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NOMENCLATURE 

1. C 	damping coefficient 

2. Cc 	critical damping coefficient 

3. D 	damping ratio 

4. E 	Young's modulus 

5. F 	the exciting force amplitude 

6. F 

	

	resonant frequency 
N 

7. G 	shear modulus 

8. I 	polar moment of inertia of soil specimen cross section 

9. It 	mass polar moment of inertia of the top cap system 

10. Is 	mass polar moment of inertia of the soil specimen 

11. K 	spring constant 

12. L 	length of the soil specimen 

13. m 	mass 

14. T 	torque 

15a. t 	time 

15b. n 	number of cycles 

16. x 	displacement 

17. x 	linear velocity 

18. X 	linear acceleration 

19. y 	amplitude at first cycle 

20. vn+1 	amplitude at (n+I)
th cycle -  

21. n 	coefficient of longitudinal viscosity 

	

22a. 0 	angle of twist 



xi 

22b. 0 	angular acceleration 

23. p 	mass density 

24. p 	shear coefficient of viscosity 

25. w 	circular frequency of the exciting force in radians per sec 

26. w
n 	undamped natural frequency in radians per sec 

27. 0 	phase angle 

28. 6 	logarithmic decrement 

29. yd 	dry density 

30. w 	moisture content 

31. PCF 	pounds per cubic foot 

32. psi 	pounds per square inch 

33. a 	stress 

34. a
3 	

confining pressure 

35. KSF 	kilo pounds per square foot 



SUMMARY 

Ground responses during earthquake and vibratory loadings are 

mainly determined by shear modulus and damping ratio of the soil deposits. 

Various test devices have been developed and improved in recent years to 

determine shear modulus and damping ratio in the laboratory. 

In this dissertation, the mathematical models and reported ex-

perimental data regarding the nature of damping in soils have been 

analyzed. These models include viscous damping, Coulomb damping, and 

hysteretic damping. For hysteretic damping, certain concepts regarding 

the critical damping coefficient and damping ratio have been proposed by 

the author. A method which equates energy inpout and energy dissipation 

at resonance has been suggested by the author for use in interpreting 

the torsional shear test. 

Compacted specimens of micaceous silt with various dry densities 

and moisture contents have been tested in a torsional shear test device 

and in a cyclic triaxial test apparatus. The strain levels range from 

about 7 x 10
-4 

percent to about 2 x 10
0 
 percent. Current available 

methods and the suggested improved interpretation methods (proposed in 

this dissertation) have been used in the reduction of the test data. 

Conclusions drawn from the theoretical and experimental investi-

gations are: 1) The nature of damping in soils can be approximated by 

hysteretic damping. 2) A method which equates energy input and energy 

dissipation at resonance is a reliable method to determine damping ratio 

from a torsional shear test (single degree of freedom system). 3) Since 

xii 



the nature of damping in soils is hysteretic, the expression (Jacobsen, 

1960) to determine damping ratio from a hysteresis loop plot is valid. 

4) Even though the damping ratio varies with confining pressure, 

density, and moisture content, the variations are not appreciable and 

the values fall within a narrow band. An average curve for the damping 

ratios of micaceous silt has been proposed. The ranges from the pro-

posed curve are: damping ratio--5 percent at a strain level 1 x 10
-3 

percent and 14 percent at a strain level 1 x 10
-1 

percent. 



CHAPTER I 

INTRODUCTION 

The shear modulus defines the stress-strain relationship in shear 

or "stiffness" of a material. The term "damping" describes the energy 

dissipation of a material under cyclic or repeated loading. Damping in 

materials reduces the displacement responses, especially near resonance. 

Damping in soils is greater than in most metals. 

The shear modulus decreases drastically with strain level, while 

the damping ratio (damping expressed as a percentage of critical damping) 

increases (Silver and Seed, 1969). The decrease in shear modulus in-

creases the soil response, whereas the increase in damping ratio decreases 

the response. 

Since the shear modulus and damping ratio are variable and affect 

the magnitude of the computed ground responses and the computed settle-

ment (Silver and Seed, 1969) they must be determined for depths and 

strains at levels of concern. Various testing devices have been developed 

to determine the shear modulus and damping ratio in the laboratory. 

Limited reported test data on sands and clays indicate that the 

damping ratios are different for different confining pressures, dry 

densities, and moisture contents. Various test devices and various in-

terpretation concepts have been used in previous investigations. 

The above-mentioned differences in the values of the damping ratio 

may partly due to the effect of confining pressure, dry density and 
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moisture content and partly due to the approximations made in the inter-

pretation theories. Use of different test devices in the experimental 

program might have provided different values of the damping ratio. 

Hence, the theoretical validity of the interpretation concepts, 

their approximations to represent the response of the soil specimen 

in the test device, and their limitations should be discussed. New 

interpretation concepts, if needed, should be suggested. Various test 

devices should be used to test similar material (micaceous silt in this 

study). The test data should be analyzed by various interpretation 

concepts. The validity of the new suggested interpretation method 

should be established. The objectives of this study were: 1) to 

identify the problems and deficiencies in the theory and in the experi-

mental methods, 2) to suggest means to eliminate them, and 3) to pro-

vide some dynamic test data for micaceous silt. 



CHAPTER II 

BACKGROUND 

Considerable effort has been directed toward the development and 

improvement of test devices to determine shear modulus and damping ratio 

in the laboratory. Test devices for cyclic torsional shear, cyclic 

triaxial and cyclic simple shear have been used in previous investiga-

tions. 

Two extreme soils-sands and clays with various densities and 

stiffnesses have been tested. A limited amount of dynamic test data are 

also available for gravelly soils and peat. No test data are available 

for micaceous silt. 

A distributed mass fixed at the base and free at the top was 

assumed to represent a soil specimen in a cyclic torsional test device 

(Hardin, 1965). The time constitutive relations, concepts of the inter-

pretation methods and free vibration decay behavior are discussed and 

documented (Hardin, 1965). These relations are valid as long as the 

soil specimen is subjected to a strain level within the linear range. 

A soil specimen can be represented by a single degree of freedom 

system in the cyclic torsional test device developed by Drnevich (1972). 

The time constitutive relations, the interpretation methods and free 

vibration decay behavior in a single degree of freedom have not been 

documented. 

Shear modulus is calculated indirectly, from Young's modulus, 
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from a cyclic triaxial test result. Damping ratio is determined from 

a stress-strain hysteresis loop. A hysteretic damping concept (Jacobsen, 

1960) is used to evaluate damping ratio. The theoretical validity of 

this concept to determine damping ratio from a hysteresis loop plot, 

from a cyclic triaxial test, has not been documented. 

Hence, there was a necessity to investigate the nature of damping 

in soils. Once the nature of damping in soils was known the theoretical 

response of the soil specimen in various testing devices could be ex-

plored and the results could be interpreted. The validity of the 

hysteretic damping concept (Jacobsen, 1960) to determine the damping 

ratio from a hysteresis loop plot could be documented. 

To provide test data for micaceous silt, compacted specimens of 

micaceous silt were used in the testing program. The most commonly used 

testing devices--a cyclic triaxial test apparatus and a cyclic torsional 

shear test device--were used. The test data were analyzed by the current 

and suggested improved interpretation methods. The theoretical response 

and the response in the test devices were compared and discussed. The 

nature of damping in soils was hypothesized, and the validity of the 

improved interpretation method (suggested in this dissertation) was 

established. Some dynamic test data--shear modulus and damping ratio 

values at various strain levels (7 x 10
-4 

percent to 2 x 10
0 
 percent)-- 

were provided. 



CHAPTER III 

MATHEMATICAL MODELS FOR MATERIAL DAMPING 

The term "material damping," as used in this chapter, describes 

the energy dissipation properties of a material under cyclic stress. 

According to Lazan (1959), material damping is related to the energy 

dissipation in a volume of "macrocontinuous" media. "The term 'macro-

continuous' is intended to exclude the damping in a configuration 

originating at interfaces between recognizable parts, yet include the 

types of micro- and submicro-interface effects which might constitute 

an important mechanism in the volume or bulk damping of materials not 

homogenous on a microscopic or submicroscopic scale. In general, 

material damping is associated with the energy dissipation which takes 

place when a more or less homogenous volume is subjected to cyclic 

stress and the damping mechanisms are associated with the internal micro 

and macrostructure of the material" (Lazan, 1959). 

Damping in materials can be caused by various combinations of 

physical mechanisms, depending upon the material. For metals, these 

mechanisms include thermo-elasticity on both micro and macro scales, 

grain boundary viscosity, point-defect relaxations, eddy-current effects, 

stress-induced ordering and electronic effects (Lazan, 1962). However, 

little is known about physical micromechanisms operative in most non-

metallic materials (Lazan, 1962). 

Materials under cyclic loading conditions can be represented by 
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mathematical models which define the relations between forcing functions 

and the responses. The purpose of developing a mathematical model for 

the time constitutive relations of a material is to permit mathematical 

interpretation and extrapolation of the test data. 

It is convenient to study single parameter models by representing 

them by simple mechanical models. when this has been done, the general 

mathematical formulations of 1) the viscous damping model and 2) the 

Coulomb damping model can be discussed. 

Single-Parameter Models  

The Perfectly Elastic or "Hookean" Substance  

In this case the extension, x, is instantaneous and is related 

to the stress, a, by: 

a = Kx 	 (1) 

where K is a constant of the material. Such a substance can be repre-

sented by a spring as in Figure 1(a). Under cyclic loading, such a 

model exhibits no damping if K is the same in loading and unloading. 

Energy is stored during loading and released entirely during unloading. 

The Perfectly Viscous Fluid or "Newtonian" Substance  

In this case, the rate of strain 5c is related to the stress, a, 

by: 

a = CX 	 (2) 

where C is a constant of the material. The substance can be repre-

sented by the dashpot of Figure 1(b). In this model, energy is dissi-

pated entirely in the dashpot. 



   

F 	 

  

C 

 

a 

7 

          

          

          

          

Hookean Spring 
	

Newtonian Substance 

Fig. 1(a) 
	

Fig. 1(b) 

          

U) 
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Decay Envelope 

         

         

         

          

           

           

           

           

           

           

Kelvin-Voigt nodel 
	

Free Vibration Decay 
(exponential) 

Fig. 1(c) 	 Fig. 1(d) 

 

U) 

  

Coulomb Damping Model 
	

Free Vibration Decay 
(straight line) 

Fig. 1(e) 
	

Fig. 1(f) 

Figure 1. Mechanical Models and Their Behavior in Free Vibration. 
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Two-Parameter Models  

Kelvin-Voigt Model or Viscous Damping Model  

The Kelvin-Voigt Model is comprised of a spring in parallel with 

a dashpot as shown in Figure 1(c). Viscous damping implies that the 

damping force developed in the dashpot depends upon the velocity of the 

strain imposed. The following differential equation governing the 

motion of a single degree of freedom system, consisting of a sinusoidally 

excited mass attached to a Kelvin-Voigt element, can be written (Thomson, 

1965): 

mX + Cic + Kx = P o  sin wt 	 (3) 

where 	m = mass 

C = viscous damping coefficient 

K = spring constant 

Po  = exciting force amplitude 

w = circular frequency of the exciting force 

x = displacement 

t = time 

a dot denotes a derivative with respect to time. 

The steady-state solution of equation 3 is as follows (Thomson, 1965): 

  

P o /K 

 

(4) 

    

ilE l UJ M
2 

/ 2 
+ 

r ai l  2 
K 

 

tan (1) - Cw/K  

2 
1 - mw 

K 

(5)  
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where x = X sin (wt - (P); i.e., the displacement lags the applied force 

by an angle cp. 

Natural Frequency. The natural frequency, w n , of undamped oscil-

lation in radians per sec of equation 3 is (Thomson, 1965): 

w
n 
= IN/77a 
	

(6) 

where 	K = spring constant 

m = mass 

Critical Damping Coefficient. The critical damping coefficient, 

Cc, of the viscous damping system is (Thomson, 1965): 

Cc = 2mw
n 
	 (7) 

where 	m = mass 

wn = undamped natural frequency in radians per sec 

Damping Ratio. The actual damping of the system, C, can be speci-

fied in terms of the critical damping, Cc, by the nondimensional ratio 

D (Thomson, 1965): 

D = C/Cc 

where 	D = damping ratio 

C = actual damping in the system 

Cc = critical damping coefficient 

Steady-State Response. The steady-state response of the viscous 

damping system can be written in the following form (Thomson, 1965): 

X - 
	 P

o
/K 

,%/(1 	(whon)212  + (2D (Tuj] 2  
n 

	
(8) 



tan 4) = 
2D wiwn  

10 

(9) 

 

- (w/w.) 2  

where 	Po = exciting force amplitude 

K = spring constant 

w = circular frequency of the exciting force 

w
n 

= undamped natural frequency 

D = damping ratio 

(1) = phase angle 

The Force, Fd, in the Dashpot. The force, Fd, in the dashpot is 

given by (Thomson, 1965): 

Fd = Ck = C dx/dt 	 (10) 

Energy Dissipated per Cycle in Viscous Damping. The energy dis-

sipated per cycle, Ud, in a dashpot undergoing sinusoidal motion can be 

calculated as follows (Tse, Morse, and Hinkle, 1963): 

Ud = f Fd dx 	where x = X sin wt 

2Tr/w 
= f CX2 W

2 
 (cos

2 
 Wt) dt 

0 

= 7C wX2 

That is, the energy dissipated per cycle is directly proportional to 

the frequency. 

Free Vibration Decay Envelope. When a viscous damping system 

undergoes a free vibration, the equation of motion becomes (Thomson, 

1965): 
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mY + a + Kx = 0 	 (12) 

The solution of the equation 12 will show that (Thomson, 1965) the free 

vibration decay envelope--the relationship between the amplitude decay 

and the number of cycles--is exponential, for damping less than critical 

(Figure 1(d)). 

Logarithmic Decrement. Logarithmic decrement is defined as the 

natural logarithm of the ratio of any two successive amplitudes in the 

decay envelope (Figure 1(d)). The logarithmic decrement, 6, is then 

expressed mathematically as (Thomson, 1965): 

xi  
6 = ln 

x
2 

The decrement, 6, can also be written in terms of damping ratio D 

(Thomson, 1965): 

71)  6 - 2  

- D 2  

Constant Friction or Coulomb Damping Model  

The second important type of damping is Coulomb or dry friction 

damping. This is sometimes called constant damping (McCallion, 1973), 

since the damping force is independent of displacement and its deriva-

tives and depends only on the normal forces between the sliding surfaces. 

The direction of the friction force does oppose motion, however, the 

sign of the friction force will change when the direction of motion 

changes. 

The Differential Equation of Motion. The physical model is 

(13) 

(14) 
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comprised of a spring in series with a friction block, as shown in 

Figure 1(e). The differential equation of motion can be written as 

(Jacobsen and Ayre, 1958): 

MX + F + Kx = P
o 

sin wt 
	

(15) 

The sign of F must be taken so as to oppose the motion. 

The Damping Force. The damping force is constant and it is equal 

to F. 

The Energy Dissipated per Cycle. The energy dissipated per cycle 

within the Coulomb damping model, Ud, undergoing sinusoidal motion is: 

Ud = f F dx 	where x = X sin wt 

Tr/w 
= w2 f FX cos wt dt 

= 4 FX 	 (16) 

Free Vibration Decay Envelope. It has been shown (Jacobsen and 

Ayre, 1958) that the free vibration decay envelope is a straight line 

(Figure 1(0). 

Hysteretic Damping Model  

So far, the material damping considered has been assumed to obey 

a viscosity law or a constant friction law. But some experiments indi- 

cate that these simple laws do not apply. For example Kimball and Lovell 

(1927) found the damping force to be independent of velocity for the 

metal aluminum. Instead it depended upon the amplitude of strain. The 

energy loss per cycle was proportional to the square of the amplitude. 

Damping of this nature is now generally referred to as hysteretic, 
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structural or internal damping (McCallion, 1973; Bishop, 1955). The 

damping coefficient, C, in equation 3 is found to vary in inverse pro-

portion 	to the frequency of excitation (McCallion, 1973; Bishop, 1955). 

C 	l/w 
	

(17) 

C = b/w 

where b is a constant. 

Utilizing this concept, attempts have been made to write the differential 

equation of motion by replacing C with b/w in equation 3 (McCallion, 

1973; Bishop, 1955). The mathematical validity of the modified equa-

tion is questionable. The x term is in the time domain and the b/w 

term is in the frequency domain; since these domains are interchange-

able, the b/w term should not be considered as a constant. It appears 

that at the present time a meaningful differential equation, and hence 

a meaningful model to represent the hysteretic damping, is not available. 

Natural Frequency. The inertia force ra, the spring force Kx 

and the damping force bar/w (w is the frequency with which the mathe-

matical model is excited) are known; but once these forces are combined, 

the resulting mathematical equation is meaningless. Since three separate 

forces--inertia force, damping force, and spring force--are known, the 

equivalent natural frequency of the undamped hysteretic damping model 

can be written as Aim. 

