides a good starting point, so that only a few optimization 
iterations are necessary to reach the optimum. During the initialization stage of the robot team, 
when no prior information about the robot positions is available, the BFGS algorithm may get stuck 
in a local minimum.  Based on experimentation, we have found that taking the best-out-of-five 
randomly initialized runs never fails to find the global optimum.  

To obtain good results with the above algorithm, it is very important to filter the raw measurement 
data. Even though the sensors are very accurate and reliable, it is possible that they have returned 
false measurements. This occurs for instances where the direct path between two robots is 
obstructed by an obstacle or another robot. The beacon sensors will always return the time 
corresponding to the first incoming ultra-sound pulse. In this case, the first pulse is the result of 
some multi-path rather than the direct-path pulse. As a result, the measured distance can be 
significantly larger than the actual distance.  A similar error occurs when there is a multi-path pulse 
that destructively interferes with the direct pulse. In this case, the ultrasonic pulse is not detected at 
all. 
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It should be noted that the difference between a good and a bad distance measurement cannot be 
recognized based on the measurement data alone. Indeed, multiple measurements will all result in 
the same (possibly erroneous) reading.  Erroneous readings can still be rejected, however, based on 
dead reckoning information. Even though dead reckoning is unreliable when integrated over a long 
time, for a single robot action, it can provide a reasonable estimate of the robot’s position. By 
comparing the encoder distance measurements with the distances computed for the estimated 
positions, it is possible to reliably reject erroneous measurements due to multi-path. 

Furthermore, the accuracy of the algorithm was improved significantly by using more than the 
minimally required three robot beacons. In our experiments, we used a team of five robots in 
which, at any time, four served as beacons. The extra distance measurements improve the accuracy 
of the position estimates, especially, when the direct path to one or more of the robot beacons is 
obstructed by obstacles. Further accuracy improvements were obtained by pinging each beacon 
multiple times. Median and mean filtering were then used to significantly reduce the standard 
deviation of the distance measurement, resulting in a more accurate position estimate. 

5 Mapping and Exploration 

The primary utility of the Millibots is exploration and mapping. The team coordinates movements 
and collection of sensor data to produce maps and explore unknown spaces. The ability for a single 
robot to map any significant area is difficult, especially for robots at this scale. Even with its long-
range sonars, the Millibot is limited to a detection range of only about 50 centimeters. However, a 
group of Millibots can be equipped with similar sensors to cover more area in less time than a 
single robot. During operation, each robot collects information locally about its surroundings. This 
data is transmitted to the team leader where it is used to build a local map centric to that robot. The 
team leader (or human operator) can utilize the robot's local map information to direct the Millibot 
around obstacles, investigate anomalies or generate new paths.  

For missions in an unknown environment, mapping, exploration, and movement are a coordinated 
effort. Robots move to collect new information about the environment and build composite maps. 
In turn, the maps provide clues about the most viable areas of exploration that will further increase 
the knowledge about the environment. In addition, evaluation of the map aids in path planning for 
the movement and positioning of the team during exploration. Planning is necessary to establish 

 

Figure 6 : Mapping Experiments 
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good sensor coverage while maintaining localization.  

This last part is essential in that the team relies on line-of-sight beaconing for maintaining position. 
If an individual robot moves out of sight of too many robots, the team will lose positioning of that 
robot and possibly corrupting the map. Movement around obstacles in the field requires 
coordination at the team level. 

More importantly for the group, the team leader can merge the information from several local maps 
into a single global map to provide a more comprehensive view of the environment to the user. To 
produce maps of the environment, one of our methods is to build an occupancy grid with a 
Bayesian update rule. This method allows the combination of sensor readings from different robots 
and different time instances [10][22][26][28]. In an occupancy grid, the environment is divided into 
homogeneous cells. For each cell, a probability of occupancy is stored. An occupancy value of zero 
corresponds to a free cell, a value of one corresponds to a cell occupied by an obstacle. Initially, 
nothing is known about the environment and all the cells are assigned a value of 0.5 (equally likely 
to be occupied or free).  

The mapping algorithm uses a Bayesian update rule [22]: 
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Equation (4) updates the occupancy probability for cell c, ),,|(Occup )()1( TSSc � , based on the 

current sensor reading, )|(Occup )(TSc , and the a priori probability, ),,|(Occup )1()1( −TSSc � . Any 
sensor that can convert its data into a probability that a particular cell is occupied can be merged 
into the same map.  This means that data generated by a short-range proximity detector can be 
merged with data from a sonar range module or even a camera.   

