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Abstract

As robots enter the human environment and come in
contact with inexperienced users, they need to be able to
interact with users in a multi-modal fashion—keyboard
and mouse are no longer acceptable as the only input
modalities.

This paper introduces a novel approach to program a
robot interactively through a multi-modal interface. The
key characteristic of this approach is that the user can
provide feedback interactively at any time—during both
the programming and the execution phase. The
framework takes a three-step approach to the problem:
multi-modal recognition, intention interpretation, and
prioritized task execution. The multi-modal recognition
module translates hand gestures and spontaneous speech
into a structured symbolic data stream without
abstracting away the user’s intent. The intention
interpretation module selects the appropriate primitives
to generate a task based on the user’s input, the system’s
current state, and robot sensor data. Finally, the
prioritized task execution module selects and executes
skill primitives based on the system’s current state,
sensor inputs, and prior tasks. The framework is
demonstrated by interactively controlling and
programming a vacuum-cleaning robot.

1. Introduction and Related Work

In the early years of robotics, teach pendants were the
most common mode of interaction for manipulator
systems. As software capabilities improved, the ability to
do off-line programming proved to be a significant step
forward. The current state-of-the-art in robot
programming is based on an iconic programming [1,2]
and/or programming by human demonstration [3,4]. The
goal of these paradigms is to translate the burden of
programming manipulator systems from robot experts to
task experts. To enable task experts who may not be robot
experts to interact with the robot, the interface needs to be

intuitive and have the ability to interpret the vague
specifications of the user.

Although the common modes of interaction for mobile
robots have been a joystick or a mouse assisted by a
graphical user interface, increasingly, voice or gestures
are introduced as input modalities [5,6]. In this paper, we
explore the task of interactively programming a vacuum-
cleaning robot. To accommodate novice users, the
programming framework should encompass a multi-
modal interface and preemptive interaction during both
programming and execution.

A programming framework with a multi-modal
interface has a distinct advantage over conventional
methods in that it is more intuitive and robust. Compared
to the traditional input modalities, hand gestures have an
advantage in specifying geometric objects and spatial
(three-dimensional) data, and are more intuitive for
conveying information to robots that exist in the three-
dimensional world. For symbolic information, on the
other hand, speech input is a natural choice. Although it
may seem that combining two error-prone technologies
leads to a larger error, recent data by Oviatt [7] shows
that fusing two or more information sources can
effectively reduce recognition uncertainty, thereby
improving robustness.

Preemptive interaction, which enables the user to take
over the control of a robot at any time, adds a new flavor
to the robot-programming problem. It enables the creation
of robot programs through interactive composition of
program components. It also enables interactive
adjustment of a program and accelerates the system’s
ability to adapt and learn through continuous interaction.
In other words, the framework allows the task expert to
“coach” the robot and to make adjustments on-line as it
performs the new skill. Iba et al [8] demonstrated the
significance of such interaction through the use of a
preemptive gesture-based control scheme.
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2. Framework

The programming approach introduced in this paper
offers an intuitive interface for the user and the ability to
provide interactive feedback to coach the robot
throughout the programming process. As input
modalities, we support hand gestures and spontaneous
speech.

The framework is composed of three functional
modules as illustrated in Figure 1. The first module
(multi-modal recognition) translates hand gestures and
spontaneous speech into a structured symbolic data
stream without abstracting away the user’s intent. The
second module (intention interpretation) selects the
appropriate set of primitives based on the user input,
current state, and robot sensor data. Finally, the third
module (prioritized task execution) selects and executes
primitives based on the current state, sensor inputs, and
the task given by the previous step. Each module includes
two modes of operation: a learning and an execution
mode. Depending on the mode of operation, the overall
system can provide interactive robot control, adjustment
of primitives, or composition of robot programs.

There are three main reasons for implementing the
system in a modular fashion as described in Figure 1.
First, the implementation follows a functional
decomposition of the problem: recognition, interpretation,
and execution. Second, in a modular architecture, one can
easily replace the implementations of individual modules.
For example, if we were to program an industrial
manipulator instead of a vacuum cleaning mobile robot,
the task execution module can be replaced by another
implementation. Finally, because the first and last module

can be implemented as slight modification of existing
software and hardware products, a modular
implementation allows us to work independently on the
intention interpretation module, which is the main focus
of our research.

2.1. Multi-Modal Recognition Module

The function of the multi-modal recognition module
(the first block in Figure 1) is to translate hand gestures
and spontaneous speech into a structured symbolic data
stream without abstracting away the user’s intent. The
symbols could be gestures, words, or both. We consider
three sub-functions. First, the module needs to translate
incoming audio and gesture signals into a structured
stream of word and gesture unit symbols with appropriate
parameters. Second, the module needs to be able to adapt
to new users by reinforcing symbols during recognition.
Finally, the module needs to be able to add new
vocabulary on-line.