The Critical Damping Coefficient. The critical damping coeffi- 

cient, bc, of hysteretic damping is: 

bc = 2m w
2
n 

= 2K 
	

(18) 
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where 	m = mass 

wn = undamped natural frequency 

K = spring constant 

The derivation is included in Appendix B. 

Damping Ratio. The equivalent damping ratio for hysteretic 

damping can be defined in two ways: 1) D = b/w/b/wn  and 2) D = b/bc = 

b/2K. By the first definition, the damping ratio varies with the fre-

quency of excitation. In general, in a linear vibration theory, the 

damping ratio should not vary with the frequency; hence, this is not a 

proper way to define damping. By the second definition, however, the 

damping ratio is not a function of frequency. Hence, D = b/bc = b/2K 

is used to define damping ratio in a hysteretic damping system. 

Energy Dissipated per Cycle. The energy dissipated per cycle = 

Ud = f Ck dx, where x = X sin wt. For a material with hysteretic damp-
ing, it has been shown that C = b/w (McCallion, 1973). If C is replaced 

by b/w and substitutions are made for k and dx: 

2Tr/w 
Ud = f (b/w) X

2 
cos

2 
wt dt 

0 

= TI.  b X
2 

(19) 

That is, the energy dissipated per cycle is independent of frequency. 

Free Vibration Decay Envelope. In Appendix B, it is shown that 

free vibration decay envelope of hysteretic damping is also exponential. 

If the hysteretic damping model is excited with a force Fo  sin wt 

and the external force is suddenly withdrawn, its equation of motion in 

free vibration is represented as (Thomson, 1965): 
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my + CST + Ky = 0 	 (20) 

where 	C = b/wn
1 

wn
1 
= the natural frequency of undamped oscillation = 11Vic = 

constant 

In Appendix B, the equation of the decay envelope is shown as follows: 

irb 
AY = [—K iY (21) 

Suppose an additional mass, M, is added to the initial mass, m, the sys-

tem is excited with a force F
o 

sin wt, and the external force is suddenly 

withdrawn, then the equation of motion in free vibration is (Thomson, 

1965): 

On + M)y + CST + Ky = 0 	 (22) 

where 	C = b/wn2  

wn2  = the natural frequency of undamped oscillation 

= 	+ m) = constant 

In Appendix B, the equation of the decay envelope, even in this case, 

is shown as: 

AY = [ipiY 
	

(21) 

In short, even if an additional mass, M, is added to the hysteretic 

damping system, it will change the natural frequency with which it will 

vibrate during decay, but it will not change the logarithmic decrement 

and, hence, the damping ratio. 

In the viscous damping system, it can be shown that: 



	

Ay = [Egcliy 	 (23) 

In other words, if an additional mass M is added to m, in a viscous 

damping system, it will affect both the natural frequency and the 

logarithmic decrement and, hence, the damping ratio. 

Logarithmic Decrement. Since the free vibration decay envelope 

of hysteretic damping is exponential, the logarithmic decrement can be 

expressed mathematically: 

6 = ln —xl  

	

x2 
	 (13) 

As in viscous damping, the decrement, 6, also can be written in terms 

of the damping ratio D: 

  

27rD 
(14) - 

' 1 1 - D2  
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The behaviors of the above discussed models are summarized in Table 1. 



Table 1. Comparison of Viscous Damping, Coulomb Damping and Hysteretic Damping 

No. Viscous Damping Model Coulomb Damping Model 

1 Differential equation 

MX + CX + Kx = P sin wt 
0 

(Thomson, 1965) 
MX + F + Kx = P sinwt 
(Jacobsen and A9re, 1958) 

2 The damping coefficient C 
is independent of w 
(Thomson, 1965) 

3 Undamped natural frequency Undamped natural frequency 
= bk/m 	(Thomson, 1965) = 	✓K/m 

4 The critical damping coef-
ficient Cc = 2m wn 
(Thomson, 1965) 

• 	• 

5 Energy dissipated per cycle 
is dependent on frequency 
(Thomson, 1965) 

Energy dissipated per cycle 
is independent of frequency. 
(Jacobsen and Ayre, 1958) 

6 For damping less than criti-
cal, the free vibration decay 
envelope is exponential. 
(Thomson, 1965) 

For damping less than criti-
cal, the free vibration decay 
envelope is a straight line. 
(Jacobsen and Ayre, 1958) 

7 Addition of mass M to m 
affects both natural fre-
quency and damping ratio. 
Oppendix B) 

8 Damping ratio is a function 
of mass that is excited. 
(Appendix B)  

Hysteretic Damping 

+ ? + Kx = P
o 
sin wt 

The damping coefficient 
(b/w) is dependent on w 
(McCallion, 1973) 

Undamped natural fre-
quency = iK/m 

The critical damping 2 
 coefficient Cc = 2m w 
 (Appendix B) 

Energy dissipated per 
cycle is independent of 
frequency. (McCallion,1973) 

For small damping (<20%), 
the free vibration decay 
envelope is exponential. 
(Appendix B) 

Addition of mass M to m 
changes natural frequency 
but does not affect damp-
ing ratio. (Appendix B) 

Damping ratio is not a 
function of mass that is 
excited. (Appendix B) 



18 

CHAPTER IV 

SOIL SPECIMEN RESPONSE IN SOME CURRENT TESTING DEVICES 

Three basic cyclic loading or vibratory tests are commonly used 

to determine the dynamic shear modulus and damping ratio for strain 

levels of interest to ground response analysis. These are: 1) cyclic 

torsional shear tests, 2) cyclic triaxial test, and 3) cyclic simple 

shear tests. This chapter will discuss briefly the testing techniques, 

the limitations of each test, and the theoretical response of soil 

specimens in these testing devices. 

Cyclic Torsional Shear Tests  

Three different types of cyclic torsional shear test are commonly 

used to determine the shear modulus and damping ratios of soil speci-

mens. In two methods, cyclic torsional torques are applied to the soil, 

while in the third method, the sample is allowed to vibrate freely after 

an initial torsion is applied and then released. A sketch of the basic 

specimen shapes and stresses applied in each torsional shear test is 

given in Figure 2. 

The torsional shear test device shown in Figure 2(a) was developed 

by Hardin (1965). This apparatus operates inside a slightly modified 

standard triaxial cylinder. The top of the specimen is excited in a 

torsional mode by an electromagnetic driving system, while the bottom 

of the specimen is held fixed. This is a useful test procedure, as the 

stress condition closely resembles one of pure shear. By this apparatus, 



Driving Force 

-Rigid Mass 

4—Specimen, non-rigid distributed 
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Confining Pressure 

Initial Twist and Free 
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...-Fixed End 

Fig. 2(c). Torsional Column Test (Free Vibration) 
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Fig. 2(a). Torsional Shear Test (Distributed Mass) 
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Fig. 2(b). Torsional Shear Test (Single Degree of Freedom 
System) 

Figure 2. Cyclic Torsional Shear Test Devices. 



the values of shear modulus and damping ratio can be obtained from a 

strain level of about 5 x 10 -4 percent to about 5 x 10
-2 

percent. 

A second torsional column test device (Figure 2(b)), developed by 

Drnevich (1972), has more power and is capable of accepting a wider 

range of specimen sizes: 1.4-inch diameter and 2.8-inch diameter soil 

specimens. The shear modulus and damping ratio values can be obtained at 

higher strain levels, of the order of 2.0 x 10-1 percent, by using this 

test device. 

The third torsional shear test device, shown in Figure 2(c), was 

developed by Zeevaert (1967). In this test, a solid cylindrical column 

of soil is initially twisted at one end, then released and allowed to 

decay in free vibration. A heavy mass placed on the end of the cylinder 

creates a single degree of freedom system, with the stiffness provided 

by the soil and the inertia provided by the mass. Complete details of 

the test procedure and interpretation of the test results are contained 

in Zeevaert (1967). 

In the testing devices developed by Hardin (1965) and Drnevich 

(1972), either solid or hollow cylinders of soil are used. Of the two 

specimen shapes, the hollow cylinder is more desirable, since the 

applied stresses and resultant strains are more uniform and thus more 

representative of a simple shear condition. Torsional stresses applied 

to the end of a solid cylinder of soil result in a nonuniform distribu-

tion of stress over the cross section, with high stresses near the edge 

and nearly zero stress in the center of the cylinder. The results ob- 

tained using the two shapes are nearly identical (Richart, Hall and Woods, 

1970), provided that the average strains across the width of the sample 

20 
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are used. Because it is easier to prepare, the solid cylinder shape has 

become more routinely used in most soil laboratories. 

Rigid top cap and rigid base at the ends of the specimen cause 

nonuniform stresses and strains within the specimen. However, in a tor-

sional mode vibration, the effect is believed to be small. 

The main advantages of these test devices include their simplicity, 

the low cost, the ability to use the devices for almost all types of 

soils, and the ability to test relatively undisturbed cylinders of soil 

which can readily be obtained at depths from borings. 

Although the cyclic torsional shear test devices are the most 

practical laboratory techniques for directly measuring dynamic shear 

modulus and damping ratio, they have disadvantages in earthquake response 

studies because the levels of strain of interest during strong motion 

earthquakes are generally larger than can be applied with these equip-

ments. The maximum strain amplitude of the equipment, developed by 

Drnevich (1972), is on the order of 2 x 10
-1 

percent. 

Cyclic Triaxial Test  

The cyclic triaxial test is a repeated compression loading test 

which can be used to determine the compression (or Young's) modulus, 

indirectly the shear modulus, and damping ratio of soil specimens upto 

a single amplitude shear strain of about 3 percent. In this test, 

thorougly described in the literature (Seed and Lee, 1965), logitudinal 

compression and extension are applied to a solid cylindrical shaped 

specimen (Figure 3(a)) and the resulting compressive stress-strain char-

acteristics are measured directly. Since the stress-strain relationship 
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Fig. 3(a). Soil Specimen and Driving Force in 
a Cyclic Triaxial Test Apparatus. 

0, N I  Normal Load 
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Shearing Plane, 
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// ////// r/////// // Fixed End 

Fig. 3(b). Soil Specimen and Driving Force in a Cyclic 
Simple Shear Test Device. 

Figure 3. Soil Specimens and Driving Forces in Cyclic 
Triaxial and Cyclic Simple Shear Test Devices. 



23 

is determined in compression, instead of shear, the compression modulus 

determined directly must be converted to shear modulus, using equation 

58. 

In running a cyclic triaxial test, it is possible to obtain a 

stress-strain curve for a complete cycle of loading and unloading, which 

yields a hysteresis loop. From this loop, the damping ratio can be 

determined. 

The cyclic triaxial test method, although readily used in engi-

neering practice because of its versatility to different stress condi-

tions, has several limitations which permit only an approximate dupli-

cation of the field stress conditions. In the field, the major principal 

stress is initially vertical but rotates through some small angle as 

cyclic shear stresses (under earthquake loads) are symmetrically applied 

to the soil. In the laboratory, the stresses are not symmetrically 

applied, since the intermediate and minor principal stresses are equal 

in axial compression but are shifted and become equal to the major 

principal stress during axial extension. This 90-degree reversal of 

principal stresses during each load cycle is not the same as in the field. 

Still another condition which prevents correct field simulation 

is the fact that the laboratory triaxial specimen undergoes deformation 

in each of the three principal stress directions. Presumably, the 

soils in the field under earthquake motions are deformed in simple 

shear, or unidirectionally. 

The laboratory equipment itself has shortcomings which permit 

only approximate duplication of field conditions. Rigid plates at the 

ends of the soil specimen cause nonuniform stresses and strains within 
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the specimen. These edge conditions and friction developed between 

the plate and soil specimen cause localized stresses at points which 

often leads to a premature progressive-type failure, rather than a fail-

ure wherein all shear stresses are uniformly mobilized. This shortcoming 

can be assumed as a minor influence if reasonably long cylindrical speci-

mens are used, having length to diameter ratios of about 2.0 (Alam Singh, 

1967). 

Although this test has a number of shortcomings, most of these 

conditions are also present in many other test procedures. The cyclic 

triaxial test is versatile and does have the advantage of being adapt-

able to the preparation and testing with ease of all types of disturbed 

and undisturbed soils. Also, precise control of stresses and strains, 

the ready availability of the equipment and the familiarity of numerous 

laboratories with the equipment are strong advantages of this test. 

Cyclic Simple Shear Test  

Cyclic simple shear tests are used to determine shear modulus and 

damping ratio of soils, upto a single amplitude shear strain of about 

3 percent. Cyclic simple shear tests apply actual cyclic shear stresses 

and strains to the soil specimen (Figure 3(b)) and thus, the shear 

modulus is determined directly. Damping ratio is determined from the 

stress-strain hysteresis loop. 

Although the simple shear test does very nearly duplicate simple 

shear conditions and is generally applicable for all soil types, it 

nevertheless has a few conditions and shortcomings in the apparatus 

which again make duplication of the field conditions only approximate. 

Boundary effects may cause either local stress concentrations near the 
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corners or the edge surfaces, or nonuniform strain conditions, each of 

which may lead to a progressive and premature type of failure and, thus, 

to lower values of shear modulus. 

Theory of Soil Response in the Testing Devices  

The soil specimen set up in the testing device, the basic assump-

tions in the soil response, and the formulations of mathematical equa-

tions are discussed in this section under three subheadings: the tor-

sional shear test, cyclic triaxial test, and the cyclic simple shear 

test. 

The Torsional Shear Test  

Normally a 1.4-inch diameter and 3-inch long soil specimen encased 

in a rubber membrane is placed in a compression chamber in which confin-

ing pressure can be regulated to simulate overburden pressure. The 

bottom end of the specimen is motionless and can be called a fixed end 

(Hardin, 1967). The other end of the specimen is attached to a top cap 

system. This end of the specimen is called the vibration end. The soil 

specimen is subjected to sinusoidal vibration in a torsional mode. The 

frequency is varied until resonance is determined. By varying the 

current (which varies the torque), the desired amplitude is maintained. 

The shear modulus values can be calculated from the resonant frequencies. 

Steady-state and free vibration methods can be used to determine the 

damping ratio. 

The Background Theory of the Torsional Shear Test (Figure 2(a))  

The Kelvin-Voigt material (defined in Chapter 3) with distributed 

mass, fixed at one end and free at the other, has been assumed to 
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represent the soil specimen in this testing device (Hardin, 1965). If 

it is subjected to sinusoidal vibration in a torsional mode, the equa-

tion of motion for distributed mass can be written as (Hardin, 1965): 

D 2 0 	 0 G a 20 
2 

- 
p 2 

- T
o 

sin wt Ph) 
Dt

2 Dtax 	3x 
(24) 

where 	p = shear coefficient of viscosity 

p = mass density 

G = shear modulus of the specimen 

0 = 0(x,t) 

w = frequency of excitation 

T
o 

= torque 

11A0 In Hardin (1965), it has been shown that the ratio —G 
is constant 

in a frequency range of about 0.1 to 600 Hz at small shear strain ampli-

tudes (1 x 10 2 
percent). In differential equation (24) if p is con-

stant, i.e., independent of frequency, the equation of motion represents 

12-61 	 C 'G a viscous damping system. If - = C' constant, or p- 	, viscous damping 

may not be present in the system. Hardin and Drnevich (1970) have shown 

by their experiments at small strains that G is independent of frequency 

C'G Cl, where 
in the frequency range of 0.1 to 300 Hz. Hence, p = --w- or p = 

C
1 

is some other constant. If this relation for p is substituted in 

the equation of motion, the new equation is: 

a 2 0 	Cl  a 3
0G D

2
0 - 	- T sin wt 

at
2 	

wP atax2 	p ax2 	o  
(25) 

where C
1 
 is a constant. 
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Equation (24) is valid for representing the viscous damping 

system; but in equation (25) the viscosity term is inversely proportional 

to the frequency w. This type of damping has been referred to as hyste-

retic damping (McCallion, 1973). 

The time constitutive relation for the apparatus developed by 

Hardin (1965) can be written as: 

a 20p 3
3
0 	G 3

2
0 

p 	
- To sin wt 

Dt 	' 
2 - 

To30x 
 2 

(26) 

C
l 

where t.t= -6-1 - and C1  is a constant. This differential equation has been 

used in the derivation of interpretation formulas; further explanations 

are contained in papers Hardin and Music (1965) and Hardin (1967). 

So far, the time constitutive equations, for a distributed mass-

specimen have been discussed. The equations and the relations used in 

the interpretation of results for a soil mass with a single degree of 

freedom have not been discussed and documented (the apparatus developed 

by Drnevich uses the single degree of freedom concept). Therefore, the 

author has tried to formulate those equations; the assumptions and the 

theoretical background are given in subsequent paragraphs. 

In Hardin (1965), it has been reported that the tendency for 

higher resonances to disappear increases as the value of It/Is increases 

(It is the mass polar moment of inertia of the top cap system and Is is 

the mass polar moment of inertia of the soil specimen). The distributed 

mass system approaches a single degree of freedom system as It/Is becomes 

large. 

