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Abstract: When making design decisions in 
environmentally benign design and manufacture, the 
decision maker is often faced with extreme uncertainty.  
Due to a lack of understanding of the complex 
dynamics of environmental and societal systems, it is 
very difficult to judge the impact different design 
alternatives have on the environment, the economy and 
the society, especially in the distant future.   
In this paper, two formalisms are illustrated for making 
design decisions under extreme uncertainty.  The 
formalisms are probability bounds analysis and info-
gap decision theory.  We introduce the basic concepts 
for both formalisms, discuss the advantages and 
limitations, and identify under which circumstances 
they are useful in the context of design decision 
making.  One can think of both decision methods as 
having a built-in sensitivity analysis allowing the 
decision maker to judge whether a decision can be 
made confidently based on the current information, or 
whether additional information needs to be gathered. 

 
1.  Introduction: Companies are increasingly 
concerned with the environment as consumers and 
legislators are realizing that a cost to society results 

from environmental impact.  Interest is therefore 
growing in Environmentally Benign Design and 
Manufacture (EBDM), a domain that examines the 
often competing goals of achieving economic growth 
and protecting the environment.   

All products and processes in some way affect our 
environment during their entire, and often long, life 
span.  Consequently, an evaluation of all of the loads 
and impacts has traditionally been addressed with life 
cycle assessment (LCA) methods.  Researchers are 
starting to recognize that a key characteristic of LCA is 
that only very limited information and knowledge is 
available, resulting in large uncertainty, as summarized 
by Ross [1] and Björklund [2].   

In general, multi-criteria evaluations that include 
environmental performance can be decomposed as 
depicted in Figure 1.  Similar decompositions have 
been proposed [3, 4], though none are identical in form 
or scope to the structure presented here.  Components 
are grouped, as indicated by dashed-lines in the figure, 
using Hofstetter’s concept of “spheres” of knowledge 
and reasoning about environmental evaluation [3]: 
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Figure 1: The components of an environmental analysis 
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• Technosphere:  description of the product and its life 
cycle and an inventory of loads (e.g. 
emissions) 

• Ecosphere:  modeling of changes to the 
environment 

• Valuesphere:  modeling of the perceived 
seriousness or importance of 
changes to the environment 

Any of the components in Figure 1 can be a source of 
uncertainty.  Often some of these sources, such as form 
and inventory, are well characterized, while others, such 
as environmental damages, are much harder to 
characterize.   

In summary, EBDM is a multi-objective decision 
problem, pursuing the often competing goals of 
economic growth and environmental protection, while 
subjected to multiple sources of uncertainty.  This is a 
rich context in which to explore different methods of 
representing uncertainty and making engineering design 
decisions.  It also offers an opportunity to contribute to 
the EBDM and LCA communities by demonstrating 
practical approaches for uncertainty management in 
those domains. 

2. Decision making in EBDM.  When making any 
design decision, the engineer must predict the uncertain 
consequences of each alternative under consideration so 
that the most preferred alternative can be chosen.  From 
a mathematical perspective, this requires the use a 
formalism in which uncertainty can be expressed and 
represented, in which one can compute with uncertain 
quantities to infer information about decision 
consequences, and based upon which the choice of a 
particular decision alternative can be justified 
rationally. 
Traditionally, the formalism for expressing uncertainty 
has been probability theory.  Dating back to the first 
half of the twentieth century, probability theory has 
been shown to support the expression of a DM’s 
beliefs, operationalized as the DM’s willingness to bet 
[5, 6].  Combined with utility theory to express the 
DM’s preferences, a normative decision theory has 
been established in which the most preferred alternative 
is determined by maximizing the expected utility [7].  
However, in practice, this normative decision theory 
poses some problems;  in order to apply it, one must 
assume that the DM can express his/her beliefs and 
preferences accurately and coherently in precise 
mathematical functions.  Even if this were possible, it 
would require significant resources.  Therefore, much 
of the recent research in decision theory has focused on 
relaxing the assumptions of precise expressions of 
beliefs and preferences [8-11]. 

Many methods have been recommended for 
representing uncertainty in engineering design, 
including precise subjective or Bayesian probability 
theory [6, 12], interval theory [13], imprecise 
probabilities [11, 14], evidence theory [15, 16], 
possibility theory [17], and information gaps [18].  
Previous work has compared probability theory and 
possibility theory [19], compared evidence theory and 
Bayesian theory [20], and demonstrated the potential 
value of using imprecise probabilities (compared to 
precise probabilities) in a simple example [14].   

