
Affine Invariant Detection: 
Edges, Active Contours, and Segments* 

Peter J. Olver Guillermo Sapiro Allen Tannenbaum 
University of Minnesota Hew let t - P ackar d Labs. University of Minnesota 
Minneapolis, MN 55455 Palo Alto, CA 94304 Minneapolis, MN 55455 

Abstract 
In this paper we undertake a systematic investi- 

gation of afine invariant object detection. Edge d e -  
tection is first presented from the point of view of 
the afine invariant scale-space obtained b y  curvature 
based motion of the image level-sets. In this case, 
afine invariant edges are obtained as a weighted d i f -  
ference of images at different scales. We then in- 
troduce the afine gradient as the simplest possible 
aJgine invariant differential function which has t h e  
same qualitative behavior as the Euclidean gradient 
magniiude. These e d g e  detectors are the basis both 
t o  extend the afine invariant scale-space t o  a complete 
a@ne flow for image denoising and simplification, and 
i o  define afine invariant active contours for object de- 
tection and edge integration. The active contours are 
obtained as a gradient flow in a conformally Euclidean 
space defined b y  the image on which the object is to be 
detected. That is, we show that objects can be seg- 
mented in an afine invariant manner b y  computing 
a path of minimal weighted afine distance, the weight 
being given b y  funcfions of the afine edge detectors. 
The geodesic path is computed via an algorithm which 
allows to simultaneously detect  any number of objects 
independedy of the initial curve topology. 

1 Introduction 
Despite the extensive activity in recent years on 

invariant shape recognition algorithms - see [all for a 
representative collection of papers on the topic - the 
corresponding problem of invariant detection of shapes 
has received considerably less attention. Some work 
along these lines has been reported in [3O, 311, where 
the theory of geometric invariant smoothing of planar 
curves (boundaries of planar shapes) was initiated; see 
also [l]. In particular, using the methods of [l, 311, a 
shape can be smoothed in an affine invariant manner 
before the computation of invariant descriptors such 
as those reported in corresponding chapters in [21]. 
This work was partially extended for other groups and 
dimensions in [ lo ,  24, 25, 321. 

The purpose of this paper is to derive simple ge- 
ometric object detectors which incorporate affine in- 
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variance. Invariant edge detectors should be the first 
step in afully affine invariant system of object recogni- 
tion. This way, the introduction of non-intrinsic noise 
t,o the system is reduced. 

Two different affine edge detectors are presented, 
one based on the affine invariant scale-space [l, 31, 331 
and the second one on a novel definition of afine in- 
variant gradient. These affine invariant edge maps are 
then used to define afine invariant active contours, 
extending [ 8 ,  9,  16, 171. The boundary of the scene 
objects are given by a geodesic or minimal weighted 
distance path in a Riemannian space. In contrast with 
previous approaches, distances in this space are affine 
invariants. These affine invariant edge maps are also 
used to extend the work in [l, 331 to  obtain an affine 
invariant flow for image denoising and simplification. 

To the best of our knowledge, besides the schemes 
here described, the only works addressing affine in- 
variant detection and segmentation were performed by 
Ballester et al. [4] and by Lindeberg [19]. In [4] the 
authors presented a very nice affine invariant version 
of the Mumford-Shah segmentation algorithm. The 
work of Lindeberg is related to our definition of affine 
gradient, as will be explained in Section 3. 

2 Affine edges from affine scale-space 
We begin by deriving the first affine invariant edge 

detector. It is based on the theory of invariant scale- 
spaces developed in [l, 24, 25, 30, 31, 331. We first 
introduce some preliminary notation. For planar col- 
umn vectors, x = ( Z ~ , Z ~ ) ~ ,  Y = ( ~ 1 , y z ) ~  E R2, 
we let [ X , Y ]  := z ly2  - zzy l  be the area of the par- 
allelogram spanned by X ,  Y .  We also define Y' := 
(-Y~,YI)~ by [X,Y'I = ( X , Y ) ,  where ( X , Y )  = 
zlyl + zzy2 denotes the usual inner product. 