In the testing device developed by Drnevich, the It/Is value is 
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very high (>50) and, hence, the soil specimen-top cap system can be 

approximated by a single degree of freedom system (Figure 4). The 

equation of motion for sinusoidal excitation in a torsional mode for a 

single degree of freedom system with viscous damping can be written as: 

It 5 + uI 6  GI 
0 = T

o 
sin wt 
	

(27) 

where 	It = mass polar moment of inertia of the top cap system 

= shear coefficient of viscosity 

I = polar moment of inertia of soil specimen cross section 

G = shear modulus 

L = Length of the specimen 

0 = OW and 0 = dO/dt 

In Hardin (1965) it has been reported that 2 '1-)  = constant in the frequency 

range of 0.1 to 600 Hz. 

1-163 = constant = C' 
	

(28) 

p = C'G/w 

P = C 1 /W since G is independent 	 (29) 
of frequency (C 1  is some other constant) 

If this relation is substituted in equation 27, it leads to a meaning-

less differential equation and is subjected to the same criticism 

reported earlier in Chapter III, page 13. 

Hence, the time constitutive relation for the test device 

developed by Drnevich can be written as: 

It 0 + C 2 0 + KO = To sin wt 
	

(30) 
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Cyclic 
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Fixed End 
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Figure 4. Mathematical Model for a Torsional Shear Test 
(Single Degree of Freedom System). 
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where 	C
2 

= C
1INL 

K = GI/L 

The Energy Dissipated per Cycle  

The energy dissipated per cycle by the soil specimen in the test 

device developed by Drnevich (1972) is: 

AW = f C2 o de 	where 9 = e sin wt 

= f (ci i/wL)Ode = f (c3 /w) 62  cos t  wt dt where C
3 
 = 
 L 

= constant 

Tr3e 2 
	

(31) 

LW is independent of frequency and a function of 6 2 ; hence, equation 

(30) with p = C I/w,represents a system with hysteretic damping. 

The time constitutive relations have been formulated, and it has 

been shown by the author that those relations represent a hysteretic 

damping system in the soil specimen in a test device developed by 

Drnevich (1972). Some of the concepts which have been proved by hy-

steretic damping theory in Chapter III are worth mentioning in this sec-

tion; these concepts are to be used in the derivation of interpretation 

formulas in Chapter VI. 

1) For a hysteretic damping system, the free vibration decay 

envelope is exponential (for damping less than critical). 

2) Fora hysteretic damping system, the mass moment of inertia of 

the top cap system does not affect logarithmic decrement and damping 

ratio, but does change the natural frequency with which the vibration 

decays. 

Cl' 
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Cyclic Triaxial Test  

Normally a 2.8-inch diameter and 5.6-inch long sample is mounted 

on the pedestal of a triaxial chamber. The specimen is subjected to an 

all-round confining pressure to simulate overburden pressure. The piston 

is attached to the top cap; thus, compression and extension can be 

applied to the specimen. In a compression cycle, an additonal compres-

sion load apart from confining compression pressure on the top cap is 

applied to the specimen. In an extension cycle, the confining compres-

sion pressure on the top cap is reduced by the amount of extension cycle 

load. If the cyclic stress applied to the specimen is sinusoidal, it 

will closely resemble a system in which the specimen is subjected to a 

sinusoidal stress in a longitudinal mode. 

If a Kelvin-Voigt material with distributed mass is assumed to 

represent a soil specimen which is fixed at the bottom and free at the 

top, the governing differential equation for longitudinal vibration is 

obtained from equation 24 by replacing 0, p, and G by d, n, and E, 

respectively. Then, d=d(x,t) is the longitudinal displacement; E denotes 

Young's modulus of elasticity; and n represents the coefficient of longi-

tudinal viscosity. The result is equation 24b: 

	

2
d 	 = a id 	E 3 2

d , sin wt 

	

pt
2 	p 

DtDx2 	
p 
 3x 	

ro (24b) 

It has been shown in Hardin (1965) that Gis constant in a frequency 

of 0.1 to 600 Hz in a torsional mode. As before, if p and G are 

replaced by n and E,-IL: is a constant. 
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nw 
 = C

4 
where C

4 
is a constant 
	

(28b) 

n = C 4
E/w 

= 5/w 

G is independent of frequency; 
consequently E also should be 
independent of frequency. 

where C
5 

is some other constant (29b) 

If this relation is substituted in equation 24b, it again leads to a 

meaningless differential equation and is subjected to criticisms reported 

in Chapter III, page 13; it represents a hysteretic damping system. 

In Hardin (1965), it has been shown that if the It/Is increases, 

the distributed system approaches a single degree of freedom system, in 

a torsional mode of vibration. Since there is only mode change in a 

longitudinal vibration, it can be shown that if M/m becomes large, the 

distributed system will approach a single degree of freedom system (M = 

mass moment of inertia of the top cap system and m = mass moment of 

inertia of the soil specimen.) The equation of motion in a single degree 

of freedom for the longitudinal mode can be written as: 

nix + CX + Kx = P
o 

sin wt 
	

(32) 

where C = b/w for a material with hysteretic damping and m is the lumped 

mass. A genuine question always arises as to whether it is possible to 

determine the value of, m (lumped mass), accurately. The equation 32 

has been written for qualitative purposes only and to give an idea of 

the time constitutive relation in a longitudinal vibration. In actu-

ality, the cyclic triaxial test is run at about 0.1 to 10 Hz. In this 

frequency range, the inertia force MX is almost negligible compared to 
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the other two forces: (C/Ox force andKx force (normally the resonant 

frequency of the soil specimen-top cap system in a cyclic triaxial 

testing is very high, on the order of about 100 to 300 Hz). Hence, 

the time constitutive relation in a cyclic triaxial testing can be 

approximated in the normal frequency range of 1 to 10 Hz as; 

Ck + Kx = P
o 

sin wt 
	

(33) 

where C = b/w for a material with hysteretic damping. Equation 33 is 

used as a time constitutive relation in a cyclic triaxial testing, in 

future derivations. 

In the future, if a cyclic triaxial test is run in other fre-

quency ranges (>20Hz), the inertia force la can no longer be neglected; 

the approximate equation 32 or the equation 24b for a distributed mass 

system should be used as the time constitutive relation. 

Cyclic Simple Shear Tests  

The formulation of the time constitutive relations of the cyclic 

simple shear tests and basic assumptions are similar to those for the 

cyclic triaxial test. Since the time constitutive relations of cyclic 

simple shear tests are not used anywhere in subsequent chapters, they 

are not included in this chapter. 



CHAPTER V 

CURRENT INTERPRETATION METHODS AND THEIR SHORTCOMINGS 

Although the response of the soil specimen is nonlinear in the 

stress-strain relation, it has been approximated by a linear model at 

each strain level (Hardin and Drnevich, 1970; Silver and Seed, 1971). 

For such a model, it is necessary to determine the model constants 

(shear modulus and damping ratio) at each strain level. Various inter-

pretation methods currently are available to determine the model con-

stants from both torsional shear and cyclic triaxial test results. 

Torsional Shear Test Interpretation  

Currently, two methods are in use to determine damping ratio: 

the amplitude decay method and magnification factor method. There is 

one method to determine shear modulus and one to determine shear strain 

amplitude. 

Magnification Factor Method (if Fn at Torque 87.7 cm.gram and at 877  

cm.gram)  

The magnification factor method is one of the methods suggested 

in the "Manual for the Operation of the Drnevich Resonant Column." It 

relies on the excitation torque level and the vibration response of the 

soil specimen, both measured at the resonant frequency and 	times 

resonant frequency (Drnevich, 1973). The derivation of the expression 

used in this method is based on the torque level and the responses at 

the resonant frequency and at 12-  times the resonant frequency; it is 

34 
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given elsewhere (Drnevich, 1973). The expression to determine damping 

ratio is: 

[Excitation Volt. Rdg.  Damping ratio = 
Accelerometer Rdg. 

at F
N 

1 [Accelerometer Rdg.  
4 Excitation Volt Rdg. 

at 12 FN 

(34) 

Damping Calibration Factor . 1 Accelerometer Rdg. 	 (35) 
D.C.F. 	 4 Excitation Volt Rdg. 

at iiF
N 

The damping calibration factor determined by relationship 35 

yields the same value (Drnevich, 1973) irrespective of the magnitude of 

the excitation torque, 87.7 cm.gram or 877 cm.gram (the corresponding 

voltages are 100 M.V. and 1000 M.V.), at /2 times F N  frequency. Accord-

ing to the "Manual for the Operation of the Drnevich  Resonant Column," 

this value of the damping calibration factor is used in expression 34 

to determine the damping ratio at all strain levels. 

Shortcomings of the Magnifaction Factor Method  

Expression 34 yields different values of damping ratio if the 

damping calibration factors from different torques at /2 frequency are 

used. The present experimental results show this trend (Chapter VIII). 

According to the Manual, the values from both the torques should be the 

same. 

Logarithmic Decrement Method (Log Method)  

It has been stated in Chapter III that the free vibration decay 

envelope for a single degree of freedom system with hysteretic damping 
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is exponential (for damping less than critical). Hence, if the relation-

ship between decay in amplitude and number of cycles is plotted on a 

semilog paper, it will be a straight line. Logarthmic decrement can be 

calculated by expression 13 and damping ratio by relation 14. 

Shortcomings of the Logarithmic Decrement Method  

1) In soil dynamics literature, relations 13 and 14 have been 

derived by assuming a viscous damping model for soils. Nowhere in the 

literature has it been mentioned that the above relations are valid if 

hysteretic damping is present in the soil. 

2) Relations 13 and 14 are theoretically valid if a linear model 

in a stress-strain relation with hysteretic damping is assumed. However, 

there is some practical difficulty in interpreting the test results by 

the amplitude decay method. This is discussed in Chapter VIII. 

Shear Modulus  

Shear modulus can be calculated by using relationship 36 

G - 
128n ItL f2 

n (36) 
d
4 

where 	G = shear modulus 

It = mass polar moment of inertia of the top cap system 

L = length of the soil specimen 

d = diameter of the soil specimen 

f
n 

= resonant frequency 

The derivation of the expression 36 is given in Appendix B. In 

the derviation, the soil specimen-top cap system in a torsional shear 

test device was approximated by a mathematical model in a single degree 



37 

of freedom system. At resonance, the inertia torque and the spring 

torque are equal, but act in opposite directions and, hence, cancel each 

other. This concept was used in the derivation. 

Strain Amplitude  

Shear strain amplitude can be calculated by relation 37: 

6.574  
Y - 	x Accelerometer output in M.V. (R.M.S.) x 10

-4 

f  
n 

inches/inches. 	 (37) 

Relation 37 has been derived (Drnevich, 1973) and the derivation 

is given in Appendix B. Since the shear strain varies from zero at the 

center of the soil specimen to a maximum value at the outer circumfer-

ence in a torsional shear test specimen, a "mean" strain is calculated 

by relation 37. 

In the derivation of relation 37, the following assumptions have 

been made: 1) the strain is maximum at the outer circumference; 2) the 

strain is zero at the center of the circular cross section of the speci-

men; 3) the variation of the strain from the maximum value to zero is 

linear; and 4) the soil specimen is fixed at the base. The mean strain 

is defined as that of the volume of the soil involved, considering the 

above assumptions. 

In the test device, a rigid solid top cap-driving plate system 

is placed on top of the soil specimen. Since the top cap-plate system 

undergoes a rigid body rotation, the displacement is maximum at 

the outer edge and zero at the center, and the variation of displacement 

is linear. If the top cap-plate system is attached to the top of the 
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soil specimen, so that there is no relative motion between the soil 

specimen and top cap-plate system, the linear displacement will be 

transmitted to the top of the soil specimen. And if the bottom of the 

soil specimen is attached to the base, so that there is no relative 

motion between the bottom of the soil specimen and the base, the assump-

tions made in the derivation of expression 37 are fulfilled in the 

experiment. 

Some sand grains were glued to the top cap and the base of the 

experimental setup. The soil specimen was mounted on the base and the 

top cap was placed on the top (the confining pressure inside the 

chamber applies a force to keep the soil specimen intact with the base 

and the top cap). After the test, no grooves cut by the sand grains 

into the soil were observed. Hence, within the accuracy of eye observa-

tion, the couplings at the top and bottom of the specimen appear to be 

adequate (still, there may be some relative movements between the top 

cap and soil, and base and specimen on a microscopic scale). Therefore, 

the assumptions made in the theory of the derivation of expression 37 

are fulfilled in the experiment and expression 37 can be used to inter-

pret the torsional shear test results. 

Cyclic Triaxial Test Interpretation  

In the case of a cyclic triaxial test, the damping ratio and 

shear modulus are obtained from stress-strain hysteresis loops. The 

expression to calculate damping ratio from the hysteresis loop is: 

A
l 

D - 	 
47TA2 

(38) 
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where 	Al  = area of the hysteresis loop 

A2  = area of the triangle shown crosshatched in Figure 5(a) 

Jacobsen (1960) is widely quoted for the derivation of expression 

38; but the author includes a detailed discussion before attempting to 

use the expression in the case of soil specimens. Further details on 

this are included in Chapter VI. 



A
l 

- Area of the Loop 

A
2 - Area of the Triangle-

-Shown Crosshatched 
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Fig. 5(a). A Symmetrical Hysteresis Loop. 

Fig. 5(b). A Non-symmetrical Hysteresis Loop. 

Figure 5. Hysteresis Loops From a Cyclic Triaxial Test. 



CHAPTER VI 

SUGGESTED IMPROVED INTERPRETATION METHODS 

Currently available interpretation methods and their shortcomings 

have been discussed in Chapter V. In some cases, new methods must be 

substituted, and in others, a detailed discussion should be added to 

clarify certain concepts. 

Torsional Shear Test--Interpretation  

Three methods are suggested by the author for use in interpreting 

the test results. They can be called 1) V Fn at respective excitation 

torque method (12- Fn method); 2) id:T5Fn at respective excitation tor- 

que method ( ✓0.75 Fn method); and 3) a method which equates energy input 

and energy dissipation at resonance (Energy method). 

/2.-- Fn at Respective Excitation Torque Method (IT Fn Method)  

Damping ratio may be calculated by the expression 39: 

Damping Ratio = 1 0 at Ifn  
4 0 at fn 

(39) 

cy-ifn  = accelerometer reading in M.V. 

(R.M.S.) at Ifn frequency. 

fn 
= accelerometer reading in M.V. 

(R.M.S.) at fn frequency. 

The soil specimen-top cap system in a torsional shear test device 

can be approximated by a single degree of freedom system. If hysteretic 

damping is assumed, the system can be represented by a mathematical 

41 
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model as shown in Figure 4. 

The equation of motion of the above system is: 

- 	• 
It 0+--1 ®+-®=T

o 
sin wt (30) 

The material constant, p, is C 1 /w for hysteretic damping system. When 

p is replaced by yw in equation 30, the steady-state response 0 is: 

0 = 

 

T
o
L 

(40) 

   

   

GI 41- (f/fn) 2 } 2 +[2D] 2  

D = damping ratio 

f = frequency of excitation 

f
n 

= undamped natural frequency 

T
o 
= torque 

L = length of the specimen 

G = the shear modulus 

If the soil specimen-top cap system is excited with a torque of 

T1 sin wt at its natural frequency fn 1
, the response 0

1 
is: 

T L 1  
01 = GI 2D 

If the above system is excited with the same torque T l  sin wt, but at a 

different frequency IT fn1  the response 02  is: 

T L 
1  

0 = 2 GI /1 + 4D 2  

If D is small, 

(41)  

(42) 
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✓1 + 4D
2 

1 

0
11 

0
2 
= 2D 

If an accelerometer is used and angular acceleration is measured, it 

can be shown that: 

0
2 

D = - 
40

1  

where,01  is the accelerometer reading at fn i  and 02  is the accelero-

meter reading at v fn
1. 

The detailed derivation of expression 39 is 

given in Appendix B. 

Shortcomings of I Fn Method  

Certain approximations were made in the derivation of expression 

39. The value of 0
1 given by equation 41 is valid if G is considered 

as the shear modulus G at the strain level 0 1 . But the 02  value at 

/2--  fni  frequency will be much less than 01  at fn i . In that case, in 

equation 42, the value of G used should be considerably higher than the 

value of G in equation 41; i.e., G 1 should be used in equation 41 and 

G
2 
in equation 42. This is because the shear modulus G is strain de-

pendent. Even this will not solve the problem, because the value of 

fn1 in equation 41 will be different from the one in equation 42. In 

other words, the mathematical model itself changes along the magnif i-

cation curve, which is the unique character of a nonlinear model. 

Consequently, the author has reservations about using any method based 

on the magnification curve. 

(43) 

(39) 
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/0.75 Fn at the Respective Excitation Torque Method (/0.75 Fn Method)  

If the experimental mangification curve is similar to the one 

assumed in the interpretation theory, the methods and expressions based 

on either the right or left side of the magnification curve will yield 

identical values of damping ratio. But the experimental magnification 

curve (Figure 17(a)) is not similar to the one assumed in the interpre-

tation theory. Hence, a method and an expression are formulated, based 

on the left side of the magnification curve, and used to interpret the 

test results (III Fn method, already discussed, is based on the right 

side of the magnification curve). The results from if Fn method and 

ATTJ- Fn method will indicate the reliability of the value of the damping 

ratio by the methods based on the magnification curve. 