The recognition module generates a parameterized
output stream. Examples of such parameters are the
direction and velocity of the hand for a waiving gesture,
or the designated x-y coordinates on the floor for a
pointing gesture. The types of input modalities discussed
throughout the paper are human voice and hand gestures
parameterized by two 22-sensor CyberGlove. Other
modalities can replace or be added to the current
recognition module.

In the recognition module, it is important not to
abstract away the user’s intent. The module should only
make a probabilistic recommendation of recognition
symbols rather than a hard decision. Therefore, this
module can be considered as a lower layer of a multi-
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level decision process, and the high level (hard) decision
is made by the intention interpretation module. A similar
tactic is often employed in speech and visual recognition
problems, where the final interpretation of sensor data is
based on the probability propagated through the layers of
a higher-level knowledge model.

The second function of the module is to adapt to the
data from new users by reinforcing symbols during
recognition. The multi-modal recognition module is
implemented using a Hidden Markov Model, a stochastic
method in which on-line model adaptation and
reinforcement are very common.

The third function of the module is to add new
vocabulary interactively. Unlike spoken language, the use
of gestures is not standardized and listed in dictionaries.
Although there exist many task dependent categorizations
of gestures, these categorizations do not generalize in a
task independent implementation. It is more reasonable to
assume that the system is only capable of recognizing a
few of the new user’s gestures and provide an easy way to
register additional gestures.

In our implementation, spontaneous speech is
translated into words using an off-the-shelf speech
recognition package. For hand gestures, we implemented
a word spotting technique using the Hidden Markov
Toolkit (HTK) by Microsoft. Our current system works
only with a basic set of words and gestures and does not
include interactive learning of new gestures. Table 1 lists
some of the initial candidate gestures and words that such
a basic vocabulary could include.

In the future, we plan to rely on cross-modal gestures
to implement on-line learning. There are already attempts
to automatically discover new gestures [9], however, it is
easier to rely on a redundant input mode to manage the
learning process. For instance, speech could be used to
signal the beginning and end of the learning process for
gestures, and vise versa.

2.2. Intention interpretation Module

The intention interpretation module (The second block
in Figure 1) has three functions. The first is to select the
appropriate task based on the current context. The second
is to attach priorities to the task to handle multiple task
requests. The third is to expand a semantic database to
include new mappings defined by the user.

The problem of intention interpretation can be
considered as a mapping problem from the stream of user
input, the current state of the system, and the robot sensor
data, to the correct robot task. The user input is an
incoming stream of structured symbolic data (with
parameters) from the multi-modal recognition module.
The robot sensor data is an abstracted version of the
robot’s sensor stream. For a mobile robot, the robot
sensor data could include range sensor data, distance to
the closest obstacle, the robot’s global position and
current velocity. For manipulators, the robot sensor data
includes the end-effector’s position and velocity in the
joint space or Cartesian space, and contact data if
force/torque/tactile sensors are available.

The output of the intention interpretation module is a
task symbol representing a configuration of robot
primitives. The usage and definition of the terms
primitive and task are discussed in the next section. In
short, a primitive is an encapsulation of a low level robot
behavior; that is, a policy π(x,t,α)=u that maps the state x
of a system and its environment into an appropriate action
u at a particular time t, with additional parameters α. The
task is a robot program composed of various primitives.

A second important function of the intention
interpretation module is to prioritize tasks. Not all tasks
are of equal importance. For example, the gesture or word
that corresponds to an emergency stop has a very high
priority, and should be executed even if the robot is
already engaged in another task. Similarly, a high-level
task, like navigating to a point (x,y), may require
assistance from the user to avoid obstacles and dead ends.
The task, therefore, has a lower priority than the tasks for
interactive user assistance.

Thirdly, the module should support expanding the
range of intentions that can be recognized. Expandability
is what distinguishes this framework from other systems
that can recognize intentions [10]. Intention interpretation
can be considered as the selection of the correct task
policy. Since it is unreasonable to assume that the system
designer can anticipate the whole task domain, the set of
mapping functions stored in the semantic database should
be expandable. This will be accomplished through the
interactive addition of mappings. Assume that the voice
command “go home” maps to the mobile robot’s task
primitive that navigates to its home position, and the user
wants to map the hand gesture “OK” (assumed to be

Input Candidate Symbols

One-Handed Gestures
Point, Waive, Open, Grasp, Turn, Power

Grasp, Precision Grasp

Two-Handed Gestures
Relative Position Specification

(e.g. two Points)

Speech Vocabulary

Go, Move, Goto, Stop, Turn
Forward, Backward, Right, Left

Deictics (This, That, There)
Names (Yellow, Green, Robot, etc.)