2.1 Planar curve evolution 
The theory of planar curve evolution has been con- 

sidered in a variety of fields; see [18, 29, 311 for ref- 
erences. One of the most important of such flows is 
derived when a planar curve deforms in the direction 
of the Euclidean normal, with speed equal to the Eu- 
clidean curvature. In [3O] we extended this flow to the 
affine case. Formally, let C ( p , t )  : S1 x [ O , T )  -+ R2 
be a family of smooth embedded closed curves in the 
plane (boundaries of planar shapes , where p E S1 
parametrizes the curve, and t E [0, T ]  the family. This 
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family of curves evolves according to ( C ( p ,  0) = CO@)) 

(1) 
-- d C ( P ,  t )  d 2 C ( P ,  t )  

at - as2 ' 

where s ( p )  = s:[Cp, Cpp]1/3dp, is the afine arc-length 
([C,, C,,] , G . l ) ,  i.e., the simplest' affine invariant 
parametrization [5]. We have shown that any simple 
and smooth convex curve evolving according to ( l ) ,  
converges to  an ellipse [30]. Since the affine normal 
C,, exists just for non-inflection points, we formulated 
the natural extension of the flow (2) for non-convex 
initial curves in [31, 321: 

(2) 
achJ,t> 0 p an inflection point, 
7 = { C:,(p,t), otherwise. 

This flow defines a geometric, affine invariant, mul- 
tiscale representation of planar shapes [3l]. In this 
case, we proved (see also [3]) that the curve first be- 
comes convex, as in the Euclidean case, and after that 
it converges into an ellipse according to  [30]. 
2.2 Euclidean image processing 

Algorithms for image smoothing were developed 
based on the Euclidean and affine heat flows and re- 
lated equations. In this section, we review a scheme 
for image processing which is related to the Euclidean 
heat flow. See [a,  26, 29, 331 for details and references. 

Let Q,o : R x R ---f IR represent a gray-level image, 
where @o(z,y) is the gray-level value. Being the 
initial condition, Alvarez et al. [a] proposed the flow 

where G is a smoothing kernel, and +(w) is a non- 
increasing function which tends to zero as w -+ CO. 

Details on the function of each term can be found in 
[2]. The evolution 

is such that the level-sets of Q, move according to the 
Euclidean heat flow Ct = KN [a, 271, where K is the 
Euclidean curvature and hr the unit normal. Equation 
(3) represents an anisotropic diffusion, extending the 
ideas first proposed by Perona and Malik [28]. 
2.3 Affine smoothing and edge detection 

It is well-known in the theory of curve evolution, 
that if the velocity Y = Ct of the evolution is a geomet- 
ric function of the curve, then the geometric behavior 
of the curve is affected only by the norinal component 
of this velocity, i.e., by < V , n /  > . Therefore, instead 
of looking at (a), we can consider an Euclidean-type 
formulation of it. In [30], we proved that the normal 
component of C,, is equal to K ' / ~ N .  Since ri = 0 at 

'Simplest in this context refers to minimal order or minimal 
number of spatial derivatives. 

inflection points, and inflection points are affine in- 
variant, we obtain that 

Ct = K ~ / ~ N  (5) 
is geometrically equivalent to the affine heat flow (2). 
The affine invariant property of (5) was allso pointed 
out by Alvarez et al. [l], based on a completely dif- 
ferent approach. They proved that this flow is unique 
under certain conditions (uniqueness is obtained also 
from the results in [24]). 

The process of embedding a curve in a ,3D surface, 
and looking at the evolution of the level-sets, is fre- 
quently used for the digital implementation of curve 
evolution flows [27]. It is easy to show tha.t the level- 
sets evolution equation corresponding to  (13) is 

@t = K1'3 1 )  v@ I ] =  -2@,@.,@,, +@i@yy)1f3. 
(6) 

This equation was used in [31] for the implementa- 
tion of the novel affine invariant scale-space for planar 
curves mentioned before and in [l, 331 €01; image de- 
noising. See [26] for details on the advantages of (6) 
over (4). 

From the results in [1, 30, 311 the general behavior 
of a curve (or level-set) evolving according to  the Eu- 
clidean or affine heat flows are very similar. The affine 
based flow will perform edge preserving anisotropic 
diffusion as well. Based on this, we obtain our first 
affine invariant edge detection scheme: 

Definition 1 Let Sedge(to,tl) := a@( t l )  - bQ,(to),  
such that a(.) is the solution 01 (6) with initial da- 
tum Q,(O),  a, b E IRf and t l  > t o  2 0 .  Sedge(tO, t l )  is 
denoted as the scale-space afine invariant edge detec- 
tor. 

Note that if to > 0, noise is (efficiently and affine) 
removed before edges are computed. Varying t o  and 
tl gives affine edges at different scales. ,4n example 
of this flow is presented in Figure 1. The function 
S e d g e  can be thresholded without affectin.g the affine 
invariance. 

Figure 1: Example of S .  