The damping ratio is determined by solving equation 44: 

02 
D x /0.0625 + 2D 2  (44) 

where 	0
2 
= accelerometer reading at /15-7ff times the resonant 

frequency Fn. 

01 = accelerometer reading at resonant frequency Fn. 

As in VT Fn method, the steady-state response of the soil speci-

men in a torsional shear test device can be written as: 

TL 
0 -  	 (40) 

GI v// 
	

°  

[1 - (f/fn) 2 ] 2  + [2D]
2 

If the system is excited with a torque T
1 
sin wt, at a resonant fre-

quency of fil l , the amplitude of vibration 0 1  is: 



T1L 
01 - GI 2D 

If the system is excited with the same torque T 1  sin wt, but at a dif-

ferent frequency id7T. fn
l' 

the amplitude of vibration 0
2 

is: 

02 = 	  

and 

01 /02 = 	  

If 0
1 

and 0
2 
are recorded, it can be shown that: 

D x /0.0625 + 2D 2  = 0
2
/1.50

1  

The detailed derivation of expression 44 is given in Appendix B. 

Shortcomings of ATTS Fn Method  

The same arguments regarding the change in the value of G and the 

change in the mathematical model along the magnification curve discussed 

for if Fn method are applicable to /TM Fn method. 

A Method Which Equates Energy Input and Energy Dissipation at Resonance  

(Energy Method)  

The damping ratio can be calculated by the relationship 47: 

T o  
D - 	x 100% 	 (47) 

2It o 

45 

(41) 

GI ,/ 	+ 2D2 

2D /0.0625 + 2D
2 

T
1 
 L 

1 

(45) 

(46) 

(44) 

where 
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D = damping ratio in percent 

T
o 
= excitation torque 

It = mass polar moment of inertia of the top cap system 

= 30.5 gram cm sec 2 for the present test device 

o 
= acceleration in radians per sec

2 

The derivation of expression 47 is given in Appendix B. In the 

derivation, the soil specimen-top cap system in a torsional test device 

was approximated by a mathematical model in a single degree of freedom 

system. At resonance, the inertia torque and the spring torque are 

equal, but act in opposite directions and, hence, cancel each other. 

The external torque input is equal to the damping torque. This concept 

was used in the derivation of expression 47. 

It is concluded that Energy method is a better interpretation 

than the previous methods for determing the damping ratio from torsional 

shear test results. The derivation of expression 47 is theoretically 

sound. The value of G is determined by exciting the soil specimen-top cap 

system at resonance by relation 36. By the Energy method, the damping 

ratio is also calculated by exciting the system at resonance. The values 

of G and D calculated by these methods will represent the same system 

at the same frequency (since both quantitites are determined by excit-

ing the system at resonance). This is particularly important to note 

in the case of testing a nonlinear material. If a method (such as 

Fn and ✓0.75 Fn methods) is based on different frequencies, it will 

represent different systems at different frequencies in a nonlinear 

material. Hence those methods are not reliable. 
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Cyclic Triaxial Test Interpretation 

Stress-strain characteristics in the forms of hysteresis loops 

are plotted as in Figure 5(a). Damping ratio can be calculated by the 

expression 38: 

Al 
 

D = 4TrA2  (38) 

where 	D = damping ratio 

A
l 

= area of the loop 

A
2 
= area of the triangle shown crosshatched in Figure 5(a). 

A symmetrical ellipse (symmetrical in compression and extension 

half cycles) has been considered in expression 38. Jacobsen (1960) is 

widely quoted for the derivation of this expression. In the reference, 

a hypothetical material with a nonlinear stress-strain behavior has 

been assumed. The expression has been derived, but the frequency range 

in which the expression is valid has not even been stated. Here it 

must be noted that the discussion regarding the use of expression 38 in 

Jacobsen (1960) is incomplete. 

Therefore, the author will discuss and extend the derivation of 

expression 38 in subsequent paragraphs. The applicability of the ex-

pression to nonsymmetrical loops also will be included in the discus-

sion. 

A single degree of freedom without any dissipative system is 

considered by Jacobsen (1960); its equation is-. 

mX 71- Kx = 0 	 (48) 

in which 
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x = X sin wt. 	 (49) 

In the above system, the restoring force is Kx. The restoring force, 

if plotted for a half cycle (positive side), will look like the one 

shown in Figure 6(a). The maximum potential energy stored in the spring 

at maximum displacement is: 

1 Max P.E. = —
2 
 KX x X (50) 

The variation of the potential energy for a half cycle is given in 

Figure 6(b). 

Since the sum of the potential energy, 	and and the kinetic energy 

E is constant for the above system and is equal to:1 2
, the kinetic Y' 	 2 

energy is: 

K.E = —1 K(X2 - x2) 
2 

Its variation along the positive half cycle is shown in Figure 6(c). 

The kinetic energy in the system is equal to: 

1 	2 	1 .2 -2- mv 	mx 

Equating 51 and 52 

1. .2 	1 	2 	2 2  mx = K(X - x ) 

1 

k 	- (i) 2 ] 2  

If the relationship between x and k is plotted for a positive half 

cycle, it will look like the one shown in Figure 6(d). If the force 

(51) 

(52) 

(53) 
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Figure 6. Restoring Force, Energy, Velocity, Damping Force, and 
Total Forces for a Linear Vibrator System. 

t 



50 

Ck is considered (where C is a constant), its variation with x for the 

positive half cycle is shown in Figure 6(e). 

Now, let it be imagined that the described vibration m51 + Kx = 0 

is influenced by a viscous damping force equal to cic and that an alter-

nating external force keeps it vibrating with the same amplitude as 

before at its natural frequency. Then the damping force will be the 

semi-ellipse depicted in Figure 6(e) for the positive half cycle. The 

dissipative work done by this force is supplied by the alternating 

external force; it will be equal to the area of the semi-ellipse. 

Area of the Semi-ellipse = Al 7 = C 	X2  
2 

 

or 

2  1 	1 
C = A 1 /ZFn x2 

Maximum potential energy = 
1
-KX2  = A2, i.e., the area of the 

triangle in Figure 6(a). 

Damping ratio = C/Cc 

Cc = 2 V from linear vibration theory. 

Damping ratio = C/Cc = 	C  
2AZ;-  

2A
1 
	

(56) 

71/ii1; x 2  214& 

A
l 

(56) 
Tf KX2 

(54) 

(55)  

(50) 



Substituting 50 in 56 

Al 
 

C/Cc = Damping ratio = 27A2  

Expression (38) can be put in words, as follows: 

If a system, represented by equation MX + C X + Kx = P o  sin wt is excited 

at its natural frequency (i.e., at resonance), the energy dissipation 

for a positive half cycle can be obtained by a load-displacement hyste-

resis loop as in Figure 6(e). It is assumed to be a half ellipse with 

its major axis along the X axis. If the spring force-displacement rela-

tionship (i.e., triangle area in Figure 6(a))is known by some other 

means, expression 38 can be used to calculate the damping ratio. 

The reference (Jacobsen, 1960) carries the derivation only to 

this point. Except for the resonant frequency, no other frequency has 

been mentioned in the reference. Therefore, the author extends the 

discussion regarding expression 38 below. 

Application of Expression 38 to Other Frequencies  

The response of a single degree of freedom vibration system with 

hysteretic damping can be written as: 

MX + Cii + Kx = P
o 

sin wt 
	

(3) 

The term C turned out to be b/w for a hysteretic damping. 

The energy dissipated per cycle is given by 

AW = ffb X
2 	 (19) 

If the system is started with a low frequency (compared to the resonant 

frequency) and increased to higher and higher frequencies X (the 

51 

(38) 
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displacement) will increase up to the resonance, after which it will 

start to decrease. The force (load-cell outputs) at those frequencies 
-4- 

will be the vector combination of three forces—MX inertia force, Kx 
-4- 

spring force, and cic damping force--whereas, at the resonance the load- 

cell output will be CX --the damping force. The relative magnitude and 

significance of the above forces can be demonstrated by a numerical 

example. 

Calculations suggest that the resonant frequency of a 2.8-inch 

diameter and 5.6-inch long soil specimen is of the order of 100 to 250 

Hz. The resonant frequency may be higher or lower, depending upon the 

stiffness of the soil specimen, weight of the top cap, weight of the 

soil specimen, the coupling between the top cap and the specimen, and 

the coupling between the base and the specimen. Let the resonant fre-

quency be assumed as 100 Hz for the purpose of this demonstration. When 

this system is excited at a frequency of 1 Hz or 2 Hz, the inertia force 

value MX will be very small compared to Kx force; hence, MX force can be 

ignored. The load-cell output will be a vector combination of CX + Kx. 

But if the system is excited with a frequency of 40 or 80 Hz or some 

higher frequency, the value of the inertia force will be of considerable 

value compared to Kx force and it cannot be ignored. The load-cell out- 
4- 	-4- 

put will be a vector combination of three forces--MX + CX + Kx. At the 

resonant frequency, MX will be equal to Kx; however, they are of oppo- 
÷ 

site signs and cancel each other. The loadcell output will be CX force. 

The cyclic triaxial test is usually run between 1 Hz and 5 Hz 

because the frequency of earthquake shaking is predominantly in the 

range of 1 to 10 Hz. In this range, MX force can be neglected as 
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discussed in the previous paragraph. If the load-cell output and the 

displacement are traced as a hysteresis loop, it will be as in Figure 

7(a). 

If hysteretic damping is present in the soil, the loop area will 

be (in one-half cycle): 

bwX2 
 

1  AW - 
2 

- A
1  

(19) 

where X1 is the maximum displacement at the excitation frequency--0.1 

or 1 or 2 Hz. The area of the triangle in Figure 6(a) is; 

A = KX2  

	

2 	2 1 

The damping ratio, if expression 38 holds good at this frequency, will 

be; 

2 

	

Al 
	

bffX
1 _ b D - 	 - 

	

271-A2 	27KX 	2K 

where b and K are constants. 

If the soil specimen is excited at the resonance, there will be 

a higher response, X 2  

	

X 	X 

	

2 	1 

If hysteretic damping is present, OW at the resonance is: 

b71- X
2 
2 Aw = 

2 

where X
2 

is the maximum displacement at resonance. 

(50) 

(57) 

(19) 
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Figure 7. Load Displacement Traces From a Cyclic Triaxial Test. 
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The spring restoration force is KX
2' 

and the maximum energy 

stored in the spring at resonance is: 

Energy Stored = — 	 (50) 

i.e., the area of the triangle 6(a). 

biTX
2 	b Damping ratio = D = Al  /(27rA2)-= 	_ — 

2 2 2K 7KX 
2 

If a system possesses hysteretic damping, the test can be run at a low 

frequency and a hysteresis loop can be plotted from the load-displace-

ment trace. The damping ratio can be determined by using expression 38. 

This will reflect the same process, as the one Jacobsen (1960) intended 

to do at resonance. In the case of viscous damping (energy dissipation 

is frequency-dependent), it can be shown that the use of expression 38 

is not valid if the test is run at a frequency of 1 or 2 Hz. 

Application of the Expression to Determine Damping Ratio From a Non-

Symmetrical Loop  

If the system's behavior is nonlinear in a stress-strain rela-

tionship, the loop shape will be like the one shown in Figure 5(b) for 

a softening spring. It will be a poor approximation if expression 38 

is used to calculate the damping ratio. In this case, it has been shown 

(Jacobsen, 1960) that the actual damping ratio will be higher than the 

one which is calculated by expression 38. 

At higher strain levels (> 5 x 10 -2 percent strain), because of 

the nonsymmetrical loop shape, the X and Y axes (Figure 5(b)) cannot be 

2 

(57) 

located at a proper place. The X axis may be at a higher or lower level 
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than the horizontal center line. 

To determine the variation in the value of the damping ratio as 

a result of the improper location of the X axis, an arbitrary nonsym- 

metrical loop was considered. The X axis was located at three different 

places and the damping ratios were calculated by expression 38. The 

results are given in Figure 8. 

Figure 8 shows the variations in the final values of the damping 

ratio, calculated from a nonsymmetrical loop; these variations are due 

to various locations of the X and Y axes in the loop. The values are 

19.5 percent, 20.9 percent, and 19.7 percent. These variations in the 

final values are not very significant because of the fact that the 

scatterings in the test data are higher than these variations (Chapter 

VIII). Hence, it can be concluded that the error in the damping ratios 

calculated from nonsymmetrical loops are within the scatterings in the 

values of individual tests, and so they can be shown in the final plots. 

Shear Modulus  

The value of the shear modulus is calculated indirectly from a 

cyclic triaxial test. The sinusoidal displacement and sinusoidal force 

input are traced in a cyclic triaxial test. The force is one-half of 

the double amplitude (Figure 7(b)) force input; and stress is the force 

per unit area, applied at the specimen top. The displacement is one-

half of the double amplitude displacement (Figure 7(b)) and the strain 

is the displacement per unit length. This is true at lower strain 

levels. At higher strain levels, the behavior of the soil specimen is 

highly nonlinear and the displacements in compression (half) cycle and 

in extension (half) cycle may not be equal. Even though the behaviors 
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Damping Ratio (Mean) = 19.5% 

Damping Ratio on the 
Extension Half Cycle 
Side = A1  /27TA2 

= 20.6% 

Damping Ratio on the 
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Figure 8. Effect of Change in Axes Location on Computed Damping 
Ratios. 
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of the specimen in compression and extension are different, the stress 

and strain calculated by the above-mentioned half cycle rules will be 

the average values, and they are used in further calculations. This 

may not be a totally accurate method, but it will provide average values 

for practical purposes. 

Stress and strain values are known and the value of Young's 

modulus can be calculated. If the value of Poisson's ratio (p) is cal-

culated or assumed, it can be used to determine shear modulus (G) from 

Young's modulus (E) by the expression 58: 

G - 	 
2(1 + 11) 

(58) 

Shear Strain  

The maximum shear stress to which the soil specimen is subjected 

in a cycle is one-half the deviator stress. This is shown in Figure 9. 

Since the shear stress and shear modulus are known, the shear strain can 

be calculated by the relation 59: 

y = -r/G 
	

(59 ) 

where 	y = shear strain 

T = shear stress 

G = shear modulus 
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Figure 9. Stress State in a Cyclic Triaxial Test. 
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CHAPTER VII 

EXPERIMENTAL PROGRAM 

A torsional shear testing device (Drnevich Resonant Column) and 

a cyclic triaxial testing apparatus were used to determine the damping 

ratio and shear modulus of soil specimens at various strain levels. 

Thirteen torsional shear tests and 18 cyclic triaxial tests were con-

ducted, the details of which are given in Tables 2 and 3. The soil 

investigated was compacted micaceous silt, a residual soil commonly 

found in the Atlanta, Georgia, area. The particle size distribution is 

given in Figure 10 and its characteristics are liquid limit 32, plastic 

limit 24, and specific gravity 2.7. 

Torsional Shear Test  

Apparatus  

A cylindrical specimen of soil 1.4 inch in diameter and 3 inches 

long, sealed in a rubber membrane, is placed in a compression chamber 

in which confining pressure can be regulated to simulate overburden 

pressure. The bottom end of the specimen is virtually motionless and 

can be called a fixed end. The other end of the specimen is attached 

to a top cap system. This includes an aluminum top cap with attached 

top porous stone, top base plate, four pairs of magnets, an accelero-

meter and attaching screws. Four pairs of magnets attached to the top 

base plate and four coils supported on brackets constitute the torsional 

driving system. The soil specimen, attached to the top cap system, 



Table 2. 	Torsional Shear Test Specimens and Results 

No. Test 
# 

Dry Density 
(PCF) 

Moisture 
Content(%) 

Confining 
Pressure(psi) 

Shear Strain Level* 

1 x 10-3% 1 x 10-2% 1 x 10-1% 

1 T-1 91.7 25.7 40 1260/6.0 780/8.5 280/14.5 

2 T-2 93.1 25.9 20 760/6.0 600/8.0 220/14.0 

3 T-3 98.4 22.2 40 2120/4.5 1600/7.5 560/15.0 

4 T-4 99.8 22.0 20 1600/5.5 1200/8.0 400/14.0 

5 T-5 105.6 19.1 40 3200/5.0 2700/9.0 1200/16.5 

6 T-6 105.2 19.2 20 2700/5.0 2100/12.5 800/21.0 

7 T-7 107.5 15.4 40 3900/4.0 2900/8.0 1000/15.0 

8 T-8 109.0 14.5 20 3300/5.0 2250/8.0 750/16.0 

9 T-9 104.1 12.0 40 4650/4.0 3500/7.0 1400/13.0 

10 T-10 103.0 12.2 20 3750/3.0 2600/7.5 1000/16.0 

11 T-11 102.5 19.2 40 2650/4.0 2100/7.0 800/16.5 

12 D-1 105.3 19.1 20 2850/5.0 1950/12.5 820/21.0 

13 D-3 105.6 19.4 20 750/21.0 

* 
The values of shear modulus (top) and damping ratios (bottom) are shown for various strain levels for 

each test. Shear Modulus in KSF; Damping Ratio in Percent. 