Numbers (One, Two, Three, etc.)
Sweep, Vacuum, On, Off

Program, Execute, Complete

Table 1: Initial Gesture and Speech Vocabularies



recognizable by the recognition module) to this task. The
user can train this new mapping, by repeating the “go
home” command while making an “OK” sign. Ideally, the
semantic trainer should map the “OK” sign gesture to the
behavior of navigating to the home position. This
particular example illustrates a simple case in which no
new behavior is created. A more interesting mapping is
described in the next section, where primitives are
adjusted, configured and grouped using similar
interactive techniques.

2.3. Prioritized Task Execution Module

The prioritized task execution module (the third block
in Figure 1) has two functions. The first is to arbitrate and
execute primitives based on the current state, the sensor
inputs, and the prioritized task given by the previous
module. The second is to generate a robot program (task)
by configuring primitives.

Before going into the details of each function, we
distinguish tasks from primitives based on their levels of
abstraction. Primitives are encapsulations of low-level
robot behaviors and serve as building blocks of high-level
behaviors. They consist of motor (M), sensor (S), or
sensori-motor (SM) primitives. Motor primitives generate
open loop behaviors that do not depend on sensor
feedback. For mobile robots, motor primitives include
sensor independent acceleration, stop, turn, beep, and
directional motions. Motor primitives for manipulators
are purely kinematic. Sensor primitives provide the
system with observable sensor signals, such as the current
robot position, joint angles, range sensor data, and
bumper switch data. Sensori-motor primitives generate
closed loop behaviors, such as a guarded move of an end-
effecter, or wall following and navigation towards a
particular destination for mobile robots. The sensori-
motor primitives can be thought of as pre-tailored
configurations of motor and sensor primitives.

A task is a configuration of primitives—either a
sequence of primitives, or a single primitive. Tasks are
stored in a database in the form of a state buffer [11],
Markov chain [12] or finite state machine [13]. Because

the intention interpretation module requires access to
some of the task data also, it shares the semantic,
primitive, and task databases with the task execution
module, as is shown in Figure 1.

The first important function of the task execution
module is task arbitration. As is explained in the section
on intention interpretation, not all tasks are equally
important. When tasks with different priorities are passed
to the prioritized task execution module, the module
orders the tasks and executes them according to their
priority. The scheme can be described as event driven
preemption, where the event (a request from the intention
interpretation module to execute a task) triggers an active
switch from the running task with lower priority to
another with higher priority. This allows the user to
handle situations such as making an emergency stop or
avoiding an obstacle during the execution of other tasks.

The second function is to generate a robot program
(task) interactively. The basic approach is to take a
coaching strategy using a redundant input mode. The user
sets the module to a learning mode and executes
primitives sequentially; the system remembers the
sequence as a task. There are two obvious problems to
this approach. The first problem is that the robot
programs are not always sequential due to conditional
branching and looping. It is not desirable to force the user
to remember a special gesture command since that would
make the system counter intuitive. A tool to convey a
program structure and an intuitive interface to edit the
program are necessary, unless the system can infer such
conditions from multiple examples. The second problem
is the lack of generality. The task would be useless if it
would only work for the particular parameter value for
which it was trained. Somehow, the user must let the
module know that some attributes can be generalized
while retaining others as important features of the task.
For the point and navigate task, the goal coordinates
should be variable, while the sequence of primitives used
to navigate needs to be retained. Making this distinction
is the subject of future research.



Table 2 summarizes the functions offered by each of
the three modules in the framework. Three modules work
synchronously in the continuous flow of data to provide
intuitive multi-modal interaction and programming of
robots.

3. Experiment

The main focus at this stage of our research is to
establish the connections between all three modules and
illustrate the overall operation of the framework with a
basic interactive programming example. The framework
is implemented using a Cye vacuum cleaning robot, two
22-sensor CyberGloves, and a microphone. We modified
the graphical user interface provided with the vacuum
cleaning robot, to accept hand gestures and speech input,
while retaining its original functionalities: mapping,
iconic programming, and path-planning [14]. As a result,
Cye can be controlled via mouse, speech, and hand
gestures.