In this paper, the focus is on two such alternative 
approaches for formulating decisions under uncertainty:  
info-gap decision theory (IGDT) [18] and probability 
bounds analysis (PBA) [21].  We focus on these 
because the hold particular promise for decision making 
under extreme uncertainty as is common in EBDM. 

Information-Gap Decision Theory.  When information 
is very sparse, a decision maker may want to make a 
robust decision—that is, a decision that will yield a 
reasonably satisfactory result over a large range of 
realizations of the uncertain parameters.  One such 
approach is information-gap decision theory (IGDT), 
developed by Ben-Haim [18].   

In IGDT, it is assumed that a decision maker has 
available a nominal, but very suspect, estimate of an 
uncertain quantity.  IGDT presents an approach to 
making design decisions when there is a gap of 
unknown size between the uncertain quantity’s true 
value (which could be known but is not) and an 
available nominal estimate.  IGDT models the size of 
this gap as an uncertainty parameter, α.  In IGDT, the 
design decision maker confronts this gap by employing 
a satisficing decision policy and seeking to maximize 
robustness to uncertainty.  The decision maker must 
specify a satisficing performance level—a “good 
enough”, minimally acceptable level of performance in 
a worst case scenario—and accordingly choose the 
design that, subject to this minimum requirement, 
allows for the largest information gap, i.e., the largest α.  

IGDT is often mentioned in passing in papers on 
uncertainty in engineering design, but the authors are 
not aware of any previous detailed discussions of IGDT 
in environmentally benign design.  In this paper, we 
examine the applicability of IGDT to environmental 
benign design and LCA when there is severe 
uncertainty in assessing the loads and impacts that a 
design has on the environment. 

Probability Bounds Analysis. A second uncertainty 
representation discussed in this paper is Probability 
Bounds Analysis (PBA) [21] derived from imprecise 
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probability theory [11, 14].  While IGDT uses info-gap 
models (intervals of unknown size) to represent 
extremely uncertain information, PBA is a formalism in 
which uncertainty is represented in probability boxes—
a hybrid representation that combines both intervals and 
probability distributions. In previous work, we have 
demonstrated that PBA is valuable as compared to 
traditional decision analysis in cases in which 
uncertainty is large but quantifiable.  In this paper, the 
comparison of PBA and traditional decision analysis is 
taken a step farther.  In short, the paper begins to 
answer when it is useful to use imprecise probabilities, 
Specifically, the process of using PBA is compared to 
the process of traditional decision analysis (with 
sensitivity analysis) [22-24] in the context of EBDM.    

In traditional decision analysis, uncertainty is 
considered in a two step process.  First, alternatives are 
compared based on nominal estimates, or base cases, of 
uncertain parameters.  Second, the sensitivity of this 
comparison is explored by varying the uncertainty over 
a specified range.  In PBA, the total uncertainty is 
incorporated into the decision and analysis in one step 
using a specific sub-class of imprecise probabilities 
called probability-boxes.  We have demonstrated this 
process in detail in [25].  Here we reiterated the 
advantages and limitations via a comparison to decision 
analysis.  A theoretical view of PBA as a sensitivity 
analysis tool was presented by Ferson et al. [26], but to 
the authors’ knowledge, Aughenbaugh et al. [25] 
presented the first practical comparison and 
demonstration in engineering design and EBDM. 

2. LCA Design Example: Oil Filter selection:  To 
investigate the advantages and disadvantages of IGDT 
and PBA in the context of environmentally benign 
design and manufacture, we have applied both 
formalisms to the design of oil filters.  The detailed 
results of these design studies can be found in [27] and 
[25] 

Around 250 million light duty oil filters are discarded 
(and not recycled) in the United States each year [28]. 
The environmental impact of these filters can be 
substantial, as disposable filters contain large amounts 
of steel, aluminum, or plastic, depending on the style of 
filter.     

In this example, it is assumed that an automobile 
manufacturer wants to reduce the environmental impact 
of oil filters from its cars by designing a more 
environmentally benign filter.  Naturally, the company 
simultaneously wants to make a profit, making this an 
EBDM problem.  We assume that since high-price 
filters are less attractive to consumers than low-price 
filters (with all other things being equal), the 

manufacturer wants to minimize the total cost to the 
consumer of purchasing oil filters over the lifetime of 
the vehicle.   