Table 3. Cyclic Triaxial Test Specimens and Results 

No. Test 
It 

Test Type Dry Density 
(PCF) 

Moisture 
Content(%) 

Confining 
Pressure(psi) 

Shear Strain Level* 

1 x 10-2  1 x 10-1  1 x 10 °  

1 C.L-1 L.0 91.8 25.2 40 640/10.5 240/16.5 30/24.0 

2 C.L-2 L.0 91.8 25.2 20 520/11.0 210/17.5 20/25.0 

3 C.L-3 L.0 98.7 22.1 40 975/8.5 500/15.5 40/26.0 

4 C.L-4 L.0 98.5 22.1 20 660/9.0 350/16.0 40/25.0 

5 C.L-5 L.0 105.3 19.0 40 1575/6.5 760/14.0 170/24.0 

6 C.L-6 L.0 105.3 19.4 20 1000/9.0 420/15.0 120/25.0 

7 C.D-1 D.0 92.5 25.3 40 650/11.0 240/18.2 35/29.0 

8 C.D-2 D.0 92.4 25.5 20 450/11.0 180/18.2 50/29.0 

9 C.D-3 D.0 98.8 22.2 40 950/9.0 425/16.5 70/27.0 

10 C.D-4 D.C. 98.8 22.1 20 660/9.0 300/17.5 40/28.0 

11 C.D-5 D.0 105.3 19.3 40 1575/5.0 760/13.5 170/26.0 

12 C.D-6 D.0 105.3 19.4 20 1000/8.0 420/16.5 120/28.0 

13 C.L-7 L.0 107.8 15.3 40 1800/5.0 900/10.5 300/19.0 

14 C.L-8 L.0 108.8 15.3 20 1400/8.0 730/12.5 300/21.0 

15 C.L-9 L.0 103.5 12.1 40 1000/12.5 500/21.0 

16 C.L-10 L.0 103.3 12.2 20 850/12.5 300/21.0 

17 D-2 D.0 105.3 19.2 20 1000/7.5 420/13.0 115/24.0 

18 D-4 D.0 105.2 19.5 20 970/7.5 410/13.0 120/24.5 

L.0 - Load Control 
D.0 - Displacement Control 

*The values of shear modulus (top) and damping ratios (bottom) are shown for various strain levels 
for each test. Shear Modulus in KSF; Damping Ratio in Percent. 
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and the driving system are shown in Figure 11. 

The wiring diagram associated with the driving circuit is shown 

in Figure 12. A variable frequency sine wave generator and a power 

amplifier are used as a source of power. The frequency of the input 

power voltage can be varied, and the frequency value is read accurately 

by a calibrated dial. Excitation voltage is a measure of excitation 

torque level applied on top of the soil specimen. The frequency of the 

excitation voltage is the frequency of the applied torque. 

A rotational acceleration transducer is fixed on the top base 

plate of the top cap system. The rotation of the top of the specimen 

is calculated by recording the rotational acceleration and then con- 

verted to displacement by dividing by (27f), where f is the frequency of 

vibration in Hz. This assumes perfect coupling between top cap and soil. 

The accelerometer, a Coulombia Research Lab Model 200-1, requires a 

charge amplifier to condition the signal prior to being read on conven-

tional voltmeters. 

The soil specimen is excited with a specified torque level (by 

setting the corresponding excitation voltage) at a specified frequency 

and the accelerometer output is recorded. 

The excitation voltage output is connected to the y axis and the 

accelerometer output to the x axis of an x-y oscilloscope. In this 

manner, a lissajous figure is formed which greatly facilitates the 

determination of the resonant frequency. 

Sample Preparation  

Preweighed soil of the required moisture content was placed in a 

1.4-inch diameter mold (Figure 11). The soil was compacted in two 



Sample Preparation - Mould 

Figure 11. Torsional Shear Test Apparatus (Drnevich Resonant Column). 
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Figure 12. Wiring Diagram of Drnevich Resonant Column. 
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layers. The first layer was compacted to 1.5 inches which was one-half 

the required sample height. The top was scarified, sufficient quantity 

of soil for the second layer was placed and compacted. The height of 

the compacted specimen was 3 inches. A universal testing machine was 

used in the process of static compaction. 

Test Procedure  

The test specimen number and its moisture content-density rela-

tionship with respect to the standard proctor density-compaction curve 

are given in Figure 13. Two confining pressures-- 40 psi and 20 psi--

were used in the testing program. In professional practice, soil speci-

mens (undisturbed) are tested at the confining pressure corresponding 

to the insitu overburden pressure. The confining pressures 20 psi and 

40 psi are in the most interested pressure range in professional prac-

tice. 

The compacted soil specimen, sealed in a rubber membrane, was 

mounted on the pedestal of a torsional shear test device and the top cap 

was placed on top of the specimen. Water was used as a confining medium 

and the confining pressure was applied. The confining pressure presses 

the top cap on the soil and thus provides a coupling between the top 

cap and the soil specimen. 

Each test was started with a low excitation of about 4 cm.gram 

(the excitation voltage was about 4.5 M.V.). The frequency of the 

excitation torque was varied until resonance. The resonance occurred 

when the figure on the oscilloscope was a perfect ellipse with axes 

vertical and horizontal. The resonant frequency F N  and the acclero-

meter output at resonance were recorded. The frequency of excitation 
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at the same torque was varied on both sides of resonance and the cor-

responding accelerometer outputs were recorded. The excitation torque 

was then increased to 87.7 cm.gram and then finally to 877 cm.gram (the 

corresponding excitation voltages were 100 M.V. and 1000 M.V., respec-

tively). At each torque level, the respective accelerometer output at 

a frequency if times F
N 

(F
N
-resonant frequency at a low excitation tor-

que of about 4 cm.gram) was recorded. 

The excitation torque was increased to about 13.12 cm.gram, 35 

cm.gram, 105 cm.gram, etc. (the corresponding excitation voltages were 

15 M.V., 40 M.V., and 120 M.V.) in succession and the resonant fre-

quencies (fn), accelerometer outputs at resonant frequencies (fn), at 

1 times f(n), 1-1577 times fn and at other frequencies on both sides 

of resonance were recorded. 

At some excitation torque levels, the soil specimen was excited 

at resonant frequency and the excitation torque was suddenly turned off 

to enable the sample to vibrate freely for a few cycles. The amplitude 

decay was photographed. 

The excitation torque was increased in succession to about 2600 

cm.gram, and the corresponding fn and the accelerometer outputs at 

various frequencies were recorded. At about this torque level, the 

test had to be terminated because of some mechanical and/or electrical 

limitations (i.e., the top cap system might hit the drive coils and/or 

the amplifier might become saturated). 

Cyclic Triaxial Test  

Apparatus  

A triaxial chamber with a slight modification was used in the 
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experimental investigation. One end of the loading rod was fixed to 

the top cap of the soil specimen so that a compression or extension load 

could be applied on the top of the specimen. The other end of the load-

ing rod was connected to the ram of an M.T.S. machine. A sinusoidal 

load or displacement was applied by the M.T.S. machine. 

In the apparatus used, the load cell (Strain-sert Flat Load Cell-

Universal 2500 lb. Capacity; output full scale equals 2 MV/V) was mounted 

in between the top cap of the soil specimen and the loading rod, inside 

the chamber. This would eliminate any error introduced in the load 

measurement by the effect of friction due to ball bearings and "o" ring. 

The axial strain of the sample was calculated from the reading of 

the linear variable differential transducer (LVDT, high-precision with 

gage head, GPD 109-342) installed within the compression chamber. The 

displacement measured corresponded closely with the true response of 

the sample since the error introduced in the displacement measurement 

due to flexibility in the connections between the top cap and the M.T.S. 

ram was eliminated by this process. A coupling error between the top 

cap and the soil specimen still remained; but it was believed to be 

small. 

A strip chart recorder (Clevite Brush Mark 280) and a dual beam 

oscilloscope (Tektronic Type 201A) were used to record the load-displace-

ment characteristics of soil specimens. The recorder traced the load 

cell output and the LVDT output as waveforms, whereas the oscilloscope 

displayed the relationship between the load and the deformation in the 

form of hysteresis loops. 

The load cell, LVDT, connections and the whole test assembly are 
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shown in Figure 14. 

Sample Preparation  

Preweighed soil of the required moisture content was placed in a 

2.8-inch diameter floating cyclinder (Figure 14). The base and the top 

piston were free to travel and compress the soil to the required height 

of 5.6 inches. A universal testing machine was used in the process of 

static compaction. 

Test Procedure  

The test specimen number and its moisture content-density rela-

tionship with respect to the standard Proctor density compaction curve 

are given in Figure 15. Confining pressures of 40 psi and 20 psi were 

used in the test program. 

The compacted specimen, enclosed in a rubber membrane, was mounted 

on the pedestal of a cyclic triaxial chamber. The specimen was sub-

jected to an all-round confining pressure to simulate overburden pressure. 

Air was used as a confining medium. 

In the process of cyclic loading, in a compression cycle, an 

additional compression apart from the confining compression pressure on 

the top cap was applied to the specimen; in the extension cycle, the con-

fining compression pressure on the top cap was reduced by the amount of 

extension load. 

Tests were conducted by load control and by displacement control. 

In both cases, the tests were started with low load level of about 1 

pound and increased to higher levels in successive steps of about 2- to 

5-pound increments. A frequency of 1 cps was chosen. This gave good 

recording resolution and response from the loading mechanism and yet it 



Floating Cylinder (Sample preparation mould) 

Figure 14. Cyclic Triaxial Test Device. 
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was within the range of frequency values common to seismic events. 

The load cell output and LVDT output were traced by the strip 

chart recorder. The load cell and the LVDT outputs were applied to the 

vertical and horizontal deflection circuits of the oscilloscope, and 

thus a hysteresis loop was displayed on the oscilloscope screen. The 

hysteresis loop displays were photographed at various load and strain 

levels. 

Each test was carried to a load level for which the double ampli-

tude axial strain was of the order of 2 to 4 percent. At this strain 

level, the response of the sample in an extension cycle was entirely 

different from the response in a compression cycle. This is due to the 

fact that the strength of the sample in an extension cycle is consider-

ably lower than the strength in a compression cycle. In an extension 

cycle, the stress circle may approach or exceed the strength envelope, 

I 

	

	whereas in a compression cycle, the stress circle may be within the 

strength envelope (Figure 9). 



CHAPTER VIII 

DISCUSSION OF TEST RESULTS 

The interpretation of the torsional shear and cyclic triaxial test 

results by various current and suggested improved methods has revealed 

some important aspects regarding the methods of interpretation and test-

ing techniques. They are discussed under five generalized headings: 

torsional shear test results, cyclic triaxial test results, comparison 

of torsional shear and cyclic triaxial test results, practical use of the 

test data, and the nature of damping in soils. 

Torsional Shear Test Results  

Torque and Acceleration Responses  

In a torsional shear test, the accelerometer output was sinusoidal 

up to a strain level of about 5 x 10
-2 percent beyond which the output 

was not sinusoidal (Figure 16). At about 1 x 10
-1 percent strain level, 

the accelerometer output was far from sinusoidal (Figure 16). 

This behavior may be due partly to an instrumentation problem and 

partly to the nonlinearity (in the stress-strain relationship) in the 

soil specimen. An aluminum specimen (linear in the stress-strain rela-

tionship) was tested in the test device. The torque input and the ac- 

celerometer output were sinusoidal in the strain range of 2 x 10 -3  percent

to 9 x 10
-2 

percent. This eliminates intrumentation as the cause of its 

problem. Hence, nonlinearity in the stress-strain relationship must be 

the cause for the above-discussed behavior in the soil specimen. It 
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Figure 16. Torque and Acceleration Responses at Various Strain 
Levels From a Torsional Shear Test. 
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starts even at a low strain level, of the order of 5 x 10
-2 

percent. 

Asimilar trend was observed in the shape of the magnification curve. 

The magnification curves from the test results (Figure 17) were not like 

the ones which were assumed in the derivation of interpretation concepts. 

Hence, the elastic theory assumed in the derivation is only approximate 

to represent the test beyond a strain level of about 5 x 10-2 percent. 

Damping Ratio by Expressions Based on Magnification Curve  

For each test, the values of the damping ratio have been calcula-

ted by the expressions 34, 39, and 44. The interpretation concept of these 

expressions is based on the magnification curve. The results are shown 

in Figure 18 for test T-3; the results for other tests are similar to the 

ones shown in Figure 18 and are given in Figures 36 through 45 in Appen-

dix A. 

Identical damping ratio values at each strain level were expected 

by the above mentioned expressions. However, Figure 18 shows differences 

as great as 100 percent between the results from the expressions. Differ-

ences were found at all strain levels. This is because the experimental 

magnification curves were not like the ones assumed in the theory of in-

terpretation (Figure 17(a)). The distortion in the shape of the magnifi-

cation curve (Figure 17(a)) may be due partly to an instrumentation pro-

blem and partly to nonlinearity (with respect to the stress-strain rela-

tionship) in the response of the soil specimen. Hence, the damping ratios 

calculated by the expressions based on the magnification curve may not be 

reliable. 

Damping Ratio by Logarithmic Decrement Method  

For each free vibration decay, the relationship between the ampli- 
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Test No. T-3 Methods 
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Figure 18(b) 

Figure 18. The Values of Damping Ratio by Various Inter-
pretation Methods--Torsional Shear Test No. T-3. 
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tude decay and the number of cycles was plotted (Figure 17(b)) on a semi-

log paper. The plot was a straight line, and the logarithmic decrement 

was calculated by relationship 13 and damping ratio by 14. 

The damping ratios calculated by the logarithmic decrement method 

for test T-3 are given in Figure 18(b); the graphs for other tests are 

similar to the one for T-3, and are given in Figures 38, 39, 41, 42, 43, 

and 45 in Appendix A. Theoretically, the points plotted on a semilog 

paper should fall on a straight line. But the plot showed scatterings 

(Figure 17(b)), and a mean line had to be drawn. The scatterings may be 

due partly to an instrumentation problem and partly to the response of 

the soil specimen. It is worthwhile to mention that a small change in 

the slope of the drawn line changes the damping ratio to a wider extent 

(Figure 17(b)). 

At higher damping (D > 12%), the decay was faster (with respect 

to the number of cycles), occurring in two or three cycles. These data 

were not sufficient to plot on a semilog paper, draw a mean straight line 

and obtain a damping ratio value (Figure 17(b)). 

Even though the logarithnic decrement method is theoretically 

valid, there remains the practical difficulty in plotting the decay curves 

and interpreting them in terms of the damping ratio. 

Damp ing Ratio by a Method Which is Based on Equating Energy Input and 

Energy Dissipation at Resonance (Energy Method)  

The values of damping ratios were calculated by expression 47. 

The results are shown in Figure 18(b) for test T-3; the results for other 

tests are similar to the one in Figure 18(b) and are given in Figures 

36 through 45 in Appendix A. 
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Damping ratios calculated by the Energy method are closer to the 

values computed by the logarithmic decrement method (Figure 18(b)). The 

Energy method is theoretically sound and its derivation is not based on 

the magnification curve. Hence, the Energy method appears to be the most 

reliable to determine the damping ratio, and it is not subjected to the 

limitations discussed for the logarithmic decrement method. The values 

of the damping ratio by the Energy method are used in the future discus-

sion of torsional shear and cyclic triaxial test results. 

Effect of Confining Pressure on the Damping Ratio  

Figure 19(b) shows the effect of confining pressure on the damping 

ratio for test T-9 and T-10; the results for other tests are similar to 

Figure 19(b) and are given in Figures 47 through 49 in Appendix A. 

Fora given strain amplitude, the damping ratio at a confining pres-

sure of 40 psi is about 1 to 3 percent lower than the damping ratio at 

a confining pressure of 20 psi. 

It has been reported by various researchers (Hardin and Drnevich, 

1970; Silver and Seed, 1971) that the damping ratio decreases with the 

increase in confining pressure in the range of 5 psi to 50 psi. The 

present test results show a similar trend. 

Effect of Confining Pressure on Shear Modulus  

Figure 19(a) shows the effect of confining pressure on shear 

moduli of compacted specimens of micaceous silt. 

For a given strain amplitude, the shear modulus increases with 

increasing confining pressure (Figure 19(a)). The increase in shear 

modulus can be approximated by the relation: 
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where 	G = shear modulus 

a
m 

= mean confining pressure 

Similar observations have been reported for sands (Seed and Idriss, 

1971). The present test results reveal that the equation 60 relating 

the shear modulus and confining pressure applies for the compacted speci-

mens of micaceous silt. 