3 Affine invariant gradient 
Lei, Q, : R2 -+ RIRs be a given image in the 

continuous domain. In order to detect edges in an 
affine invariant form, a possible approach is to replace 
the classical gradient magnitude 11 V4e 1 1 ,  which is 
only Euclidean invariant, by an afine znvarzant gradz- 
ent. For doing this, we have to look if we can use 
basic affine invariant descriptors that can be com- 
puted from Q, to find an expression that behaves like 
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11 V@ 1 1 .  Using the classification developed in 22, 231, 
we found that the two basic independent a 6 ne in- 
variant descriptors are H := @zz@yy - @&, and 
J := @,,,@; - 2@z@y@zg + We should point 
out that there is no (non-trivial) first order affine in- 
variant descriptor, and that all other second order dif- 
ferential invariants are functions of H and J .  There- 
fore, the simplest possible affine gradient must be ex- 
pressible as a function F = F ( H ,  J )  of these two in- 
variant descriptors. 

If a curve C is defined as the level-set of @, then 
the curvature of C is given by K = &. Lindeberg 
[19] used J to  compute edges in an affine invariant 
form, that is, F = J = K 11 V@ [ I 3 ,  which singles 
out edges as a combination of high gradient and high 
curvature of the level sets. Note that in general edges 
do not have to  lie on a unique level-set. Here, by 
combining both H and J ,  we present a more general 
affine gradient approach. Since both H and J are 
second order derivatives of the image, the order of 
the affine gradient is not increased while using both 
invariants. 

Definition 2 The (basic) afine invariant gradient of 
a function @ is defined by Vao@ := 191. 

Technically, since va8@ is a scalar, it measures 
just the magnitude of the affine gradient, so our defi- 
nition may be slightly misleading. However, an affine 
invariant gradient direction does not exist, since direc- 
tions (angles) are not affine invariant, and so we are 
justified in omitting “magnitude” for simplicity. The 
justification for our definition is based on a (simpli- 
fied) analysis of the behavior of V.8 @ near edges in 
the image defined by @ [26]. 

In order to  avoid possible difficulties when the affine 
inva.riants H or J are zero, we replace 9.8 by a slight 
modification. Indeed, other combinations of H and J 
can provide similar behavior, and hence be used to 
define affine gradients. Here we present the general 
technique as well as a few examples. 

Definition 3 The normalized afine invariant gradi- 
ent is given by Va8 Q := fi 

The motivation comes from the form of the afine 
invariant stopping term analogue to 4 in (3), which 
is now given by Q)z = H Z t J + Z t l  , avoiding all 
difficulties where either H or J vanishes, and hence 
is the proper candidate for affine invariant edge detec- 
tion. The analysis of this edge detector is given in [26]. 
An example is given in Figure 2 ,  after thresholding. 

4 Affine invariant image denoising 
should be 

added to the directional derivative to stop diffusion 
across edges. Following the work in [33] (see also [l]), 
where the affine flow (6) is used as “directional dif- 
fusion,” we can replace the function 4 in (3) by an 

J 2  1 

According to (3),  a stopping term 

Figure 2: Example of the affine invariant gradient. 

affine invariant edge stopping function dag. Assume 
that 4.8 = #(wag ) where, as before, d(w) -+ 0 when 
w -+ CO. We let now w = w.8 be either one of 
the affine edge detectors defined above, i.e., Sedge or 
V a g  (@). This results in a completely affine invariant 
flow, 

(7) 

This flow is tested in Figure 3. Note that since this 
type offlow, as well as the one proposed in [l]) moves 
an image towards piecewise constant, its results can 
be used to simplify (segment) an image in an affine 
invariant fashion. 

Figure 3: Example of the affine invariant image flow 
for image denoising and simplification. The original 
image is presented on the left, noisy on the middle, 
and the result of the affine invariant flow on the right. 

5 Affine invariant active contours 
In this section we derive the affine invariant active 

contours, based on the treatments of [8, 9, 16, 171. It is 
important to note that after affine edges are computed 
locally based on the scale-space or affine gradient de- 
rive above, affine invariant fitting can be performed 
(see [26, 361 for the relevant references). In this work, 
the affine invariant integration is done by means of 
active contours. 
5.1 Euclidean geodesic active contours 

We present now the geodesic active contours de- 
rived in [8, 16, 171. These schemes are based on pre- 
vious work reported in [7, 15, 20, 351. 