In the following, the example is described in more 
detail.  Naturally, some simplifications and assumptions 
are introduced in the problem.  For example, the exact 
dimensions and parameters for the problem are chosen 
to be realistic, but are not based on hard, real-world 
data.  Consequently, the emphasis is not on the actual 
decision outcome (i.e. the chosen filter), but rather on 
the decision and analysis process. 

Types of oil filters.  In this simplified model, shown in 
Figure 2, an oil filter is comprised of five components: 
housing, top cap, filter, inner support, and bottom cap. 
The housing, top cap, and bottom cap make up the 
casing, and the inner support and filter make up the 
cartridge.  Three different types of oil filters are 
considered, as summarized in Table 1.   

For the steel easy change (SEC) filter, the structural 
components are made of steel.  The entire filter is 
designed to be replaced at once; it is simply unscrewed 
from the engine and then discarded or recycled.  The 
plastic easy change (PEC) filter is used exactly as the 
SEC filter, but its structural components are plastic 
rather than steel.  Finally, the take-apart spin-on 
(TASO) filter has structural components made of 

filter

inner
supportbottom cap

top cap

housing

Casing Components Cartridge Components

 
Figure 2.  Oil filter schematic diagram 

Filter Material Discarded parts 
SEC Steel Cartridge and Casing 
PEC Plastic Cartridge and Casing 

TASO Aluminum Cartridge only 
Table 1.  Types of filters 
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aluminum and when the filter is replaced, only the 
cartridge is replaced; the casing is reused. 

Ecological impact.  It is assumed that the primary 
environmental impact of an oil filter arises due to the 
construction, transportation, and disposal of the casing 
and cartridge.  These components are constructed of 
materials such as steel, aluminum, and plastics and are 
present in large quantities.  Other substances, such as 
the cellulose filter element and oil residue, are present 
in much smaller quantities and are generally equivalent 
in all three types of filters.  

The Eco-indicator 95 is an impact assessment method 
for life-cycle analysis in which particular scores 
(ecoscores), measured in eco-points, are assigned to 
specific materials and processes There is also an 
updated Eco-indicator 99 available [29], but for 
illustrative purposes the old database and methodology 
is sufficient.  Since these scores are given for specific 
materials as points per mass, we will refer to them as 
Eco-indicator rates, or simply ecorates in this paper.  
For instance, the impact of a filter of material m  is 
computed as: 

  (1) m m mimpact ecoscore mass ecorate= = ⋅ m

For a particular material, the ecorate not only captures 
its environmental effects and damages, but also sets a 
value on these damages relative to other damages.  As 
such, it combines the ecosphere and valuesphere 
components of Figure 1.  This allows for tradeoffs 
between different materials and processes with different 
inherent environmental impacts.  These value tradeoffs 
are fixed within the Eco-indicator model, but in practice, 
not every society or decision maker will agree with 
these tradeoffs.  Consequently, the valuesphere is a an 
important source of uncertainty in environmental life-
cycle assessment.  The effects and damages are 
uncertain due to the complexity and uncertainty of 
modeling ecosystems.   

In Figure 1 the ecosphere is independent of the 
technosphere because the ecorates are independent of 
what effects are present; they are pre-tabulated for all 
materials.  In this problem, the technosphere effects, or 
inventory, is given by the total mass of material used 
over a vehicle’s lifetime, and are thus incorporated into 
the problem in Equation (1). 

The essential tradeoff that exists in the filter design 
problem from an ecological perspective is the 
difference in replacement strategy between the filter 
options.  The TASO incurs a high one-time load  
whereas the SEC and PEC incur a smaller load every 
time the filter is changed.  When the number of oil filter 

changes is small, the SEC filter has a smaller impact, 
but as the number of filter replacements increases, the 
impact of replacing the casing every time for the SEC 
filter will exceed the one-time impact of the TASO’s 
casing.  The TASO casing has a higher impact because 
it is contains more material—it is built to last as long as 
the car’s engine—than the SEC filter and because the 
material is aluminum, which is more resource intensive 
per unit weight than steel.  In contrast, the SEC filter is 
made of steel (with a lower impact per mass) and 
contains less material since its lifetime is shorter.   

3. Assumptions on available information:  It is our 
hypothesis that the uncertainty representation should be 
chosen to match the availability and quality of the 
information.  We have therefore considered multiple 
scenarios in which different problem parameters are 
more or less uncertain.  We have then investigated how 
these assumptions on the availability of information 
impact the performance of IGDT and PBA. 