The multi-modal recognition module is implemented
using the Sphinx-II speech recognition engine and the
Microsoft Hidden Markov Toolkit (HTK) that has been
customized to recognize gestures at 10Hz. A discussion
of the gesture recognition methodology is outside the
scope of this paper; however, the method is similar to the
one in [15], where parameters of Hidden Markov models
for each gesture are obtained from known strings of
gesture examples. Each gesture consists of gesture
phonemes that take into account finger-joint positions,
joint velocities, the hand’s Cartesian position and
velocities. The vocabulary of gestures is listed in Table 1.

The on-line addition of vocabulary is not implemented at
this point.

The intention interpretation module is implemented
with a semantic database (Table 3). The semantic
database connects inputs such as gesture and speech
symbols, the robot’s sensor readings, and the current state
to the most likely task for the robot to execute. A task,
which can be considered as a robot program, is a set of
one or more primitives. Each task has predefined
priorities attached to specify the importance of the task
over the others in the event of preemption. At this point,
the semantic database is fixed and does not support the

Module Input Function (Execution and/or Learning mode) Output

Multi-modal

Recognition

CyberGlove-R

Polhemus-R

CyberGlove-L

Polhemus-L

Acoustic (8bit-16KHz)

• Translate incoming audio and gesture signals into a

structured stream of word and gesture unit symbols

with appropriate parameters. (E)

• Reinforce models during recognition (exec. & learn)

• Add new vocabulary on-line. (L)

Gesture Symbol-R + param.

Gesture Symbol-L + param.

Word Symbol + param

Intention

Interpretation

Gesture Symbol-R + param
Gesture Symbol-L + param

Word Symbol + param

Robot Data

Robot Position

Robot Velocity

Sensor Readings

Knowledge of its current state

• Select the appropriate primitives based on the user

input, current state, and robot sensor data. (E)

• Prioritization of tasks, according to the database (E)

• Expand semantic database to adjust to new mappings

the user comes up with. (L)

Task symbol + priority + param

Prioritized Task

Execution

Robot Status

Sensor Readings

Task symbol + priority +

param

• Arbitrate and execute primitives based on current

state, sensor input, and the prioritized task given by

the previous module. (E)

•  Generate a robot program (task) by configuring

primitives. (E & L)

Control vector

Table 2: Functional Summary

Input Symbol
(“voice” and ‘gesture’)

Candidate Task Priority

“Stop” or two ‘Closed’ fists Stop() High

“Go” + “This”, “That”, etc + ‘Point’ Goto(P) Medium

“Go” or “Move” + Direction (“Right”
“Forward”, “Left”, “Back”)

Move(v) Medium

‘Waive’ or “Go” + ‘Waive’ Move(v) Medium

“Go Home” Gohome() Medium

“Vacuum” + “On” or “Off” Vacuum(On/Off) Medium

“Turn” or
“Turn” + direction (“Right”, “Left)

Turn(ω) Medium

“Cover Area” + two ‘Point’s
AreaCoverage

(P1,P2)
Medium

“Program” n Program a task n Low

“Complete” n End of program Low

“Execute Program” n Execute a task n Low

Table 3: Semantics Database



on-line addition of entries.
The prioritized task execution module handles tasks by

taking primitives out of the task, and executing them
according to their priority. The primitives used in the
current scenarios are listed in Table 4. Primitives such as
GoHome and AreaCoverage provide high-level
navigation, whereas primitives such as Move, Turn, and
Vacuum give low-level control of the robot. Primitives
are executed in order of arrival except when a high-
priority task is introduced; such tasks pre-empt the
current task and execute immediately. In the current
implementation, tasks are represented as a set of
primitives governed by a finite state machine.

For the current implementation, we have considered

two interactive programming scenarios. The first scenario
is to have a user register numerous via-points to which the
robot should navigate using its path planning capability.
The second scenario is to use a two-handed gesture to
specify an area that the robot should vacuum; the robot
then vacuums the area using its area coverage primitive.
In both scenarios, the robot can accept the user’s
preemptive speech and hand gesture commands to deal
with unforeseen events. Figure 2 and Figure 3 illustrate
the sequences of the first and second scenario. Each
figure contains a sequence of camera snapshots with the
corresponding conceptual illustrations of the framework,
and the cropped images of the GUI.