The tests were conducted with a team of five robots and a single team leader. For this experiment, 
three of the Millibots were equipped with an eight-element sonar array and a localization module. 
The remaining two were equipped with cameras that were used to provide fault recovery and 
obstacle identification. The map from each run was merged to generate a composite map of the 
room. In these experiments, the robots collaborated to determine their position and to combine their 
sensor data into a global map. However, the planning of individual robot motions was performed 
by the human operator. 

6 Results 

We have conducted a series of experiments to test the effectiveness of a team of Millibots to 
explore and map a given area (Figure 6). Each series of runs was designed to slowly increase the 
complexity of operation to expose the strengths and weaknesses of the team. The task in each 
mission was to explore and map as much area as possible before the team failed. Possible failures 
included: loss of localization, loss of battery power or loss of communications. As an added utility, 
each series of runs was performed in different sections of the hallway. By merging maps from these 
individual runs, we were able to construct a composite map that represented the entire area 
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(Figure 7). The operator was positioned away from the experiments and could only receive 
information about the environment via the team by viewing video from the robot cameras and 
observing sensor information.  

For each experiment, the team was composed of five Millibots. Three of the Millibots were 
equipped with sonar arrays for collecting map information while the remaining two were equipped 
with camera modules to aid in obstacle identification and provide a level of fault tolerance. In 
addition, each robot also housed a localization module that allowed them all to participate in 
localization. This heterogeneous makeup mixed the utility of sonar for extended range mapping 
with the utility of high bandwidth cameras. A homogenous team of either type would have proved 
ill prepared for the tasks. A team of camera robots could not produce effective range maps while a 
team of sonar robots would be unable to detect certain types of obstacles. 

Five robots were chosen to provide a degree of fault tolerance. Under a few initialization 
assumptions, three robots are sufficient to achieve and maintain localization.  With four robots, one 

 

Figure 7: Merging Maps 
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moving robot can be unambiguously localized with respect to the three stationary robots. A fifth 
robot provides a measure of fault tolerance such that the loss of a single robot does not compromise 
the ability of the remaining robots to maintain knowledge of their positions.  

Tasking of the team was accomplished through a distributed control system called CyberRAVE [7]. 
CyberRAVE is a client-server architecture that allows multiple, heterogeneous teams to coordinate 
operation and share data via a central control server and a set of distributed Graphical User 
Interfaces (GUI). Through the GUI, the operator is able to direct the robots by setting goals, 
querying maps and viewing live sensor data. The operator can task individual robots or the team as 
a whole. The operator’s control ranges from tasking of high-level operations such as ‘explore area’ 
or ‘track target’ to low level actions such as ‘go-to-goal’ or ‘ping sonars’.  

At this stage of development, much of the high level skills are provided by the operator in response 
to feedback from the robot teams via the interfaces. Based on the information presented by the 
GUI, the operator tasks the team.  For instance, he decides which robots to move, plans the overall 
movement of the team, and identifies obstacles. Low-level skills, such as multiple step moves and 
the coordination of localization and sonar pings, are controlled automatically by the robot team. 
Research is ongoing to transition from operator-assisted control to a fully autonomous system for 
which only high-level tasks are required, such as ‘map room’ or ‘find target.’ As we develop better 
planning and control algorithms, operational functionality will move from the operator to the team 
leader and eventually to the Millibots themselves. 

6.1 Operation of the Team 

In the first series of experiments, the robots were positioned in the lower left corner of a hallway 
without obstacles as shown in Figure 7. These experiments were primarily used to test and verify 
the team’s ability to localize and collect map data. At the same time, the operator learned how to 
coordinate the efforts between robots, that is, which robot to use for mapping, where to explore, 
and when and how to use the cameras.  

The second series of experiments started at the center right of the hallway which included a cluster 
of objects against one of the walls. The robots were able to detect and avoid the obstacles and 
remained operational for more than an hour.  During one experiment, the battery on a camera robot 
failed. Since the team was composed of five robots, the loss of a single robot did not jeopardize the 
group's ability to continue. The inoperative robot was left behind and the mission was continued 
with the four remaining robots. 