Let C = C ( p , t )  be as before, with C ( 0 , t )  = C ( l , t ) ,  
C’(0, t )  = C’(1, t). Consider the length functional 
L ( t )  := s: 1 1  C, 1 1  d p .  Then differentiating (i.e., tak- 
ing the “first variation”), and integrating by parts, 

Euclidean arc-length. Now, in the standard way, we 
can define a norm 1 1  . l l e u c  on the (Frkhet) space 
of twice-differentiable closed curves in the plane. In- 
deed, the norm is given by the length of the curve, 

we find L’(t) = - so L ( t )  (=, ac KN) dv, where dv is the 
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( 1  C I l e u c : =  Jt 1 1  C,, 1 1  d p  = s," dw = L. Thus the direc- 
tion in which L( t )  is decreasing most rapidly is when 
C satisfies the gradient flow Ct = K N .  The Euclidean 
heat flow is precisely a gradient flow. 

We should note that this flow has arisen in the find- 
ing of closed geodesics on Riemannian manifolds (it 
can be defined with respect to any Riemannian met- 
ric), and the basic idea is that as long as it remains 
regular it will converge to a closed geodesic. The deep 
part is the regularity; for details see [12, 13, 141. The 
active contours models which we are about to  give 
are completely straightforward consequences of these 
principles. 

We are now ready to  formulate the geodesic active 
contours model from [8, 16, 171. In [8], the model is 
derived from the principle of least action in physics, 
showing the mathematical relation between energy 
and curve evolution based snakes. In [16, 171, the 
model is derived immediately from curve shortening, 
and is compared to  similar flows in continuum me- 
chanics, in particular, phase transitions. Of course, 
the two obtained flows are mathematically identical 
and present active contours as geodesic computations. 
The basic idea is to change the ordinary Euclidean arc- 
length function dw =[ I  C,, 1 1  d p  along a curve C ( p )  by 
multiplying by a conformal factor d(z,.y) > 0,  which 
is assumed to be a positive, differentiable function. 
The resulting conformal Euclidean metrzc on R2 is 
given by 4dxdy, and its associated arc length ele- 
ment is dw$ = +dw = + ( 1  C, 11 dp.  As in ordinary 
curve shortening, we compute the corresponding gra- 
dient flow for L$( t )  := so +dw. Taking the deriva- 
tive and integrating by parts, we find that [8, 16, 171 
-Lk( t )  = j " , ,m' t ) (Ct,  4r;N - (Vq5 . N ) N )  dw, which 
means that the direction in which the L$ perimeter 
is shrinking as fast as possible is given by 

L 

As long as the flow remains regular, we will get conver- 
gence to a closed geodesic in the plane relative to the 
conformal Euclidean metric 4 dzdy. Regularity may 
be deduced from the classical curve shortening case. 

To introduce the level-set formulation [27], let us 
assume that a curve C is parametrized as a level-set of 
a function U : [0, U] x [0, b] -+ lR. Then, the level-set 
formulation of the steepest descent method says that 
solving the above geodesic problem starting from CO 
amounts to searching for the steady state (ut = 0) 
of the evolution equation % =I( V u  1 1  div 4 , 
with initial datum u ( 0 , z )  = uo(z). As in [7, 201, we 
may add an inflationary constant, to derive 

( 4) 

In the context of image processing, we take 4 to be a 
stopping term depending on the image. In this case, 
notice that V4 will look like a doublet near an edge. 

The new gradient term directs the curve towards the 
boundary of the objects since --V4 points toward the 
center of the boundary. The advantages of this model 
over previous ones is reported in 18, 9, 16, 171. Exis- 
tence, uniqueness and stability results for the gradient 
active contour model (9) were studied in [8, 9, 16, 171. 
See [34, 371 for related approaches. 
5.2 Affine invariant active contouirs 

Based on the geodesic active contours and affine 
invariant edge detectors above, it is almost straight- 
forward to define affine invariant gradient active con- 
tours. In order to carry this program out, we will first 
have to define the proper norm. Since affine geome- 
try is defined only for convex curves [5], we will ini- 
tially have to restrict ourselves to  the (Frkchet) space 
CO of thrice-differentiable convex closed curves in the 
plane. As above, let ds denote the affine arc-length, 
and Laf f  := $ d s  is the affine length [5]. On CO, we 
define the afine metric ( 1  C lIa8 := so ( 1  C ( p )  / l a  d p  = 

Note that the area enclosed by C is A = ( 1  C llao . 
Observe that ( 1  e, ] l a =  [Cs,Cs,] = 1,II C,, ] l a  = 
[C,,, C,,,] = p ,  where p is the affine curvature, i.e., the 
simplest non-trivial differential affine invariant. This 
makes the affine norm 11 . consistent with the 
properties of the Euclidean norm on curves relative to 
the Euclidean arc-length dw. 