Info-Gaps.  For IGDT, we have assumed that the 
decision maker chooses between TASO and SEC filters 
under the following uncertainty scenarios: 

• One uncertainty that affects both design 
alternatives.  The number of filters F  used over the 
vehicle’s lifetime depends strongly on the behavior 
of the car’s owners.  This behavior is very uncertain 
and warrants a robust design solution. 

• One uncertainty that has the same units and type but 
a different nominal for each alternative.  The 
ecorate of the casing material for each alternative is 
considered to be uncertain. 

• Two unrelated uncertainties evaluated first using a 
combined uncertainty parameter and second using 
separate uncertainty parameter:  Both the ecorates 
of the casings and the number of filters F  are 
assumed to be very uncertain. 

In each of these cases, the uncertain parameters are 
assumed to extremely uncertain to the point where an 
info-gap model is the best characterization. 

Probability Bounds Analysis.  In the case of PBA, the 
assumption is that the uncertainty is sufficiently well-
understood that it can be characterized as a p-box, but 
that insufficient data is available to support a precise 
probability distribution.  Specifically, the ecological 
impact per unit mass is known to be within a stated 
interval for each material.  Interval data is assumed 
because the uncertainty in the numbers is not 
probabilistic but rather arises from modeling errors and 
assumptions about the ecosphere and valuesphere.   

Imprecise probabilities are used to represent the 
uncertainty in the vehicle lifetime and filter change 
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frequencies.  The variability arises because the 
population of vehicle owners contains a variety of 
individuals, each who has his or her own behavior, but 
who collectively appear random.  For illustration, only 
one parameter of the distributions is assumed to be 
known imprecisely, but the methods immediately 
generalize to multiple uncertain parameters.  Several 
reasons for imprecisely known probabilities include: 

• Limited relevant historical data for a new product 
• Incomplete characterization of market segment for a 

new product, e.g. imprecisely known customer 
population 

• Changing behavior due to outside influences, e.g. 
laws 

It is assumed that  the vehicle lifetime  and the filter 
change frequency 

L
f  are both independent of all eco-

rates, and that the weighting w  is independent of all 
other parameters.  However, the dependency between 

 and L f  is unknown, as are all dependencies between 
all ecorates.   

Why is independence not assumed?   and L f  are both 
related to user behavior.  It is conceivable that a user 
who intends to keep a car a long time will change the 
filter at a higher rate than someone who keeps a car a 
short time, since the long-time owner would have a 
greater interest in keeping the engine in good condition.  
In such a scenario, L  and f  are correlated. However, 
this dependence is not known exactly and may not even 
exist at all, so it makes sense to assume an unknown 
dependency.  A similar argument can be made between 
the eco-rates; they could be independent since they 
relate to different material and potentially different 
environmental effects and damages.  However, they 
could also be correlated if, for example, they share an 
effect in the ecosphere.  

A traditional statistical approach would require perfect 
knowledge of all joint probabilities, information that is 
rarely known.  Consequently, independence between 
uncertain parameters is commonly assumed, an 
assumption that is often unjustifiable given available 
information.  The ability of PBA to handle unknown 
dependencies, and therefore compute the possible range 
of results with just the marginal distributions as inputs, 
is a major advantage over traditional methods. 

3. Evaluation of the applicability of Info-Gap 
Decision Theory:  In this section, we discuss our 
findings with respect to the use of IGDT for decision 
making under extreme uncertainty in the context of the 
oil filter design problem. 

When IGDT is warranted.  In certain situations, the 
info-gap design analysis approach can eliminate the 

need for further data collection by facilitating decision 
making under extreme uncertainty.  For instance, if a 
switch in design choice (e.g., from SEC to TASO) 
requires a small sacrifice in guaranteed performance yet 
affords a reasonably large amount of extra robustness to 
error in a nominal estimate, one could decide to switch 
choice without collecting more information.  An item 
for future work is to quantify the cost savings that such 
IGDT analyses generate by requiring less information 
to support simple, clear choices. 

Although info-gap models are meant for use when less 
information is available than is required by other 
uncertainty representations, it seems possible that there 
are still “gray areas” where, given the available 
information, it is difficult to know which approach will 
produce the best results. For example, when assuming 
that the uncertainty in the number of filters is extreme.  
A strong argument could be made that this uncertainty 
could be bound with an interval, such as [5, 40]F = .  
Which is a better approach, IGDT or interval analysis?  
Future work will include experiments comparing IGDT 
results to those of other approaches with different 
information, assumptions, and values, with an aim 
towards eventually developing guidelines for when 
IGDT would be more appropriate or less expensive to 
apply. 