In the first scenario, the user first verbally commands
that the subsequent actions be stored as “Program One”.
The user then executes the Goto primitive by combining
the voice command “Go There” with the gestural
command ‘Point’ to indicate the destination. In general,
deictic terms such as “This”, “That”, and “There” must be
accompanied by a referential gesture to specify the
corresponding task parameters. For the Goto primitive,
the Cartesian coordinates are extracted from the
intersection between the extension of the index finger and
the ground [8]. In step 2, the user enters another Goto
primitive but with a different end-position. After having
saved these two primitives in “Program One” with the
“Complete” command, the user can re-execute the
program through with the voice command “Execute
Program One”. However, in step 4, when the robot

Primitive Parameter Action

Goto Position P
Move to the position,

w/path-planning

Vacuum On/Off
Toggle the state of the

vacuum cleaner

AreaCoverage
Rectangular Area

(P0, P1)
Traverse the area specified

GoHome N/A
Move the robot back to the

home position

Move Velocity(v)
Apply additional velocity v

to the robot

Turn Angular Velocity(ω)
Apply additional angular

velocity ω to the robot

Stop N/A Stops the robot motion

Table 4: Primitives Database

Programming Execution

Action DB

Trainer
Speech DB

Prioritized
Execution
Module

Intention
Interpretation

Module

Multi-modal
Recognition

Module

Gesture DB
Task DB
Program 1 =

GoToGoToGoToGoTo(P0)(P0)(P0)(P0)

Primitive DB
GoTo()

Semantic DB
Go +

There & Point
→

GoTo(P0)

Speech: “Go There”
Gesture: Point(P0)

Action DB

Trainer
Speech DB

Prioritized
Execution
Module

Intention
Interpretation

Module

Multi-modal
Recognition

Module

Gesture DB
Task DB
Program 1 =

GoTo(P0)
+ GoTo(P1)

Primitive DB
GoTo()

Semantic DB
Go +

There & Point
→

GoTo(P1)

Speech: “Go There”
Gesture: Point(P1)

Action DB

Trainer
Speech DB

Prioritized
Execution
Module

Intention
Interpretation

Module

Multi-modal
Recognition

Module

Gesture DB
Task DB
Program 1 =

GoTo(P0)
+ GoTo(P1)

Primitive DB
GoTo()

Semantic DB
Execute

→
Program 1

Speech: “Execute Program 1”
Gesture: “”

Step 1 Step 2 Step 3 Step 4 Step 5

Action DB

Trainer
Speech DB

Prioritized
Execution
Module

Intention
Interpretation

Module

Multi-modal
Recognition

Module

Gesture DB
Task DB
Move(v)
Program 1 =

GoTo(P0)
+ GoTo(P1)

Primitive DB
Move()
GoTo()

Semantic DB
Waive(v)

→
Move(v)

Speech: “”
Gesture: Waive(v)

Action DB

Trainer
Speech DB

Prioritized
Execution
Module

Intention
Interpretation

Module

Multi-modal
Recognition

Module

Gesture DB
Task DB
Program 1 =

GoTo(P0)
+ GoTo(P1)

Primitive DB
GoTo()

Semantic DB

Speech: “”
Gesture: “”

Figure 2: Experiment Scenario 1



navigates to the second position from the first, it
encounters an unknown obstacle. At this point, the user
gestures the ‘Waive’ command, which has a higher task
priority and can be used to control the robot around the
obstacle. When the obstacle has been cleared and the user
stops waiving, the robot returns to the execution of
“Program One” (Step 5).

In the second scenario, illustrated in Figure 3, the user
defines the task “Program Two.” After turning on the
vacuum attachment with the voice command “Vacuum
On” (step 1), the user issues the AreaCoverage command
with one two-handed gesture; each hand performs a
‘Point’ gestures to specify the diagonally opposite corners
of the area (with the direction aligned along the axes of
the GUI). Steps 3 to 5 show the execution of the
AreaCoverage command. As in the first scenario, at any
point can the user re-execute “Program Two”, interrupt
the execution, or interactively adjust the execution with
higher-priority commands.

4. Conclusion and Future Work

In this paper, we have described the overall framework
for interactive multi-modal robot programming and have
illustrated the framework with preliminary result from
two programming scenarios: point-to-point navigation
and area coverage. Although the current implementation
is limited in the sense that none of the databases, except
for the task database, can be expanded on-line, we feel

that this preliminary result clearly illustrates the
usefulness of multi-modal interaction, including the
capability to interrupt commands preemptively.

To obtain a comprehensive multi-modal interactive
robot programming system, several elements still need to
be added in the future. Although the programs generated
by the current system can be re-executed, they are limited
to fixed task sequences. To expand the generality of the
paradigm, we need to add the ability to re-configure the
task parameters interactively and define non-sequential
flow structures such as conditional branching and looping.
Secondly, we plan to investigate how the system can
determine the most likely high-level goal the user is
trying to achieve, given a limited, initial sequence of task
primitives. Lastly, the system performance needs to be
quantitatively evaluated through user studies, to
determine the benefits provided by multi-modal
programming, interactivity, and intention interpretation.
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