In the third and most difficult series of experiments, we added a large number of obstacles, some of 
which were small and low to the ground making them invisible to the sonar sensors. In these 
experiments, the camera modules played a significant role. Prior to moving any robot, the camera 
was used to scan the area in front of the robot. If an object was detected, the area was marked 
manually on the GUI display and the robots were directed to move around it. The extensive use of 
the cameras reduced the exploration speed, but allowed the team to progress without colliding with 
obstacles. This series of tests exposed the inherent weakness of relying on a single mode of sensing 
and illustrated the utility of a heterogeneous team. 
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The last experiments were conducted in the top right of the hallway. These tests focused on how 
much area the robot team can map in a fixed amount of time.  At this point the exploration rate is 
relatively small, because a significant amount of time is needed for the human to react to sensor 
feedback and make decisions.  We expect the exploration rate of the robot team to increase 
significantly when more low-level tasks are handled by the team rather than the human operator. 

6.2 Metrics 

To evaluate and compare the performance of the team, we have developed a set of metrics.  Well-
defined metrics allow comparison between Millibot teams with different compositions, teams using 
different algorithms, as well as other robots and teams of robots.  

Figure 8 lists the metrics obtained for the four runs described above. The first three columns report 
the logistical measures including the number sensing and acting commands. The last four columns 
represent the performance metrics. 

The column labeled “# Vector Cmds” lists the number of motion commands given to the team 
during a run. Each motion command corresponds to a vector with a relative angle and distance. The 
robot first turns over the specified angle and then moves forward over the commanded distance. 
The next two columns report the number of distance measurement pairs and the number of sonar 
readings taken by the team. After each motion command, the team performs distance measurements 
using the beacon sensors to update the robot position estimates.  To improve sensing reliability, 
both distance measurements and sonar reading are the filtered result of eight separate 
measurements.  

The performance of the robot team is characterized by the duration to perform a mission, the area 
explored per unit of time (coverage rate), the dimensional accuracy, and the power consumption.  
The dimensional accuracy is obtained by comparing the distance between mapped features (e.g., 
two walls) with the actual distance.  The energy consumption is measured by comparing the battery 
charge for each robot before and after the experiment.  An electronic battery monitor allows us to 
measure the remaining battery charge accurately. 

The metrics reflect the difficulties encountered in the experiments.  For example, the third run (with 
a large number of obstacles) required the extensive use of the camera.  This resulted in a reduced 
coverage rate and larger power consumption.  The final experiments also resulted in larger power 
consumption, because the robots spent relatively more time moving around, which is very energy 

 # Vector 
Cmds 
 

# Distance  
Meas (x 8) 

# Sonar 
Pings (x 8) 

Duration Coverage 
Rate 

Dim. 
Accuracy 

Power 
Con-
sumption 

run1 63 303 63 30 min 3.2 m2/hour 2.5 % 3.2 W 
run2 92 496 96 63 min 1.9 m2/hour 2.5 % 3.2 W 
run3 90 485 465 76 min 1.2 m2/hour * 3.4 W 
run4 86 431 450 30 min 3.3 m2/hour 1.6 % 3.8 W 
        
Total 331 1715 1074 199 min    

Figure 8: Experiment data 
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intensive.  The dimensional accuracy reflects a combination of sonar accuracy and localization 
accuracy.  A deviation of less than 3% in the distance measurement between two walls of the 
mapped hallway is surprisingly good for team of robot of this size. 

7 Summary 

In this article, we have presented the design of a distributed robotic system consisting of very small 
mobile robots called Millibots. Although the Millibots are small, they still contain a full set of 
integrated capabilities including sensing, computation, communication, localization, and mobility. 
To expand the capabilities even further, the Millibots have been designed in a modular fashion 
allowing one to easily create specialized robots with particular sensing configurations. By 
combining several such specialized robots, one can create a team with a very broad range of 
capabilities while still maintaining a small form factor. 

An important component of the Millibots is a novel ultrasound-based localization system. This 
system has the important advantage over currently existing systems that it does not require any 
fixed beacons. By using the Millibots alternately as beacons and as localization receivers, the team 
as a whole can reposition while maintaining accurate localization estimates at all times. 

Tracking robot positions accurately is especially important for the mapping and exploration 
application that we have implemented. Each robot explores an unknown environment with its sonar 
and IR sensors. A team leader collects all the sensor information and integrates it into a global view 
of the environment. The team leader uses an occupancy grid representation with a Bayesian update 
to fuse the sensor data over time to build a composite map of the area.  
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