Intuitiveness of evaluating severe uncertainty and 
satisficing performance.  The IGDT approach requires 
that the decision maker be able to evaluate the 
acceptability of some satisficed level of critical 
performance in light of the corresponding gain in 
robustness to an info-gap of unknown size.  In the 
example in this paper, we assumed that the decision 
maker could state a preference for some acceptable size 
in the Eco-indicator 99 measure of environmental 
impact.  Although Eco-indicator points are grounded in 
reality, with one “point” corresponding to 1/1000 of the 
environmental load of a European citizen over 1 year, 
the Eco-indicator 99 construct was primarily developed 
to compare options relatively, not absolutely [29].  
Whether or not it is reasonable to state one’s preference 
for an absolute millipoint score with that reference 
point in mind is left to future study. 

Similarly, IGDT requires a decision maker to have a 
relative sense for the magnitude of deviation around an 
uncertain quantity’s nominal estimate, but not all 
uncertainty severities are equally easy to assess.  In this 
example, it is probably easier to understand the severity 
of error in the number of lifetime filter changes than to 
understand the severity of particular errors in an 
ecorate.  This problem is further compounded when 
there are uncertain ecorates for different materials with 
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different nominal values.  Difficulty assessing the 
severity of an uncertainty makes trading off 
performance to gain robustness difficult, perhaps 
prohibitively so.  A discussion of calibration and 
judgment of tradeoffs is considered in an entire chapter 
by Ben-Haim [18], but more experimentation is needed 
to determine the efficacy of such techniques in 
environmentally benign design problems. 

Considerations when using IGDT for multiple 
uncertainties.  In general, analyzing the relationships 
between satisficing reward, info-gap robustness, and the 
robust-optimal design increases in difficulty whenever 
any of them have multiple dimensions.  In [27] it was 
shown that having multiple uncertainties made 
visualizing and understanding tradeoffs more involved.  
The established technique of parameterizing all 
uncertainties with a single α  was shown to be feasible 
but restrictive, as all errors had to be defined as 
normalized by their nominals as well as all growing at 
the same rates. 

The novel technique of assigning a separate uncertainty 
parameter iα  to each uncertain quantity revealed that 
there are possible ranges of indeterminacy that are not 
identified when uncertainties are lumped into a single 
α  [27].  However, a more complicated three-
dimensional viewing method was needed to facilitate 
and understanding of relationships.  This multi- α  
method may be inapplicable for examples with 
decisions that are more complicated than the simple 
selection problem explored in this paper.  Future work 
is needed to determine how large the ranges of 
indeterminacy are, as well as whether or not a designer 
could successfully tradeoff robustnesses between 
different uncertainties.  

Other future areas for IGDT-related investigation.  
There are other opportunities for future work besides 
those mentioned in previous sections.  With the goal in 
mind to integrate economic assessments into 
environmentally benign design, support for multi-
objective problems is necessary.  The existing multi-
criteria techniques used in info-gap decision theory 
[18], which involve defining goals preemptively, may 
have practical limitations similar in nature to those 
found when designing for multiple uncertainties.  Also, 
the implications of IGDT need to be considered across 
a wider variety of the uncertainties across the 
components originally laid out in Figure 1; in this 
paper, only life cycle events and proxies for real 
environmental impact were explored.  Finally, it is the 
expectation of the authors that more careful and 
structured experiments comparing uncertainty 
formalisms can move us towards a framework for 

systematic treatment of the typical uncertainties 
encountered in environmentally benign design. 

5. Evaluation of the applicability of Probability 
Bounds Analysis:  In this section, we discuss our 
findings with respect to the use of PBA as compared to 
traditional decision analysis, focusing on four areas: 
veracity, acuity, complexity, and flexibility. 

Veracity of the analysis.  The oil filter example 
problem (details in [25]) revealed that a one-way 
sensitivity analysis can lead to the conclusion that the 
decision is insensitive to the uncertainty, while the PBA 
analysis of the same problem can indicate that the 
solution is very sensitive to the uncertainty.  An obvious 
question to ask is which one gives the right result?  
Unfortunately, this question has no straightforward 
answer.   