Duplication of a Test Result  

The values of shear modulus and damping ratio from a torsional 

shear test T-6, and a duplicate test D-1, under the same conditions of 

confining pressure, dry density and moisture content as in T-6 are given 

in Figures 20(a)and20(b). The values of shear modulus and damping ratio 

at various strain levels from both tests T-6 and D-1 are identical. These 

limited tests suggest that the results in a torsional shear test device 

can be duplicated, if done carefully. 

Effect of Previous Strain on Modulus and Damping Ratio at a Higher Strain  

Level 

Test T-6 was started at the lowest strain level, 5.2 x 10
-4 

per-

cent, and the strain was increased in succession to a final value of 2.3 

x 10
-1 

percent. To determine the effect of previous strains on the value 

of the damping ratio and shear modulus at the strain level 2 x 10
-1 

per-

cent, the results from a duplicate test were compared (Figures 21(a) and 

21(b)). In the duplicate test, the soil specimen was subjected to the 

strain level L8 x 10
-1 

percent initially, and the damping ratio and shear 

modulus were computed. 

The values of the shear modulus and damping ratio from both the 

tests T-6 and D-3 are identical (Figures 21(a) and 21(b)). It appears 
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that the shear modulus and damping ratio values at higher strain levels 

(2.3 x 10-1 percent) are not affected by the previous strains to which 

the soil specimen has been subjected while running the test. 

Effect of Shear Modulus on the Damping Ratio  

Figure 22(a) shows the relationship between the damping ratio and 

-3 
shear modulus at three constant strain levels: 1 x 10 percent, 1 x 10

-2 

percent and 1 x 10
-1 

percent. Mean lines are drawn through the points 

since there are scatterings (within +1.5 percent) in the data. The 

scatterings may be due to an instrumentation problem or the behavior of 

the specimen in the experiment. The higher scattering at the strain level 

of 1 x 10
-1 

percent (+1.5 percent) is due mainly to the nonlinear (with 

respect to stress and strain) specimen response at that level of strain. 

It appears from Figure 22(a) that the damping ratio is independent of 

shear modulus. 

Effect of Dry Density and Moisture Content on the Damping Ratio  

To determine the effect of one variable, either dry density or 

moisture content, tests should have been conducted by varying moisture 

content with constant density or vice versa. In the experimental pro-

gram, the tests were not conducted in that manner, but rather the test 

specimens were on wet and dry sides of optimum moisture content, on a 

standard Proctor compaction curve. 

An attempt was made to obtain as much information as possible 

from the test results. The relationship between damping ratio and dry 

density and the relationship between damping ratio and moisture content 

have been plotted and shown in Figures 22(b) and 22(e). Even though the 

moisture contents are not constants in the graph which shows the rela- 
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tionship between damping ratio and dry density (dry densities are not 

constants in the graph showing the relationship between damping ratio and 

moisture content), from Figures 22(b) and 22(c) it appears that the 

damping ratio is independent of both dry density and moisture content. 

Effect of Dry Density on Shear Modulus  

Figure 23(a) shows the effect of dry density on shear modulus. 

For a given strain amplitude, the shear modulus increases with the in-

crease in dry density. The higher the dry density, the stiffer the soil 

specimen, and hence, the higher is the shear modulus. From Figure 23(a) 

it appears that the shear modulus will increase with the increase in dry 

density, for a given strain amplitude. 

Effect of Moisture Content on Shear Modulus  

Figure 23(b) shows the increase in shear modulus with the decrease 

in moisture content, for a given strain amplitude. The drier the test 

specimen, the stiffer it is, and hence, the higher the modulus. The 

dry density of the soil specimen T-5 is 105.6 PCF; whereas, the dry 

density of the specimen T-9 is 104.1 PCF. As far as the dry densities 

are concerned, specimen T-5 should have been stiffer than T-9. However, 

the moisture content of specimen T-9 is much lower than specimen T-5; 

because of its lower moisture content (drier than T-5), soil specimen T-9 

is stiffer than T-5. It appears from Figure 23(b) that the moisture con-

tent of the test specimen has more effect on shear modulus than the dry 

density. The drier the test specimen, the greater the stiffness, and 

hence the higher is the modulus. 

Figure 19(a) shows the shear modulus values of some test specimens. 

The locations of the test specimens (moisture content and dry density) 
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with respect to the Proctor compaction curve are given in Figure 13. 

From Figures 13 and 19(a) it appears that the specimens tested on the 

dry side of the optimum moisture content yield higher values of shear 

modulus than the specimens on the wet side. This confirms the conclu-

sion that the moisture content of the test specimen has more effect on 

shear modulus than the dry density. 

Limit Band and Average Curve of Torsional Shear Test Results  

Damping Ratios. The values of the damping ratio from all the 

torsional shear test results are given in Figure 24. The values of the 

damping ratio from different tests of various moisture contents, dry 

densities, and confining pressures fall within a narrow band. The band 

limits include two-thirds of the test data. The band limits and the 

proposed average curve for the specimens of micaceous silt are indicated 

in Figure 24. The band limits and the average curve are used in fur-

ther discussion in subsequent sections. 

Shear Modulus. Figure 19(a) shows the values of the shear modulus 

from some torsional shear tests. Since the values of the shear modulus 

are very sensitive to dry density, moisture content, and confining pres-

sure, it is difficult to define a band limit and an average curve for 

shear moduli of test specimens. 

Cyclic Triaxial Test Results  

Load-Displacement Responses  

In a load control test, the displacement response was sinusoidal 
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up to a certain strain level (about 5 x 10
-2 

percent strain), beyond 

which the response was not truly sinusoidal (Figure 25). 

In a displacement control test, the load response was sinusoidal 

up to a strain level of about 5 x 10
-2 

percent, beyond which the 

response was not truly sinusoidal. The departure was even greater at 

higher strains (Figure 25). 

The above-mentioned responses occurred because the soil specimen 

may behave differently in a compression cycle and in an extension cycle. 

In a compression cycle, the stress condition may be well within the Mohr 

strength envelope, whereas, in an extension cycle, the stress condition 

may approach the Mohr strength envelope. An ordinary triaxial shear 

test on partly saturated soils shows that the Mohr strength envelope 

slopes upward (Figure 9). The stress-strain relationship is highly non-

linear near failure of the soil specimen. 

The above-discussed behaviors affect the shape of the hysteresis 

loop which is used to determine the damping ratio. The test results 

yield symmetrical stress-strain hysteresis loops up to a strain level of 

about 5 x 10
-2 

percent beyond which the shape of the loop gradually 

changes from symmetrical to nonsymmetrical. At a higher strain level of 

about 1 x 10
-1 

percent, the shape of the loop is really nonsymmetrical 

(Figure 25). It has been mentioned in Chaptervl that the interpretation 

concept to determine the damping ratio from a nonsymmetrical is only 

approximate. 

Comparison of Load Control and Displacement Control Tests  

The values of the shear modulus from both load control and dis-

placement control tests are given in Figure 26(a). In the case of test 
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specimens C.L.5-C.D.5, the values from both tests are almost identical 

(variations less than 5 percent). In the case of test specimens, C.L.2 

-C.D.2 and C.L.3-C.D.3, the values from displacement control tests are 

slightly (about 10 percent) lower than the corresponding values from the 

load control tests. Since 10 percent differences are common in soil 

mechanics, it is concluded that the values from both the load control and 

displacement control tests are almost identical (variations within 10 

percent). 

The typical relationship between the damping ratio and the ampli-

tude of strain from both load control and displacement control tests are 

given in Figure 26(b) for the tests C.L.5-C.D.5 and C.L.6-C.D.6. Results 

of the other tests are shown in Figure 46 and given in Appendix A. Fig-

ure 26(b) shows that the results from both load control and displacement 

control tests are almost identical (1 to 2 percent variation in damping 

ratio). There is a little scattering (1 to 2 percent) in the values of 

the damping ratio, probably because of the instrumental problem and the 

approximations made in the interpretation. The differences between the 

two types are somewhat smaller than the scatterings of points in the same 

test. It is concluded that the values of the damping ratio from both 

load control and displacement tests are almost identical (with a varia-

tion of about 1 to 2 percent in the values). 

Effect of Confining Pressure on Shear Modulus  

Figure 27(a) shows the effect of confining pressure on the shear 

modulus of compacted specimens of micaceous silt. Generally, the shear 

modulus increases with increasing confining pressure at a given strain 

amplitude. It is expected that the higher the confining pressure, the 
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stiffer the soil specimen, and hence, the higher should be the shear 

modulus. However, no particular relationship between the increase in 

confining pressure and increase in shear modulus can be established from 

the cyclic triaxial test results. 

Effect of Confining Pressure on Damping Ratio  

Figure 27(b) shows the effect of confining pressure on the damping 

ratio of a soil specimen in a cyclic triaxial test. For a given strain 

level, an increase in confining pressure from 20 psi to 40 psi causes 

a reduction in damping ratio of the order of 1 to 2 percent damping for 

specimens C.D.3 and 4, C.D.5 and 6 (Figures 47 and 48 in Appendix A) 

and C.L.7 and 8. In the case of the soil specimens C.D.1 and 2 and C.L.9 

and 10 (Figures 47 and 49 in Appendix A), the damping ratio is almost the 

same (variation of 0.5 percent) at both the confining pressures of 20 psi 

and 40 psi. Various researchers (Hardin and Drnevich, 1970; Kovacs, 

Chan, and Seed, 1971; Silver and Seed, 1971) have reported some reduction 

in the damping ratio with an increase in confining pressure. However, 

the present test results indicate that the reduction in damping ratio 

is less than 3 percent, which is smaller than the scatterings in indi-

vidual tests. 

Effect of Specimen Size in the Test Device  

Figures 28(a) and 28(b) show the effect of change in the test 

specimen size on the values of the shear modulus and damping ratio. In 

the test C.D.6 a 2.8-inch diameter and 5.6-inch length soil specimen was 

used, whereas in the test D-4, 	1.4-inch diameter and 3-inch length was 

the specimen size. The dry density, moisture content, and the confining 

pressure in both the tests(C.D.6 and D-4) were identical. The test 
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results show that the size of the soil specimens may not effect the values 

of the shear modulus and damping ratio for a given strain level. 

Duplication of a Test Result  

The values of the shear modulus and damping ratio from a cyclic 

triaxial test, C.D.6, and a duplicate test, D-2, with the same confining 

pressure, dry density, and moisture content as in C.D.6 are given in 

Figures 29(a) and 29(b). The values of the shear modulus and damping 

ratio at various strain levels from both tests C.D.6 and D-2 are almost 

identical (variations of less than 2 percent). These limited tests sug-

gest that the results in a cyclic triaxial compression can be duplicated, 

if done carefully. 

Limit Band and Average Curve of Cyclic Triaxial Test Results  

The values of the shear modulus from the cyclic triaxial test 

results have been plotted and are shown in Figure 27(a). The dry density 

and the moisture content of the test specimens with respect to the 

standard Proctor density curve are given in Figure 15. The values of 

the shear modulus are very sensitive to both the dry density and the 

moisture content of the test specimens. Hence, it is difficult to define 

a limit band and an average curve for shear modulus of test specimens. 

The values of the damping ratio from cyclic triaxial test results 

are given in Figure 30. The values of the damping ratio from different 

tests of various moisture contents, dry densities and confining pressures 

fall within a band. The band limits which contain approximately two-

thirds of the test data and the average curve are indicated in Figure 30. 

The average curve and the band are used in further discussion in sub-

sequent sections. 
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Comparison of Torsional Shear and Cyclic  

Triaxial Test Results  

Shear Modulus  

Figures 31(a) and 31(b) show the values of the shear modulus at 

different strain levels from both torsional shear and cyclic triaxial 

-2 ,, test results. At a low strain level (less than 5 x lu percent), the 

shear modulus from a torsional shear test is always higher than the 

value from a cyclic triaxial test (as much as 100 percent and even more 

in some cases). 

A density variation along the lengths of the specimen tested in 

a cyclic triaxial was revealed by a density test. The middle third of 

the specimen was 2.5 percent less denser than the mean density of the 

whole specimen (in a torsional shear test specimen, the density varia-

tion was about 1 percent). In a cyclic triaxial test, the middle third 

of the specimen mostly influences the displacement. Since the variation 

in density influences the displacement and hence the shear modulus, it 

is difficult to draw any conclusion regarding the variation in shear 

modulus from torsional shear and cyclic triaxial tests. 

Damping Ratio  

For a given strain amplitude, the damping ratio from a cyclic 

triaxial test was about 2 to 4 percent lower than the values from a 

torsional shear test, in the case of test specimens T-5 and C.D.5, 

T-6 and C.D.6, T-7 and C.L.7, T-8 and C.L.8 and T-10 and C.L.10. In 

the case of test specimens T-1 and C.D.l, T-2 and C.D.2, and T-4 

and C.D. 4, the values of the damping ratio from a cyclic triaxial test 

was about 1 to 2 percent higher than the corresponding values from a 
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torsional shear test. It is hard to postulate a generalized trend be-

cause of the fact that these differences in the two types of tests in 

many cases are smaller than the scatterings of points in the same test 

(differences between tests are 1 to 4 percent compared to a scatter of 

2 to 5 percent in the same test in a cyclic triaxial). 

Average curves of the damping ratios of the torsional shear tests 

(Figure 24) and cyclic triaxial tests (Figure 30) have been superimposed 

as shown in Figure 32. There is no significant difference in the values 

from both the tests. The torsional shear tests produce values of damp- 

ing ratios at a lower strain level, compared to the cyclic triaxial 

tests. Both are significant for the design of foundations of dynami-

cally excited structures. 

Applications of the Test Results  

Shear Modulus  

The values of the shear modulus from various torsional shear and 

cyclic triaxial tests are shown in Figure 31. There is a wide difference 

in the values of the shear modulus from both the test results. The pos-

sible causes for the differences are not known. It will be worthwhile 

to compare the results from these compacted specimens of micaceous silt 

with other published values of the shear modulus of sands. This com-

parison will provide a general idea regarding the stiffnesses of mica-

ceous silt. 

Various published data have been analyzed and a set of average 

curves for the values of shear modulus of sands have been proposed (Seed 

and Idriss, 1971) for various relative densities. The values of shear 
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modulus at a confining pressure of 40 psi from the proposed curves for 

sand have been superimposed on the data of shear modulus of micaceous 

silt from both torsional shear and cyclic trial tests at a confining 

pressure of 40 psi (Figure 33). 

From Figure 33, it is concluded that the stiffness of a compacted 

specimen of micaceous silt is similar to that of sand. Since the shear 

modulus of micaceous silt depends on many variables, such as moisture 

content, void ratio, degree of saturation, it is difficult to propose 

a set of average curves for the shear modulus of silt. However, these 

test results will provide a rough idea regarding the stiffness of mica-

ceous silt for the design engineer. 

Damping Ratio  

The limits of the band and average curve for the damping ratio 

from torsional shear test results are given in Figure 24, while the 

corresponding data from the cyclic triaxial tests are in Figure 30. The 

data from both Figures 24 and 30 and the limits of band and average 

curves for sands and clays proposed by Seed and Idriss (1971) have been 

plotted and are shown in Figure 34. 

The design curve for silt is closer to the average curve for sand. 

Since the values of the damping ratio are not too sensitive to moisture 

content, dry density, confining pressure, etc., it is possible to use 

this proposed curve for silt in preliminary studies. 

The Nature of Damping in Soils  

The reported experimental and theoretical data (Hardin, 1965) 

have been used to hypothesize the nature of damping in soils. By the 
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of Sands--Shear Modulus. 
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analysis (Chapter IV), it has been shown that the nature of damping in 

soils should be largely hysteretic. The test results confirm this. 

Free Vibration Decay Envelope  

All decay curves from torsional shear test results show that the 

free vibration decay envelope is exponential. This is compatible with 

two possible mechanisms--viscous damping and hysteretic damping--as shown 

in Chapter III. 

Energy Dissipation Characteristics  

Energy dissipation characteristics of a soil specimen in a cyclic 

triaxial test (test C.D.3) is given in Figure 35. Figure 35 also shows 

the energy dissipation by 1) the viscous damping theory and 2) the 

hysteretic damping theory (calculations are given in Appendix C). The 

experimental energy dissipation curve is closer to the hysteretic damp-

ing rather than to the viscous damping. Hence, it is concluded that 

the nature of damping in soils can be better approximated by hysteretic 

damping than viscous damping. 
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CHAPTER IX 

CONCLUSIONS AND RECOMMENDATIONS 

The following conclusions are based on the theoretical investi-

gation and experimental results of laboratory tests on specimens of 

micaceous silt using a torsional shear test device and a cyclic triaxial 

apparatus. 

Conclusions From the Theoretical Investigation  

1. At the present time, a meaningful differential equation, and 

hence, a meaningful mathematical model, to represent hysteretic damping 

is not available. 

2. For small damping (<15 percent), the free vibration decay 

envelope is exponential for a hysteretic damping system. 

3. For a system with hysteretic damping, the damping ratio is 

not a function of mass that is excited, whereas in a system with viscous 

damping, the damping ratio is a function of the mass that is excited. 