Assume now that +a8 = + ( w u f f )  is an affine invari- 
ant stopping term, based on the affine invariant edge 
detectors as above. Therefore, q5a8 behaves as the 
weight 4 in L$ ,  being now affine invariant. As in the 
Euclidean case, we regard q b a ~  as an affine invariant 
conformal factor, and replace the affine arc length ele- 
ment ds by a conformal counterpart ds$aff = 4.8 ds  
to  obtain the first possible functional for the affine 
active contours 

1 

.tu' II c(S) \ l a  ds, where II c ( p )  ( l a  := [ c ( p ) , c p ( p ) ~ .  

L a f f  ( t )  
L$aff  := 1 $ a 8  ds,  (10) 

where Laf f  = $ d s  is now the affine length of our 
curve. The obvious next step is to  compute the gra- 
dient flow corresponding to L+aff in orcler to  pro- 
duce the affine invariant model. Unfortunately, as we 
will see, this will lead to an impractically complicated 
geometric contour model which involves four spatial 
derivatives. 

The snake model which we will use comes from 
another (special) affine invariant, namely area. Let 
C ( p , t )  be a family of curves in Co. The first vari- 
ation of the area functional A(t) is given by A'(t) = 

- staff '"[Ct, C,] ds. Therefore the gradient flow which 
will decrease the area as quickly as possible relative to  
1 1  . J l u f f  is exactly Ct = C,,, which, modulo tangential 
terms, is equivalent to Ct = K ' / ~ N ,  precisely the affine 
invariant heat equation studied in [30]! We define now 
the conformal area functional to be 

~ 4 ~ f f  := l l [ c ,  cp14a' d p  1"'" "'[C, C s ] q 5 a ~  ds. 
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The first variation of this will turn out to be much 
simpler than that of L+afl and will lead to an imple- 
mentable geometric snake model. 

Lemma 1 Let L4aff and A+aff denote the conformal 
afjcine length and area functionals respectively. 

I .  The first variation of L4aff is given b y  

2. The first variation of A+aff is given b y  

The affine invariance of the resulting variational 
derivatives follows from a general result governing in- 
variant variational problems having volume preserving 
symmetry groups [as]. 

We now consider the corresponding gradient flows 
computed with respect to ( 1  . ( l a  . First, the 
flow corresponding to the functionafL+afl is Ct = 
{(Vq5a8.)L + ~ a f f , u C , } s .  As before, we ignore the 
tangential components, which do not affect the geom- 
etry of the evolving curve, to obtain 

The geometric interpretation of the affine gradient 
flow (13) minimizing L4a8 is analogue to that of the 
corresponding Euclidean geodesic active contours [26]. 
Unfortunately, this flow involves ,u which makes it dif- 
ficult to  implement for affine invariant segmentation. 
(Possible techniques to compute /I numerically were 
recently reported in [6, 111.) 

The gradient flow coming from the first variation of 
the modified area functional on the other hand is much 
simpler, Ct = (4.p C, + +[e, ( ~ 4 ~ 8 ) ’ - ]  e,),. Ignoring 
tangential terms (those involving C,) this flow is equiv- 
alent to Ct = 4.8 C,, + $[C, (04.fl)‘-] C,,, which in 
Euclidean form gives the second possible affine snakes 
model: 

Ct = d a ~  s1f3N + 1/2(C, Vda8)~’13N.  (14) 

Notice that both models (13 hand (14) were derived 
for convex curves, even thoug the flow (14) makes 
sense in the non-convex case. Formal results regarding 
existence of (14) can be derived following [1, 7, 8, 9, 
16, 171. 

Figure 4 illustrates simulations of these active con- 
tour models (the implementation is as in [S, 9, 16, 17, 
201, based on the level-sets formulation [27]). 

Figure 4: Example of the affine invariant snakes. 

6 Concluding remarks 
The problem of affine invariant detection was ad- 

dressed in this paper. Two different affine invariant 
edge detectors were first discussed. One is obtained 
from weighted difference of images at different scales 
obtained from the affine invariant scale-space devel- 
oped in [1, 30, 311. The second one is obtained from 
a function which behaves like the Euclidean gradient 
magnitude, having, in addition, the affine invariance 
property. From the classification of invariants devel- 
oped in [22, 231, this function is the simplest possible 
with this characteristic. 

We then presented two models for affine invari- 
ant active contours, extending the results presented 
in [8, 9, 16, 171 for the Euclidean group. We showed 
that objects can be obtained as gradient flows rela- 
tive to modified area and affine arc-length functionals. 
The induced metric is a function of the affine invariant 
edge maps. Therefore, objects are modeled as paths 
of minimal weighted affine distance. The same affine 
maps were used to extend the image flows in [1, 331, 
obtaining a complete affine invariant flow for image 
denoising and simplification. 
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