Due to repeated variables in the interval calculations, 
PBA gives bounds that may be overly conservative (too 
broad).  On the other hand, one-way sensitivity analysis 
ignores dependencies and higher order interactions and 
can lead to results that are non-rigorous, i.e., that are 
inconsistent with the truth.  If the selection problem is 
recast as a hypothesis testing, the types of errors made 
with the PBA and sensitivity analyses can be discussed 
in standard statistical terms [30].   

Consider the null hypothesis that either the PEC or the 
SEC filter is the best choice.  The alternative hypothesis 
is that the TASO filter is the best.  A sensitivity analysis 
may underestimate the true uncertainty and indicate that 
there is enough evidence to reject the null hypothesis in 
favor of the alternative when there really is not 
sufficient evidence to do so.  In this situation, the null 
hypothesis could be rejected when it is true, a Type I 
error.   

Conversely, PBA may overestimate the uncertainty and 
lead to the failure to reject the null hypothesis when it is 
false, a Type II error.  A Type II error is an error in the 
sense that an opportunity to make a decision is lost; the 
null hypothesis could have been rejected, but was not.  
Consequently, a decision maker may waste resources or 
make an arbitrary decision trying to reduce 
indeterminacy that does not exist in the actual problem. 

Which is preferable, a Type I or Type II error?  A Type 
II error may be preferable in high-risk applications; 
when the cost of failure is high, one is often more 
willing to be conservative and spend additional 
resources to reduce uncertainty further.  In other 
applications, the cost of delaying a decision or 
collecting more information may exceed any potential 
benefit from waiting.  There is no general answer; the 
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analyst must assess the situation and make his or her 
own choice. 

We are currently collaborating with applied 
mathematicians in the interval arithmetic community to 
improve our ability to compute with p-boxes without 
generating overly conservative results [31].  This would 
eliminate the concern for Type II errors and leave only 
the consideration of increased computational cost. 

Acuity of analysis.  One goal of sensitivity analysis is 
often to determine what additional information could 
best improve the decision.  To this end, the breakout of 
uncertainty and sensitivity into individual parameters in 
one-way sensitivity analysis is an advantage.  By 
considering each parameter independently, the decision 
maker gains insight into the sensitivity of the decision 
to each parameter.   

PBA considers all uncertainties simultaneously, 
accounting for all interactions and dependencies, but it 
does not identify the individually important sources of 
the sensitivity.  If the PBA analysis determines that the 
decision is not sensitive to the overall uncertainty, this 
is not a problem.  However, in a case in which there is 
indeterminacy, a decision maker would benefit from 
guidance into resolution of the indeterminacy.   

For example, based on the sensitivity analysis in Figure 
3, there seems to be no need to increase knowledge 
about vehicle lifetime.  On the other hand, the 
difference between SEC and TASO filter is very 
sensitive to the ecorate of steel, though not enough (as a 
one-way effect) to change the decision.  The sensitivity 
analysis suggests that any additional information 
collection focus on characterizing the environmental 
effects.  The basic PBA analysis does not provide this 

insight. 

Ferson et al. [26] have suggested using a meta-
sensitivity analysis with PBA.  Traditional sensitivity 
starts with the base values and systematically varies one 
parameter at a time to its extremes.  Since PBA can 
capture all of the uncertainty at once, the opposite 
approach can be taken.  The “base” case becomes the 
results with all of the uncertainty considered, and then 
each uncertain parameter is “pinched” down to a zero-
variance interval, a precise probability, or even a point 
value and the reduction of uncertainty in the result is 
observed.   

The one-way nature of the meta-sensitivity analysis is 
actually beneficial.  When deciding whether to spend 
resources collecting information about a particular 
parameter, the decision maker is specifically interested 
in effect on the overall uncertainty of reducing the 
uncertainty in that particular source.  This type of 
information is not available in traditional sensitivity 
analysis.  It thus appears that the most accurate 
identification of sensitivity is achieved by a hybrid 
approach.  Additional research into such approaches is 
underway. 

Complexity of analysis.  A one-way sensitivity analysis 
is computationally inexpensive.  In addition to the 
solution with the base values, each uncertain parameter 
requires just two calculations—one for the upper bound 
and one for the lower bound.  Each of these calculations 
may involve one Monte Carlo loop to calculate 
expected values, although in many cases this is 
unnecessary.  Either way, the computational complexity 
is generally less than with PBA.  