Conclusions From the Test Results  

4. By the analysis of the reported experimental and theoretical 

data (Hardin, 1965) it has been shown in this dissertation that the 

nature of damping in soils is largely hysteretic. The present experi-

mental results also indicate that the nature of damping in soils is pre-

dominantly hysteretic. 

5. Since the nature of damping in soils is hysteretic, expres-

sion (38) (Jacobsen, 1960) is adequate to determine the damping ratio 
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from the hysteresis loops from cyclic triaxial tests. 

6. The error in the damping ratios calculated from nonsymmetri-

cal loops are within the scatterings in individual tests. 

7. The test results from both torsional shear and cyclic tri-

axial devices show that nonlinearity (with respect to stress and strain 

relationship, as revealed by the changes in sinusoidal wave form and 

hysteresis loop shape) starts even ata low strain level of about 

5 x 10
-2 

percent and becomes progressively greater at higher strains. 

Hence, all interpretation methods to determine shear modulus and damping 

ratio are only approximate for computing the test results. (The inter-

pretation methods are based on elastic theory, whereas the response of 

the soil specimen is nonlinear in the test device.) 

8. Present test results show that the interpretation methods to 

determine the damping ratio from a torsional shear test, the derivations 

of which are based on a magnification curve, are not reliable. 

9. Although the logarithmic decrement method to determine the 

damping ratio is theoretically valid, there is a practical difficulty 

in obtaining a good decay curve and interpreting the same,with the equip-

ment used and soil specimens tested. 

10. Damping ratios calculated by a method which equates energy 

input and energy dissipation at resonance (energy method) are close to 

the values computed by the log decrement method. The author concludes 

that this concept (developed in this research) is a better interpreta-

tion method to determine the damping ratio from the torsional shear test 

results. The value of shear modulus G is determined by exciting the 

soil specimen-top cap system at resonance (relationship 36). The 
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damping ratio is also calculated by exciting the system at resonance by 

the proposed method. Hence, the values of the shear modulus and damping 

ratio calculated will represent the same system at the same frequency. 

12. The values of the damping ratio from different tests from 

both cyclic triaxial and torsional shear test devices fall within a 

narrow band. Although the damping ratio varies somewhat with confining 

pressure, density, etc., the variations are not appreciable (less than 

2 percent damping). Hence, an average curve for the values of the damp-

ing ratio of micaceous silt can be proposed (Figure 41). The values of 

the damping ratio from the proposed curve are: 5 percent damping ratio 

at a strain level of 1 x 10 3 percent, and 14 percent at a strain level 

1 x 10-1 percent. 

13. To determine damping ratio of soils either one of the test 

devices: torsional shear test device or cyclic triaxial test device can 

be used. Torsional shear test device yields reasonable values at low 

strain level (1 x 10 -3 percent to 1 x 10-1 percent) whereas the cyclic 

triaxial test yields values at a higher strain level (1 x 10
-2 

percent 

to 2 percent). 

14. Either torsional shear or cyclic triaxial test can be dupli-

cated, within 10 percent, if done carefully. 

Suggestions for Future Research  

1. An attempt should be made to measure the lateral displace-

ment during cyclic loading in a dynamic triaxial test and compute the 

values of Poisson's ratio at different strain levels. The computed 

values of Poisson's ratio should be used in the data reduction, for 
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more realistic results. 

2. Strains in a cyclic triaxial test should be obtained by 

measuring deformations only over the more uniformly stressed central 

part of the specimen. 
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APPENDIX A 

Graphs 
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APPENDIX B 

Derivations 
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Hysteretic Damping  

Derivations  

The differential equation of motion for a viscous damping model 

in a single degree of freedom can be written: 

	

+ 	+ ICx = P
o sin wt 
	

(3) 

For some materials, C was observed (Kimball and Lovell, 1927) to vary 

inversely with the excited frequency w: 

C cc 11w 

C = b/w where b is a constant 

The damping of this nature is now generally referred to as hysteretic 

or structural damping (McCallion, 1973; Bishop, 1955). 

For undamped free vibration, equation can be written: 

mx + Kx = 0 	 (48) 

The natural frequency of undamped free vibration is w
n 
=i7TM. The free 

vibration equation of hysteretic damping in a single degree of freedom 

can be written: 

	

.+ 	x b . —
wn 

+ Kx = 0 
	

(61) 

w
n - the natural frequency of undamped vibration = constant. 

Equation 61, being a homogenous second-order differential equa-

tion, can be solved by assuming a solution of the form: 

x = est 
	

(62) 
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where s is a constant to be determined. Upon substitution of equation 

62 into equation 61, 

2 	b 	K st 
(s + 	s + 	e =0 

wnm 

which is satisfied for all values of t when 

2 	b 	, K s + — s + = u 
w m n 

Equation (64) which is known as the characteristic equation, has two 

roots: 

b 12 s1,2 2mwn + 
-
/2111A 

Critical Damping  

The behavior of the damped hysteretic system of equation 61 depends on 

the numerical value of the radical of equation 65 . As a reference quan-

tity, the author defines critical damping as the value of b which reduces 

this radical to zero (in a similar manner to viscous damping) or 

bc  
2mw

n  
= liTTra = w n 	 (66) 

bc = 2mw2 
n = 2K 
	

(18) 

The actual damping of the system can be specified in terms of the cri-

tical damping,bc,by the nondimensional ratio: 

D = b/bc 	 (67) 

which is referred to as the damping ratio. 

(63) 

(64) 

(65) 
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Free Vibration  

If the hysteretic damping model is excited with an external 

force Po sin wt and the external force is turned off suddenly, it 

will vibrate freely at its natural frequency with decaying amplitude. 

The decaying amplitude envelope is not yet known; let it be some func-

tion of y as shown in Figure 50. 

If a linear spring is assumed in the system, 

The maximum potential energy stored 
in the spring at A (at the beginning 
of first cycle) = 1/2 Ky 2  

where K is the spring constant. 

The maximum potential energy stored 
at B (at the completion of first 
cycle) = 1/2 K(y - Ay) 2  

Energy dissipated per cycle = 1/2 Ky
2 
- 1/2(y - Ay)

2 

= Ky Ay - 1/2 Ay 2 	 (70) 

It has already been shown that the energy dissipated per cycle 

in the hysteretic damping model is = Trby2 	
(19) 

The energy dissipated per cycle from the decay envelope is = Ky Ay (71) 

(1/2 Ay term in (70) can be ignored since Ay is small.) 

Hence, equating 19 and 71: 

Trby2 = Ky Ay 

A 
	r Trbi 

L i7J Y  

(68) 

(69) 

(72) 

(21) 

Equation 21 is similar to the one used for radioactive decay, and 
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Figure 50. Free Vibration Decay. 
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Figure 51. Soil Specimen in a Drnevich Resonant Column. 
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hence, it is an exponential decay envelope. A very interesting aspect 

of equation 21 is that Ay is independent of frequency (Ay depends on 

K-the stiffness of the specimen and on b-the damping constant). If a 

single degree of freedom model with hysteretic damping system is ex-

cited with a force P o  sin wt and external force is suddenly withdrawn, 

its equation of motion in free vibration is represented as: 

m'ST + CST + Ky = 0 	 (20) 

where 

C  = biwnl ' 
	wnl = natural frequency = constant 

w  = — 
n1 V m 

The equation of the decay envelope is: 

Ay= [

Trb T] y 	 (21) 

When an additional mass M is added to the initial mass, the sys- 

tem is excited with a force P
o 

sin wt, and the external force is sud- 

denly withdrawn, the equation of motion in free vibration is: 

(m + M)'ST + CST + Ky = 0 	 (22) 

where 

C = 	and w
n2 

is a constant 
wn2 

w
n2 

is the natural frequency with which the amplitude decays. 

K  

wn2 = 	rri + M) 
(73) 



G - 
d
4 

128ff It L fn 2 
(36) 

Here, also, the equation of the decay envelope is: 

ffb Ay = [10 y 

In both cases, the energy dissipated per cycle is the same. Even if an 

additional mass M is added to the system, the natural frequency with 

which the system will vibrate during decay will be changed, but the 

logarithmic decrement and, hence, the damping ratio will be the same. 

In a viscous damping system, the following can be shown: 

AY = [ 
TrCw 

 Y 
	

(23) 

In other words, if an additional mass M is added to m in a vis-

cous damping system, it will affect both the natural frequency and the 

logarithmic decrement and, hence, the damping ratio. 

Derivation of Expression  36 
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(21) 

where G = shear modulus 

It = mass polar moment of inertia of the top cap system 

L = length of the soil specimen 

d = diameter of the specimen 

fn = resonant frequency. 

The soil specimen-top cap system in a Drnevich Resonant Column 

can be approximated by a mathematical model in a single degree of 

freedom system: 

• 	GI It + 	0 + — = T sin wt (27) 
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where 	It = mass polar moment of inertia of the top cap system 

p = the material constant (this turned out to be inversely 

proportional to w for a system with hysteretic damping) 

I = polar moment of inertia of the soil specimen cross 

section 

G = shear modulus 

L = length of the specimen. 

At resonance, external torque applied 'ro sin wnt = [II/L]0 = damping 

torque, i.e., the inertia torque - It o and the spring torque -CGI/LD 
are equal, but act in opposite directions; hence, they cancel each 

other. 

It 	
- GIG 	 (74) 

0 -  	at resonant frequency 	 (75) 
(2nfn) 2 

It 0(2nfn)
2  - GIG 

G 
It(2n)

2 
L(fn)

2 

I 

nd
4 

32 

where d = diameter of the soil specimen. 

Substituting, 

G - It 
	
L fn

2 
x 32  

nd
4 

128n It L fn2 

d
4 

L 
(74) 

(36) 
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Expression 36 is used to determine shear modulus from Drnevich Resonant 

Column test results. 

Derivation of Expression 37  

Strain amplitude in a Drnevich Resonant Column is calculated by 

(37): 

6.574  
Y 	x Accelerometer output in M.V. (R.M.S.) x 10

-4 

(fn)2 	inches/inches 

Relation 37 has been derived by Drnevich (1973). 

In the Drnevich Resonant Column used in the experimental program, 

the accelerometer charge sensitivity is = 2.5 peak volts/peak g. 

Rotational acceleration 	= ar 	 (76) 

The accelerometer is fixed at a distance of 1.25 inch from the vertical 

center line of the soil specimen-top cap system. 

0 = ar 

2.5 x 1.25 ,eak volts x inch  =  
peak volt g. 

1 g = 386 inches per second 2 	 (77) 

Substituting and inverting, 

0 = 123.5 	
peak radian per second

2 

0 = 0  
2 

= 3.127/f
2 
peak radian per peak volt 

peak volt 

(2Tr f) 

1 volt (R.M.S.) = 	
1 
— peak volt 
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0 = 4.422/f 2 
peak radian per volt (R.M.S.) 
	

(78) 

Mean Shear Strain  

Since the shear strain varies from zero at the center of the soil 

specimen to a maximum value at the outer circumference in a torsional 

shear test specimen, a "mean" strain is defined; it is the "mean" strain 

of the volume of the soil involved. 

It is assumed: 1) the strain is maximum at the outer circumfer-

ence; 2) the strain is zero at the center of the circular cross section; 

3) the variations of the strain from the maximum value to zero is linear; 

and 4) the soil specimen is fixed at the base. 

A soil specimen in a Drnevich Resonant Column can be represented 

as the one shown in Figure 51. 	This is a fixed-free system with a 

mass attached to the free end. The soil specimen acts as a single degree 

of freedom system in the test device. 

Shear Strain y x0  = rUx) 	 (79) 

v
re l (x) r de dr dx 

- 

y = average strain = 	 (80) 
f dv 

27 ro L 2  
fffro'(x) do dr dx 
0 0 0 

f dv 

3 L 
1 r  --2-- 2-7 	f 0 1 (x)dx 

ur
o 

= 2/3 	[0(L) - 0(o)] 
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= 2/3 - 
o
-- 0 (at top)= 1/3 	0(top) 
	

(81) 

where d is the diameter. 

Mean Strain = 1/3 f 0(top) 
	

(81) 

Considering 1.4-inch diameter and 3.15-inch long specimen, 

1.4   Mean Strain = r = 1/3 x 3.15  x 
4.42 

2
2 
 x 10-3  

fn  

x Accelerometer output in M.V. 

(R.M.S.) inches/inches. 

f = fn , since the test is run at resonant 

frequency. 

-  
Mean Strain 	6.574  = y - 	

2 x Accelerometer output in M.V. 
fn 

 
(R.M.S.) x 10

-4 
inch/inch. (37) 

Expression 37 is used to calculate the average shear strain level 

in the soil specimen in the Drnevich Resonant Column used in the experi-

mental program. 

Derivation of Expression (39)  

1 [0 at lifn  
Damping 	

] Ratio = 
4 	6 at fn (39) 

where 0 at fn = the accelerometer output in M.V. at the resonant 

frequency fn 

0 at (2-  fn = the accelerometer output in M.V. at / times the 

resonant frequency 
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The soil specimen-top cap system in the Drnevich Resonant Column 

device can be approximated by a single degree of freedom system. If 

hysteretic damping is assumed, the system can be represented by a mathe-

matical model: 

It 0 + (IJI/L)o + (GI/L)0 = T o  sin wt 	 (27) 

The material constant p turned out to be C
1
/w for a hysteretic damping 

system. When p is replaced by C 1 /w, ClI/L by b and GI/L is replaced by 

K in equation 27, the steady state response 0 is: 

T L 
o  0 - 	 (40) 

GI 	- (f/fn) 2 ] 2  + [2D] 2  

where D = damping ratio 

f = frequency of excitation 

fn = undamped natural frequency 

If the soil specimen-top cap system is excited with a torque T 1  sin wt 

at its natural frequency fn 1 , the response 01  is: 

T
1 

L 

1 
GI 	- (fn

1
/fn

1
) 2 ] 2  + [2D]

2 

T1 L 
(41) 

GI2D 

If the above system is excited with the same torque, T 1  sin wt,but at a 

different frequency, /2 times fn l' 
the response 0

2 
is: 

0
2 
 = 	 

GI /[1 - (/2fn
1 
 /fn

1
) 2 	

[2D] 2  
12 
-I 

0 (41) 

T i  L 

 

(42) 

  

   



T
1 
 L 

GI 	+ 4D
2 

If D is small, 

  

+ 4D 2 	1 
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(42) 

(43) 

(82) 

(83) 

(39 ) 

(44) 

0 
 

0
2 
= 2D 

If an accelerometer is used and rotational acceleration is measured: 

O1  = (27 fn1)2 01  

0
2 

= (27  I fn
1 ) 2 0

2 

Substituting in equation 43: 

_ 	1 
02 

- 	lol l 

Derivation of Expression 44  

D 4.0625 + 2D
2 
 = 02 /1.561 

where 	D = damping ratio 

0  = accelerometer reading in M.V. at the 1 

resonant frequency 

02  = accelerometer reading in M.V. at 

times the resonant frequency. 

As in the derivation for expression 39, the steady-state response 0 of 

the soil specimen in a Drnevich Resonant Column apparatus can be written 

as: 
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T L 
o 	  

. 	 (40) 

GI Al - (f/fn) 2 ] 2  + [2D]
2 

If the soil specimen-top cap system is excited with a torque T 1  sin wt 

at its natural frequency fn 1 , the response 0 1  is : 

0
1 
 = 

 

T
1 
 L 

  

GI/ [1 - (fn1/fn 1) 2 ] 2  + [2D] 2  

= T
1L/GI2D 

If the above system is excited with the same torque T 1  sin wt, but at a 

different frequency, /57J-  times fn 1 , the response 0 2  is: 

02 

 

T
1 
 L 

(45) 

  

GI /[1-(i57.5.  fn1/fn1)
2

]
2 
+ 2D

2 

 

T
1 
 L 

(45) 

 

'GI /0.0625 + 2D
2 

01 
	

1 
02 2D ✓0.0625 + 2D

2 

If
1 
 and 62  are recorded 

?:5 1 = (27 fn1
)2 0

1 
	 (82) 

0
2 

= (27 VETT fn
1

) 2  02 
	 (84) 

(41) 

(41) 

(46) 



6 
—2- = 0.75 x 2D /0.0625 + 2D

2 

0
1 

or 

D 1/0.0625 + 2D
2 

= 02 /1.501 	 (44) 

Derivation of Expression 47  

The values of damping ratio from a torsional shear test can be 

calculated by the expression 47: 

T 
D = 21t ° 

60 
x 100% 
	

( 4 7 ) 

where 	D = damping ratio in percent 

T
o 

= excitation torque 

It = mass polar moment of inertia of top cap system 

= 30.5 gram cm sec
2 

for the test device 

op  = acceleration in radians per sec 2 

If the damping in soils is hysteretic, the equation of motion of 

the soil specimen-top cap system in a Drnevich Resonant Column is 

given by: 

Ito + (pi/L)0 + GIO/L = To  sin wt 	 (27) 

ItO + CO + KO = T
o 

sin wt 

where 

CI pI 
C — 	- 

wL w (b 
is a constant) 
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(44) 
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It 
	= natural frequency of undamped 

oscillation in radians per sec 

D = b/bc = damping ratio 

where 

be = 2Itw2 
n 	

for hysteretic damping 	 (18) 

Energy dissipated per cycle: 

at AW = fc 471  dx 

C m l/w for a hysteretic damping or equivalent damping system. 