The advantage quickly switches to PBA if two-way (or 
higher) sensitivity analysis is performed, especially 
when nested Monte Carlo loops are used.  PBA 
computations using dependency bounds convolutions 
[32] are generally much faster than traditional 
sensitivity analysis [26, 33].  However, dependency 
bounds convolutions require an open, operationally 
defined model (e.g. algebraic) of the problem.  
Consequently, they cannot be used to analyze models 
such a differential equations, simulations, and finite 
element analysis.  Current research establishes methods 
for propagating p-boxes through "black box" models, or 
models with unknown or complicated structure [31], 
and a comparison of these methods of PBA with 
sensitivity analysis is an area of future work. 

Flexibility of the analysis.  Another advantage of PBA 
is its inherent flexibility.  We have already discussed 
PBA’s flexibility in terms of assumptions of 
independence or unknown dependence within the 

-150 -100 -50 0 50 100 150

eco rate, plastic
frequency (f)

lifetime (L)
eco rate, aluminum
utility weighting (w)

eco rate, steel-----------------------------eco rate, aluminum
frequency (f)

lifetime (L)
utility weighting (w)

eco rate, plastic
eco rate, steel-----------------------------eco rate, steel

frequency (f)
eco rate, aluminum

lifetime (L)
utility weighting (w)

eco rate, plastic

Difference in Expected Utility

SEC-TASO

SEC-PEC

TASO-PEC

 
Figure 3. Tornado plot comparing multiple alternatives 
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context of the EBDM example.  Recent algorithms also 
handle the pairwise dependencies of maximal or 
minimal correlation, correlation, linear relationship and 
correlation within a specified interval, and signed 
(positive or negative) correlation [26]. 

In [25], the flexibility with regard to imprecisely known 
distribution parameters was demonstrated, but PBA can 
also handle cases of unknown distribution type [34].  
For example, a p-box can be constructed and 
propagated with only knowledge of the mean and 
variance; no assumption of distribution type (e.g. 
normal, lognormal, gamma, or Weibull) is necessary.  
This would be useful in the filter selection if, for 
example, the decision maker had an estimate of the 
mean and variance of filter change frequencies, but no 
theoretical or empirical evidence about the distribution 
family. 

Sensitivity analysis ignores dependencies and higher 
order interactions, and it requires a known distribution 
type.  Consequently, the types of problems that can be 
accurately explored with sensitivity analysis are more 
limited than PBA. 

6. Summary:  In this paper, we introduced an example 
EBDM decision of an oil filter selection problem with 
multiple objectives and multiple sources of different 
types of uncertainty.  The selection problem is was used 
the evaluate the suitability of IGDT and PBA under a 
variety of different uncertainty scenarios. 

Information-gap decision theory (IGDT), developed by 
Ben Haim [18], seeks to assist a decision maker in 
making decisions that yield satisfactory performance 
and are robust, despite the presence of severe 
uncertainty.  The examples examined in [27] have 
shown that IGDT has promise for expanding decision 
making capabilities under severe uncertainty in EBDM 
problems.  However, assessing one’s preference for 
robustness versus critical satisficing reward becomes 
more complex as the nature and number of uncertainties 
increase.  A clearer demarcation of the effectiveness of 
info-gap in practical situations, as well as closer 
examination of the method with respect to other 
robustness approaches, is left to future work. 

Similarly, PBA analysis provides the decision maker 
with an ability to make decisions that are robust to 
epistemic uncertainty by incorporating a gobal 
sensitivity analysis in its formulation.  Traditional 
sensitivity analysis in decision making can identify 
important sources of uncertainty, but it can also lead to 
an incorrect selection because it neglects dependencies 
and interactions.  PBA can compute with unknown 
distributions types, unknown dependencies, and 

uncertain parameters.  It also provides a rigorous and 
global sensitivity analysis.  However, PBA may yield 
overly conservative results (bounds that are bigger than 
necessary), and it is computationally more complex 
than simple one-way sensitivity analysis.  PBA also 
requires meta-analysis to identify the important sources 
of uncertainty, but this meta-analysis is more valuable 
than standard sensitivity analysis. 

In short, both IGDT and PBA are both useful in certain 
engineering design scenarios.  While both approaches 
have their own limitations, they clearly reveal more 
information in some scenarios than traditional decision 
analysis.  As such, we believe that IGDT and PBA 
should receive continued attention and development in 
the design community. 
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