Substituting C = b/w or C = C lI/wL and 

0 = 0o 
sin wt 

de 
00  W cos wt dt = 

de = 0
o 
w cos wt dt 

and integrating expression 85, 

C I [ 1 ] 0  2 
L o 

C l ' 
D = b/bC - 	2 	 (89) 

L2 It wn 
 

D2L It w2 
n Cl - 

(85)  

(86)  

(87)  

(88)  

(90) 

substituting expression 90 in expression 88, L1W is: 
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2 
AW = 7T2D It w

n 
0

2 
o 

Work done by the external torque at resonance is: 

2Tr /w 
AW input = f 	T dt 

0 

where 

T = T
o 

sin wt 

0 = 0o 
sin (wt - 7/2). (At resonance the amplitude of motion lags 

the applied torque by it/2 radians.) 

0 = o sin wt 	at resonance 	 (93) 

27/w 

AW input = f T
o 

sin wt 6
o 

sin wt dt 

= To 0
(ff/wn 
	 (94) 

work input = energy dissipation at resonance. 

Equating 91 and 94 

21TD It w
2 

0
2 
= T 0 7/wn 

n 0 
 

o o 

and substituting, 

	

0
o 	

0 
 • 

o 

	

e
o w2 	

and 	0 = w 
n 

 

(91)  

(92)  

the damping ratio D is: 
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D - 
T
o 

x 100% 	 (47) zIt 
0 

Even if viscous damping is assumed, it can be shown that: 

D- T
o x 100% at resonance 

21t
0 

Energy Dissipation by Hysteretic Damping in  

a Cyclic Triaxial Test (Theoretical)  

The time constitutive relation in a cyclic triaxial test can be 

approximated as: 

mX+ 	+ Kx = F
o 

sin wt 
	

(32) 

C turned out to be b/w for a system with hysteretic damping. 

The energy dissipated per cycle 

blr X2 
(19) 

2 
for hysteretic damping 	 (18) b/bc = 2

in% 

bc = 2m K/m = 2K 	 (18) 

w
n 

 

bc = 2m K/m = 2K 	 (18) 

b = D bc = 2KD 

AW = bir X
2 

(19) 
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AW = 2KDrr X
2 	

(95) 

Energy Dissipation by Viscous Damping in  

a Cyclic Triaxial Test (Theoretical)  

The time constitutive relation in a cyclic triaxial test can be 

written as: 

mx + 	+ Kx = F
o 

sin wt 
	

(32) 

C is a constant for a system with viscous damping. 

Damping ratio = D = C/Cc 

Cc = 2 14R1T 

Hence 

C= 2D 

Energy dissipated per cycle = rrC wX
2 

= 2RD ik.R7i wX
2 	

(96) 



APPENDIX C 

Sample Calculations 
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Table 4. Shear Modulus and Shear Strain Amplitude from a Cyclic Triaxial Test 

Test No. 	 - C.1-1 
Dry Density 	- 91.8 PCF 
Moisture Content - 25.2% 

Calibration Factors  

Load 	36 M.V. 	1 pound 

Confining Pressure - 40 psi Displacement 37.5 M.V. inch 
1000 

No. 
Picture 
No. 

Load 
(M.V. Eqa) 

Load 
(Lbs) 

Displacement 
(4.V. 	Eqa) 

, Displacement 
(Inches) 

Stress 
(psi) 

Strain E 
(psi) 

G 
(psi) 

G 
(KSF) 

Shear 
Stress 
(psi) 

Shear 
Strain 
(%) 

Damping 
Ratio From 

Graph 

1 - 30 0.83 2.5 0.067 x 10 3 0.135 1.19 x 10 5  11345 4202 605.0 0.068 1.6 x 10
3 

- 

2 1 30 0.83 2.4 0.064 x 103 0.135 1.14 x 10 4  11842 4386 631.6 0.068 1.5 x 10 3 - 

3 2 87.5 2.43 6.9 0.184 x 10 3  0.395 3.29 x 10 5  12006 4447 640.4 0.079 4.4 x 10 3  8.2 

4 3 180 5.00 14.0 0.373 x 10 3  0.812 6.66 x 10 5  12192 4516 650.3 0.406 8.99 x 10-3  11.2 

5 4 280 7.78 25.0 0.667 x 10 3 
1.263 1.19 x 10 4 

10613 3931 566.1 0.631 1.61 x 10 2  10.6 

6 5 434 12.06 48.0 1.280 x 10 3  1.957 2.29 x 10 4  8546 3165 455.8 0.979 3.10 x 10-2 13.7 

7 6 555 15.42 73.0 1.947 x 10 3  2.503 3.48 x 10 4  7192 2664 383.6 1.251 4.70 x 10-2  16.0 

8 7 825 22.99 166.0 4.427 x 10 3  3.731 7.90 x 10 4  4723 1749 251.9 1.866 1.07 x 10-1  17.4 

9 8 1000 27.71 320.0 8.533 x 10 3  4.498 1.52 x 10 3  2959 1096 157.8 2.249 2.05 x 10-1  18.8 

10 9 835 23.19 231.0 6.160 x 10 3  3.765 1.160 x 10 3  3423 1268 182.5 1.883 1.49 x 10-1  19.7 

11 10 662 18.39 330 8.8 x 10-3  2.99 1.57 	x 10 3  1901 704 101.4 1.493 2.12 x 10-1  17.6 

12 11 1100 30.56 2270 60.5 x 10 3  4.96 1.08 	x 10 3  459 170 34.5 2.480 1.46 x 10 °  - 

13 12 1190 31.67 3320 88.5 x 10 3  5.14 1.58 	x 10-2  325 121 17.4 2.570 2.12 x 10 °  - 

E - Stress  
Strain 

E  
G - 2(1+n) 

Shear Stress 

p is the Poisson's ratio (assumed as 0.35) 

= ad = deviator stress  
2 	 2 

Length of the specimen = 5.6 inches 

Diameter of the specimen = 2.8 inches 

Shear Strain = shear stress  



shear strain amplitude in 
percent = 

6.574 	[Acct. output in M.V. 
2 	(R.M.S.) x 10-4] 

fn inch/inch 

fn = resonant frequency 
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Table 5. Shear Modulus from a Torsional Shear Test Result 

Test No. 	 - T-1 
Dry Density 	- 91.7 PCF 
Moisture Content 	- 25.7% 
Confining Pressure - 40 psi 

Force Current 	Accelerometer Resonant 	 Shear 
Shear Modulus  No. 	(R.M.S.)inM.V. 	Reading in 	Frequency 	2 	

Strain 
M.V. (R.M.S.) 	 Kg/cm 

 
KSF 	(%) 

1 4.95 7.07 32.87 654.65 1339.9 4.8 x 10
-4 

2 14.06 19.27 32.25 630.18 1289.9 1.2 x 10
-3 

3 31.12 40.31 28.55 493.88 1010.9 3.3 x 10-3 

4 50.50 67.91 27.00 441.71 904.2 6.1 x 10 3 

5 101.66 95.47 25.00 378.69 775.2 1.0 x 10-2 

6 208.63 152.05 21.00 267.21 546.9 2.7 x 10-2 

7 406.65 255.30 16.80 171.01 350.1 5.9 x 10
-2 

8 601.13 353.60 14.00 118.76 243.1 1.2 x 10-1  

G = 128Tr It L fn
2 

d4 

G = shear modulus 
It = mass polar moment of 

inertia of top cap 
system = 30.5 gram 
cm. sect 

L = length of specimen= 
7.90 cm 

d = diameter of soil 
specimen = 3.55 cm 

fn = resonant frequency in Hz. 



Table 6. 	Amplitude Decay in Free Vibration 
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Test No. - T-5 

No. No. of 
Cycles 

Relative 
Amplitude 

Torque 
(cm.gram) 

Log 
Decrement 

Damping 
Ratio (%) 

Strain 
(%) 

1 1.0 8.0 301 0.43 6.8 1.1 x 10-2 

1.5 5.6 
2.0 5.9 
2.5 4.2 
3.0 3.6 
3.5 2.4 
4.0 1.8 

2 1.0 10.0 564 0.69 11.0 -2 2.4 x 10 
1.5 6.2 
2.0 4.9 
2.5 3.9 
3.0 3.0 
3.5 2.8 
4.0 1.0 

3 1.0 6.5 1051 0.90 14.2 -2 4.5 x 10 
1.5 3.6 
2.0 2.1 
2.5 2.0 
3.0 1.1 
4.0 0.8 

4 1.0 7.1 1770 1.25 19.9 1.1 x 10-1 

1.5 3.6 
2.0 2.0 
3.0 1.0 

5 1.0 5.2 2453 1.08 17.0 1.7x 10-1 

1.5 3.2 
2.0 1.8 
2.5 2.0 



Table 7. Damping Ratios by a Method Which Equates Energy 
Input and Energy Dissipation at Resonance 

Test No. 	 - T-1 
Dry Density 	- 91.7 PCF 
Moisture Content 	- 25.7% 
Confining Pressure - 40 psi 

No. Excitation Accelerometer Acceleration Torque Damping Shear Strain 
Current 	(R.M•S.) Reading (R.M.S.) 0 Max 2 (cm.gram) Ratio Amplitude 

(M.V.) (radian/sec) (%) (%) 

1 4.95 7.07 1.24 4.34 5.8 4.3 x 10-4 

2 14.06 19.27 3.37 12.32 6.0 1.2 x 10-3  
3 31.12 40.31 7.04 27.26 6.3 3.3 x 10-3  
4 42.07 67.19 11.73 36.85 5.2 6.1 x 10-3  
5 101.66 95.47 16.67 89.04 8.8 1.0 x 10-2  
6 208.63 152.05 26.55 182.74 11.3 2.7 x 10-2  
7 406.65 255.30 44.58 356.18 13.1 5.9 x 10-2  
8 601.13 353.60 61.75 526.53 14.0 1.2 x 10-1  

Torque current constant = 0.8759 cm gram/M.V. (R.M.S.) 2 
I = mass polar moment of inertia of top cap system = 30.5 gram cm sec 

 

Accelerometer constant = 0.17463 radian/sect per M.V. (R.M.S.) 

Tmax  
Damping Ratio - 

2It  max 

x 100% 
Accelerometer 

Shear Strain = 
6.574  x  output in M.V. 

fn2 	(R.M.S.) x 10
-4 

inches/inches 



= 90% 
	

Mean D = 8.2% 
	

Mean D = 11.2% 
	 Mean D = 10.6% 

= 4.7 x 10 4, 
-2„ 
 %1  Nw?ipipzz,  

• = 1.1 x 10
-2

% 

Maximum Shear 
Strain = y = 4.4 x 

-37 10 

A' l  
D1 1 	2 71. A'2 

Al 
 D1 
	2 A2 

D
1 
 = 11.8% 	D

2 
= 10.6% 	D1= 10.6% 	D2 = 10.6% 

D
1  = 14.7% 
	

D
2 = 12.7% 
	

D
1 
 = 16.6% 	D2  = 15.4% 	D

1 
 = 18.5% 	D2 

= 16.4% 

Mean 1, z 13.7% 
	

Mean D = 16.0% 
	 Mean D = 17.5% 

Al = Area of the hysteresis loop in compression half cycle. 

A' 1 = Area of the hysteresis loop in extension half cycle. 

Figure 52(a). The Values of Damping Ratios From Hysteresis Loops-(Test No. C.L.1. 



D
1  = 20.5% 	D2 = 17.1% 
	

D
1  = 21.9% 	D2 = 17.4% 	D

1  = 18.9% 	D2 = 16.2% 

	

Mean D = 18 . 8% 
	

Mean D = 1917% 
	

Mean D = 17.6% 

Figure 52(b). The Values of Damping Ratios from Hysteresis Loops--Test No. C.L.1. 



Table 8. Energy Dissipation by a Cyclic Triaxial Test Specimen 

Test No. 	 - C.D-3 
Dry Density 	- 98.8 PCF 
Moisture Content - 22.2% 
Confining Pressure - 40 psi 

Picture Loop Area 
# 	(# of sq.) 

from Graph 

Horizon Vertical 
Scale 	Scale 
In./Div. Lbs/Div. 

W1 -Energy 
Dissipation 
by specimen 
Lbs Inch 

Max Strain 
in a Cycle 
in Inches 

Damping 	Load 
Ratio 	(Lbs) 

D (%) 

K 
(Lb/Inch) 

	

1 	326 	0.162 	0.0127 

	

2 	223 	0.162 	0.0317 

	

3 	277 	0.325 	0.0317 

	

4 	361 	0.325 	0.0634 

	

5 	414 	0.650 	0.127 

	

8 	472 	1.624 	0.317 

	

9 	505 	1.624 	0.634 

11 	374 	1.624 	0.317 

	

12 	484 	0.650 	0.317 

0.672 x 10-3 

1.149 x 10 -3 

2.855 x 10 3 

7.440 x 10-3 

34.130 x 10-3 

243.2 x 10-3 

520.42 x 10-3 

192.7 x 10-3 

99.76 x 10-3  

0.226 x 10-3 7.29 

0.351 x 10-3 7.20 

0.541 x 10-3 8.37 

0.870 x 10-3 9.86 

1.892 x 10 3 13.24 

5.676 x 10-3 17.10 

8.838 x 10-3 18.20 

5.757 x 10 3 15.36 

3.919 x 10-3 15.75  

	

4.22 	18673 

	

6.36 	18120 

	

9.20 	17006 

	

13.40 	15402 

	

21.55 	11390 

	

40.40 	7118 

	

50.60 	5725 

	

33.36 	5802 

	

24.20 	6210 



Table 9. Energy Dissipation by Viscous Damping (Theoretical) 

2.  1 4  

8 
Test 	 - C.D-3 	 m = 3 
	

= 0.00621 
8 Dry Density 	- 98.8 PCF 

Moisture Content 	- 22.2% 
= 0.0788 Confining Pressure - 40 psi 

Weight of Specimen - 2.41 lbs. w = 1 CPS 
= 6.283 radian/sec. 

X-Max. 	 K 	 Aw2 
No. 	Displacement (pound/inch) 	AZTT Damping 	(pound/inch) 

in a cycle 	 Ratio (%) 
(inch) 

1 	8.7 x 10-4 

	

15402 	9.772 	9.86 	2.88 x 10
-5 

2 	1.9 x 10-3 

	

11390 	8.410 	13.24 	1.57 x 10
-4 

3 	2.3 x 10-3 

	

10585 	8.107 	14.24 	2.46 x 10
-4 

4 	5.7 x 10-3 

	

7118 	6.649 	17.10 	1.45 x 10
-3 

5 	8.8 x 10-3 

	

5725 	5.962 	18.20 	3.35 x 10
-3 

6 	5.8 x 10-3 

	

5802 	5.999 	15.36 	1.21 x 10
-3 

7 	3.9 x 10-3 

	

6210 	6.210 	15.75 	5.93 x 10
-4 

8 	1.7 x 10-2 

	

3706 	4.798 	22.62 	1.24 x 10
-2 

9 	2.3 x 10-2 

	

2625 	4.037 	22.68 	1.96 x 10
-2 

= ITC wX
2 

where C - damping coefficient 

X - maximum displacement in a cycle 

w - frequency in radians/sec. 

= TrD C
c wX

2 

= TrD 2 VRr71 wX2 

= 27rD 	x 6.283 x X2 
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AW
2 
= Energy dissipation by viscous damping theory 
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Table 10. Energy Dissipation by Hysteretic Damping (Theoretical) 

Test No. - C.D-3 
Dry Density - 98.8 PCF 
Moisture Content - 22.2% 
Confining Pressure - 40 psi 

No. X-Max 
Displacement 

in inches 

D-Damping 
Ratio 
in % 

K in 
pound/inch 

LW3  -Energy Dissipation 
in pound/inch 

1 

2 

3 

4 

5 

6 

7 

8 

2.3 x 10-4 

3.5 x 10-4 

5.4 x 10-4 

8.7 x 10-4 

1.9 x 10 3 

2.3 x 10-3 

5.7 x 10-3 

8.8 x 10-3 

7.29 

7.20 

8.37 

9.86 

13.24 

14.24 

17.10 

18.20 

18673 

18120 

17006 

15402 

11390 

10585 

7118 

5725 

0.44 x 10-3 

1.01 x 10-3 

2.62 x 10-3 

7.22 x 10-3 

3.39 x 10-2 

5.12 x 10-2 

2.46 x 10-1 

5.11 x 10
-1  

AW
3 
= Energy dissipation by hysteretic damping theory 

= 2KDw X2 where 	D - Damping ratio 

X - Maximum displacement in a cycle 

K - Stiffness in pound/inch 
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